
 

 57

Chapter 5  

Simulations and Performance Comparisons 

 Each function block of the adopted synchronization structure has been simulated 

and verified with MATLAB. After that, the whole system performance is evaluated to 

see if the specification requirements are met. Section 5.1 shows the simulation 

environment for a VDSL system. Section 5.2 shows how to choose a suitable 

interpolator for timing correction, where magnitude distortion ratios (MDR) and phase 

mean square error (Phase MSE) are introduced. Section 5.3 shows the complexity 

comparisons among different interpolators. At last, achievable bit-rate for each 

interpolator design are listed in section 5.4. 

5.1 Simulation Environment 
The proposed transceiver architecture is shown in Figure 5.1. With 50ppm clock 

offset, a number of test loops and interpolators are simulated to see how the system 

performance varies under different circumstances. Details of simulation settings are 

listed in Table 5.1.  
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Figure 5.1 The VDSL transceiver architecture 
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Table 5.1 Parameters of the simulation environment 

AWGN 80dB 

Channel Model VDSL#1 (1000ft/1500ft/4500ft) 
VDSL#5 (Short), VDSL#6 (Medium), VDSL#7 (Long) 

Clock Offset 50ppm 

 

 

Interpolator Type 

Sinc with Rectangular window 
Sinc with Hamming window 

Sinc with Kaiser window 
Sinc with Chebyshev window 

General Least-squares 
Equiripple 

Cubic Lagrange 
Cubic B-spline 

Interpolator length 4 taps 

Coefficient-approximating 
polynomial order 3rd -order 

5.2 Mean Phase Square Errors and Magnitude Distortion Ratios 

Since the non-ideal frequency response of the interpolator can be greatly 

compensate by a single-tap per-tone frequency-domain equalizer, the actual shape of 

an interpolator’s frequency response is not so important. As described in section 4.2.5, 

the dispersion of magnitude responses and phase delay errors are due to the 

time-varying coefficients of an interpolator. The magnitude dispersion and phase 

delay error introduce additional noise to the system and hard to be compensated by 

the FEQ. Phase errors due to interpolator have dramatic impact on clock 

synchronization because they result in incorrect timing error estimation after FFT. 

Therefore, one should try to find an interpolator with the least phase errors, especially 

on pilot tones, and most coherent magnitude responses. Assuming a uniform 

distribution of the timing error over the interval [0,1], the mean-square-error of phase 
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delay per tone can be expressed as 
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where k is the tone index, d is the desired fractional delay in sample, kd~  is the 

resulting fractional delay of the kth tone produced by the interpolator and )p(d  is the 

probability density function of d.  

The dispersion of magnitude response can be measured by magnitude distortion 

ratios (MDR), which is represented by Eq. (5.2). 
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where kH  is the frequency response of the interpolator at the kth tone, || kH  is the 

magnitude response of the interpolator at the kth tone, 
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Figure 5.2 (a) (b) shows the MSE of phase delay per tone and the MDRs of the 

mentioned interpolators. Clearly, the cubic B-spline interpolator has the smallest 

phase error and most coherent magnitude response. Besides, windowed sinc 

interpolators are not suitable for VDSL system due to their poor phase responses. 
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(b) 

Figure 5.2 (a) The MSE of phase delay and (b) the MDR of each 4-tap interpolator. 
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5.3 Computational Complexity 

5.3.1 Polyphase Structure [29] 

As described in Section 4.2.5, a polyphase interpolator is only suited for 

applications with fixed fractional delay steps. Since a VDSL system is very sensitive 

to small timing errors, the desired fractional delay for timing correction will be very 

small, which results in a large look-up table for a polyphase structure. Thus the 

polyphase structure is not feasible for a VDSL system. 

5.3.2 Farrow Structure 

 An efficient implementation for continuously variable delay element was 

proposed by Farrow [28]. Recall from Eq. (4.26), the basic idea is to design a set of 

filters approximating a fractional delay in the desired range, 10 ≤≤ d , and then to 

approximate each coefficient as a pth-order polynomial of fractional delay. 
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where nmc ,  are real-valued coefficients of approximating polynomials. The transfer 

function of the filter becomes 
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This is the well-known Farrow structure, which is illustrated in Figure 5.3. 
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Figure 5.3 The Farrow structure of an interpolator 

An interpolator with Farrow polynomial approximation coefficients is able to produce 

continuous delays. The delay accuracy is affected by the filter length L  and the 

Farrow polynomial order p . After some trials, we found that it is sufficient for an 

interpolator with 4=L  and 3=p . Note that polynomial-based interpolator, such as 

Lagrange interpolation and B-spline interpolation, can be directly realized by the 

Farrow structure without further approximation. 

 Increasing filter length of an interpolator results in better phase and magnitude 

responses. However, the filter length of an interpolator cannot be arbitrarily long. 

Here are two reasons: First, the length of composite channel, including the 

transmission channel and the interpolator of the receiver, must be shorter than the 

guard interval to avoid ISI. Second, longer interpolator length means higher 

computational and hardware complexities. After some trials, we found that a 4-tap 

interpolator is sufficient. To further reduce the complexity, Farrow structure is applied 

to implement the interpolator. Table 5.2 shows the Farrow coefficients nmc ,  of 

approximating polynomials for each interpolator. 
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Table 5.2 Farrow coefficients Cm,n of 3rd-order approximating polynomials for 

several interpolators with L=4: (a) Cubic Lagrange; (b) Cubic B-spline; (c) General 

least-squares; (d) Equirriple approximation 

(a)                                     (b) 

nmc ,  0=m  1=m  2=m  3=m  
nmc ,

0=m 1=m  2=m  3=m

0=n  0 -1/6 0 1/6  0=n 0 0 0 1/6 

1=n  0 1 1/2 -1/2  1=n 1/6 1/2 1/2 -1/2

2=n  1 -1/2 -1 1/2  2=n 2/3 0 -1 1/2 

3=n  0 -1/3 1/2 -1/6  3=n 1/6 -1/2 1/2 -1/6

(c) 

nmc ,  0=m  1=m  2=m  3=m  

0=n  0.00011558716467 -0.18244862414608 0.00836421136531 0.174113241888099

1=n  -0.00008438989326 1.00762432260056 0.51592150964278 -0.523637055893489

2=n  0.99982438645660 -0.46855617420566 -1.05498965803770 0.523637055893501

3=n  0.0001444162719 -0.3566195242487 0.5307039370295 -0.17411324188805

(d) 

nmc ,  0=m  1=m  2=m  3=m  

0=n  0.00009484461886  -0.17917953935513 0.00416257481495  0.17504875737509 

1=n  -0.00006203384095 1.00378828812900  0.52181431419784  -0.525700016716772

2=n  0.99984055176787 -0.47031686637354 -1.05528573595328 0.52570001671675 

3=n  0.00012663745422 -0.3542918824003 0.52930884694047 -0.17504875737506
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Farrow coefficients of both cubic Lagrange interpolator and cubic B-spline 

interpolator are simple enough to be implemented with few multiplications and 

additions. Note that the scale-by-2 or scale-by-1/2 operation can be realized by binary 

shifts with wiring, while the scale-by-1/3 operation can be realized by simple 

shift-and-add operations. The corresponding architectures of cubic Lagrange and 

cubic B-spline interpolator are shown in Figure 5.4 and Figure 5.5. The computational 

complexities of these two interpolators are listed in Table 5.3 

Table 5.3 Computational complexities per sample of cubic Lagrange and cubic 

B-spline interpolator 

Interpolator type −+ /  constant× >><< or d×  

Cubic Lagrange 11 2 4 3 

Cubic B-spline 11 4 3 3 

Equirriple / 
General LS. 

15 16 0 3 
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Figure 5.4 Farrow structure for cubic Lagrange interpolator 
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Figure 5.5 Farrow structure for cubic B-spline interpolator 
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5.4 Performance Evaluation of the Whole System 
 We evaluate the system performance by achievable bit-rates due to the discussed 

interpolators while the BER requirement is met. Under different channel conditions, 

the simulation results are listed in Table 5.4. 

Table 5.4 Achievable bit-rates of various interpolators and channel conditions 

Test Loop Interpolator type Bit-rate (Mbps) BER 

Cubic B-spline 56.3 <10-7 

Cubic Lagrange 55.1 <10-7 

Equirripple  52.2 <10-7 

 

VDSL#1 (1000ft)

General least-squares 52.0 <10-7 

Cubic B-spline 42.9 <10-7 

Cubic Lagrange 40.1 <10-7 

Equirripple  41.4 <10-7 

 

VDSL#1 (1500ft)

General least-squares 41.1 <10-7 

Cubic B-spline 15.2 <10-7 

Cubic Lagrange 15.4 <10-7 

Equirripple  15.4 <10-7 

 

VDSL#1 (4500ft)

General least-squares 15.5 <10-7 

Cubic B-spline 49.9 <10-7 

Cubic Lagrange 49.9 <10-7 

Equirripple  49.3 <10-7 

 

VDSL#5 (Short) 

General least-squares 48.9 <10-7 

 Cubic B-spline 23.7 <10-7 
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Cubic Lagrange 23.8 <10-7 

Equirripple  23.1 <10-7 

VDSL#6 (Medium) 

General least-squares 23.9 <10-7 

Cubic B-spline 10.7 <10-7 

Cubic Lagrange 10.6 <10-7 

Equirripple  10.8 <10-7 

 

VDSL#7 (Long) 

General least-squares 10.7 <10-7 

As shown in Table 5.4, 4-tap interpolators, which are designed by cubic B-spline 

interpolation, Lagrange interpolation, equirripple approximation and general 

least-squares approximation, all provide reasonable bit-rates for a VDSL system in all 

the channel conditions we simulated. Considering the computational complexities of 

these Farrow-structured interpolators, polynomial-based interpolators are superior to 

others. For short and high-SNR-channel loops, the cubic B-spline interpolator 

achieves a higher bit-rate than the Lagrange interpolator with a slight higher 

computational complexity. 

5.5 Fixed-point Simulations 

To reduce the hardware complexity, the goal of fixed-point simulations is to 

decide the word length of each node in the receiver with as least performance 

degradation as possible. Finite-precision computation in the receiver causes a decrease 

in data rate. In this work, we assume that a decline of less than 1 Mbps in data rate is 

tolerable for fixed-point simulations. The precisions are decided by the following 

procedures: First, decide the precision of ADC output while the following stages still 

perform floating-point operations. Second, decide the precision of Loop filter output. 
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Its precision directly affects the accuracies of re-sampling process and output of the 

timing error detector. Then, the word length of interpolator output should be decided 

next. Following the received signal flow, the other nodes’ precisions are decided in a 

similar way. If the simulation result is poor, i.e. the resulting data rate is too low, then 

set a higher word length for the node and repeat the simulation once again. The 

resulting word length of each node is shown in Table 5.5 and Figure 5.6. 

Table 5.5 Word length of each node in the receiver 

Node Name Word Length (bit) 
ADC Output 12 

Loop Filter Output 12 
Timing Error Detector Output 14 

Interpolator Output 16 
FFT Output 20 
FEQ Output 20 

 

 

Figure 5.6 Simulated fixed-point receiver architecture 

Alternatively, Table 5.6 shows the achievable bit rates of the mentioned interpolators, 

while the BER requirement is met. Since running fixed-point simulations for each 

channel condition is very time-consuming and the results among different test loops 

should have similar trend, we simply shows the system performance with fixed-point 

simulations under the test loop, VDSL#1 (1500ft). 
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Table 5.6 Achievable bit-rates of various interpolators 

Test Loop Interpolator type Bit-rate (Mbps) BER 

Cubic B-spline 43.1 <10-7 

Cubic Lagrange 40.1 <10-7 

Equirripple  40.6 <10-7 

 

VDSL#1 (1500ft)

General least-squares 41.2 <10-7 

 




