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摘     要 

在大型系統晶片 (system-on-a-chip, SoC) 設計中，嵌入式核心(embedded cores)

的使用正大量的增加。高複雜度的系統晶片設計，使得設計驗證對系統整合者

來說是個很大的挑戰。為了降低以嵌入式核心為基礎的設計驗證的複雜度，連

接埠順序障礙模型 (port-order-fault，POF) 已經被提出，其對應的驗證向量產生

器也已經發展好了。在本論文中，為了解決大型系統晶片連接驗證的問題，我

們在連接埠順序障礙模型之下提出了一個以圖形自同構 (graph automorphism)

為基礎的演算法來改善這個自動驗證向量產生器的效率。此外，這個演算法也

可以運用於計算電路的輸入對稱的最大集合。我們測試了一些 ISCAS-85和有較

多輸入連接埠的MCNC電路。由實驗結果顯示，這個演算法可以在更少的時間

下產生更有效的驗證向量。 
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Abstract 

Embedded cores are being increasingly used in the design of large 

system-on-a-chip (SoC). High complexities of SoC designs lead the design verification 

to be a challenge for system integrators. To reduce the verification complexity, the 

port-order-fault (POF) model has been proposed and the corresponding verification 

pattern generation has been developed for verifying core-based designs. This thesis 

proposes a graph automorphism-based algorithm to improve the efficiency of the 

automatic verification pattern generation (AVPG) for SoC interconnect verification 

based on the POF model. Furthermore, this algorithm can be applied to compute 

maximal sets of symmetric inputs of circuits. We conduct the experiments on ISCAS-85 

and some MCNC benchmarks with large inputs of circuits. The experimental results 

demonstrate that our approach generates more efficient patterns with less CPU time. 
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Chapter 1 

Introduction 

Spurred by process technology leading to the availability of more than 1 million 

gates per chip, and more stringent requirements upon time-to-market and performance 

constraints, system level integration and platform-based design [3] are evolving as a 

new paradigm in system designs. A multitude of components that are needed to 

implement the required functionality make it hard for a company to design and 

manufacture an entire system in time and within reasonable cost. Hence, design reuse 

and reusable building blocks (cores) trading are becoming popular in the 

system-on-a-chip (SoC) era. However, present design methodologies are not enough to 

deal with cores which come from different design groups and are mixed and matched to 
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create a new system design. In particular, verifying whether a design satisfies all 

requirements is one of the most difficult tasks. 

Usage of cores divides the IC design community into two groups: core providers 

and system integrators. In traditional system-on-board (SoB) design, the components 

that go from provider to system integrator are ICs, which are designed, verified, 

manufactured, and tested. The system integrator verifies the design by using these 

components as fault-free building blocks. SoB verification is limited to detecting faults 

in the interconnection among the components. Similarly, in SoC design, the components 

are cores. The system integrator verifies the design by using the cores as design 

error-free building blocks. The focus of this core-based design verification should be on 

how the cores communicate with each other [13]. However, before the interface 

verification, the interconnection between the cores in an SoC have to be verified first. 

This is because the SoC integrator has to connect a large number of ports (hundreds or 

even thousands of ports) in an SoC. The likelihood of interconnection misplacements 

between the cores is high. Furthermore, the correct interconnection between the cores is 

the minimum requirement to verify the interface protocols. In other words, if the 

interconnections between the cores are misplaced, the process of the verification on the 

interface between the cores will be in vain. Thus, the interconnection verification can be 

conducted as the first step to the interface verification between the cores in an SoC. 

Most previous work in testing interconnection focused on the development of 

deterministic tests for interconnection between chips at the board level [7, 8]. The main 

purpose is to test if the interconnections are connected properly (neither short nor open). 

In the interconnection testing phase, the basic assumption for a system under test is that 
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the system design is correct, and the faults are due to manufacturing defects on 

interconnection among components. For the core-based SoC design verification, 

however, the system is not fully verified yet and the most of system design errors are 

due to the incorrect interconnection among predesigned cores. The incorrect 

interconnections are normally introduced by the misinterpretation of port description of 

IP cores, and this misinterpretation is usually caused by some factors, such as 

ambiguous or cryptic port names, Big Endian or Little Endian byte order of address bus, 

etc. Therefore, the extension of these board level testing methods is inadequate for 

connectivity-based design verification. Fig. 1.1 (a) and (b) shows the schemes to 

demonstrate the processes of interconnection testing and interconnection verification, 

respectively. In the interconnection testing, the engineers focus on the success of 

implementation of interconnected wires between block1 and block2. The testing 

patterns and corresponding responses are applied and observed at the ends of the 

interconnects to check whether the interconnects are manufactured correctly. On the 

other hand, in the interconnection verification, the system integrators verify whether the 

interconnections between block1 and block2 are located in the correct ports. They apply 

the verification patterns to primary inputs (PIs) of the integrated design, then observe 

the corresponding responses in primary outputs (POs) of the integrated design, and 

match them against the specification instead. 
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Figure 1.1. The schemes of interconnection testing and interconnection verification.  

By creating the testbenches at a high level, a connectivity-based design fault model, 

port-order-fault (POF), proposed in [17], is used for reducing the time on core-based 

design verification [18]. And the superset of all automorphism (SAA) technique is 

proposed in [19] to accelerate the AVPG and reduce the size of verification pattern set. 

In this thesis, we propose a graph automorphism-based algorithm to further reduce 

the size of verification pattern set. This algorithm also can compute maximal sets of 

symmetric inputs of circuits, which are important to design verification and diagnosis [9, 

10, 12, 16], as well as technology mapping [5, 11, 14]. 

In general, the manufacturing defects are called faults. Since this approach is 

conducted for design verification rather than chip testing, we rename the POF model as 

port-order-error (POE) without changing the model definition. 

We exploit the IEEE P1500 wrappers and user defined Test Access Mechanisms 

(TAMs) to propagate the verification patterns from PIs to the wrappers in the 

predecessor of the core under verification (CUV) and to propagate responses of the 

CUV to POs. The integration verification mechanism with the IEEE P1500 
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standard-under-development is the same with that introduced in [18]. 

The remainder of this thesis is organized as follows: the POE model and previous 

work are introduced in Chapter 2. Chapter 3 describes the graph automorphism (GA) 

technique in the AVPG. The experimental results are shown in Chapter 4 and the 

applications of symmetric detection are shown in Chapter 5. Chapter 6 concludes the 

thesis. 
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Chapter 2 

Preliminary 

2.1. POE Model 

The POE model belongs to the group of pin-errors models [1], which assumes that 

an erroneous cell has at least two I/O ports misplaced. It also assumes that the 

components are error free and only the interconnections among the components could 

be erroneous. There are three types of POEs [17]. 

Definition 2.1:  The type I POE is at least an output misplaced with an input. The 

type II POE is at least two inputs misplaced. The type III POE is at least two outputs 

misplaced. It has been proven that the type II POEs dominate the other two types of 
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POEs [18]. Hence, in this thesis, the AVPG focuses on the type II POEs solely. 

Definition 2.2:  A port sequence is an input port number permutation that indicates 

the relative positions among these input ports. 

Definition 2.3:  The error-free-port-sequence (EFPS) is a port sequence that none 

of the input ports were misplaced. For an N-input core, its input variables are numbered 

from 1 to N. The number of the input variable permutations is N! and these N! 

permutations represent the N! port sequences of the core. Except the 

error-free-port-sequence, the remaining (N!-1) port sequences represent those 

corresponding cores with particular POEs and are called erroneous-port-sequences 

(EPSs). In this thesis, the POEs and the EPSs are used exchangeably. 

Given a 4-input core, the input ports are numbered from 1 to 4. Any input port 

numbers permutation is a port sequence of the core. It has 4! port sequences totally. The 

only one EFPS is 1234, the remaining (4!-1) port sequences are EPSs. The EPS 1423 

represents the port 4 is connected to the location of port 2, the port 2 is connected to the 

location of port 3, and the port 3 is connected to the location of port 4. The schematic 

representation of EFPS 1234 and EPS 1423 are shown in Fig. 2.1 (a) and Fig. 2.1 (b), 

respectively. 

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

EFPS=1234
(a)

EPS=1423
(b)  

Figure 2.1. The schematic representation of EFPS 1234 and EPS 1423. 
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2.2. Undetected Port Sequences (UPSs) Representation 

Typically, the automatic pattern generator for functional errors, such as transition 

faults [6], or manufacturing faults, such as stuck-at-fault (SAF) [15], builds fault list 

explicitly first to explore how many faults have to be detected, and then generates 

random patterns and deterministic patterns to detect these faults in the fault list. For the 

POE-based AVPG, the error list is not enumerated explicitly. This is because the total 

number of POEs in an N-input core is (N!-1). This number grows rapidly when N 

increases, for instance, as N = 70, N!-1 ≈ 1.2×10100. Instead, an implicit representation 

is used to indicate the remaining undetected port sequences (UPSs). According to this 

implicit representation, we can realize exactly what the remaining UPSs are and the 

further verification patterns can be generated accordingly in the verification pattern 

generation. The following example demonstrates this implicit UPSs representation. 

Given an 8-input core, the input ports are numbered from 1 to 8. The UPSs 

representation (12345678) represents the UPSs that caused by all possible 

misplacements among the port numbers in the same group, i.e. port 1 to port 8. The 

number of undetected POEs is 8!-1, and the 1 in the 8! accounts for the error free port 

sequence. The UPSs representation (125)(4)(3678) indicates the UPSs that caused by all 

possible misplacements among the port numbers 1, 2 and 5 and/or all possible 

misplacements among the port numbers 3, 6, 7 and 8. The number of the undetected 

POEs is 3! × 1! × 4!-1. Please note that the port number 4 is the only one element in the 

second group. It means that the port sequences whose port number 4 in the wrong 

position are not represented by this UPSs representation. The order of the groups in the 

UPSs representation is irrelevant, neither is the order of the numbers in each UPSs 
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group. For example, the UPSs (125)(4)(3678) can also be expressed as (4)(215)(8763). 

The UPSs (12)(3)(4)(5)(6)(78) contain 4 port sequences and they are 12345678, 

21345678, 12345687 and 21345687. The UPS representation (1)(2)(3)(4)(5)(6)(7)(8) 

has eight groups and each group has only one element; therefore, no misplacement 

could be occurred in each group. The number of the undetected POEs is 

1!×1!×1!×1!×1!×1!×1!×1!-1=0. Hence, (1)(2)(3)(4)(5)(6)(7)(8) represents 8!-1 POEs 

are all detected. If the UPSs representation is induced from (12345678) to 

(1)(2)(3)(4)(5)(6)(7)(8), all POEs are detected. 

2.3. Previous Work 

The AVPG for verifying the interconnect in a core-based design is proposed in 

[18]. Its flowchart is shown in Fig. 2.2 again. The AVPG reads the combinational core 

and generates heuristic patterns. The patterns simulation results determine the valid 

verification patterns. Then the UPSs are calculated in UPSs_Calculation stage, so that 

more further verification patterns can be generated accordingly. When the error 

coverage (E_C) reaches 100%, i.e., the verification patterns for detecting all EPSs are 

generated, or the iterations are over the bound, the AVPG will be terminated. 

The UPS’s calculation (UPSs_Calculation) procedure shown in Fig. 2.2 determines 

what the remaining UPSs are and guides the further pattern generation. If the results of 

UPS’s calculation are not precise enough, some of the further verification patterns could 

be redundant and the processing time to reach the desired error coverage will increase. 

In [18], the characteristic vector (CV) approach of determining the remaining UPSs 

encountered this weakness. However, the superset of all automorphisms (SAA) 
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technique proposed in [19] improves the weakness mentioned and indeed increases the 

AVPG efficiency. This fact can be seen in Fig. 2.3. Fig. 2.3 is a drawing from [19], 

which shows the hierarchical relations on computing remaining UPSs between the CV 

approach [18] and the SAA approach [19]. It has five levels from the center to the 

boundary. The first level represents the set of real remaining UPSs explicitly. The 

second level is the implicit UPS representation of the first level. The third level 

represents the UPSs that are obtained by the automorphism approach. The SAA 

approach and CV approach are shown in the fourth and fifth levels, respectively. Since 

the UPSs in the inner levels are the subset of the outer levels, the SAA approach really 

gets better results than CV approach. 

Start

E_C = 0, iteration = 0

E_C = 100%
or

iteration > bound

Yes

No

StopPattern_Generation

iteration ++

Pattern_Simulation

Get_Valid_Patterns

UPSs_Calculation

 

Figure 2.2. The flowchart of the POE-based AVPG. 
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Real UPSs (explicit)
UPSs Representation (implicit)
All Automorphism
Superset of All Automorphism (SAA)
Characteristic vector (CV)

 

Figure 2.3. Hierarchical relations among the different approaches. 
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Chapter 3 

Graph Automorphism–based AVPG 

We observe that the stages which profoundly influence the efficiency of AVPG are 

Pattern_Generation and UPSs_Calculation. Thus, in addition to advancing the 

UPSs_Calculation stage like [19], this thesis proposes a new pattern generation 

procedure as well, which corresponds to the proposed UPSs_Calculation. In this chapter, 

we first explain the new Pattern_Generation procedure. Then we introduce the graph 

automorphism algorithm. The new UPSs_Calculation procedure based on the graph 

automorphism algorithm is described in the last section. 
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3.1. Pattern Generation  

Definition 3.1 : For an N-input combinational core, the exhaustive pattern set is 

defined as ΦN. The size of ΦN is the number of patterns in ΦN, and is denoted as |ΦN| 

and |ΦN| equals 2N.  

Definition 3.2 : The set that consists of all patterns with m 1s and (N-m) 0s is 

denoted as N
mθ  ,where m∈ [0, 1, 2, . . ., N -1, N]. The size of N

mθ
 is the number of 

patterns in N
mθ  and is denoted as | N

mθ | and | N
mθ | equals N

mC . 

Example 3.1:  For a 4-input core, Φ4 is the exhaustive pattern set with 4 bits. |Φ4| 

= 24 = 16. 4
0θ ={0000}, | 4

0θ | = 4
0C  =1. 4

1θ ={1000, 0100, 0010, 0001}, | 4
1θ | = 4

1C =4. 

4
2θ = {1100, 1010, 1001, 0110, 0101, 0011}, | 4

2θ | = 4
2C = 6. 4

3θ = {1110, 1101, 1011, 

0111}, | 4
3θ | = 4

3C  =4. 4
4θ = {1111}, | 4

4θ |= 4
4C  =1. 

The target of AVPG is to generate valid verification patterns such that all N!-1 

POEs are detected. To detect a POE, the error effect has to be activated first. If the error 

effect is not activated, it surely cannot be propagated out for detection. Thus, all N!-1 

POEs have to be activated during the Pattern_Generation stage. For general cases, all 

remaining POEs have to be activated in each iteration. To activate a POE, the logic 

assignments of the corresponding input ports cannot be all the same. For example, to 

activate the EPS 1243, the assignments of port 3 and port 4 have to be different, either 

port 3 is assigned 0, port 4 is assigned 1, or vice versa. Furthermore, to increase the 

AVPG efficiency, the generated verification pattern cannot be repeated. 

Lemma 3.1: Given a pattern T ∈ N
mθ , there are m 1s and (N-m) 0s in T. If the pattern 
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T turns to T’ after a EPS λ, then T’ ∈ N
mθ  and is a permutation of T byλ. 

Theorem 3.1: N
mθ  can activate all (N!-1) POEs where m ∈[1, 2, …, N-2, N-1]. [18] 

Proof: N
mθ  contains all patterns with m 1s and (N-m) 0s. According to Lemma 3.1, 

there must exist a pair of patterns T and T’ ∈ N
mθ   that corresponds to the original pattern 

T and the activated pattern T’ for each POE. Thus, (N!-1) POEs are all activated by N
mθ  

for m ∈[1, 2, …, N-2, N-1].            Q.E.D. 

Theorem 3.2: For an N-input core, the pattern set ∈ 1

1

n
mθ Х 2

2

n
mθ Х … Х k

k

n
mθ  with 

n1 + n2 + …+ nk =N, 0≦mp≦np where p = 1,2,…,k and there being at least one group 

with different logic assignments can activate all (n1!) × (n2!) × ··· × (nk!)-1 errors in the 

UPSs )())(( 212121 21 knnn rrrbbbaaa LLLL . 

Proof :  According to Theorem 3.1, 1

1

n
mθ  can activate (n1!-1) POEs where m1∈ [1, 

2,…, n1-1]. Obviously, 1

1

n
mθ Х 2

2

n
mθ  is to repeat 1

1

n
mθ 2

2

n
mC  times and to repeat 2

2

n
mθ 1

1

n
mC  

times. For each pattern in 2

2

n
mθ  with a set of 1

1

n
mθ  can activate (n1!)-1 POEs, 

1

1

n
mθ Х 2

2

n
mθ  can activate (n1!)×(n2!)-1 POEs. We can extend this to k groups, therefore, 

each pattern set ∈ 1

1

n
mθ Х 2

2

n
mθ Х…Х k

k

n
mθ  can activate (n1!)×(n2!)×···×(nk!)-1 errors, 

same as the number of POEs in the UPSs )())(( 212121 21 knnn rrrbbbaaa LLLL . 

                       Q.E.D. 

The simulation results of the verification patterns are observed to determine which 

activated POEs are propagated to POs. The error effects are propagated to POs if there 
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exists different responses among these verification patterns. 

Example 3.2: For UPSs (12)(345), we know that the assignment 3
1θ  in (345) can 

activate 3!-1 errors according to Theorem 3.1. When 1 and 2 are involved, we can 

assign 10 or 01 for the (12) and combine with the assignment in (345) as shown in Fig. 

3.1. The error activation of 21435 can be obtained from 12435 by comparing 10010 and 

01010. All other EPSs can be activated by the similar process as well. Therefore, the 

POEs in (12)(345) are all activated by the 2
1θ × 3

1θ . 

 

EPS 12435

 extend to

EPS 21435

(1  2)

 1  0
 1  0
 1  0

 0  1
 0  1
 0  1

(3   4   5)

 1   0   0
 0   1   0
 0   0   1

 1   0   0
 0   1   0
 0   0   1  

Figure 3.1. Error activation.  

We use an example to demonstrate the details of pattern generation stage (error 

activation and error propagation). Given a 5-input core, assume the UPSs currently are 

(123)(45) and 5
1θ , 5

4θ  have been simulated. In this case, the further pattern sets come 

from 
3

1mθ ×
2

2mθ  where m1∈ [0, 1, 2, 3] and m2∈ [0, 1, 2]. Therefore, the possible 

further pattern sets are A1 ~A12 as listed in Table 3.1 and A5, A6 are shown in Fig. 3.2. 

 



16 

Table 3.1. All possible pattern sets. 

Possible 
further pattern 

set 
UPSs = (123)(45) Explanation 

A1 (m1=0,m2=0) ∈    , cannot activate remaining POEs 

A2 (m1=0,m2=1) ∈    , have been simulated 

A3 (m1=0,m2=2) ∈    , cannot activate remaining POEs 

A4 (m1=1,m2=0) ∈    , have been simulated 

A5 (m1=1,m2=1) ∈ 

A6 (m1=1,m2=2) ∈ 

A7 (m1=2,m2=0) ∈ 

A8 (m1=2,m2=1) ∈ 

A9 (m1=2,m2=2) ∈    , have been simulated 

A10 (m1=3,m2=0) ∈    , cannot activate remaining POEs 

A11 (m1=3,m2=1) ∈    , have been simulated 

A12 (m1=3,m2=2) ∈    , cannot activate remaining POEs 

 Further pattern set A5
           (m1=1,m2=1)

  (1 2 3) (4 5)
   1 0 0   1 0
   0 1 0   1 0
   0 0 1   1 0
   1 0 0   0 1
   0 1 0   0 1
   0 0 1   0 1

   Further pattern set A6
         (m1=1,m2=2)

           (1 2 3) (4 5)
   1 0 0   1 1
   0 1 0   1 1
   0 0 1   1 1

 

Figure 3.2. Possible further pattern sets in A5 and A6. 

Note that A2 and A4 are ∈ 5
1θ  as well as A9 and A11 are ∈ 5

4θ . They have already 

been simulated before, thus, they are skipped from further verification pattern sets. 

Furthermore, A1, A3, A10, and A12 have the same logic assignments in each group. They 

cannot be the verification pattern sets either. Consequently, the remaining verification 

5
1θ

5
3θ
5
2θ
5
3θ
5
4θ

5
4θ

5
2θ

5
0θ

5
2θ
5

1θ

5
3θ

5
5θ
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pattern sets are A5 ~ A8, which are ∈ 5
2θ  and 5

3θ  respectively. We can choose only 5
2θ , 

or 5
3θ , or both 5

2θ  and 5
3θ  for further verification sets since they all activate the 

remaining EPSs and have the same opportunity to reduce the UPSs. To reduce the 

complexity of pattern generation, we choose one 5
mθ  at a time. In this example, either 

5
2θ  or 5

3θ . Table 3.2 shows the selected verification patterns of 5
2θ  and their 

corresponding outputs which are represented in symbolic output representation. For 

example, the pattern set A5 contains six patterns, {10010, 01010, 00110, 10001, 01001, 

00101} and their outputs are a1, a2, a1, a3, a3, and a3, respectively. The patterns in A5 

can be grouped into three groups {10010, 00110}, {01010}, and {10001, 01001, 00101} 

according to their outputs. To select a group of patterns as the valid verification patterns, 

we always choose the group with the smaller size if it indeed can detect new EPS. Thus, 

in this example, {01010} and {10010, 00110} are selected as the valid verification 

patterns. When we apply these patterns {01010}, {10010, 00110} to verify the 

interconnections, we expect the outputs to be a2 and a1, respectively. If the real outputs 

are not a2 and a1, then the misplaced interconnects are detected. For the same reason, 

the gray patterns in A7 can be the valid verification patterns. After having these valid 

verification patterns, we have to figure out what new EPSs are detected and determine 

the remaining UPSs for further pattern generation. 
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Table 3.2. 5
2θ

  pattern sets. 

Verification 
pattern sets 5

2θ
UPSs 

=(123)(45) Outputs Description 

A5 

1 0 0 1 0 
0 1 0 1 0 
0 0 1 1 0 
1 0 0 0 1 
0 1 0 0 1 
0 0 1 0 1 

a1 
a2 
a1 
a3 
a3 
a3 

m1=1, m2=1, target on the both groups; 
{01010}, {10010, 00110} are valid 
verification pattern sets 

A7 
1 1 0 0 0 
1 0 1 0 0 
0 1 1 0 0 

b1 
b2 
b2 

m1=2, m2=0, target on the first group;  
{11000} is a valid verification pattern 
set 

 

The UPSs_Calculation stage is achieved by the proposed graph automorphism 

algorithm. Thus, we first introduce this algorithm, then apply it on the 

UPSs_Calculation. 

3.2. Graph Automorphism Algorithm 

The Graph Automorphism (GA) problem is a well-known and well- studied 

problem. However, it is not known to be either in P or NP-complete [2, 4]. Here we 

propose a heuristic to solve the GA problem.  

Definition 3.3 :  A graph G(V,E) with n vertices and m edges consists of a vertex 

set V(G)={V1,…,Vn} and an edge set E(G)={E1,…,Em}. Each edge consists of two 

vertices called its endpoints. (U,V) is an edge with endpoints U and V. A graph is 

undirected if there is no ”direction” on the edges. A graph is weighted if there are 

positive integer weights on the edges. The weight of the edge (U,V) is denoted as 

W((U,V)). 
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1 2

3 4

1 2

3 4
Aut(G)

(1)
Aut(G)

(2)

4 3

2 1

 

Figure 3.3. An example of graph G and its automorphisms. 

Definition 3.4 : An automorphism of graph G is a permutation of V(G) that 

preserves adjacency [20]. The automorphisms of G is denoted as Aut(G), and the 

cardinality of this set of automorphisms is denoted as |Aut(G)|. 

Example 3.3: An undirected graph G = (V, E) as shown in Fig. 3.3 has V = {1,2,3,4} 

and E = {(1,2), (2,3), (3,4)}. Its automorphisms are also shown in Fig. 3.3 which are 

{1234 ,4321}, and |Aut(G)| = 2. 

Definition 3.5 :  A graph G is disconnected if we can partition its vertices into at 

least two nonempty sets, R and S, such that no vertex in R is adjacent to any vertex in S. 

That is, G is the disjoint union of the two subgraphs induced by R and S. 

Definition 3.6 : For any two sets π1 and π2, its intersection π1∩π2 is a set that 

contains elements in both sets. 

We propose an automorphism representation that is similar to the UPS 

representation mentioned in Chapter 2.2 to record the automotphisms of a graph G. 

Vertices in the same group in this automorphism representation imply that any 

permutation of these vertices is an automorphism. 

Example 3.4: For an automorphism representation π1 = (12)(34). It contains 2! × 2! 

automorphisms and they are {1234, 1243, 2134, 2143}. If π2 = (2)(134), it contains 1! × 
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3! automorphisms and they are {1234, 1243, 3214, 3241, 4213, 4231}, then π1∩π2 = 

{1234, 1243}, which can be expressed as (1)(2)(34) in automorphism representation. 

Now, there are four steps in finding Aut(G) in our algorithm. Given an undirected 

graph G with N vertices, the initial automorphism representation is expressed as 

(123…N). 

G:

(a) (b)

   Adj(G) =







































0000000010
0000000001
0000001000
0000000100
0000100000
0100000000
1010000000
0001000000
1000100000
0111000000

A

1
2

3

4
5

6

7

8

92

2
2

1

1
1 1

1

 

Figure 3.4. An undirected graph G and its Adj(G). 

Step 1(Disjoint Graph - DG): If the graph is composed by t disconnected 

subgraphs, then the automorphism representation is divided into t groups such that each 

group corresponds to one subgraph. If the graph exists two or more subgraphs with the 

same number of vertices, then merge the corresponding subgroups into one. 

Since swapping any two vertices coming from disconnected subgroups with 

different size cannot be an automorphism, we can divide the automorphism 

representation of G respect to the graph connectivity of different sizes directly. 

Example 3.5: Given a graph G as shown in Fig. 3.4(a). The graph G can be divided 

into three subgraphs. Since the subgraphs induced by vertices 7 and 8, and by vertices 9 
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and 10 are the same size, therefore, by Step 1, the updated automorphism representation 

π1= (123456)(789A). That means any vertex exchanged from these two groups cannot 

be an automorphism. 

Definition 3.7 : The Degree Vector (DV) of a graph is a vector that contains each 

vertex’s degree such that DV[i] = degree of the ith vertex. 

Step 2(Degree Vector - DV): Calculate the DV of the graph G. Then group the 

vertices with the same degrees into one group. 

Since exchanging of two vertices with different degrees cannot be an 

automorphism, we calculate the degree of each vertex and group the vertices with the 

same degrees into the same group. The grouping results are the automorphisms and are 

complied with the proposed automorphism representation. 

An automorphism has to satisfy the properties described in Step 1 and Step 2, so 

the updated automorphisms can be obtained from the intersection of automorphisms 

derived by Step 1 and Step 2. 

Example 3.6: From Fig. 3.4(a), the DV of G is 5 3 3 3 3 1 1 1 1 1. By grouping the 

degree of each vertex, the automorphism representation is π2  = (1)(2345)(6789A). 

Thus, the updated automorphism representation by the intersection of Step 1 and Step 2 

is π3 = (1)(2345)(6)(789A) which comes from (123456)(789A)∩(1)(2345)(6789A). 

Definition 3.8 : The partial vector (PV) of vertex Vi in G is the ith row of adjacency 

matrix of G, Adj(G). 

Definition 3.9 : A single element group (SEG) is a group that contains only one 

vertex in the automorphism representation. 

If updated automorphism representation contains SEG, go to Step 3, otherwise go 
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to Step 4. 

Step 3(Repeated Automorphism - RA): Grouping the partial vector of each SEG 

vertex and intersect this grouping result with the updated automorphism representation. 

If the updated automorphism representation has newly generated SEG, repeat Step 3, 

otherwise go to Step 4. 

Since the automorphisms do not relate to the vertex in SEG, partition the partial 

vector of SEG vertices can determine the automorphisms. That is, only the neighbors 

with the same degree to the SEG vertices can be swapped as automorphisms. 

Example 3.7: In the updated automorphism representation π3(1)(2345)(6)(789A), 

there are two vertices, 1 and 6, in SEG, respectively. We have known that in Fig. 3.4(a), 

vertex 1 is connected to vertices 2, 3 and 4, but is not connected to vertex 5. Thus, 

vertex 5 is different to vertices 2, 3 and 4. Besides, the weight of (1,2) is different to the 

weight of (1,3) and (1,4). We can use partial vector V_1 to reduce (2345) to (2)(34)(5).  

So as targeting on vertex 1, the partial vector V1 is 0122000000. It can be seen from the 

1st row of Adj(G). Its corresponding V1_g, is (156789A)(2)(34). Then π3∩V1_g = 

(1)(2)(34)(5)(6)(789A) = π4. We find that vertices 2 and 5 are new vertices in SEG. 

Therefore, we conduct Step 3 for vertices 2, 5 and 6. As targeting on vertex 6, the partial 

vector V6 is 0000100000, V6_g is (12346789A)(5). π4∩V6_g = (1)(2)(34)(5)(6)(789A) = 

π5. As targeting on vertex 5, the partial vector V5 is 0200010000, V5_g is 

(1345789A)(2)(6). π5∩V5_g = (1)(2)(34)(5)(6)(789A) = π6. As targeting on vertex 2, the 

partial vectors V2 is 1000200000, V2_g is (1)(5)(2346789A), π6∩V2_g = 

(1)(2)(34)(5)(6)(789A) = π7. Now, no more new vertex in SEG is generated, then go to 

Step 4. 
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Step 4: For the group with more than one element in it under automorphism 

representation, we observe its corresponding subgraph. If the subgraph is disconnected, 

give the joinder “ ”on those vertices which are connected, respectively. If the 

subgraph is a cycle, then give the “ [ ] ” on these vertices. If the subgraph is a complete 

graph, then give the “ { } ” on these vertices. Observe those vertices in some subgraph 

under automorphism representation with just two elements in it. Record the partial 

vector if it really can reduce automorphism representation. 

After Step 1 ~ Step 3, we can assure that if more than one vertex in a group, they 

must have the same degrees and may be the combination of smaller subgraphs with the 

same number of vertices. Their corresponding subgraphs have three conditions. One is 

that it is just the combination of smaller subgraphs with same vertices, e.g. G1={(1,2), 

(3,4)} shown in Fig. 3.5(a). The number of |Aut(G1)| has special solution for it. We will 

introduce this in the next paragraph. Another condition is that it is a connected subgraph 

and is also a complete subgraph, e.g. G2={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)} shown in 

Fig. 3.5(b). So we can change the order of these vertices in the subgraph and remain 

identical under automorphism representation. The other condition is that it is a 

connected graph and it is a cycle shown, e.g. G3={(1,2),(1,3),(2,4),(3,4)} shown in Fig. 

3.5(c). The number of |Aut(G3)| has special solution for it. We will also introduce this in 

the next paragraph. And if there are just two vertices in a subgraph, we have to observe 

the neighbors of these two vertices. If they have no neighbors in common, then the 

partial vectors of these two vertices are useful. Otherwise, the partial vectors of these 

two vertices are useless because these two vertices can be exchanged mutually. 
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1 2

43

1 2

43

(b) (c)

1 2

43

(a)

G1: G2: G3:

 

Figure 3.5. Disjoint graph, complete graph and cycle graph. 

Example 3.8: For the updated automorphism representation π7 (1)(2)(34)(5)(6) 

(789A), there are six groups. Only the 6th group (789A) corresponds to the disconnected 

subgraph. Observe the vertices 7, 8, 9, and A, vertex 7 is connected with 8 while vertex 

9 is connected with A. The group (789A) under automorphism representation now 

becomes ( A978 ). Thus, the updated automorphism representation π7 is now (1)(2)(3 

4)(5)(6) ( A978 ). 

After Step 1 ~ Step 3, we can find the Aut(G) and |Aut(G) | can be obtained based 

on the updated automorphism representation. For updated automorphism representation               

))(( 2121 kk nn bbbaaa LL ··· )( 21 knrrr L , the |Aut(G)| = (n1!) × (n2!) × ··· × (nk!). If the 

joinders are shown in the automorphism representation, such as 

)(
111 212121 nnn rrrbbbaaa LLLL , |Aut(G)| = {(n1!) × (n1!) × ··· × (n1!) × (the 

number of joinder)!}. For example in Fig. 3.5(a), Aut(G1)={1234, 1243, 2134, 2143, 

3412, 4312, 3421, 3421}. |Aut(G1)| = 2! × 2! × 2! = 8. If the braces are shown in the 

automorphism representation, such as ({
121 naaa L }), |Aut(G)| = n1!. For example in 

Fig. 3.5(b), Aut(G2)={1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 

2413, 2431, 3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321}. 
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|Aut(G2)| = 4! = 32. If the square brackets are shown in the automorphism 

representation, such as ([
121 naaa L ]), |Aut(G)| = (n1) × 2. For example in Fig. 3.5(c), 

Aut(G3)={1234, 1324, 2143, 2413, 3142, 3412, 4231, 4321}. |Aut(G3)| = 4 × 2 = 8. For 

this example, the updated automorphism representation π7 is (1)(2)(34)(5)(6) ( A978 ). 

Thus, |Aut(G)| = 1! × 1! × 2! × 1! × 1! × (2! × 2! × 2!) = 16. We can enumerate these 16 

automorphisms explicitly and they are {123456789A, 12345678A9, 123456879A, 

12345687A9, 1234569A78, 123456A978, 1234569A87, 123456A987, 12435678 9A, 

12435678A9, 124356879A, 12435687A9, 1243569A78, 124356A978, 1243569A87, 

124356A987}. 

3.3. UPSs Calculation with Automorphism Technique  

From Chapter 3.1, we get the verification pattern sets. Now, we conduct the 

UPSs_Calculation stage with the graph automorohism (GA) technique to determine the 

remaining UPSs.  

For the example in Fig. 3.6(a), we assume the verification pattern set S1 has four 

patterns P1, P2, P3 and P4. 

To solve the problem of calculating the remaining UPSs of the pattern set S1 with 

n bits, an undirected, weighted graph G(V,E) is constructed, which corresponds to the 

set S1 with |S1| patterns, P1 to P|S1| . Pi[j] in S1 denotes the jth bit in Pi where i = 1 ~ |S1| 

and j = 1 ~ n. The vertex Vk in G corresponds to the kth input variable/port in S1. For all 

patterns P1 to P|S1| in S1, when Pi [k] = Pi [k’] = 1, an edge VkVk’ is added into G and 

W(VkVk’)=1 where (k, k’) are all nC2  bit pairs. If the edge VkVk’ has existed in G, 

nC2
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W(VkVk’) is increased by one. 

Example 3.9: For P1[1 : 7] in S1 shown in Fig. 3.6(a), 1010001, since P1[1] = P1 [3] 

= P1 [7] = 1, edges V1V3, V1V7, and V3V7 are added into G, respectively. For P2[1 : 7], 

0100110, edges V2V5, V2V6, and V5V6 are added into G, respectively, and so on. The 

constructed graph G is an undirected weighted graph and is shown in Fig. 3.6(b). Its 

corresponding adjacency matrix, Adj(G), is shown in Fig. 3.6(c). In Adj(G), if there is 

no edge between Vk and Vk’ in G, Adj(G)[k][k’] = Adj(G)[k’][k] = 0; otherwise 

Adj(G)[k][k’] = Adj(G)[k’][k] = W(VkVk’). 

The problem of calculating the remaining UPSs in S1 is now transformed to 

finding all automorphisms of G. The effectiveness of this problem transformation is 

that the position relations of digit 1s in each pattern in S1 are transformed to the 

connectivity relations in G. Finding the port misplacements that maintain S1 to be 

invariant (calculating UPSs) is equivalent to finding all automorphisms of G. 

 

(b)

               ( 1  2  3  4  5  6  7  )
P1[1:7]=1  0  1  0  0  0  1
P2[1:7]=0  1  0  0  1  1  0
P3[1:7]=0  0  1  1  0  0  1
P4[1:7]=0  0  0  0  1  1  1

Verification pattern set S1

(a)

1 2

3

4
5

6

7
1 1

1 1
1

1

1 1

2

2

(c)

   Adj(G) =





























1021110
0100201
0100021
0010001
1001002
0000110
0010001

 

Figure 3.6. UPSs_Calculation with GA technique. 
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We demonstrate the UPSs_Calculation stage by the proposed GA algorithm using 

the following example. 

The initial UPSs is π0 = (1234567). In Step1, the graph in Fig. 3.6(b) is a connected 

graph and cannot be divided into subgraphs. Thus, the UPS remains unchanged. In Step 

2, the degree vector DV[1:7] is 2 2 4 2 4 4 6. It groups the three 2s in one group, three 

4s in another group, and one 6 in the third group. The grouped results can be 

represented as (222)(444)(6) and its corresponding UPSs are (124)(356)(7). Then the 

updated UPS π1 = π0∩(124)(356)(7) = (1234567)∩(124)(356)(7) = (124)(356)(7). In 

Step 3, there is one SEG vertex 7. As targeting on vertex 7 in updated UPSs π1, the 

partial vector V7 is 1021110, V7_g, (1456)(27)(3). Then π2 = π1∩V7_g 

=(14)(2)(3)(56)(7). SEGs of vertices 2 and 3 are newly generated. Therefore, we have to 

repeat Step 3 for vertices 2 and 3, respectively. As targeting on vertex 2, the partial 

vector V2 is 0000110, V2_g is (12347)(56). π3 = π2∩V2_g = (14)(2)(3)(56)(7). As 

targeting on vertex 3, the partial vector V3 is 1001002, V3_g is (14)(2356)(7). π4 = 

π3∩V3_g = (14)(2)(3)(56)(7). Now, no new vertex in SEG is generated, Step 3 is 

terminated. For the updated UPS π4 (14)(2)(3)(56)(7), there are five groups. The partial 

vector of the first group and the 4th group is useless because the neighbors of each group 

are the same. Thus, the updated UPS π4 remains unchanged. The GA technique is now 

finished. The summary of this example is shown in Fig. 3.7. 
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   Initial UPSs (1 2 3 4 5 6 7)

 Step (1) DG : (1 2 3 4 5 6 7) (1 2 3 4 5 6 7)

 Step (2) DV : (1 2 4)(3 5 6)(7) (1 2 4)(3 5 6)(7)
         new isolated vertex (7)

 Step (3) RA:

Target on 7
PV : (1 4 5 6)(2 7)(3) (1 4)(2)(3)(5 6)(7)

          new isolated vertices (2)(3)
Target on 2
PV : (1 2 3 4 7)(5 6) (1 4)(2)(3)(5 6)(7)
Target on 3
PV : (1 4)(2 3 5 6)(7) (1 4)(2)(3)(5 6)(7)  

Figure 3.7. Graph Automorphism (GA) technique. 

In the same example, the remaining UPSs obtained from the CV approach are 

(124)(356)(7) and from the SAA approach are (124)(3)(56)(7) in [19]. However, it can 

be further reduced to (14)(2)(3)(56)(7) by the GA approach and the real remaining UPSs 

are (14)(2)(3)(56)(7). These results demonstrate that the GA approach gets more precise 

remaining UPSs than that of the CV approach and the SAA approach. 

In this example in Fig. 3.7, Step 4 seems useless for reducing UPSs. However, it 

also provides information for reducing UPSs later on. Hence we do not conduct Step 4 

actually in the AVPG for preserving the UPS representation concisely. But its impact on 

reducing UPSs is still remained by using partial vector concept. 

Definition 3.10: The partial vector of vertex t is called automorphism message of t, 

denoted as AM_t, if vertex t does not belong to SEG in the UPS representation. 

Giving UPSs (1234)(56)(78)(9A)(BC), assume that the valid verification pattern 

set is {10010101010, 010010100101, 001001011010, 000101010101}, as shown in Fig. 
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3.8(a) and its adjacency matrix is shown in Fig. 3.8(b). If we apply the GA technique of 

Step 1 ~ Step 3, we can find that the updated UPS is still (1234)(56)(78)(9A)(BC). Then 

we keep this verification pattern set and calculate AM for each vertex t. For example, 

AM_1 defined as the partial vector of vertex 1 is 000010101010, AM_C defined as the 

partial vector of vertex C is 010111110200 and they are shown in Fig. 3.8(c). AM_1 

implies that if vertex 1 is in SEG after some iteration later, the vertices 5, 7, 9, 11 

(vertices with assignment 1 in AM_1) can also be in SEGs as well. Thus if we assume 

vertex 1 in SEG indeed in the next UPSs_Calculation process, then we can reduce UPSs 

from (1234)(56)(78)(9A)(BC) to (1) (234)(5)(6)(7)(8)(9)(A)(B)(C) according to AM_1. 

Other AMs have the similar effect on reducing UPSs. 

  Verification pattern set
(1234)(56)(78)(9A)(BC)
 1000   10  10    10   10
 0100   10  10    01   01
 0010   01  01    10   10
 0001   01  01    01   01

AM_1:    000010101010

(a)

(c)

                

AM_C:   010111110200
(b)

   Adj(G) =

000010101010
000010100101
000001011010
000001010101
110000201111
001100021111
110020001111
001102001111
101011110020
010111110002
101011112000
010111110200

 

Figure 3.8. Verification pattern set with automorphism message (AM). 

Now, the complete AVPG Flow with graph automorphism (GA) technique is 

shown in Fig. 3.9, where DG means Disjoint Graph in Step 1, DV means Degree Vector 

in Step 2, RA means the Repeated Automorphism in Step 3, and AM means 

Automorphism Message in Step 4. The pseudo code of AVPG with GA technique is 
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shown in Fig. 3.10. In line 7, 9, it generates patterns and the output simulation in line 11. 

The effectiveness of the simulated patterns is determined in line 12. The steps of GA 

technique are in line 14 ~ 16, 20, 23, respectively. In line 17, 21, it includes the valid 

patterns into the verification pattern set. At the end of the algorithm, the verification 

pattern set, error coverage and UPSs are returned. 

 

 

Start

E_C = 0, Iteration = 0

E_C = 100%
or

Iteration > bound

Yes

No

StopPattern_Generation

Iteration ++

Pattern_Simulation

Get_Valid_Patterns

UPSs_Calculation
(DG+DV+RA+AM)
(Keep useful AM)

 

Figure 3.9. Complete AVPG flow. 
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Algorithm: Automatic Verification Pattern Generation with Automorphism Technique
Input: CUV ( N-input, M-outtput )
Output: Verification Pattern set (Veri_P_S) , error coverage (E_C) , UPS
{
01 variable i       0 ;
02 UPS       (1 2 3 ... N) ;
03 E_C       0 ;
04            simulated[N-1]  {0,0, ... ,0} ;
05 Veri_P_S      {  } ;
06 Temp_P_S  {  } ;

do
{

if (i==0)
{

07       verification patterns ;
08 i  i+1;

}
else

09       verification patterns   Pattern_generation (UPS , simulated[N-1]) ;

10 Update (simulated[N-1]);
11 outputs  Simulation (verification patterns);
12 {valid verification patterns} output_analysis(outputs);
13 G(V,E)    Transition ({valid verification patterns }) ;
14 {UPS_tmp} DG ( G , UPS) ;
15 {UPS_tmp} DV ( G , UPS_tmp) ;
16 {UPS_tmp} RA ( G , UPS_tmp) ;

if ( UPS_tmp       UPS )
{

17 Veri_P_S    Veri_P_S       {valid verification patterns } ;
18 E_C    E_C_calculation (UPS_tmp) ;

}

19 UPS     UPS_tmp ;
20 UPS_tmp2    Use_AM (Temp_P_S,UPS) ;

if ( UPS_tmp2       UPS )
{

21 Veri_P_S    Veri_P_S       Temp_P_S ;
22 UPS     UPS_tmp2 ;

}

23 {Temp_P_S}   Keep_AM (G,UPS);

if (E_C == 1) break ;
if (simulated[N-1]=={1,1, ... ,1}) break ;

}
while (E_C !=1 ) ;

24 return (Veri_P_S , E_C , UPS) ;
}

φ

N
N

N CC 11 , −

≠

∪

φ

≠

∪

 

Figure 3.10. Pseudo code of AVPG with GA technique. 
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Chapter 4    

Experimental Results 

The GA-based algorithm is implemented in Programming Language Interface (PLI) 

environment. Experiments are conducted over a set of ISCAS-85 and some MCNC 

benchmarks with large number of inputs. The benchmarks are in Verilog HDL format. 

Since only the simulation information of these benchmarks is needed to conduct the 

experiments, arbitrary levels of design description can be used for generating 

verification pattern set. Table 4.1 summarizes the experimental results of the 

comparison of SAA approach in [19] and our graph automorphism technique algorithm 

of AVPG. The first five columns show the parameters of each benchmark, including 

name, |PI|, |PO|, the number of literals (lits.) and the number of POEs. The |PI| 



33 

represents the number of inputs and the size of the POEs set is |PI|!-1. The |PO| 

represents the number of outputs and influences on the probability of error effect 

propagation. The number of literals indicates the complexity of a benchmark. The 

remaining columns show the number of verification patterns (pats.), error coverage 

(E_C) and the CPU time. The error coverage is defined as 1- (# of undetected POEs / # 

of all POEs). The ratio is defined as (the patterns of GA approach / the patterns of SAA 

approach). The iteration bound is set to 100. The CPU time is measured in second on a 

Sun Sparc II Workstation. The algorithm will be terminated automatically if iterations 

are over the bound or the error coverage reaches 100%, and the verification pattern set 

and the error coverage are returned.  For example, in c880 benchmark, the number of 

verification patterns is decreased from 130 to 73 and the ratio of pattern size is 0.56. We 

can see that for most circuits, the number of verification patterns is reduced by the 

proposed techniques – a new pattern generation algorithm and the GA technique. 

Furthermore, the CPU time is acceptable. 
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Table 4.1. Comparisons on experimental results of SAA approach and GA approach. 

Parameters SAA approach GA approach Bench |PI| |PO| Lits. Pats. E_C(%) Pats. E_C(%) Time(s) Ratio 
c17 
c880 
c1355 
c1908 
c432 
c499 
c3540 
c5315 
c2670 
c7552 
c6288 

des 
alu4 

apex6 
i9 
i8 
i7 
i6 
i5 
rot 
x3 
x4 

pair 

5 
60 
41 
33 
36 
41 
50 
178 
233 
207 
32 
256 
14 
135 
88 
133 
199 
138 
133 
135 
135 
94 
173 

2 
26
32
25
7 
32
22
123 
140 
108 
32
245 
8 
99
63
81
67
67
66
107 
99
71
137 

12 
703 
1032 
1497 
382 
616 
2934 
4369 
2043 
6098 
4800 
7412 
1278 
904 
1453 
4626 
1311 
1037 
556 
1424 
1816 
1040 
2667 

5 
130 
51 
45 
35 
40 
89 
222 
351 
448 
30 
255 
17 
187 
107 
204 
240 
138 
133 
247 
165 
141 
186 

100 
99.999

100 
100 
100 
100 
100 
100 

99.999
99.999
99.999

100 
100 

99.999
100 
100 
100 
100 
100 

99.999
99.999
99.999

100 

4 
73 
39 
41 
35 
37 
70 
174
237
312
30 
255
14 
154
92 
156
194
130
125
150
145
117
120

100 
99.999

100 
100 
100 
100 
100 
100 

99.999
99.999
99.999

100 
100 

99.999
100 
100 
100 
100 
100 

99.999
99.999
99.999

100 

0.23 
5.59 
0.91 
0.93 
0.41 
0.72 
10.70 
53.42 
92.71 
87.45 
2.84 
5.47 
0.51 
12.88 
1.12 
13.65 
12.77 
10.12 
10.65 
17.40 
9.34 
5.14 
21.38 

0.80 
0.56 
0.74 
0.91 

1 
0.93 
0.75 
0.78 
0.67 
0.69 

1 
1 

0.82 
0.82 
0.86 
0.76 
0.81 
0.94 
0.94 
0.61 
0.88 
0.83 
0.65 

Total    3466  2704    
Ratio    1  0.78    
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Chapter 5 

Applications 

We use this graph automorphism-based algorithm for computing maximal sets of 

symmetric inputs of circuits. It can be used to identify nonsymmetric inputs in a circuit 

and enhance the efficiency of input matching, library binding (technology mapping), as 

well as logic verification problems. 

5.1. About Symmetric 

Two inputs xi an xj of a single/multi-output logic function f(X) are said to be 

symmetric, if exchanging xi and xj does not change f, i.e., f(x1…, xi,…, xj,…xn) = 

f(x1,…, xj,…, xi,…, xn)[34]. 
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Symmetric input sets of a logic function are subsets of inputs such that any 

permutation of the inputs within a subset leaves the function invariant [33, 34]. The 

problem of finding maximal symmetric input sets is formulated as following [33, 34]: 

Given a single/multi-output function f(X), find maximal subsets of inputs X1, X2, …, Xk 

⊆X, such that X1 ∪ X2 ∪ … ∪Xk = X and the inputs in every subset Xi can be 

permuted in any fashion without changing the function. The symmetry relation is an 

equivalence relation, and the maximal symmetric input sets are its equivalence classes. 

To find the maximal symmetric input sets, it is therefore sufficient to find all pairs of 

symmetric inputs and then take the unions of all the pairs having nonempty intersection. 

This symmetry is known as the classical symmetry or the nonskew nonequivalence 

symmetry [35]. The definition of this symmetry translates into the following 

requirements for the cofactors of function XjXiXjXi ff = with respect to any two inputs xi 

and xj. 

Symmetric input sets, and the particular maximal symmetric input sets, are 

important in problems of design verification and diagnosis [12, 21, 23, 25-27, 29-32, 

40-44] and in problems of technology mapping, where it is required to find a library 

macro to implement a given logic block [24, 28, 36, 39]. 

The goal of design verification is to check whether a given implementation follows 

the specification for which it was designed. If implementation is incorrect, diagnosis 

may be used for gate-level implementations [12, 25, 29-31, 40, 41] to locate and then 

correct the design. It is typically assumed that the correspondence between specification 

and implementation inputs is known. However, due to design errors, implementation 

inputs may be interchanged, and hence it may be necessary to compute the actual 



37 

correspondence between specification and implementation inputs. This problem was 

studied in [12], where it was observed that finding the symmetric input sets can save the 

effort of trying different permutations of inputs belonging to the same symmetric set, 

since all these permutations are equivalent. 

In technology mapping applications [24, 28, 36, 39], it is required to check whether 

a logic block in the given circuit exists in a macro library. The problem that arises is to 

find a correspondence between the inputs of the logic block and the inputs of a library 

macro and a correspondence between the outputs of the logic block and the outputs of 

the library macro, such that under the two correspondences the library macro is logically 

equivalent to the logic block. The library macro can then be used to implement the logic 

block. For this problem, too, finding the symmetric input sets of the logic block and the 

library macro can save the effort of trying different permutations of inputs belonging to 

the same symmetric set. 

The problem of finding maximal subsets of symmetric inputs has been studied for 

single-output functions, for which the set of all minterms that set the function to 1 is 

available (or can be derived) [33]. An efficient method to find subsets of symmetric 

inputs, applicable to large multi-output circuits, is studied here. In parallel to our work 

on this problem [35, 37, 38], methods using BDD’s [22] are investigated in [35, 37]. 

However, these BDD-based algorithms are not applicable to the designs that described 

in behavior level or RT-level, e.g., soft Intellectual Property, or that do not have compact 

BDD representation. Thus, simulation-based approach [38] was proposed to compute 

the maximal sets of symmetric inputs. [38] establishes two steps to accomplish the input 

symmetric identification. The first step uses heuristic to identify inputs that do not 
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belong to the same symmetric input set. Although the signature-based heuristic used in 

[24, 36, 39] can be used for this purpose, the heuristics in [24, 36, 39] were applied to 

circuits having compact BDD representation. The second step uses test generation 

techniques to further identify the inputs that were not distinguished by the heuristic. The 

efficiency of [38]-like approach for computing the maximal sets of symmetric inputs in 

circuits without compact BDD representation depends on the “ability” of heuristics. 

Good heuristics can distinguish more nonsymmetric inputs prior to entering 

computation intensive test generation step. Thus, we focus on the first step of [38]-like 

approach by using graph automorphism-based heuristic. 

5.2. Symmetric with GA Algorithm 

We exchange the UPS representation to the Symmetric-ASymmetric Inputs (SASIs) 

to represent the maximal symmetric inputs sets. For an N-input circuit, we number its 

inputs from 1 to N. Initially, we assume that all inputs are symmetric, the corresponding 

SASIs representation is (1 2 3 … N), i.e., all inputs are placed in one group. If we claim 

that input i is asymmetric to the other inputs by our methods, the input i is isolated from 

original group and can be expressed as (i)(1 2 … i-1 i+1 … N). Please note the order of 

the groups in the SASIs representation is irrelevant, neither is the order of the number in 

each SASIs group. By the SASIs representation, if any two inputs are not placed in the 

same group, then they are nonsymmetric inputs. Otherwise they are “possibly” 

symmetric. Obviously, according to SASIs representation, we can realize exactly which 

inputs are asymmetric to the other inputs. Thus, further efforts ought to be put onto the 

groups that contain undistinguished inputs. The following example demonstrates the 
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details of the SASIs representation.  

Given an 8-input circuit, the inputs are numbered from 1 to 8. The SASIs 

representation (12345678) represents all inputs are symmetric. The SASIs 

representation (125)(4)(3678) indicates that inputs 1, 2 and 5 are symmetric and inputs 

3, 6, 7 and 8 are symmetric. Input 4 is the only one element in the second group. It 

means that input 4 is asymmetric to the other inputs. The SASIs (125)(4)(3678) can also 

be expressed as (4)(215)(8763). The SASIs representation (1)(2)(3)(4)(5)(6)(7)(8) has 

eight groups and each group has only one element; therefore, these inputs are 

nonsymmetric inputs. The goal of the proposed heuristic is to induce SASIs 

representation from (12345678) to (1)(2)(3)(4)(5)(6)(7)(8) if these inputs are 

asymmetric indeed. 

Then, we change the AVPG to Automatic Computing Symmetric Procedure 

(ACSP). Its flow chart is shown in Fig. 5.1. This flow chart is similar to the AVPG flow 

shown in Fig. 3.8. The ACSP reads a combinational circuit and generates heuristic 

patterns. The patterns simulation results provide information to SASIs_Calculation 

stage for figuring out nonsymmetric inputs in SASIs representation. Then further 

heuristic patterns are generated according to the updated SASIs in the next iteration. 

When all inputs are identified as nonsymmetric or the iterations are over the bound, the 

ACSP will be terminated and the maximal symmetric input sets are returned. The 

pseudo code of ACSP with GA technique is shown in Fig. 5.2. In line 5, 7, it generates 

patterns and the output simulation in line 9. The valid generated pattern sets are 

determined in line 10. The steps of GA technique are in line 11 ~ 17. At the end of the 

algorithm, the SASIs are returned. 
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Start

Iteration = 0

All nonsymmetric
or

Iteration > bound

Yes

No

StopPattern_Generation

Iteration ++

Pattern_Simulation

SASIs_Calculation
(DG+DV+RA+AM)
(Keep useful AM)

 

Figure 5.1. Complete ACSP flow. 
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Algorithm: Automatic Computing Symmetric Procedure with GA Technique
Input: circuit ( N-input, M-output )
Output:  SASI
{
01 variable i       0 ;
02 SASI       (1 2 3 ... N) ;
03            simulated[N-1]  {0, 0, ... , 0} ;
04 Intending_AM {  } ;

do
{

if (i==0)
{

05 generated pattern sets          ;
06 i  i+1;

}
else

07  generated pattern sets  Pattern_Generation (SASI , simulated[N-1]) ;

08     Update (simulated[N-1]) ;
09         outputs      Simulation (generated pattern sets) ;
10     {valid generated pattern sets}  outputs_analysis (outputs) ;
11        G(V,E)       Transformation ({valid generated pattern sets}) ;
12     {SASI_tmp} DG ( G, SASI) ;
13     {SASI_tmp} DV ( G, SASI_tmp) ;
14     {SASI_tmp} RA ( G, SASI_tmp) ;
15     {SASI_tmp} Use_AM (Intending_AM , SASI_tmp) ;
16     SASI     SASI_tmp ;
17      {Intending_AM} Keep_AM (G , SASI);

if (simulated[N-1]=={1,1,...,1}) break ;
  }
while (all nonsymmetric) ;

18 return (SASI) ;
}

φ

N
N

N CC 11 , −

 

Figure 5.2. Pseudo code of ACSP with GA technique. 

5.3. Experimental Results  

The GA-based algorithm is implemented in Programming Language Interface (PLI) 

environment. Experiments are conducted over a set of ISCAS-85 and some MCNC 

benchmarks. Table 5.1 summarizes the experimental results of the previous approach in 

[38] and our GA-based algorithm. The first four columns show the parameters of each 

benchmark, including name, |PI|, |PO| and the number of literals (lits.). The |PI| 
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represents the number of inputs. The |PO| represents the number of outputs. The number 

of literals indicates the complexity of a benchmark. This number is derived from its gate 

level description. The remaining columns show the sets of inputs that cannot be 

distinguished. In fact, these input sets are possibly symmetric inputs sets. They are 

expressed by pairs (size, number of sets), where size is the size of an input set and the 

following is the number of sets of that size. For example, for c880, three sets of size two 

means that they are possible symmetric inputs and the other sets of size one means that 

the 54 inputs are asymmetric to other inputs. The iteration bound is set to 100. The CPU 

time is measured in second on a SUN Sparc II workstation. The algorithm will be 

terminated automatically if iterations are over the bound or all inputs are nonsymmetric, 

and SASIs are returned. According to Table 5.1, we can find that in previous approach, 

c499, c1355, and c1908 still have potentially symmetric input sets, but our approach can 

distinguish each input as a nonsymmetric input. Also for c2670 and c6288, our approach 

distinguishes more nonsymmetric inputs than that of [38]. Please note for c6288, our 

approach does not distinguish each input as a nonsymmetric input while [38] does. This 

is because our heuristic patterns inherently cannot distinguish each input of a multiplier 

such as c6288. [38] uses test generation technique to conquer it instead. Table 5.2 also 

shows the results on some MCNC benchmarks. Most nonsymmetric inputs are 

distinguished efficiently as usual for most benchmarks. These results demonstrate that 

our approach acts as a good filter to identify nonsymmetric inputs as many as possible 

in a circuit such that significant efforts can be saved for other succeeding applications. 

Our approach is applicable to sequential circuits if circuit states can be fully specified. 

The experiments on sequential circuits are progressing. 
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Table 5.1. Comparisons on experimental results of previous approach in [38] and GA 
approach. 

Parameters Previous approach in 
[38] GA approach 

Bench 
|PI| |PO| Lits. (size, number of 

sets) 
Time

(s) 
(size, number of 

sets) 
Time

(s) 
c17 
c880 
c1355 
c1908 
c432 
c499 
c3540 
c5315 
c2670 
c7552 
 
c6288 

5
60
41
33
36
41
50

178
233
207

32

2 
26 
32 
25 
7 

32 
22 

123 
140 
108 

 
32 

12 
703 

1032 
1497 
382 
616 

2934 
4369 
2043 
6098 

 
4800 

(1,5) 
(1,54)(2,3) 
(1,32)(9,1) 
(1,22)(5,1)(6,1)
(1,36) 
(1,32)(9,1) 
(1,50) 
(1,178) 
(1,221)(2,2)(8,1)
(1,166)(2,6)(3,1)
(5,2)(4,4) 
(1,32) 

0.04
2.86
3.16
1.81
0.24
1.07

19.52
33.95
59.95
5514

6.53

(1,5) 
(1,54)(2,3) 
(1,41) 
(1,33) 
(1,36) 
(1,41) 
(1,50) 
(1,178) 
(1,223)(2,2)(6,1) 
(1,183)(2,8)(3,1) 
(5,1) 
(2,16) 

0.23
1.74
0.91
0.93
0.41
0.72

10.70
33.42
42.55

191.33

2.84
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Table 5.2. Results of some MCNC benchmarks. 

Circuit |PI| |PO| Lits. (size, number of sets) Time(s) 
9symml 
b1 
b9 
cm138a 
cm162a 
cm163a 
cm82a 
cmb 
count 
frg1 
lal 
pm1 
term1 
x1 
x2 
x3 
x4 
z4ml 
alu4 
apex6 
des 
i5 
i6 
i7 
i8 
i9 
pair 
rot 

9 
3 

41 
6 

14 
16 
5 

16 
35 
28 
26 
16 
34 
51 
10 

135 
94 
7 

14 
135 
256 
133 
138 
199 
133 
88 

173 
135 

1 
4 

21 
8 
5 
5 
3 
4 

16 
3 

19 
13 
10 
35 
7 

99 
71 
4 
8 

99 
245 
66 
67 
67 
81 
63 

137 
107 

277 
17 

236 
35 
58 
53 
26 
62 

174 
130 
223 
85 

625 
2141 

71 
1816 
1040 

77 
1278 
904 

7412 
556 

1037 
1311 
4626 
1453 
2667 
1424 

(9,1) 
(1,1)(2,1) 
(1,31)(2,5) 
(1,4)(2,1) 
(1,12)(2,1) 
(12,1)(4,1) 
(1,3)(2,1) 
(4,2)(8,1) 
(1,33)(2,1) 
(1,26)(2,1) 
(1,16)(2,5) 
(1,9)(3,1)(4,1) 
(1,32)(2,1) 
(1,49)(2,1) 
(1,8)(2,1) 
(1,133)(2,1) 
(1,92)(2,1) 
(2,2)(3,1) 
(1,14) 
(1,135) 
(1,256) 
(1,133) 
(1,138) 
(1,199) 
(1,133) 
(1,88) 
(1,173) 
(1,115)(2,5)(3,2)(4,1) 

0.95 
0.24 
3.88 
0.29 
0.37 
0.36 
0.39 
0.98 
0.58 
0.41 
1.87 
0.31 
0.48 

20.97 
0.49 
9.37 
5.14 
0.77 
0.51 

12.88 
5.47 

10.65 
10.12 
12.77 
13.65 
1.12 

21.38 
17.4 
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Chapter 6    

Conclusions 

In the SoC era, the embedded cores are mixed and integrated to create a system 

chip. The verification of the core-based system design should be focused on how the 

cores communicate with each other. However, before the interface verification, the 

interconnections between the cores in an SoC have to be verified first. System 

integrators integrate those cores manually and have the possibility of incorrect 

integration due to the misplaced I/O ports. Therefore, we adopt the connectivity-based 

POE model to raise the abstraction level of the design verification and to reduce the 

time on functional verification in core-based design methodology. 

In this thesis, we present a new pattern generation algorithm to activate all 
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remaining POEs and the GA technique to improve the UPSs_Calculation procedure. 

These two approaches get more precise remaining UPSs and therefore accelerate the 

AVPG and generates a more efficient verification pattern set for verifying core-based 

designs. 

Besides, we use this GA technique for computing maximal sets of symmetric 

inputs of circuits. It can be used to identify nonsymmetric inputs in a circuit and 

enhance the efficiency of input matching, library binding (technology mapping), as well 

as logic verification problems. The experimental results demonstrate that our approach 

distinguishes more nonsymmetric inputs than that of previous work. 
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