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Chapter 4  

Evaluation of Clock Synchronization Techniques 
This chapter describes the effect of clock offset, including interference and phase 

rotation, and how it degrades the system performance. Various timing correction 

schemes are also described. The second section introduces the interpolation methods 

for the clock offset correction. 

4.1 The Effect of Sample Clock Frequency Offset 
The frequencies of the oscillators that respectively drive DAC and ADC at the 

transmitter and receiver will never be the same. As shown in Figure 4.1, there exists a 

constant delay dt  and clock offset ∆t  between transmitted samples and received 

samples. The clock frequency offset is defined by [11] 

 
T

TTt −
=∆

'   (4.1) 

where T and T’ are sampling period of transmitter and receiver, respectively. The 

relationship between transmitted signal (.)r  and received signal (.)r̂  is  

 ,...2,1,0),)1(()(ˆ ' =++= ∆ mTtmTtrmTr d  (4.2) 

where m  is the sample index. The clock frequency offset degrades the system 

performance due to a slow shift relative to each other. The problem has been analyzed 

by several authors [12,13,14,15]. 
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Figure 4.1 Sampling frequency mismatch between transmitter side and receiver side 

 

Assume that dt  equals to zero for simplicity, then the result knR ,  of the k th tone 

after FFT is [11,16] 
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where n  is the DMT symbol index, k  is the tone index, knH ,  is the channel 

response, knX ,  is the transmitted data, f∆  is the tone spacing, N  is the block size 

of FFT , gN  is the length of GI, Nn,k is additive white noise and ),( knNt∆
 is the 

inter-carrier interference. The first term of Eq. (4.3) shows that the effect of a sample 

phase shift results in a rotation of the FFT outputs. This is so-called the “delay-rotor 

property”. The interference ),( klNt∆
 due to clock offset can be approximated by [16] 

 2)(
3 ∆≈

∆
ktPt

π  (4.4) 

Therefore, the degradation grows at a rate proportional to the square of the product of 

the offset ∆t  and tone index k. It means the outermost sub-carrier is most affected. 
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The degradation can be also expressed as SNR loss in dB [13] and shown in the 

following approximation. 

 ))(
3

1(log10 2
2

10 ∆+≈ kt
N
ED

o

s
n

π  (4.5) 

Once the clock is synchronized, the residual frequency offset would always be small. 

Thus, the interference caused by residual clock offset can be ignored. However, there 

still exists a significant phase rotation problem, namely the first term of Eq. (4.3): 

 
N

gNN
nktj

e

+
∆π2

 (4.6) 

Though ∆t  is always small, the phase rotation increases with symbol number. The 

system performance will be severely damaged if there is no tracking for clock offset. 

Figure 4.2 (a) (b) show the constellation of two received symbols after FFT under 

clock offset = 2 and 4 ppm, respectively, while random 64-QAM signals are 

transmitted on each tone. As expected, the phase rotation is proportional to clock 

offset, and the outer constellation points are more seriously affected than the inner 

constellation points at the same phase rotation. Figure 4.3 and Figure 4.4 show that 

the phase rotation is proportional to sub-carrier index and symbol index under a 

non-zero clock offset. 
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(a) 

 

(b) 

Figure 4.2 The constellation of the received 64-QAM data after FFT over 2 VDSL 

symbols with 4096 tones under clock offset of 2 ppm (a) and 4 ppm (b), respectively. 
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Figure 4.3 Phase rotations of symbol 1, 2, 3 versus tone index under 100 ppm clock 

offset. 
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Figure 4.4 Phase rotations of tone 40, 80 and 120 versus symbol index under 100 ppm 

clock offset. 

In [12,13,14,17,18,19,20], various sample timing correction schemes have been 

proposed. An overview of these sample timing correction methods is discussed from 

section 4.1.1 to section 4.1.4. 
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4.1.1 Continuous-time Sample Timing Correction [12,13,14] 

 If a synchronized sampling frequency is desired at receiver side, a possible 

solution is to adjust the sampling frequency of ADC in the continuous-time domain. 

As soon as the timing error information is obtained from the output of phase error 

detector, it will be low-pass filtered by a loop filter and then be fed back to a VCXO 

(Voltage-controlled crystal oscillator). The VCXO is used to control the sampling 

frequency of ADC. Figure 4.5 shows how this scheme works. However, a VCXO 

usually has higher cost and higher noise jitter than a XO (Crystal oscillator). 
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Figure 4.5 Continuous-time sample timing correction 

4.1.2 Discrete-time Sample Timing Correction [13,14,17,18,20] 

 With a free-running oscillator, timing correction can be done by some 

discrete-time signal processing techniques on sample sequence. The timing correction 

is usually performed by an interpolator, as shown in Figure 4.6. A simple interpolator 

may be a finite impulse response filter (FIR) that produces a fractional delay. The 

interpolator coefficients are time-varying, because they depend on the timing error to 

correct. Due to the time-varying filter, the FFT output data suffers a time-varying 

phase rotation and attenuation. Such distortion introduces additional noises, especially 

on high frequency tones that are close to the Nyquist frequency. The noise can be 
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reduced by over-sampling the received signal or by using a high-order interpolator. 

However, due to the high sampling rate and high computation complexity, this scheme 

might not be suitable for very high-rate systems. 
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Figure 4.6 Discrete-time sample timing correction 

4.1.3 Frequency-Domain Correction [14] 

 As mentioned in section 4.1, Eq. (4.3) shows the delay-rotor property, which 

means that this timing correction can be performed in the frequency domain by 

rotating the FFT outputs as shown in Figure 4.7. The rob/stuff block is responsible for 

correcting the integer part of estimated timing error D̂ , usually 1±  sample. The 

fractional part of estimated timing error D̂  is corrected by a rotor after FFT. 

Therefore, no over-sampling is needed and the timing error correction can be done by 

a single complex multiplication. However, this method works well only when a small 

frequency offset is guaranteed. Accurate and expensive XOs are required at both 

transmitter and receiver sides. 
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Figure 4.7 Frequency-domain sample timing correction 

4.1.4 Hybrid Time/Frequency-Domain Correction [14,19] 

Figure 4.8 depicts the time error correction based on a interpolation filter in time 

domain and a rotor in frequency domain [1,2,3]. An interpolator filter is used to 

correct the clock offset ∆t . The rob/stuff block corrects the integer part of estimated 

timing error D̂ . Finally, the rotor provides phase rotation to obtain the desired 

accuracy of the timing error. 
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Figure 4.8 Hybrid time/frequency-domain correction 

4.1.5 Comparisons of Sample Timing Correction Methods 

Continuous-time sample timing correction is a straightforward method to 

synchronize the sampling timing. In this scheme, a VCXO with relative high cost and 
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high noise jitter is unavoidable. To reduce the cost, one might try a low-precision 

VCXO and correct the residual timing error in the discrete domain. However, a 

low-precision VCXO introduces additional noise. Continuous-time sample timing 

correction seems not suitable for a VDSL system, which is very sensitive to 

synchronization errors. All-digital timing correction schemes are more feasible than 

directly changing the sampling frequency with a VCXO. All-digital timing correction, 

namely discrete-time domain, frequency-domain and hybrid time/frequency-domain 

corrections, are performed by discrete signal processing techniques on 

non-synchronized input samples, as described in the previous sections. However, the 

cost of updating the rotor coefficients is quite high. If a look-up table were used for 

coefficient updating, it would require a large memory. Besides, the delay-rotor 

property is only valid while clock offset is very small.  

In this work, we apply the discrete-time domain correction based on signal 

interpolation. The key drawback of this scheme is the high sampling rate and high 

computation complexity. The design goal is then set to find a suitable interpolator, 

given a fixed over-sampling ratio and the length of interpolator. 

4.2 Interpolator Designs 
 Delaying a signal in time domain by an amount D can be considered as a linear 

time-invariant filtering, as shown in Eq. (4.7) and Figure 4.9. 

 feeH Djj
ideal πωωω 2 where,)( == −  (4.7) 

idealH)(nx )()( Dnxny −=

 

Figure 4.9 An ideal delay system 
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The desired frequency response is specified by both the magnitude and the phase 

response as: 

 ωω allfor1|)(| =j
ideal eH  (4.8) 

 ωω DeH j
ideal −=)}(arg{  (4.9) 

An approximation to )( ωj
ideal eH  can be obtained by minimizing the p-th order cost 

function pE  of the frequency-domain error function )( ωjeE  as 

 )()()( ωωω j
ideal

jj eHeHeE −=  (4.10) 

 ∞== ∫ ,...,3,2,1,|)(|1
0

pwheredeEE pj
p ω

π
π ω  (4.11) 

A straightforward solution is to minimize the cost function in the least-square 

error sense, which means p equals to 2. The cost function becomes 
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 (4.12) 

In some cases, the desired frequency response does not need to be defined 

explicitly in the whole Nyquist band. By defining the response only in the desired 

frequency band [0, pω ], the general least-square cost function can be rewritten as 

[21,22] 

 ω
π

ω ωω deHeHE p j
ideal

j
LSGen ∫ −=

0

2
. |)()(|1  (4.13) 

If the order of cost function is set to ∞→p , then the resulting cost function 

will lead to a minimax solution [21,22]. The minimax solution is unique and equal to 

the equirriple solution. Equirriple approximation has the advantage of keeping the 

peak error value in a given limit, as shown in Eq. (4.14). The equirriple solution can 

be found by some iterative algorithms [23].  



 

 42

 

{ }

{ }
⎭
⎬
⎫

⎩
⎨
⎧

∈
=

=
∞→

)(
],0[

max
min

minmax

ω

ωω
j

p

pp

eE

EE

 (4.14) 

4.2.1 Resampling on Reconstructed Continuous-time Signals 

 Signal interpolation is conceptually equal to a resampling operation on 

reconstructed signals in continuous-time domain. To obtain the reconstructed 

continuous-time signals, sinc interpolation and polynomial-based interpolation are 

frequently used. 

4.2.1.1 Windowed Sinc Delay Interpolator [21,22] 

By minimizing the least-square cost function, the corresponding impulse 

response of )( ωjeH  can be found by performing inverse Fourier transform. 

 
∞≤≤∞−−=

⋅= ∫−
−

nDn

deenh njDj

),sinc(
2
1)( ω
π

π

π

ωω

 (4.15) 

Unfortunately, this impulse response is infinitely long and non-causal. Figure 4.10 

shows the impulse response h(n) (Eq. 4.15) with delay (a) D=0 sample and (b) D=0.3 

samples. In practice, a causal and finite length approximation is desired.  
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(b) 

Figure 4.10 Impulse response of a sinc interpolator with the delay (a) D=0.0 (b) 

D=0.3 

4.2.1.1.1 Rectangular-Windowed Sinc Delay Interpolator 

A finite length approximation can be found by truncating Eq. (4.15) with an 

L-point rectangular window [23], as in Eq. (4.16). 
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The resulting finite impulse response is expressed as Eq. (4.17) 
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where L is the FIR filter length. Figure 4.11 shows a causal interpolation FIR with 

L=7 and D=3.3.  
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Figure 4.11 A causal interpolation FIR with L=7 and D=3.3 

Rectangular window has the narrowest main-lope among all type of windows, which 

gives a sharpest transition band. However, it has a well-known bad feature, i.e., Gibbs 

Phenomenon. The peak error value of frequency response is nearly held constant 

regardless of filter lengths. To reduce the Gibbs Phenomenon, several time-domain 

window functions are described below. 

4.2.1.1.2 Hamming-Windowed Sinc Delay Interpolator [24] 

By tapering the window smoothly to zero, the side-lopes are greatly reduced at the 

price of wider transition band. A commonly used window is Hamming window, which 

is represented as 
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4.2.1.1.3 Kaiser-Windowed Sinc Delay Interpolator and Chebyshev-Window Sinc 

Delay Interpolator [23,24,25] 

Given the filter length, Kaiser window and Chebyshev window provide more 

flexibility than other windows, because a trade-off between main-lope width and 

side-lope amplitude can be achieved. The Kaiser window [24] is characterized by a 

shape parameter β , which controls the maximal side-lope level as in Eq. (4.19) and 

Eq. (4.20) 
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where )(0 βI  is the 0th-order Bessel function. If desired side-lope attenuation is α  

dB, then 

 
⎪
⎩

⎪
⎨

⎧

<
≤≤−+−

>−
=

21,0
5021,210788602158420

50,7811020
40

α
α)(α.)(α.

α).(α.
β .  (4.20) 

Chebyshev window [23,24] minimizes the mainlobe width, while a particular sidelobe 

height is given. Note that its side-lobes all have the same height. The design 

procedure of a Chebyshev-windowed Sinc interpolator involves iterative optimization 

procedures. The Chebyshev window is easy to use because it is included in certain 

commercial mathematical program packages, such as MATLAB. For both window 

functions, a lower side-lope amplitude results in a wider main-lope width. Figure 4.12 
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shows the trade-offs between main-lope width and side-lope amplitude of a Kaiser 

window and a Chebyshev window. Figure 4.13 shows the described four window 

functions and their resulting frequency responses for a sinc function. 

 

 
(a) 

 

(b) 

Figure 4.12 Trade-offs between main-lope width and side-lope amplitude of a Kaiser 

window (a) and a Chebyshev window (b). 
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 Figure 4.13 Various window functions and their frequency responses 
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4.2.1.2 Polynomial-based Interpolations [26,27] 

In addition to formulating the design objective with the concept of linear 

filtering subject to minimum frequency errors, polynomial-based interpolations are 

also popular. Lagrange interpolation [26] and splines [27] have been suggested for 

fractional delay approximations. These techniques are not optimal in that their 

frequency responses deviate from the ideal delay response noticeably. However, they 

usually have good responses at low frequencies. 

4.2.1.2.1 Lagrange Interpolation [26] 

As shown in Figure 4.14, Lagrange interpolating polynomial is a polynomial of 

degree (L-1), which passes through L known sample points. The equation and the 

fractional delay filter corresponding to Lagrange interpolation are shown in Eq. (4.21) 

and Eq. (4.22) respectively. 

 ∏∑
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4.2.1.2.2 Spline Interpolation [27] 

Spline interpolation is developed under the consideration that general signals are 

continuous in their waveforms and also their derivatives in physical world. A popular 

spline interpolation method is “Cubic Spline”. It is a kind of third-order polynomial 

interpolation technique that assures 1st and 2nd derivatives of the common boundary 

point between two adjacent interpolation intervals are respectively the same. This 

matches the intrinsic property of general natural continuous signals whose derivatives 

are also continuous. The interpolation process starts with L-point received data 

0r ~ 1−Lr . As shown in Figure 4.15, 3rd polynomials iiiiiiii CtCtCtCtr ,0,1
2

,2
3

,3)(~ +++=  

are used to fit the curve in the i-th area between two consecutives known samples. To 

solve the total 4*(L-1) unknown coefficients, 4*(L-1) equations are required. Assume 

that the first derivative (slope) and second derivative (curvature) of the common 

boundary point are respectively the same, totally we have 2*(L-1)+(L-2)+(L-2) known 

equations. The remaining two equations may be obtained by assuming that the very 

first and last points have zero slopes (nature type) or else. Due to the large amount of 

matrix operations for solving the linear equations, this method is impractical to be 

applied to fractional delay interpolation. Luckily, there is a special basis for the space 

of all splines, called “B-spline”. Its details are described in section 4.2.1.2.3. 
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Figure 4.15 Cubic Spline Interpolation 

4.2.1.2.3 B-spline Interpolation 

B-splines provide a flexible way to make splines with arbitrary order of continuity. 

The simplest way to construct a B-spline is to convolve a square function )(1 th  with 

itself as many times as desired, as shown in Figure 4.16. 

 

)(1 th

)()()( 112 ththth ∗=

)()()()( 1113 thththth ∗∗=

)()()()()( 11114 ththththth ∗∗∗=

 

Figure 4.16 Construction of B-splines 

In the figure, )(2 th , )(3 th  and )(4 th  are so-called “Linear B-spline”, “Qudratic 

B-spline” and “Cubic B-spline,” respectively, as described by Eq. (4.23), Eq. (4.24) 

and Eq. (4.25). Coefficients of the desired causal fractional delay FIR can be easily 

obtained by time-shifting and substituting t  with corresponding values. Figure 4.17 
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shows the response )(nh  of a cubic B-spline interpolator with (a) D=2 and (b) D=2.3. 

Note that for time-domain signals, a B-spline interpolator is poor because the 

interpolated points will not be the same as input points even when the delay D equals 

to zero. However, its excellent frequency response, which has coherent magnitude 

responses and least phase error, makes it suitable for a DMT-based system. 
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Figure 4.17 A cubic B-spline interpolator with (a) D=2 and (b) D=2.3 

4.2.2 Discrete-time Over-sampling Approach [21,28,29] 

The previous windowed-sinc and polynomial-based FD interpolators are realized 

by resampling of the reconstructed analog functions from the original discrete samples. 

Conceptually, they are continuous-time interpolation operations. Obviously, pure 

digital signal interpolation is a fundamental and popular approach for FD interpolation. 

That is, to achieve high-resolution FD, one can perform digital “over-sampling” 

operations [28,29] to solve the desired fraction-delayed samples. With N-times 

oversampling, we can split the unit delay into N divisions, as shown in Figure 4.20. In 

the figure, )(zH  is an Nth-band low-pass filter. Note that the proto-type filter )(zH  

can be obtained by various optimization techniques, such as least-square and 

equirriple approximations. 

N↑ )(zH)(zR )(~ zR
 

Figure 4.18 Digital LTI N-times over-sampling 
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Applying polyphase decomposition techniques, an N-branch polyphase interpolator 

can be formed. In what follows, z-transforms are used to derive a polyphase 

interpolator. Note that each branch is an L-tap filter, which is shown in Eq. (4.26) and 

Figure 4.21. 
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Figure 4.19 Original form of a polyphase interpolator (a), a more efficient version (b) 

and an equivalent polyphase interpolator with an output commutator (c) 
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In the upsampling polyphsae structure, the kth branch is responsible for generating the 

samples with fractional delay of k/N, where )}1(...,,1,0{ −∈ Nk , coefficients of the kth 

branch polyphase filter kH  is selected. Although the upsampling operation is 

computationally intensive especially for high-resolution fractional delays, the 

complexity can be much reduced by only considering those required FD sampled. The 

upsampling-based digital FD interpolators are disadvantageous in that it can not 

realize arbitrary delay. If the desired delay d  falls into an open interval 

)1,( N
k

N
k + , the result is undefined. To solve this problem, a well-known approach 

[28] is to approximate each branch’s polyphase filter coefficient as a pth-order 

polynomial of fractional delay d, as shown in Eq. (4.27). Usually, the approximating 

polynomial of the filter coefficients is obtained by fitting them in the least-squares 

sense. 

 }1)-(L ..., 2, 1, 0,{,)(
0

, ∈= ∑
=

ndcnh
p

m

m
nm  (4.27) 

where nmc ,  are real-valued coefficients of approximating polynomials. Then the 

resulting interpolator will be able to produce continuous delay. In addition, the 

well-known Farrow structure can be applied to the approximating polynomials for 

low-complexity realization, which will be shown in Section 5.1.2. 

4.2.3 Frequency Responses of Various Interpolator Designs 

 Designing an interpolator can be viewed as designing a finite impulse response that 

produces a fractional delay. Figure 4.18 (a) (b) (c) (d) shows the responses of 4-tap 

fractional-delay FIRs, which are designed by various windowed sinc functions. Figure 

4.19 (a) (b) (c) (d) shows the responses of various 4-tap fractional-delay FIRs, which 

are designed by general least-squares approximation, equirriple approximation, 
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Lagrange interpolation and Cubic B-spline interpolation. Since the received data of a 

DMT system will be demodulated and decoded in frequency domain, the frequency 

response of the interpolator is important. Due to the time-varying coefficients, a 

fractional delay FIR has different frequency responses with respect to the fractional part 

d  of input delay D  in sample.  

 The magnitude dispersion and phase delay error will introduce additional noise. 

Therefore, an interpolator with small phase error and coherent magnitude response is 

desired. As shown in Figure 4.18, the rectangular-windowed sinc interpolator has the 

sharpest transition band but the most severe Gibbs Phenomenon. Other windowed sinc 

interpolators have lower peak errors but wider transition bands. Note that all the 4-tap 

windowed sinc interpolators have poor phase responses. In Figure 4.19, the general 

least-squares interpolator gains a better phase response than windowed sinc 

interpolators, and so is the equirriple interpolator. Lagrange interpolator is characterized 

by its good phase response and a flat magnitude response around radian frequency 

0=ω . Due to the non-zero tap weight, the output of a cubic B-spline interpolator will 

not be the same as input sample when fractional delay 0=d . As shown in Figure 4.19 

(d), the frequency response is not all-pass when 0=d . It is not a perfect interpolator 

in time domain but results in coherent magnitude responses among various fractional 

delays in frequency domain. In addition, a cubic B-spline interpolator also has a good 

phase response. It is hard to determine which FD FIR is better by simply inspecting 

their frequency responses. Guidelines of interpolator design will be discussed later in 

section 5.3. 
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(c)                                   (d) 

Figure 4.20 Windowed Sinc FD FIR filters: (a) Rectangular window; (b) Hamming 

window; (c) Kaiser window; (d) Chebyshev window. 
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Figure 4.21 Various FD FIR filters: (a) General least-squares approximation; (b) 

Equirriple approximation; (c) Lagrange interpolation; (d) Cubic B-spline interpolation 
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