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國立交通大學 
電子工程學系  電子工程研究所 

摘要 

在 IEEE 802.16a 無線通訊標準中，於系統的傳送端與接收端都分別訂定了前

向誤差改正編碼的機制，藉此減低通訊頻道中雜訊失真的影響。本篇論文的重點

在於，實現標準所訂定的前向誤差改正編碼系統於數位訊號處理器(DSP)平台上，

並且針對 DSP 平台(此平台包含 DSP 與 FPGA)的特性以及前向誤差改正編碼的演

算法進行程式的改進。在此篇論文中、我們將標準中制訂的四個必備的前向誤差

改正編碼系統，實現在以德州儀器公司所發展的 DSP 為核心的平台上。由於我們

關注的重點在於程式的執行效率，因此在簡短地介紹過我們所使用的前向誤差改

正編碼的演算法以及 DSP 平台的架構與軟體最佳化技巧後，我們將逐步地闡述如

何在 DSP 平台上最佳化我們的程式。最後我們可以在程式執行效率上達到明顯的

進步，前向誤差改正編碼的編碼器部分，經過改進後，於 DSP 模擬器上、可以達

到每秒 7984K 位元的處理速度，而解碼器的部分可以達到每秒 750K 位元的處理

速度。此外、針對我們所使用的數位處理器平台上內建的 Xilinx FPGA，我們也做

了兩項模擬來評估在Viterbi解碼器最佳化中的瓶頸：”加-比-選”(ACS)單元在FPGA

上的處理效率。受限於 DSP 與 FPGA 之間的傳輸頻寬，原本在 FPGA 上的處理速

度應為每秒 45M 64 狀態的 ACS 單元，實際上僅能達到每秒 32M 64 狀態的處理速

度。 
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Abstract 

In the IEEE 802.16a wireless communication standard, a Forward Error 

Correction (FEC) mechanism is presented at both the transmitter and the receiver 

sides to reduce the noisy channel effect. The focus of this thesis is DSP 

implementation of the FEC scheme defined in IEEE 802.16a standard and modifying  

FEC algorithms to match the architecture of DSP and FPGA platforms. We have 

implemented four required FEC schemes defined in the standard on the Texas 

Instruments (TI) TMS320C6416 digital signal processor (DSP). After a brief review 

of the algorithms, we describe the DSP hardware architecture and its software 

optimization techniques. We then explain how we optimize the FEC programs on the 

DSP platform step by step since the speed performance is our major concern. Finally, 

we achieve a significant improvement on the speed performance. At the end, the 

improved FEC encoder can achieve a data processing rate of 7984 Kbits/sec and the 

improved FEC decoder can achieve a processing rate of 750 Kbits/sec on the TI 

C64xx DSP simulator. Furthermore, we have done two simulations to evaluate the 
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data processing rate of the Add-Compare-Select (ACS) unit implemented on the 

Xilinx FPGA since the ACS unit is the speed bottleneck of the Viterbi decoder. Due 

to the constraint on transmission bandwidth between DSP and FPGA, the processing 

rate of the ACS unit on FPGA can only approach 32M (64 states/sec), while the actual 

processing rate on FPGA is 45M (64 states/sec). 
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Chapter 1 

Introduction 

 

Digital wireless transmission of multimedia contents is a trend in the consumer 

electronics field in the future. Due to the demand for wireless communication of 

multimedia contents, high data transmission rate and mobility are needed. Thus, the 

OFDM modulation technique for wireless communication has been the main stream in 

the recent years. IEEE has completed several standards such as IEEE 802.11 series for 

LAN (Local Area Network) and IEEE 802.16 series for MAN (Metropolitan Area 

Network) based on OFDM technology. Our study is based on the IEEE 802.16a 

standard, which specifies the air interface of fixed broadband wireless access systems 

providing multiple accesses. 

The advantage of digital wireless communication is based on a fact that it is 

convenient for consumers to receive or transmit digital contents without connecting to 

the transmission lines. However, there are still problems to solve in wireless 

communication system. One major problem is that the transmission channel is not 

noiseless. The transmission signals are easily interfered and distorted by several 

different types of noise source such as the crowd traffic, bad weather, the obstacle of 

buildings, etc. Multimedia service contains a broad range of contents such as audio, 

video, still image, and the traditional speech. These services would have unacceptable 

quality if they cannot detect and recover the errors introduced by the noisy channel. To 

improve the robustness of the wireless communication against the noisy channel 
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condition, the FEC (Forward–Error-Correcting Coding) mechanism and the FED 

(Forward–Error-Correcting Decoding) mechanism are a must to combat the channel 

error. Therefore, they exist in almost every commercial communication standards, 

including the IEEE 802.16a standard we mentioned earlier. 

    In this thesis, we focus on the study of the implementation of the FEC/FED scheme 

of the IEEE 802.16a standard on the II Quixote DSP/FPGA board. We first review the 

algorithms the FEC/FED used in 802.16a to understand the encoding and decoding 

procedure. Then, we write C programs to check the correctness of our algorithms. 

Finally, we implement the FEC/FED algorithm on DSP and improve its speed by 

optimizing the DSP programs. Furthermore, to increase the processing speed of the 

FED scheme further, we also use the Xilinx FPGA which is also embedded in the 

Quixote board as an extra hardware accelerator. 

In Chapter 2, we briefly introduce the forward error correction scheme of IEEE 

802.16a standard and discuss the major algorithm blocks. Also, we discuss how to 

implement these algorithms in C language to reduce the computational complexity. 

In Chapter 3, we give a brief description of our implementation environment; it 

includes both the II’s Quixote DSP baseboard and its communication mechanism 

between host PC and target DSP. 

In Chapter 4, we first prelude the architecture of C6x DSP shortly and explain the 

impact of data and instruction types on the program execution. Then, we describe the 

techniques of software pipeling used by the compiler, which is helpful for writing 

efficient high-level programs. We then describe the optimization we have done on the 

Reed-Solomon decoder implemented on the TI C64 DSP. Next, the optimization of the 

Viterbi decoder implemented on the TI C64 DSP is discussed. We also describe the 

techniques used for improving the overall processing speed of the decoder. We check 

the processing speed before optimization and after optimization. Finally, the simulation 

profile of the improved FEC encoder and decoder is given to show how fast the 

processing rate may be achieved after optimization. 
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In Chapter 5, we introduce the Xilinx FPGA as an extra hardware accelerator, we 

discuss the implementation issues based on FPGA platform and evaluate how much 

improvement we may achieved with the assistance of FPGA. 

At the end, we give some observations and conclusions. Possible subjects for 

future works are also included. 
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Chapter 2 

Overview of IEEE 802.16a FEC Scheme 

 

2.1 Introduction to IEEE 802.16a Standard 

 

The IEEE 802.16a standard amends IEEE standard 802.16 by enhancing the 

medium access control layer and providing additional physical layer specifications in 

support of broadband wireless access at frequencies from 2-11GHz. The resulting 

standard specifies the air interface of fixed (stationary) broadband wireless access 

systems providing multiple services. The medium access control layer is capable of 

supporting multiple physical layer specifications optimized for the frequency bands of 

application. The standard includes particular physical layer specifications applicable to 

systems operating between 2 and 66 GHz. It supports point-to-multipoint and optional 

mesh topologies [1]. 

This standard is part of a family of standards for local and metropolitan area 

networks. The relationship between the standard and other members of the family is 

shown in Fig. 2.1 (The numbers in the figure refer to IEEE standard designations). The 

family of standards deals with the Physical and Data Link Layers as defined by the 

international Organization for Standardization (ISO) Open Systems Interconnection 

Basic Reference Model. The access standards define several types of medium access 

technologies and associated physical media, each appropriate for particular applications 

or system objectives. Other types are under investigation [1]. 
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This thesis focus on the DSP/FPGA joint implementation and optimization issues 

of the IEEE 802.16a Forward Error Correction (FEC) Coding/Decoding scheme. 

Therefore we will concentrate on introducing the FEC specifications defined in IEEE 

802.16a physical layer part in next section. At the last part of this chapter, we show the 

block diagrams of our simulation programs and explain what we have initiatively done 

to modify the implementation structure and hence reduce the computational complexity. 

 

 
Figure 2.1: IEEE local and metropolitan area networks standards family. 

 

2.2 IEEE 802.16a FEC Specifications 

 

The overall physical layer structure of the channel coding scheme is shown in Fig. 

2.2, whereas the Reed-Solomon Code and the Convolutional Code are major parts of the 

FEC scheme, the randomizer and the interleaver are additional modules for further 

improving the error performance of the FEC scheme. The detailed specifications of each 

block are introduced in the following subsections, excluding the modulator which is not 

implemented in our research subproject. 
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Figure 2.2: Channel coding structure in transmitter side (top) and receiver side (bottom). 

 

2.2.1 Randomizer 

 

Data randomization is performed on data transmitted on the DL and UL. The 

randomization is performed on each allocation (DL or UL), which means that for each 

allocation of a data block (subchannels on the frequency domain and OFDM symbols 

on the time domain) the randomizer shall be used independently. If the amount of data 

to transmit does not fit exactly the amount of data allocated, padding of 0xFF (“1” only) 

shall be added to the end of the transmission block, up to the amount of data allocated. 

 

 

Figure 2.3: PRBS for Data Randomization. 

 

The randomizer is a Pseudo Random Binary Sequence (PRBS) generator depicted 

in Fig. 2.3. As shown in the figure, the generator polynomial of the randomizer is 

1+X14+X15. Each data byte to be transmitted shall enter sequentially into the randomizer, 

msb first to make the “0” and “1” bits in the input data streams well-distributed and 
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hence improve the coding performance. The randomizer sequence is applied only to 

information bits. Preambles are not randomized. 

The shift-register of the randomizer shall be initialized for every 1250 bytes passed 

through (if the allocation is larger then 1250 bytes). 

In the downlink, the randomizer shall be re-initialized at the start of each frame 

with the sequence 

(msb) 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 (lsb). 

In the uplink, the randomizer is initialized with the vector created as shown in Fig. 

2.4. 

 

Figure 2.4: Creation of OFDMA Randomizer Initialization Vector. 

 

2.2.2 Forward Error Correction Coding 

 

Forward error correction is used to decrease bit error rate (BER) on noisy 

communication channels. This is achieved by a method known as channel coding, 

which adds redundant information to the transmitted data. With forward error correction, 

transmission errors are corrected at the decoder, without requesting a retransmission. 

Convolutional encoding and block coding are two major forms of channel coding [2]. In 

our IEEE 802.16a OFDMA project, both convolutional code and block code 

(Reed-Solomon Code) are employed.  

The Forward Error Correction scheme used in the IEEE 802.16a standard, as 

shown in Fig. 2.5, consisting of the concatenation of a Reed-Solomon outer code and a 

rate-compatible convolutional inner code, is supported on both UL and DL. The input 

data streams are first divided into RS (Reed-Solomon) blocks, the block size is 
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determined by parameter k defined in RS code specification, then encoded by a RS 

encoder, and each RS coded block is then encoded by a convolutional encoder. 

Convolutional code is one kind of sequential codes, but RS code is a block code. 

Overall it makes the whole concatenated code a block-based coding scheme.  

 

  

Figure 2.5: Forward Error Correction structure in transmitter side (left) and 

receiver side (right). 

 

In order to make the system more flexible and adaptable to the channel condition, 

there are six coding-modulation schemes provided in the standard, as shown in Table 

2.1(notice that 64QAM is an optional mode). The different coding rates are made by 

shortening and puncturing the original RS code and with puncturing of the original 

convolutional code. The shortened- and- punctured mechanisms in RS code can provide 

different block size and hence different error correcting capability through the same RS 

Codec (Coder / Decoder). Similarly, the convolutional code can provide variable code 

rates through the same codec by applying the puncturing rule. Thus it can suit the 

variable block size of the shortened-and-punctured RS code to achieve a desired overall 

coding rate. 
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Table 2.1: Mandatory Channel Coding per Modulation. 

 

2.2.2.1 Reed-Solomon Code Specification 

 

The Reed-Solomon encoding is derived from a systematic RS (N=255, K=239, 

T=8) code using GF(28),where N is the number of overall bytes after encoding, K is the 

number of data bytes before encoding, and T is the number of data bytes which can be 

corrected from errors. The galois field used in this code is generated by the field 

generator polynomial: p(x) = x8 + x4 + x3 + x2 + 1, and the codeword is generated by the 

code generator polynomial: g(x) = (x + )(x + )(x + )…(x + ). 

This code is shortened and punctured to enable variable block sizes and variable 

error-correction capability. When a block is shortened to K’ data bytes, the first 239 – 

K’ bytes of the encoder block are filled with “0”s. When a codeword is punctured to 

permit T’ bytes to be corrected, only the first 2T’ of the total 16 codeword bytes are 

employed. 

 

2.2.2.2 Convolutional Code Specification 

 

After the RS encoding process, each RS block is then encoded by the binary 

convolutional encoder, which has native rate of 1/2, a constraint length equal to K=7, 

and uses the following generator polynomials codes to derive its two code bits: 

G1 = 171OCT  FOR X 
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G2 = 133OCT  FOR Y 

 

The generator is depicted in Fig. 2.6. 

 

Figure 2.6: Convolutional Encoder of Rate 1/2. 

 

Puncturing patterns and serialization order which is used to realize different code 

rates are defined in Table 2.2. In the table, “1” denotes a transmitted bit and “0” denotes 

a removed bit, whereas X and Y are in reference to Fig. 2.6. 

 

dfree 

X1Y1Y2 X1Y1Y2X3 X1Y1Y2X3Y4X5 

Table 2.2: The Inner Convolutional Code with Puncturing Configuration. 

 

 Furthermore, a tail-biting mechanism is adopted in our convolutional code, by 

initializing the encoder’s memory with the last data bits of the RS block being encoded. 
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2.2.3 Interleaver 

 

All encoded data bits are interleaved by a block interleaver with a block size 

corresponding to the number of coded bits per the specified allocation, Ncbps (see Table 

2.3) to protect the convolutional code from severe impact of burst errors and therefore 

increase the coding performance. The interleaver is defined by a two step permutation. 

The first permutation ensures that adjacent coded bits are mapped onto nonadjacent 

carriers. The second permutation ensures that adjacent coded bits are mapped alternately 

onto less or more significant bits of the constellation, thus avoiding long runs of lowly 

reliable bits. 

 

Table 2.3: Bit Interleaved Block Sizes and Modulo. 

 

Now let Ncpc be the number of coded bits per carrier, i.e. 2, 4 or 6 for QPSK, 

16QAM or 64QAM, respectively. Let s = Ncpc/2. Let k be the index of the coded bit 

before the first permutation at transmission, m be the index after the first and before the 

second permutation and j be the index after the second permutation, just prior to 

modulation mapping, and d be the modulo used for the permutation. 

 

The first permutation is defined by the rule: 

m = (Ncbps/d) * kmod(d) + floor(k/d),  k = 0, 1, …, Ncbps – 1 

The second permutation is defined by the rule: 

J = s * floor(m/s) + (m + Ncbps – floor(d*m Ncbps))mod(s), m = 0, 1, …, Ncbps -1  
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The de-interleaver, which performs the inverse operation, is also defined by two 

permutations. Let j be the index of the received bit before the first permutation, m be the 

index after the first and before the second permutation and k be the index after the 

second permutation, just prior to delivering the coded bits to the convolutional decoder. 

 

The first permutation is defined by the rule: 

m = s * floor(j/s) + (j + floor(d*j/ Ncbps))mod(s),  j = 0, 1, …, Ncbps -1 

 

The second permutation is defined by the rule: 

K = d * m – (Ncbps -1) * floor (d*m/ Ncbps),  m = 0, 1, …, Ncbps -1 

 

The first permutation in the de-interleaver is the inverse of the second permutation 

in the interleaver, and conversely. 

 

2.3 Implementation Issues of the FEC Scheme 

 

Detailed explanation of the FEC coding and decoding algorithms is given in this 

section. The block diagrams of our simulation programs are also provided in each 

section. Also we will describe how we reduce the computational complexity on PCs. 

 

2.3.1 Reed-Solomon Code 

 

2.3.1.1 Encoding of Shortened and Punctured Reed-Solomon Codes 

 

The Reed-Solomon code defined in IEEE 802.16a standard is a modified RS code 

which is derived from the standard systematic (255, 239, 8) RS code as mentioned in 

section 2.2.2. In this section, we first give an example to illustrate how the encoding 
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process has been done. Secondly, the block diagram of our RS encoder program is 

given too. 

The (48, 36, 6) RS code is chosen from Table 2.2 as an example to show the details 

of encoding process. Before talking about the encoding process, we must note one thing 

that the galois field defined in the IEEE 802.16a standard is GF(28), it means that each 

element, i.e. I238 ~ I0, R15 ~ R0, mentioned below denotes a byte (8 bits). First we let the 

information data bytes which are inputs to the systematic (255, 239, 8) RS code be 

represented as polynomial form shown below: 

I(x) = I238x238 + I237x237 + ………+ I36x36 + I35x35 + …… + I1x + I0 

= (I238, I237, … , I36, I35, … , I1, I0) 

 

Then the resulting systematic (255, 239, 8) RS codeword is given by 

C(x) = I(x) x16 + R(x) 

      = (I238, I237, … , I36, I35, … , I1, I0, R15, R14, … , R3, R2, R1, R0) 

 

The remainder polynomial R(x) can be represented as below: 

R(x) = I(x) x16 mod g(x) 

            = (R15, R14, … , R3, R2, R1, R0) 

Where the exponent of x is derived from N – K = 16. 

The encoding process shown above is the standard (255, 239, 8) RS code. In order 

to match the (48, 36, 6) code requirement, shortening and puncturing are needed. In 

other words, we have to modify the existing codeword further. Initially we set the first 

(239 – 36) = 203 input data bytes to zero and pad with 36 information data bytes, for 

example, the input data bytes becomes: 

I(x) = (0, 0, 0, … , 0, I35, I34, I33,… , I2, I1, I0), totally 203 zeros in the beginning. 

 

Then let the 239 data bytes be encoded by the standard (255, 239, 8) RS encoder, 

after it has been encoded, we discard the last 4 bytes of the codeword. Finally we have 

48 bytes codeword, for example, the 48 bytes codeword is shown as below: 
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   C(x) = (I35, I34, I33,… , I2, I1, I0, R15, R14, … , R7, R6, R5, R4) 

 

 Similarly, the other types of shortened-and-punctured RS code listed in Table 2.2 

can be acquired by performing the same procedure as discussed above, except for the 

(81, 72, 4) RS code which is derived from (80, 72, 4) shortened-and-punctured RS code 

by inserting a zero byte in the beginning of codeword. 

 The block diagram of our RS encoder is shown in Fig. 2.7, where the block named 

as shortened-and-punctured block is to discard the first 203 zero bytes (shortening) and 

the last 4 bytes (puncturing) of the RS codeword. The details of the LFSR block is 

shown in Fig. 2.8, we employ the Linear Feedback Shift Register (LFSR) structure to 

implement the RS encoder block diagram as shown in Fig. 2.9 [3]. 

 

 

 

 

 

 

Figure 2.7: Block Diagram of the RS Encoder Program. 

 

 

Figure 2.8: The Linear Feedback Shift Register Structure of RS Encoder. 
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Figure 2.9: Block Diagram of a Conventional RS Encoder. 

 

2.3.1.2 Decoding of Shortened and Punctured Reed-Solomon Codes 

 

In order to understand how to decode a shortened-and-punctured RS code, we also 

take the (48, 36, 6) RS code as an example. First we acquire 48 data bytes from the 

receiver side, prepending with 203 zero bytes and padding with 4 zero bytes in the end. 

Then, we have a data block whose size equals 255 bytes. Afterwards we can employ a 

standard (255, 239, 8) RS decoder to decode it with the last 4 zero bytes of the 

codeword marked as erasures. 

 

A (48, 36, 6) RS decoder consists of the following main steps: 

1. Syndrome computation:  

Insert 203 bytes of zero before the 48 bytes received data and insert 4 bytes of zero 

in the locations marked as erasure then compute the syndromes. 

�
=

=
254

0i

ik
ik rS α  , for 161 ≤≤ k , whereas the ri is the received data after zero 

inserting. 

2. Erasure locator polynomial computation: 

�∏
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j

j
j

s

j
j xxZx
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)1()( , whereas the Zj is the jth erasure location and the s 

is the number of erasures. 

3. Find the error location polynomial coefficient by solving  
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Then find the error location by finding the roots of (x). 

(When performing erasure and error decoding, the syndrome shown in (1) shall be 

replaced by Forney syndrome : �
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5. Let t denote the number of errors, s denote the number of erasures If 2s + t > T (T 

= 6 in the case of (48, 36, 6) RS code), it means that the number of errors and 

erasures exceed the amount that can be recovered by this RS code. Thus, the 

received data bytes would be left unchanged. 

 

For computing (1) and (2), there are two well-known and conventional algorithms 

existing. One is called Euclidean’s algorithm, and the other is called Berlekamp-Massey 

(BM) algorithm. The Euclidean’s algorithm is used to compute the eqns. (1) and (2). 

The BM algorithm is used to compute eqn. (1). In our case, we choose the BM 

algorithm to compute (1) and employ the Forney algorithm to solve (2). 

A flowchart of the BM algorithm for computing the error/erasure locator 

polynomial in RS decoder is shown in Fig. 2.10 [3]. At the end of the iterations, we can 

obtain the error/erasure locator polynomial via the �(n-k)(x) polynomial. 



 17 

 
Figure 2.10: Flowchart of the Berlekamp-Massey Algorithm. 

 

In addition, the RS decoding procedure introduced previously can be further simplified 

based on an improved time-domain RS decoder proposed in [19]. The major difference 

between the new decoder and the previous one is that decoding in the new decoder do 

not require pre-computating the Forney syndrome and post-computing the errata locator 

polynomial, it just simply initialize the BM algorithm with the erasure locator 

polynomial and afterward the errata locator polynomial can be obtained in the end of 

iteration of BM algorithm. 
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The block diagram of our RS decoder is shown in Fig. 2.11, where the syndrome 

computation is done by employing the circuit shown in Fig. 2.12 then fed to the BM 

algorithm, the chein search performed after BM algorithm is used to find the roots of 

the error/erasure locator polynomial and the forney algorithm is for the purpose of 

computing the magnitude of the error/erasure .  

 

 

Figure 2.11: Block Diagram of the RS Decoder Program. 

 

 

Figure 2.12: Syndrome Computation Circuit. 

 

2.3.1.3 Galois Field Arithmetic 

 

The major computational complexity of RS code is resulted from the galois field 

arithmetic architecture. In the case of GF(28), 8 bits by 8 bits operation are needed in 

galois field arithmetic when engaged in field element addition, multiplication or 
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inversion. The addition operation only requires the 8 bits by 8 bits XOR operation, but 

the multiplication and inversion are much more complicated than the addition and hence 

require a lot of computational time [3]. 

For the purpose of reducing the complexity of the galois field arithmetic 

(especially for the multiplication and inversion operations), several methods have been 

presented. For instance, By using Mastrovito algorithm [4], which introduce the concept 

of “product matrix”, we can avoid degree 8 (Since the considered galois field is GF(28)) 

polynomial multiplication/division, or by exploiting the serial multiplier structure [5] 

which is commonly used in VLSI, we can simplify the polynomial 

multiplication/division to 64 bit multiplication and 7 polynomial reduction operation 

only. However, due to the special architecture of DSP, the computational complexity is 

still high for the two previous methods, which are mainly developed for VLSI 

architecture. In our case we finally employ the logarithmic table lookup algorithms [6] 

to handle the galois field arithmetic. Further explanation of the table lookup method and 

its profile respect to the computational speed are given in Chapter 4. Also we will 

discuss the difference between the two methods mentioned above and the table-lookup 

method in Chapter 4 for DSP optimization. 

 

2.3.2 Convolutional Code 

 

2.3.2.1 Encoding of Punctured Convolutional Code 

 

The convolutional code encoding structure is shown in Fig. 2.6. It consists of one 

input bit, six memory elements (shift registers) and two output bits, which are generated 

by first performing AND operations on the generator polynomial coefficients, then pad 

the contents of the memory elements with the input bit, and then perform operation of 

modulo 2(XOR) on each bit generated by the previous AND operation. For the purpose 

to reduce computational complexity, we avoid performing XOR operation directly but 
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employing the table-lookup method to replace it. That is, we build a table that contains 

all possible 7 bit (6 memory element bits plus 1 input bit) XOR results and store them in 

memory. From the fact that the XOR operation is used frequently during the encoding 

process, we can just search the XOR results in the table and avoid the computations thus 

slightly speed up the encoding process. 

 According to the puncturing rule shown in Table 2.2, a “1” means a transmitted bit 

and a “0” means a skipped bit. The X and Y in the table denote the two output bits 

shown in Fig. 2.6. Note that the dfree has been changed from that of the original 

convolutional code with rate 1/2, which is equal to 10. The operations stated above are 

represented by a block diagram shown in Fig. 2.13. The input and output buffers shown 

in this figure are used for reducing the number of times on memory access when 

concerning DSP implementation. Since the convolutional encoder processes a piece of 

1-bit input data each time step, if we do not setup buffers for input and output, we have 

to do memory accessing frequently during the encoding period, which decreases the 

processing rate on the TI DSP platform. 

 

 

Figure 2.13: Block Diagram of the Convolutional Encoder Program. 

 

2.3.2.2 Viterbi Decoding of Punctured Convolutional Code 

 

Viterbi algorithm is the most well known technique in convolutional decoding 

process. The operation of Viterbi algorithm can be explained easily using the trellis 

diagram, which is generated by the encoder with all possible inputs. As we know, the 
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convolutional encoder consists of the memory elements, one input bit and two output 

bits. The output bits are decided by the suitable combinations (AND and XOR) of the 

past input bits. The changes of the value in the memory elements are viewed as the 

transition from one state to another. So we can model the encoder as a finite state 

machine, which is useful in the analysis of trellis diagram. An example of the finite state 

machine is shown in Fig. 2.14, whereas x(n-1) and x(n-2) denote the previous input and 

the input prior to the previous input, respectively. When we acquire a new input bit, the 

state of memory elements is changed and the finite state machine generates the 

corresponding output bits. 

 

 

Figure 2.14: State Transition Diagram Example. 

 

The trellis diagram can be derived from the state transition diagram. First, the finite 

state machine output is constructed by the given input and the current state. We expand 

the finite state machine to a trellis diagram by introducing the concept of time. The 

trellis diagram is consisting of all the features of finite state machine and can be viewed 

as the time axis expansion of the finite state machine diagram. A simple trellis diagram 

is shown in Fig. 2.15 as an example. We can easily see all the state transition for any 

possible input for every propagation time instance. In this trellis diagram, the upper 
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outgoing branch for each state corresponds to an input of 0, and the lower outgoing 

branch corresponds to an input of 1. Each state has two incoming and two outgoing 

branches. Each information sequence, uniquely encoded into an encoded sequence, 

corresponds to a unique path in the trellis. Equivalently, for a given path through the 

trellis, we can obtain the corresponding information sequence by reading off the input 

labels on all the branches that make up the path, and the procedure is also called 

“Traceback”. The Viterbi algorithm is used to find the optimal path in the trellis 

diagram that results in the minimum errors. Then we do the traceback procedure to 

retrieve the information sequence, which has been the inputs to the encoder, and the 

details are discussed below. 

 

 
Figure 2.15: Trellis Diagram Example for a Viterbi Decoder. 

 

The Viterbi algorithm computes the branch metric of each path at each stage of the 

trellis. The metric is first calculated and stored as a partial metric for each branch as the 

trellis traversed. Since there are two paths merge at each node, the path with a smaller 

metric is retained while the other is discarded. This is based on the principle that the 

optimum path must contain the sub-optimum survivor path just like as the one shown in 

Fig. 2.16 [7]. The survivor path for a given state at time instance n is the sequence of 

symbols closest to the received sequence up to time n. For the case of puncturing 

convolutional code, the metric associated with the punctured bits are simply disregarded 
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in metric calculation stage. The overall operation discussed in the above constitutes the 

computational core of the Viterbi algorithm and is so-called the Add-Compare-Select 

(ACS) operation. 

 

 

Figure 2.16: Survivor path of the Trellis Diagram. 

 

In conclusion, the Viterbi algorithm can be divided into four major steps, the first 

step is the branch metric calculation and state metric loading, the second step is the 

ACS, the third step is the state metric storing and path recording, and the last one is the 

traceback. The block diagram of our Viterbi decoder program is shown in Fig. 2.17, and 

the structure of the Viterbi algorithm is shown in Fig. 2.18. The extend received 

sequence block shown in Fig. 2.17 is included for decoding the puncturing and 

tail-biting convolutional code and will be discussed later in this subsection. 
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Figure 2.17: Block Diagram of the Viterbi Decoder Program. 
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Figure 2.18: Structure of the Viterbi Algorithm. 

 

Notice that we have named our Viterbi decoder in the block diagram as an SDD 

Viterbi decoder, where the SDD stands for Soft-Decision-Decoding. In fact, there are 

two kinds of decision types used in Viterbi decoding, one is called hard-decision, and 

another is called soft-decision. If hard-decision is adopted, then the metric value we 

used for calculating branch metric and state metric is the Hamming distance, which only 

counts the bit errors between each trellis path and the hard-limited output of the 

demodulator. For the case of soft-decision, the metric we used should be the Euclidean 

distance between each trellis path and the soft-output of the demodulator. The major 

difference on performance between these two decision types is the coding gain and the 

computational speed. For hard-decision, the calculation of Hamming distance is a 

simple XOR operation, On the other hand, the soft-decision in metric calculation 

requires a floating-point arithmetic. The hard-decision based Viterbi decoder is much 

faster than the soft-decision based algorithm. However, its coding gain will lose 2 to 3 

dB compared to soft-decision decoding, and cannot satisfy the requirements of IEEE 

802.16a standard [8]. Hence, the soft-decision decoding is adopted to implement our 

Viterbi decoder. 

 

2.3.2.3 Bit Interleaved Soft Decision Viterbi Decoding  

 

In the specific FEC scheme defined by IEEE 802.16a, there is a block interleaver 

between the convolutional code and modulator. Therefore, the optimal SDD should take 

the joint trellis structure which consists of the convolutional code, the block interleaver 

and the modulator into account. In consequence, it leads to a complicated solution to be 

realized in practice. To be more practical, we consider a suboptimal solution based on a 
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bit-by-bit metric mapping and calculation concept, which is proposed in [9]. To begin 

with, we can generalize our major problems to how to obtain the metric values used in 

the SDD Viterbi decoder while concerning the de-interleaving process. Here we are not 

going to discuss or prove the detailed algorithm that has already been well-defined in 

[9], but just showing the procedure on acquiring metric values.  

According to the suboptimal solution, we first calculate the Euclidean distance 

between the received symbol and its nearest reference modulated symbol with respect to 

a decided bit “0” and “1”. Let us take 16-QAM modulation as example. Referring to Fig. 

2.19, if a received symbol lies in the coordinate (2.5, 2.7) (represented by a square point 

in the figure), then its branch metric of the first bit with respect to a decided bit “0” 

should be the Euclidean distance between the received symbol and the rightmost 

reference symbol whose in-phase coordinate is 3 and the result is |3 – 2.5|2 = 0.25. And 

the branch metric with respect to a decided bit “1” should be |-1 – 2.5|2 = 12.25. The 

branch metric of the second bit, third bit, and fourth bit of this received symbol can be 

calculated in a similar way. Consequently, we have four pairs of branch metric for each 

received symbol. Before sending them to the SDD Viterbi decoder, these pairs of 

branch metric should be mapped to the corresponding bit position since the original 

convolutional encoded sequence has been interleaved. In order to be consistent with the 

newly defined branch metrics, our SDD Viterbi decoder should be modified to be able 

to treat these de-interleaved (or to say “demapped”, alternatively) branch metric as the 

input data sequence instead of the soft-demodulated symbol. Except for the branch 

metric calculation step, all the other parts in a conventional SDD Viterbi decoder are 

still the same. 

 

 

 

 

 

 



 26 

 

 

 

 

 

 

 

 

Figure 2.19: Partition of the 16-QAM Constellation. 

 

 

2.3.2.4 Viterbi Decoding of Tail-Biting Convolutional Code 

 

 According to [8] and [10], the practical suboptimal tail-biting Viterbi decoder is 

shown in Fig. 2.20, where the “SDD Viterbi Decoder” block denotes the Viterbi 

decoder with puncturing mechanism and bit-interleaved SDD. The parameter  and

 are both chosen to be 24 to achieve the balance of computational complexity and the 

performance of error correction based on the analysis done in [8]. 

 

 
Figure 2.20: Block Diagram of the Suboptimal Tail-Biting Viterbi Decoder. 

 

2.3.2.5 The Butterfly Structure in the Trellis Diagram 
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In order to reduce the computational complexity in the ACS part, we bring in the 

concept of butterfly structure from the trellis diagram. The Symmetry in the trellis 

diagram, which forms the butterfly structure, can be used to reduce the number of 

branch metric calculations. Fig. 2.21 shows the butterfly structure associated with the 

Viterbi decoder  pairing new states 2i and 2i+1 with previous states i and i+s/2, 

where s is the number of total possible states. In our case of constraint length K=7, s 

equals 64 (26). Even though there are four incoming branches, there are only two 

different branch costs. 

Path metrics for each new state are calculated using each incoming branch cost 

plus the previous path cost associated with that branch. The maximum of the two 

incoming path metrics is selected as the survivor. The butterfly computations consist of 

two “Add-Compare-Select” (ACS) operations and updating the survivor path history. 

The two ACS operations are: 

Sn(2i) = min {Sn-1 (i) + b , Sn-1(i+s /2) + a}, and 

Sn(2i+1) = min {Sn-1 (i) + a , Sn-1 (i+s /2) + b} 

After completing N stages of decoding, one of the M survivor paths is selected for 

trace-back. Obviously, the number of branch metric calculation has been reduced 

greatly by introducing the butterfly structure. 

 

 

Figure 2.21: Butterfly Structure Showing Branch Cost Symmetry. 
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Chapter 3 

DSP Implementation Environment 

 

In our IEEE 802.16a OFDMA project, for the ease to link up all the subprojects, 

we choose the digital signal processor (DSP) platform to implement the whole system. 

The DSP baseboard we use is Innovative Integration's (II’s) new product in year 2003 

named Quixote, which houses the Texas Instruments TMS320C6416 DSP chip. In this 

chapter, in addition to an introduction to the DSP chip and the DSP baseboard, the data 

communication process between the host PC and the target DSP is also described. 

 

3.1 The TI DSP Chip 
 

The DSP chip we adopt is one of the TMS320C64x series DSP. According to [11], 

TMS320C64x series is a member of the TMS320C6000 (C6x) family. The C6000 

device is capable of executing up to eight 32-bit instructions per cycle and its core CPU 

consists of 64 general-purpose 32-bit registers (for C64x only) and eight functional 

units. The detailed features of the C6000 family devices include: 

� Advanced VLIW CPU with eight functional units, including two multipliers 

and six arithmetic units. 

� Instruction packing (Reduce Code Size). 

� Conditional execution of all instructions. 

� Efficient code execution on independent functional units. 
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� 8/16/32-bit data support, providing efficient memory support for a variety 

of applications. 

� 40-bit arithmetic options add extra precision for computationally intensive 

applications. 

� Saturation and normalization provide support for key arithmetic operations. 

� Field manipulation and instruction extract, set, clear, and bit counting support 

common operation found in control and data manipulation applications. 

 

The block diagram of the C6000 family is shown in Fig. 3.1. The C6000 devices 

come with program memory, which, on some devices, can be used as a program cache. 

The devices also have varying sizes of data memory. Peripherals such as a direct 

memory access (DMA) controller, power-down logic, and external memory interface 

(EMIF) usually come with the CPU, while peripherals such as serial ports and host ports 

are available only for certain models. 

In the following subsections, the TMS320C64x DSP Chip is introduced in the 

three major parts: Central processing unit (CPU), Memory, and Peripherals. 
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Figure 3.1: The Block Diagram of TMS320C6x DSP Chip. 
 

 

Figure 3.2: The TMS320C64x DSP Chip Architecture and Comparison with Ancient 
TMS320C62x/C67x Chip. 
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3.1.1 Central Processing Unit 
 

Besides the eight independent functional units and sixty-four general purpose 

registers that has been mentioned before, the C64x CPU also consists of the program 

fetch unit, instruction dispatch unit (attached with advanced instruction packing), 

instruction decode unit, two data path (A and B, each with four functional units), test 

unit, emulation unit, interrupt logic, several control registers and two register files (A 

and B with respect to the two data paths). The architecture is illustrated in more detail in 

Fig .3.2 [12]. Compared with the other C6000 family DSP chip, the C64x DSP chip 

provides more available hardware resources. The additional features that are only 

available on C64x are:  

� Each multiplier can perform two 16 x 16-bit or four 8 x 8 bit multiplies every 

clock cycle. 

� Quad 8-bit and dual 16-bit instruction set extensions with data flow support 

� Support for non-aligned 32-bit (word) and 64-bit (double word) memory 

accesses. 

� Special communication-specific instructions have been added to address 

common operations in error-correcting codes. 

� Bit count and rotate hardware extends support for bit-level algorithms. 

 

The program fetch unit shown in the figure could fetch eight 32-bit instructions 

(which implies 256-bit wide program data bus) every single cycle, and the instruction 

dispatch and decode units could also decode and arrange the eight instructions to eight 

functional units. The eight functional units in the C64x architecture could be further 

divided into two data paths A and B as shown in Fig. 3.2. Each path has one unit for 

multiplication operations (.M), one for logical and arithmetic operations (.L), one for 

branch, bit manipulation, and arithmetic operations (.S), and one for loading/storing, 

address calculation and arithmetic operations (.D). The .S and .L units are for arithmetic, 
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logical, and branch instructions. All data transfers make use of the .D units. Two 

cross-paths (1x and 2x) allow functional units from one data path to access a 32-bit 

operand from the register file on the opposite side. There can be a maximum of two 

cross-path source reads per cycle. There are 32 general purpose registers, but some of 

them are reserved for specific addressing or are used for conditional instructions.  

Most of the buses in the CPU support 32-bit operands, and some of them support 

40-bit operands. Each functional unit has its own 32-bit write port into a 

general-purpose register file. All functional units which end in 1 (for example, .L1) 

write to register file A while all functional units which end in 2 ( for example, .L2) write 

to register file B. There is an extra 8-bit wide port for 40-bit write as well as an extra 

8-bit wide input port for 40-bit read in four specific units (.L1, .L2, .S1 and .S2). Since 

each unit has its own 32-bit write port, all eight functional units could be operated in 

parallel in every single cycle. 

The program pipelining is also an important technique to make instructions execute 

in parallel and hence reduce the overall execution cycles. In order to make pipelining 

work properly, we should have knowledge of the pipeline stages and instruction 

execution phases. Since the program pipelining is highly related to the optimization of 

DSP program, we left it to be discussed in next chapter and not go into detail here.   

 

3.1.2 Memory 

 
Internal Memory 
 

The C64x DSP chip has a 32-bit, byte-addressable address space. Internal (on-chip) 

memory is organized in separate data and program spaces. When off-chip memory is 

used, these spaces are unified on most devices to a single memory space via the external 

memory interface (EMIF). The C64x has two 64-bit internal ports to access internal 

data memory and a single internal port to access internal program memory, with an 

instruction-fetch width of 256 bits. 
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Memory Options 

Besides the internal memory, the C64x DSP Chip also provides a variety of 

memory options: 

� Large on-chip RAM, up to 7M bits. 

� Program cache. 

� 2-level caches. 

� 32-bit external memory interface supports SDRAM, SBSRAM, 

SRAM, 

and other asynchronous memories for a broad range of external memory 

requirements and maximum system performance. 

 

3.1.3 Peripherals 

 

In addition to the on-chip memory, the TMS320C64x DSP chips also contain 

peripherals for supporting with off-chip memory options, co-processors, host processors, 

and serial devices. The peripherals are direct memory access (DMA) controller, 

Host-Port Interface (HPI), EMIF, Timers and some other units. 

 The DMA controller transfers data between regions in the memory map without 

the intervention by CPU. It could move the data from internal memory to external 

memory or from internal peripherals to external devices. It is used for communication to 

other devices. 

 The Host-Port Interface (HPI) is a 16-bir wide parallel port through which a host 

processor could directly access the CPUs memory space. It is used for communication 

between the host PC and the target DSP. 

 The C64x has two 32-bit general-purpose timers that are used to time events, count 

events, generate pulses, interrupt the CPU and send synchronization events to the DMA 

controller. The timer has two signaling modes and could be clocked by an internal or an 

external source. 
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3.2 The DSP Baseboard 

 

The Quixote DSP Baseboard card is shown in Fig. 3.3 and the architecture is 

shown in Fig. 3.4 [15]. Quixote consists of a TMS320C6416 600 MHz 32-bit 

fixed-point DSP chip and a Xilinx two- or six-million gate Virtex-II FPGA in a single 

board. Utilizing the signal processing technology to provide processing flexibility, 

efficiency and deliver high performance. Quixote has 32MBytes SDRAM for use by 

DSP and 4 or 8Mbytes zero bus turnaround (ZBT) SBSRAM for use by FPGA. 

Developers could build complicated signal processing systems by integrating these 

reusable logic designs with their specific application logic. 

 
Figure 3.3: Innovative Integration’s Quixote DSP Baseboard Card. 
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Figure 3.4: The Architecture of Quixote Baseboard. 

 

3.3 Data Communication Mechanism 
 

 Many applications of the Quixote baseboards involve communication with the host 

CPU in some manner. All applications at a minimum must be reset and downloaded 

from the host, even if they are isolated from the host after that. The simplest 

communication method supported is a mapping of Standard C++ I/O to the Uniterminal 

applet that allows console-type I/O on the host. This allows simple data input and 

control and sending text strings to the user. The next level of support is provided by the 

Packetized Message Interface. This allows more complicated medium rate transfer of 

commands and information between the host and target. It requires more software 

support on the host than the Standard I/O. For full rate data transfers Quixote supports 
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the creation of data streaming to the host, for the maximum ability to move data 

between the target and host. On Quixote baseboards, a second type of busmaster 

communication between target and host is available for use, it is the CPU Busmaster 

interface. 

The primary CPU busmaster interface is based on a streaming model, where 

logically data is an infinite stream between the source and destination. This model is 

more efficient because the signaling between the two parties in the transfer can be kept 

to a minimum and transfers can be buffered for maximum throughput. In addition, the 

Busmaster streaming interface is fully handshook, so that no data loss can occur in the 

process of streaming. For example, if the application cannot process blocks fast enough, 

the buffers will fill, then the busmaster region will fill, then busmastering will stop until 

the application resumes processing. When the busmaster stops, the DSP will no longer 

be able to add data to the PCI interface FIFO. 

 However, in the application of FEC encoder and decoder, the data sequence is 

first divided into RS blocks then performed encoding and decoding procedure. Hence 

the continuous streaming may not be suitable for FEC application. Alternatively, there 

is a data flow paradigm supported for non-continuous data sequence called block mode 

streaming. For very high rate applications, any processing done to each point may result 

in a reduction in the maximum data rate that can be achieved. Since block mode does no 

implicit processing on a point-by-point basis, the fastest data rates are achievable using 

this mode. 

The DSP Streaming interface is bi-directional. Two streams can run simultaneously, 

one running from the analog peripherals through the DSP into the application. This is 

called the “Incoming Stream”. The other stream runs out to the analog peripherals. This 

is the “Outgoing Stream”. In both cases, the DSP needs to act as a mediator, since there 

is no direct access to analog peripherals from the host. The block diagram of the DSP 

streaming mode is shown in Fig. 3.5 [15]. 
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Figure 3.5: Block Diagram of DSP Streaming Mode. 

 

DSP Streaming is initiated and started by the Host, using the Caliente component. 

On the target, the DSP interface uses a pair of DSP/BIOS Device Drivers, PciIn (on the 

Outgoing Stream) and PciOut (on the Incoming Stream), provided in the Pismo 

peripheral libraries for the DSP. They use burst-mode and are capable of copying blocks 

of data between target SDRAM and host bus-master memory via the PCI interface at 

instantaneous rates up 264 MBytes/sec. 

In addition to the busmaster streaming interface, the DSP and the host also have a 

lower bandwidth communications link called packetized message interface for sending 

commands or side information between the host PC and the target DSP. 

 

 

 

 

 

 

 

 



 38 

 

 

Chapter 4 

Implementation and Optimization of 802.16a 

FEC Scheme on DSP Platform 

 

As mentioned in last chapter, we adopt the Texas Instruments (TI) digital signal 

processor (DSP) for implementing the Forward Error Correction (FEC) scheme in the 

IEEE 802.16a wireless communication standard. In this chapter, we are going to discuss 

the main themes of this thesis – the implementation and optimization of the specified 

FEC scheme on the newly released II’s Quixote DSP baseboard, which houses a TI 

TMS320C6416 DSP chip. We firstly briefly introduce the entire system structure of our 

FEC implementation and its communication mechanism. Secondly, we introduce some 

special features of TI C6000 family DSP that is helpful when doing compiler level 

optimization. Then, we proposed some simple and yet practically useful techniques for 

improving the computational speed of Reed-Solomon (RS) Code and Convolutional 

(CC) Code (mainly for decoder part) on TI C64 family DSP. Finally, we present the 

improvement after the efforts we made on the RS code and the CC code optimization by 

showing the simulation profile generated by the TI Code Composer Studio (CCS) 

built-in profiler. 
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4.1 System Structure of the FEC Implementation 

 

As defined in the IEEE 802.16a standard, the FEC scheme, which consists of FEC 

encoder and FEC decoder, is located between the source encoder/decoder and the 

channel modulator/demodulator. Due to the features of the FEC scheme, it requires 

massive computation in the decoding procedure. Thus, for the purpose of achieving the 

real-time processing goal, it is necessary to assign a single DSP board for the FEC use 

only. In consequence, the FEC scheme, source coding scheme and channel modulation 

scheme each uses an individual DSP board and linked by the PCI port on the personal 

computer (PC), one thing to be noted here is the communication mechanism between 

the DSP board and the Host PC. It supposed to be the data streaming mode that has 

been described in Chapter 3, but due to the malfunction of the newly released II’s 

Quixote DSP baseboard, up till now, the streaming mode on the DSP board is not yet 

work. In substitution, we use the standard I/O (fread and fwrite) to implement the DSP 

file I/O mechanism on the TMS320C6416 Simulator. The drawback of using the 

standard I/O is that it cannot proceed too many input data or the processor may crash 

during the I/O time and it takes extra cycles to perform the file I/O mechanism. 

The system structure is shown in Fig. 4.1 and Fig. 4.2 for the transmitter side and 

the receiver side, respectively. At the transmitter side, the source coded data sequence is 

first multiplexed by an audio/video multiplexer then transmits to the randomizer of the 

FEC encoding scheme through the PCI interface of Host PC. Afterward, the sequence is 

processed by the randomizer, the RS encoder, the CC encoder and the block interleaver 

and then the interleaved coded sequence is transmitted to the channel modulator through 

the PCI interface. At the receiver side, the procedure is an reverse of that in the 

transmitter side. First the demodulator transmits the soft decision demodulated metric 

sequence to the FEC decoding scheme (again through the PCI interface). After FEC 

decoding, the decoded sequence is passed to the source decoder through the PCI 

interface and then the source decoding operation is performed. 
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Figure 4.1: System Structure of Transmitter Side. 

 

 

 

 

 

 

 

 

 

Figure 4.2: System Structure of Receiver Side. 

 

4.2 Compiler Level Optimization Techniques 

 

 In this subsection, firstly the TI C6000 family pipeline structure is introduced for 

understanding how the processor arranges the pipeline stages and what instructions are 

more time consuming and shall be avoided if possible. Secondly, the code development 

flow is presented to show how to develop a DSP program efficiently and systematically. 

Thirdly, an important techniques used by the TI CCS compiler to improve the program 

speed, so-called “software pipelining”, is introduced and a simple example is given to 
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explain how we can improve the program efficiency by using the software pipelining 

technique. 

 

4.2.1 Pipeline Structure of the TI C6000 Family 

 

 There are a few features regarding to the TI C6000 family’s pipeline structure that 

can provide the advantages of good performance, low cost, and simple programming. 

The following are several useful features [11]: 

� Increased pipelining eliminates traditional architectural bottlenecks in 

program fetch, data access, and multiply operation. 

� Pipeline control is simplified by eliminating pipeline locks. 

� The pipeline can dispatch eight parallel instructions in every cycle. 

� Parallel instructions proceed simultaneously through the same pipeline 

phase. 

 The pipeline structure of the C6000 family consists of three basic pipeline stages, 

They are Fetch stage (F), Decode stage (D), and Execution stage (E). At the F stage, the 

CPU first generates an address, fetches the opcode of the specified instruction from 

memory, and then passes it to the program decoder. At the D stage, the program decoder 

efficiently routes the opcode to the specific functional unit determined by the type of 

instruction (LDW, ADD, SHR, MPY, etc). Once the instruction reaches the E stage, it 

is executed by its specified functional unit. Most instructions of the C6000 family fall in 

the Instruction-Single-Cycle (ISC) category, such as ADD, SHR, AND, OR, XOR, etc. 

However, the results of a few instructions are delayed. For example, the multiply 

instructions - MPY (and its varieties) requires a delay length equal to one cycle. 

One cycle delay means that the execution result will not be available until one 

cycle later (i.e., not available for the next instruction to use). The results of a load 

instruction – LDW (and its varieties) are delayed for 4 cycles. Branches instructions 
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reach their target destination 5 cycles later. Store instructions are viewed as an ISC from 

the CPU’s perspective because of the fact that there is no execution phase required for a 

store instruction but actually it still finishes in 2 cycles later. Since the maximum delay 

among all the available instructions is 5 cycles (6 execution cycles totally), it is intuitive 

to split the execution stage (E) into six phases as shown in Table 4.1. 

 

 

 

 

 

 

 

 

Table 4.1: Completing Phase of Different Type Instructions. 

 

4.2.2 Code Development Flow 

 

 Traditional development flows in DSP industry have involved validating a C 

model for correctness on a host PC or Unix workstation and then painstakingly porting 

that C code to hand-coded DSP assembly language. This is both time consuming and 

error prone. The recommended code development flow involves utilizing the C6000 

code generation tools to help in optimization rather than forcing the programmer to code 

by hand in assembly. These advantages allow the compiler to do all the laborious work 

of instruction selection, parallelizing, pipelining, and register allocation. Fig. 4.3 

illustrates the three phases in the code development flow [13]. Because phase 3 is kind 

of too detailed and time consuming, most of the time we will not go into phase 3 to 
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write linear assembly code unless the software pipelining efficiency is very poor or the 

resource allocation is very unbalanced.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Code Development Flow. 

 

4.2.3 Software Pipelining 
 

 Software pipelining is extensively used to exploit instruction level parallelism (ILP) 

in loops and TI CCS compiler is also capable of doing it. To say more clearly, it is a 

technique used to schedule instructions in a loop so that multiple iterations of the loop 

can execute in parallel, so the empty slots can be filled and the functional units can be 

used more efficiently. Overall it makes a loop to be a highly optimized loop code and 

hence accelerate the program execution speed significantly. 

 For the ease of understanding how software pipelining actually works, here we 

give an example to illustrate [16]. A simple for loop and its code after applying software 

pipelining are shown in Fig 4.4(a) and 4.4(b). The loop schedule length is reduced from 

four control steps to one control step in the software pipelined loop. However, the code 

size of software pipelined loop is three times longer than that of the original code in this 
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example. Fig. 4.5(a) and 4.5(b) show the execution records of the original loop and the 

software pipelined loop, respectively.  

 

 

 

 

 

 

 

 

 

 

 

    (a)         (b) 

Figure 4.4: (a) The Original Loop. (b) The Loop After Applying Software Pipelining. 

 

 

 

 

 

 

 

 

 

 

(a)          (b) 

Figure 4.5: (a) Execution Record of the Original Loop. (b) Execution Record of the 

Software Pipelined Loop. 

 

for i = 1 to n do 
  A[i] = E[i-4] + 9; 
  B[i] = A[i] * 5; 
  C[i] = A[i] + B[i-2]; 
  D[i] = A[i] * C[i]; 
  E[i] = D[i] + 30; 
end 

A[1] = E[-3] + 9; 
A[2] = E[-2] + 9; 
B[1] = A[1] * 5’ 
C[1] = A[1] + B[-1]; 
A[3] = E[-1] + 9; 
B[2] = A[2] * 5; 
C[2] = A[2] + B[0]; 
D[1] = A[1] * C[1]; 
for i = 1 to n-3 do 
  A[i+3] = E[i-1] + 9; 
  B[i+2] = A[i+2] * 5; 
  C[i+2] = A[i+2] + B[i]; 
  D[i+1] = A[i+1] * C[i+1]; 
  E[i] = D[i] + 30; 
End 
E[n] = D[n] +30; 
D[n] = A[n] * C[n]; 
E[n-1] = D[n-1] + 30; 
B[n] = A[n] * 5; 
C[n] = A[n] + B[n-2]; 
D[n-1] = A[n-1] * C[n-1]; 
E[n-2] = D[n-2] + 30; 
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In these figures, we can clearly observe that there are only two (B and C) of the 

five instructions – A,B,C,D,E executed in parallel in the original loop, while there are 

all five instructions executed in parallel in the software pipelined loop and hence the 

program efficiency is improved significantly. We can also notice that the pipelined code 

can be classified into three regions: prologue, loop kernel (repeating schedule) and 

epilogue. The prologue is the “setup” to the loop. Running the prologue code is often 

called “priming” the loop. The length of the prologue depends on the latency between 

the beginning and ending of the loop code; i.e., the number of instruction and their 

latency. The epilogue refers to the ending instructions, which must be completed at the 

end after the loop kernel; it is kind of similar to the prologue and is optional. If 

necessary, it can be rolled into the loop kernel. Prologue and epilogue of the software 

pipelined loop occupy a large part of the code size, so there may be a trade-off issue 

between the speed and memory size consideration that we have to take into account. But 

since the program memory of the Quixote DSP baseboard is quite large and the original 

FEC code size is quite small, it may not be a serious issue if we adopt software 

pipelining in our codes. 

 Concerning the implementation using the TI C6000 DSP family, the C code loop 

performance is greatly influenced by how well the CCS compiler can do the software 

pipelining on our loop. The compiler provides some feedback information to the 

programmers to fine-tune the loop structure. Understanding the feedback information, 

we can quickly tune our C codes to obtain the highest possible performance. The 

feedback is geared for explaining exactly what all the issues related to pipelining the 

loop are and what the results are. The compiler goes through three basic stages when 

compiling a loop, these stages are [13]  

1. Qualify the loop for software pipelining. 

2. Collect loop resource and dependency graph information. 

3. Software pipelining the loop. 
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In the first stage, the compiler tries to identify what the loop counter (named trip 

counter because of the number of trips through a loop) is and any information about the 

loop counter such as minimum value (known minimum trip count), and whether it is a 

multiple of something (has a known maximum trip count factor). 

If the above information is known about a loop counter, the compiler can be more 

aggressive with performing packed data processing and loop unrolling optimizations. 

For example, if the exact value of a loop counter is not known but it is known that the 

value is a multiple of some number, the compiler may be able to unroll the loop to 

improve the performance. 

There are several conditions that must be met before software pipelining is allowed, 

or legal, from the compiler’s point of view. These conditions are  

� It cannot have too many instructions in the loop. Loops that are too big 

typically require more registers than that are available and they require a 

longer compilation time. 

� It cannot call another function within the loop unless the called function is 

inlined. Any break in control flow makes it impossible to software pipeline as 

multiple iterations are executing in parallel. 

 

If any of the conditions for software pipelining are not met, qualification of the 

pipeline will halt and a disqualification messages will appear. In this situation, software 

pipelining will not be applied to our loop program and hence the program operating 

speed will be quite slow. 

In the second stage, the compiler is collecting loop resource and dependency graph 

information. It will derive the loop carried dependency bound, unpartitioned resource 

bound across all resources, partitioned resource bound across all resources based on our 

loop code. It shows the resource partition table, which summarizes how the instructions 

have been assigned to the various machine resources and how they have been 

partitioned between the A and B side, after it has the information about the three 

bounds. 
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In the third stage, the compiler attempts to software pipeline our loop based on the 

knowledge it collects from the previous two stages. The first thing the compiler 

attempts to do during this stage, is to schedule the loop at an iteration interval (ii) equal 

to the minimum value of the three bounds obtained in second stage. If the attempt was 

not successful, the compiler provides additional feedback message to help explain why 

it failed; i.e., register is live too long or did not find a schedule. The compiler will keep 

proceeding to ii = (previous failed ii + 1) till it find a valid schedule and then the 

software pipeline is done. 

 

4.3 Optimization on Reed-Solomon Code 

 

 Follow the code development flow described in section 4.2.2, before actually 

revising our program code, we should first generate a profile by using the CCS built-in 

profiler to know the exact execution cycles. Then, we can identify which part of our 

program consumes the most execution time based on the profile data, and hence we can 

concentrate on this part to make the whole program faster. In the following subsections, 

the optimization of our RS code program on TI DSP platform is divided into the 

encoder and the decoder parts to be discussed. 

 

4.3.1 Optimization on RS Encoder 

 

4.3.1.1 Choose Appropriate Data Types 

 

 Table 4.2 shows the original (before optimization) profile of the RS encoder, the 

first shadowed function, GF_Multiply, is the galois field multiplier used by the 

RS_Encode function to encode the data sequence into RS blocks. The last two 

shadowed functions, Int_to_Vec and Vec_to_Int, are used by the GF_Multiply function 

to convert the integer containing 8-bit galois field element to a vector containing each 
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bit of the integer, and convert the vector back to the original integer, respectively. The 

TI Programmer’s Guide [13] reminds us that the size of data type is different between 

the DSP platform and the PC platform. For example, the “int” and “long” data type is of 

the same size in PC platform which equal to 32-bit, but the “long” data type in DSP 

platform is of larger size, which equals to 40-bit. If we just port our C program to DSP 

using the CCS compiler without any checking on the data type, it may result in larger 

variables and data arrays in our program if our program assumed that “int” and “long” 

data types are the same size. Furthermore, using the “long” data type will result in a 

worse execution efficiency since it requires extra instructions to be generated and limits 

functional unit selection. The “long” data type value needs two registers – one 32-bit 

register plus 8-bit LSB in another specific 32-bit register. If the registers used in the 

program are full, we need to store the register contents into the stack and load them 

back after the “long” type data are computed completely. That is, we waste time and 

memory space because of the load/store operations, which are the most time consuming 

instructions.  

After examining our program code carefully, we find it does not affect the 

correctness of our program if we replace the “long” data type by the “int” data type, and 

it will result in a significantly improvement on the program executing speed. Fig. 4.6 

shows the pseudo assembly code for variable using “long” data type and “int” data type. 

Obviously, compared to the variable with “int” data type, the one with “long” data type 

needs extra assembly instructions to execute the same C instruction. 

 

Areas Code Size Cycles 
Percentage 

(%) 
Processing Rate 

(Kbits/sec) 
Main Function 1164 1433434 100 120 

RS_Encode 356 1430005 99  

GF_Multiply 964 1348940 94  

Int_to_Vec 220 179728 13  

Vec_to_Int 224 91776 7  

Table 4.2: Original Profile of RS Encoder. 
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The profile of modified RS encoder is shown in Table 4.3. We can find that not 

only the processing rate, but also the code size are improved by this modification. 

 

Areas Code Size Cycles 
Percentage 

(%) 
Processing Rate 

(Kbits/sec) 
Main Function 1160 1265024 100 137 

RS_Encode 236 1261595 99  

GF_Multiply 584 1210168 96  

Int_to_Vec 148 87952 7  

Vec_to_Int 156 76480 6  

Table 4.3: Profile of Revised RS Encoder (Data Type Modification). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Pseudo Code for Variable Using Long and Int Data Type. 

 

4.3.1.2 Galois Field Multiplication 

 

 Refer to Table 4.3 shows the profile of our RS encoder program after the data type 

modification. As expected in Chapter 2, we observe that 96% execution time is 

consumed by galois field multiplication. Also as described in Chapter 2, there are 

/* before  modification */
;-----------------------------------------------
;long feedback;
;feedback = data[i] ^ bb[0];                                   
;bb[j] = bb[j+1] ^ gf_mul_tab(Gg_poly
[no_p-1-j],feedback);                                                  
;-----------------------------------------------

STW     .D2T1   A15,*SP--(40)     
||         MV      .D1X    SP,A31             

STDW    .D1T1   A11:A10,*-A31(32)
||         STDW    .D2T2   B11:B10,*+SP(32)

STDW    .D1T1   A13:A12,*-A31(24)
||         STW     .D2T2   B12,*+SP(28)

STW     .D1T1   A14,*-A31(36)
||         STW     .D2T2   B3,*+SP(24)

MV      .D1     A6,A14            
||         MV      .S1X    B4,A10            

/* after  modification */
;-----------------------------------------------
;int  feedback;
;feedback = data[i] ^ bb[0];                                   
;bb[j] = bb[j+1] ^ gf_mul_tab(Gg_poly
[no_p-1-j],feedback);
;-----------------------------------------------

STW     .D2T2   B3,*SP--(8)       

MV      .D1X    B4,A7             
||         MV      .S1     A6,A8             

/* before  modification */
;-----------------------------------------------
;long feedback;
;feedback = data[i] ^ bb[0];                                   
;bb[j] = bb[j+1] ^ gf_mul_tab(Gg_poly
[no_p-1-j],feedback);                                                  
;-----------------------------------------------

STW     .D2T1   A15,*SP--(40)     
||         MV      .D1X    SP,A31             

STDW    .D1T1   A11:A10,*-A31(32)
||         STDW    .D2T2   B11:B10,*+SP(32)

STDW    .D1T1   A13:A12,*-A31(24)
||         STW     .D2T2   B12,*+SP(28)

STW     .D1T1   A14,*-A31(36)
||         STW     .D2T2   B3,*+SP(24)

MV      .D1     A6,A14            
||         MV      .S1X    B4,A10            

/* after  modification */
;-----------------------------------------------
;int  feedback;
;feedback = data[i] ^ bb[0];                                   
;bb[j] = bb[j+1] ^ gf_mul_tab(Gg_poly
[no_p-1-j],feedback);
;-----------------------------------------------

STW     .D2T2   B3,*SP--(8)       

MV      .D1X    B4,A7             
||         MV      .S1     A6,A8             

/* before  modification */
;-----------------------------------------------
;long feedback;
;feedback = data[i] ^ bb[0];                                   
;bb[j] = bb[j+1] ^ gf_mul_tab(Gg_poly
[no_p-1-j],feedback);                                                  
;-----------------------------------------------

STW     .D2T1   A15,*SP--(40)     
||         MV      .D1X    SP,A31             

STDW    .D1T1   A11:A10,*-A31(32)
||         STDW    .D2T2   B11:B10,*+SP(32)

STDW    .D1T1   A13:A12,*-A31(24)
||         STW     .D2T2   B12,*+SP(28)

STW     .D1T1   A14,*-A31(36)
||         STW     .D2T2   B3,*+SP(24)

MV      .D1     A6,A14            
||         MV      .S1X    B4,A10            

/* before  modification */
;-----------------------------------------------
;long feedback;
;feedback = data[i] ^ bb[0];                                   
;bb[j] = bb[j+1] ^ gf_mul_tab(Gg_poly
[no_p-1-j],feedback);                                                  
;-----------------------------------------------

STW     .D2T1   A15,*SP--(40)     
||         MV      .D1X    SP,A31             

STDW    .D1T1   A11:A10,*-A31(32)
||         STDW    .D2T2   B11:B10,*+SP(32)

STDW    .D1T1   A13:A12,*-A31(24)
||         STW     .D2T2   B12,*+SP(28)

STW     .D1T1   A14,*-A31(36)
||         STW     .D2T2   B3,*+SP(24)

MV      .D1     A6,A14            
||         MV      .S1X    B4,A10            

/* after  modification */
;-----------------------------------------------
;int  feedback;
;feedback = data[i] ^ bb[0];                                   
;bb[j] = bb[j+1] ^ gf_mul_tab(Gg_poly
[no_p-1-j],feedback);
;-----------------------------------------------

STW     .D2T2   B3,*SP--(8)       

MV      .D1X    B4,A7             
||         MV      .S1     A6,A8             

/* after  modification */
;-----------------------------------------------
;int  feedback;
;feedback = data[i] ^ bb[0];                                   
;bb[j] = bb[j+1] ^ gf_mul_tab(Gg_poly
[no_p-1-j],feedback);
;-----------------------------------------------

STW     .D2T2   B3,*SP--(8)       

MV      .D1X    B4,A7             
||         MV      .S1     A6,A8             
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already plenty of methods proposed [4], [5], [6] to accelerate the galois field 

multiplication for either hardware or software implementation. In order to find an 

appropriate method for our DSP implementation, we do some evaluations on these three 

proposed methods. They are Mastrovito multiplier method, serial multiplier method and 

logarithmic table lookup method. 

 As proposed in [4], the Mastrovito algorithm is used to perform multiplication in 

the ground field GF(2m) (in our case, m = 8). Before going through the algorithm, we 

first introduce the polynomial notation for galois field multiplication equation 

A(y)B(y) = C(y) mod Q(y) 

All elements in GF(28) are polynomials of degree less than 8 with binary 

coefficients  
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If we implement the galois field multiplication described above by directly 

performing the degree 8 polynomial multiplication and modulo operation on DSP, 

which is the case of original version galois field multiplier, it will result in a very slow 

galois field multiplier. This is because other than the 8 by 8 bit multiplication, it also 

requires plenty of branch instructions every time when doing the modulo operation, and 

from the pipeline structure we described above, branch instructions requires 6 execution 

phases to destination instruction. Hence, it is more time consuming comparatively.  

 Alternatively, Mastrovito has proposed an algorithm to speed up the galois field 

multiplication. First, the GF(28) elements B(y) and C(y) can be represented as column 

vectors consisting of the binary polynomial coefficients. By introducing a “product 

matrix” Z = f(A(y),Q(y)), the galois field multiplication can be described as 
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The coefficients )2(, GFf ii ∈  of the product matrix depend recursively on the 

coefficients ai of polynomial A(y) and qi of the matrix Q which is derived by the binary 

field polynomial Q(y) 
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where the elements qi,j of the matrix Q is defined by 

�
�
�

==+
==

=
−−−

−

7,...,1;6,...,1;
0;6,...,1;

,07,11,1

7,1
, jiqqq

jiq
q

jiji

i
ji  

This method eliminates the modulo operation, which is required in the original 

version multiplier, and hence should be faster than the original one. 

The second method proposed [5] is known as the serial multiplier which is 

originally designed for the implementation of the public-key cryptosystems that requires 

programmable multipliers in large galois fields. The algorithm of this multiplier is also 

derived from the basic galois field multiplication equation 

A(y)B(y) = C(y) mod Q(y). 

From this equation, we know that GF(28) multiplication can be carried out by 

multiplying A(y) and B(y) and then performing the reduction modulo Q(y). But there is 

also an alternative way to do the same thing – By interleaving multiplication and 

reduction according to the equation  

)8()0(
8

)1()( ')(;0';8,...,2,1)()(mod'' CyCCiforyBayQxCC i
ii ===+= −
−  

In this equation, C’(i) represent the partial results generated at step i of the recursion. 

The a0 ~ a7 are the binary coefficients of A(y). And the products xW’(i-1) are polynomials 

of degree k, which must be reduced modulo Q(y). 

These reductions are done using the following identity. 
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Each galois field multiplication using this algorithm requires a total of 64 bit 

multiplications and 7 polynomial reductions. The GF(28) serial multiplier, sometimes 
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referred to as “MSB-First multiplier,” is a polynomial basis multiplier that use 8 slices 

and computes GF(28) in 8 cycles. It is based on the algorithm described in the previous 

paragraph. To make it more clearly, the algorithm is rewritten and shown in Fig. 4.7, 

and its hardware realization is given in Fig. 4.8 for a reference purpose. This serial 

multiplier method is attractive for VLSI implementation, but for DSP implementation, it 

also has some advantages because it provides a parallel architecture for the galois field 

multiplier. It eliminates the complex branch instruction which is required in the original 

galois field multiplier in doing reduction modulo. Hence, the CCS compiler can perform 

the software pipelining more efficiently. 

 

 

 

 

 

 

 

 

 

Figure 4.7: Algorithm for Serial Multiplier. 

 

The third method proposed [6] is the logarithmic table lookup method. It is a 

well-known method for computing GF(2n) arithmetic (both multiplication, squaring and 

inversion) for small values of n. In our case, the galois field is GF(28). So, a primitive 

element )2( 8GFg ∈  is selected to serve as the generator of the field GF(28). Thus, an 

element A(y) in this field can be written as a power of g, that is A(y) = gi, where  

 

 

 

 

 

EndorithmA

ForEnd

ForParallelEnd

jQCjBiAjCjC

DotojForParallel

DotodowniFor

toC

C

BeginorithmA

lg

])[*]7[(])[*][(]1[][
70

07
0]70[

0]1[
lg

++−=
=

=
=

=−

 



 53 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Serial Multiplier in GF(28). 

 

2550 ≤≤ i . Then, we compute the powers of the primitive element, gi for i = 

0,1,…,255, and then obtain 256 pairs of the form (A(y),i). Afterward, we can construct 

two tables that sorting these 256 pairs in two different ways: the log table is sorted with 

respect to A(y) and the alog table is sorted with respect to i. For example, for i = 26 and 

A(y) = g26, we have log[A(y)] = 26 and alog[26] = A(y). These tables are then stored in 

the DSP internal memory and they are accessed when performing the field 

multiplication, the squaring, and the inversion operations. Given two 

elements )2()(),( 8GFyByA ∈ , we perform the multiplication C(y) = A(y)B(y) mod Q(y) 

as follows  

1. a := log[A(y)] 

2. b := log[B(y)] 

3. c := a + b (mod 255) 

4. C(y) := alog[c] 

This is due to the fact that C(y) = A(y) x B(y) = gigj = gi+j mod 255. The ground field 

multiplication requires three memory access, a single modular addition operation with 

modulus 255. The squaring of an element A(y) is slightly easier: only two memory 

access operations are required for computing C(y) = A(y)2, as illustrated below 

1. a := log[A(y)] 
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2. c := 2*a (mod 255) 

3. C(y) := alog[c] 

Similarly, the inversion of an element A(y) is computed using the property C(y) = 

A(y)-1 = g-i = g255-i, which requires two memory access operations 

1. a := log[A(y)] 

2. c := 255 – i 

3. C(y) := alog[a] 

This method has the advantage of low computation complexity. It only requires 

integer addition and a modulo 255 operation to perform either galois field multiplication 

or inversion or squaring. The cost of this method is that it requires more memory 

accessing compared to the previous two methods and it occupies larger and larger 

memory space when the values of n grows up. But since in our application, the value of 

n is only 8, the memory space shall not be a serious problem here. 

 Besides the above three methods, we also try to find some useful instructions or 

special architecture for GF(28) multiplication that can well fit into the DSP hardware. 

Fortunately, we find that the C64x series DSP chips provide a special intrinsic function 

to perform the GF(28) (and for GF(28) only!) multiplication. The intrinsic function 

format is (unsigned int) _gmpy4(unsigned int A, unsigned int B). This function is 

capable of doing four GF(28) multiplication simultaneously, but before performing the 

four simultaneous multiplication, we have to packet the four 8-bit galois field elements 

into a 32-bit register, and the packaging operation also consume execution time. Overall, 

it does not provide benefit if we need to packet the 8-bit galois field elements into a 

32-bit register then perform one _gmpy4 intrinsic instruction. Therefore, we decide to 

perform only one galois field multiplication each time we call this intrinsic function, not 

four simultaneous multiplication. 

 Table 4.4 shows the simulation results of the original galois field multiplier, the 

three proposed galois field multiplier and the intrinsic galois field multiply instruction, 

which are generated by the CCS built-in profiler. The multiplier A refers to the original 

galois field multiplier; the multiplier B refers to the Mastrovito multiplier; the multiplier 
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C refers to the serial multiplier; the multiplier D refers to the logarithmic table lookup 

multiplier, and the multiplier E refers to the intrinsic galois field multiplier provided by 

the TI C64x series DSP chips. The notation “one mult” in the cycles column denotes 

that it is the cycle count for performing one galois field multiplication. From this table, 

we can observe that the multiplier B has the largest code size. We think it is due to the 

build-up of the “product matrix”, but actually, the most memory space consuming 

multiplier is the multiplier D because it has to store two tables each contains 256 

elements. The code size (4204) denotes the total size of the two tables plus the 

multiplier. The most efficient multiplier is the multiplier E. The C64x series DSP chips 

may contain an application-specified hardware structure for computing galois field 

multiplication. This conjecture is based on the evidence that the CCS compiler directly 

translate the _gmpy4 intrinsic function to an assembly instruction named GMPY4. 

Therefore, there is an assembly instruction used for the galois field multiplication. 

Likely, there is a specific hardware to perform this task. 

 To make our program platform independent, our attempt is to seek for an 

appropriate algorithm among B, C and D. As one may expect, the performance of any of 

these three multipliers shall not exceed the TI’s intrinsic multiplier since it is 

accelerated by TI’s hardware. We find that the logarithmic table lookup multiplier 

performance is still pretty good even compared with the intrinsic one. It means that a 

software-oriented algorithm is more appropriate for DSP implementation than a 

hardware-oriented algorithm. However, if we implement the hardware-oriented algorith- 

 

Multiplier Type Code Size Cycles (One Mult) 
GF_Multiplier A 584 292 

GF_Multiplier B 1080 167 

GF_Multiplier C 456 189 

GF_Multiplier D 88 (4204) 22 

GF_Multiplier E 12 6 

Table 4.4: Comparison of the Five Different Galois Field Multiplier. 
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m on the built-in FPGA of Quixote DSP baseboard, we may have a totally different 

conclusion. The profile of simulation results for each revision step will be shown in 

section 4.5. 

 

4.3.1.3 Compiler Level Improvements 

 

 In the last part of optimizing the RS encoder, we try to improve the speed of our 

program by tuning the CCS compiler’s setting. Fig. 4.9 shows the compiler’s feedback 

for the loop in the RS_Encode function. The compiler tells us that the loop contains a 

call, so it can not qualify this loop and hence the software pipeline is disabled. From Fig. 

4.10 which shows the pseudo code of RS_Encode, we know that it is due to the calling 

of the galois field multiplier function “gmpy( )”. 

 

 

 

 

Figure 4.9: Compiler’s Feedback for RS_Encode Loop. 

 

 

 

 

 

Figure 4.10: Pseudo Code for RS_Encode Loop. 

 

In order to make the compiler work more efficiently, we set the “Opt. Level” 

option to “File” level. It makes the compiler capable of obtaining information of the 

entire program. As a result of this setting, now the compiler can deal with the function 

calls inside a loop. Fig. 4.11 shows the compiler’s feedback after we set the “Opt. 

Level” to “File” level. We observe that now the compiler attempts scheduling both the 

;*----------------------------------------------------------------------------* 
;*   SOFTWARE PIPELINE INFORMATION 
;*      Disqualified loop: Loop contains a call 
;*----------------------------------------------------------------------------* 

for (i = 0; i < 239; i++) {  
  feedback = data[i] ^ bb[0]; 
  for (j = 0; j < no_p-1; j++) 
   bb[j] = bb[j+1] ^ gmpy(Gg_poly[15-j],feedback); 
  bb[15] = gmpy(Gg_poly[0],feedback); 
 } 



 57 

outer and inner loops, which has a function call inside, into a software pipelined loop. 

Compared to the original setting, the compiler now can software pipeline the key loop 

of our syndrome calculator and make 2 loops run in parallel with each loop completed 

in 18 cycles. Moreover, the “File” level optimization also inline the callee functions 

which locates inside a loop and hence it also reduces the overhead of calling the 

functions. When the functions inlined are frequently used, it can save a lot of execution 

time spent on function calling. 

The reason we do not set the “Opt. Level” to “File” level initially is because the 

cycle count recorded by the profiler may be wrong for individual function if we set it at 

“File” level. This is due to the fact that the file level optimization usually schedules the 

instructions across functions and hence when we select the profile area, it may not be 

the original instruction there. We will later give a final profile based on the file 

optimization level setting in section 4.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Compiler’s Feedback for RS_Encode Loop  

(After Build Option Change). 

;*   SOFTWARE PIPELINE INFORMATION 
;* 
;*      Known Minimum Trip Count        : 239 
;*      Known Maximum Trip Count       : 239 
;*      Known Max Trip Count Factor      : 239 
;*      Loop Carried Dependency Bound(^)  : 12 
;*      Unpartitioned Resource Bound      : 17 
;*      Partitioned Resource Bound(*)     : 18 
;*      Resource Partition: 
;*                                 A-side   B-side 
;*      .L units                      0       0 
;*      .S units                      0       1 
;*      .D units                        16      18* 
;*      .M units                        11    5 
;*      .X cross paths                2       9 
;*      .T address paths                  17      17 
;*      Long read paths               0       0      
;*      Long write paths              0       0      
;*      Logical  ops (.LS)            0       0     (.L or .S unit) 
;*      Addition ops (.LSD)           8       8     (.L or .S or .D unit) 
;*      Bound(.L .S .LS)              0       1      
;*      Bound(.L .S .D .LS .LSD)       8       9      
;* 
;*      Searching for software pipeline schedule at ... 
;*         ii = 18 Schedule found with 2 iterations in parallel 
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4.3.2 Optimization on RS Decoder 

 

4.3.2.1 Galois Field Inversion 

 

In addition to the galois field multiplication which is discussed in previous section, 

the galois field inversion is also required in the RS decoder. According to Fermat’s 

algorithm, we know that A(y)-1 = A(y)254 mod Q in GF(28). The equation can be then 

computed in this way 128842254 AAAAA �⋅⋅=  [17]. In other words, it requires 13 

multiplications to complete an inversion operation, which result in a huge 

computational complexity. In order to reduce the high complexity on doing galois field 

inversion, we shall find an appropriate inverter architecture for our RS decoder. Similar 

to the case in galois field multiplication, we employ the original GF(28) multiplier, the 

three proposed GF(28) multiplier and the intrinsic GF(28) multiplier to do the 

multiplication operation in the inverter. The profile of simulation results is shown in 

Table 4.5, the notation “one inv” denotes the cycle count is obtained from performing 

one inversion and the notation A to E are the same as in the comparison of multiplier. 

Inverter A refers to the inverter using the original multiplier to perform the 

multiplication operation; inverter B refers to the case of using the Mastrovito multiplier; 

inverter C refers to the case of using the serial multiplier; inverter D refers to the case of 

using the logarithmic table lookup multiplier, and inverter E refers to the case of using 

the intrinsic multiplier. From the profile data, we find something different from the 

previous comparison between the multipliers. In the comparison for multipliers, the 

intrinsic multiplier is the fastest one among all the candidates, but in the case of inverter, 

the inverter employing logarithmic table lookup multiplier is about 15 times faster than 

the one using the intrinsic multiplier. We conclude that it is because only the 

logarithmic table lookup method can perform the inversion by simple integer 

subtraction not by the complex chain multiplication. The optimization discussed below 
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will use the logarithmic table lookup method to handle both the multiplication and 

inversion in the RS decoder. 

 

Inverter Type Code Size Cycles (One Inv) 

GF_Inverter A 300 4584 

GF_Inverter B 360 2508 

GF_Inverter C 300 2572 

GF_Inverter D 44 (4160) 13 

GF_Inverter E 304 196 

Table 4.5: Comparison of the Five Different Galois Field Inverter. 

 

4.3.2.2 Data Type Modification 

 

 Similar to the RS encoder, there are also several variables, which we originally 

declare as “long” data type in the RS decoder. At the beginning of optimization on the 

RS decoder, we first modify the variable declared as “long” data type to “int” data type. 

Table 4.6 shows the profile of our RS decoder before data type modification and Table 

4.7 shows the profile after data type modification. In these tables, the RS_Syndrome 

function is used to calculate the syndrome of the received data, and the RS_Decode 

function is used to correct the errors and erasures of the received data based on the 

syndrome obtained in RS_Syndrome. The last three functions – Berlekamp,  

 

Areas Code Size Cycles 
Percentage 

(%) 
Processing Rate 

(Kbits/sec) 

Main Function 840 579249 100 298 

RS_Syndrome 424 177400 30  

RS_Decode 928 396611 68  

Berlekamp 2176 53234 13  

Chien_Search 720 295723 75  

Forney 1308 46445 12  

Table 4.6: Original Profile of RS Decoder. 
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Areas Code Size Cycles 
Percentage 

(%) 
Processing Rate 

(Kbits/sec) 
Main Function 832 369637 100 467 

RS_Syndrome 312 144212 39  

RS_Decode 656 220247 60  

Berlekamp 1992 30036 14  

Chien_Search 652 172730 78  

Forney 760 16819 8  

Table 4.7: Profile of Revised RS Decoder (Data Type Modification). 

 

Chein_Search and Forney are called by RS_Decode function and used to calculate the 

errata locator polynomial coefficients, search the roots of the errata locator polynomial 

and compute the magnitude of the errors and erasures, respectively. Similarly, the code 

size and execution cycles are improved significantly by this revision of data type. 

 

4.3.2.3 Chien Search Improvement - I 

 

 Refer to Table 4.6, we observe that 60% of the total execution time is spent on the 

RS_Decode function. The Chien_Search function is a part of the RS_Decode function 

and it uses 78% of the RS_Decode execution time. So we first examine the 

Chien_Search function and see what we can do to reduce its computational complexity. 

Fortunately, there is a special feature in our RS code structure that we can exploit to 

simplify the Chien search procedure. As discussed in Chapter 2, we know that the Chien 

search is used to find the roots of the errata locator polynomial, and the method it used 

to find the roots is by exhaustively substitute all the field elements of GF(28) into the 

errata locator polynomial. When the sum equals zero, it means this field element is one 

of the polynomial’s roots. In other words, it means we have to substitute 255 elements 

into the polynomial first, then we are sure that all the possible roots of this polynomial 

are found. To make the operation simpler, we employ a technique named “early 

termination”, which adds a termination criterion in the substitution loop. The criterion 
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we set is the degree of the errata locator polynomial since the degree of a polynomial 

equals to the total number of roots it has. After the number of roots equal to the degree 

of the errata polynomial has been found, we can confirm that we have already found all 

the roots of the polynomial. Thus, we do not have to do field element substitutions 

anymore and can exit the substitution loop. Figs. 4.12(a) and 4.12 (b) show the pseudo 

code of the (48,36,6) RS code as an example for the Chien search function without early 

termination and with early termination, respectively. In the case of (48,36,6) code, the 

last 4 position of the codeword are always the roots of the errata locator polynomial 

since the last 4 codewords are marked as erasures. Hence, we only have to find 

(deg_lambda – 4) roots. Then, we can declare all roots have been found. Fig. 4.13 

shows the flowchart that illustrates how the early termination is performed. The solid 

arrows denote the flow of early terminated Chien search while the dashed arrows denote 

the flow of original Chien search. 

 

 

 

 

 

 

 

 

 

 

 

 

(a)         (b) 

Figure 4.12: Pseudo Code for Chien Search (a) w/o Criterion. (b) w/ Criterion. 

 

for (i = 1; i <= gf_nn_max; i++) { 
 q = 1; 
 for (j = deg_lambda; j > 0; j--) 
  if (reg[j] != A0) { 
   reg[j] = (reg[j] + j)%nn; 
   q ^= Alpha_to[reg[j]]; 
  } 
 if (!q) { 
  root[count] = i; 
  loc[count] = gf_nn_max - i; 
  count++; 
 } 
 if(count == deg_lambda - 4) break; 
} 
loc[count+1] = 255 - 252; 
loc[count+2] = 255 - 253; 
loc[count+3] = 255 - 254; 
loc[count+4] = 255 - 255; 
count = count + 4; 

for (i = 1; i <= gf_nn_max; i++) { 
 q = 1; 
 for (j = deg_lambda; j > 0; j--) 
  if (reg[j] != A0) { 
   reg[j] = (reg[j] + j)%nn; 
   q ^= Alpha_to[reg[j]]; 
  } 
 if (!q) { 
  root[count] = i; 
  loc[count] = gf_nn_max - i; 
  count++; 
 } 
} 
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Table 4.8 shows the profile of the early terminated Chien search. The “worst case” 

denotes the case of not doing early termination and the “best case” denotes the case of 

doing early termination and the errors happen to be in the first symbol of the codeword. 

From this table we know that the operating speed of the best case is about 2.2 times 

faster than the original one (the worst case). For the average case, the operating speed is 

about 1.37 times faster than the original one.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Flowchart of Early Terminated Chien Search. 

 

Type Cycles 

Chien Search  
(Worst Case) 

171526 

Chien Search  
(Best Case) 

78247 

Average 124886 

Table 4.8: Profile of the Worst Case and Best Case of Early Terminated Chien Search. 
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4.3.2.4 Chien Search Improvement - II 

 

 After adding the early termination into the Chien search, we find that even in the 

best case, it still requires 57645 cycles to find the root (only one root!). We are confused 

at first because if the error occurs in the first symbol of the codeword, the Chien search 

should find the root at the first attempt and should not spend so much execution time. 

After we carefully examine our program code, we finally find the reason. It is due to the 

fact that the RS code we use is a shortened RS code. Take the (48,36,6) RS code for 

example, when doing the RS decoding, 203 bytes of zero are inserted to the (48,36,6) 

codeword. That is to say, the first 203 symbols in the core (255,239,8) code will never 

be distorted by the channel noise. But if we still use the Chien search module which is 

originally designed for the (255,239,8) code, it always start finding the roots from the 

first symbol of the (255,239,8) code, which is never an error position. To reduce the 

redundant calculations due to this shortened code, we modify the original Chien search 

module to start searching roots from the first valid symbol, i.e., the 221st symbol for the 

(24,18,3) RS code, the 213th symbol for the (30,26,2) RS code, the 203rd symbol for the 

(48,36,8) RS code, and the 185th symbol for the (60,54,3) RS code. After the 

modification, the new profile of the Chien search module is shown in Table 4.9. As 

expected, the cycle count is greatly reduced compared with the original Chien search. 

 

Type Cycles 
Chien Search  
(Worst Case) 

34558 

Chien Search  
(Best Case) 

1387 

Average 17972 

Table 4.9: Profile of the Worst Case and Best Case of Early Terminated Chien Search 

(Modified). 
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4.3.2.5 Inverse-Free Berlekamp Massey Algorithm 

 

 The iterative algorithm discovered by Berlekamp and Massey (BM algorithm) for 

decoding RS Code is a well-known technique for finding the errata locator polynomial. 

Other decoding algorithms such as the Euclidean and continued fraction algorithm have 

a slightly higher complexity when compared with BM algorithm. However, the 

inversion of discrepancy needed in the computation of the original BM algorithm is 

complex and time-consuming due to the requirement of chain multiplications. 

Fortunately, there is a new inverse-free BM algorithm proposed in [18]. We are not 

going to describe the new algorithm in detail but simply explain the operation of this 

algorithm and then compare it to the original algorithm. 

 The inverse-free algorithm is formulated as follows (Based on the modified 

inverse-free BM algorithm proposed in [19], which eliminates the need for 

pre-computing the Forney syndrome and post-computing the errata locator polynomial 

in [18]). 
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3. Return to step 2. 

Finally, the errata locator polynomial is computed as )()( 16 xx s−= µτ , whereas the s 

denotes the number of erasures. 
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 Compared to the original BM algorithm, it eliminates the use of inversion in the 

BM algorithm. To make sure this algorithm meets our needs, we perform an evaluation. 

Table 4.10 shows the profile of the comparison between the original BM algorithm and 

the new inverse-free BM algorithm, whereas the notation A~E are the five galois field 

multiplier described previously. As we expected, the inverse-free BM algorithm is faster 

than the original one since it eliminates the need for calculating inversion of 

discrepancy. For the first three case, due to the high computational complexity on galois 

field multiplication, the inverse-free BM algorithm outperforms the original one 

significantly (around 5 times faster). However in the last two cases, the advantage of the 

inverse-free algorithm has decayed greatly. It is due to that the inversion for the last two 

cases is based on table lookup, which is very simple and does not drastically affect the 

total execution time. 

  

Type 
Cycles 

(Original BM) 
Cycles  

(Inverse-Free BM) 
Improvement 

(%) 
A 1185892 210616 463 

B 555215 105753 425 

C 628873 114714 448 

D 30036 25175 19 

E 16163 10913 48 

Table 4.10: Comparison between the Original and the Inverse-Free BM Algorithm. 

 

4.3.2.6 Compiler Level Improvements 

 

 Refer to the profile data given in Table 4.6, our next target in optimizing the RS 

decoder is focused on the syndrome calculator because 39% of the execution time is 

spent on it. As described in Chapter 2, the syndrome calculation structure is not 

complex. The cause that results in the slow processing speed is because of the massive 

substitutions of the field elements ( 162, ααα � ) into the polynomial, which is 

composed of the received data sequence as its coefficients. The compiler’s feedback of 
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the original syndrome calculator is shown in Fig. 4.14. Similar to the case in encoder 

part, we notice that in the last line it reports “Disqualified loop: Loop contains a call”. 

From the pseudo code of the syndrome calculator loop shown in Fig. 4.15, we know 

that it is due to the calling of galois field multiplier “gmpy( )”. As described above, we 

also turn on the “File” level optimization to allow the compiler to deal with the function 

calls inside a loop. Fig. 4.16 shows the compiler’s feedback after we set the “Opt. 

Level” to “File” level. It finally schedules the loop into a software pipelined loop, which 

runs 2 iterations in parallel with each iteration completed in 13 cycles. 

 

 

 

Figure 4.14: Compiler’s Feedback for Syndrome Calculator Loop. 

 

 

 

 

 

Figure 4.15: Pseudo Code for Syndrome Calculator. 

 

The second compiler level improvement we have done is on the Chien search 

function. Refer to Fig. 4.12 (b), we find that the trip count of the first inner loop 

depends on the deg_lambda, which is calculated by the BM algorithm and thus cannot 

be determined in the compiling stage. As a result of it, the compiler cannot decide how 

many times the loop will be executed and hence the flexibility for the compiler to 

arrange the resources is limited. To break this limit, we carefully examine the loop 

parameter, i.e., the maximum trip count, the minimum trip count and the maximum trip 

count factor, and find if any implicit information we can provide for the compiler. 

Fortunately, we find that the deg_lambda is always greater than the number of erasures 

since we employ the erasure locator polynomial as the initial status in the BM algorithm. 

;*----------------------------------------------------------------------------* 
;*   SOFTWARE PIPELINE INFORMATION 
;*      Disqualified loop: Loop contains a call 
;*----------------------------------------------------------------------------* 

for (i = 0; i < nn; i++) { 
 for (j = 1; j <= no_p; j++) { 
  product = gmpy(Alpha_to[B0-1+j],s[j]); 
  s[j] = product ^ data[i];    
 } 
} 
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By using the pragma “MUST_ITERATE(min. trip count)”, we can send the loop 

information to the compiler for the purpose of giving the compiler more information 

available in compile stage and thus the efficiency of the Chien search is improved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Compiler’s Feedback for Syndrome Calculator Loop  

(After Build Option Change). 

 

4.4 Optimization on Convolutional Code 

 

 Similar to the case for the RS code, we start the optimization from the 

convolutional encoder part, but soon we find that the original speed of the convolutional 

encoder is sufficient (around 11Mbits/sec). The structure of the encoder is simple, so we 

skip optimizing the convolutional encoder but do the optimization on the Viterbi 

decoder. 

;*   SOFTWARE PIPELINE INFORMATION 
;* 
;*      Known Minimum Trip Count        : 255 
;*      Known Maximum Trip Count       : 255 
;*      Known Max Trip Count Factor      : 255 
;*      Loop Carried Dependency Bound(^)  : 11 
;*      Unpartitioned Resource Bound      : 10 
;*      Partitioned Resource Bound(*)     : 10 
;*      Resource Partition: 
;*                                 A-side   B-side 
;*      .L units                      0       0 
;*      .S units                      1       0 
;*      .D units                        9      10* 
;*      .M units                     8    8 
;*      .X cross paths                0       8 
;*      .T address paths              9      10* 
;*      Long read paths               0       0      
;*      Long write paths              0       0      
;*      Logical  ops (.LS)            0       0     (.L or .S unit) 
;*      Addition ops (.LSD)           8       8     (.L or .S or .D unit) 
;*      Bound(.L .S .LS)              1       0      
;*      Bound(.L .S .D .LS .LSD)       6       6      
;* 
;*      Searching for software pipeline schedule at ... 
;*         ii = 11 Did not find schedule 
;*         ii = 12 Did not find schedule 
;*         ii = 13 Schedule found with 2 iterations in parallel 



 68 

4.4.1 Optimization on Viterbi Decoder 

 

4.4.1.1 Choose Appropriate Data Types for Branch Metric 

 

 The same case as in optimization for the RS codes, we first use the CCS built-in 

profiler to analyze the Viterbi decoder. Table 4.11 shows the original profile of the 

Viterbi decoder. This profile is obtained from the Viterbi decoder using the floating- 

point values for branch metric, which is mainly for the purpose of soft-decision 

decoding. 

 

Areas Code 
Size 

Cycles Percentage 
(%) 

Processing Rate 
(Kbits/sec) 

Main Function 1536 8393747 100 27 

Initialize_State 892 335 0  

VD_Decode 960 8336355 100  

Table 4.11: Original Profile of Viterbi Decoder. 

 

However, the speed performance is awful if we still use the floating-point numbers for 

branch metrics on DSP, since our DSP is a fixed-point processor. To do floating-point 

arithmetics, it uses multiple fixed-point instructions to simulate a floating-point 

operation. So in the first step on Viterbi decoder optimization, we try to convert the 

floating-point values to fixed-point values. Of course, this conversion does cause loss in 

preciseness, but since what we really care is the relative values of the branch metrics, 

not the absolute value of each branch metric, the conversion does not hurt the 

performance strongly. The conversion we have done is simply multiply the original 

floating-point value by 1000 then round it to integer. The profile of the Viterbi decoder 

using fixed-point values as branch metric is shown in Table 4.12. As expected, we 

observe a significant improvement on speed by avoiding using floating-point values. 

 



 69 

 

Areas Code 
Size 

Cycles Percentage 
(%) 

Processing Rate 
(Kbits/sec) 

Main Function 932 616349 100 374 

Initialize_State 892 196 0  
VD_Decode 944 559879 100  

Table 4.12: Profile of Viterbi Decoder Using Fixed Point Value As Branch Metric. 

 

4.4.1.2 Modified Path Recording - I 

 

 Table 4.13 shows the profile of the VD_Decode function in Table 4.12, we thus 

know that the ACS (Add-Compare-Select) computation takes 79% of the total execution 

time. To increase the Viterbi decoder efficiency, we concentrate on the ACS 

computation. As described in Chapter 2, the ACS consists of 32 butterfly structures; 

each butterfly can produces 2 state metrics, so totally we can obtain the 64 state metrics 

that we used to expand the trellis. However, unlike the case of RS decoder, a single 

ACS computation is simple and regular; the major reason that leads to slow operating 

speed is due to the massive computations, i.e., we have to do 64 ACS computation for 

only 1 output bit. Thus the key to accelerate the Viterbi decoder on the DSP platform is 

to make the program code well match the features of the CCS compiler. In other words, 

instead of trying to explore a new algorithm to perform the convolutional decoding, we 

choose to refine the C code to make it well software-pipelined by the CCS compiler, or  

 

 

Areas Code 
Size 

Cycles Percentage 
(%) 

ACS 320 401665 79 

Others 
(Metric Setup, Traceback) 

712 105986 21 

Table 4.13: Profile of VD_Decode Function. 
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if possible we avoid using the instructions which require long time to complete such as 

loading, storing or branching. 

Firstly, reference to [7], we know that the register file is limited so we are forced to 

store the state metric in the internal data memory. However, for recording the optimal 

path, we only need to write down “0” or “1” to represent the results in our path tracking 

procedure since we exploit the butterfly structure in the ACS calculation. If we just 

record the information at bit level, we can store it in an internal register first and then 

put it in the internal data memory when the register is full. Hence, we can reduce the 

frequency on memory access. The revision is shown as the pseudo code in Fig. 4.17. 

We see that the path is recorded in the pointer that points to the address in the internal  

 

 

 

 

 

 

 

 

Figure 4.17: Pseudo Code for Recording Path in Internal Data Memory and Register. 

 

data memory as shown on the left side of Fig. 4.17 while the path is recorded in the 

internal register as shown on the right side of Fig. 4.17. According to Table 4.1, the 

store instruction is in the three-cycle instruction category, so we can expected that the 

speed will be improved by using the register to temporarily store the path information. 

 

4.4.1.3 Modified Path Recording - II 

 

 After analyzing the pseudo code shown in Fig 4.17, we can find that the frequency 

of memory accessing is reduced from 1 time per bit to 1 time per 8 bits. That is, we 

/* Internal Data Memory */
unsigned char  *pp = decoding_pathA;
…

if(m1 > m0)
{

nmetric[i] = m1;
*pp |= mask;

}
else
{

*pp -= ((*pp)&mask);
}

/* Internal Register */
unsigned char  dec_mask = 0;
…

if(m1 > m0)
{

metric[i] = m1;
dec_mask |= mask;

}
else
{  

dec_mask -= ((dec_mask)&mask);
}

/* Internal Data Memory */
unsigned char  *pp = decoding_pathA;
…

if(m1 > m0)
{

nmetric[i] = m1;
*pp |= mask;

}
else
{

*pp -= ((*pp)&mask);
}

/* Internal Register */
unsigned char  dec_mask = 0;
…

if(m1 > m0)
{

metric[i] = m1;
dec_mask |= mask;

}
else
{  

dec_mask -= ((dec_mask)&mask);
}

/* Internal Data Memory */
unsigned char  *pp = decoding_pathA;
…

if(m1 > m0)
{

nmetric[i] = m1;
*pp |= mask;

}
else
{

*pp -= ((*pp)&mask);
}

/* Internal Data Memory */
unsigned char  *pp = decoding_pathA;
…

if(m1 > m0)
{

nmetric[i] = m1;
*pp |= mask;

}
else
{

*pp -= ((*pp)&mask);
}

/* Internal Register */
unsigned char  dec_mask = 0;
…

if(m1 > m0)
{

metric[i] = m1;
dec_mask |= mask;

}
else
{  

dec_mask -= ((dec_mask)&mask);
}

/* Internal Register */
unsigned char  dec_mask = 0;
…

if(m1 > m0)
{

metric[i] = m1;
dec_mask |= mask;

}
else
{  

dec_mask -= ((dec_mask)&mask);
}
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need to do memory accessing once for every 8 bits (path information) are recorded. In 

order to improve the speed further, we want to reduce the memory access time as much 

as possible. In the previous section, we use the register declared as “unsigned char” to 

record the path information, the size of the “unsigned char” is 8 bit. So every 8 bits 

(path information) we need to do memory accessing or the old path information will 

lose due to overflow. In this section, we further declare the register used to record the 

path information as “unsigned int”, which is the largest data type that can store bit 

information and do not use extra instructions to load/store the register. That is, the size 

of “long” is larger than “int” but requires extra instructions to load/store value from it. 

By using the “unsigned int” register, the frequency of memory accessing is reduced 

from 1 time per 8 bit to 1 time per 32 bit and thus the speed is improved further. The 

profile data of these two optimization are shown later in this chapter. 

 

4.4.1.4 Counter Splitting 

 

 Refer to the CCS compiler’s feedback which is shown in Fig. 4.18, we notice that 

the core loop of the ACS computation is not software-pipelined well since it requires 17 

cycles per iteration. It is too slow as a key loop of our Viterbi decoder. By carefully 

examining the feedback information, we find the problem is due to the strong 

dependency between the instructions inside the loop and the dependency mainly comes 

from the counter i and i/2 used in the butterfly structure for ACS computation. To break 

the dependency between these two counters, we exploit the relationship between these 

two counters which is shown in Fig. 4.19 that each time when i is increased by 2, i/2 is 

increased by 1. That is to say, we can declare a new counter named j, which initializes 

as zero and is increased by 1 at the end of each iteration. This counter j is actually 

equivalent to i/2 but do not have the dependency with counter i since we do not declare j 

= i/2. The compiler’s feedback after counter splitting is shown in Fig. 4.20, from these 

figures we know that the loop is software-pipelined better after we split the counter 

manually. Finally, the loop is software-pipelined as 3 iterations run in parallel and each 
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is completed in 7 cycles, while the original one is only software-pipelined as 2 iterations 

run in parallel and each is completed in 17 cycles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Compiler’s Feedback for ACS Loop. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19: Pseudo Code for Counter Splitting. 

;*   SOFTWARE PIPELINE INFORMATION 
;* 
;*      Known Minimum Trip Count         : 32 
;*      Known Maximum Trip Count         : 32 
;*      Known Max Trip Count Factor        : 32 
;*      Loop Carried Dependency Bound(^)    : 15 
;*      Unpartitioned Resource Bound        : 8 
;*      Partitioned Resource Bound(*)     : 14 
;*      Resource Partition: 
;*                                 A-side   B-side 
;*      .L units                      0       3      
;*      .S units                      1       2      
;*      .D units                      0      11      
;*      .M units                      0       0      
;*      .X cross paths                 0       0      
;*      .T address paths               0      11      
;*      Long read paths               0       0      
;*      Long write paths              0       0      
;*      Logical  ops (.LS)            0       0     (.L or .S unit) 
;*      Addition ops (.LSD)           2      26     (.L or .S or .D unit) 
;*      Bound(.L .S .LS)              1       3      
;*      Bound(.L .S .D .LS .LSD)       1      14*     
;* 
;*      Searching for software pipeline schedule at ... 
;*         ii = 15 Did not find schedule 
;*         ii = 16 Did not find schedule 
;*         ii = 17 Schedule found with 2 iterations in parallel 

/* Dependent Counters */
for(i=0;i< 64; i+=2)
{

b1 = mets[Syms[i]];

nmetric[i] = m0 = cmetric[i/2] + b1; 

b2 = mets[Syms[i+1]];

b1 -= b2;

m1 = cmetric[(i/2) + 32] + b2;
…
}

/*  Independent Counters */
j=0     /*  j = i/2 */;
for(i=0;i< 64; i+=2)
{
b1 = mets[Syms[i]];

nmetric[i] = m0 = cmetric[j] + b1; 

b2 = mets[Syms[i+1]];

b1 -= b2;

m1 = cmetric[j + 32] + b2;
…
j++
}

/* Dependent Counters */
for(i=0;i< 64; i+=2)
{

b1 = mets[Syms[i]];

nmetric[i] = m0 = cmetric[i/2] + b1; 

b2 = mets[Syms[i+1]];

b1 -= b2;

m1 = cmetric[(i/2) + 32] + b2;
…
}

/*  Independent Counters */
j=0     /*  j = i/2 */;
for(i=0;i< 64; i+=2)
{
b1 = mets[Syms[i]];

nmetric[i] = m0 = cmetric[j] + b1; 

b2 = mets[Syms[i+1]];

b1 -= b2;

m1 = cmetric[j + 32] + b2;
…
j++
}

/* Dependent Counters */
for(i=0;i< 64; i+=2)
{

b1 = mets[Syms[i]];

nmetric[i] = m0 = cmetric[i/2] + b1; 

b2 = mets[Syms[i+1]];

b1 -= b2;

m1 = cmetric[(i/2) + 32] + b2;
…
}

/* Dependent Counters */
for(i=0;i< 64; i+=2)
{

b1 = mets[Syms[i]];

nmetric[i] = m0 = cmetric[i/2] + b1; 

b2 = mets[Syms[i+1]];

b1 -= b2;

m1 = cmetric[(i/2) + 32] + b2;
…
}

/*  Independent Counters */
j=0     /*  j = i/2 */;
for(i=0;i< 64; i+=2)
{
b1 = mets[Syms[i]];

nmetric[i] = m0 = cmetric[j] + b1; 

b2 = mets[Syms[i+1]];

b1 -= b2;

m1 = cmetric[j + 32] + b2;
…
j++
}

/*  Independent Counters */
j=0     /*  j = i/2 */;
for(i=0;i< 64; i+=2)
{
b1 = mets[Syms[i]];

nmetric[i] = m0 = cmetric[j] + b1; 

b2 = mets[Syms[i+1]];

b1 -= b2;

m1 = cmetric[j + 32] + b2;
…
j++
}
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Figure 4.20: Compiler’s Feedback for ACS Loop (After Counter Splitting). 

 

4.4.1.5 Removal of Replicated Metrics  

 

 In this subsection, we remove the redundancy in the ACS loop to make it faster. 

Refer to the pseudo code shown on the left side of Fig. 4.21, which shows the operation 

for updating the state metric value. This operation must be performed after finishing 64 

ACS computations for updating the old state metric with the newly computed state 

metric. This code can be eliminated by manually unrolling the ACS loop into 2 

sub-loops as shown on the right side pseudo code of Fig. 4.21. These two sub-loops 

executed in turns is equivalent to the operation of updating state metrics. In addition, by 

manually unroll the ACS loop, the instruction level parallelism is also increased and 

thus the compiler can pipeline the ACS loop even better than the original program. 

 

 

;*   SOFTWARE PIPELINE INFORMATION 
;* 
;*      Known Minimum Trip Count         : 32 
;*      Known Maximum Trip Count         : 32 
;*      Known Max Trip Count Factor        : 32 
;*      Loop Carried Dependency Bound(^)    : 6 
;*      Unpartitioned Resource Bound        : 6 
;*      Partitioned Resource Bound(*)        : 7 
;*      Resource Partition: 
;*                                 A-side   B-side 
;*      .L units                      2       0      
;*      .S units                      1       1      
;*      .D units                      6       5      
;*      .M units                      0       0      
;*      .X cross paths                2       2      
;*      .T address paths               6       5      
;*      Long read paths               0       0      
;*      Long write paths              0       0      
;*      Logical  ops (.LS)            0       0     (.L or .S unit) 
;*      Addition ops (.LSD)           6      15     (.L or .S or .D unit) 
;*      Bound(.L .S .LS)              2       1      
;*      Bound(.L .S .D .LS .LSD)       5       7*     
;* 
;*      Searching for software pipeline schedule at ... 
;*         ii = 7  Schedule found with 3 iterations in parallel 
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Figure 4.21: Pseudo Code For Removing Replicated Metrics. 

 

4.5 Simulation Results 

 

 In this section, we present some simulation profiles generated by the CCS built-in 

profiler for the FEC scheme in IEEE 802.16a. The results of each optimization step 

described formerly are also shown in the these simulation profiles. So, we can 

understand how much improvement can be obtained by our optimizations. At the end, 

the overall profiles of the FEC encoder and FEC decoder for the four required coding 

scheme defined in the IEEE 802.16a standard are also shown for evaluating the 

processing rate of our improved FEC programs. 

 

4.5.1 Simulation Profile for RS Encoder 

 

 Table 4.14 shows the simulation profile of our RS encoder for encoding 36 bytes 

data. The profile can be categorized into 5 areas. The first one is the simulation result 

for original program. The second one is the result for modification on data type. The 

third one is the result for three galois field multiplier (Mastrovito, Serial, and 

Logarithmic Table Lookup), which is marked as shadow area surrounded with 

double-line. The fourth one is the result for employing intrinsic galois field multiplier to 

/* Metrics Replica */
for(…)
{
…
nmetric[I] = cmetric[I] + metric;
….

}
for( i=0; i< 64; i++)

cmetric[i] = nmetric[i];

/* Removing Replica by Loop Unrolling */
For odd iterations
{
…
nmetric[i] = cmetric[i] +metric;
…

}
For even iterations
{
…
cmetric[i] = nmetric[i] +metric;
…

}

/* Metrics Replica */
for(…)
{
…
nmetric[I] = cmetric[I] + metric;
….

}
for( i=0; i< 64; i++)

cmetric[i] = nmetric[i];

/* Removing Replica by Loop Unrolling */
For odd iterations
{
…
nmetric[i] = cmetric[i] +metric;
…

}
For even iterations
{
…
cmetric[i] = nmetric[i] +metric;
…

}

/* Metrics Replica */
for(…)
{
…
nmetric[I] = cmetric[I] + metric;
….

}
for( i=0; i< 64; i++)

cmetric[i] = nmetric[i];

/* Metrics Replica */
for(…)
{
…
nmetric[I] = cmetric[I] + metric;
….

}
for( i=0; i< 64; i++)

cmetric[i] = nmetric[i];

/* Removing Replica by Loop Unrolling */
For odd iterations
{
…
nmetric[i] = cmetric[i] +metric;
…

}
For even iterations
{
…
cmetric[i] = nmetric[i] +metric;
…

}

/* Removing Replica by Loop Unrolling */
For odd iterations
{
…
nmetric[i] = cmetric[i] +metric;
…

}
For even iterations
{
…
cmetric[i] = nmetric[i] +metric;
…

}
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perform galois field multiplication in the RS encoding procedure. The fifth one is the 

result for modification on build option. We set it to the “File” level optimization and we 

can also inline the galois field multiplier function code inside the encoding function to 

reduce the huge overhead for calling it frequently. The label “I/O Included” in the table 

means the execution time spent on I/O operation using fread( ) and fwrite( ) is included 

in the cycle count. If the streaming mechanism of the Quixote baseboard functions 

correctly, the execution time spent on I/O operation should be different from using 

fread( ) and fwrite( ) (hopefully better than using fread ( ) and fwrite( )). For reference, 

the profile which excludes the execution time spent on I/O operations is shown in 

 

Optimization Step Code Size Cycles 
Processing Rate 

(Kbits/sec) 
Improvement 

(%) 
Original 2928 1433434 120 N/A 

Data Type 
 Modification 

2284 1265024 136 13 

Mastrovito  
Multiplier 

3056 678174 254 86 

Serial Multiplier 2100 766120 225 65 

Logarithmic Table 
Lookup Multiplier 

5692 137394 1257 824 

Intrinsic 
Multiplier 

1464 77799 2221 76 

Compiler Level 
Optimization 

1848 8036 21503 868 

Table 4.14: Profile of Reed-Solomon Encoder (I/O Included). 

 

Table 4.15. From the simulation profile, we know that the most efficient modification 

on the RS encoder is the replacement of original galois field multiplier by TI C64x 

intrinsic galois field multiplier. But if we implement the RS encoder on other DSP 

board which does not have an intrinsic galois field multiplier, then the most efficient 

modification shall be the replacement of original galois field multiplier by the 
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logarithmic table lookup multiplier. The improved processing rate of our RS encoder is 

about 21Mbits/sec with I/O included or 37Mbits/sec with I/O excluded. 

 

Optimization Step Code Size Cycles 
Processing Rate 

(Kbits/sec) 
Improvement 

(%) 
Original 2928 1430005 120 N/A 

Data Type 
 Modification 

2284 1261595 136 13 

Mastrovito  
Multiplier 

3056 674745 256 88 

Serial Multiplier 2100 763689 226 66 

Logarithmic Table 
Lookup Multiplier 

5692 133954 1289 847 

Intrinsic 
Multiplier 

1464 74371 2323 80 

Compiler Level 
Optimization 

1848 4607 37508 1514 

Table 4.15: Profile of Reed-Solomon Encoder (I/O Excluded). 

 

4.5.2 Simulation Profile for RS Decoder 

 

Tables 4.16 and 4.17 show the simulation profile of our RS decoder with I/O 

included and with I/O excluded, respectively. This profile is generated when decoding 

48 bytes received data. Besides the intrinsic multiplier, the second best improvement is 

with the Chien search modification. In the last step, we do further improvements based 

on compiler level tuning. It includes setting the “Opt. Level” in CCS build option from 

“Function” to “File”, using pragma MUST_ITERATE to provide the minimum trip 

count information for compiler and inline the functions for the frequently used functions 

such as galois field multiplier and inverter to reduce the overhead on calling these 

functions. Finally we can achieve a processing rate of 7.9Mbits/sec with I/O included or 

10.4Mbits/sec with I/O excluded. 
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Optimization Step Code Size Cycles 
Processing Rate 

(Kbits/sec) 
Improvement 

(%) 
Original 10688 579249 298 N/A 

Data Type 
Modification 

9464 369637 467 57 

Chien Search - I 9496 354090 488 5 

Chien Search - II 9316 217101 796 63 

Inverse-Free BM 9608 212270 814 2 

Intrinsic 
Multiplier 

9368 115721 1493 83 

Compiler Level 
Optimization 

9912 21699 7964 433 

Table 4.16: Profile of Reed-Solomon Decoder (I/O Included). 

 

Optimization Step Code Size Cycles 
Processing Rate 

(Kbits/sec) 
Improvement 

(%) 
Original 10688 574011 301 N/A 

Data Type 
Modification 

9464 364459 474 57 

Chien Search - I 9496 348912 495 5 

Chien Search - II 9316 211923 815 65 

Inverse-Free BM 9608 206869 834 2 

Intrinsic 
Multiplier 

9368 110543 1563 87 

Compiler Level 
Optimization 

9912 16521 10459 569 

Table 4.17: Profile of Reed-Solomon Decoder (I/O Excluded). 

 

4.5.3 Simulation Profile for CC Encoder 

 

Optimization Step Code Size Cycles 
Processing Rate 

(Kbits/sec) 
Improvement 

 (%) 
Original 768 20596 11186 N/A 

Table 4.18: Profile of Convolutional Encoder (I/O Included). 
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Table 4.18 shows the simulation profile of our convolutional encoder for encoding 

48 bytes data, the original processing rate is about 11Mbits/sec. Table 4.19 shows the 

simulation profile which excludes the execution time spent on I/O operation, the 

processing rate is about 15Mbits/sec. This processing speed satisfies our requirements. 

There is no need for further improvement currently. 

 

Optimization Step Code Size Cycles 
Processing Rate 

(Kbits/sec) 
Improvement 

 (%) 
Original 768 15325 15034 N/A 

Table 4.19: Profile of Convolutional Encoder (I/O Excluded). 

 

4.5.4 Simulation Profile for CC Decoder 

 

 Table 4.20 shows the simulation profile of our soft decision decoding Viterbi 

decoder for decoding 72 bytes received data (4608 input bytes actually, since each 

received data bit is represented by two integer (32-bit) branch metrics for soft decision 

decoding). Similar to the case of RS code, the profile which excludes the execution time 

spent on I/O operation is shown in Table 4.21 for a reference. From these two tables, we 

can see that the most significant improvement is on the fixed point modification because 

our DSP is designed for fixed-point calculation. 

  

Optimization Step Code Size Cycles 
Processing Rate 

(Kbits/sec) 
Improvement 

(%) 

Original 3388 8393747 27 N/A 

Fixed Point 2856 616349 374 1285 

Path Recording I 2828 446506 516 38 

Path Recording II 3020 355547 648 26 

Counter Splitting 3284 237030 972 50 

Removal of  
Metric Replica 

3896 209261 1101 13 

Table 4.20: Profile of Soft Decision Decoding Viterbi Decoder (I/O Included). 
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The second best improvement is on the counter splitting because it enables the 

software-pipeline working much better on the key loop (ACS loop) of our Viterbi 

decoder. Finally, we can achieve a processing rate of 1101 Kbits/sec with I/O included 

or 1514 Kbits/sec with I/O excluded.  

 

Optimization Step Code Size Cycles 
Processing Rate 

(Kbits/sec) 
Improvement 

(%) 

Original 3388 8336690 28 N/A 

Fixed Point 2856 560080 411 1367 

Path Recording I 2828 392896 586 43 

Path Recording II 3020 298492 772 32 

Counter Splitting 3284 179976 1280 66 

Removal of   
Metric Replica 

3896 152206 1514 18 

Table 4.21: Profile of Soft Decision Decoding Viterbi Decoder (I/O Excluded). 

 

4.5.5 Simulation Profile for FEC Encoder 

 

 In this subsection, we show the improved profile of our FEC encoder, which 

concatenates the RS encoder and the convolutional encoder. After encoding around 100 

bytes data (108 bytes for scheme 1, 3, 4; 104 bytes for scheme 2 to meet the code 

specification), Table 4.22 shows the average improved profile for the four required  

 

Modulation RS Code 
CC Code 

Rate 
Code Size 

Cycles 
W/ W/O  

Processing Rate (Kbits/sec) 
W/ W/O  

QPSK (24,18,3)  2/3 2384 86762 77938 5975 6651 

QPSK (30,26,2)  5/6 2464 56312 48758 8865 10238 

16-QAM (48,36,6)  2/3 2388 61677 54044 8405 9592 

16-QAM (60,54,3)  5/6 2476 59638 52854 8692 9808 

Table 4.22: Profile of Forward Error Correction Encoder. 
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coding scheme defined in the IEEE 802.16a standard, whereas the “W/” and “W/O” 

represent “with I/O” and “without I/O”, respectively. Finally, the average processing 

rate of the FEC encoder can reach 7984 Kbits/sec with I/O included or 9072 Kbits/sec 

with I/O excluded after improvement. 

 

4.5.6 Simulation Profile for FEC Decoder 

 

 Table 4.23 shows the average improved profile obtained in decoding the coded 

data generated in the above simulation. We find that the average processing rate of the 

FEC decoder can achieve 750 Kbits/sec with I/O included or 960 Kbits/sec with I/O 

excluded after improvement. 

 

Modulation RS Code 
CC Code 

Rate 
Code Size 

Cycles 
W/ W/O  

Processing Rate (Kbits/sec) 
W/ W/O  

QPSK (24,18,3)  2/3 12836 815093 650539 636 797 

QPSK (30,26,2)  5/6 12960 673042 535694 742 932 

16-QAM (48,36,6)  2/3 12652 696082 533861 745 971 

16-QAM (60,54,3)  5/6 12936 591806 456128 876 1137 

Table 4.23: Profile of Forward Error Correction Decoder. 
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Chapter 5 

ACS Unit Acceleration by Employing 

Xilinx FPGA as an Assistant 

 

Based on the simulation results discussed in Chapter 4, we know the speed 

bottleneck of our FEC program is the soft decision decoding Viterbi decoder. 

Furthermore, we know that the most time consuming kernel in the Viterbi decoder is 

the Add Compare Select (ACS) unit. In order to speed up the ACS unit, we have done 

some optimization on DSP platform. However, the final speed is still slower than we 

wish. The reason for the slow operating speed of the ACS unit is the massive 

sequential computations required to obtain a single output bit; i.e., it requires 64 ACS 

computations to obtain a single bit output. We notice that the ACS unit is suitable for 

the FPGA implementation, on which we can design and allocate as many functional 

units as we want as long as it does not exceed the area limit of the FPGA. Clearly, we 

can accelerate the ACS unit based on the Xilinx FPGA XC2V2000, which is 

embedded on the Quixote DSP baseboard, by simply placing 64 ACS units and make 

them operated in parallel on FPGA. And then integrated it with the original DSP 

program to make the overall speed performance of our FEC decoder faster. In this 

chapter, we test two ACS design on FPGA and evaluate how much improvement we 

may achieved with the assistance of FPGA. Similar to the case in DSP implementation, 

the Xilinx FPGA on Quixote board must be controlled by the DSP program. However, 
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the communication mechanism of the Quixote board does not work. Thus, the 

simulations shown in following sections are obtained from the Debussy’s nWave tools.  

 

5.1 ACS Design - I 

 

5.1.1 Original ACS Structure 

 

 The original ACS structure we designed is shown in Fig. 5.1, where SM1 and SM2 

denote the upper state metric and lower state metric of the ACS butterfly structure 

shown in Chapter 2. And BM1 and BM2 denote the upper branch metric and lower 

branch metric, respectively, CTL_IN and CTL_OUT denote the input control signal and 

output control signal, SEL denotes the path record information and N_SM denotes the 

next state metric after ACS computation. This structure can operate  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Block Diagram of Original ACS Design. 
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at around 100MHz, which can be translated to a processing rate of 12.5M (64 states/sec). 

The unit “64 states/sec” represents how many 64 state metrics can be computed per 

second, since the Viterbi algorithm has to compute 64 state metrics to produce 1 

decoded output bit. The ACS module implemented on FPGA is much faster than on 

DSP. The DSP version only achieves 2M (64 states/sec). However, we find a physical 

limit after we finish the original design. It is the transmission bandwidth limit on our 

implementation platform. Based on the architecture of Quixote DSP baseboard which 

has been discussed in Chapter 3, we know that the communication between DSP and 

FPGA must go through the EMIF (External Memory InterFace) A, and the bandwidth 

of the EMIF A is 64-bit/133MHz, or 8512Mbps. Although the bandwidth is wide 

enough for most applications, it is still not sufficient for the ACS module we designed 

originally. According to Fig. 5.2, which shows the synthesis report generated by Xilinx 

ISE6.1 for our original design, the ACS module requires 690 bits data transmission for 

the ACS computation of 16 state metrics. Equivalently, it means 690*4 bits data 

transmission for decoding 1 bit. Use the notation of the EMIF A, we can translate it to 

8512/(690*4 ) = 3.08M (64 states/sec). It means that the bandwidth of EMIF A can only 

support the processing rate of our original ACS module up to 3.08M (64 states/sec). 

Thus, if we do not do any modification, the processing rate of 12.5M (64 states/sec) is 

meaningless when we actually integrate the FPGA ACS module to the residual DSP 

program. 

 

 

 

 

 

 

 

 

Figure 5.2: FPGA Synthesis Report for Original ACS Design. 

Device utilization summary: 
--------------------------- 
Selected Device : 2v6000ff1152-6  
 
Number of Slices:                      1122  out of  33792     3%   
Number of Slice Flip Flops:           1104  out of  67584     1%   
Number of 4 input LUTs:                1312  out of  67584     1%   
Number of bonded IOBs:                690   out of    824    83%   
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Obviously, the processing rate of our design is limited by the data transmission rate 

that EMIF A can support. There are two possible solutions to solve this problem. The 

first one is to find a faster communicatoin interface between the DSP and FPGA, but it 

seems hard to do so. So we consider another approach: reduce the pin used in our design. 

The first improvement we have done on reducing the number of used pin is to avoid 

inputting the state metric values to FPGA since the state metric value is usually large 

and require more bits to represent. This can be achieved by storing the state metric 

values inside the FPGA. Since the initial value of the state metrics are known to be zero, 

we only have to reset the state metrics to zero at the beginning of decoding and then 

keep the updated state metrics in the registers inside FPGA for next time stage 

computation. Another possibility to reduce the pins is to reduce the input data size 

before they are sent to the FPGA device. Thus, we can represent the branch metric or 

state metric with fewer bits. After surveying several papers and textbooks, we find that a 

quantization level of 8 on branch metric is reasonable, according to the study by [20]; It 

results in a slight decrease on coding gain if the number of quantization level is greater 

than 8. Together, the 8-level quantization solution with the elimination of state metric 

transmission can provide a processing rate up to 32 M (64 states/sec), which is much 

better compared with the original 3.08M (64 states/sec). 

 

5.1.2 Improved ACS Structure 

 

 The modified ACS structure is shown in Fig. 5.3. The core module is the ACS64 

module, which consists of 64 ACS units for computing the 64 state metric for the next 

stage every two cycles in parallel. IN_BUF and OUT_BUF denote the input buffer and 

output buffer respectively, and they are used to link with the DSP device; i.e., this two 

buffers are used to temporarily store the data transmitted from the DSP side and store 

the data to be transmitted to the DSP, respectively. The newly added COMP module is a 

comparator that compares 64 resulting state metrics and find the minimum of the 
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metrics for the purpose of eliminating state metric input and output. It is because if we 

do not send back the state metric to the DSP side, we must implement the comparator 

on FPGA to select the best terminating state each time the time stage equals to the 

truncation length of our Viterbi decoder. To make the comparator operate more 

efficiently, we manually partition a comparator into five stages, and the pipeline stage is 

controlled by the FSM module. That is to say, the comparator will output the state with 

the smallest state metric value 5 cycles later after it receives the END_REQ control 

signal transmitted by the DSP side program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Schematic of Modified ACS Design. 

 

 According to the synthesize report for our modified ACS design, which is shown 

in Fig. 5.4, we can find that the slices used in our new (quantized) ACS design is greater 

than the original design. It is mainly due to the addition of comparator. As expected, the 

IOBs used in the new design are greatly reduced because of the use of quantization on 

 



 86 

branch metric and the avoidance for outputting intermediate state metric values. Thus 

the processing rate constraint can be greatly reduced. From the synthesis report, the 

estimated clock rate is around 161Mhz. From the P&R report, which is shown in Fig. 

5.5, the post P&R clock rate of our design is 1/11.089ns = 90Mhz, due to the fact that 

the output value is valid every 2 cycles, it can translate to a processing rate of 45M (64 

states/sec). The waveform of the modified ACS design is shown in Fig. 5.6, the control 

signal IN_VALID is transmitted by DSP to inform FPGA that the data in input buffer is 

valid and the control signal OUT_VALID is transmitted by FPGA to inform DSP that 

the output data in the output buffer is valid, the control signal END_REQ is sent by 

DSP based on the truncation length of our Viterbi decoder to inform FPGA that DSP 

now requires the number of best state to perform the Traceback operation, as described 

above, the result of comparison is valid in 5 cycles later and the FPGA will send a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: FPGA Synthesis Report for Modified ACS Design. 

Device utilization summary: 
--------------------------- 
Selected Device : 2v2000ff896-6  
 
Number of Slices:                     3785  out of  10752    35%   
Number of Slice Flip Flops:           3049  out of  21504    14%   
Number of 4 input LUTs:              6131  out of  21504    28%   
Number of bonded IOBs:               266   out of    624    42%   

Timing Summary: 
--------------- 
Speed Grade: -6 
 
   Minimum period: 6.175ns (Maximum Frequency: 161.956MHz) 
   Minimum input arrival time before clock: 4.349ns 
   Maximum output required time after clock: 4.812ns 
   Maximum combinational path delay: No path found  
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control signal DONE to inform DSP that the result of comparison is valid now. One 

thing to be noticed is that the time interval between two consecutive IN_VALID signal 

cannot be less than 2 clock cycle time since the ACS unit need 2 cycles to complete the 

 

 

 

 

 

Figure 5.5: Place and Route Report for Modified ACS Design. 

 

computation and raise the OUT_VALID signal. 

 

 

 

 

 

 

 

Figure 5.6: Waveform of Modified ACS Design. 

 

5.2 ACS Design - II 

  

Although the processing rate of the previous design, which is 45M (64 states/sec), 

already exceeds the physical limitation, which is 32M (64 states/sec) of the transmission 

bandwidth. For research and evaluation, we try to further improve the ACS design. 

According to [21], a new architecture of the ACS unit is proposed to accelerate the ACS 

unit by increasing the states of trellis. By reformulating the Viterbi algorithm, the 

proposed architecture provides an alternative approach to the high-throughput design. 

 

The NUMBER OF SIGNALS NOT COMPLETELY ROUTED for this design is: 0 
 
   The AVERAGE CONNECTION DELAY for this design is:             1.082 
   The MAXIMUM PIN DELAY IS:                               11.089 
   The AVERAGE CONNECTION DELAY on the 10 WORST NETS is:    5.369 
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The new proposed architecture is called “double state” architecture, which refers to the 

fact that it requires twice more states than the original architecture. By having double 

states, the serial operation of ACS unit can be transformed into parallel operation. 

The basic concept of this new architecture is briefly introduced here. For simplicity, 

we take the convolutional code with generator polynomial X+1 as an example. By 

extending the original generator polynomial of the convolutional code one degree and 

set the coefficient of the highest degree to zero, one can obtain an equivalent trellis as 

illustrated in Fig. 5.7, where X+1 is the original generator polynomial and 0 X2 + X + 1 

is the extended generator polynomial. 

 

 

 

 

 

 

 

 

 

Figure 5.7: Two Equivalent Trellises. 

 

In the double state trellis, the branch metrics (BMs) ending at the same state are all 

equal. That is to say, when comparing the state metrics for the next stage, we can select 

the minimum of the two previous stage state metrics without waiting for an addition of 

the BMs. Fig. 5.8 (a) shows the original ACS architecture while Fig. 5.8 (b) shows the 

modified “double state” ACS architecture, where n denotes the current stage, n+1 

denotes next stage, BMi,k denotes the branch metric that start from state i and end at 

state k, and SMi denotes the state metric of state i. In the original ACS architecture, we 

have to wait for the addition of BMs done, then we can compare the SMs for next stage. 

But in the new architecture, since the BMs ending at the same state are equal, we do not 
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have to wait for the addition of BMs and can just compare the current two state metrics 

directly. Equivalently, we perform the  

 

 

 

 

 

 

 

 

 

Fig. 5.8: (a) Original ACS Architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.8: (b) ACS Architecture Based on Double State Trellis. 
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following recursion: n
k

n
ii

n
k BMSMSM +=+ )(min1 . Therefore, we can make the addition 

of BMs and the comparison of the SMs operate in parallel while the original ACS 

architecture must operate sequentially. Moreover, another hardware savings is also 

proposed based on the double state architecture. Looking at the next states 10 and 11 in 

Fig. 5.7, they share the same pair of the current states 01 and 11. Hence, if the next state 

11 choose the path from the current state 01 over one from the current state 11, then the 

same decision is made at the “Select” operation for the next state 11. Therefore, every 

two states in the “double state” architecture can share the same decision-making unit in 

the “Compare” operation.  

The schematic of the new ACS design based on double state trellis architecture is 

almost the same as before, the only difference is the ACS64 unit should be extend to 

ACS128 to deal with the double state ACS, the synthesis report for this new ACS 

design is shown in Fig. 5.9. From the synthesis report, the estimated clock rate of our  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: FPGA Synthesis Report for Double State ACS Design. 

Device utilization summary: 
--------------------------- 
Selected Device : 2v2000ff896-6  
 
Number of Slices:                     6782  out of  10752    63%   
Number of Slice Flip Flops:           5594  out of  21504    26%   
Number of 4 input LUTs:              6131  out of  21504    48%   
Number of bonded IOBs:               266   out of    624    42%   

Timing Summary: 
--------------- 
Speed Grade: -6 
 
   Minimum period: 4.347ns (Maximum Frequency: 230.053MHz) 
   Minimum input arrival time before clock: 4.349ns 
   Maximum output required time after clock: 4.812ns 
   Maximum combinational path delay: No path found 
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new double state design is about 230MHz (1.43 times faster than the previous design), 

but the area increased is about 1.8 times. Though in our case, the area is not the major 

consideration, in actual ASIC design, it may not be a good solution considering both 

area and speed. From the P&R report shown in Fig. 5.10, the actual clock rate on FPGA 

is greatly decreased due to the routing factor, the post P&R clock rate is 1/10.214ns = 

98MHz, which can be translated to a bitrate of 49M (64 states/sec). 

 

 

 

 

 

Figure 5.10: Place and Route Report for Double State ACS Design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Macro Statistics of the (a) Original ACS Design. (b) Double State ACS 

Design. 

 

The NUMBER OF SIGNALS NOT COMPLETELY ROUTED for this design is: 0 
 
   The AVERAGE CONNECTION DELAY for this design is:             1.185 
   The MAXIMUM PIN DELAY IS:                                 10.214 
   The AVERAGE CONNECTION DELAY on the 10 WORST NETS is:     6.541 

Macro Statistics  
Registers 
1-bit register 

13-bit register 

1664-bit register 

192-bit register 

3-bit register 

64-bit register 

Multiplexers 
2-to-1 multiplexer 

Adders/Subtractors 
13-bit adder 

Comparators 
13-bit comparator less 

13-bit comparator less equal 
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Fig. 5.11 (a) shows the macro statistics of the original ACS design and (b) the 

double state ACS design generated by Xilinx ISE 6.1. Compared with the original 

design, the double state design requires twice more adders, SM registers (the 13-bit 

register), multiplexers, and 64 more comparators to compare 128 resulting SMs for 

traceback. 

Figure 5.12 shows the waveform of the double state ACS design. It is similar to the 

original ACS design. The only difference is that the endstate of the double state design 

may be the same state of the original design or it may be the state which only differs in 

the MSB from the endstate of the original design. 

 

 

 

 

 

 

 

Figure 5.12: Waveform of Double State ACS Design. 
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Chapter 6 

Conclusion and Future Work 

 

6.1 Conclusion 

 

 In this thesis, our original target is to implement the FEC scheme of IEEE 802.16a 

wireless communication standard on the Innovative Integration’s Quixote DSP 

baseboard, which houses the Texas Instruments TMS320C6416 DSP chip. We optimize 

the FEC scheme to achieve real-time operation. However, due to the malfunction of the 

Quixote board, we are not able to actually transmit data between the DSP board and the 

host PC. We thus can only simulate the modified FEC schemes on the TI DSP simulator, 

which is included in the TI code composer studio. Therefore, the simulation profile 

shown in this thesis may not match the exact profile obtained from the DSP emulator 

operated on Quixote board. However, we believe that the algorithm/program 

modifications we have done based on the DSP simulator are also valid on the actual 

Quixote board, and the improving rate should be similar.  

In the previous chapters, we first introduce the FEC standard of IEEE 802.16a 

briefly. We then describe how we implement it and explain the algorithms we use. Next, 

we introduce our implementation environment to show the available hardware resources. 

Afterward, we apply some useful techniques to speed up the software. They are either 

tuning the program to make the compiler work more efficiently or modifying the 

programs based on the algorithms either proposed by ourselves or proposed by the other 



 94 

researchers to improve the processing rate of the RS encoder and decoder, and the 

convolutional decoder (Viterbi decoder). With DSP optimization, we have achieved an 

average processing rate of 7984 Kbits/sec on the FEC encoder with I/O included or 

9072 Kbits/sec without I/O and an average processing rate of 750 Kbits/sec on the FEC 

decoder with I/O included or 960Kbits/sec without I/O. (Once again, the actual 

processing rate on the DSP emulator operated on the Quixote board may be different 

from these results.) 

To further improve the processing rate of the FEC decoder, we need to accelerate 

the ACS operation in the Viterbi decoder, which is the bottleneck of our implementation. 

We put the ACS operation on the Xilinx FPGA, which is located on the Quixote board 

as an assistant hardware resource. We have done two simulations to evaluate the 

processing rate of the ACS operation implemented on Xilinx FPGA. The first ACS 

design that simply makes the ACS units operate in parallel, can achieve a processing 

rate of 45M (64 states/sec). It is much faster than the original speed of 2M (64 states/sec) 

on DSP. The second ACS design based on double state trellis architecture can achieve a 

processing rate of 49M (64 states/sec). But the area it consumed is 1.8 times more than 

that of the first ACS design. In consideration of the limit on physical transmission 

bandwidth on Quixote board, the processing rate of ACS units beyond 32M (64 

states/sec) does not result in actual data processing speed improvement. Therefore, if we 

want to implement the ACS units on Xilinx FPGA, the first ACS design can be 

accepted to achieve a good balance of area and speed. 

 

6.2 Future Work 

 

 As mentioned above, the communication mechanism of the Quixote DSP 

baseboard does not work properly. Hence, our simulations are all performed on the TI 

C64xx DSP simulator on PC. Therefore, when the communication mechanism works, 
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the streaming mechanism shall be concatenated to our FEC program to actually test the 

exact processing rate on the Quixote board. 

 As for the optimization tasks, there are still some functions can be further 

improved to accelerate the overall processing rate of our FEC program. For the RS 

decoder, the Chien search still consumes a lot of execution time if the data errors 

happen to occur in the last symbol of the codeword. If we can find a fast algorithm for 

Chien search, whose computational complexity is independent to the position of the 

errors, then the processing rate of the RS decoder can be much improved. For the 

Viterbi decoder, the ACS operation consumes a lot of execution time due to the need of 

expanding the entire trellis structure. But in fact only a small portion of the trellis 

structure is used to generate the decoding path. So, if we can find a modified Viterbi 

algorithm that does not expand the entire trellis structure, but it only expands a part of 

the trellis needed for generating the decoding path, we can accelerate the whole FEC 

decoder by a large factor because the ACS operation is the bottleneck of our program. 
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