On Automatic Pattern'Generation for Interconnect
Verification Based on Graph Automorphism

On Automatic Pattern Generation for Interconnect
Verification Based on Graph Automorphism

Student: Chen-Ling Chou

Advisor: Dr. Jing-Yang Jou

A Thesis
Submitted to Institute of Electronics
College of Electrical Engineering and Computer Science
National Chiao Tung University
In Partial Fulfillment of the Requirements
For the Degree of
MASTER OF SCIENCE
In

Electronics Engineering

June 2004

Hsinchu, Taiwan, Republic of China

(system-on-a " (embedded cores)

(port-order-fault POF)
(graph automorphism)

ISCAS-85
MCNC

On Automatic Pattern Generation for Interconnect
Verification Based on Graph Automorphism

Student: Chen-Ling Chou Advisor: Dr. Jing-Yang Jou

Department of Electronics Engineering &
Institute of Electronics
National Chiao Tung University

Abstract

Embedded cores are being . increasingly -'used in the design of large
system-on-a-chip (SoC). High complexities of ‘SoC designs lead the design verification
to be a challenge for system integrators. To reduce the verification complexity, the
port-order-fault (POF) model has been proposed and the corresponding verification
pattern generation has been developed for verifying core-based designs. This thesis
proposes a graph automorphism-based algorithm to improve the efficiency of the
automatic verification pattern generation (AVPG) for SoC interconnect verification
based on the POF model. Furthermore, this algorithm can be applied to compute
maximal sets of symmetric inputs of circuits. We conduct the experiments on ISCAS-85
and some MCNC benchmarks with large inputs of circuits. The experimental results

demonstrate that our approach generates more efficient patterns with less CPU time.

il

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Professor Jing-Yang

Jou (), for his insightful suggestion and patient guidance throughout the course

of this work in the two years of my graduate life. I am still very grateful for his help in
many other matters, academically and socially. I am also indebted to Chun-Yao Wang

() and Geeng-Wei Lee (), for their great help and constructive

suggestions on my research. Thanks also go to all members in the Electronic Design
Automation Lab for their friendship and all members of the intramural badminton team.

Finally I have to show my deepest gratefulness to my parents, and ,
my sister, , and my boyfriend, Hung-Chih Lai (). Without their support

and love, this work would not be complete.

il

Contents

Chinese Abstract g
Engl i sh Abstract oo oo oo memweadld
Acknowledgements. [
Contents. .
List of Tabl es. V.
List of Figures.. VA
Chapter 1 | NTRODUCTI ON. « v o i e e e e e e e
Chapter 2 PRELI MI NARY. o o it e e an e an e e ae e e e

2.1. POE MODEL....ccueovieiiniene oA BEE S sttt 6

2.2. UNDETECTED PORT SEQUENCES{(IUPSS) REPRESENTATIONcccueerieniiannnnne 8

2.3. PREVIOUS WORK 50 sussusecneessuns aifensnass cofheeenneennneeneeneeenseesneeneesseeenseesneenne 9
Chapter 3 GRAPH “AUTOMORPHI SM-.BASED .AVPG . .

3.1. PATTERN GENERATION. fiuiiie.cuveurenieeneeiibesieenresieeieeeresiteneeiresteenesnnesaeeneennenes 13

3.2. GRAPH AUTOMORPHISM ALGORITHMccoctiimiiiiiienieniieneeeieeneeeneeseeeneens 18

3.3. UPSs CALCULATION WITH AUTOMORPHISM TECHNIQUE.......cc.ccocueerueenuernneenn 25
Chapter 4 EXPERI MENTAL RESULTS..
Chapter 5 APPLI CATI ONS .. . e e e e e e e

5.1. ABOUT SYMMETRICceetutttiiiteaitteeiteeeitee sttt esiteesaiteesabteesibeeesibeessaseessnneesnne 35

5.2. SYMMETRIC WITH GA ALGORITHM.....ccceeruiriiniiiiiiiieniieieeienieeie e 38

5.3. EXPERIMENTAL RESULTSeeciiiiiiiiiiiiniiiiicienecececteeeeeeee e 41
Chapter 6 CONCLUSI ONS. . & ¢ o e e e e e e e e e e e e

REFERENCES e e e mow L

v

A VA N

List of Tables

Table 3.1. AII possible.pattern.sets.......

Tabl e Bat2t. €5 N S @1 Sttt ot ot ot e e et e e e e
Table 4. 1.onCempeaerriigneonfs aJA AnedspuBlAtoap pr aach. . .
Table 5.1. Comparisons onaedxpemi m88Bt] alanmde G

approach L e e e e e e e e e e e A3 L

Tabl e 5. 2. Results of same .MCNC .henchmar.ks. .

Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu

Figu

List of Figures

.1. Thensehbhtmenntdedcthinckere cwenrni fi cati o
. 1. Tehnet astci hoenmaotfi cE RRRSp.rle2s34 .and .ERPS .
. 2. theePDEoeWwabadt AVPG.............ciiiiiiannt.
. 3. oHise manomlyiednd le argpéplr dotaiche
.1. Error activation.........L5
. 2. Poasebte forAbBenangafAb.
. 3. pANn Gxaanmdp liet so fa ugtroamotr phi sms
. 4. pAn Guradaidr e dtse dAdgr(a.).....ccciiiiiiiiiiinnnn.
. 5. Diedtjeotigmrta pchr aapnhd, .ccyocohpe. .g.r.a.p.h.........
.6. UPSs._Calcul ation.with.GA.techni
. 7. Gr@a®@A) Atud omroirgplhg .s.m. oo o o ot e e e e
. 8. Verification AMUttern. set. with. a
.9. Complete AVPG.flLow.
.10. EGswiuddio GAdtealh.niAYRe..................cv..
. 1. Complete ACSP. floOW. . ..o uouoaoaoan.

. 2. PR ewidtoh c6AMet e«¢hmRAiCque

vi

Chapter .

| ntroduction

Spurred by process technology leading to the availability of more than 1 million
gates per chip, and more stringent requirements upon time-to-market and performance
constraints, system level integration and platform-based design [3] are evolving as a
new paradigm in system designs. A multitude of components that are needed to
implement the required functionality make it hard for a company to design and
manufacture an entire system in time and within reasonable cost. Hence, design reuse
and reusable building blocks (cores) trading are becoming popular in the
system-on-a-chip (SoC) era. However, present design methodologies are not enough to

deal with cores which come from different design groups and are mixed and matched to

create a new system design. In particular, verifying whether a design satisfies all
requirements is one of the most difficult tasks.

Usage of cores divides the IC design community into two groups: core providers
and system integrators. In traditional system-on-board (SoB) design, the components
that go from provider to system integrator are ICs, which are designed, verified,
manufactured, and tested. The system integrator verifies the design by using these
components as fault-free building blocks. SoB verification is limited to detecting faults
in the interconnection among the components. Similarly, in SoC design, the components
are cores. The system integrator verifies the design by using the cores as design
error-free building blocks. The focus.of this coré-based design verification should be on
how the cores communicate with each/=other [13]. However, before the interface
verification, the interconnection-between-the cores in-an SoC have to be verified first.
This is because the SoC integrator‘has to connect a’large number of ports (hundreds or
even thousands of ports) in an SoC. The likelihood of interconnection misplacements
between the cores is high. Furthermore, the correct interconnection between the cores is
the minimum requirement to verify the interface protocols. In other words, if the
interconnections between the cores are misplaced, the process of the verification on the
interface between the cores will be in vain. Thus, the interconnection verification can be
conducted as the first step to the interface verification between the cores in an SoC.

Most previous work in testing interconnection focused on the development of
deterministic tests for interconnection between chips at the board level [7, 8]. The main
purpose is to test if the interconnections are connected properly (neither short nor open).

In the interconnection testing phase, the basic assumption for a system under test is that

the system design is correct, and the faults are due to manufacturing defects on
interconnection among components. For the core-based SoC design verification,
however, the system is not fully verified yet and the most of system design errors are
due to the incorrect interconnection among predesigned cores. The incorrect
interconnections are normally introduced by the misinterpretation of port description of
IP cores, and this misinterpretation is usually caused by some factors, such as
ambiguous or cryptic port names, Big Endian or Little Endian byte order of address bus,
etc. Therefore, the extension of these board level testing methods is inadequate for
connectivity-based design verification. Fig. 1.1 (a) and (b) shows the schemes to
demonstrate the processes of interconnection testing and interconnection verification,
respectively. In the interconnection testing, the, engineers focus on the success of
implementation of interconnected wires™ between blockl and block2. The testing
patterns and corresponding responses are applied’ and observed at the ends of the
interconnects to check whether the interconnects are manufactured correctly. On the
other hand, in the interconnection verification, the system integrators verify whether the
interconnections between block1 and block2 are located in the correct ports. They apply
the verification patterns to primary inputs (PIs) of the integrated design, then observe
the corresponding responses in primary outputs (POs) of the integrated design, and

match them against the specification instead.

apply observe apply observe
patterns responses patterns responses

b —

corel core2 corel core2
PIs POs
wrapper wrapper wrapper wrapper
blockl block2 block1 block2
interconnection testing interconnection verification
(a) (b)

Figure 1.1. The schemes of interconnection testing and interconnection verification.

By creating the testbenches at a high level, a connectivity-based design fault model,
port-order-fault (POF), proposed in [17],.is.used for reducing the time on core-based
design verification [18]. And the 'superset of all" automorphism (SAA) technique is
proposed in [19] to accelerate the:AVPG-and reduce the size of verification pattern set.

In this thesis, we propose a graph‘automorphism-based algorithm to further reduce
the size of verification pattern set. This algorithm also can compute maximal sets of
symmetric inputs of circuits, which are important to design verification and diagnosis [9,
10, 12, 16], as well as technology mapping [5, 11, 14].

In general, the manufacturing defects are called faults. Since this approach is
conducted for design verification rather than chip testing, we rename the POF model as
port-order-error (POE) without changing the model definition.

We exploit the IEEE P1500 wrappers and user defined Test Access Mechanisms
(TAMs) to propagate the verification patterns from PlIs to the wrappers in the
predecessor of the core under verification (CUV) and to propagate responses of the
CUV to POs. The integration verification mechanism with the IEEE P1500

4

standard-under-development is the same with that introduced in [18].

The remainder of this thesis is organized as follows: the POE model and previous
work are introduced in Chapter 2. Chapter 3 describes the graph automorphism (GA)
technique in the AVPG. The experimental results are shown in Chapter 4 and the
applications of symmetric detection are shown in Chapter 5. Chapter 6 concludes the

thesis.

Chapter .2

Preliminary

2.1. POE M od€l

The POE model belongs to the group of pin-errors models [1], which assumes that
an erroneous cell has at least two I/O ports misplaced. It also assumes that the
components are error free and only the interconnections among the components could
be erroneous. There are three types of POEs [17].

Definition 2.1: The type I POE is at least an output misplaced with an input. The
type II POE is at least two inputs misplaced. The type III POE is at least two outputs

misplaced. It has been proven that the type II POEs dominate the other two types of

POEs [18]. Hence, in this thesis, the AVPG focuses on the type II POEs solely.

Definition 2.2: A port sequence is an input port number permutation that indicates
the relative positions among these input ports.

Definition 2.3: The error-free-port-sequence (EFPS) is a port sequence that none
of the input ports were misplaced. For an N-input core, its input variables are numbered
from 1 to N. The number of the input variable permutations is N! and these N!
permutations represent the N! port sequences of the core. Except the
error-free-port-sequence, the remaining (N!-1) port sequences represent those
corresponding cores with particular POEs and are called erroneous-port-sequences
(EPSs). In this thesis, the POEs and the EPSs'aréused exchangeably.

Given a 4-input core, the input perts are numbered from 1 to 4. Any input port
numbers permutation is a port sequence of the core. It-has 4! port sequences totally. The
only one EFPS is 1234, the remaining (4!-1) port:sequences are EPSs. The EPS 1423
represents the port 4 is connected to the location of port 2, the port 2 is connected to the
location of port 3, and the port 3 is connected to the location of port 4. The schematic
representation of EFPS 1234 and EPS 1423 are shown in Fig. 2.1 (a) and Fig. 2.1 (b),

respectively.

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
EFPS=1234 EPS=1423

(a) (b)

Figure 2.1. The schematic representation of EFPS 1234 and EPS 1423.
7

2.2. Undetected Port Sequences (UPSs) Representation

Typically, the automatic pattern generator for functional errors, such as transition
faults [6], or manufacturing faults, such as stuck-at-fault (SAF) [15], builds fault list
explicitly first to explore how many faults have to be detected, and then generates
random patterns and deterministic patterns to detect these faults in the fault list. For the
POE-based AVPG, the error list is not enumerated explicitly. This is because the total
number of POEs in an N-input core is (N!-1). This number grows rapidly when N
increases, for instance, as N = 70, N!-1 = 1.2x10'®’. Instead, an implicit representation
is used to indicate the remaining undetected port sequences (UPSs). According to this
implicit representation, we can realize exactly:what the remaining UPSs are and the
further verification patterns can be generatéd accordingly in the verification pattern
generation. The following example demonstrates this-implicit UPSs representation.

Given an 8-input core, the input” ports' are numbered from 1 to 8. The UPSs
representation (12345678) represents the UPSs that caused by all possible
misplacements among the port numbers in the same group, i.e. port 1 to port 8. The
number of undetected POEs is 8!-1, and the 1 in the 8! accounts for the error free port
sequence. The UPSs representation (125)(4)(3678) indicates the UPSs that caused by all
possible misplacements among the port numbers 1, 2 and 5 and/or all possible
misplacements among the port numbers 3, 6, 7 and 8. The number of the undetected
POEs is 3! x 1! x 4!-1. Please note that the port number 4 is the only one element in the
second group. It means that the port sequences whose port number 4 in the wrong
position are not represented by this UPSs representation. The order of the groups in the

UPSs representation is irrelevant, neither is the order of the numbers in each UPSs

8

group. For example, the UPSs (125)(4)(3678) can also be expressed as (4)(215)(8763).
The UPSs (12)(3)(4)(5)(6)(78) contain 4 port sequences and they are 12345678,
21345678, 12345687 and 21345687. The UPS representation (1)(2)(3)(4)(5)(6)(7)(8)
has eight groups and each group has only one element; therefore, no misplacement
could be occurred in each group. The number of the undetected POEs is
IIxIIx1IxI!x1!Ix1!Ix1!x1!-1=0. Hence, (1)(2)(3)(4)(5)(6)(7)(8) represents 8!-1 POEs
are all detected. If the UPSs representation is induced from (12345678) to

(D2)B)D)(S)(6)(7)(8), all POEs are detected.

2.3. Previous Wor k

The AVPG for verifying the interconnect in_a core-based design is proposed in
[18]. Its flowchart is shown in Fig. 2:2-again..The AVPG reads the combinational core
and generates heuristic patterns. The patterns simulation results determine the valid
verification patterns. Then the UPSs are calculated in UPSs_Calculation stage, so that
more further verification patterns can be generated accordingly. When the error
coverage (E_C) reaches 100%, i.e., the verification patterns for detecting all EPSs are
generated, or the iterations are over the bound, the AVPG will be terminated.

The UPS'’s calculation (UPSs_Calculation) procedure shown in Fig. 2.2 determines
what the remaining UPSs are and guides the further pattern generation. If the results of
UPS'’s calculation are not precise enough, some of the further verification patterns could
be redundant and the processing time to reach the desired error coverage will increase.
In [18], the characteristic vector (CV) approach of determining the remaining UPSs

encountered this weakness. However, the superset of all automorphisms (SAA)

technique proposed in [19] improves the weakness mentioned and indeed increases the
AVPG efficiency. This fact can be seen in Fig. 2.3. Fig. 2.3 is a drawing from [19],
which shows the hierarchical relations on computing remaining UPSs between the CV
approach [18] and the SAA approach [19]. It has five levels from the center to the
boundary. The first level represents the set of real remaining UPSs explicitly. The
second level is the implicit UPS representation of the first level. The third level
represents the UPSs that are obtained by the automorphism approach. The SAA
approach and CV approach are shown in the fourth and fifth levels, respectively. Since
the UPSs in the inner levels are the subset of the outer levels, the SAA approach really

gets better results than CV approach.

4

E C=0, iteration =0

E C=100% Yes

>) . or
iteration > bound
No v
C Pattern_Generation D @
v

< Pattern Simulation >

v

(Get Valid Patterns >
v

< UPSs_Calculation D
v

< iteration ++ >

Figure 2.2. The flowchart of the POE-based AVPG.

10

@\\\\

Characteristic vector (CV)
Superset of All Automorphism (SAA)
All Automorphism

UPSs Representation (implicit)
Real UPSs (explicit)

Figure 2.3. Hierarchical relations among the different approaches.

11

Chapter .3

Graph Automorphism—based AVPG

We observe that the stages which profoundly influence the efficiency of AVPG are
Pattern_Generation and UPSs Calculation. Thus, in addition to advancing the
UPSs_Calculation stage like [19], this thesis proposes a new pattern generation
procedure as well, which corresponds to the proposed UPSs_Calculation. In this chapter,
we first explain the new Pattern_Generation procedure. Then we introduce the graph
automorphism algorithm. The new UPSs Calculation procedure based on the graph

automorphism algorithm is described in the last section.

12

3.1. Pattern Generation

Definition 3.1 : For an N-input combinational core, the exhaustive pattern set is
defined as ®". The size of ®" is the number of patterns in ®", and is denoted as |®"
and |®"| equals 2.

Definition 3.2 : The set that consists of all patterns with m 1s and (N-m) Os is

denoted as QmN ,where me [0, 1, 2, ... N -1, N]. The size of 6’”1:' is the number of

patterns in @) and is denoted as |#) | and |9 | equals C.

Example 3.1: For a 4-input core, ®* is the exhaustive pattern set with 4 bits. |®|

=2%=16. 6 ={0000}, |6, | = Cy=1. 6/={1000, 0100, 0010, 0001}, |6/'| =C'=4.
0,= {1100, 1010, 1001, 0110,:0101, 0011}, |65 | = -C;= 6. &/= {1110, 1101, 1011,

0111}, |65 | =C =4. ;= {1111}, [G}= C; =1.

The target of AVPG is to generate valid verification patterns such that all N!-1
POEs are detected. To detect a POE, the error effect has to be activated first. If the error
effect is not activated, it surely cannot be propagated out for detection. Thus, all N!-1
POEs have to be activated during the Pattern_Generation stage. For general cases, all
remaining POEs have to be activated in each iteration. To activate a POE, the logic
assignments of the corresponding input ports cannot be all the same. For example, to
activate the EPS 1243, the assignments of port 3 and port 4 have to be different, either
port 3 is assigned 0, port 4 is assigned 1, or vice versa. Furthermore, to increase the

AVPQG efficiency, the generated verification pattern cannot be repeated.

Lemma 3.1: Given a pattern T € @, there are m 1s and (N-m) Os in T. If the pattern

13

T turns to T after a EPS A , then T” €' and is a permutation of T byA .

Theorem 3.1: @ can activate all (N!-1) POEs where m €[1, 2, ..., N-2, N-1]. [18]

m

Proof: @ contains all patterns with m 1s and (N-m) 0s. According to Lemma 3.1,
there must exist a pair of patterns T and T> € § that corresponds to the original pattern

T and the activated pattern T for each POE. Thus, (N!-1) POEs are all activated by "
form €[1, 2, ..., N-2, N-1]. Q.E.D.

Theorem 3.2: For an N-input core, the pattern set € 6,) X 6> X ... Xe,,’zz with
n+m+ ...+ n=N,0 m, n,where'p=12,.k and there being at least one group
with different logic assignments €an activate all (n;!)-x (nz!) x -+ x (ng!)-1 errors in the

UPSs (@, -+-a, Nbb, b,) rry et

Proof: According to Theorem 3.1, 9,:2 can activate (n;!-1) POEs where m; € [1,
2,..., nj-1]. Obviously, 9,;2 XQ,',Z is to repeat 19,,'2 C,. times and to repeat (9,2 C;:
times. For each pattern in 19,’,2 with a set of 6’,2 can activate (n;!)-1 POEs,
19;1 Xe,zz can activate (n;!)x(nz!)-1 POEs. We can extend this to k groups, therefore,
each pattern set e 1921 Xe,f,z X...X (9,,'2'2 can activate (n;!)x(ny!)x---x(ng!)-1 errors,

same as the number of POEs in the UPSs (a,a, *- a,)b, - 'bn2) (1 'Fnk) .

Q.E.D.
The simulation results of the verification patterns are observed to determine which

activated POEs are propagated to POs. The error effects are propagated to POs if there

14

exists different responses among these verification patterns.
Example 3.2: For UPSs (12)(345), we know that the assignment 6’13 in (345) can

activate 3!-1 errors according to Theorem 3.1. When 1 and 2 are involved, we can
assign 10 or 01 for the (12) and combine with the assignment in (345) as shown in Fig.
3.1. The error activation of 21435 can be obtained from 12435 by comparing 10010 and

01010. All other EPSs can be activated by the similar process as well. Therefore, the

POEs in (12)(345) are all activated by the 6’x 6.

(12 3 4.5

“1o0Yd1o0o0
10 01 0 ¢ EPS 12435
10 0 1

— extend to

/(_)? ! o EPS 21435
01) o1 &

N

Figure 3.1. Error activation.

We use an example to demonstrate the details of pattern generation stage (error

activation and error propagation). Given a 5-input core, assume the UPSs currently are

(123)(45) and €, 6; have been simulated. In this case, the further pattern sets come

3 2
from Hml x9m2 where m;e [0, 1, 2, 3] and mpe [0, 1, 2]. Therefore, the possible

further pattern sets are A; ~A; as listed in Table 3.1 and As_ Ag are shown in Fig. 3.2.

15

Table 3.1. All possible pattern sets.

Possible
further pattern| UPSs = (123)(45) Explanation
set
A (m;=0,m,=0) € g{f , cannot activate remaining POEs
As (m;=0,my=1) € (9]5 , have been simulated
Az (m=0,my=2) |€ ,925 , cannot activate remaining POEs
Ay (m=1,my=0) |€ 915 , have been simulated
As (m;=1,m,=1) € 1925
Ag (m=1,m=2) |€ @}
Ay (m=2,my=0) |€ @ 25
Ag (m=2,my=1) |€ 935
Ao (m=2,m,=2) |€ (9: , have been simulated
Ao (m;=3,m,=0) |€ (935 ,/cdninot activate remaining POEs
A (m=3,my=1) <€ 6’: s have been simulated
A (m=3,m,=2) = |€ 955 , cannot actrvate remaining POEs

Further pattern set’AS

(mi=1,m2=1) Further pattern set A6
=1,m2=2

(123)(45) (mi=1,m>=2)

100 10

010 10 (123)(45)

001 10 100 11

100 01 010 11

010 01

001 01 001 11

Figure 3.2. Possible further pattern sets in A5 and A6.

Note that A,and A4 are € 915 as well as Ag and A;; are € 49: . They have already

been simulated before, thus, they are skipped from further verification pattern sets.
Furthermore, A;, Az, Ajo, and A, have the same logic assignments in each group. They

cannot be the verification pattern sets either. Consequently, the remaining verification

16

pattern sets are As~ Ag, which are € 4925 and &; respectively. We can choose only 4925 ,

or 7, or both & and @ for further verification sets since they all activate the
remaining EPSs and have the same opportunity to reduce the UPSs. To reduce the

complexity of pattern generation, we choose one & at a time. In this example, either

@ or ;. Table 3.2 shows the selected verification patterns of & and their

corresponding outputs which are represented in symbolic output representation. For
example, the pattern set As contains six patterns, {10010, 01010, 00110, 10001, 01001,
00101} and their outputs are al, a2, al, a3, a3, and a3, respectively. The patterns in As
can be grouped into three groups {10010, 00110}, {01010}, and {10001, 01001, 00101}
according to their outputs. To select:a group of patterns as the valid verification patterns,
we always choose the group with the smallersize if it.indeed can detect new EPS. Thus,
in this example, {01010} and {10010,:00110} “are selected as the valid verification
patterns. When we apply these patterns {01010}, {10010, 00110} to verify the
interconnections, we expect the outputs to be a2 and al, respectively. If the real outputs
are not a2 and al, then the misplaced interconnects are detected. For the same reason,
the gray patterns in A; can be the valid verification patterns. After having these valid
verification patterns, we have to figure out what new EPSs are detected and determine

the remaining UPSs for further pattern generation.

17

Table 3.2. @ pattern sets.

Verification UPSs .
pattern sets 6 | =(123)(45) Outputs Description
10010 al |m;=1, my=I, target on the both groups;
01010 a2 |{01010}, {10010, 00110} are valid
A 00110 al |verification pattern sets
5 10001 a3
01001 a3
00101 a3
11000 bl |m;=2, my=0, target on the first group;
As 10100 b2 |{11000} is a valid verification pattern
01100 b2 |set

The UPSs_Calculation stage is achieved by the proposed graph automorphism
algorithm. Thus, we first introduce! this. algorithm, then apply it on the

UPSs_Calculation.

3.2. Graph Automor phism ‘Algorithm

The Graph Automorphism (GA) problem is a well-known and well- studied
problem. However, it is not known to be either in P or NP-complete [2, 4]. Here we
propose a heuristic to solve the GA problem.

Definition 3.3 : A graph G(V,E) with n vertices and m edges consists of a vertex
set V(G)={V1,...,V,} and an edge set E(G)={E,,...,En}. Each edge consists of two
vertices called its endpoints. (U,V) is an edge with endpoints U and V. A graph is
undirected if there is no “direction” on the edges. A graph is weighted if there are
positive integer weights on the edges. The weight of the edge (U,V) is denoted as

W((U,V)).

18

@ 2 @ 2 @ 3
< ORI 4 (2 £y

Aut(G) Aut(G)
1 (2)

Figure 3.3. An example of graph G and its automorphisms.

Definition 3.4 : An automorphism of graph G is a permutation of V(G) that
preserves adjacency [20]. The automorphisms of G is denoted as Aut(G), and the
cardinality of this set of automorphisms is denoted as |Aut(G)|.

Example 3.3: An undirected graph G = (V, E) as shown in Fig. 3.3 has V = {1,2,3,4}
and E = {(1,2), (2,3), (3,4)}. Its automorphisms are also shown in Fig. 3.3 which are
{1234 4321}, and |Aut(G)| = 2.

Definition 3.5 : A graph G is disconnected if we can partition its vertices into at
least two nonempty sets, R and S, such:that no vertex in R is adjacent to any vertex in S.
That is, G is the disjoint union of the two subgraphs induced by R and S.

Definition 3.6 : For any two sets z; and 7, its intersection z;Nz, is a set that
contains elements in both sets.

We propose an automorphism representation that is similar to the UPS
representation mentioned in Chapter 2.2 to record the automotphisms of a graph G.
Vertices in the same group in this automorphism representation imply that any
permutation of these vertices is an automorphism.

Example 3.4: For an automorphism representation z; = (12)(34). It contains 2! x 2!

automorphisms and they are {1234, 1243, 2134, 2143}. If =, = (2)(134), it contains 1! x

19

3! automorphisms and they are {1234, 1243, 3214, 3241, 4213, 4231}, then n;Nz, =
{1234, 1243}, which can be expressed as (1)(2)(34) in automorphism representation.
Now, there are four steps in finding Aut(G) in our algorithm. Given an undirected

graph G with N vertices, the initial automorphism representation is expressed as

(123...N).

G: 0111000000 |
1000100000
0001000000
1010000000
0100000000
0000100000
0000000100
0000001000
0000000001
0000000010 |

(a) (b)

Figure 3.4. An undirected graph G and its Adj(G).

Step 1(Disjoint Graph - DG): If the graph is composed by t disconnected
subgraphs, then the automorphism representation is divided into t groups such that each
group corresponds to one subgraph. If the graph exists two or more subgraphs with the
same number of vertices, then merge the corresponding subgroups into one.

Since swapping any two vertices coming from disconnected subgroups with
different size cannot be an automorphism, we can divide the automorphism
representation of G respect to the graph connectivity of different sizes directly.

Example 3.5: Given a graph G as shown in Fig. 3.4(a). The graph G can be divided

into three subgraphs. Since the subgraphs induced by vertices 7 and 8, and by vertices 9

20

and 10 are the same size, therefore, by Step 1, the updated automorphism representation
;= (123456)(789A). That means any vertex exchanged from these two groups cannot
be an automorphism.

Definition 3.7 : The Degree Vector (DV) of a graph is a vector that contains each
vertex’s degree such that DV[i] = degree of the i"™ vertex.

Step 2(Degree Vector - DV): Calculate the DV of the graph G. Then group the
vertices with the same degrees into one group.

Since exchanging of two vertices with different degrees cannot be an
automorphism, we calculate the degree of each vertex and group the vertices with the
same degrees into the same group. The grouping results are the automorphisms and are
complied with the proposed automorphism-representation.

An automorphism has to satisfy the‘properties described in Step 1 and Step 2, so
the updated automorphisms can be obtained from"the intersection of automorphisms
derived by Step 1 and Step 2.

Example 3.6: From Fig. 3.4(a), the DVofGis 533331111 1. By grouping the
degree of each vertex, the automorphism representation is 7, = (1)(2345)(6789A).
Thus, the updated automorphism representation by the intersection of Step 1 and Step 2
is 3= (1)(2345)(6)(789A) which comes from (123456)(789A)N(1)(2345)(6789A).

Definition 3.8 : The partial vector (PV) of vertex V; in G is the i row of adjacency
matrix of G, Adj(G).

Definition 3.9 : A single element group (SEG) is a group that contains only one
vertex in the automorphism representation.

If updated automorphism representation contains SEG, go to Step 3, otherwise go

21

to Step 4.

Step 3(Repeated Automorphism - RA): Grouping the partial vector of each SEG
vertex and intersect this grouping result with the updated automorphism representation.
If the updated automorphism representation has newly generated SEG, repeat Step 3,
otherwise go to Step 4.

Since the automorphisms do not relate to the vertex in SEG, partition the partial
vector of SEG vertices can determine the automorphisms. That is, only the neighbors
with the same degree to the SEG vertices can be swapped as automorphisms.

Example 3.7: In the updated automorphism representation 73(1)(2345)(6)(789A),
there are two vertices, 1 and 6, in SEG; respectively. We have known that in Fig. 3.4(a),
vertex 1 is connected to vertices 2, 3-and 4, but 1s"not connected to vertex 5. Thus,
vertex 5 is different to vertices 2,3 and 4:Besides, the weight of (1,2) is different to the
weight of (1,3) and (1,4). We can use partial vector'V_1 to reduce (2345) to (2)(34)(5).
So as targeting on vertex 1, the partial vector V; is 0122000000. It can be seen from the
1* row of Adj(G). Its corresponding V| g, is (156789A)(2)(34). Then m3NV, g =
(1(2)(34)(5)(6)(789A) = m4. We find that vertices 2 and 5 are new vertices in SEG.
Therefore, we conduct Step 3 for vertices 2, 5 and 6. As targeting on vertex 6, the partial
vector Vg is 0000100000, V¢ g is (12346789A)(5). msNVes_g = (1)(2)(34)(5)(6)(789A) =
ms. As targeting on vertex 5, the partial vector Vs is 0200010000, Vs g is
(1345789A)(2)(6). msNVs_g = (1)(2)(34)(5)(6)(789A) = ms. As targeting on vertex 2, the
partial vectors V, is 1000200000, V, g is (1)(5)(2346789A), wsNV, g =
(1)(2)(34)(5)(6)(789A) = m7. Now, no more new vertex in SEG is generated, then go to

Step 4.

22

Step 4: For the group with more than one element in it under automorphism

representation, we observe its corresponding subgraph. If the subgraph is disconnected,

give the joinder “ ”on those vertices which are connected, respectively. If the
subgraph is a cycle, then give the “ [] 7 on these vertices. If the subgraph is a complete
graph, then give the “ { } ” on these vertices. Observe those vertices in some subgraph
under automorphism representation with just two elements in it. Record the partial
vector if it really can reduce automorphism representation.

After Step 1 ~ Step 3, we can assure that if more than one vertex in a group, they
must have the same degrees and may be the combination of smaller subgraphs with the
same number of vertices. Their corresponding subgraphs have three conditions. One is
that it is just the combination of:smaller subgraphs with same vertices, e.g. G1={(1,2),
(3,4)} shown in Fig. 3.5(a). The number of |JAut(G1)| has special solution for it. We will
introduce this in the next paragraph.;Another condition is that it is a connected subgraph
and is also a complete subgraph, e.g. G2={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)} shown in
Fig. 3.5(b). So we can change the order of these vertices in the subgraph and remain
identical under automorphism representation. The other condition is that it is a
connected graph and it is a cycle shown, e.g. G3={(1,2),(1,3),(2,4),(3,4)} shown in Fig.
3.5(c). The number of |Aut(G3)| has special solution for it. We will also introduce this in
the next paragraph. And if there are just two vertices in a subgraph, we have to observe
the neighbors of these two vertices. If they have no neighbors in common, then the
partial vectors of these two vertices are useful. Otherwise, the partial vectors of these

two vertices are useless because these two vertices can be exchanged mutually.

23

2 G3:

vy

(2) (b) (©)

Figure 3.5. Disjoint graph, complete graph and cycle graph.

Example 3.8: For the updated automorphism representation 77 (1)(2)(34)(5)(6)
(789A), there are six groups. Only the 6™ group (789A) corresponds to the disconnected
subgraph. Observe the vertices 7, 8, 9, and A, vertex 7 is connected with 8 while vertex
9 is connected with A. The group (789A) under.automorphism representation now
becomes (ﬁ9_A). Thus, the updated automorphism representation z;is now (1)(2)(3
4)(5)(6) (7894).

After Step 1 ~ Step 3, we can find the Aut(G) and |[Aut(G) | can be obtained based

on the updated automorphism representation. For updated automorphism representation
(a,a, a,)(b,b, ---bnk) (nr "'I”nk), the [Aut(G)| = (n1!) x (na!) x =+ x (ng!). If the

joinders are shown in the automorphism representation, such as

(aja,---a, bby---b, ---nry--r,) |Aut(G) = {(m!) x (m!) x - x (m!) x (the

number of joinder)!}. For example in Fig. 3.5(a), Aut(G1)={1234, 1243, 2134, 2143,

3412, 4312, 3421, 3421}. |Aut(G1)| = 2! x 2! x 2! = 8. If the braces are shown in the
automorphism representation, such as ({a,a, --- a, }), |[Aut(G)| = ni!. For example in
Fig. 3.5(b), Aut(G2)={1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341,

2413, 2431, 3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321}.

24

|Aut(G2)| = 4! = 32. If the square brackets are shown in the automorphism

representation, such as ([a,a, - a,]), [Aut(G)| = (n1) x 2. For example in Fig. 3.5(c),

Aut(G3)={1234, 1324, 2143, 2413, 3142, 3412, 4231, 4321}. |Aut(G3)| =4 x 2 = 8. For
this example, the updated automorphism representation z;is (1)(2)(34)(5)(6) (%ﬁ).
Thus, [Aut(G)] = 1! x 1! x 2! x 1! x 1! x (2! x 2! x 21) = 16. We can enumerate these 16
automorphisms explicitly and they are {123456789A, 12345678A9, 123456879A,
12345687A9, 1234569A78, 123456A978, 1234569A87, 123456A987, 12435678 9A,
12435678A9, 124356879A, 12435687A9, 1243569A78, 124356A978, 1243569A87,

124356A987}.

3.3. UPSs Calculation with Automor phism Technique

From Chapter 3.1, we get"the ~verification pattern sets. Now, we conduct the
UPSs_Calculation stage with the graph ‘automorohism (GA) technique to determine the
remaining UPSs.

For the example in Fig. 3.6(a), we assume the verification pattern set S1 has four
patterns Py, P,, P3 and P..

To solve the problem of calculating the remaining UPSs of the pattern set S1 with
n bits, an undirected, weighted graph G(V,E) is constructed, which corresponds to the
set S1 with |S1| patterns, P; to Pisy; . Pi[j] in S1 denotes the ™ bit in P; where i = 1 ~ [S1|
and j = 1 ~ n. The vertex Vk in G corresponds to the Kt input variable/port in S1. For all

patterns P; to Pgy in S1, when P; [k] = P; [k'] = 1, an edge VAV’ is added into G and

W(VkVk")=1 where (k, k’) are all G bit pairs. If the edge VAVE’ has existed in G,

25

W(VEkVE’) is increased by one.

Example 3.9: For Pi[1 : 7] in S1 shown in Fig. 3.6(a), 1010001, since P;[1] =P; [3]
=P, [7]=1, edges V1V3, V1V7, and V3V7 are added into G, respectively. For P,[1 : 7],
0100110, edges V2V5, V2V6, and V5V6 are added into G, respectively, and so on. The
constructed graph G is an undirected weighted graph and is shown in Fig. 3.6(b). Its
corresponding adjacency matrix, Adj(G), is shown in Fig. 3.6(c). In Adj(G), if there is
no edge between Vk and Vi’ in G, Adj(G)[k][k’] = Adj(G)[k’][k] = 0O; otherwise
Adj(G)[][k"] = Adj(G)[k][k] = W(VAVE).

The problem of calculating the remaining UPSs in S1 is now transformed to
finding all automor phisms of G. The€ffectiveness of this problem transformation is
that the position relations of digit 1sin-each:pattern in S1 are transformed to the
connectivity relationsin G. Finding the‘port misplacements that maintain S1 to be

invariant (calculating UPSs) is equivalent to finding all automor phisms of G.

0010001]|

Verification pattern set S1 0000110

(1234567) 1001002

Pi[1:7]=1 0 1 0 0 0 1 0010001

P2[1:7=0 T 00O 110 0100021

P3[1:71=0 0 1 1 0 0 1 0100201
P41:7]=0 0 0 0 1 1 1

11021110 |

(a) (b) (©

Figure 3.6. UPSs_Calculation with GA technique.

26

We demonstrate the UPSs_Calculation stage by the proposed GA algorithm using
the following example.

The initial UPSs is 7y = (1234567). In Step1, the graph in Fig. 3.6(b) is a connected
graph and cannot be divided into subgraphs. Thus, the UPS remains unchanged. In Step
2, the degree vector DV[1:7]1s 2 2 4 2 4 4 6. It groups the three 2s in one group, three
4s in another group, and one 6 in the third group. The grouped results can be
represented as (222)(444)(6) and its corresponding UPSs are (124)(356)(7). Then the
updated UPS z; = 7pN(124)(356)(7) = (1234567)N(124)(356)(7) = (124)(356)(7). In
Step 3, there is one SEG vertex 7. As targeting on vertex 7 in updated UPSs x;, the
partial vector V; is 1021110, +*V57 g, ~(1456)(27)(3). Then =, = =NV, g
=(14)(2)(3)(56)(7). SEGs of vertices 2-and-3 are newly generated. Therefore, we have to
repeat Step 3 for vertices 2 and 3, respectively. As targeting on vertex 2, the partial
vector V, is 0000110, V, g is (12347)(56). @3 = 7NV, g = (14)(2)(3)(56)(7). As
targeting on vertex 3, the partial vector V3 is 1001002, Vi g is (14)(2356)(7). ny =
w3NVs_ g = (14)(2)(3)(56)(7). Now, no new vertex in SEG is generated, Step 3 is
terminated. For the updated UPS 7z, (14)(2)(3)(56)(7), there are five groups. The partial
vector of the first group and the 4 group is useless because the neighbors of each group
are the same. Thus, the updated UPS 7, remains unchanged. The GA technique is now

finished. The summary of this example is shown in Fig. 3.7.

27

Initial UPSs (123456 7)

4
Step (1) DG :(1234567) (1234567)
Step 2) DV : (12 4)(356)(7) (124)356)7)
new isolated vertex (7)
Step (3) RA: 1
Target on 7
PV:(1456)27(3) a4H2)B)S 6)T)
new isolated vertices (2)(3)
Target on 2
PV:(12347)56) (142)B)5 6)7)
Target on 3
PV:(14)(2356)7) 14H2)B)S 6)(T)

Figure 3.7. Graph Automorphism (GA) technique.

In the same example, the remaining UPSs obtained from the CV approach are
(124)(356)(7) and from the SAA approach are (124)(3)(56)(7) in [19]. However, it can
be further reduced to (14)(2)(3)(56)(7) by the GA approach and the real remaining UPSs
are (14)(2)(3)(56)(7). These results demonstrate that the GA approach gets more precise
remaining UPSs than that of the CV approach and the SAA approach.

In this example in Fig. 3.7, Step 4 seems useless for reducing UPSs. However, it
also provides information for reducing UPSs later on. Hence we do not conduct Step 4
actually in the AVPG for preserving the UPS representation concisely. But its impact on
reducing UPSs is still remained by using partial vector concept.

Definition 3.10: The partial vector of vertex t is called automorphism message of't,
denoted as AM t, if vertex t does not belong to SEG in the UPS representation.

Giving UPSs (1234)(56)(78)(9A)(BC), assume that the valid verification pattern

setis {10010101010, 010010100101, 001001011010, 000101010101}, as shown in Fig.

28

3.8(a) and its adjacency matrix is shown in Fig. 3.8(b). If we apply the GA technique of
Step 1 ~ Step 3, we can find that the updated UPS is still (1234)(56)(78)(9A)(BC). Then
we keep this verification pattern set and calculate AM for each vertex t. For example,
AM 1 defined as the partial vector of vertex 1 is 000010101010, AM_C defined as the
partial vector of vertex C is 010111110200 and they are shown in Fig. 3.8(c). AM 1
implies that if vertex 1 is in SEG after some iteration later, the vertices 5, 7, 9, 11
(vertices with assignment 1 in AM 1) can also be in SEGs as well. Thus if we assume
vertex 1 in SEG indeed in the next UPSs_Calculation process, then we can reduce UPSs
from (1234)(56)(78)(9A)(BC) to (1) (234)(5)(6)(7)(8)(9)(A)(B)(C) according to AM 1.

Other AMs have the similar effect on.téducing UPSs.

Verification pattern set

(1234)(56)(78)(9A))(BE) 0oo0010h01010

1000 10 10 “10. ‘10 O

0100 10 10 O 0l 000001p10101

110000pR01111

0010 01 01 10 10 Adj(G)= |oo1100p21111

0001 01 01 01 o1 110020001111

001102p01111

(a) 101011010020

0101110110002

AM_1: 000010101010 égé‘i’“ 13‘2’88
L

AM_C: 010111110200
(©) (b)

Figure 3.8. Verification pattern set with automorphism message (AM).

Now, the complete AVPG Flow with graph automorphism (GA) technique is
shown in Fig. 3.9, where DG means Disjoint Graph in Step 1, DV means Degree Vector
in Step 2, RA means the Repeated Automorphism in Step 3, and AM means

Automorphism Message in Step 4. The pseudo code of AVPG with GA technique is

29

shown in Fig. 3.10. In line 7, 9, it generates patterns and the output simulation in line 11.
The effectiveness of the simulated patterns is determined in line 12. The steps of GA
technique are in line 14 ~ 16, 20, 23, respectively. In line 17, 21, it includes the valid
patterns into the verification pattern set. At the end of the algorithm, the verification

pattern set, error coverage and UPSs are returned.

\ 4
E C=0, Iteration =0

Yes

E C=100%
or
Iteration > bound

Pattern Generation

\’

Pattern Simulation

v

Get Valid Patterns

v

UPSs_Calculation
(DG+DV+RA+AM)

(Keep useful AM)

RN AUIVAY.

Iteration ++

Figure 3.9. Complete AVPG flow.

30

Algorithm: Automatic Verification Pattern Generation with Automorphism Technique
Input: CUV (N-input, M-outtput)
Output: Verification Pattern set (Veri_P_S), error coverage (E_C) , UPS

{

01
02
03
04
05
06

07
08

17
18

19
20

21
22

23

variable i < 0;
UPS < (123..N);
EC < 0;
simulated[N-1] < {0,0,..,0};
Veri P S &
Temp P S SR
do
(N

if (i==0)

verification patterns € C.',Cly, ;
i€ itl;
H
else

verification patterns < Pattern generation (UPS , simulated[N-1]) ;

Update (simulated[N-17);

outputs € Simulation (verification patterns);

{valid verification patterns} €<output analysis(outputs);
G(V.E) & Transition ({valid verification patterns }) ;
{UPS_tmp} <DG (G, UPS);

{UPS_tmp} <DV (G, UPS tmp) ;

{UPS_tmp} <RA (G5 UPS_tmp)}

if (UPS_tmp » UPS:)
Veri P S & 'Veri P_S-U {valid verification patterns } ;
E C < E 'C calculation(UPSzutmp) ;
}

UPS & UPS_tmp;
UPS_tmp2 < Use AM (Temp P "S;UPS) ;

if (UPS_tmp2 # UPS)
Veri P S €« Veri P.S U Temp P_S;

UPS €& UPS tmp2;
H

{Temp P_S} < Keep_ AM (G,UPS);

if (E C==1) break;
if (simulated[N-1]=={1,1, ... ,1}) break ;

}
while (E_ C !=1);
return (Veri P_S,E C, UPS);

Figure 3.10. Pseudo code of AVPG with GA technique.

31

Chapter 4

Experimental Results

The GA-based algorithm is implemented in Programming Language Interface (PLI)
environment. Experiments are conducted over a set of ISCAS-85 and some MCNC
benchmarks with large number of inputs. The benchmarks are in Verilog HDL format.
Since only the simulation information of these benchmarks is needed to conduct the
experiments, arbitrary levels of design description can be used for generating
verification pattern set. Table 4.1 summarizes the experimental results of the
comparison of SAA approach in [19] and our graph automorphism technique algorithm
of AVPG. The first five columns show the parameters of each benchmark, including

name, |[PI|, |PO|, the number of literals (lits.) and the number of POEs. The |PI|

32

represents the number of inputs and the size of the POEs set is |PI|!-1. The [PO|
represents the number of outputs and influences on the probability of error effect
propagation. The number of literals indicates the complexity of a benchmark. The
remaining columns show the number of verification patterns (pats.), error coverage
(E_C) and the CPU time. The error coverage is defined as 1- (# of undetected POEs / #
of all POEs). The ratio is defined as (the patterns of GA approach / the patterns of SAA
approach). The iteration bound is set to 100. The CPU time is measured in second on a
Sun Sparc II Workstation. The algorithm will be terminated automatically if iterations
are over the bound or the error coverage reaches 100%, and the verification pattern set
and the error coverage are returned. . *For example, in c880 benchmark, the number of
verification patterns is decreased-from-130-to 73 and the ratio of pattern size is 0.56. We
can see that for most circuits, the number of verification patterns is reduced by the
proposed techniques — a new pattern generationalgorithm and the GA technique.

Furthermore, the CPU time is acceptable.

33

Table 4.1. Comparisons on experimental results of SAA approach and GA approach.

Bench Parameters SAA approach GA approach
[PI| |PO| Lits. | Pats. E C(%)| Pats. E C(%) Time(s) Ratio
cl7 5 2 12 5 100 4 100 0.23 0.80
c880 | 60 26 703 130 99999 | 73 99.999 5.59 0.56
cl355| 41 32 1032 51 100 39 100 0.91 0.74
cl908 | 33 25 1497 45 100 41 100 0.93 0.91
c432 | 36 7 382 35 100 35 100 0.41 1
c499 | 41 32 616 40 100 37 100 0.72 0.93
c3540 | 50 22 2934 89 100 70 100 10.70 0.75
c5315|178 123 4369 | 222 100 174 100 53.42 0.78
c2670 {233 140 2043 | 351 99.999 | 237 99.999 92.71 0.67
c7552 1207 108 6098 | 448 99.999 | 312 99.999 87.45 0.69
c6288 | 32 32 4800 30 99.999 | 30 99.999 2.84 1
des |256 245 7412 | 255 100 255 100 5.47 1
alu4 | 14 8 1278 17 100 14 100 0.51 0.82
apex6 [135 99 904 187 99.999 | 154 99.999 12.88 0.82
19 88 63 1453 | 107 100 92 100 1.12 0.86
18 | 133 81 4626 | 204 100 156 100 13.65 0.76
i7 | 199 67 1311 | 240 100 194 100 12.77 0.81
i6 | 138 67 1037 | 138 100 130 100 10.12 0.94
i5 |133 66 556 133 100 125 100 10.65 0.94
rot 135 107 1424 | 247 99.999| 150 - 99.999 17.40 0.61
x3 135 99 1816 | 165 .199.999 . 145 - 99.999 9.34 0.88
x4 |94 71 1040 | 141 299.999.4L 117" 99.999 5.14 0.83
pair | 173 137 2667 | 186 100 120 100 21.38 0.65
Total 3466 2704
Ratio 1 0.78

34

Chapter .5

Applications

We use this graph automorphism-based algorithm for computing maximal sets of
symmetric inputs of circuits. It can be used to identify nonsymmetric inputs in a circuit
and enhance the efficiency of input matching, library binding (technology mapping), as

well as logic verification problems.

5.1. About Symmetric

Two inputs x; an x; of a single/multi-output logic function f(X) are said to be
symmetric, if exchanging x; and x; does not change f, i.e., f(Xi..., Xi,..., Xj,...Xn) =

(X1, 05 Xje vy Xiyenos Xn)[34].

35

Symmetric input sets of a logic function are subsets of inputs such that any
permutation of the inputs within a subset leaves the function invariant [33, 34]. The
problem of finding maximal symmetric input sets is formulated as following [33, 34]:
Given a single/multi-output function f(X), find maximal subsets of inputs X;, Xa, ..., Xk
< X, such that X; X5 ... Xx = X and the inputs in every subset X; can be
permuted in any fashion without changing the function. The symmetry relation is an
equivalence relation, and the maximal symmetric input sets are its equivalence classes.
To find the maximal symmetric input sets, it is therefore sufficient to find all pairs of
symmetric inputs and then take the unions of all the pairs having nonempty intersection.

This symmetry is known as the ¢lassical symmetry or the nonskew nonequivalence

symmetry [35]. The definition of this symmetry translates into the following

requirements for the cofactors of function™f fr

= fiil with respect to any two inputs X;
and x;.

Symmetric input sets, and the particular maximal symmetric input sets, are
important in problems of design verification and diagnosis [12, 21, 23, 25-27, 29-32,
40-44] and in problems of technology mapping, where it is required to find a library
macro to implement a given logic block [24, 28, 36, 39].

The goal of design verification is to check whether a given implementation follows
the specification for which it was designed. If implementation is incorrect, diagnosis
may be used for gate-level implementations [12, 25, 29-31, 40, 41] to locate and then
correct the design. It is typically assumed that the correspondence between specification

and implementation inputs is known. However, due to design errors, implementation

inputs may be interchanged, and hence it may be necessary to compute the actual

36

correspondence between specification and implementation inputs. This problem was
studied in [12], where it was observed that finding the symmetric input sets can save the
effort of trying different permutations of inputs belonging to the same symmetric set,
since all these permutations are equivalent.

In technology mapping applications [24, 28, 36, 39], it is required to check whether
a logic block in the given circuit exists in a macro library. The problem that arises is to
find a correspondence between the inputs of the logic block and the inputs of a library
macro and a correspondence between the outputs of the logic block and the outputs of
the library macro, such that under the two correspondences the library macro is logically
equivalent to the logic block. The library macro can then be used to implement the logic
block. For this problem, too, finding the symmetric input sets of the logic block and the
library macro can save the effort-of trying'different permutations of inputs belonging to
the same symmetric set.

The problem of finding maximal subsets of symmetric inputs has been studied for
single-output functions, for which the set of all minterms that set the function to 1 is
available (or can be derived) [33]. An efficient method to find subsets of symmetric
inputs, applicable to large multi-output circuits, is studied here. In parallel to our work
on this problem [35, 37, 38], methods using BDD’s [22] are investigated in [35, 37].
However, these BDD-based algorithms are not applicable to the designs that described
in behavior level or RT-level, e.g., soft Intellectual Property, or that do not have compact
BDD representation. Thus, simulation-based approach [38] was proposed to compute
the maximal sets of symmetric inputs. [38] establishes two steps to accomplish the input

symmetric identification. The first step uses heuristic to identify inputs that do not

37

belong to the same symmetric input set. Although the signature-based heuristic used in
[24, 36, 39] can be used for this purpose, the heuristics in [24, 36, 39] were applied to
circuits having compact BDD representation. The second step uses test generation
techniques to further identify the inputs that were not distinguished by the heuristic. The
efficiency of [38]-like approach for computing the maximal sets of symmetric inputs in
circuits without compact BDD representation depends on the “ability” of heuristics.
Good heuristics can distinguish more nonsymmetric inputs prior to entering
computation intensive test generation step. Thus, we focus on the first step of [38]-like

approach by using graph automorphism-based heuristic.

5.2. Symmetric with GA'Algorithm

We exchange the UPS representation-to-the Symmetric-ASymmetric Inputs (SASIs)
to represent the maximal symmetric¢/inputs _sets. For an N-input circuit, we number its
inputs from 1 to N. Initially, we assume that all inputs are symmetric, the corresponding
SASIs representation is (1 2 3 ... N), i.e., all inputs are placed in one group. If we claim
that input 7 is asymmetric to the other inputs by our methods, the input i is isolated from
original group and can be expressed as (i)(1 2 ... i-1 i+1 ... N). Please note the order of
the groups in the SASIs representation is irrelevant, neither is the order of the number in
each SASIs group. By the SASIs representation, if any two inputs are not placed in the
same group, then they are nonsymmetric inputs. Otherwise they are “possibly”
symmetric. Obviously, according to SASIs representation, we can realize exactly which
inputs are asymmetric to the other inputs. Thus, further efforts ought to be put onto the

groups that contain undistinguished inputs. The following example demonstrates the

38

details of the SASIs representation.

Given an 8-input circuit, the inputs are numbered from 1 to 8. The SASIs
representation (12345678) represents all inputs are symmetric. The SASIs
representation (125)(4)(3678) indicates that inputs 1, 2 and 5 are symmetric and inputs
3, 6, 7 and 8 are symmetric. Input 4 is the only one element in the second group. It
means that input 4 is asymmetric to the other inputs. The SASIs (125)(4)(3678) can also
be expressed as (4)(215)(8763). The SASIs representation (1)(2)(3)(4)(5)(6)(7)(8) has
eight groups and each group has only one element; therefore, these inputs are
nonsymmetric inputs. The goal of the proposed heuristic is to induce SASIs
representation from (12345678) to' (1)N2)(3)(4)(5)(6)(7)(8) if these inputs are
asymmetric indeed.

Then, we change the AVPG to Automatic Computing Symmetric Procedure
(ACSP). Its flow chart is shown in Fig. 5.1. Thisflow chart is similar to the AVPG flow
shown in Fig. 3.8. The ACSP reads a combinational circuit and generates heuristic
patterns. The patterns simulation results provide information to SASIs Calculation
stage for figuring out nonsymmetric inputs in SASIs representation. Then further
heuristic patterns are generated according to the updated SASIs in the next iteration.
When all inputs are identified as nonsymmetric or the iterations are over the bound, the
ACSP will be terminated and the maximal symmetric input sets are returned. The
pseudo code of ACSP with GA technique is shown in Fig. 5.2. In line 5, 7, it generates
patterns and the output simulation in line 9. The valid generated pattern sets are
determined in line 10. The steps of GA technique are in line 11 ~ 17. At the end of the

algorithm, the SASIs are returned.

39

) 4
Iteration =0

R All nonsymmetric Yes

No v
(Pattern Generation > @
v

< Pattern Simulation >
v
SASIs_Calculation
(DG+DV+RA+AM)
(Keep useful AM)

v
(Iteration ++ >

Figure-5:1 *Complete ACSP flow.

40

Algorithm: Automatic Computing Symmetric Procedure with GA Technique
Input: circuit (N-input, M-output)
Output: SASI

{
01 variable i < 0;
02 SASI < (123..N);
03 simulated[N-1] < {0,0,..,0};
04 Intending AM < ;
do

if (i==0)
05 generated pattern sets € C¥,Cy . ;
06 1€ itl;

b

else
07 generated pattern sets € Pattern Generation (SASI, simulated[N-1]) ;
08 Update (simulated[N-1]) ;
09 outputs € Simulation (generated pattern sets) ;
10 {valid generated pattern sets} < outputs_analysis (outputs) ;
11 G(V.,E) < Transformation ({valid generated pattern sets}) ;
12 {SASI tmp} € DG (G5 SASD ;
13 {SASI tmp} < DV.(G, SASI tip) ;
14 {SASI tmp} € RA (G, SASL.tmp);
15 {SAST tmp} €=Use AM-(Intending AM , SASI_tmp) ;
16 SASI <. SASI tmp;
17 {Intending AM} & Keep AM (G, SASI);

if (simulated[N-1]=={ 1,151} = break ;

while (all nonsymmetric) ;

18 return (SASI) ;
b

Figure 5.2. Pseudo code of ACSP with GA technique.

5.3. Experimental Results

The GA-based algorithm is implemented in Programming Language Interface (PLI)
environment. Experiments are conducted over a set of ISCAS-85 and some MCNC
benchmarks. Table 5.1 summarizes the experimental results of the previous approach in
[38] and our GA-based algorithm. The first four columns show the parameters of each

benchmark, including name, [PI|, [PO| and the number of literals (lits.). The |P]|

41

represents the number of inputs. The [PO| represents the number of outputs. The number
of literals indicates the complexity of a benchmark. This number is derived from its gate
level description. The remaining columns show the sets of inputs that cannot be
distinguished. In fact, these input sets are possibly symmetric inputs sets. They are
expressed by pairs (size, number of sets), where size is the size of an input set and the
following is the number of sets of that size. For example, for ¢880, three sets of size two
means that they are possible symmetric inputs and the other sets of size one means that
the 54 inputs are asymmetric to other inputs. The iteration bound is set to 100. The CPU
time is measured in second on a SUN Sparc II workstation. The algorithm will be
terminated automatically if iterations,are over the bound or all inputs are nonsymmetric,
and SASIs are returned. Accordifig to Table 5.1, we can find that in previous approach,
c499, c1355, and c1908 still have potentially symmetric input sets, but our approach can
distinguish each input as a nonsymmetric input. Also for c2670 and c6288, our approach
distinguishes more nonsymmetric inputs than that of [38]. Please note for c6288, our
approach does not distinguish each input as a nonsymmetric input while [38] does. This
is because our heuristic patterns inherently cannot distinguish each input of a multiplier
such as c6288. [38] uses test generation technique to conquer it instead. Table 5.2 also
shows the results on some MCNC benchmarks. Most nonsymmetric inputs are
distinguished efficiently as usual for most benchmarks. These results demonstrate that
our approach acts as a good filter to identify nonsymmetric inputs as many as possible
in a circuit such that significant efforts can be saved for other succeeding applications.
Our approach is applicable to sequential circuits if circuit states can be fully specified.

The experiments on sequential circuits are progressing.

42

Table 5.1. Comparisons on experimental results of previous approach in [38] and GA

approach.
Parameters Previous ggproach n GA approach
Bench - [38] - - -
PI| [|POJ| Lits. (size, number of | Time | (size, number of | Time
sets) (s) sets) (s)
cl7 50 2 12|(1,5) 0.04((1,5) 0.23
c880 60| 26| 703|(1,54)(2,3) 2.86|(1,54)(2,3) 1.74
cl355 411 32| 1032{(1,32)(9,1) 3.16/(1,41) 0.91
c1908 33| 25| 1497|(1,22)(5,1)(6,1) 1.81|(1,33) 0.93
c432 36| 7| 382|(1,36) 0.24((1,36) 0.41
c499 411 32| 616{(1,32)(9,1) 1.07|(1,41) 0.72
c3540 50{ 22| 2934/(1,50) 19.52((1,50) 10.70
c5315 178] 123 4369|(1,178) 33.95|(1,178) 33.42
c2670 233| 140] 2043|(1,221)(2,2)(8,1)| 59.95|(1,223)(2,2)(6,1) 42.55
c7552 207| 108| 6098|(1,166)(2,6)(3,1)| 5514|(1,183)(2,8)(3,1) | 191.33
(5.2)(4.4) (5.1)
c6288 32 32| 4800|(1,32) 6.53/(2,16) 2.84

43

Table 5.2. Results of some MCNC benchmarks.

Circuit |P1| [PO| Lits. (size, number of sets)| Time(s)
9symml 9 1 277 9,1) 0.95
bl 3 4 17 (1,1)(2,1) 0.24
b9 41 21 236 (1,31)(2,5) 3.88
cml138a 6 8 35 (1,H(2,1) 0.29
cm162a 14 5 58 (1,12)(2,1) 0.37
cml163a 16 5 53 (12,1)(4,1) 0.36
cm82a 5 3 26 (1,3)(2,1) 0.39
cmb 16 4 62 (4,2)(8,1) 0.98
count 35 16 174 (1,33)(2,1) 0.58
frgl 28 3 130 (1,26)(2,1) 0.41
lal 26 19 223 (1,16)(2,5) 1.87
pml 16 13 85 (1,9)(3,1)(4,1) 0.31
term1 34 10 625 (1,32)(2,1) 0.48
x1 51 35 2141 (1,49)(2,1) 20.97
x2 10 7 71 (1,8)(2,1) 0.49
x3 135 99 1816 (1;133)(2,1) 9.37
x4 94 71 1040 (1,92)(2,1) 5.14
z4ml 7 4 77 (2,2)3.1) 0.77
alu4 14 8 1278 (1,14) 0.51
apex6 135 99 904 (1,135) 12.88
des 256 245 7412 (1,256) 5.47
i5 133 66 556 (1,133) 10.65
16 138 67 1037 (1,138) 10.12
i7 199 67 1311 (1,199) 12.77
i8 133 81 4626 (1,133) 13.65
9 88 63 1453 (1,88) 1.12
pair 173 137 2667 (1,173) 21.38
rot 135 107 1424 (1,115)(2,5)(3,2)(4,1) 17.4

44

Chapter .6

Conclusions

In the SoC era, the embedded cores are mixed and integrated to create a system
chip. The verification of the core-based system design should be focused on how the
cores communicate with each other. However, before the interface verification, the
interconnections between the cores in an SoC have to be verified first. System
integrators integrate those cores manually and have the possibility of incorrect
integration due to the misplaced I/O ports. Therefore, we adopt the connectivity-based
POE model to raise the abstraction level of the design verification and to reduce the
time on functional verification in core-based design methodology.

In this thesis, we present a new pattern generation algorithm to activate all

45

remaining POEs and the GA technique to improve the UPSs Calculation procedure.
These two approaches get more precise remaining UPSs and therefore accelerate the
AVPG and generates a more efficient verification pattern set for verifying core-based
designs.

Besides, we use this GA technique for computing maximal sets of symmetric
inputs of circuits. It can be used to identify nonsymmetric inputs in a circuit and
enhance the efficiency of input matching, library binding (technology mapping), as well
as logic verification problems. The experimental results demonstrate that our approach

distinguishes more nonsymmetric inputs than that of previous work.

46

References

[1]

(2]

[3]

[5]

[6]

(8]

[9]

[10]

[11]

[12]

M. Abramovici, M. A. Breuer, and A. D. Friedman, “Digital Systems Testing and
Testable Design,” Computer Science Press, 1990, pp. 95.

M. Agrawal and V. Arvind, “A Note on Decision Versus Search for Graph
Automorphism,” in Eleventh Annual IEEE Conference Computational Complexity, 1996,
pp. 272-277.

H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L.Todd, Surviving the SOC
Revolution—A Guide to Platform-Based Design. Norwell, MA: Kluwer, 1999.

R. Chang, W. Gasarch, and J. Toran, “On Finding the Number of Graph Automorphism,”
in IEEE Structure in Complexity Theory Conference, 1995, pp. 288-298.

D. 1. Cheng and M. Marek-Sadowska, “Verifying Equivalence of Functions with
Unknown Input Correspondence,” Fin Proceedings European Design Automation

Conference (EDAC), 1993, pp. 81-85.

K.-T. Cheng, and J.-Y. Jou, A Functional-Fault Model for Sequential Machines,” I[EEE
Transactions on Computer-Aided Design, Sep..1992, pp.1065-1073.

P. Goel and M. T. McMahon, “Electronic Chip-in-place Test,” in Proceedings IEEE
International Test Conference, Oct. 1982, pp. 83-90.

A. Hassan, V. K. Agarwal, B. Nadeau-Dostie, and J. Rajski, “BIST of PCB Interconnects
Using Boundary-scan Architecture,” IEEE Transactions Computer-Aided Design, Oct.
1992, pp. 1278-1288.

H.-T. Liaw, J.-H. Tsaib and C.-S. Lin, “Efficient Automatic Diagnosis of Digital
Circuits,” International Conference On Computer-Aided Design, Nov. 1990, pp.464-467.

J. C. Madre, O. Coudert and J. P. Billon, “Automating the Diagnosis and the
Rectification of Design Errors with PRIAM,” in Proceedings International Conference

on Computer-Aided Design, Nov. 1989, pp. 30-33.

J. Mohnke and S. Malik, “Permutation and Phase Independent Boolean Comparison,” in

Proceedings European Design Automation Conference (EDAC), 1993, pp. 86-92.

I. Pomeranz and S. M. Reddy, “On Diagnosis and Correction of Design Errors,” in

Proceedings International Conference On Computer-Aided Design, Nov 1993.

R-1

[15]

[19]

J. A. Rowson and A. Sangiovanni-Vincentelli, “Interface-Based Design,” in Proceedings

Design Automation Conference, June 1997, pp. 178—183.
U. Schlichtmann, F. Brglez and M. Hermann, “Characterization of Boolean Functions for

Rapid Matching in EPGA Technology Mapping,” in Proceedings Design Automation
Conference, June 1992, pp. 374-379.

M. H. Schulz, E. Trischler, and T. M. Sarfert, ’SOCRATES: a Highly Efficient
Automatic Test Pattern Generation System,” IEEE Transactions on
Computer-Aided Design, Jan. 1988, pp.126-137.

K.A. Tamura, “Locating Functional Errors in Logic Circuits,” in Proceedings Design

Automation Conference, 1989, pp. 185-191.

S.-W. Tung and J.-Y. Jou, “A Logic Fault Model for Library Coherence Checking,”
Journal of Information Science and Engineering, Sept. 1998, pp. 567-586.

C.-Y. Wang, S.-W. Tung, and J.-Y:Jou, “On . Automatic-verification Pattern Generation
for SoC with Port-order Fault®Model,> 1EEE. Transactions on Computer-Aided Design,
vol. 21, Apr. 2002, pp. 466—479.

C.-Y. Wang, S.-W. Tung, and J..Y."Jou, “An Automorphic Approach to Verification
Pattern Generation for SoC Design*Verification Using Port-Order Fault Model,” /IEEE
Transactions on Computer-Aided Design, vol. 21, Oct. 2002, pp. 1225-1232.

D. B. West, "Introduction to Graph Theory,” Upper Saddle River, New Jersey,
Prentice-Hall, Incorporation, 1996.

M. S. Abadir, J. Ferguson, and T. E. Kirkland, “Logic Design Verification via Test
Generation,” IEEE Transactions on Computer, Jan. 1988, pp. 138-148.

R. E. Bryant, “Graph-based Algorithms for Boolean Function Manipulation,” [EEE
Transactions on Computer, Aug. 1986, pp. 677-691.

P. Camurati and P. Prinetto, “Formal Verification of Hardware Correctness: Introduction

and Survey of Current Research,” IEEE Computer, July 1988, pp. 8-19.

D. I. Cheng and M. Marek-Sadowska, “Verifying Equivalence of Functions with
Unknown Input Correspondence,” in Proceedings of European Design Automation

Conference (EDAC), 1993, pp.81-85.

[25]

[27]

(28]

[29]

[30]

[31]

[36]

P. Y. Chung and 1. N. Hajj, “ACCORD: Automatic Catching and Correction of Logic
Design Errors in Combinational Circuits,” in Proceedings of International Test

Conference, 1992, pp. 742-751.

S. Devadas, H. K. T. Ma, and A. R. Newton, “On the Verification of Sequential
Machinesat Differing Levels of Abstraction,” IEEE Transactions on Computer-Aided
Design, June 1988, pp. 713-722.

J. Jain, J. Bitner, D. S. Fussell, and J. A. Abraham, “Probabilistic Design Verification,” in
Proceedings of International Conference Computer-Aided Design, Nov. 1991, pp.
468-471.

K. Keutzer, “DAGON: Technology Binding and Local Optimization by DAG Matching,”
in Proceedings of Design Automation Conference, 1987, pp. 341-347.

S. Y. Kuo, “Locating Logic Design Errors via Test Generation and Don’t-care
Propagation,” in Proceedings of European Design Automation Conference (EDAC), Sep.
1992, pp. 466-471.

H. T. Liaw, J. H. Tsaih, and C. S. Line, “Efficient Automatic Diagnosis of Digital
Circuits,” in Proceedings of \International Conference Computer-Aided Design, Nov.

1990, pp. 464-467.

J. C. Madre, O. Coudert, and J. P.-Billon, “Automating the Diagnosis and the
Rectification of Design Errors with PRIAM,” in Proceedings of International Conference
Computer-Aided Design, Nov. 1989, pp. 30-33.

F. Maruyama and M. Fujita, “Hardware Verification,” I[EEE Computer, Feb. 1985, pp.
22-32.

E. J. McCluskey, “Detection of Group Invariance or Total Symmetry of a Boolean

Function,” Bell System Tech, J., Nov. 1956, pp. 1445-1453.

E. J. McCluskey, Logic Design Principles with Emphasis on Testable Semicustom
Circuits, Prentice-Hall, 1986.

Alan Mishchenko, “Fast Computation of Symmetries in Boolean Functions” /EEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 22, No.
11, Nov. 2003, pp. 1588-1593.

J. Mohnke and S. Malik, “Permutation and Phase Independent Boolean Comparison,” in

Proceedings of European Design Automation Conference (EDAC), 1993, pp. 86-92.

R-3

[37]

[39]

[40]

[41]

[42]

[43]

[44]

D. Moller, J. Mohnke, and M. Weber, “Detection of Symmetry of Boolean Functions
Represented by ROBDDs,” in Proceedings of International Conference Computer-Aided
Design, Nov. 1993, pp. 608-684.

I. Pomeranz and S.M. Reddy, “On Determining Symmetries in Inputs of Logic Circuits,”
IEEFE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol.
13, No. 11, Nov. 1994, pp. 1428-1434.

U. Schlichtmann, F. Brglez., and M. Hermann, “Characterization of Boolean Functions
for Rapid Matching in EPGA Technology Mapping,” in Proceedings of Design
Automation Conference, June 1992, pp. 347-379.

K. A. Tamura, “Locating Functional Errors in Logic Circuit,” in Proceedings of Design

Automation Conference, 1989, pp. 185-191.
M. Tomita, H. H. Jiang, T. Yamamoto, and Y. Hayashi, “An Algorithm for Locating

Logic Design Errors,” in Proceedings. of International Conference Computer-Aided

Design, Nov. 1990, pp. 468-471.

R. L. Wadsack, “Design Verificationm ard Testing of the WE 32100 CPUs,” I[EEE Design
and Test, Aug. 1984, pp. 66-75.

R, S. Wei and A. L. Sangiovanni-Vincentelli; “PROTEUS: A Logic Verification System
for Combinational Circuits,” in Proceedings of International Test Conference, Sep. 1986,

pp. 350-359.

A. S. Wojcik, “Formal Design Verification of Digital Systems,” in Proceedings of
Design Automation Conference, June 1983, pp. 228-234

Vita

Chen-Ling Chou was born in Taipei, Taiwan on August 2, 1980. She received the
M.S. degree in Electrical and Control Engineering from National Chiao Tung University
in June 2002 and entered the Institute of Electronics, National Chiao Tung University in
September 2002. Her major studies were Electronics Design Automation (EDA) and

VLSI design. She received the M.S. degree from NCTU in June 2004.

V-1

