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ABSTRACT

We survey various results concerning operator factorization problems. More
precisely, we consider the following setting. Let H be a complex Hilbert space, and
let 2(H) be the algebra of all bounded linear operators on H. For a given subset % of
B(H), we are interested in the characterization of operators in #(H) which are
expressible as a product of finitely many operators in € and, for each such operator,
the minimal number of factors in a factorization. The classes of operators we consider
include normal operators, involutions, partial isometries together with their various
subclasses, and other miscellaneous classes of operators. Most of the known results are
for operators on finite-dimensional spaces or finite matrices. The paper concludes with
some applications, due to Hochwald, concerning the uniqueness of the adjoint
operation on operators.

1. INTRODUCTION

Which bounded linear operator on a Hilbert space can be factored as the
product of finitely many normal operators? What is the answer if “normal
operators” is replaced by “involutions,” “ partial isometries,” or other classes
of familiar operators? Just as in the case of the factorization of integers,
polynomials, or other objects in mathematics, such operator factorization
problems seem to arise very naturally in the course of study of operators. In
the cases when they are solved, the solutions are usually neat and elegant;
otherwise, they pose interesting and challenging questions whose solutions
may lead us to a deeper understanding of the nature of the operators under
consideration. However, in the past such problems seem to have attracted
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little attention among operator and matrix theorists and found very few
applications even within operator or matrix theory itself. The purpose of this
paper is to give a survey of problems of this nature, collect together the
relevant references, and briefly indicate their proofs and interrelationships.
Hopefully, this paper can serve as a convenient reference so that to enhance
people’s interest in this area of research.

Although some of the problems discussed below can be considered for
operators on Hilbert spaces over more general fields or even for linear
transformations on vector spaces over division rings, for ease of exposition we
will restrict ourselves to bounded linear operators on complex, separable
Hilbert spaces whose dimension can be either finite or infinite. Formally, let
H be such a space, and let #(H) be the algebra of all bounded linear
operators on H. For a given subset ¥ of Z(H ), we would like to characterize
the class € of operators in #(H) which are expressible as a product of
finitely many operators in . For each operator T in €, let I(T; ) denote
the minimal number of factors in such a factorization of T, called the length
of T with respect to . The determination of I(T; %) is, in general, pretty
difficult. In such cases, we content ourselves with the quantity L(%¥), the
length of €, defined as

L(%)=sup{U(T;¥): T€€>}.

As it turns out, for most factorization problems L(%) is finite, and it may or
may not depend on the dimension of H. (The one exception occurs for the
problem of factorization into orthogonal projections; see Theorem 4.6.) For
each k < L(¥), the characterization of operators expressible as the product
of k operators in € is also of interest. Such problems can usually be solved
completely for operators on finite-dimensional spaces or finite matrices.
Much less is known for operators on infinite-dimensional spaces.

In Section 2 below, we first consider the factorization problem for
symmetric, skew-symmetric, Hermitian, positive definite, positive semidefi-
nite, accretive, positive stable, and normal operators. The factorizations into
various kinds of involutions will be taken up in Section 3. They include
involutions, pseudoinvolutions, orthogonal involutions, symmetries, reflec-
tions, dilatations, orthogonal reflections, and unitary reflections. (The precise
definitions will be given in the discussions below.) Section 4 characterizes the
finite products of partial isometries, unilateral shifts, orthogonal projections,
and idempotent operators. Section 5 concerns products of operators in other
miscellaneous classes such as nilpotent, quasinilpotent, and unipotent opera-
tors, EP matrices, and commutators (both additive and multiplicative). In the
last section, results of Hochwald’s concerning the uniqueness of the adjoint
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operation on operators will be discussed. Their proofs utilize various factor-
ization results considered in this paper.

Due to the expository nature of the paper, we will omit most of the proofs
in the discussions below, referring instead to the original papers. However,
from time to time, we try to give the main idea behind and the flavor of the
exact proofs, especially of those results which appeared recently. Along the
way, we will also indicate the open problems and unexplored areas.

In the following, we will let I denote the n X n identity matrix and o(T)
denote the spectrum of an operator T.

2. NORMAL OPERATOR

In this section, we consider the factorization problems when the factors
are normal operators, its subclasses, and other related operators. We start
with the symmetric ones. An operator T is symmetric if there exists an
orthonormal basis {e;} for the underlying space such that (Te;, ¢;) = (Te;, e;)
for all 4, j. In particular, a matrix representation of 7', T = [a, i]’ is symmetric
if a; j=aj or equivalently, T =T, where T denotes the transpose of T. In
1910, Frobenius [32] proved probably the first result in operator factoriza-
tions.

THEOREM 2.1. Any finite matrix is the product of two symmetric ones,
one of which may be taken to be nonsingular.

Actually, this result holds not only for complex matrices but for matrices
over any field. Not well known among mathematicians, it has since appeared
in the literature quite a few times (cf. [51] and the references in [14] or [71]).
Its proof can be based on factoring the Jordan canonical form (for the
complex field) or rational form (for arbitrary fields), since the property of
being the product of two symmetric matrices is preserved under similarity.
For operators on infinite-dimensional spaces, this problem seems not to have
been explored.

Closely related to symmetric matrices are skew-symmetric ones. A matrix
T is skew-symmetric if T'= — T. Products of two skew-symmetric matrices
have been completely characterized by Gow and Laffey [33].

THEOREM 2.2. A finite matrix is the product of two skew-symmetric
matrices if and only if

(1) its elementary divisors corresponding to nonzero eigenvalues occur
with even multiplicity, and
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(2) its elementary divisors corresponding to the zero eigenvalue are of the
form

ki k, .k
yer

Jxke xke o xk Kk

ki x Lok xk x

where ki=k;ork;+1, 1<j<s.

In particular, the following corollary is the closest to Theorem 2.1 for
skew-symmetric products.

CoroLLARY 2.3. A matrix of even size is the product of two skew-sym-
metric matrices, one of which is nonsingular, if and only if each of its
elementary divisors occurs with even multiplicity.

Gow and Laffey [33] proved the preceding two results, basing their study
on alternating forms and alternate transformations. More recently, in work to
appear, they obtained the following result concerning factorizations with
skew-symmetric factors (cf. also [46] and [47]).

THEOREM 2.4. If n> 2 is even, then every n X n nonsingular matrix is
the product of five skew-symmetric matrices and five is the smallest such
number.

The conjugate version of the symmetric matrix is the Hermitian one. Next
we consider factorizations of this type. For finite matrices, this is solved by
Radjavi [51].

THEOREM 2.5. A finite matrix is the product of finitely many Hermitian
matrices if and only if its determinant is real. The length of Hermitian
matrices is 4.

The proof of the sufficiency part proceeds by first factoring the matrix or
rather, its rational form, into the product of two matrices which are either a
real matrix or similar to a real one, and then invoking Frobenius’s result,
Theorem 2.1. The minimality of 4 can be easily seen from the following
result, also due to Radjavi [52], which holds even for operators on infinite-
dimensional spaces.

THEOREM 2.6. Let T be an operator on H. If the closure of the
numerical range of T lies entirely within one of the open quadrants, then T is
not the product of three Hermitian operators.
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This is an easy consequence of the Toeplitz-Hausdorff theorem on the
convexity of the numerical range (cf. [38, Problem 210}).

Products of Hermitian operators on infinite-dimensional spaces will be
considered later on, together with those of normal, positive definite, and
positive semidefinite operators.

For the products of two Hermitian operators on finite-dimensional spaces,
we have the following characterization (cf. [18], [55, Theorem 1] and [71]).

TueoreM 2.7. The following statements are equivalent for a finite
matrix T:

(1) T is the product of two Hermitian matrices;

(2) T is the product of two Hermitian matrices, one of which is nonsingu-
lar;

(3) T is similar to a matrix with real entries;

(4) T is similar to T*.

The proof is an easy exercise in linear algebra. In the context of infinite-
dimensional spaces, the implication (1) = (4) is no longer true. Examples
have been furnished in [55] and [34] (cf. Example 2.11 below). As a
consolation, it was conjectured in [34] that T is similar to T* if T is the
product of two Hermitian Fredholm operators. This seems still to be open. As
for the implication (4) = (1), despite the abundance of supporting special
cases as given in [55], its validity is still unconfirmed even under the extra
assumption that T is invertible. The problem of characterizing the products
of three Hermitian operators was proposed in [31]. It is unsolved even in the
finite-dimensional case.

Next we consider the products of positive definite and positive semidefi-
nite operators. Recall that an operator 7' on the space H is positive definite,
denoted T > 0 [positive semidefinite, denoted T > 0] if (Tx,x)> 0 [(Tx, x)
> 0] for any x#0 in H. For convenience, we will abbreviate them as
positive (nonnegative) operators. For operators on finite-dimensional spaces,
the factorization problem concerning the former has been tackled by
Ballantine in a series of papers [3], [4], and [5], which culminate in its
complete characterization in [6]. For the latter, it was (partially) solved only
recently in [68]. In the following, we will describe such results, starting with
the products of two. Note that, in the next two theorems, the spaces on which
the operators act may be infinite-dimensional.

THEOREM 2.8. An operator is the product of two positive operators one
of which is invertible if and only if it is similar to a positive one.
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The first appearance of results of this sort (for finite matrices) is probably
in {61). Here is a simple argument for its proof. If T = AB, where A, B> 0
and A is invertible, then T is similar to A~ Y2TAY2 = AV2BAY2  which is
positive. Conversely, if T = X~ !CX, where X is invertible and C > 0, then
T = (X X~*)(X*CX) is the product of two positive operators. A slight
modification of the above argument yields the following result for the product
of two nonnegative operators.

THEOREM 2.9. An operator is the product of two nonnegative operators
one of which is invertible if and only if it is similar to a nonnegative one.

In the case of finite dimensions, Theorem 2.8 settles completely the
factorization problem with two positive factors, since positive operators are
automatically invertible. For infinite-dimensional spaces, the situation is not
clear. We next strengthen Theorem 2.9 for operators on finite-dimensional
spaces.

TreEOREM 2.10. The following statements are equivalent for a finite
matrix T:

(1) T is the product of two nonnegative matrices;

(2) T is the product of two nonnegative matrices one of which is
nonsingular;

(3) T is similar to a nonnegative matrix.

This result is proved in [68]. The proof for the implication (1) = (3) can
be reduced to the corresponding one for Theorem 2.8.

If the space is infinite-dimensional, then the product of two nonnegative
operators may not be similar to a nonnegative one. In fact, this is the case
even when one factor is positive but noninvertible. Here we re-cite the
example given in [35], since it contains the genesis of the idea by which we
obtain the results characterizing products of normal operators.

ExampLE 2.11. Let A be a one-to-one positive operator on H such that
AH # H. Let x € H\ AH, and let B be the orthogonal projection onto {x)*,
the orthogonal complement of the subspace generated by x. Then Bx =0
implies that AB is not oneto-one. On the other hand, if BAy =0, then
Ay € ker BNran A = {0}, which shows that BA is one-to-one. Thus if AB is
similar to a nonnegative operator, then AB must be similar to (AB)* = BA,
which is absurd.

In the infinite-dimensional case, characterizing products of two positive
or two nonnegative operators would make interesting and challenging prob-
lems.
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For the products of three positive operators on a finite-dimensional space,
Ballantine obtained a characterization following a long proof [6, Theorem 3]
(cf. also Taussky’s survey [62]). We will only give the statement of this result
and refer the reader to [6] for the details. For an operator T on H, let
[(T)= {(Tx,x):x € H}. Note that T(T) is the cone generated by the
numerical range of T.

THEOREM 2.12. A finite matrix T is the product of three positive
matrices if and only if one of the following holds:

(1) detT > 0 and T(T) is the whole plane, or
(@) 1eI(T), —1€I(T), and £,0,=0, where the ;s are the argu-
ments between — m and w of the eigenvalues of T.

For the products of three nonnegative matrices, only some partial results
are known (cf. [68]). The next theorem gives a sufficient condition in terms of
the “invertible part” of an operator on a finite-dimensional space. Note that
any such operator can be uniquely expressed as the direct sum (not necessar-
ily orthogonal) of an invertible operator and a nilpotent one (cf. [36, p. 113]).

TueoreM 2.13.  Let T be an operator on a finite-dimensional space and
T =T, + T,, where T, is invertible and T, is nilpotent. If T, is the product of
three positive operators, then T is the product of three nonnegative operators.

In particular, we have the following

CoroLLARY 2.14.  Any nilpotent matrix is the product of three nonnega-
tive matrices.

It seems plausible that the converse of Theorem 2.13 is also true. This we
don’t know at present. However, the following supporting special case seems
worth mentioning, whose proof makes use of Theorem 2.10 on the product of
two nonnegative operators.

TueoreMm 2.15. Let T =T,®0 on a finite-dimensional space. Then T is
the product of three nonnegative operators if and only if T, is.

Finally, we come to the products of four and five positive or nonnegative
matrices. The results for positive matrices are in [6]; those for nonnegative
ones are in [68].
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TueoreM 2.16. A finite matrix T is the product of four positive matrices
if and only if det T > 0 and T is not a scalar matrix cl with cin C\{z: z > 0}.

TreorEM 2.17. A finite matrix T is the product of finitely many
positive matrices if and only if det T > 0. The length of positive matrices is 5.

These two theorems can be proved with a factorization theorem for finite
matrices (cf. [60] and [47]). Since this theorem is also useful for other
factorization problems discussed later on, we state it next.

THEOREM 2.18. Let T be an n X n nonscalar nonsingular matrix. For
any complex numbers a\,...,a, and by,..., b, with I1}_,a.b,=detT, there
exist matrices A and B such that 6(A)={a,,...,a,}, o(B)={b,,....,b,},
and T = AB.

Its proof through induction and some clever manipulation is elementary.
For nonnegative matrices, we start with the following theorem in [68].

THEOREM 2.19.  Any singular matrix is the product of four nonnegative
matrices, and four is the smallest such number.

The proof of the factorization assertion is based on Theorem 2.12,
Ballantine’s characterization of products of three positive matrices, through
the Jordan canonical form of the given matrix; the optimality of four follows
from Theorem 2.15.

Combining Theorem 2.19 with Theorems 2.16 and 2.17 yields the follow-
ing characterizations of products of four or more nonnegative matrices.

TueoreMm 2.20. A finite matrix T is the product of four nonnegative
matrices if and only if detT > 0 and T is not a scalar matrix ¢l with ¢ in
C\{z:2=0}.

THEOREM 2.21. A finite matrix T is the product of finitely many
nonnegative matrices if and only if detT > 0. The length of nonnegative
matrices is 5.

Further generalizations of the above results concern the products of
accretive and positive stable operators. Recall that an operator T is accretive
if its real part Re T = J(T + T*) is positive, and positive stable if Re o(T) > 0.
Note that, on finite-dimensional spaces, positive operators are accretive,
accretive operators are positive stable, and positive stable operators are
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invertible. Products of these operators have been completely characterized in
[12]. The following are some sample results from there.

TaEOREM 2.22. Let T be a finite matrix.

(1) T is the product of two accretive matrices if and only if all the real
eigenvalues of T are positive.

(2) T is the product of finitely many accretive matrices if and only if T is
nonsingular. The length of accretive matrices is 3.

Tueorem 2.23. Let T be a finite matrix.

(1) T is the product of two positive stable matrices if and only if T is
nonsingular and is not a negative scalar matrix.

(2) T is the product of finitely many positive stable matrices if and only
if T is nonsingular. The length of positive stable matrices is 3.

The proofs of these theorems need a well-known result of Lyapunov’s [49]
that a finite matrix is the product of a positive one and an accretive one, in
any order, if and only if it is positive stable.

We conclude this section with results on the factorizations with normal,
Hermitian, positive, and nonnegative factors on infinite-dimensional spaces.
Note that the normal factorization in finite dimensions is trivial, since,
according to the polar decomposition, every finite matrix is the product of a
unitary matrix and a nonnegative one, both of which are normal. In infinite-
dimensional case, things become more interesting. There are operators,
namely, the unilateral shift, which cannot be factored as the product of
finitely many normal operators (cf. {38, Solution 144(a)]). The characteriza-
tion of operators expressible as such has been obtained only recently in [69].
As it turns out, the classes of operators expressible as products of normal,
Hermitian, or nonnegative operators are identical. More precisely, we have
the following

THeOREM 2.24. The following statements are equivalent for an operator
T on an infinite-dimensional space:

(1) T is the product of finitely many normal operators;

(2) T is the product of finitely many Hermitian operators;
(3) T is the product of finitely many nonnegative operators;
(4) dimker T = dimker T* or ranT is not closed.

Moreover, in this case, the number of normal factors may be limited to 3,
that of Hermitian factors to 6, and that of nonnegative factors to 18.
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An immediate corollary is the following

CoroLLarRYy 2.25. Any compact operator on an infinite-dimensional
space is the product of finitely many nonnegative operators.

For positive products, we have

THEOREM 2.26. An operator on an infinite-dimensional space is the
product of finitely many positive operators if and only if it is one-to-one with
dense range. In this case, 17 factors suffice.

It is not known whether the numbers 6, 18, and 17 here are best possible
in each case. As for the proof, the necessity of condition (4) in Theorem 2.24
follows by an easy argument based on the theory of Fredholm operators (cf.
[69, Proposition 2.4]). For the sufficiency, if dimker T = dimker T*, then T is
the product of two normal operators by the polar decomposition; otherwise
(say, dimker T' = dimker T*+ 1), T may be factored, as in Example 2.11, as
the product of an operator A with dimker A = dimker A* and an orthogonal
projection B, whence it is a product of three normal operators. For the
general case dimker T > dimker T* 42, the above construction may be car-
ried through analogously via the result that for nonclosed ran T, there always
exists a closed, infinite-dimensional subspace K such that K NranT = {0}
(cf. [69, Lemma 2.5]). The implication (1) = (2) in Theorem 2.24 follows by a
result of Radjavi’s [52] that any normal operator is the product of four
Hermitian operators, which is proved by an elaborate argument based on the
spectral theorem for normal operators. For the proof of (2) = (3), we need
only consider factoring unitary operators into positive ones due to the polar
decomposition. Since every unitary operator is the product of four symme-
tries (cf. Theorem 3.12 below), this is further reduced to the factorization of
symmetries. Using Ballantine’s characterizations of products of positive ma-
trices (Theorems 2.12, 2.16, and 2.17), it can be shown that every symmetry
is the product of six positive operators [69, Lemma 2.7] thus completing the
proof of (2) = (3).

3. INVOLUTION

An operator T is an involution if T2=1. In this section, we consider
products of involutions and operators from its various subclasses. We start
with the product of two involutions on a finite-dimensional space. The
following characterization has been obtained by various mathematicians
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(cf. [66], [24], [44], and [8]):

THEOREM 3.1. Let T be a finite matrix, and let ] =Y.®J; (a;) be its
Jordan canonical form, where each

a,;
1
]k,(ai)=

is a Jordan block with eigenvalue a, and size k,. Then the following
statements are equivalent:

(1) T is the product of two involutions;

(2) T is nonsingular and is similar to T™Y;

(3) except those Ji(a;) with a,= +1, all the rest are in pairs ]k]_(a ;) and
Ji(a;) such that k; =k, and aa;=1

(1) = (2) is true for operators even on infinite-dimensional spaces, and the
proof of the rest is an easy exercise in linear algebra. It is unknown whether
(2) = (1) in general. That is true if T is normal (cf. [54, p. 12]).

Which operators can be factored as the product of three involutions? The
complete characterization is not known at present even on finite-dimensional

spaces. Here are some fragmentary results obtained recently by K.-M. Liu
[48].

TueoreM 3.2. An nXn matrix T with detT = +1 and satisfying
dimker(T — zI) < [n/2] for any complex number z is the product of three
involutions.

Its proof is rather long. It is based on Theorem 3.1, the following lemma,
and the idea of representing T with respect to a new basis as constructed in

[13].

Lemma 3.3.  Let T be an n X n nonsingular cyclic matrix. If a,, a,,...,a,
are complex numbers satisfying [17_,a;= —detT, then there exist an invo-
lution A and a cyclic matrix B with o(B)= {a,,...,a,} such that T = AB.

From Theorem 3.2, we can easily derive the following corollary, which
has also been noted in [35] and [9].
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CoroLLaRrY 3.4. If the rational form of a matrix with determinant +1
has at most two blocks, then it is the product of three involutions.

The next result, from [48], gives a necessary condition for the product of
three involutions. Note that the gap of the conditions in Theorems 3.2 and
3.5 is between n /2 and 3n /4.

THEOREM 3.5. If the n X n matrix T is the product of three involutions,
then dimker(T — zI) < [3n/4] for any complex number z, z* + 1.

In [9], n X n matrices expressible as the product of three involutions are
completely characterized for n up to 4. This is further pushed to five in [48].

So much for the product of three involutions. A result of Gustafson,
Halmos, and Radjavi [35] takes care of the products of any finite number of
involutions.

THEOREM 3.6. A finite matrix is the product of a finite number of
involutions if and only if its determinant is +1. The length of involutions
is 4.

The proof in [35] exploits the similarity between certain n X n weighted
permutation matrices and the permutations of the index set {1,2,...,n}, and
essentially reduces the problem to that of expressing a permutation as the
composite of two involutory permutations. Sourour {60] gives a simple proof
of this based on his factorization theorem, Theorem 2.18 (cf. also [9] and
[47]). That the length is four is seen by the matrix wl,, where w=
1(—1+V31i) (cf. [38, Solution 143]).

For products of involutions on infinite-dimensional spaces, much less is
known. The following is one positive result (cf. [54]).

THEOREM 3.7. An operator on an infinite-dimensional space is the
product of finitely many involutions if and only if it is invertible. In this
case, seven involutions suffice.

It is not known whether seven is the smallest such number, although it
was shown in [54] that four won’t be enough.

A class of operators analogous to involutions is obtained by replacing the
requirement + 1 with modulus equal to 1. Formally, a finite matrix T is a
pseudoinvolution if TT = I, where T denotes the entrywise conjugate of T.
This notion was first introduced by Ballantine [11]. The factorizations into
pseudoinvolutions are very much like those into involutions. Indeed, the
following are proved in [11].
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THEOREM 3.8. A finite matrix T is the product of two pseudoinvolutions
if and only if T is nonsingular and is similar to T* .

TueoreM 3.9. A finite matrix T is the product of finitely many pseu-
doinvolutions if and only if |detT|=1. The length of pseudoinvolutions
is 4.

Recall that a matrix T is orthogonal if T'T =TT'=1. If we require the
involution to be orthogonal, then we have the orthogonal involutions. In other
words, T is an orthogonal involution if T =T~! =T'. Wonenburger [65, 66]
proved the following result.

Tueorem 3.10. Any orthogonal finite matrix is the product of two
orthogonal involutions.

In particular, the length of orthogonal involutions is 2. This result is
easiest to perceive for real orthogonal matrices, since in this case it is
orthogonally similar to a matrix of the form

1
1
-1
L -1
cos@, —sind, cosd, —sinf,
sind, cos, | sinf, cos @, |’

and the rotation in the plane corresponding to each

[cos 0]. — sin 0].]

sin 0]. cos 0j

is, geometrically, the product of two reflections.

An operator T is a symmetry if it is a unitary involution, that is, T
satisfies T =T~ ! = T*. On finite-dimensional spaces, products of symmetries
are characterized by Radjavi [51].
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Tueorem 3.11. A finite matrix T is the product of finitely many
symmetries if and only if T is unitary and detT = £1. The length of
symimetries is 4.

Note the similarity of this theorem to Theorem 3.6 for products of
involutions. On infinite-dimensional spaces, the product of symmetries was
considered much earlier by Halmos and Kakutani [39] (cf. also [38, Problem
143)).

TueEOREM 3.12. An operator on an infinite-dimensional space is the
product of finitely many symmetries if and only if it is unitary. The length of
syminetries is 4.

To achieve this factorization, first factor the unitary operator into the
product of a right shift and a left shift, and then factor each of the latter as
the product of two symmetries. The factorizations make use of the spectral
theorem for unitary operators. The length assertion follows by Theorem 2.6.

For the products of two symmetries, the characterization is due to Davis
[20], and holds on an arbitrary Hilbert space.

THeOREM 3.13.  An operator T is the product of two symmetries if and
only if T is unitary and T is similar to T~

In [55], this is derived as a corollary of a more general result concerning
the product of a symmetry and a Hermitian operator whose proof, again, uses
the spectral theorem for unitary operators.

It is not known which operators can be expressed as the product of three
symmetries on either finite or infinite-dimensional spaces.

Next we consider factorizations into another kind of involutions, the
so-called reflections. An operator T is a reflection if T2 =1 and rank(T —I)
= 1. Geometrically, such a transformation is an “oblique” symmetry with
respect to a hyperplane. Note that a finite matrix is a reflection if and only if
it is similar to the diagonal matrix

-1

Products of reflections were first considered by Radjavi [53]. (There reflec-
tions are called simple involutions.) He showed that any n X n (n > 2) matrix
with determinant +1 is the product of at most 2n — 1 reflections. The
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number of factors is reduced to the optimal n +2 for n > 3 by Cater [19].
More precisely, he proved

THEOREM 3.14. An nXn matrix T is the product of finitely many
reflections if and only if detT = + 1. More precisely, for n > 3,

(1) if T is nonscalar and detT =(—1)", then at most n factors are
needed,;

(2) ifdetT =(—1)"*!, then at most n +1 factors are needed;

(3) if T is scalar and detT =(—1)", then at most n+2 factors are
needed.

If n=2, then at most 3 factors are needed. In each case, the respective
number is the smallest possible. In particular, the length of reflections is 3 if
n=2andn+2 ifn>3.

The proof of this theorem depends on a factorization theorem developed
by Cater [19, Lemma 8]. The assertions above can be further improved by
precisely determining the length, with respect to the reflections, of each
matrix with determinant +1. This is done independently by Ellers [28],
Djokovi¢ and Malzan [27], and Yuan and Zou {70}

THEOREM 3.15. Let T hean n X n (n > 2) matrix with detT = + 1, and
let

e(T)={0 if detT=(-1)"""""
1 otherwise.

Then the length of T with respect to the reflections equals rank(T — 1)+ 2 ~
&T) if either T is similar to 1, ®al,,_,,, wheren—m>2 and a+ -1, or
(T —1)>=0 and rank(T — I) > 2; otherwise, it equals rank(T — 1)+ &(T).

Slightly more general than reflections is the class of dilatations. On a
finite-dimensional space, a dilatation is one which is similar to a matrix of
the form

a

where a # 0, 1. Products of dilatations were considered by Djokovié¢ [25].
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THeEOREM 3.16.  An n X n matrix is the product of finitely many dilata-
tions if and only if it is nonsingular. The length of dilatations is n.

It can be easily seen that the matrix al,, where a # 0, 1, needs n
dilatations in such a factorization.

In the literature, there are factorizations of matrices into special kinds of
reflections. One such factorization has orthogonal reflections as factors. An
orthogonal reflection is an operator T such that T=T"!=T"' and rank(T —
I)=1. The next theorem is a classical result of Cartan and Dieudonné’s (cf.
[23, p. 20]).

TaeOREM 3.17.  An n X n matrix is the product of finitely many orthog-
onal reflections if and only if it is orthogonal. The length of orthogonal
reflections is n.

The exact length for such decompositions was obtained by Scherk [57].

TueoreM 3.18. If T is a finite orthogonal matrix, then the length of T
with respect to orthogonal reflections equals rank(T —I)+2 or rank(T —I)
depending on whether T — I is skew-symmetric or not.

We conclude this section by considering the factorization into unitary
reflections. As one might expect, a unitary reflection is a reflection which is
also unitary. Factorizations of this type were first considered by Radjavi [53].
(Note that, in [53], unitary reflections are called simple symmetries.)

TrEOREM 3.19. A finite matrix T is the product of finitely many unitary
reflections if and only if T is unitary and det T = +1.

The length of T in the factorization above was obtained later by Djokovi¢
and Malzan [26]. To state the result, we need one more bit of notation. For
an n X n unitary matrix T, let §,,...,6, (0 < HJ. < 27) be the arguments of its
eigenvalues, and let k(T)=(1/7)8,+ --- +8,). Note that k(T') is a non-
negative integer if and only if detT = + 1.

TueOREM 3.20. If T'is ann X n unitary matrix, T+ I, and detT = +1,
then its length with respect to the unitary reflections is max{k(T), k(T)}. In
particular, the length of unitary reflections is 2n — 1.
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This latter length assertion was first conjectured by Radjavi {53] and can
be seen by considering the matrix

where0<0 < forall jand 8, + - -+ + 6, =7, in which case k(T) =1 and
k(T)= 2n — 1, whence the length of T equals 2n — 1.

4. PARTIAL ISOMETRY

We start this section by considering the factorization into partial isome-
tries. Recall that an operator is a partial isometry if T is isometric on
(ker T)*. As is well known, this is equivalent to requiring that T = TT*T (cf.
[38, Corollary 3 to Problem 127]). On finite-dimensional spaces, the factoriza-
tion problem with partial isometry factors is solved completely in [45].

THEOREM 4.1. Let T be a finite matrix and k > 1. Then T is the product
of k partial isometries if and only if T is a contraction (||T}|<1) and
rank(I — T*T) < k dimker T.

Since the product of a unitary operator and a partial isometry is again a
partial isometry, in the above factorization we need only consider, via the
singular-value decomposition, a nonnegative diagonal matrix. The details are
in [45]. As an immediate corollary, we obtain the following

CoROLLARY 4.2. An n X n matrix is the product of finitely many partial
isometries if and only if it is either unitary or a singular contraction. The
length of partial isometries is n.

The optimality of n here is observed through matrices of the form

where 0 <a; <1 forall j.
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Since the supply of partial isometries is more abundant on infinite-dimen-
sional spaces, we would expect a simpler factorization in this case. This is
indeed true, as proved by Brown [17]. Note that the product of partial
isometries must be a contraction, since all the factors have norm O or 1. The
next theorem says that the converse is also true.

THeoREM 4.3. If T is a contraction on an infinite-dimensional space,
then there exist two unilateral shifts S| and S, with corank S| = corank S, = c©
such that T = S}S,.

If we only require that S, and S, be isometries, then an easier proof,
based on the notion of unitary dilations of a contraction, has been given by
Arveson (cf. [41, Lemma 2.1)).

Historically, the result above was preceded by the factorizations into
unilateral shifts or unitary operators (cf. [37]).

THEOREM 4.4. On an infinite-dimensional space, an operator T is the
product of a unitary operator and a unilateral shift with corank n if and only
if T is an isometry and corank T = n.

TueOREM 4.5. On an infinite-dimensional space, an operator T is the
product of two unilateral shifts if and only if T is an isometry and
corank T > 2.

The proofs are through some clever constructions. Factorizations of the
above type with more precise conditions on the multiplicities of the unilateral
shift factors seem worth investigating.

A special kind of partial isometry is the orthogonal projection. Another
result in [45] is concerned with the factorization into operators of this type.
Here the situation is quite different from what we have discussed so far in
that the number of factors can be arbitrarily large.

THeOREM 4.6. An nXn matrix T is the product of finitely many
orthogonal projections if and only if T is unitarily equivalent to a matrix of
the form [ é g], where § is singular with ||S|| < 1. The length of orthogonal
projections is infinity for n > 2.

The proof is based on some geometric considerations. The main step
consists in transforming x to y through finitely many orthogonal projections,
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for any given vectors x and y satisfying ||x|| > ||y||. As for the length, it was
proved that, for any m > 2, the singular strict contraction

0 ™\"
(cos 2m)
0 0

can be factored as the product of no fewer than m + 1 orthogonal projections
(cf. [45, Lemma 3.6)).

For the products of two orthogonal projections, Crimmins found a charac-
terization (cf. [55, Theorem 8]).

TueoreM 4.7.  An operator T is the product of two orthogonal projec-
tions if and only if TT*T = T2. In this case, T = P,P,, where P, and P, are
the orthogonal projections onto ranT and (ker T)*, respectively.

Dropping the requirement of self-adjointness from the definition of or-
thogonal projections, we obtain the class of idempotent operators, that is,
operators T satisfying T2=T. The products of idempotent operators on
finite-dimensional spaces were first considered by Erdos [29]. He showed that
every singular matrix can be written as a product of idempotent operators.
This result was also obtained independently by Hawkins and Kammerer [40]
and Dawlings [21]. [In the former, it was shown more generally that every
finite-rank operator on a (possibly infinite-dimensional) Banach space can be
expressed as such.] The final words on this matter are contained in [10].

TuEOREM 4.8. Let T be a finite matrix and k > 1. Then T is the product
of k idempotent matrices if and only if rank(T —I) < kdimkerT.

The proof involves only elementary matrix operations and thus is con-
structive. Note the similarity of the conditions in Theorems 4.1 and 4.8,
which links the factorization with partial isometry factors and that with
idempotent factors. From Theorem 4.8, we can easily derive the following

CoRoLLARY 4.9. An n X n matrix is the product of finitely many
idempotent matrices if and only if it is either the identity matrix or singular.
The length of idempotent matrices is n.
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The optimality of n is realized by the matrix

1 0
For infinite-dimensional spaces, a complete characterization of products
of idempotent operators was obtained by Dawlings [22].

THEOREM 4.10. On an infinite-dimensional space H, an operator T is
the product of finitely many idempotent operators if and only if one of the
following holds:

OHT=IL

(2) dimker T = dimker T* = oc;

(3) 0 <dimker T = dimker T*, dim F;* < o0,
where Fr = {x € H:Tx = x} is the subspace of fixed points of T. The length
of idempotent operators is infinity.

Indeed, in [22], it was shown that the operator T = I®§, where

1 0

is of size n, can be factored into no fewer than n idempotent operators.
The analogous factorization problem for linear transformations on an
arbitrary vector space was considered in [56].

5. MISCELLANIES

In this section, we will consider factorizations into operators in other
miscellaneous classes. These include nilpotent, quasinilpotent, and unipotent
operators, EP matrices, and commutators (both additive and multiplicative).

For nilpotent operators on finite-dimensional spaces, the factorization
problem was solved recently by Wu [67]. Recall that an operator T is
nilpotent if T" =0 for some n > 1.
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THEOREM 5.1. A finite matrix is the product of finitely many nilpotent
matrices if and only if it is singular. The length of nilpotent matrices is 2.

In fact, more precise information concerning the factors is proved in [67):
any singular T can be expressed as the product of two nilpotent matrices A
and B with rank A =rank B=rank T except when T is a 2X2 nilpotent
matrix of rank one. The proof is via factoring the Jordan canonical form of 7.
It may also be proved using the rational form, thus extending the result to
matrices over arbitrary fields. Whether a result of this nature holds for
operators on an infinite-dimensional space is not known. As a matter of fact,
this is unknown even if we enlarge our candidates for the factors from
nilpotent to quasinilpotent operators. Recall that an operator T is quasinilpo-
tent if its spectrum o(T') consists of zero only. Note that on finite-dimen-
sional spaces, quasinilpotent operators coincide with nilpotent ones. The
factorization with quasinilpotent factors was considered in [30]. Although no
complete characterization is obtained, some partial results are quite interest-
ing. The next two theorems give necessary or sufficient conditions for an
operator to be the product of two quasinilpotent operators on infinite-dimen-
sional spaces. Here g,(A) denotes the essential spectrum of an operator A.

TueoreM 5.2. If T is a product of two quasinilpotent operators, then
0o (T*T)N o (TT*).

Tueorem 5.3. If 0€o(T*T +TT*), then T is the product of two
quasinilpotent operators.

For special kinds of operators, characterizations are known.

Tueorem 5.4. Every compact operator is the product of two compact
quasinilpotent operators.

THEOREM 5.5. A normal operator T is the product of two quasinilpotent
operators if and only if 0 € o(T).

The proofs of the above results make extensive use of the infinite-dimen-
sionality of the underlying space, compact operator theory, and the spectral
theorem for normal operators.

An operator T is unipotent if (T — I)" = 0 for some n > 1. Note that, on
finite-dimensional spaces, T is unipotent if and only if o(T)= {1}. The
factorization with unipotent factors was recently considered by Fong and
Sourour [31]. They obtained the following characterizations.
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THEOREM 5.6. An nXn matrix T is the product of two unipotent
matrices if and only if T =1, or T is a nonscalar matrix with detT =1.

THEOREM 5.7. A finite matrix T is the product of finitely many unipo-
tent matrices if and only if det T = 1. The length of unipotent matrices is 3.

Alternative proofs, only slightly different, based on the factorization
theorem (Theorem 2.18), are given in [60].

For operators on infinite-dimensional spaces, Fong and Sourour [31]
proved the following

THEOREM 5.8. An operator on an infinite-dimensional space is the
product of finitely many unipotent operators if and only if it is invertible. In
this case, six unipotent factors suffice.

Whether six is optimal in the preceding theorem is not known, although,
as in the finite-dimensional case, two unipotent factors are not enough.

A finite matrix T is an EP matrix if ker T = ker T*; it is an EP, matrix if,
in addition, rank T = r. In [7], Ballantine characterized the products of EP,
matrices.

TuEOREM 5.9. Let 0 < 1), 1, < n. Then an n X n matrix T is the product
of an EP, and an EF, matrix if and only if min{r),p} >rankT >r +1r,—n
and rank T2 > 3rank T — 1, — 1.

TueoreM 5.10. Let 0<ry,...,1,, < n. Then an n X n matrix T is the
product of matrices of classes EP, ,..., EP, if and only if min{r,...,7,} =
rank T > ):;."_ Wi~ (m—Dn.

Finally, we consider commutators and their products. An operator is a
commutator if it can be expressed as AB — BA for some operators A and B.
On finite-dimensional spaces, we have the following characterization of
commutators (cf. [58] or [1)).

TuEOREM 5.11. A finite matrix is a commutator if and only if its trace
is zero.

What are the products of commutators? If the underlying space is
1-dimensional, then the answer is trivial. The next theorem settles the
remaining finite-dimensional case.
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THEOREM 5.12. Any n X n (n > 2) matrix is the product of two commu-
tators.

This follows by Theorem 5.11, the observation that commutators are
preserved under the similarity of matrices, and the following decompositions:

[8 2]=[—(1) (1)”2 _0]

and
[0 0 0 a |
1 0 0 a,
ool ! 0 4
00 ---1 0 a,,
[0 0 01 a, |
[0 o —a/(n=1)][1 o 0 a,
1 0 0 1 0 a,
= 1 0 ;
. 0 0 1 a,
[0 0 1 0 0 0 0 —(n-1)

together with a similar factorization for [g 2] In particular, this shows that
Theorem 5.12 holds for matrices over any field with characteristic 0.

On infinite-dimensional spaces, commutators have also been character-
ized after many years™ effort (cf. [15] and [2]).

TuaeoreM 5.13.  The following conditions are equivalent for an operator
T on an infinite-dimensional space:

(1) T is a commutator;

(2) T is not the sum of a nonzero scalar and a compact operator;

(3) the essential numerical range of T cannot consist of a single nonzero
scalar.



58 PEI YUAN WU

In this context, the products of commutators seem not to have been
considered. It would also be interesting to characterize products of a special
kind of commutators: self~commutators, operators of the form A*A — AA*.
(For their characterizations, see [63] and [50].)

Another type of commutator is the multiplicative one. Recall that an
operator T is a multiplicative commutator if T=ABA~!'B™! for some
invertible operators A and B. The next theorem characterizes such commuta-
tors on finite-dimensional spaces. It was first obtained by Shoda [59].
Thompson [64] extended it to all fields with more than three elements;
Sourour [60] gave another proof (for complex matrices) based on his factor-
ization theorem, Theorem 2.18.

TueoreMm 5.14. A finite matrix is a multiplicative commutator if and
only if its determinant is 1.

For infinite-dimensional spaces, it was conjectured in [16] that an invert-
ible operator T is a multiplicative commutator if and only if either T is not
the sum of a nonzero scalar and a compact operator or T is such a sum with
the scalar having modulus 1. Although some partial results are known, the
general case remains open. In particular, it is known that any unitary
operator is a multiplicative commutator (cf. {16, Corollary 3.2] or [38,
Problem 239}). However, for products of multiplicative commutators, we
have the following characterization (cf. [16, Corollary 4.7]).

TueOREM 5.15. An operator on an infinite-dimensional space is the
product of finitely many multiplicative commutators if and only if it is
invertible. The length of multiplicative commutators is 2.

The proof is rather involved. For an easier proof of factoring an invertible
operator into three multiplicative commutators, consult [38, Problem 240].

6. APPLICATION

In this final section, we discuss an application of the previous factoriza-
tion results. The application is due to Hochwald and concerns the uniqueness
of the adjoint operation on operators (cf. [41], [42], and [43]). He considered
an operation h on %(H), the algebra of operators on the space H, or some
subset of #Z(H), and asked whether the properties h(ST)= h(T)h(S) and
h(T)T >0 for all S and T in the domain of h will characterize the adjoint
operation T — T*. The answer turns out to depend on the domain of h. It is
affirmative when h is nontrivial and defined on all of Z(H) for infinite-
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dimensional H. If h is defined only on part of #(H), then other possibilities
such as the inverse operation T — T~ ! may arise. The following are the
precise statements. We first consider the operation h defined on I(H), the
set of all isometries on H.

Tureorem 6.1.  For an infinite-dimensional space H, the following state-
ments are equivalent for a function h: I(H) —» Z(H):

(1) h(ST)=h(T)h(S) and h(T)T >0 for all S and T in I(H);

(2) there is a homomorphism ¢ from the additive semigroup
{0,1,2,...,dim H} to the multiplicative semigroup R* such that h(T)=
d(dimker T*)T* for all T in I(H).

A special case of the preceding theorem is the following

THEOREM 6.2. Let H be infinite-dimensional, and h: I(H) — %#(H) be
a function such that h(U)Y+# 0 for some unilateral shift U of infinite
maldtiplicity. Then h(ST) = h(T)h(S) and h(T)T > 0 for all S and T in I(H)
if and only if W(T)=T* for all T in I(H).

Next, for h defined on all of #(H), we have

THEOREM 6.3. Let H be infinite-dimensional and h be a function on
%(H) such that h(1)+# 0. Then h(ST) = h(TYh(S) and (T)YT > 0 for all S
and T in B(H) if and only if W(T)=T* for all T in B(H).

All the theorems above are in [41]. Their proofs exploit the various
factorization results discussed in previous sections. For example, Theorem 6.2
is proved by first showing that h(I) =1 and, successively, that h behaves
properly for symmetries, unitary operators (using Theorem 3.12), unilateral
shifts, and finally isometries (using Theorem 4.4). As for Theorem 6.3, we
proceed from isometries through coisometries, contractions (using Theorem
4.3), and finally arbitrary operators in Z(H).

If the domain of h is restricted to GL(H), the set of all invertible
operators on H, then h can be either the adjoint or the inverse operation (cf.
[43]).

THEOREM 6.4. Let H be infinite-dimensional. If h is a function on
GL(H) such that h(ST)=h(T)h(S) and H(T)T 20 for all S and T in
GL(H), then h(T)=T* forall T € GL(H) or (T)=T"! forall T € GL(H).

As before, the assertion in the preceding theorem is proved successively
for symmetries, scalar operators, direct sums of a scalar operator and the



60 PEI YUAN WU

identity operator, diagonal positive operators, positive operators (by Weyl’s
theorem on the perturbation of positive operators by diagonal ones), and
finally, invertible operators (via the polar decomposition).

The finite-dimensional version of the preceding results are in [42].

THEOREM 6.5. Let H be finite-dimensional, and let h be a function on
GL(H). Then the following statements are equivalent:

(1) h(ST) = h(T)h(S) and h(T)T > O for all S and T in GL(H);

(2) there is a multiplicative homomorphism ¢:C\{9} > R" such that
either h(T) = o(det T)T* for all T € GL(H) or h(T)=o(det T)T™! for all
T € GL(H).

In particular, the following holds:

THEOREM 6.6. Let H be finite-dimensional, and let h be a function on
#(H) such that h(I)+ 0. Then h(ST)= h(T)h(S) and h(T)T >0 forall S
and T in #(H) if and only if either h(T)=0 for all singular T and h is
given as in Theorem 6.5(2) on GL(H) or h(T)=T* for all T on H.

The idea of the proofs is the same as before: working through various
classes of operators using the factorizations if possible.

This concludes the paper. We hope that it fulfills our stated purpose of
directing people’s attention to this area of research and arousing their interest
so that they work on problems of this nature and find more applications.
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