
國立交通大學

電子工程學系 電 子 研 究 所 碩 士 班

碩 士 論 文

以圖型自同構為基礎之自動接線驗證樣本產生器

On Automatic Pattern Generation for Interconnect
Verification Based on Graph Automorphism

 研 究 生：周貞伶

 指導教授：周景揚 博士

中華民國 九十三 年 六 月

以圖型自同構為基礎之自動接線驗證樣本產生器

On Automatic Pattern Generation for Interconnect
Verification Based on Graph Automorphism

研 究 生：周貞伶 Student: Chen-Ling Chou

指導教授：周景揚 博士 Advisor: Dr. Jing-Yang Jou

國立交通大學
電子工程學系 電子研究所碩士班

碩士論文

A Thesis
Submitted to Institute of Electronics

College of Electrical Engineering and Computer Science
National Chiao Tung University

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE
In

Electronics Engineering
June 2004

Hsinchu, Taiwan, Republic of China

中華民國 九十三 年 六 月

i

以圖型自同構為基礎之自動接線驗證

樣本產生器

研究生：周貞伶 指導教授：周景揚 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

在大型系統晶片 (system-on-a-chip, SoC) 設計中，嵌入式核心(embedded cores)

的使用正大量的增加。高複雜度的系統晶片設計，使得設計驗證對系統整合者

來說是個很大的挑戰。為了降低以嵌入式核心為基礎的設計驗證的複雜度，連

接埠順序障礙模型 (port-order-fault，POF) 已經被提出，其對應的驗證向量產生

器也已經發展好了。在本論文中，為了解決大型系統晶片連接驗證的問題，我

們在連接埠順序障礙模型之下提出了一個以圖形自同構 (graph automorphism)

為基礎的演算法來改善這個自動驗證向量產生器的效率。此外，這個演算法也

可以運用於計算電路的輸入對稱的最大集合。我們測試了一些 ISCAS-85和有較

多輸入連接埠的MCNC電路。由實驗結果顯示，這個演算法可以在更少的時間

下產生更有效的驗證向量。

ii

On Automatic Pattern Generation for Interconnect
Verification Based on Graph Automorphism

Student: Chen-Ling Chou Advisor: Dr. Jing-Yang Jou

Department of Electronics Engineering &
Institute of Electronics

National Chiao Tung University

Abstract

Embedded cores are being increasingly used in the design of large

system-on-a-chip (SoC). High complexities of SoC designs lead the design verification

to be a challenge for system integrators. To reduce the verification complexity, the

port-order-fault (POF) model has been proposed and the corresponding verification

pattern generation has been developed for verifying core-based designs. This thesis

proposes a graph automorphism-based algorithm to improve the efficiency of the

automatic verification pattern generation (AVPG) for SoC interconnect verification

based on the POF model. Furthermore, this algorithm can be applied to compute

maximal sets of symmetric inputs of circuits. We conduct the experiments on ISCAS-85

and some MCNC benchmarks with large inputs of circuits. The experimental results

demonstrate that our approach generates more efficient patterns with less CPU time.

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Professor Jing-Yang

Jou (周景揚), for his insightful suggestion and patient guidance throughout the course

of this work in the two years of my graduate life. I am still very grateful for his help in

many other matters, academically and socially. I am also indebted to Chun-Yao Wang

(王俊堯) and Geeng-Wei Lee (李耿維), for their great help and constructive

suggestions on my research. Thanks also go to all members in the Electronic Design

Automation Lab for their friendship and all members of the intramural badminton team.

Finally I have to show my deepest gratefulness to my parents, 周乾德 and 蔣慧月,

my sister, 周芳俞, and my boyfriend, Hung-Chih Lai (賴鴻志). Without their support

and love, this work would not be complete.

iv

Contents

Chinese Abstract...i

English Abstract...ii

Acknowledgements..iii

Contents..iv

List of Tables...v

List of Figures...vi

Chapter 1 INTRODUCTION..1

Chapter 2 PRELIMINARY...6

2.1. POE MODEL..6

2.2. UNDETECTED PORT SEQUENCES (UPSS) REPRESENTATION8

2.3. PREVIOUS WORK...9

Chapter 3 GRAPH AUTOMORPHISM-BASED AVPG...12

3.1. PATTERN GENERATION..13

3.2. GRAPH AUTOMORPHISM ALGORITHM ...18

3.3. UPSS CALCULATION WITH AUTOMORPHISM TECHNIQUE................................25

Chapter 4 EXPERIMENTAL RESULTS...32

Chapter 5 APPLICATIONS...35

5.1. ABOUT SYMMETRIC...35

5.2. SYMMETRIC WITH GA ALGORITHM...38

5.3. EXPERIMENTAL RESULTS ..41

Chapter 6 CONCLUSIONS..45

REFERENCES..R-1

VITA..V-1

v

List of Tables

Table 3.1. All possible pattern sets..16

Table 3.2. 5
2θ
 pattern sets...18

Table 4.1. Comparisons on experimental results of SAA approach and GA approach............34

Table 5.1. Comparisons on experimental results of previous approach in [38] and GA

approach..43

Table 5.2. Results of some MCNC benchmarks..44

vi

List of Figures

Figure 1.1. The schemes of interconnection testing and interconnection verification...............4

Figure 2.1. The schematic representation of EFPS 1234 and EPS 1423....................................7

Figure 2.2. The flowchart of the POE-based AVPG..10

Figure 2.3. Hierarchical relations among the different approaches..11

Figure 3.1. Error activation..15

Figure 3.2. Possible further pattern sets in A5 and A6..16

Figure 3.3. An example of graph G and its automorphisms..19

Figure 3.4. An undirected graph G and its Adj(G)..20

Figure 3.5. Disjoint graph, complete graph and cycle graph...24

Figure 3.6. UPSs_Calculation with GA technique...26

Figure 3.7. Graph Automorphism (GA) technique..28

Figure 3.8. Verification pattern set with automorphism message (AM)..................................29

Figure 3.9. Complete AVPG flow...30

Figure 3.10. Pseudo code of AVPG with GA technique..31

Figure 5.1. Complete ACSP flow..40

Figure 5.2. Pseudo code of ACSP with GA technique..41

1

Chapter 1

Introduction

Spurred by process technology leading to the availability of more than 1 million

gates per chip, and more stringent requirements upon time-to-market and performance

constraints, system level integration and platform-based design [3] are evolving as a

new paradigm in system designs. A multitude of components that are needed to

implement the required functionality make it hard for a company to design and

manufacture an entire system in time and within reasonable cost. Hence, design reuse

and reusable building blocks (cores) trading are becoming popular in the

system-on-a-chip (SoC) era. However, present design methodologies are not enough to

deal with cores which come from different design groups and are mixed and matched to

2

create a new system design. In particular, verifying whether a design satisfies all

requirements is one of the most difficult tasks.

Usage of cores divides the IC design community into two groups: core providers

and system integrators. In traditional system-on-board (SoB) design, the components

that go from provider to system integrator are ICs, which are designed, verified,

manufactured, and tested. The system integrator verifies the design by using these

components as fault-free building blocks. SoB verification is limited to detecting faults

in the interconnection among the components. Similarly, in SoC design, the components

are cores. The system integrator verifies the design by using the cores as design

error-free building blocks. The focus of this core-based design verification should be on

how the cores communicate with each other [13]. However, before the interface

verification, the interconnection between the cores in an SoC have to be verified first.

This is because the SoC integrator has to connect a large number of ports (hundreds or

even thousands of ports) in an SoC. The likelihood of interconnection misplacements

between the cores is high. Furthermore, the correct interconnection between the cores is

the minimum requirement to verify the interface protocols. In other words, if the

interconnections between the cores are misplaced, the process of the verification on the

interface between the cores will be in vain. Thus, the interconnection verification can be

conducted as the first step to the interface verification between the cores in an SoC.

Most previous work in testing interconnection focused on the development of

deterministic tests for interconnection between chips at the board level [7, 8]. The main

purpose is to test if the interconnections are connected properly (neither short nor open).

In the interconnection testing phase, the basic assumption for a system under test is that

3

the system design is correct, and the faults are due to manufacturing defects on

interconnection among components. For the core-based SoC design verification,

however, the system is not fully verified yet and the most of system design errors are

due to the incorrect interconnection among predesigned cores. The incorrect

interconnections are normally introduced by the misinterpretation of port description of

IP cores, and this misinterpretation is usually caused by some factors, such as

ambiguous or cryptic port names, Big Endian or Little Endian byte order of address bus,

etc. Therefore, the extension of these board level testing methods is inadequate for

connectivity-based design verification. Fig. 1.1 (a) and (b) shows the schemes to

demonstrate the processes of interconnection testing and interconnection verification,

respectively. In the interconnection testing, the engineers focus on the success of

implementation of interconnected wires between block1 and block2. The testing

patterns and corresponding responses are applied and observed at the ends of the

interconnects to check whether the interconnects are manufactured correctly. On the

other hand, in the interconnection verification, the system integrators verify whether the

interconnections between block1 and block2 are located in the correct ports. They apply

the verification patterns to primary inputs (PIs) of the integrated design, then observe

the corresponding responses in primary outputs (POs) of the integrated design, and

match them against the specification instead.

4

wrapper

apply
patterns

core1
wrapper

core2

observe
responses

block1 block2
wrapper

apply
patterns

core1
wrapper

core2

observe
responses

block1 block2

PIs POs

interconnection testing
(a)

interconnection verification
(b)

Figure 1.1. The schemes of interconnection testing and interconnection verification.

By creating the testbenches at a high level, a connectivity-based design fault model,

port-order-fault (POF), proposed in [17], is used for reducing the time on core-based

design verification [18]. And the superset of all automorphism (SAA) technique is

proposed in [19] to accelerate the AVPG and reduce the size of verification pattern set.

In this thesis, we propose a graph automorphism-based algorithm to further reduce

the size of verification pattern set. This algorithm also can compute maximal sets of

symmetric inputs of circuits, which are important to design verification and diagnosis [9,

10, 12, 16], as well as technology mapping [5, 11, 14].

In general, the manufacturing defects are called faults. Since this approach is

conducted for design verification rather than chip testing, we rename the POF model as

port-order-error (POE) without changing the model definition.

We exploit the IEEE P1500 wrappers and user defined Test Access Mechanisms

(TAMs) to propagate the verification patterns from PIs to the wrappers in the

predecessor of the core under verification (CUV) and to propagate responses of the

CUV to POs. The integration verification mechanism with the IEEE P1500

5

standard-under-development is the same with that introduced in [18].

The remainder of this thesis is organized as follows: the POE model and previous

work are introduced in Chapter 2. Chapter 3 describes the graph automorphism (GA)

technique in the AVPG. The experimental results are shown in Chapter 4 and the

applications of symmetric detection are shown in Chapter 5. Chapter 6 concludes the

thesis.

6

Chapter 2

Preliminary

2.1. POE Model

The POE model belongs to the group of pin-errors models [1], which assumes that

an erroneous cell has at least two I/O ports misplaced. It also assumes that the

components are error free and only the interconnections among the components could

be erroneous. There are three types of POEs [17].

Definition 2.1: The type I POE is at least an output misplaced with an input. The

type II POE is at least two inputs misplaced. The type III POE is at least two outputs

misplaced. It has been proven that the type II POEs dominate the other two types of

7

POEs [18]. Hence, in this thesis, the AVPG focuses on the type II POEs solely.

Definition 2.2: A port sequence is an input port number permutation that indicates

the relative positions among these input ports.

Definition 2.3: The error-free-port-sequence (EFPS) is a port sequence that none

of the input ports were misplaced. For an N-input core, its input variables are numbered

from 1 to N. The number of the input variable permutations is N! and these N!

permutations represent the N! port sequences of the core. Except the

error-free-port-sequence, the remaining (N!-1) port sequences represent those

corresponding cores with particular POEs and are called erroneous-port-sequences

(EPSs). In this thesis, the POEs and the EPSs are used exchangeably.

Given a 4-input core, the input ports are numbered from 1 to 4. Any input port

numbers permutation is a port sequence of the core. It has 4! port sequences totally. The

only one EFPS is 1234, the remaining (4!-1) port sequences are EPSs. The EPS 1423

represents the port 4 is connected to the location of port 2, the port 2 is connected to the

location of port 3, and the port 3 is connected to the location of port 4. The schematic

representation of EFPS 1234 and EPS 1423 are shown in Fig. 2.1 (a) and Fig. 2.1 (b),

respectively.

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

EFPS=1234
(a)

EPS=1423
(b)

Figure 2.1. The schematic representation of EFPS 1234 and EPS 1423.

8

2.2. Undetected Port Sequences (UPSs) Representation

Typically, the automatic pattern generator for functional errors, such as transition

faults [6], or manufacturing faults, such as stuck-at-fault (SAF) [15], builds fault list

explicitly first to explore how many faults have to be detected, and then generates

random patterns and deterministic patterns to detect these faults in the fault list. For the

POE-based AVPG, the error list is not enumerated explicitly. This is because the total

number of POEs in an N-input core is (N!-1). This number grows rapidly when N

increases, for instance, as N = 70, N!-1 ≈ 1.2×10100. Instead, an implicit representation

is used to indicate the remaining undetected port sequences (UPSs). According to this

implicit representation, we can realize exactly what the remaining UPSs are and the

further verification patterns can be generated accordingly in the verification pattern

generation. The following example demonstrates this implicit UPSs representation.

Given an 8-input core, the input ports are numbered from 1 to 8. The UPSs

representation (12345678) represents the UPSs that caused by all possible

misplacements among the port numbers in the same group, i.e. port 1 to port 8. The

number of undetected POEs is 8!-1, and the 1 in the 8! accounts for the error free port

sequence. The UPSs representation (125)(4)(3678) indicates the UPSs that caused by all

possible misplacements among the port numbers 1, 2 and 5 and/or all possible

misplacements among the port numbers 3, 6, 7 and 8. The number of the undetected

POEs is 3! × 1! × 4!-1. Please note that the port number 4 is the only one element in the

second group. It means that the port sequences whose port number 4 in the wrong

position are not represented by this UPSs representation. The order of the groups in the

UPSs representation is irrelevant, neither is the order of the numbers in each UPSs

9

group. For example, the UPSs (125)(4)(3678) can also be expressed as (4)(215)(8763).

The UPSs (12)(3)(4)(5)(6)(78) contain 4 port sequences and they are 12345678,

21345678, 12345687 and 21345687. The UPS representation (1)(2)(3)(4)(5)(6)(7)(8)

has eight groups and each group has only one element; therefore, no misplacement

could be occurred in each group. The number of the undetected POEs is

1!×1!×1!×1!×1!×1!×1!×1!-1=0. Hence, (1)(2)(3)(4)(5)(6)(7)(8) represents 8!-1 POEs

are all detected. If the UPSs representation is induced from (12345678) to

(1)(2)(3)(4)(5)(6)(7)(8), all POEs are detected.

2.3. Previous Work

The AVPG for verifying the interconnect in a core-based design is proposed in

[18]. Its flowchart is shown in Fig. 2.2 again. The AVPG reads the combinational core

and generates heuristic patterns. The patterns simulation results determine the valid

verification patterns. Then the UPSs are calculated in UPSs_Calculation stage, so that

more further verification patterns can be generated accordingly. When the error

coverage (E_C) reaches 100%, i.e., the verification patterns for detecting all EPSs are

generated, or the iterations are over the bound, the AVPG will be terminated.

The UPS’s calculation (UPSs_Calculation) procedure shown in Fig. 2.2 determines

what the remaining UPSs are and guides the further pattern generation. If the results of

UPS’s calculation are not precise enough, some of the further verification patterns could

be redundant and the processing time to reach the desired error coverage will increase.

In [18], the characteristic vector (CV) approach of determining the remaining UPSs

encountered this weakness. However, the superset of all automorphisms (SAA)

10

technique proposed in [19] improves the weakness mentioned and indeed increases the

AVPG efficiency. This fact can be seen in Fig. 2.3. Fig. 2.3 is a drawing from [19],

which shows the hierarchical relations on computing remaining UPSs between the CV

approach [18] and the SAA approach [19]. It has five levels from the center to the

boundary. The first level represents the set of real remaining UPSs explicitly. The

second level is the implicit UPS representation of the first level. The third level

represents the UPSs that are obtained by the automorphism approach. The SAA

approach and CV approach are shown in the fourth and fifth levels, respectively. Since

the UPSs in the inner levels are the subset of the outer levels, the SAA approach really

gets better results than CV approach.

Start

E_C = 0, iteration = 0

E_C = 100%
or

iteration > bound

Yes

No

StopPattern_Generation

iteration ++

Pattern_Simulation

Get_Valid_Patterns

UPSs_Calculation

Figure 2.2. The flowchart of the POE-based AVPG.

11

Real UPSs (explicit)
UPSs Representation (implicit)
All Automorphism
Superset of All Automorphism (SAA)
Characteristic vector (CV)

Figure 2.3. Hierarchical relations among the different approaches.

12

Chapter 3

Graph Automorphism–based AVPG

We observe that the stages which profoundly influence the efficiency of AVPG are

Pattern_Generation and UPSs_Calculation. Thus, in addition to advancing the

UPSs_Calculation stage like [19], this thesis proposes a new pattern generation

procedure as well, which corresponds to the proposed UPSs_Calculation. In this chapter,

we first explain the new Pattern_Generation procedure. Then we introduce the graph

automorphism algorithm. The new UPSs_Calculation procedure based on the graph

automorphism algorithm is described in the last section.

13

3.1. Pattern Generation

Definition 3.1 : For an N-input combinational core, the exhaustive pattern set is

defined as ΦN. The size of ΦN is the number of patterns in ΦN, and is denoted as |ΦN|

and |ΦN| equals 2N.

Definition 3.2 : The set that consists of all patterns with m 1s and (N-m) 0s is

denoted as N
mθ ,where m∈ [0, 1, 2, . . ., N -1, N]. The size of N

mθ
 is the number of

patterns in N
mθ and is denoted as | N

mθ | and | N
mθ | equals N

mC .

Example 3.1: For a 4-input core, Φ4 is the exhaustive pattern set with 4 bits. |Φ4|

= 24 = 16. 4
0θ ={0000}, | 4

0θ | = 4
0C =1. 4

1θ ={1000, 0100, 0010, 0001}, | 4
1θ | = 4

1C =4.

4
2θ = {1100, 1010, 1001, 0110, 0101, 0011}, | 4

2θ | = 4
2C = 6. 4

3θ = {1110, 1101, 1011,

0111}, | 4
3θ | = 4

3C =4. 4
4θ = {1111}, | 4

4θ |= 4
4C =1.

The target of AVPG is to generate valid verification patterns such that all N!-1

POEs are detected. To detect a POE, the error effect has to be activated first. If the error

effect is not activated, it surely cannot be propagated out for detection. Thus, all N!-1

POEs have to be activated during the Pattern_Generation stage. For general cases, all

remaining POEs have to be activated in each iteration. To activate a POE, the logic

assignments of the corresponding input ports cannot be all the same. For example, to

activate the EPS 1243, the assignments of port 3 and port 4 have to be different, either

port 3 is assigned 0, port 4 is assigned 1, or vice versa. Furthermore, to increase the

AVPG efficiency, the generated verification pattern cannot be repeated.

Lemma 3.1: Given a pattern T ∈ N
mθ , there are m 1s and (N-m) 0s in T. If the pattern

14

T turns to T’ after a EPS λ, then T’ ∈ N
mθ and is a permutation of T byλ.

Theorem 3.1: N
mθ can activate all (N!-1) POEs where m ∈[1, 2, …, N-2, N-1]. [18]

Proof: N
mθ contains all patterns with m 1s and (N-m) 0s. According to Lemma 3.1,

there must exist a pair of patterns T and T’ ∈ N
mθ that corresponds to the original pattern

T and the activated pattern T’ for each POE. Thus, (N!-1) POEs are all activated by N
mθ

for m ∈[1, 2, …, N-2, N-1]. Q.E.D.

Theorem 3.2: For an N-input core, the pattern set ∈ 1

1

n
mθ Х 2

2

n
mθ Х … Х k

k

n
mθ with

n1 + n2 + …+ nk =N, 0≦mp≦np where p = 1,2,…,k and there being at least one group

with different logic assignments can activate all (n1!) × (n2!) × ··· × (nk!)-1 errors in the

UPSs)())((212121 21 knnn rrrbbbaaa LLLL .

Proof : According to Theorem 3.1, 1

1

n
mθ can activate (n1!-1) POEs where m1∈ [1,

2,…, n1-1]. Obviously, 1

1

n
mθ Х 2

2

n
mθ is to repeat 1

1

n
mθ 2

2

n
mC times and to repeat 2

2

n
mθ 1

1

n
mC

times. For each pattern in 2

2

n
mθ with a set of 1

1

n
mθ can activate (n1!)-1 POEs,

1

1

n
mθ Х 2

2

n
mθ can activate (n1!)×(n2!)-1 POEs. We can extend this to k groups, therefore,

each pattern set ∈ 1

1

n
mθ Х 2

2

n
mθ Х…Х k

k

n
mθ can activate (n1!)×(n2!)×···×(nk!)-1 errors,

same as the number of POEs in the UPSs)())((212121 21 knnn rrrbbbaaa LLLL .

 Q.E.D.

The simulation results of the verification patterns are observed to determine which

activated POEs are propagated to POs. The error effects are propagated to POs if there

15

exists different responses among these verification patterns.

Example 3.2: For UPSs (12)(345), we know that the assignment 3
1θ in (345) can

activate 3!-1 errors according to Theorem 3.1. When 1 and 2 are involved, we can

assign 10 or 01 for the (12) and combine with the assignment in (345) as shown in Fig.

3.1. The error activation of 21435 can be obtained from 12435 by comparing 10010 and

01010. All other EPSs can be activated by the similar process as well. Therefore, the

POEs in (12)(345) are all activated by the 2
1θ × 3

1θ .

EPS 12435

 extend to

EPS 21435

(1 2)

 1 0
 1 0
 1 0

 0 1
 0 1
 0 1

(3 4 5)

 1 0 0
 0 1 0
 0 0 1

 1 0 0
 0 1 0
 0 0 1

Figure 3.1. Error activation.

We use an example to demonstrate the details of pattern generation stage (error

activation and error propagation). Given a 5-input core, assume the UPSs currently are

(123)(45) and 5
1θ , 5

4θ have been simulated. In this case, the further pattern sets come

from
3

1mθ ×
2

2mθ where m1∈ [0, 1, 2, 3] and m2∈ [0, 1, 2]. Therefore, the possible

further pattern sets are A1 ~A12 as listed in Table 3.1 and A5, A6 are shown in Fig. 3.2.

16

Table 3.1. All possible pattern sets.

Possible
further pattern

set
UPSs = (123)(45) Explanation

A1 (m1=0,m2=0) ∈ , cannot activate remaining POEs

A2 (m1=0,m2=1) ∈ , have been simulated

A3 (m1=0,m2=2) ∈ , cannot activate remaining POEs

A4 (m1=1,m2=0) ∈ , have been simulated

A5 (m1=1,m2=1) ∈

A6 (m1=1,m2=2) ∈

A7 (m1=2,m2=0) ∈

A8 (m1=2,m2=1) ∈

A9 (m1=2,m2=2) ∈ , have been simulated

A10 (m1=3,m2=0) ∈ , cannot activate remaining POEs

A11 (m1=3,m2=1) ∈ , have been simulated

A12 (m1=3,m2=2) ∈ , cannot activate remaining POEs

 Further pattern set A5
 (m1=1,m2=1)

 (1 2 3) (4 5)
 1 0 0 1 0
 0 1 0 1 0
 0 0 1 1 0
 1 0 0 0 1
 0 1 0 0 1
 0 0 1 0 1

 Further pattern set A6
 (m1=1,m2=2)

 (1 2 3) (4 5)
 1 0 0 1 1
 0 1 0 1 1
 0 0 1 1 1

Figure 3.2. Possible further pattern sets in A5 and A6.

Note that A2 and A4 are ∈ 5
1θ as well as A9 and A11 are ∈ 5

4θ . They have already

been simulated before, thus, they are skipped from further verification pattern sets.

Furthermore, A1, A3, A10, and A12 have the same logic assignments in each group. They

cannot be the verification pattern sets either. Consequently, the remaining verification

5
1θ

5
3θ
5
2θ
5
3θ
5
4θ

5
4θ

5
2θ

5
0θ

5
2θ
5

1θ

5
3θ

5
5θ

17

pattern sets are A5 ~ A8, which are ∈ 5
2θ and 5

3θ respectively. We can choose only 5
2θ ,

or 5
3θ , or both 5

2θ and 5
3θ for further verification sets since they all activate the

remaining EPSs and have the same opportunity to reduce the UPSs. To reduce the

complexity of pattern generation, we choose one 5
mθ at a time. In this example, either

5
2θ or 5

3θ . Table 3.2 shows the selected verification patterns of 5
2θ and their

corresponding outputs which are represented in symbolic output representation. For

example, the pattern set A5 contains six patterns, {10010, 01010, 00110, 10001, 01001,

00101} and their outputs are a1, a2, a1, a3, a3, and a3, respectively. The patterns in A5

can be grouped into three groups {10010, 00110}, {01010}, and {10001, 01001, 00101}

according to their outputs. To select a group of patterns as the valid verification patterns,

we always choose the group with the smaller size if it indeed can detect new EPS. Thus,

in this example, {01010} and {10010, 00110} are selected as the valid verification

patterns. When we apply these patterns {01010}, {10010, 00110} to verify the

interconnections, we expect the outputs to be a2 and a1, respectively. If the real outputs

are not a2 and a1, then the misplaced interconnects are detected. For the same reason,

the gray patterns in A7 can be the valid verification patterns. After having these valid

verification patterns, we have to figure out what new EPSs are detected and determine

the remaining UPSs for further pattern generation.

18

Table 3.2. 5
2θ

 pattern sets.

Verification
pattern sets 5

2θ
UPSs

=(123)(45) Outputs Description

A5

1 0 0 1 0
0 1 0 1 0
0 0 1 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1

a1
a2
a1
a3
a3
a3

m1=1, m2=1, target on the both groups;
{01010}, {10010, 00110} are valid
verification pattern sets

A7
1 1 0 0 0
1 0 1 0 0
0 1 1 0 0

b1
b2
b2

m1=2, m2=0, target on the first group;
{11000} is a valid verification pattern
set

The UPSs_Calculation stage is achieved by the proposed graph automorphism

algorithm. Thus, we first introduce this algorithm, then apply it on the

UPSs_Calculation.

3.2. Graph Automorphism Algorithm

The Graph Automorphism (GA) problem is a well-known and well- studied

problem. However, it is not known to be either in P or NP-complete [2, 4]. Here we

propose a heuristic to solve the GA problem.

Definition 3.3 : A graph G(V,E) with n vertices and m edges consists of a vertex

set V(G)={V1,…,Vn} and an edge set E(G)={E1,…,Em}. Each edge consists of two

vertices called its endpoints. (U,V) is an edge with endpoints U and V. A graph is

undirected if there is no ”direction” on the edges. A graph is weighted if there are

positive integer weights on the edges. The weight of the edge (U,V) is denoted as

W((U,V)).

19

1 2

3 4

1 2

3 4
Aut(G)

(1)
Aut(G)

(2)

4 3

2 1

Figure 3.3. An example of graph G and its automorphisms.

Definition 3.4 : An automorphism of graph G is a permutation of V(G) that

preserves adjacency [20]. The automorphisms of G is denoted as Aut(G), and the

cardinality of this set of automorphisms is denoted as |Aut(G)|.

Example 3.3: An undirected graph G = (V, E) as shown in Fig. 3.3 has V = {1,2,3,4}

and E = {(1,2), (2,3), (3,4)}. Its automorphisms are also shown in Fig. 3.3 which are

{1234 ,4321}, and |Aut(G)| = 2.

Definition 3.5 : A graph G is disconnected if we can partition its vertices into at

least two nonempty sets, R and S, such that no vertex in R is adjacent to any vertex in S.

That is, G is the disjoint union of the two subgraphs induced by R and S.

Definition 3.6 : For any two sets π1 and π2, its intersection π1∩π2 is a set that

contains elements in both sets.

We propose an automorphism representation that is similar to the UPS

representation mentioned in Chapter 2.2 to record the automotphisms of a graph G.

Vertices in the same group in this automorphism representation imply that any

permutation of these vertices is an automorphism.

Example 3.4: For an automorphism representation π1 = (12)(34). It contains 2! × 2!

automorphisms and they are {1234, 1243, 2134, 2143}. If π2 = (2)(134), it contains 1! ×

20

3! automorphisms and they are {1234, 1243, 3214, 3241, 4213, 4231}, then π1∩π2 =

{1234, 1243}, which can be expressed as (1)(2)(34) in automorphism representation.

Now, there are four steps in finding Aut(G) in our algorithm. Given an undirected

graph G with N vertices, the initial automorphism representation is expressed as

(123…N).

G:

(a) (b)

 Adj(G) =

0000000010
0000000001
0000001000
0000000100
0000100000
0100000000
1010000000
0001000000
1000100000
0111000000

A

1
2

3

4
5

6

7

8

92

2
2

1

1
1 1

1

Figure 3.4. An undirected graph G and its Adj(G).

Step 1(Disjoint Graph - DG): If the graph is composed by t disconnected

subgraphs, then the automorphism representation is divided into t groups such that each

group corresponds to one subgraph. If the graph exists two or more subgraphs with the

same number of vertices, then merge the corresponding subgroups into one.

Since swapping any two vertices coming from disconnected subgroups with

different size cannot be an automorphism, we can divide the automorphism

representation of G respect to the graph connectivity of different sizes directly.

Example 3.5: Given a graph G as shown in Fig. 3.4(a). The graph G can be divided

into three subgraphs. Since the subgraphs induced by vertices 7 and 8, and by vertices 9

21

and 10 are the same size, therefore, by Step 1, the updated automorphism representation

π1= (123456)(789A). That means any vertex exchanged from these two groups cannot

be an automorphism.

Definition 3.7 : The Degree Vector (DV) of a graph is a vector that contains each

vertex’s degree such that DV[i] = degree of the ith vertex.

Step 2(Degree Vector - DV): Calculate the DV of the graph G. Then group the

vertices with the same degrees into one group.

Since exchanging of two vertices with different degrees cannot be an

automorphism, we calculate the degree of each vertex and group the vertices with the

same degrees into the same group. The grouping results are the automorphisms and are

complied with the proposed automorphism representation.

An automorphism has to satisfy the properties described in Step 1 and Step 2, so

the updated automorphisms can be obtained from the intersection of automorphisms

derived by Step 1 and Step 2.

Example 3.6: From Fig. 3.4(a), the DV of G is 5 3 3 3 3 1 1 1 1 1. By grouping the

degree of each vertex, the automorphism representation is π2 = (1)(2345)(6789A).

Thus, the updated automorphism representation by the intersection of Step 1 and Step 2

is π3 = (1)(2345)(6)(789A) which comes from (123456)(789A)∩(1)(2345)(6789A).

Definition 3.8 : The partial vector (PV) of vertex Vi in G is the ith row of adjacency

matrix of G, Adj(G).

Definition 3.9 : A single element group (SEG) is a group that contains only one

vertex in the automorphism representation.

If updated automorphism representation contains SEG, go to Step 3, otherwise go

22

to Step 4.

Step 3(Repeated Automorphism - RA): Grouping the partial vector of each SEG

vertex and intersect this grouping result with the updated automorphism representation.

If the updated automorphism representation has newly generated SEG, repeat Step 3,

otherwise go to Step 4.

Since the automorphisms do not relate to the vertex in SEG, partition the partial

vector of SEG vertices can determine the automorphisms. That is, only the neighbors

with the same degree to the SEG vertices can be swapped as automorphisms.

Example 3.7: In the updated automorphism representation π3(1)(2345)(6)(789A),

there are two vertices, 1 and 6, in SEG, respectively. We have known that in Fig. 3.4(a),

vertex 1 is connected to vertices 2, 3 and 4, but is not connected to vertex 5. Thus,

vertex 5 is different to vertices 2, 3 and 4. Besides, the weight of (1,2) is different to the

weight of (1,3) and (1,4). We can use partial vector V_1 to reduce (2345) to (2)(34)(5).

So as targeting on vertex 1, the partial vector V1 is 0122000000. It can be seen from the

1st row of Adj(G). Its corresponding V1_g, is (156789A)(2)(34). Then π3∩V1_g =

(1)(2)(34)(5)(6)(789A) = π4. We find that vertices 2 and 5 are new vertices in SEG.

Therefore, we conduct Step 3 for vertices 2, 5 and 6. As targeting on vertex 6, the partial

vector V6 is 0000100000, V6_g is (12346789A)(5). π4∩V6_g = (1)(2)(34)(5)(6)(789A) =

π5. As targeting on vertex 5, the partial vector V5 is 0200010000, V5_g is

(1345789A)(2)(6). π5∩V5_g = (1)(2)(34)(5)(6)(789A) = π6. As targeting on vertex 2, the

partial vectors V2 is 1000200000, V2_g is (1)(5)(2346789A), π6∩V2_g =

(1)(2)(34)(5)(6)(789A) = π7. Now, no more new vertex in SEG is generated, then go to

Step 4.

23

Step 4: For the group with more than one element in it under automorphism

representation, we observe its corresponding subgraph. If the subgraph is disconnected,

give the joinder “ ”on those vertices which are connected, respectively. If the

subgraph is a cycle, then give the “ [] ” on these vertices. If the subgraph is a complete

graph, then give the “ { } ” on these vertices. Observe those vertices in some subgraph

under automorphism representation with just two elements in it. Record the partial

vector if it really can reduce automorphism representation.

After Step 1 ~ Step 3, we can assure that if more than one vertex in a group, they

must have the same degrees and may be the combination of smaller subgraphs with the

same number of vertices. Their corresponding subgraphs have three conditions. One is

that it is just the combination of smaller subgraphs with same vertices, e.g. G1={(1,2),

(3,4)} shown in Fig. 3.5(a). The number of |Aut(G1)| has special solution for it. We will

introduce this in the next paragraph. Another condition is that it is a connected subgraph

and is also a complete subgraph, e.g. G2={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)} shown in

Fig. 3.5(b). So we can change the order of these vertices in the subgraph and remain

identical under automorphism representation. The other condition is that it is a

connected graph and it is a cycle shown, e.g. G3={(1,2),(1,3),(2,4),(3,4)} shown in Fig.

3.5(c). The number of |Aut(G3)| has special solution for it. We will also introduce this in

the next paragraph. And if there are just two vertices in a subgraph, we have to observe

the neighbors of these two vertices. If they have no neighbors in common, then the

partial vectors of these two vertices are useful. Otherwise, the partial vectors of these

two vertices are useless because these two vertices can be exchanged mutually.

24

1 2

43

1 2

43

(b) (c)

1 2

43

(a)

G1: G2: G3:

Figure 3.5. Disjoint graph, complete graph and cycle graph.

Example 3.8: For the updated automorphism representation π7 (1)(2)(34)(5)(6)

(789A), there are six groups. Only the 6th group (789A) corresponds to the disconnected

subgraph. Observe the vertices 7, 8, 9, and A, vertex 7 is connected with 8 while vertex

9 is connected with A. The group (789A) under automorphism representation now

becomes (A978). Thus, the updated automorphism representation π7 is now (1)(2)(3

4)(5)(6) (A978).

After Step 1 ~ Step 3, we can find the Aut(G) and |Aut(G) | can be obtained based

on the updated automorphism representation. For updated automorphism representation

))((2121 kk nn bbbaaa LL ···)(21 knrrr L , the |Aut(G)| = (n1!) × (n2!) × ··· × (nk!). If the

joinders are shown in the automorphism representation, such as

)(
111 212121 nnn rrrbbbaaa LLLL , |Aut(G)| = {(n1!) × (n1!) × ··· × (n1!) × (the

number of joinder)!}. For example in Fig. 3.5(a), Aut(G1)={1234, 1243, 2134, 2143,

3412, 4312, 3421, 3421}. |Aut(G1)| = 2! × 2! × 2! = 8. If the braces are shown in the

automorphism representation, such as ({
121 naaa L }), |Aut(G)| = n1!. For example in

Fig. 3.5(b), Aut(G2)={1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341,

2413, 2431, 3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321}.

25

|Aut(G2)| = 4! = 32. If the square brackets are shown in the automorphism

representation, such as ([
121 naaa L]), |Aut(G)| = (n1) × 2. For example in Fig. 3.5(c),

Aut(G3)={1234, 1324, 2143, 2413, 3142, 3412, 4231, 4321}. |Aut(G3)| = 4 × 2 = 8. For

this example, the updated automorphism representation π7 is (1)(2)(34)(5)(6) (A978).

Thus, |Aut(G)| = 1! × 1! × 2! × 1! × 1! × (2! × 2! × 2!) = 16. We can enumerate these 16

automorphisms explicitly and they are {123456789A, 12345678A9, 123456879A,

12345687A9, 1234569A78, 123456A978, 1234569A87, 123456A987, 12435678 9A,

12435678A9, 124356879A, 12435687A9, 1243569A78, 124356A978, 1243569A87,

124356A987}.

3.3. UPSs Calculation with Automorphism Technique

From Chapter 3.1, we get the verification pattern sets. Now, we conduct the

UPSs_Calculation stage with the graph automorohism (GA) technique to determine the

remaining UPSs.

For the example in Fig. 3.6(a), we assume the verification pattern set S1 has four

patterns P1, P2, P3 and P4.

To solve the problem of calculating the remaining UPSs of the pattern set S1 with

n bits, an undirected, weighted graph G(V,E) is constructed, which corresponds to the

set S1 with |S1| patterns, P1 to P|S1| . Pi[j] in S1 denotes the jth bit in Pi where i = 1 ~ |S1|

and j = 1 ~ n. The vertex Vk in G corresponds to the kth input variable/port in S1. For all

patterns P1 to P|S1| in S1, when Pi [k] = Pi [k’] = 1, an edge VkVk’ is added into G and

W(VkVk’)=1 where (k, k’) are all nC2 bit pairs. If the edge VkVk’ has existed in G,

nC2

26

W(VkVk’) is increased by one.

Example 3.9: For P1[1 : 7] in S1 shown in Fig. 3.6(a), 1010001, since P1[1] = P1 [3]

= P1 [7] = 1, edges V1V3, V1V7, and V3V7 are added into G, respectively. For P2[1 : 7],

0100110, edges V2V5, V2V6, and V5V6 are added into G, respectively, and so on. The

constructed graph G is an undirected weighted graph and is shown in Fig. 3.6(b). Its

corresponding adjacency matrix, Adj(G), is shown in Fig. 3.6(c). In Adj(G), if there is

no edge between Vk and Vk’ in G, Adj(G)[k][k’] = Adj(G)[k’][k] = 0; otherwise

Adj(G)[k][k’] = Adj(G)[k’][k] = W(VkVk’).

The problem of calculating the remaining UPSs in S1 is now transformed to

finding all automorphisms of G. The effectiveness of this problem transformation is

that the position relations of digit 1s in each pattern in S1 are transformed to the

connectivity relations in G. Finding the port misplacements that maintain S1 to be

invariant (calculating UPSs) is equivalent to finding all automorphisms of G.

(b)

 (1 2 3 4 5 6 7)
P1[1:7]=1 0 1 0 0 0 1
P2[1:7]=0 1 0 0 1 1 0
P3[1:7]=0 0 1 1 0 0 1
P4[1:7]=0 0 0 0 1 1 1

Verification pattern set S1

(a)

1 2

3

4
5

6

7
1 1

1 1
1

1

1 1

2

2

(c)

 Adj(G) =

1021110
0100201
0100021
0010001
1001002
0000110
0010001

Figure 3.6. UPSs_Calculation with GA technique.

27

We demonstrate the UPSs_Calculation stage by the proposed GA algorithm using

the following example.

The initial UPSs is π0 = (1234567). In Step1, the graph in Fig. 3.6(b) is a connected

graph and cannot be divided into subgraphs. Thus, the UPS remains unchanged. In Step

2, the degree vector DV[1:7] is 2 2 4 2 4 4 6. It groups the three 2s in one group, three

4s in another group, and one 6 in the third group. The grouped results can be

represented as (222)(444)(6) and its corresponding UPSs are (124)(356)(7). Then the

updated UPS π1 = π0∩(124)(356)(7) = (1234567)∩(124)(356)(7) = (124)(356)(7). In

Step 3, there is one SEG vertex 7. As targeting on vertex 7 in updated UPSs π1, the

partial vector V7 is 1021110, V7_g, (1456)(27)(3). Then π2 = π1∩V7_g

=(14)(2)(3)(56)(7). SEGs of vertices 2 and 3 are newly generated. Therefore, we have to

repeat Step 3 for vertices 2 and 3, respectively. As targeting on vertex 2, the partial

vector V2 is 0000110, V2_g is (12347)(56). π3 = π2∩V2_g = (14)(2)(3)(56)(7). As

targeting on vertex 3, the partial vector V3 is 1001002, V3_g is (14)(2356)(7). π4 =

π3∩V3_g = (14)(2)(3)(56)(7). Now, no new vertex in SEG is generated, Step 3 is

terminated. For the updated UPS π4 (14)(2)(3)(56)(7), there are five groups. The partial

vector of the first group and the 4th group is useless because the neighbors of each group

are the same. Thus, the updated UPS π4 remains unchanged. The GA technique is now

finished. The summary of this example is shown in Fig. 3.7.

28

 Initial UPSs (1 2 3 4 5 6 7)

 Step (1) DG : (1 2 3 4 5 6 7) (1 2 3 4 5 6 7)

 Step (2) DV : (1 2 4)(3 5 6)(7) (1 2 4)(3 5 6)(7)
 new isolated vertex (7)

 Step (3) RA:

Target on 7
PV : (1 4 5 6)(2 7)(3) (1 4)(2)(3)(5 6)(7)

 new isolated vertices (2)(3)
Target on 2
PV : (1 2 3 4 7)(5 6) (1 4)(2)(3)(5 6)(7)
Target on 3
PV : (1 4)(2 3 5 6)(7) (1 4)(2)(3)(5 6)(7)

Figure 3.7. Graph Automorphism (GA) technique.

In the same example, the remaining UPSs obtained from the CV approach are

(124)(356)(7) and from the SAA approach are (124)(3)(56)(7) in [19]. However, it can

be further reduced to (14)(2)(3)(56)(7) by the GA approach and the real remaining UPSs

are (14)(2)(3)(56)(7). These results demonstrate that the GA approach gets more precise

remaining UPSs than that of the CV approach and the SAA approach.

In this example in Fig. 3.7, Step 4 seems useless for reducing UPSs. However, it

also provides information for reducing UPSs later on. Hence we do not conduct Step 4

actually in the AVPG for preserving the UPS representation concisely. But its impact on

reducing UPSs is still remained by using partial vector concept.

Definition 3.10: The partial vector of vertex t is called automorphism message of t,

denoted as AM_t, if vertex t does not belong to SEG in the UPS representation.

Giving UPSs (1234)(56)(78)(9A)(BC), assume that the valid verification pattern

set is {10010101010, 010010100101, 001001011010, 000101010101}, as shown in Fig.

29

3.8(a) and its adjacency matrix is shown in Fig. 3.8(b). If we apply the GA technique of

Step 1 ~ Step 3, we can find that the updated UPS is still (1234)(56)(78)(9A)(BC). Then

we keep this verification pattern set and calculate AM for each vertex t. For example,

AM_1 defined as the partial vector of vertex 1 is 000010101010, AM_C defined as the

partial vector of vertex C is 010111110200 and they are shown in Fig. 3.8(c). AM_1

implies that if vertex 1 is in SEG after some iteration later, the vertices 5, 7, 9, 11

(vertices with assignment 1 in AM_1) can also be in SEGs as well. Thus if we assume

vertex 1 in SEG indeed in the next UPSs_Calculation process, then we can reduce UPSs

from (1234)(56)(78)(9A)(BC) to (1) (234)(5)(6)(7)(8)(9)(A)(B)(C) according to AM_1.

Other AMs have the similar effect on reducing UPSs.

 Verification pattern set
(1234)(56)(78)(9A)(BC)
 1000 10 10 10 10
 0100 10 10 01 01
 0010 01 01 10 10
 0001 01 01 01 01

AM_1: 000010101010

(a)

(c)

AM_C: 010111110200
(b)

 Adj(G) =

000010101010
000010100101
000001011010
000001010101
110000201111
001100021111
110020001111
001102001111
101011110020
010111110002
101011112000
010111110200

Figure 3.8. Verification pattern set with automorphism message (AM).

Now, the complete AVPG Flow with graph automorphism (GA) technique is

shown in Fig. 3.9, where DG means Disjoint Graph in Step 1, DV means Degree Vector

in Step 2, RA means the Repeated Automorphism in Step 3, and AM means

Automorphism Message in Step 4. The pseudo code of AVPG with GA technique is

30

shown in Fig. 3.10. In line 7, 9, it generates patterns and the output simulation in line 11.

The effectiveness of the simulated patterns is determined in line 12. The steps of GA

technique are in line 14 ~ 16, 20, 23, respectively. In line 17, 21, it includes the valid

patterns into the verification pattern set. At the end of the algorithm, the verification

pattern set, error coverage and UPSs are returned.

Start

E_C = 0, Iteration = 0

E_C = 100%
or

Iteration > bound

Yes

No

StopPattern_Generation

Iteration ++

Pattern_Simulation

Get_Valid_Patterns

UPSs_Calculation
(DG+DV+RA+AM)
(Keep useful AM)

Figure 3.9. Complete AVPG flow.

31

Algorithm: Automatic Verification Pattern Generation with Automorphism Technique
Input: CUV (N-input, M-outtput)
Output: Verification Pattern set (Veri_P_S) , error coverage (E_C) , UPS
{
01 variable i 0 ;
02 UPS (1 2 3 ... N) ;
03 E_C 0 ;
04 simulated[N-1] {0,0, ... ,0} ;
05 Veri_P_S { } ;
06 Temp_P_S { } ;

do
{

if (i==0)
{

07 verification patterns ;
08 i i+1;

}
else

09 verification patterns Pattern_generation (UPS , simulated[N-1]) ;

10 Update (simulated[N-1]);
11 outputs Simulation (verification patterns);
12 {valid verification patterns} output_analysis(outputs);
13 G(V,E) Transition ({valid verification patterns }) ;
14 {UPS_tmp} DG (G , UPS) ;
15 {UPS_tmp} DV (G , UPS_tmp) ;
16 {UPS_tmp} RA (G , UPS_tmp) ;

if (UPS_tmp UPS)
{

17 Veri_P_S Veri_P_S {valid verification patterns } ;
18 E_C E_C_calculation (UPS_tmp) ;

}

19 UPS UPS_tmp ;
20 UPS_tmp2 Use_AM (Temp_P_S,UPS) ;

if (UPS_tmp2 UPS)
{

21 Veri_P_S Veri_P_S Temp_P_S ;
22 UPS UPS_tmp2 ;

}

23 {Temp_P_S} Keep_AM (G,UPS);

if (E_C == 1) break ;
if (simulated[N-1]=={1,1, ... ,1}) break ;

}
while (E_C !=1) ;

24 return (Veri_P_S , E_C , UPS) ;
}

φ

N
N

N CC 11 , −

≠

∪

φ

≠

∪

Figure 3.10. Pseudo code of AVPG with GA technique.

32

Chapter 4

Experimental Results

The GA-based algorithm is implemented in Programming Language Interface (PLI)

environment. Experiments are conducted over a set of ISCAS-85 and some MCNC

benchmarks with large number of inputs. The benchmarks are in Verilog HDL format.

Since only the simulation information of these benchmarks is needed to conduct the

experiments, arbitrary levels of design description can be used for generating

verification pattern set. Table 4.1 summarizes the experimental results of the

comparison of SAA approach in [19] and our graph automorphism technique algorithm

of AVPG. The first five columns show the parameters of each benchmark, including

name, |PI|, |PO|, the number of literals (lits.) and the number of POEs. The |PI|

33

represents the number of inputs and the size of the POEs set is |PI|!-1. The |PO|

represents the number of outputs and influences on the probability of error effect

propagation. The number of literals indicates the complexity of a benchmark. The

remaining columns show the number of verification patterns (pats.), error coverage

(E_C) and the CPU time. The error coverage is defined as 1- (# of undetected POEs / #

of all POEs). The ratio is defined as (the patterns of GA approach / the patterns of SAA

approach). The iteration bound is set to 100. The CPU time is measured in second on a

Sun Sparc II Workstation. The algorithm will be terminated automatically if iterations

are over the bound or the error coverage reaches 100%, and the verification pattern set

and the error coverage are returned. For example, in c880 benchmark, the number of

verification patterns is decreased from 130 to 73 and the ratio of pattern size is 0.56. We

can see that for most circuits, the number of verification patterns is reduced by the

proposed techniques – a new pattern generation algorithm and the GA technique.

Furthermore, the CPU time is acceptable.

34

Table 4.1. Comparisons on experimental results of SAA approach and GA approach.

Parameters SAA approach GA approach Bench |PI| |PO| Lits. Pats. E_C(%) Pats. E_C(%) Time(s) Ratio
c17
c880
c1355
c1908
c432
c499
c3540
c5315
c2670
c7552
c6288

des
alu4

apex6
i9
i8
i7
i6
i5
rot
x3
x4

pair

5
60
41
33
36
41
50
178
233
207
32
256
14
135
88
133
199
138
133
135
135
94
173

2
26
32
25
7
32
22
123
140
108
32
245
8
99
63
81
67
67
66
107
99
71
137

12
703
1032
1497
382
616
2934
4369
2043
6098
4800
7412
1278
904
1453
4626
1311
1037
556
1424
1816
1040
2667

5
130
51
45
35
40
89
222
351
448
30
255
17
187
107
204
240
138
133
247
165
141
186

100
99.999

100
100
100
100
100
100

99.999
99.999
99.999

100
100

99.999
100
100
100
100
100

99.999
99.999
99.999

100

4
73
39
41
35
37
70
174
237
312
30
255
14
154
92
156
194
130
125
150
145
117
120

100
99.999

100
100
100
100
100
100

99.999
99.999
99.999

100
100

99.999
100
100
100
100
100

99.999
99.999
99.999

100

0.23
5.59
0.91
0.93
0.41
0.72
10.70
53.42
92.71
87.45
2.84
5.47
0.51
12.88
1.12
13.65
12.77
10.12
10.65
17.40
9.34
5.14
21.38

0.80
0.56
0.74
0.91

1
0.93
0.75
0.78
0.67
0.69

1
1

0.82
0.82
0.86
0.76
0.81
0.94
0.94
0.61
0.88
0.83
0.65

Total 3466 2704
Ratio 1 0.78

35

Chapter 5

Applications

We use this graph automorphism-based algorithm for computing maximal sets of

symmetric inputs of circuits. It can be used to identify nonsymmetric inputs in a circuit

and enhance the efficiency of input matching, library binding (technology mapping), as

well as logic verification problems.

5.1. About Symmetric

Two inputs xi an xj of a single/multi-output logic function f(X) are said to be

symmetric, if exchanging xi and xj does not change f, i.e., f(x1…, xi,…, xj,…xn) =

f(x1,…, xj,…, xi,…, xn)[34].

36

Symmetric input sets of a logic function are subsets of inputs such that any

permutation of the inputs within a subset leaves the function invariant [33, 34]. The

problem of finding maximal symmetric input sets is formulated as following [33, 34]:

Given a single/multi-output function f(X), find maximal subsets of inputs X1, X2, …, Xk

⊆X, such that X1 ∪ X2 ∪ … ∪Xk = X and the inputs in every subset Xi can be

permuted in any fashion without changing the function. The symmetry relation is an

equivalence relation, and the maximal symmetric input sets are its equivalence classes.

To find the maximal symmetric input sets, it is therefore sufficient to find all pairs of

symmetric inputs and then take the unions of all the pairs having nonempty intersection.

This symmetry is known as the classical symmetry or the nonskew nonequivalence

symmetry [35]. The definition of this symmetry translates into the following

requirements for the cofactors of function XjXiXjXi ff = with respect to any two inputs xi

and xj.

Symmetric input sets, and the particular maximal symmetric input sets, are

important in problems of design verification and diagnosis [12, 21, 23, 25-27, 29-32,

40-44] and in problems of technology mapping, where it is required to find a library

macro to implement a given logic block [24, 28, 36, 39].

The goal of design verification is to check whether a given implementation follows

the specification for which it was designed. If implementation is incorrect, diagnosis

may be used for gate-level implementations [12, 25, 29-31, 40, 41] to locate and then

correct the design. It is typically assumed that the correspondence between specification

and implementation inputs is known. However, due to design errors, implementation

inputs may be interchanged, and hence it may be necessary to compute the actual

37

correspondence between specification and implementation inputs. This problem was

studied in [12], where it was observed that finding the symmetric input sets can save the

effort of trying different permutations of inputs belonging to the same symmetric set,

since all these permutations are equivalent.

In technology mapping applications [24, 28, 36, 39], it is required to check whether

a logic block in the given circuit exists in a macro library. The problem that arises is to

find a correspondence between the inputs of the logic block and the inputs of a library

macro and a correspondence between the outputs of the logic block and the outputs of

the library macro, such that under the two correspondences the library macro is logically

equivalent to the logic block. The library macro can then be used to implement the logic

block. For this problem, too, finding the symmetric input sets of the logic block and the

library macro can save the effort of trying different permutations of inputs belonging to

the same symmetric set.

The problem of finding maximal subsets of symmetric inputs has been studied for

single-output functions, for which the set of all minterms that set the function to 1 is

available (or can be derived) [33]. An efficient method to find subsets of symmetric

inputs, applicable to large multi-output circuits, is studied here. In parallel to our work

on this problem [35, 37, 38], methods using BDD’s [22] are investigated in [35, 37].

However, these BDD-based algorithms are not applicable to the designs that described

in behavior level or RT-level, e.g., soft Intellectual Property, or that do not have compact

BDD representation. Thus, simulation-based approach [38] was proposed to compute

the maximal sets of symmetric inputs. [38] establishes two steps to accomplish the input

symmetric identification. The first step uses heuristic to identify inputs that do not

38

belong to the same symmetric input set. Although the signature-based heuristic used in

[24, 36, 39] can be used for this purpose, the heuristics in [24, 36, 39] were applied to

circuits having compact BDD representation. The second step uses test generation

techniques to further identify the inputs that were not distinguished by the heuristic. The

efficiency of [38]-like approach for computing the maximal sets of symmetric inputs in

circuits without compact BDD representation depends on the “ability” of heuristics.

Good heuristics can distinguish more nonsymmetric inputs prior to entering

computation intensive test generation step. Thus, we focus on the first step of [38]-like

approach by using graph automorphism-based heuristic.

5.2. Symmetric with GA Algorithm

We exchange the UPS representation to the Symmetric-ASymmetric Inputs (SASIs)

to represent the maximal symmetric inputs sets. For an N-input circuit, we number its

inputs from 1 to N. Initially, we assume that all inputs are symmetric, the corresponding

SASIs representation is (1 2 3 … N), i.e., all inputs are placed in one group. If we claim

that input i is asymmetric to the other inputs by our methods, the input i is isolated from

original group and can be expressed as (i)(1 2 … i-1 i+1 … N). Please note the order of

the groups in the SASIs representation is irrelevant, neither is the order of the number in

each SASIs group. By the SASIs representation, if any two inputs are not placed in the

same group, then they are nonsymmetric inputs. Otherwise they are “possibly”

symmetric. Obviously, according to SASIs representation, we can realize exactly which

inputs are asymmetric to the other inputs. Thus, further efforts ought to be put onto the

groups that contain undistinguished inputs. The following example demonstrates the

39

details of the SASIs representation.

Given an 8-input circuit, the inputs are numbered from 1 to 8. The SASIs

representation (12345678) represents all inputs are symmetric. The SASIs

representation (125)(4)(3678) indicates that inputs 1, 2 and 5 are symmetric and inputs

3, 6, 7 and 8 are symmetric. Input 4 is the only one element in the second group. It

means that input 4 is asymmetric to the other inputs. The SASIs (125)(4)(3678) can also

be expressed as (4)(215)(8763). The SASIs representation (1)(2)(3)(4)(5)(6)(7)(8) has

eight groups and each group has only one element; therefore, these inputs are

nonsymmetric inputs. The goal of the proposed heuristic is to induce SASIs

representation from (12345678) to (1)(2)(3)(4)(5)(6)(7)(8) if these inputs are

asymmetric indeed.

Then, we change the AVPG to Automatic Computing Symmetric Procedure

(ACSP). Its flow chart is shown in Fig. 5.1. This flow chart is similar to the AVPG flow

shown in Fig. 3.8. The ACSP reads a combinational circuit and generates heuristic

patterns. The patterns simulation results provide information to SASIs_Calculation

stage for figuring out nonsymmetric inputs in SASIs representation. Then further

heuristic patterns are generated according to the updated SASIs in the next iteration.

When all inputs are identified as nonsymmetric or the iterations are over the bound, the

ACSP will be terminated and the maximal symmetric input sets are returned. The

pseudo code of ACSP with GA technique is shown in Fig. 5.2. In line 5, 7, it generates

patterns and the output simulation in line 9. The valid generated pattern sets are

determined in line 10. The steps of GA technique are in line 11 ~ 17. At the end of the

algorithm, the SASIs are returned.

40

Start

Iteration = 0

All nonsymmetric
or

Iteration > bound

Yes

No

StopPattern_Generation

Iteration ++

Pattern_Simulation

SASIs_Calculation
(DG+DV+RA+AM)
(Keep useful AM)

Figure 5.1. Complete ACSP flow.

41

Algorithm: Automatic Computing Symmetric Procedure with GA Technique
Input: circuit (N-input, M-output)
Output: SASI
{
01 variable i 0 ;
02 SASI (1 2 3 ... N) ;
03 simulated[N-1] {0, 0, ... , 0} ;
04 Intending_AM { } ;

do
{

if (i==0)
{

05 generated pattern sets ;
06 i i+1;

}
else

07 generated pattern sets Pattern_Generation (SASI , simulated[N-1]) ;

08 Update (simulated[N-1]) ;
09 outputs Simulation (generated pattern sets) ;
10 {valid generated pattern sets} outputs_analysis (outputs) ;
11 G(V,E) Transformation ({valid generated pattern sets}) ;
12 {SASI_tmp} DG (G, SASI) ;
13 {SASI_tmp} DV (G, SASI_tmp) ;
14 {SASI_tmp} RA (G, SASI_tmp) ;
15 {SASI_tmp} Use_AM (Intending_AM , SASI_tmp) ;
16 SASI SASI_tmp ;
17 {Intending_AM} Keep_AM (G , SASI);

if (simulated[N-1]=={1,1,...,1}) break ;
 }
while (all nonsymmetric) ;

18 return (SASI) ;
}

φ

N
N

N CC 11 , −

Figure 5.2. Pseudo code of ACSP with GA technique.

5.3. Experimental Results

The GA-based algorithm is implemented in Programming Language Interface (PLI)

environment. Experiments are conducted over a set of ISCAS-85 and some MCNC

benchmarks. Table 5.1 summarizes the experimental results of the previous approach in

[38] and our GA-based algorithm. The first four columns show the parameters of each

benchmark, including name, |PI|, |PO| and the number of literals (lits.). The |PI|

42

represents the number of inputs. The |PO| represents the number of outputs. The number

of literals indicates the complexity of a benchmark. This number is derived from its gate

level description. The remaining columns show the sets of inputs that cannot be

distinguished. In fact, these input sets are possibly symmetric inputs sets. They are

expressed by pairs (size, number of sets), where size is the size of an input set and the

following is the number of sets of that size. For example, for c880, three sets of size two

means that they are possible symmetric inputs and the other sets of size one means that

the 54 inputs are asymmetric to other inputs. The iteration bound is set to 100. The CPU

time is measured in second on a SUN Sparc II workstation. The algorithm will be

terminated automatically if iterations are over the bound or all inputs are nonsymmetric,

and SASIs are returned. According to Table 5.1, we can find that in previous approach,

c499, c1355, and c1908 still have potentially symmetric input sets, but our approach can

distinguish each input as a nonsymmetric input. Also for c2670 and c6288, our approach

distinguishes more nonsymmetric inputs than that of [38]. Please note for c6288, our

approach does not distinguish each input as a nonsymmetric input while [38] does. This

is because our heuristic patterns inherently cannot distinguish each input of a multiplier

such as c6288. [38] uses test generation technique to conquer it instead. Table 5.2 also

shows the results on some MCNC benchmarks. Most nonsymmetric inputs are

distinguished efficiently as usual for most benchmarks. These results demonstrate that

our approach acts as a good filter to identify nonsymmetric inputs as many as possible

in a circuit such that significant efforts can be saved for other succeeding applications.

Our approach is applicable to sequential circuits if circuit states can be fully specified.

The experiments on sequential circuits are progressing.

43

Table 5.1. Comparisons on experimental results of previous approach in [38] and GA
approach.

Parameters Previous approach in
[38] GA approach

Bench
|PI| |PO| Lits. (size, number of

sets)
Time

(s)
(size, number of

sets)
Time

(s)
c17
c880
c1355
c1908
c432
c499
c3540
c5315
c2670
c7552

c6288

5
60
41
33
36
41
50

178
233
207

32

2
26
32
25
7

32
22

123
140
108

32

12
703

1032
1497
382
616

2934
4369
2043
6098

4800

(1,5)
(1,54)(2,3)
(1,32)(9,1)
(1,22)(5,1)(6,1)
(1,36)
(1,32)(9,1)
(1,50)
(1,178)
(1,221)(2,2)(8,1)
(1,166)(2,6)(3,1)
(5,2)(4,4)
(1,32)

0.04
2.86
3.16
1.81
0.24
1.07

19.52
33.95
59.95
5514

6.53

(1,5)
(1,54)(2,3)
(1,41)
(1,33)
(1,36)
(1,41)
(1,50)
(1,178)
(1,223)(2,2)(6,1)
(1,183)(2,8)(3,1)
(5,1)
(2,16)

0.23
1.74
0.91
0.93
0.41
0.72

10.70
33.42
42.55

191.33

2.84

44

Table 5.2. Results of some MCNC benchmarks.

Circuit |PI| |PO| Lits. (size, number of sets) Time(s)
9symml
b1
b9
cm138a
cm162a
cm163a
cm82a
cmb
count
frg1
lal
pm1
term1
x1
x2
x3
x4
z4ml
alu4
apex6
des
i5
i6
i7
i8
i9
pair
rot

9
3

41
6

14
16
5

16
35
28
26
16
34
51
10

135
94
7

14
135
256
133
138
199
133
88

173
135

1
4

21
8
5
5
3
4

16
3

19
13
10
35
7

99
71
4
8

99
245
66
67
67
81
63

137
107

277
17

236
35
58
53
26
62

174
130
223
85

625
2141

71
1816
1040

77
1278
904

7412
556

1037
1311
4626
1453
2667
1424

(9,1)
(1,1)(2,1)
(1,31)(2,5)
(1,4)(2,1)
(1,12)(2,1)
(12,1)(4,1)
(1,3)(2,1)
(4,2)(8,1)
(1,33)(2,1)
(1,26)(2,1)
(1,16)(2,5)
(1,9)(3,1)(4,1)
(1,32)(2,1)
(1,49)(2,1)
(1,8)(2,1)
(1,133)(2,1)
(1,92)(2,1)
(2,2)(3,1)
(1,14)
(1,135)
(1,256)
(1,133)
(1,138)
(1,199)
(1,133)
(1,88)
(1,173)
(1,115)(2,5)(3,2)(4,1)

0.95
0.24
3.88
0.29
0.37
0.36
0.39
0.98
0.58
0.41
1.87
0.31
0.48

20.97
0.49
9.37
5.14
0.77
0.51

12.88
5.47

10.65
10.12
12.77
13.65
1.12

21.38
17.4

45

Chapter 6

Conclusions

In the SoC era, the embedded cores are mixed and integrated to create a system

chip. The verification of the core-based system design should be focused on how the

cores communicate with each other. However, before the interface verification, the

interconnections between the cores in an SoC have to be verified first. System

integrators integrate those cores manually and have the possibility of incorrect

integration due to the misplaced I/O ports. Therefore, we adopt the connectivity-based

POE model to raise the abstraction level of the design verification and to reduce the

time on functional verification in core-based design methodology.

In this thesis, we present a new pattern generation algorithm to activate all

46

remaining POEs and the GA technique to improve the UPSs_Calculation procedure.

These two approaches get more precise remaining UPSs and therefore accelerate the

AVPG and generates a more efficient verification pattern set for verifying core-based

designs.

Besides, we use this GA technique for computing maximal sets of symmetric

inputs of circuits. It can be used to identify nonsymmetric inputs in a circuit and

enhance the efficiency of input matching, library binding (technology mapping), as well

as logic verification problems. The experimental results demonstrate that our approach

distinguishes more nonsymmetric inputs than that of previous work.

R-1

References

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman, “Digital Systems Testing and

Testable Design,” Computer Science Press, 1990, pp. 95.

[2] M. Agrawal and V. Arvind, “A Note on Decision Versus Search for Graph

Automorphism,” in Eleventh Annual IEEE Conference Computational Complexity, 1996,

pp. 272–277.

[3] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L.Todd, Surviving the SOC

Revolution—A Guide to Platform-Based Design. Norwell, MA: Kluwer, 1999.

[4] R. Chang, W. Gasarch, and J. Toran, “On Finding the Number of Graph Automorphism,”

in IEEE Structure in Complexity Theory Conference, 1995, pp. 288–298.

[5] D. I. Cheng and M. Marek-Sadowska, “Verifying Equivalence of Functions with

Unknown Input Correspondence,” in Proceedings European Design Automation

Conference (EDAC), 1993, pp. 81-85.

[6] K.-T. Cheng, and J.-Y. Jou, ”A Functional Fault Model for Sequential Machines,” IEEE

Transactions on Computer-Aided Design, Sep. 1992, pp.1065-1073.

[7] P. Goel and M. T. McMahon, “Electronic Chip-in-place Test,” in Proceedings IEEE

International Test Conference, Oct. 1982, pp. 83–90.

[8] A. Hassan, V. K. Agarwal, B. Nadeau-Dostie, and J. Rajski, “BIST of PCB Interconnects

Using Boundary-scan Architecture,” IEEE Transactions Computer-Aided Design, Oct.

1992, pp. 1278–1288.

[9] H.-T. Liaw, J.-H. Tsaib and C.-S. Lin, “Efficient Automatic Diagnosis of Digital

Circuits,” International Conference On Computer-Aided Design, Nov. 1990, pp.464-467.

[10] J. C. Madre, O. Coudert and J. P. Billon, “Automating the Diagnosis and the

Rectification of Design Errors with PRIAM,” in Proceedings International Conference

on Computer-Aided Design, Nov. 1989, pp. 30-33.

[11] J. Mohnke and S. Malik, “Permutation and Phase Independent Boolean Comparison,” in

Proceedings European Design Automation Conference (EDAC), 1993, pp. 86-92.

[12] I. Pomeranz and S. M. Reddy, “On Diagnosis and Correction of Design Errors,” in

Proceedings International Conference On Computer-Aided Design, Nov 1993.

R-2

[13] J. A. Rowson and A. Sangiovanni-Vincentelli, “Interface-Based Design,” in Proceedings

Design Automation Conference, June 1997, pp. 178–183.

[14] U. Schlichtmann, F. Brglez and M. Hermann, “Characterization of Boolean Functions for

Rapid Matching in EPGA Technology Mapping,” in Proceedings Design Automation

Conference, June 1992, pp. 374-379.

[15] M. H. Schulz, E. Trischler, and T. M. Sarfert, ”SOCRATES: a Highly Efficient

Automatic Test Pattern Generation System,” IEEE Transactions on

Computer-Aided Design, Jan. 1988, pp.126-137.

[16] K.A. Tamura, “Locating Functional Errors in Logic Circuits,” in Proceedings Design

Automation Conference, 1989, pp. 185-191.

[17] S.-W. Tung and J.-Y. Jou, “A Logic Fault Model for Library Coherence Checking,”

Journal of Information Science and Engineering, Sept. 1998, pp. 567–586.

[18] C.-Y. Wang, S.-W. Tung, and J.-Y. Jou, “On Automatic-verification Pattern Generation

for SoC with Port-order Fault Model,” IEEE Transactions on Computer-Aided Design,

vol. 21, Apr. 2002, pp. 466–479.

[19] C.-Y. Wang, S.-W. Tung, and J.-Y. Jou, “An Automorphic Approach to Verification

Pattern Generation for SoC Design Verification Using Port-Order Fault Model,” IEEE

Transactions on Computer-Aided Design, vol. 21, Oct. 2002, pp. 1225–1232.

[20] D. B. West, ”Introduction to Graph Theory,” Upper Saddle River, New Jersey,

Prentice-Hall, Incorporation, 1996.

[21] M. S. Abadir, J. Ferguson, and T. E. Kirkland, “Logic Design Verification via Test

Generation,” IEEE Transactions on Computer, Jan. 1988, pp. 138-148.

[22] R. E. Bryant, “Graph-based Algorithms for Boolean Function Manipulation,” IEEE

Transactions on Computer, Aug. 1986, pp. 677-691.

[23] P. Camurati and P. Prinetto, “Formal Verification of Hardware Correctness: Introduction

and Survey of Current Research,” IEEE Computer, July 1988, pp. 8-19.

[24] D. I. Cheng and M. Marek-Sadowska, “Verifying Equivalence of Functions with

Unknown Input Correspondence,” in Proceedings of European Design Automation

Conference (EDAC), 1993, pp.81-85.

R-3

[25] P. Y. Chung and I. N. Hajj, “ACCORD: Automatic Catching and Correction of Logic

Design Errors in Combinational Circuits,” in Proceedings of International Test

Conference, 1992, pp. 742-751.

[26] S. Devadas, H. K. T. Ma, and A. R. Newton, “On the Verification of Sequential

Machinesat Differing Levels of Abstraction,” IEEE Transactions on Computer-Aided

Design, June 1988, pp. 713-722.

[27] J. Jain, J. Bitner, D. S. Fussell, and J. A. Abraham, “Probabilistic Design Verification,” in

Proceedings of International Conference Computer-Aided Design, Nov. 1991, pp.

468-471.

[28] K. Keutzer, “DAGON: Technology Binding and Local Optimization by DAG Matching,”

in Proceedings of Design Automation Conference, 1987, pp. 341-347.

[29] S. Y. Kuo, “Locating Logic Design Errors via Test Generation and Don’t-care

Propagation,” in Proceedings of European Design Automation Conference (EDAC), Sep.

1992, pp. 466-471.

[30] H. T. Liaw, J. H. Tsaih, and C. S. Line, “Efficient Automatic Diagnosis of Digital

Circuits,” in Proceedings of International Conference Computer-Aided Design, Nov.

1990, pp. 464-467.

[31] J. C. Madre, O. Coudert, and J. P. Billon, “Automating the Diagnosis and the

Rectification of Design Errors with PRIAM,” in Proceedings of International Conference

Computer-Aided Design, Nov. 1989, pp. 30-33.

[32] F. Maruyama and M. Fujita, “Hardware Verification,” IEEE Computer, Feb. 1985, pp.

22-32.

[33] E. J. McCluskey, “Detection of Group Invariance or Total Symmetry of a Boolean

Function,” Bell System Tech, J., Nov. 1956, pp. 1445-1453.

[34] E. J. McCluskey, Logic Design Principles with Emphasis on Testable Semicustom

Circuits, Prentice-Hall, 1986.

[35] Alan Mishchenko, “Fast Computation of Symmetries in Boolean Functions” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 22, No.

11, Nov. 2003, pp. 1588-1593.

[36] J. Mohnke and S. Malik, “Permutation and Phase Independent Boolean Comparison,” in

Proceedings of European Design Automation Conference (EDAC), 1993, pp. 86-92.

R-4

[37] D. Moller, J. Mohnke, and M. Weber, “Detection of Symmetry of Boolean Functions

Represented by ROBDDs,” in Proceedings of International Conference Computer-Aided

Design, Nov. 1993, pp. 608-684.

[38] I. Pomeranz and S.M. Reddy, “On Determining Symmetries in Inputs of Logic Circuits,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol.

13, No. 11, Nov. 1994, pp. 1428-1434.

[39] U. Schlichtmann, F. Brglez., and M. Hermann, “Characterization of Boolean Functions

for Rapid Matching in EPGA Technology Mapping,” in Proceedings of Design

Automation Conference, June 1992, pp. 347-379.

[40] K. A. Tamura, “Locating Functional Errors in Logic Circuit,” in Proceedings of Design

Automation Conference, 1989, pp. 185-191.

[41] M. Tomita, H. H. Jiang, T. Yamamoto, and Y. Hayashi, “An Algorithm for Locating

Logic Design Errors,” in Proceedings of International Conference Computer-Aided

Design, Nov. 1990, pp. 468-471.

[42] R. L. Wadsack, “Design Verification and Testing of the WE 32100 CPUs,” IEEE Design

and Test, Aug. 1984, pp. 66-75.

[43] R, S. Wei and A. L. Sangiovanni-Vincentelli, “PROTEUS: A Logic Verification System

for Combinational Circuits,” in Proceedings of International Test Conference, Sep. 1986,

pp. 350-359.

[44] A. S. Wojcik, “Formal Design Verification of Digital Systems,” in Proceedings of

Design Automation Conference, June 1983, pp. 228-234

V-1

Vita

Chen-Ling Chou was born in Taipei, Taiwan on August 2, 1980. She received the

M.S. degree in Electrical and Control Engineering from National Chiao Tung University

in June 2002 and entered the Institute of Electronics, National Chiao Tung University in

September 2002. Her major studies were Electronics Design Automation (EDA) and

VLSI design. She received the M.S. degree from NCTU in June 2004.

