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摘要 

    在這篇論文中，我們運用 5 nm 粒徑之硒化鎘奈米粒子及 15 nm 粒徑之

金奈米粒子，透過庫倫吸引力，建構奈米感光元件於矽晶片上。為了產生

庫倫吸引力於矽晶片奈米粒子之間，我們在矽晶片上之二氧化矽表面產成

一層化學物質，N-[3-(trimethoxysilyl)propyl]-ethylene diamine (TMSPED)。

這樣的化學分子一端與二氧化矽產生穩定的分子鍵 (covalent bond)，另外一

端有氨基 (amino groups)，經過質子化 (protonation) 後可帶正電。將黏有

TMSPED 的矽晶片浸泡在含有金奈米粒子的水溶液中，TMSPED 的正電會

吸引金奈米粒子表面的正電，進而將金奈米粒子黏在晶片上。接下來我們

將黏有金奈米粒子的矽晶片浸泡在表面含有帶正電之硒化鎘奈米粒子溶

液。同樣地，透過庫倫吸引力將硒化鎘奈米粒子黏金奈米粒子表面上。為

 i



了 要 使 硒 化 鎘 奈 米 粒 子 帶 正 電 ， 我 們 在 它 表 面 上 在 生 成

4-(2-Aminoethyl)phenol (Tyramine) 分子。理論上，經過一次次重複的組裝

過程，我們能形成含有多層硒化鎘奈米粒子及金奈米粒子的奈米結構在矽

晶片上。接著我們在矽晶片上之電極兩端加上電壓，並在有照 375 nm 光線

或是完全黑的情況下，量測流過奈米感光元件的電流。實踐結果發現，在

照光後，在各種電壓下有固定約 2 nA 的電流增加。這樣的特性主要來自於

硒化鎘奈米粒子與金奈米粒子間之 “nano-Schottky-diode” 結構。除此之

外，在同樣的寬度，越長的電極能量到越大的電流變化。 
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ABSTRACT 

 
In this work, we used approximately 5 nm diameter CdSe nanoparticles (NPs) and 15 nm 

diameter Au NPs to fabricate the photo-sensing nanodevice on silicon oxide substrate by ionic 

interaction, where Au NPs serve as bridges to connect between CdSe NPs.  To introduce 

Coulombic attraction between NPs and substrate, the silicon oxide surface is modified by 

N-[3-(trimethoxysilyl)propyl]-ethylene diamine (TMSPED), which provides positive charged 

amino (-NH3
+) groups to attract negative (-COO-) charged Au NPs.  Then, the Tyramine 

(4-(2-Aminoethyl)phenol)-modified CdSe NPs that have positive charged amino groups on 
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the particle surface are assembled onto Au NPs.  Theoretically, the assembly process can be 

repeated for several times to form multi-layers structure of Au and CdSe NPs.  The overall 

fabrication process is observed by SEM.  Finally, the nanodevice is fabricated on silicon 

oxide surface between Al electrodes of TSMC 0.35 m chip.  By applying voltage bias 

across the electrodes, we measured the photocurrent flowing through the nanodevice after 

illumination of 375 nm laser diode.  The experimental results showed that after illumination, 

there was constantly about 2 nA increment to the current measured in dark for each voltage 

bias.  This I-V behavior mainly results from the “nano-Schottky-diode” structure between 

CdSe and Au NPs. Besides, with the same width, the electrodes with longer length will have 

larger variation of photocurrent after illumination.   
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FIGURE CAPTIONS 
 

CHAPTER 1 
 
Fig. 1.1 Chemistry is the central science for further applications such as material science 

and biotechnology. The combination of advanced materials and tailored 
biomolecules will produce the future nanodevices [1]. 

Fig. 1.2 The top-down processes will have their limit below 100 nm, and the bottom-up 
processes will also have a limit at 2~5 nm. The gap will be filled by nanoclusters 
and biomolecules [1]. 

Fig. 1.3 The overall idea of Ag-Au NPs networks formation by taking advantage of the 
interaction between antibodies and low molecular weight hapten groups. Bivalent 
linkers with terminal hapten groups, either mono-specific 8 or bi-specific 9, allow 
the directed assembly of homo-oligomeric (a) or hetero-oligomeric (b) structure, 
respectively. The TEM images (c) were obtained from colloidal Au/antibody 
aggregates before and after the addition of linker 8 [1]. 

Fig. 1.4 (a) ~15 nm diameter Au NPs modified with alkanethiol-12 base oligomers are 
hybridized to the oligonucleotide linkers of varying duplex spacer length (24, 48, 
72 base pairs).  (b) The TEM images of DNA-linked Au NPs aggregates 1-3 are 
shown.  (A) A portion of a 24 base linked aggregate 1. (B) A higher magnification 
image of the area in part A. (C) A 48 base linked aggregate 2. (D) A higher 
magnification image of the area in part C. (E) A 72 base linked aggregate 3. (F) A 
higher magnification image of the area in part E. Scale bars for each image are 
shown at the bottom of the micrograph [2]. 

Fig. 1.5 Specific binding of EcoRI conjugated NPs to single λ-DNA molecules. Image (A) 
is a stretched DNA without binding particles.  Images (B) to (F) show single NPs 
bound to sites 1-5.  N denotes the normalized experimental position for bound 
particles [3].   

 
 

CHAPTER 2 

 
Fig. 2.1 Density of states in metal (A) and semiconductor nanocrystals.  In each case, the 

density of states is discrete at the band edges.  In metal, the Fermi level is in the 
center of a band.  As a result, kT will exceed the level spacing even at low 
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temperature and small size.  In semiconductor, the Fermi level lies between two 
bands, so that there is large level spacing even at large size.  The HOMO-LUMO 
gap increases as the semiconductor nanocrystals become smaller (bellow 10 nm) 
[4].   

Fig. 2.2 (a) Illustration of a STM tip-single metal NP-insulator coated gold substrate double 
tunnel junction and corresponding equivalent circuit. (b) Current versus voltage for 
a single galvinol-coated Au NP acquired in aqueous solution at pH 5.  Insect 
shows an STM image of the sample.  Tip was coated with Apiezon wax and gold 
substrate was coated with hexanethiol [7]. 

Fig. 2.3 The cross sectional figure of photo-sensing nanodevice on CMOS sensing chip 
Fig. 2.4 The schematic of CMOS sensing circuit. 
Fig. 2.5 The Hspice simulation of CMOS sensing circuit.  
Fig. 2.6 The simulation result of output versus Rt, the resistance value of photo-sensing 

nanodevice, is shown above.  When the resistance of Rt is below 4.85 MΩ, the 
output will saturate because Mcm12 will leave the saturation region, entering triode 
region. 

 

CHAPTER 3 

 
Fig. 3.1 The overall construction process of photo-sensing nanodevice by DNA 

hybridization system on silicon chip substrate is shown above.  (a) The 
cross-section figure of the surface of silicon chip designed for photo-sensing 
nanodevice construction, (b) The surface of silicon oxide region after TMSPED (or 
APTES) modification, (c) The assembly process of CdSe NPs on silicon oxide 
substrate, (d) The connection between DNA primer and CdSe NPs, (e) The 
assembly of Au NPs on CdSe NPs by self-assembly process and (f) The nanodevice 
structure after repeated assembly process. 

Fig. 3.2 The TEM analysis of Au NPs with diameter range from 20 nm~40 nm is shown 
above. (The photo is obtained from Global Nano Tech. Inc., Taipei) 

Fig. 3.3 The typical UV-visible spectrum of Au NPs suspension in water is shown above.  
There is a minor peak at 530 nm, which is usually used to determine the 
concentration of NPs.  The concentration here is about 123 ppm (623 µM).  

Fig. 3.4 The original DTNB solution at pH 8 is transparent and achromatic. Then, the 
primers with thiol groups are added into the solution. After the disulfide bond 
(-S-S-) is attacked by the thiol group of primer, the color of solution will become 
yellow and the UV-visible spectrum will have an increment at 400 nm due to TNBs 
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presented in the solution. 
Fig. 3.5 The UV-visible spectrums of the three samples are shown above. There is an 

obvious increment at 260 nm and 400 nm in the spectra due the addition of 
primers. 

Fig. 3.6 After standing for 10 minutes, the color of three samples, “DTNB + primer1”, 
“DTNB + primer2”, and “DTNB only” (form right to left) are shown above. 

Fig. 3.7 The original Au NPs water suspension was “washed” by the method illustrated 
above. 

Fig. 3.8 The process of conjugating the Au NPs with two complementary primers is shown 
above. Sam3, Sam1DNA, and Sam2DNA are compared with the experimental 
results, Sam1s and Sam2s. 

Fig. 3.9 The UV-visible absorbance spectrums of Sam1,2,3, Sam1s,2s, Sam1DNA, and 
Sam2DNA are shown above. We can obviously identify the decrement at OD-260 
after centrifugation because the DNA primers attached to the Au NPs are brought to 
the bottom of tube, resulting in the lower concentration of primers in the 
supernatant. While measuring the UV-visible absorbance spectrum, all the 
concentration of the samples were diluted to 30/430 of its original value by adding 
400 µL of the phosphate buffer to 30 µL of the sample solution. 

Fig. 3.10 The figure above shows the “washing process” to remove excess DNA primers of 
both samples before mixing them. 

Fig. 3.11 The right and middle ones are the samples where Au NPs suspensions are labeled 
with DNA primer1 and 2 respectively, while the left one is the mixture of the right 
and middle. As we can see, there is obvious precipitation in the mixture due to 
self-assembly process between promer1 and 2, and the color of suspension changes 
from purplish red to light blue. 

Fig. 3.12 The structure of TOPO-coated CdSe NP and MUA-modified CdSe NP.  The 
covalent Se-S bond between MUA and CdSe NP is more stable than the ionic or 
Van der Waals bond between TOPO and Cd site on CdSe NPs. 

Fig. 3.13 The overall and detailed process of conversion of oil-soluble TOPO-coated CdSe 
NPs to water-soluble MUA-modified CdSe NPs is shown above.  

Fig. 3.14 The conceptual diagram of the conjugation of DNA primers with MUA-modified 
CdSe NPs is shown above. 

Fig. 3.15 The detailed assembly process of Au NPs on gold substrate is shown above.  The 
purified Au NPs suspension was prepared by the method illustrated in Fig. 3.7.  

Fig. 3.16 The SEM images of the Au NPs modified gold substrate by DNA self-assembly 
process with 50k, 100k and 150k magnification.  Note that the diameter of the Au 
NPs (synthesis form physical method) is in the range of 20~40 nm. To increase the 
resolution of images, 3 nm thick Pt layer is placed on the surface to increase 
conductivity of samples.   
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Fig. 3.17 The conceptual diagram of TMSPED and APTES modifying the silicon oxide 

surface is shown above. (a) Before modification, the H2O molecules will attack the 
Si of TMSPED or APTES, competing with the –OH group on silicon oxide. (b) 
After modification, the TMSPED or APTES will form stable covalent bond with 
the silicon oxide. 

Fig. 3.18 The SEM images of CdSe NPs modified silicon oxide substrate with 50k, 100k, 
150 magnification.  Note that the diameter of most CdSe NPs is less than 10 nm.  
To increase the resolution of images, 3 nm thick Pt layer is placed on the surface to 
increase conductivity of samples.  

Fig. 3.19 The overall construction process of photo-sensing nanodevice by Coulombic force 
system on silicon chip substrate is shown above. (a) The cross-section figure of the 
surface of silicon chip designed for photo-sensing nanodevice construction, (b) The 
modification of TMSPED (or APTES) on silicon oxide surface and the protonation 
of amino (-NH3

+) groups, (c) The assembly of approximately 15 nm diameter Au 
NPs on silicon oxide substrate by ionic interaction, (d) The assembly of 
approximately 5 nm diameter Tyramine-modified CdSe NPs on silicon oxide 
substrate by ionic interaction, and (e) The formation of photo-sensing nanodevice 
structure after repeated assembly process. 

Fig. 3.20 The detailed Tyramine modification process of HDA-coated CdSe NPs is shown 
above. 

Fig. 3.21 (a) The close photographs of 100 µL of approximately 15 nm diameter Au NPs 
solution + 100 µL DI water (left) and 100 µL of approximately 5 nm diameter 
CdSe NPs solution + 100 µL DI water (right).  The Au NPs solution was in deep 
red while the Tyramine-modified CdSe NPs solution was in yellow.  (b) The close 
photographs of the mixture of 100 µL Au NPs solution and 100 µL 
Tyramine-modified CdSe NPs solution just after mixing (right), the mixture after 
standing 6 hrs (middle) in room temperature, and the mixture after standing 5 days 
in room temperature (left).  As we can see, the color of mixture just after mixing 
was like that of Au NPs solution.  However, after 6 hrs, it became dark purplish 
red.  After 5 days, there was obvious precipitate at the bottom and the supernatant 
became pale yellow. 

Fig. 3.22 (a) The TEM images of approximately 15 nm diameter Au NPs (left) and 
approximately 5 nm diameter Tyramine-modified CdSe NPs.  (b) The TEM 
images of the mixture of Au and Tyramine-modified CdSe NPs after standing 24 
hrs (Fig. 3.20 (b)-middle) The right is larger magnification of part of the left.  (c) 
The UV-visible spectrum of An NPs solution.  (d) The UV-visible spectrum of 
original HDA-coated CdSe NPs solution in organic solvent. 

Fig. 3.23 The close photographs of SiO2/Si wafer fragments of different level assembly 
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process. (right 1) blank SiO2/Si wafer fragment. (right 2) Au NPs on SiO2/Si wafer 
fragment. (right 3) CdSe NPs + Au NPs on SiO2/Si wafer fragment. (right 4) Au 
NPs + CdSe NPs + Au NPs on SiO2/Si wafer fragment. (right 5) Cdse NPs + Au 
NPs + CdSe NPs + Au NPs on SiO2/Si wafer fragment. (right 6) Au NPs + CdSe 
NPs + Au NPs + CdSe NPs + Au NPs on SiO2/Si wafer fragment. 

Fig. 3.24 The SEM images (50k magnification) of photo-sensing nanodevice structure of 
different level construction are shown above.  Each SEM image has its 
corresponding close photographs in Fig. 3.22. 

Fig. 3.25 The SEM images (150k magnification) of photo-sensing nanodevice structure of 
different level construction are shown above.  Each SEM image has its 
corresponding close photographs in Fig. 3.22. 

 

CHAPTER 4 

 
Fig. 4.1 The layout of the CMOS sensing chip is shown above.  The chip is 1.35 mm * 

1.35 mm and has 48 pins.  There are six identical CMOS sensing circuits, (1)~(6). 
Fig. 4.2 The cross section figure of electrodes structure is shown above, where the four 

layers of metal lines are connected by vias.  The passivation window in this work 
is 86 µm * 86 µm.  The silicon oxide region between Al electrodes has different 
shapes.  The length of the region is ranging from 0.8 µm to 15 µm. 

Fig. 4.3 (a) The SEM image of the 13 electrodes.  (b) The size (width * length between 
electrodes) table of the corresponding 13 electrodes.  The central 6 electrodes, 
(1)~(6), are connected to the six identical CMOS sensing circuits.  The rest seven 
electrodes are connected directly to pads for direct measurement.   

Fig. 4.4 The measurement results of CMOS sensing circuit are shown above, where It 
means the current following through the Rt.  In this measurement, instead of 
changing Rt, we change the Vbias to simulate the changing Rt for convenience in 
measuring.  The value of Vip is very close to Vin = 1.355 V, which means the gain 
of negative feedback loop is large enough to lock Vip with Vin. 

Fig. 4.5 The measurement result of output versus Vbias. 
Fig. 4.6 The SEM images (with different magnification) of blank electrodes (a) short and (b) 

wide. 
Fig. 4.7 The SEM images (with different magnification) of Au NPs modified electrodes (a) 

short and (b) wide. 
Fig. 4.8 The SEM images (with different magnification) of Au NPs + CdSe NPs + Au NPs 

modified electrodes (a) short and (b) wide. 
Fig. 4.9 The overall experimental procedure of fabrication and measurement of 
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photo-sensing nanodevice on TSMC 0.35 µm silicon chip is shown above.   
Fig. 4.10 The measurement environment setup.   
Fig. 4.11 The electrodes under measuring are shown above.  Electrodes 1 and 2 have silicon 

oxide region of 30 µm * 15 µm and 30 µm * 5 µm (width * length) respectively.  
Both electrodes are connected directly to pads without connection with CMOS 
sensing circuits. 

Fig. 4.12 The SEM images of electrodes after labeling Au NPs and after labeling CdSe NPs 
+ Au NPs + CdSe NPs + Au NPs are shown above.  The two electrodes in this 
measurement have the same nanostructure in SEM images due to the same 
fabrication process.  Because the electrodes are too large to be included in the 
image, we show only the edges parts of electrodes. 

Fig. 4.13 The reflective UV-visible absorbance spectrum of nanodevice with structure CdSe 
+ Au +CdSe + Au NPs on silicon oxide substrate is shown above, where the clean 
silicon oxide was used as blank.   

Fig. 4.14 The I-V curves of the photo-sensing nanodevice on Electrodes 1 and 2 when in 
dark or illumination with 375 nm laser diode.  The black line (Idark) means the 
measuring under dark environment and the blue line (Iillumination) means measuring 
under illumination of 375 nm laser diode. 
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TABLE FOR FULL TEXT OF CHEMICAL 

REAGENTS 
 

Simplified 
Form 

Full Text (or Synonyms) Formula Molecular 
Weight 

APTES 3-aminopropyltriethoxysilane C9H23NO3Si 221.37 
Cyanamide Carbodiimide CH2N2 42.04 
Citric acid 
Monohydrate 

Acidum citricum monohydricum C6H8O7· H2O 210.14 

DTNB 5,5'-Dithiobis(2-nitrobenzoic acid) C14H8N2O8S2 396.35 
DTT dithiothreitol C4H10O2S2 154.2 
Hydrogen 
tetrachloroaurate 

Hydrogen tetrachloroaurate(III) HAuCl4·3H2O 393.83 

MUA 11-mercaptoundecanoic acid C11H22O2S 218.36 
NHS 1-Hydroxy-2,5-pyrrolidinedione C4H5NO3 115.09 
Tyramine 4-(2-Aminoethyl)phenol C8H11NO 137.18 
TMSPED N-[3-(trimethoxysilyl)propyl]-ethylene 

diamine 
C8H22N2O3Si 222.36 
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