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ABSTRACT 

We survey various results concerning operator factorization problems. More 
precisely, we consider the following setting. Let H be a complex Hilbert space, and 
let .G?( H) be the algebra of all bounded linear operators on H. For a given subset % of 
3?(H), we are interested in the characterization of operators in Q(H) which are 
expressible as a product of finitely many operators in V and, for each such operator, 
the minimal number of factors in a factorization. The classes of operators we consider 
include normal operators, involutions, partial isometries together with their various 
subclasses, and other miscellaneous classes of operators. Most of the known results are 
for operators on finite-dimensional spaces or finite matrices. The paper concludes with 
some applications, due to Hochwald, concerning the uniqueness of the adjoint 
operation on operators. 

1. INTRODUCTION 

Which bounded linear operator on a Hilbert space can be factored as the 
product of finitely many normal operators? What is the answer if “normal 
operators” is replaced by “involutions,” “partial isometrics,” or other classes 
of familiar operators? Just as in the case of the factorization of integers, 
polynomials, or other objects in mathematics, such operator factorization 
problems seem to arise very naturally in the course of study of operators. In 
the cases when they are solved, the solutions are usually neat and elegant; 
otherwise, they pose interesting and challenging questions whose solutions 
may lead us to a deeper understanding of the nature of the operators under 
consideration. However, in the past such problems seem to have attracted 
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little attention among operator and matrix theorists and found very few 
applications even within operator or matrix theory itself. The purpose of this 
paper is to give a survey of problems of this nature, collect together the 
relevant references, and briefly indicate their proofs and interrelationships. 
Hopefully, this paper can serve as a convenient reference so that to enhance 
people’s interest in this area of research. 

Although some of the problems discussed below can be considered for 
operators on Hilbert spaces over more general fields or even for linear 
transformations on vector spaces over division rings, for ease of exposition we 
will restrict ourselves to bounded linear operators on complex, separable 
Hilbert spaces whose dimension can be either finite or infinite. Formally, let 
H be such a space, and let G4( H) be the algebra of all bounded linear 
operators on H. For a given subset V of ?.8( H), we would like to characterize 
the class Wm of operators in B(H) which are expressible as a product of 
finitely many operators in %‘. For each operator T in qm, let Z(T; %?) denote 
the minimal number of factors in such a factorization of T, called the length 
of T with respect to %. The determination of Z(T; 9) is, in general, pretty 
difficult. In such cases, we content ourselves with the quantity L(W), the 
length of V, defined as 

As it turns out, for most factorization problems L(V) is finite, and it may or 
may not depend on the dimension of H. (The one exception occurs for the 
problem of factorization into orthogonal projections; see Theorem 4.6.) For 
each k < L(9), the characterization of operators expressible as the product 
of k operators in V is also of interest. Such problems can usually be solved 
completely for operators on finite-dimensional spaces or finite matrices. 
Much less is known for operators on infinite-dimensional spaces. 

In Section 2 below, we first consider the factorization problem for 
symmetric, skew-symmetric, Hermitian, positive definite, positive semidefi- 
nite, accretive, positive stable, and normal operators. The factorizations into 
various kinds of involutions will be taken up in Section 3. They include 
involutions, pseudoinvolutions, orthogonal involutions, symmetries, reflec- 
tions, dilatations, orthogonal reflections, and unitary reflections. (The precise 
definitions will be given in the discussions below.) Section 4 characterizes the 
finite products of partial isometries, unilateral shifts, orthogonal projections, 
and idempotent operators. Section 5 concerns products of operators in other 
miscellaneous classes such as nilpotent, quasinilpotent, and unipotent opera- 
tors, EP matrices, and commutators (both additive and multiplicative). In the 
last section, results of Hochwald’s concerning the uniqueness of the adjoint 
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operation on operators will be discussed. Their proofs utilize various factor- 
ization results considered in this paper. 

Due to the expository nature of the paper, we will omit most of the proofs 
in the discussions below, referring instead to the original papers. However, 
from time to time, we try to give the main idea behind and the flavor of the 
exact proofs, especially of those results which appeared recently. Along the 
way, we will also indicate the open problems and unexplored areas. 

In the following, we will let I, denote the n X n identity matrix and a(T) 
denote the spectrum of an operator T. 

2. NORMAL OPERATOR 

In this section, we consider the factorization problems when the factors 
are normal operators, its subclasses, and other related operators. We start 
with the symmetric ones. An operator T is symmetric if there exists an 
orthonormal basis { ei} for the underlying space such that (Tei, “i) = (Z’ej, ei) 
for all i, j. In particular, a matrix representation of T, T = [aij], is symmetric 
if a i j = a ji or, equivalently, T = T’, where TL denotes the transpose of T. In 
1910, Frobenius [32] proved probably the first result in operator factoriza- 
tions. 

THEOREM 2.1. Any finite matrix is the product of two symmetric ones, 
one of which may be taken to be nonsingular. 

Actually, this result holds not only for complex matrices but for matrices 
over any field. Not well known among mathematicians, it has since appeared 
in the literature quite a few times (cf. [51] and the references in [14] or [71]). 
Its proof can be based on factoring the Jordan canonical form (for the 
complex field) or rational form (for arbitrary fields), since the property of 
being the product of two symmetric matrices is preserved under similarity. 
For operators on infinite-dimensional spaces, this problem seems not to have 
been explored. 

Closely related to symmetric matrices are skew-symmetric ones. A matrix 
T is skew-symmetric if T t = - T. Products of two skew-symmetric matrices 
have been completely characterized by Gow and Laffey [33]. 

THEOREM 2.2. A finite matrix is the product of two skew-symmetric 
matrices if and only if 

(1) its elementary divisors corresponding to nonzero eigenvalues occur 
with even multiplicity, and 
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(2) its elementary divisors corresponding to the zero eigenvalue are of the 

f O?TTl 

Xkl, Xki,. ..) xk*, xk: or Xkl, Xki )...) xk*, Xk:, x, 

where kj = ki or kj + 1, 1~ j < s. 

In particular, the following corollary is the closest to Theorem 2.1 for 
skew-symmetric products. 

COROLLARY 2.3. A matrix of even size is the product of two skew-sym- 
metric matrices, one of which is nonsingular, if and only if each of its 
elementary divisors occurs with even multiplicity. 

Cow and Laffey [33] proved the preceding two results, basing their study 
on alternating forms and alternate transformations. More recently, in work to 
appear, they obtained the following result concerning factorizations with 
skew-symmetric factors (cf. also [46] and [47]). 

THEOREM 2.4. Zf n > 2 is even, then every n x n nonsingular matrix is 
the product of five skew-symmetric matrices and five is the smallest such 
number. 

The conjugate version of the symmetric matrix is the Hermitian one. Next 
we consider factorizations of this type. For finite matrices, this is solved by 
Radjavi [51]. 

THEOREM 2.5. A finite matrix is the product of finitely many Hermitian 
matrices if and only if its determinant is real. The length of Hermitian 
matrices is 4. 

The proof of the sufficiency part proceeds by first factoring the matrix or 
rather, its rational form, into the product of two matrices which are either a 
real matrix or similar to a real one, and then invoking Frobenius’s result, 
Theorem 2.1. The minimality of 4 can be easily seen from the following 
result, also due to Radjavi [52], which holds even for operators on infinite- 
dimensional spaces. 

THEOREM 2.6. Let T be an operator on H. Zf the closure of the 
numerical range of T lies entirely within one of the open quadrants, then T is 
not the product of three Hermitian operators. 
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This is an easy consequence of the Toeplitz-Hausdorff theorem on the 
convexity of the numerical range (cf. [38, Problem 2101). 

Products of Hermitian operators on infinite-dimensional spaces will be 
considered later on, together with those of normal, positive definite, and 
positive semidefinite operators. 

For the products of two Hermitian operators on finite-dimensional spaces, 
we have the following characterization (cf. [18], [55, Theorem l] and [71]). 

THEOREM 2.7. The following statements are equivalent for a finite 
matrix T: 

(1) T is the product of two Hermitian matrices; 
(2) T is the product of two Hermitian matrices, one of which is nonsingu- 

lur; 
(3) T is similar to a matrix with real entries; 
(4) T is similar to T*. 

The proof is an easy exercise in linear algebra. In the context of infinite- 
dimensional spaces, the implication (1) * (4) is no longer true. Examples 
have been furnished in [55] and [34] (cf. Example 2.11 below). As a 
consolation, it was conjectured in [34] that T is similar to T* if T is the 
product of two Hermitian Fredholm operators. This seems still to be open. As 
for the implication (4) j (1) despite the abundance of supporting special 
cases as given in [SS], its validity is still unconfirmed even under the extra 
assumption that T is invertible. The problem of characterizing the products 
of three Hermitian operators was proposed in [Sl]. It is unsolved even in the 
finite-dimensional case. 

Next we consider the products of positive definite and positive semidefi- 
nite operators. Recall that an operator T on the space H is positive definite, 
denoted T > 0 [positive semidefinite, denoted T > 0] if (TX, r) > 0 [(TX, x) 
> 0] for any x # 0 in H. For convenience, we will abbreviate them as 
positive (nonnegative) operators. For operators on finite-dimensional spaces, 
the factorization problem concerning the former has been tackled by 
Ballantine in a series of papers [3], [4], and [S], which culminate in its 
complete characterization in [6]. For the latter, it was (partially) solved only 
recently in [68]. In the following, we will describe such results, starting with 
the products of two. Note that, in the next two theorems, the spaces on which 
the operators act may be infinite-dimensional. 

THEOREM 2.8. An operator is the product of two positive operators one 
of which is invertible if and only if it is similar to a positive one. 
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The first appearance of results of this sort (for finite matrices) is probably 
in [61]. Here is a simple argument for its proof. If T = AB, where A, B > 0 
and A is invertible, then T is similar to A- 1/2TA’/2 = A1/2BA’/2, which is 
positive. Conversely, if T = X-%X, where X is invertible and C > 0, then 
T = (X-‘X-‘*)(X*CX) is the product of two positive operators. A slight 
modification of the above argument yields the following result for the product 
of two nonnegative operators. 

THEOREM 2.9. An operator is the product of two nonnegative operators 

one of which is invertible if and only if it is similar to a nonnegative one. 

In the case of finite dimensions, Theorem 2.8 settles completely the 
factorization problem with two positive factors, since positive operators are 
automatically invertible. For infinite-dimensional spaces, the situation is not 
clear. We next strengthen Theorem 2.9 for operators on finite-dimensional 
spaces. 

THEOREM 2.10. The following statements are equivalent for a finite 

matrix T: 

(1) T is the product of two nonnegative matrices; 

(2) T is the product of two nonnegative matrices one of which is 

nonsingular; 

(3) T is similar to a nonnegative matrix. 

This result is proved in [68]. The proof for the implication (1) * (3) can 
be reduced to the corresponding one for Theorem 2.8. 

If the space is infinite-dimensional, then the product of two nonnegative 
operators may not be similar to a nonnegative one. In fact, this is the case 
even when one factor is positive but noninvertible. Here we recite the 
example given in [55], since it contains the genesis of the idea by which we 
obtain the results characterizing products of normal operators. 

EXAMPLE 2.11. Let A be a one-to-one positive operator on H such that 
AH z H. Let x E H \ AH, and let B be the orthogonal projection onto (x) I, 
the orthogonal complement of the subspace generated by x. Then Bx = 0 
implies that AB is not one-to-one. On the other hand, if BAy = 0, then 
Ay E ker B n ran A = {0}, which shows that BA is one-to-one. Thus if AB is 
similar to a nonnegative operator, then AB must be similar to (AB)* = BA, 

which is absurd. 

In the infinite-dimensional case, characterizing products of two positive 
or two nonnegative operators would make interesting and challenging prob- 
lems. 
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For the products of three positive operators on a finite-dimensional space, 
Ballantine obtained a characterization following a long proof [6, Theorem 31 
(cf. also Taussky’s survey [62]). We will only give the statement of this result 
and refer the reader to [6] for the details. For an operator T on H, let 
I(T)= {(Tx,r): x E H}. Note that T(T) is the cone generated by the 
numerical range of T. 

THEOREM 2.12. A finite matrix T is the product of three positive 
matrices if and only if one of the following holds: 

(1) det T > 0 and T(T) is the whole plane, or 
(2) 1 E r(T), - 1 @r(T), and Ejej = 0, where the ej’s are the argu- 

ments between - B and 7~ of the eigenvalues of T. 

For the products of three nonnegative matrices, only some partial results 
are known (cf. [68]). The next theorem gives a sufficient condition in terms of 
the “invertible part” of an operator on a finite-dimensional space. Note that 
any such operator can be uniquely expressed as the direct sum (not necessar- 
ily orthogonal) of an invertible operator and a nilpotent one (cf. [36, p. 1131). 

THEOREM 2.13. Let T be an operator on a finite-dimensional space and 
T = T, + T,, where T, is invertible and T, is nilpotent. Zf TI is the product of 
three positive operators, then T is the product of three nonnegative operators. 

In particular, we have the following 

COROLLARY 2.14. Any nilpotent matrix is the product of three rwnnega- 
tive matrices. 

It seems plausible that the converse of Theorem 2.13 is also true. This we 
don’t know at present. However, the following supporting special case seems 
worth mentioning, whose proof makes use of Theorem 2.10 on the product of 
two nonnegative operators. 

THEOREM 2.15. Let T = T,@O on a finite-dimensional space. Then T is 
the product of three nonnegative operators if and only if TI is. 

Finally, we come to the products of four and five positive or nonnegative 
matrices. The results for positive matrices are in [6]; those for nonnegative 
ones are in [68]. 
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THEOREM 2.16. A finite matrix T is the product of four positive matrices 
ifandonlyifdetT~OandTisnotascalarmatrixcZwithcinQ=\{z:z~O}. 

THEOREM 2.17. A finite matrix T is the product of finitely many 
positive matrices if and only if det T > 0. The length of positive matrices is 5. 

These two theorems can be proved with a factorization theorem for finite 
matrices (cf. [60] and [47]). Since this theorem is also useful for other 
factorization problems discussed later on, we state it next. 

THEOREM 2.18. Let T be an n x n nonscalar nonsingular matrix. For 
any complex numbers a,,. . . , a,, and b,, . . . , b, with n;=,aibj = det T, there 
exist matrices A and B such that a(A)= {a, ,..., a,}, a(B)= {b, ,..., b,}, 
andT=AB. 

Its proof through induction and some clever manipulation is elementary. 
For nonnegative matrices, we start with the following theorem in [68]. 

THEOREM 2.19. Any singular matrix is the product of four nonnegative 
matrices, and four is the smallest such number. 

The proof of the factorization assertion is based on Theorem 2.12, 
Ballantine’s characterization of products of three positive matrices, through 
the Jordan canonical form of the given matrix; the optimality of four follows 
from Theorem 2.15. 

Combining Theorem 2.19 with Theorems 2.16 and 2.17 yields the follow- 
ing characterizations of products of four or more nonnegative matrices. 

THEOREM 2.20. A finite matrix T is the product of four nonnegative 
matrices if and only if det T >, 0 and T is not a scalar matrix cl with c in 
C\{ 2: x > O}. 

THEOREM 2.21. A finite matrix T is the product of finitely many 
nonnegative matrices if and only if det T > 0. The length of nonnegative 
matrices is 5. 

Further generalizations of the above results concern the products of 
accretive and positive stable operators. Recall that an operator T is accretive 
if its real part Re T = i(T + T*) is positive, and positive stable if Re a(T) > 0. 
Note that, on finite-dimensional spaces, positive operators are accretive, 
accretive operators are positive stable, and positive stable operators are 
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invertible. Products of these operators have been completely characterized in 
[12]. The following are some sample results from there. 

THEOREM 2.22. Let T be a finite matrix. 

(1) T is the product of two accretive matrices if and only if all the real 
eigenvalues of T are positive. 

(2) T is the product of finitely many accretive matrices if and only if T is 
non-singular. The length of accretive matrices is 3. 

THEOREM 2.23. Let T be a finite matrix. 

(1) T is the product of two positive stable matrices if and only if T is 
nonsingular and is not a negative scalar matrix. 

(2) T is the product of finitely many positive stable matrices if and only 
if T is nonsingular. The length of positive stable matrices is 3. 

The proofs of these theorems need a well-known result of Lyapunov’s [49] 
that a finite matrix is the product of a positive one and an accretive one, in 
any order, if and only if it is positive stable. 

We conclude this section with results on the factorizations with normal, 
Hermitian, positive, and nonnegative factors on infinite-dimensional spaces. 
Note that the normal factorization in finite dimensions is trivial, since, 
according to the polar decomposition, every finite matrix is the product of a 
unitary matrix and a nonnegative one, both of which are normal. In infinite- 
dimensional case, things become more interesting. There are operators, 
namely, the unilateral shift, which cannot be factored as the product of 
finitely many normal operators (cf. [38, Solution 144(a)]). The characteriza- 
tion of operators expressible as such has been obtained only recently in [69]. 
As it turns out, the classes of operators expressible as products of normal, 
Hermitian, or nonnegative operators are identical. More precisely, we have 
the following 

THEOREM 2.24. The following statements are equivalent for an operator 
T on an infinite-dimensional space: 

(1) T is the product of finitely many rwrmal operators; 
(2) T is the product of finitely many Hennitian operators; 
(3) T is the product of finitely many nonnegative operators; 
(4) dim ker T = dimker T* or ranT is not closed. 

Moreover, in this case, the number of rwrmul factors may be limited to 3, 
that of Hermitian factors to 6, and that of nonnegative factors to 18. 
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An immediate corollary is the following 

COROLLARY 2.25 Any compact operator on an infinite-dimensional 
space is the product of finitely many nonnegative operators. 

For positive products, we have 

THEOREM 2.26. An operator on an infinite-dimensional space is the 
product of finitely many positive operators if and only if it is one-to-one with 
dense range. In this case, 17 factors suffice. 

It is not known whether the numbers 6, 18, and 17 here are best possible 
in each case. As for the proof, the necessity of condition (4) in Theorem 2.24 
follows by an easy argument based on the theory of Fredholm operators (cf. 
[69, Proposition 2.41). For the sufficiency, if dimker T = dimker T*, then T is 
the product of two normal operators by the polar decomposition; otherwise 
(say, dim ker T = dim ker T* + l), T may be factored, as in Example 2.11, as 
the product of an operator A with dim ker A = dim ker A* and an orthogonal 
projection B, whence it is a product of three normal operators. For the 
general case dim ker T > dim ker T* + 2, the above construction may be car- 
ried through analogously via the result that for nonclosed ranT, there always 
exists a closed, infinite-dimensional subspace K such that K f’ran T = (0) 
(cf. [69, Lemma 2.51). The implication (1) 3 (2) in Theorem 2.24 follows by a 
result of Radjavi’s [52] that any normal operator is the product of four 
Hermitian operators, which is proved by an elaborate argument based on the 
spectral theorem for normal operators. For the proof of (2) 3 (3) we need 
only consider factoring unitary operators into positive ones due to the polar 
decomposition. Since every unitary operator is the product of four symme- 
tries (cf. Theorem 3.12 below), this is further reduced to the factorization of 
symmetries. Using Ballantine’s characterizations of products of positive ma- 
trices (Theorems 2.12, 2.16, and 2.17), it can be shown that every symmetry 
is the product of six positive operators [69, Lemma 2.71 thus completing the 
proof of (2) =. (3). 

3. INVOLUTION 

An operator T is an involution if T2 = I. In this section, we consider 
products of involutions and operators from its various subclasses. We start 
with the product of two involutions on a finite-dimensional space. The 
following characterization has been obtained by various mathematicians 
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(cf. [66], [24], [44], and [8]): 

THEOREM 3.1. Let T be a finite matrix, and let J = I&cI+./~,(u i) be its 
Jordan canonical fan, where each 

ai 

1 . 

Jk,(ai> = ’ 1 . 1 1 . . 

1 a, 

is a Jordan block with eigenv&e a, and size ki. Then the following 
statements are equivalent: 

(1) T is the product of two involutions; 
(2) T is nonsingular and is similar to T- ‘; 
(3) except those Jk (a i) with a i = k 1, all the rest are in pairs Ik,(a j) and 

Jk,(al) such that kj =‘k, and aja, = 1. 

(1) j (2) is true for operators even on infinite-dimensional spaces, and the 
proof of the rest is an easy exercise in linear algebra. It is unknown whether 
(2) * (1) in general. That is true if T is normal (cf. [54, p. 121). 

Which operators can be factored as the product of three involutions? The 
complete characterization is not known at present even on finite-dimensional 
spaces. Here are some fragmentary results obtained recently by K.-M. Liu 

14% 

THEOREM 3.2. An n x n matrix T with det T = k 1 and satisfying 
dim ker(T - zl) Q [n/2] fm any complex number z is the product of three 
involutions. 

Its proof is rather long. It is based on Theorem 3.1, the following lemma, 
and the idea of representing T with respect to a new basis as constructed in 

[131. 

LEMMA 3.3. Let T be an n X n nonsingular cyclic matrix. If a 1, a 2,. . . , a fl 
are complex numbers satisfying Fly= la j = - det T, then there exist an invo- 
lution A and a cyclic matrix B with a(B) = {a,, . . . , a,,} such that T = AB. 

From Theorem 3.2, we can easily derive the following corollary, which 
has also been noted in [35] and [9]. 
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COROLLARY 3.4. Zf the rational form of a matrix with determinant + 1 
has at most two blocks, then it is the product of three involutions. 

The next result, from [48], gives a necessary condition for the product of 
three involutions. Note that the gap of the conditions in Theorems 3.2 and 
3.5 is between n/2 and 3n/4. 

THEOREM 3.5. Zf the n x n matrix T is the product of three involutions, 
then dim ker(T - zZ) < [3n/4] for any complex number z, z4 # 1. 

In [9], n x n matrices expressible as the product of three involutions are 
completely characterized for n up to 4. This is further pushed to five in [48]. 

So much for the product of three involutions. A result of Gustafson, 
Halmos, and Radjavi [35] takes care of the products of any finite number of 
involutions. 

THEOREM 3.6. A finite matrix is the product of a finite number of 
involutions if and only if its determinant is + 1. The length of involutions 
is 4. 

The proof in [35] exploits the similarity between certain n X n weighted 
permutation matrices and the permutations of the index set { 1,2,. . . , n }, and 
essentially reduces the problem to that of expressing a permutation as the 
composite of two involutory permutations. Sourour [60] gives a simple proof 
of this based on his factorization theorem, Theorem 2.18 (cf. also [9] and 
[47]). That the length is four is seen by the matrix wl,, where o = 
i( - 1 + fii) (cf. [38, Solution 1431). 

For products of involutions on infinite-dimensional spaces, much less is 
known. The following is one positive result (cf. [54]). 

THEOREM 3.7. An operator on an infinite-dimensional space is the 
product of finitely many involutions if and only if it is invertible. In this 
case, seven involutions suffice. 

It is not known whether seven is the smallest such number, although it 
was shown in [54] that four won’t be enough. 

A class of operators analogous to involutions is obtained by replacing the 
requirement f 1 with modulus equal to 1. Formally, a finite matrix T is a 
pseudoinvolution if fl= I, where T denotes the entrywise conjugate of T. 
This notion was first introduced by Ballantine [ll]. The factorizations into 
pseudoinvolutions are very much like those into involutions. Indeed, the 
following are proved in [ 111. 
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THEOREM 3.6. A finite matrix T is the product of two pseudoinvolutions 
if and only if T is nonsingular and is similar to T*- ‘. 

THEOREM 3.9. A finite matrix T is the product of finitely many pseu- 
doinvolutions if and only if Jdet TI = 1. The length of pseudoinvolutiuns 
is 4. 

Recall that a matrix T is orthogonal if T’T = TT’ = I. If we require the 
involution to be orthogonal, then we have the orthogonal involutions. In other 
words, T is an orthogonal involution if T = T- ’ = T’. Wonenburger [65, 661 
proved the following result. 

THEOREM 3.10. Any orthogonal finite matrix is the product of two 
orthogonal involutions. 

In particular, the length of orthogonal involutions is 2. This result is 
easiest to perceive for real orthogonal matrices, since in this case it is 
orthogonally similar to a matrix of the form 

1 1 
1 

-1 

-1 

cos 8, - sin 8, 1 cos 
@ 

8, - sinok 
. . 

sin 0i case, 
.@ 

[ sin 8, cos 8, 1 ’ 
and the rotation in the plane corresponding to each 

[ 

cos ei - sin ei 

sin ej cos ej 1 
is, geometrically, the product of two reflections. 

An operator T is a symmetry if it is a unitary involution, that is, T 
satisfies T = T-’ = T*. On finite-dimensional spaces, products of symmetries 
are characterized by Radjavi [51]. 
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THEOREM 3.11. A finite matrix T is the product of finitely many 
symmetries if and only if T is unitary and det T = f 1. The length of 
symmetries is 4. 

Note the similarity of this theorem to Theorem 3.6 for products of 
involutions. On infinite-dimensional spaces, the product of symmetries was 
considered much earlier by Halmos and Kakutani [39] (cf. also [38, Problem 
1431). 

THEOREM 3.12. An operator on an infinite-dimensional space is the 
product of finitely many symmetries if and only if it is unitary. The length of 
symmetries is 4. 

To achieve this factorization, first factor the unitary operator into the 
product of a right shift and a left shift, and then factor each of the latter as 
the product of two symmetries. The factorizations make use of the spectral 
theorem for unitary operators. The length assertion follows by Theorem 2.6. 

For the products of two symmetries, the characterization is due to Davis 
[20], and holds on an arbitrary Hilbert space. 

THEOREM 3.13. An operator T is the product of two symmetries if and 
only if T is unitary and T is similar to T- ‘. 

In [55], this is derived as a corollary of a more general result concerning 
the product of a symmetry and a Hermitian operator whose proof, again, uses 
the spectral theorem for unitary operators. 

It is not known which operators can be expressed as the product of three 
symmetries on either finite or infinite-dimensional spaces. 

Next we consider factorizations into another kind of involutions, the 
so-called reflections. An operator T is a reflection if T2 = I and rank( T - Z ) 
= 1. Geometrically, such a transformation is an “oblique” symmetry with 
respect to a hyperplane. Note that a finite matrix is a reflection if and only if 
it is similar to the diagonal matrix 

1 

I..* 1 1 . 
-1 

Products of reflections were first considered by Radjavi [53]. (There reflec- 
tions are called simple involutions.) He showed that any n X n (n > 2) matrix 
with determinant + 1 is the product of at most 2n - 1 reflections. The 
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number of factors is reduced to the optimal n + 2 for R 2 3 by Cater [ 191. 
More precisely, he proved 

THEOREM 3.14. An n x n matrix T is the product of finitely many 
reflections if and only if det T = * 1. More precisely, for n >, 3, 

(1) if T is non-scalar and det T = ( - l)“, then at most n factors are 
needed; 

(2) if det T = ( - l)“+l, then at most n + 1 factors are needed; 
(3) if T is scalar and det T = ( - l)“, then at most n +2 factors are 

needed. 

Zf n = 2, then at most 3 factors are needed. In each case, the respective 
number is the smallest possible. In particular, the length of reflections is 3 if 
n=2andn+2ifn>3. 

The proof of this theorem depends on a factorization theorem developed 
by Cater [19, Lemma 81. The assertions above can be further improved by 
precisely determining the length, with respect to the reflections, of each 
matrix with determinant + 1. This is done independently by Ellers [28], 
Djokovib and Malzan [27], and Yuan and Zou [70]. 

THEOREM 3.15. LetTbeannxn(n~2)mutrirwithdetT=~l,and 
let 

if det T = ( - l)rank(T- I), 

Then the length of T with respect to the reflections equals rank( T - Z ) + 2 - 
E(T) if either T is similar to Z,@aZ,_,, where n - m > 2 and a # - 1, or 
(T - Z)2 = 0 and rank(T - I) 2 2; otherwise, it equals rank(T - Z)+ E(T). 

Slightly more general than reflections is the class of dilatations. On a 
finite-dimensional space, a dilatation is one which is similar to a matrix of 
the form 

1 

I.-* I 1 ’ 
a 

where a f 0, 1. Products of dilatations were considered by Djokovib [25]. 
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THEOREM 3.16. An n X n matrix is the product of finitely many dilata- 
tions if and only if it is nansingular. The length of dilatations is n. 

It can be easily seen that the matrix aZ,, where a + 0, 1, needs n 
dilatations in such a factorization. 

In the literature, there are factorizations of matrices into special kinds of 
reflections. One such factorization has orthogonal reflections as factors. An 
orthogonal reflection is an operator T such that T = TP ’ = T t and rank( T - 
Z) = 1. The next theorem is a classical result of Cartan and Dieudonne’s (cf. 

123, P. 201). 

THEOREM 3.17. An n x n matrix is the product of finitely many orthog- 
onal reflections if and only if it is orthogonal. The length of orthogonal 
reflections is n. 

The exact length for such decompositions was obtained by Scherk [57]. 

THEOREM 3.18. Zf T is a finite orthogonal matrix, then the length of T 
with respect to orthogonal reflections equals rank(T - Z) + 2 or rank(T - Z) 
depending on whether T - I is skew-symmetric or not. 

We conclude this section by considering the factorization into unitary 
reflections. As one might expect, a unitary reflection is a reflection which is 
also unitary. Factorizations of this type were first considered by Radjavi [53]. 
(Note that, in [53], unitary reflections are called simple symmetries.) 

THEOREM 3.19. A finite matrix T is the product of finitely many unitary 
reflections if and only if T is unitary and det T = + 1. 

The length of T in the factorization above was obtained later by Djokovib 
and Malzan [26]. To state the result, we need one more bit of notation. For 
an n x n unitary matrix T, let B,, . . . , 0, (0 < flj < 27r) be the arguments of its 
eigenvalues, and let k(T) = (l/?r)(di + . . 1 + 6,). Note that k(T) is a non- 
negative integer if and only if det T = k 1. 

THEOREM 3.20. Zf T is an n X n unitary matrix, T # I,, and det T = f 1, 
then its length with respect to the unitary reflections is max{ k(T), k(T)}. In 
particular, the length of unitary reflections is 2n - 1. 
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This latter length assertion was first conjectured by Radjavi [53] and can 
be seen by considering the matrix 

T= 

where 0 < ej < r for all j and 0, + . . . + 0, = T, in which case k(T) = 1 and 
k(T) = 2n - 1, whence the length of T equals 2n - 1. 

4. PARTIAL ISOMETRY 

We start this section by considering the factorization into partial isome- 
tries. Recall that an operator is a partial isometry if T is isometric on 
(ker T) I. As is well known, this is equivalent to requiring that T = TT*T (cf. 
[38, Corollary 3 to Problem 1271). On finite-dimensional spaces, the factoriza- 
tion problem with partial isometry factors is solved completely in [45]. 

THEOREM 4.1. Let T be a finite matrix and k > 1. Then T is the product 
of k partial isometrics if and only if T is a contraction (IIT 11 6 1) and 
rank(Z - T*T) Q k dimker T. 

Since the product of a unitary operator and a partial isometry is again a 
partial isometry, in the above factorization we need only consider, via the 
singular-value decomposition, a nonnegative diagonal matrix. The details are 
in [45]. As an immediate corollary, we obtain the following 

COROLLARY 4.2. An n x n matrix is the product of finitely many partial 
isarwtries if and only if it is either unitary or a singular contraction. The 
length of partial isometrics is n. 

The optimality of n here is observed through matrices of the form 

a1 

L** I a,-1 ’ 
0 

whereO<aj<lforall j. 
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Since the supply of partial isometries is more abundant on infinite-dimen- 
sional spaces, we would expect a simpler factorization in this case. This is 
indeed true, as proved by Brown [ 171. Note that the product of partial 
isometries must be a contraction, since all the factors have norm 0 or 1. The 
next theorem says that the converse is also true. 

THEOREM 4.3. lf T is a contraction on an infinite-dimensional space, 
then there exist two unilateral shifts S, and S, with corank S, = corank S, = cc 
such that T = ST&,. 

If we only require that S, and S, be isometries, then an easier proof, 
based on the notion of unitary dilations of a contraction, has been given by 
Arveson (cf. [41, Lemma 2.11). 

Historically, the result above was preceded by the factorizations into 
unilateral shifts or unitary operators (cf. [37]). 

THEOREM 4.4. On an infinite-dimensional space, an operator T is the 
product of a unitary operator and a unilateral shij? with corank n if and only 
if T is an isomety and corank T = n. 

THEOREM 4.5. On an infinite-dimensional space, an operator T is the 
product of two unilateral shifts if and only if T is an isometry and 
corank T > 2. 

The proofs are through some clever constructions. Factorizations of the 
above type with more precise conditions on the multiplicities of the unilateral 
shift factors seem worth investigating. 

A special kind of partial isometry is the orthogonal projection. Another 
result in [45] is concerned with the factorization into operators of this type. 
Here the situation is quite different from what we have discussed so far in 
that the number of factors can be arbitrarily large. 

THEOREM 4.6. An n X n matrix T is the product of finitely many 
orthogonal projections if and only if T is unitarily equivalent to a matrix of 

theform I ‘, 1 1 where S is singular with llS[l < 1. The length of orthogonal 

projections’is Sinfinity for n >, 2. 

The proof is based on some geometric considerations. The main step 
consists in transforming x to y through finitely many orthogonal projections, 
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for any given vectors x and y satisfying ]]x]] > ]]y]l. As for the length, it was 
proved that, for any m >, 2, the singular strict contraction 

[ 

ll * 

0 
i 1 cos i-ii 

0 0 

can be factored as the product of no fewer than m + 1 orthogonal projections 
(cf. [45, Lemma 3.61). 

For the products of two orthogonal projections, Crimmins found a charac- 
terization (cf. [55, Theorem 81). 

THEOREM 4.7. An operator T is the product of two orthogonul projec- 
tions if and only if TT*T = T’. In this case, T = PIP,, where P, and Pz are 
the orthogonal projections onto ran T and (ker T) I, respectively. 

Dropping the requirement of self-adjointness from the definition of or- 
thogonal projections, we obtain the class of idempotent operators, that is, 
operators T satisfying T 2 = T. The products of idempotent operators on 
finite-dimensional spaces were first considered by Erdos [29]. He showed that 
every singular matrix can be written as a product of idempotent operators. 
This result was also obtained independently by Hawkins and Kammerer [40] 
and Dawlings [21]. [In the former, it was shown more generally that every 
finite-rank operator on a (possibly infinite-dimensional) Banach space can be 
expressed as such.] The final words on this matter are contained in [lo]. 

THEOREM 4.8. Let T be a finite matrix and k > 1. Then T is the product 
of k idempotent matrices if and only if rank( T - I ) < k dim ker T. 

The proof involves only elementary matrix operations and thus is con- 
structive. Note the similarity of the conditions in Theorems 4.1 and 4.8, 
which links the factorization with partial isometry factors and that with 
idempotent factors. From Theorem 4.8, we can easily derive the following 

COROLLARY 4.9. An n x n matrix is the product of finitely many 
idempotent matrices if and only if it is either the identity matrix or singular. 
The length of idempotent matrices is n. 
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The optimality of n is realized by the matrix 

1 
0 
1 

. . 
. . 

1 0 

For infinite-dimensional spaces, a complete characterization of products 
of idempotent operators was obtained by Dawlings [22]. 

THEOREM 4.10. On an infinite-dimensional space H, an operator T is 
the product of finitely many idempotent operators if and only if one of the 
following holds: 

(1) T =I; 
(2) dimkerT=dimkerT*=c.o; 
(3) O<dimkerT=dimkerT*, dimF,I coo, 

where FT = { x E H: TX = x } is the subspace of fixed points of T. The length 
of idempotent operators is infinity. 

Indeed, in [22], it was shown that the operator T = Z@S, where 

0 

s= 

1 

1 
.O . 

.* * 1’ 0 i 

is of size n, can be factored into no fewer than n idempotent operators. 
The analogous factorization problem for linear transformations on an 

arbitrary vector space was considered in [56]. 

5. MISCELLANIES 

In this section, we will consider factorizations into operators in other 
miscellaneous classes. These include nilpotent, quasinilpotent, and unipotent 
operators, EP matrices, and commutators (both additive and multiplicative). 

For nilpotent operators on finite-dimensional spaces, the factorization 
problem was solved recently by Wu [67]. Recall that an operator T is 
nilpotent if T” = 0 for some n >, 1. 
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THEOREM 5.1. A finite matrix is the product of finitely many nilpotent 
matrices if and only if it is singular. The length of nilpotent matrices is 2. 

In fact, more precise information concerning the factors is proved in [67]: 
any singular T can be expressed as the product of two nilpotent matrices A 
and B with rank A = rank B = rank T except when T is a 2 ~2 nilpotent 
matrix of rank one. The proof is via factoring the Jordan canonical form of T. 
It may also be proved using the rational form, thus extending the result to 
matrices over arbitrary fields. Whether a result of this nature holds for 
operators on an infinite-dimensional space is not known. As a matter of fact, 
this is unknown even if we enlarge our candidates for the factors from 
nilpotent to quasinilpotent operators. Recall that an operator T is quasinilpo- 
tent if its spectrum a(T) consists of zero only. Note that on finite-dimen- 
sional spaces, quasinilpotent operators coincide with nilpotent ones. The 
factorization with quasinilpotent factors was considered in [30]. Although no 
complete characterization is obtained, some partial results are quite interest- 
ing. The next two theorems give necessary or sufficient conditions for an 
operator to be the product of two quasinilpotent operators on infinite-dimen- 
sional spaces. Here u,(A) denotes the essential spectrum of an operator A. 

THEOREM 5.2. Zf T is a product of two quasinilpotent operators, then 
0 E u,(T*T)n u,(TT*). 

THEOREM 5.3. Zf 0 E u,(T*T + TT*), then T is the product of two 
quasinilpotent operators. 

For special kinds of operators, characterizations are known. 

THEOREM 5.4. Every compact operator is the product of two compact 
quasinilpotent operators. 

THEOREM 5.5. A rwnnul operator T is the product of two quasinilpotent 
operators if and only if 0 E u,(T). 

The proofs of the above results make extensive use of the infinite-dimen- 
sionality of the underlying space, compact operator theory, and the spectral 
theorem for normal operators. 

An operator T is unipotent if (T - Z)” = 0 for some n > 1. Note that, on 
finite-dimensional spaces, T is unipotent if and only if u(T) = {l}. The 
factorization with unipotent factors was recently considered by Fong and 
Sourour [31]. They obtained the following characterizations. 
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THEOREM 5.6. An n x n matrix T is the product of two unipotent 
matrices if and only if T = I, or T is a nonscalar matrix with det T = 1. 

THEOREM 5.7. A finite matrix T is the product of finitely many unipo- 
tent matrices if and only if det T = 1. The length of unipotent matrices is 3. 

Alternative proofs, only slightly different, based on the factorization 
theorem (Theorem 2.18) are given in [60]. 

For operators on infinite-dimensional spaces, Fong and Sourour [31] 
proved the following 

THEOREM 5.8. An operator on an infinite-dimensional space is the 
product of finitely many unipotent operators if and only if it is invertible. In 
this case, six unipotent factors suffice. 

Whether six is optimal in the preceding theorem is not known, although, 
as in the finite-dimensional case, two unipotent factors are not enough. 

A finite matrix T is an EP matrix if ker T = ker T*; it is an EP, matrix if, 
in addition, rank T = r. In [7], Ballantine characterized the products of EP, 
matrices. 

THEOREM 5.9. Let 0 < rl, rz < n. Then an n x n matrix T is the product 
of an EP,, and an EP,, matrix if and only if min{ rl, rz} 2 rank T > rl + r, - n 
and rankT2>3rankT-r,-r,. 

THEOREM 5.10. Let 0 < rl,. . . , r,,, < n. Then an n x n matrix T is the 
product of matrices of classes EP,,, . . . , EP,,, if and only if min{ rl,. . . , r,,} > 
rankT > Cy_Irj -(m - 1)n. 

Finally, we consider commutators and their products. An operator is a 
commutator if it can be expressed as AB - BA for some operators A and B. 
On finite-dimensional spaces, we have the following characterization of 
commutators (cf. [58] or [l]). 

THEOREM 5.11. A finite matrix is a commutator if and only if its trace 
is zero. 

What are the products of commutators? If the underlying space is 
l-dimensional, then the answer is trivial. The next theorem settles the 
remaining finite-dimensional case. 
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THEOREM 5.12. Any n x n (n > 2) matrix is the product of two commu- 

tators. 

This follows by Theorem 5.11, the observation that commutators are 
preserved under the similarity of matrices, and the following decompositions: 

and 

= 

0 0 ... 0 a, 

1 0 ... 0 a2 

0 1 a.. 0 a3 
. . 
. . 

0 6 . ..l 0 a,_, 

0 0 ..a0 1 a, 

‘0 0 . . . - a An - 1) 
1 0 .*. 0 

0 1 .*. 0 

.o i, ..*l 0 

1 0 ... 0 a2 
0 1 ..* 0 a3 
* . 
. . 

i,(j...i in 

0 0 ... 0 -(n-l) 

(n 2 2) 

together with a similar factorization for 1 1 E z . In particular, this shows that 

Theorem 5.12 holds for matrices over any field with characteristic 0. 
On infinite-dimensional spaces, commutators have also been character- 

ized after many years’ effort (cf. [15] and [2]). 

THEOREM 5.13. 
space: 

(1) T is a commutator; 
scalar and a compact operator; 

range of T cannot single nonzero 
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In this context, the products of commutators seem not to have been 
considered. It would also be interesting to characterize products of a special 
kind of commutators: self-commutators, operators of the form A*A - AA*. 
(For their characterizations, see [63] and [50].) 

Another type of commutator is the multiplicative one. Recall that an 
operator T is a multiplicative commutator if T = ABA- ‘B- ’ for some 
invertible operators A and B. The next theorem characterizes such commuta- 
tors on finite-dimensional spaces. It was first obtained by Shoda [59]. 
Thompson [64] extended it to all fields with more than three elements; 
Sourour [60] gave another proof (for complex matrices) based on his factor- 
ization theorem, Theorem 2.18. 

THEOREM 5.14. A finite matrix is a multiplicative commutator if and 
only if its determinant is 1. 

For infinite-dimensional spaces, it was conjectured in [16] that an invert- 
ible operator T is a multiplicative commutator if and only if either T is not 
the sum of a nonzero scalar and a compact operator or T is such a sum with 
the scalar having modulus 1. Although some partial results are known, the 
general case remains open. In particular, it is known that any unitary 
operator is a multiplicative commutator (cf. [16, Corollary 3.21 or [38, 
Problem 2391). However, for products of multiplicative commutators, we 
have the following characterization (cf. [16, Corollary 4.71). 

THEOREM 5.15. An operator on an infinite-dimensional space is the 
product of finitely many multiplicative commutators if and only if it is 
invertible. The length of multiplicative commutators is 2. 

The proof is rather involved. For an easier proof of factoring an invertible 
operator into three multiplicative commutators, consult [38, Problem 2401. 

6. APPLICATION 

In this final section, we discuss an application of the previous factoriza- 
tion results. The application is due to Hochwald and concerns the uniqueness 
of the adjoint operation on operators (cf. [41], [42], and [43]). He considered 
an operation h on g(H), the algebra of operators on the space H, or some 
subset of 9?(H), and asked whether the properties h(ST) = h(T)h(S) and 
h(T)T > 0 for all S and T in the domain of h will characterize the adjoint 
operation T + T*. The answer turns out to depend on the domain of h. It is 
affirmative when h is nontrivial and defined on all of g?(H) for infinite- 
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dimensional H. If h is defined only on part of 9(H), then other possibilities 
such as the inverse operation T + T- ’ may arise. The following are the 
precise statements. We first consider the operation h defined on Z(H), the 
set of all isometries on H. 

THEOREM 6.1. For an infinite-dimensional space H, the following state- 
ments are equivalent for a function h : Z(H) + 93(H): 

(1) h(ST) = h(T)h(S) and h(T)T > 0 for all S and Tin Z(H); 
(2) there is a homomorphism + jkm the additive semigroup 

{0,1,2,..., dim H } to the multiplicative semigroup R + such that h(T) = 
+(dimker T*)T* for aZl T in Z(H). 

A special case of the preceding theorem is the following 

THEOREM 6.2. Let H be infinite-dimensional, and h : Z(H) + B(H) be 
a function such that h(U) # 0 for some unilateral shijl U of infinite 
multiplicity. Then h(ST) = h(T)h(S) and h(T)T > 0 for all S and Tin Z(H) 
if and only if h(T) = T* for all T in Z(H). 

Next, for h defined on all of B(H), we have 

THEOREM 6.3. Let H be infinite-dimensional and h be a function on 
93(H) such that h(Z) f 0. Then h(ST) = h(T)h(S) and h(T)T > 0 for all S 
and Tin .93(H) if and only if h(T) = T* for all Tin 9?(H). 

AU the theorems above are in [41]. Their proofs exploit the various 
factorization results discussed in previous sections. For example, Theorem 6.2 
is proved by first showing that h(Z) = Z and, successively, that h behaves 
properly for symmetries, unitary operators (using Theorem 3.12), unilateral 
shifts, and finally isometries (using Theorem 4.4). As for Theorem 6.3, we 
proceed from isometries through coisometries, contractions (using Theorem 
4.3), and finally arbitrary operators in S?(H). 

If the domain of h is restricted to GL( H), the set of all invertible 
operators on H, then h can be either the adjoint or the inverse operation (cf. 

[431). 

THEOREM 6.4. Let H be infinite-dimensional. Zf h is a function on 
GL(H) such that h(ST) = h(T)h(S) and h(T)T >, 0 for a11 S and T in 
GL(H), thenh(T)=T* forallTEGL(H)orh(T)=T-‘foraZZTEGL(H). 

As before, the assertion in the preceding theorem is proved successively 
for symmetries, scalar operators, direct sums of a scalar operator and the 
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identity operator, diagonal positive operators, positive operators (by Weyl’s 
theorem on the perturbation of positive operators by diagonal ones), and 
finally, invertible operators (via the polar decomposition). 

The finite-dimensional version of the preceding results are in [42]. 

THEOREM 6.5. Let H be finite-dimensional, and let h be a function on 
GL( H). Then the following statements are equivalent: 

(1) h(ST) = h(T)h(S) and h(T)T 2 0 for all S and Tin GL(H); 
(2) there is a multiplicative homomorphism u : C\{ 0} - R + such that 

either h(T) = a(det T)T* for all T E GL(H) or h(T) = a(det T)T-’ for all 
T E GL( H). 

In particular, the following holds: 

THEOREM 6.6. Let H be finite-dimensional, and let h be a function on 
a(H) such that h(Z) + 0. Then h(ST) = h(T)h(S) and h(T)T > 0 for all S 
and T in B’(H) if and only if either h(T) = 0 for all singular T and h is 
given as in Theorem 6.5(2) on GL( H) or h(T) = T* for all T on H. 

The idea of the proofs is the same as before: working through various 
classes of operators using the factorizations if possible. 

This concludes the paper. We hope that it fulfills our stated purpose of 
directing people’s attention to this area of research and arousing their interest 
so that they work on problems of this nature and find more applications. 
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