
 i

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

MPEG-4 IPMPX 系統

在 MPEG-21 測試平台上的設計與實現

MPEG-4 IPMPX Design and Implementation

On MPEG-21 Testbed

研 究 生：范振韋

指導教授：杭學鳴 博士

中 華 民 國 九 十 三 年 六 月

 ii

MPEG-4 IPMPX 系統在 MPEG-21 測試平台上的設計與實現

MPEG-4 IPMPX Design and Implementation on MPEG-21
Testbed

研究生: 范振韋 Student: Chen-Wei Fan
指導教授: 杭學鳴 Advisor: Hsueh-Ming Hang

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Electronics Engineering

June 2004

HsinChu, Taiwan, Republic of China

中華民國九十三年六月

 v

MPEG-4 IPMPX 系統在 MPEG-21 測試平台上的設計與實現

研究生: 范振韋 指導教授: 杭學鳴 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

近幾年來，數位化的多媒體內容開始成為趨勢，保護數位化多媒體內容

的智慧財產權這一個議題變得越來越受到重視，本論文將介紹並且實現一

個由 MPEG 會議發展的數位多媒體內容智慧財產權保護系統 MPEG-4 IPMPX

系統，本論文的目的是研習 IPMP 的標準，接著設計並實現 MPEG-4 IPMPX

系統在 MPEG-21 多媒體傳輸的測試平台上，MPEG-21 測試平台是 MPEG 標準

的一部份，其目的是用來測試多媒體的傳輸。我們在把 MPEG-4 IPMPX 系統

整合進 MPEG-21 的測試平台上，並在其上測試 MPEG-4 IPMPX 系統的功能，

如數位影像的加密，解密，以及浮水印的加入與取出比對等功能。我們設

計了 IPMPX 系統的軟體架構，以及其 API，並且，我們完成了一個 MPEG-4

IPMPX 系統與其應用的範例。為了符合 MPEG-21 測試平台，我們使用 C++語

言實現 IPMP 系統。論文中，我們完成並描述 IPMP 系統與其應用範例。

 vi

MPEG-4 IPMPX Design and Implementation on MPEG-21 Testbed

Student: Chen-Wei Fan Advisor: Dr. Hsueh-Ming Hang

Department of Electronic Engineering &
Institute of Electronics

National Chiao Tung University

Abstract

Distribution of digital media content is a trend in recent years. The issues of protecting

the rights of digital content are thus becoming more and more important. In the thesis, the

IPMPX system (Intellectual Property Management and Protection Extension system), a

Digital Rights Management interface and architecture developed by MPEG is introduced and

implemented. The goal of this thesis is to study the IPMP standard and design an MPEG-4

IPMPX system implementation on the MPEG-21 Multimedia Test Bed. MPEG-21 Test Bed is

a part of MPEG standard for testing multimedia resource delivery. We integrate the MPEG-4

IPMP system into the MPEG-21 Testbed to perform the functions of IPMP such as

en/decryption and watermarking. We design the software architecture of the IPMP system

including its APIs. Furthermore, we design and implement an application example which uses

the IPMPX system with MPEG-21 Test Bed to show its powerful functionalities. To match the

other parts of the MEPG-21 Test Bed, the IPMP subsystem realization is written in C++. The

IPMP subsystem together with the application example has been completed and described in

this thesis.

 vii

誌謝

 首先要感謝我的指導教授 杭學鳴 博士這兩年多來的指導，老師的研究態度、謙虛

以及實事求是的精神一直是我的典範。在研究的過程中，遇到的問題與困難，老師總是

適時的給予幫助與指點方向，讓我克服研究上的瓶頸，並順利的完成。除了課業上的幫

助以外，我還要特別感謝老師在我最困難的時候，給予我鼓勵以及協助，老師的關懷以

及體諒，讓我感到溫暖受用，讓我度過了心情的低潮，重新的站起來，面對往後的挑戰，

這一切都要感謝老師，謝謝！

 在這裡也要感謝通訊電子與訊號處理實驗室，提供了極佳研究環境，讓我在研究中

有充足的資源可以使用。也感謝實驗室全體成員，營造了一個充滿活力與和諧的環境氣

氛，實驗室的溫馨與有條理的環境，一直是我身為實驗室成員自豪的一點。感謝張峰城

學長，在我從事論文研究時不吝提供經驗與鼓勵，以及教導我許多軟體開發的智識。也

感謝蔡家陽學長在研究上的協助，另外，也要莊孝強、方耀諄、蘇子良等同學，適時提

供技術上的支援，以及陪伴我走過兩年的研究生歲月，感謝這一切，使得論文能夠順利

的進行。

最後，要感謝的是我的家人，他們讓我能夠心無旁騖的從事研究工作。沒有家人在

背後的支持與體諒，也就沒有今天的我，在此，謹獻上最高的謝意與歉意。

 謝謝所有陪我走過這一段歲月的師長、同儕與家人，所有愛我的人，我愛的人，謝

謝！

 viii

 Contents
摘要 ..v

Abstract..vi

Chapter 1 Introduction..1

Chapter 2 IPMP Extension System...4

2.1 IPMP Hook ...4

2.2 IPMP Extension Overview ...5

2.2.1 IPMP Tool Manager...6

2.2.2 IPMP Message Router ...7

2.2.3 Terminal...7

2.2.4 IPMP Tool..7

2.2.5 IPMP Control Point (IPMP Filter)...8

2.3 MPEG-4 IPMP Extension Specification ..8

2.3.1 IPMP Control Information...8

2.3.2 IPMP Messages ...15

2.3.3 Using IPMP ...17

Chapter 3 Overview of MPEG-21 Resource Delivery Test Bed ..20

3.1 Server components ...21

3.2 Client components ..22

3.3 Common components ...23

3.4 Network ..25

Chapter 4 IPMP Reference Software..27

4.1 IM1 IPMPX Reference Software ...27

4.1.1 IPMPToolInterface ..28

4.1.2 MRInterface...28

4.1.3 TMInterface ...30

4.1.4 IPMPSystem ..31

4.2 PSL MPEG-2 IPMP-X Reference Software...33

Chapter 5 MPEG-4 IPMP Extension System Implementation on MPEG-21 Test Bed37

5.1 Architecture Design ..38

5.1.1 Context ..38

5.1.2 IPMP Control Points (IPMP Filters)..41

 ix

5.2 Design and Implementation of Software ..44

5.2.1 Message Router ...44

5.2.2 Tool Manager...48

5.2.3 Terminal...50

5.2.4 IPMP Filter ..51

5.2.5 IPMP Tool..55

Chapter 6 Demo..59

6.1 Structure..59

6.2 Setup ...60

6.3 Execution..64

Chapter 7 Conclusion ...69

References ..72

自 傳 ..73

 x

List of Figures
Figure 1 Multimedia Delivery System with IPMP...2

Figure 2 MPEG-4 IPMPX system [1] ..6

Figure 3 Sample of IPMP Tool context ID mapping [1] ..15

Figure 4 MPEG-4 IPMP basic concept [1]...18

Figure 5 Architecture of MPEG-21 Testbed [5] ...20

Figure 6 Network protocol [6]..25

Figure 7 IPMPX system in IM1 [3]..27

Figure 8 IPMPX class hierarchy in IM1...28

Figure 9 MPEG-2 IPMPX system software architecture [4]....................................33

Figure 10 Class hierarchy of message interface of PSL IPMPX reference software36

Figure 11 Relationships among modules in the IPMPX system37

Figure 12 Context hierarchy...38

Figure 13 Links between four level contexts ...39

Figure 14 Search the context tree ...40

Figure 15 Relationship between IPMP Context and other modules.........................40

Figure 16 Block diagram of IPMPX system at client side42

Figure 17 Block diagram of IPMPX system at server side43

Figure 18 Modification of Decoder ..44

Figure 19 Relationship between Message Router and other modules......................45

Figure 20 The messaging procedure...46

Figure 21 Relationship between Tool Manager and other modules48

Figure 22 Relationship between Terminal and other modules50

Figure 23 Relationship between IPMP Filter and other modules.............................52

Figure 24 The procedure of processing data by IPMP Filter at client side54

Figure 25 The procedure of processing data by IPMP Filter at server side..............54

Figure 26 Relationship between IPMP Tool and other modules55

Figure 27 Flow chart of IPMP DES Tool ...57

Figure 28 System diagram of our application ..59

Figure 29 Relationship of various pointers in the demonstration system.63

Figure 30 Messaging routine in the demonstration system64

Figure 31 Screenshot_1 of demonstration system..65

 xi

Figure 32 Screenshot_2 of demonstration system..66

Figure 33 Screenshot_3 of demonstration system..67

Figure 34 Screenshot_4 of demonstration system..67

 1

Chapter 1

Introduction

Digitization of media content became a trend about twenty years ago. However,

following the digitization of media content, protecting the rights of media content becomes an

important issue. Digital media contents have the advantages of perfect copy and separation

from the media container, but these advantages become disadvantages in the view of rights

protection and management. A new component called digital right management becomes an

important element in the digital media delivery system.

Designing and implementing a Digital Rights Management system is very challenging. A

DRM system must provide an open, safe, and trusted environment for media content delivery

and must provide interoperable services. In digital media content market, the industry and

users are now demanding that standards be developed to allow the interoperability of the

DRM system.

Since DRM becomes more and more important and are demanded to be standardized

recently, there are several groups begin to standardize the DRM system such as OpenEBook

Forum, Moving Picture Experts Group committee, the Internet Engineering Task Force

(IETF), and the World Wide Web Consortium (W3C). In this thesis, we will focus on the

standardized DRM system developed by the MPEG group, the MPEG-4 IPMP Extension [1]

system.

IPMPX (Intellectual Property Management and Protection Extension) system is a Digital

Rights Management interface and architecture specifications developed by the MPEG group.

There are now several versions of IPMPX reference software. One is the MPEG-4 IPMPX

system included in IM1 and is developed by Craig A. Schultz. Another one is called MOSES

[8] IPMPX implementation. The third IPMPX system is developed by Panasonic Singapore

Laboratories Pte Ltd (PSL) [4].

The IPMPX system defined by the MPEG group focuses mostly on the terminal (client)

side. It does not clearly specify the server side. In a media streaming system, there is not only

client side but also server side, and both sides need the IPMPX system so as to deliver the

media content in an open, secure, and trusted environment. In order to construct an

 2

implementation of IPMPX system and test its functionalities in a streaming environment, we

need a multimedia delivery test bed. We choose the MPEG-21 [7] Testbed [5] [6], a

multimedia test bed for resource delivery developed by MPEG group, as our platform to

design and implement the IPMPX system. Furthermore, we need test the functionalities of

IPMPX system of MPEG-21 Testbed.

The goal of this thesis is to study the standard of MPEG-4 and design an implementation

of MPEG-4 IPMPX system on the MPEG-21 Testbed. The system diagram is shown in Figure

1.

Figure 1 Multimedia Delivery System with IPMP

We design an MPEG-4 IPMPX system and integrate it to the MPEG-21 Testbed to

perform the IPMP functions such as en/decryption and watermarking. The designed MPEG-4

IPMP system integrates the Message Interface developed by PSL within. There are some

benefits of using the IPMPX system such as security, interoperability, renewability, flexibility,

and dynamic operation. Therefore, we design and implement a MPEG-4 IPMPX application

system on MPEG-21 resource delivery test bed to demonstrate its functionalities and the

powerfulness. This thesis is mainly divided into five parts. First, we describe the concept and

 3

structure of MPEG-4 IPMPX. Second, the MPEG-21 resource delivery test bed is introduced.

Then, we give details of the reference software of the IPMPX system. After that, we describe

the details about our design and implementation of the IPMPX system on the MPEG-21

Testbed. Finally, several application examples are designed and implemented, and we give a

demonstration at the end.

 4

Chapter 2

IPMP Extension System

 In following two chapters, chapter 2 and chapter 3, we describe some related works on

designing an implementation of MPEG-4 IPMP system [1]. This implementation of MPEG-4

IPMP system is built in the MPEG-21 Testbed [6], which is designed for media coding and

testing in streaming environment. So, we first introduce the development of IPMP in MPEG

committee, and we give a review of the MPEG-4 IPMP Extension standard to provide some

basic concept about the IPMP Extension system. Finally, we describe that what the MPEG-21

Testbed is and how it works.

 The ISO/IEC MPEG, Moving Picture Experts Group, committee started to specify a

common interface/protocol for IPMP a few years ago. They try to merge IPMP system into

exist MPEG multimedia standards, such as MPEG-2 and MPEG-4. They first focus on the

standard, MPEG-4, and MPEG-4 IPMP is now almost finished. The committee hopes that the

specified MPEG-4 IPMP system could be integrated into other MPEG standards like MPEG-2

or even MPEG-21 with slight modification.

2.1 IPMP Hook

In MPEG-4, IPMP Hook was the first IPMP system. However, after the development of

IPMP Extension system (IPMPX), the original IPMP system in MPEG-4 was replaced and

named as IPMP Hook for distinguishing from IPMPX. Why the IPMP should be extended

from Hook to IPMPX? In IPMP Hook, there allows multiple IPMP systems to exist in the

same one terminal. However, the IPMP Hook does not specify that how does an IPMP system

be hooked on the terminal. Furthermore, there is no standardized mechanism for the

authentication between the different IPMP systems hooked on the same terminal. Since there

allows multiple IPMP systems existing in the same terminal, easy replacement mechanism is

important. However, in IPMP Hook, to replace an IPMP system is not very easy. So, the

MPEG committee moved from IPMP Hook to IPMP Extension to solve all these problems

described above. The IPMP Hook nowadays is out of date, so, we ignore the details about the

 5

IPMP Hook.

2.2 IPMP Extension Overview

There are two versions of IPMPX specifications, MPEG-2 IPMPX [2] and MPEG-4

IPMPX [1]. In this section, we give an overview of the IPMP Extension in MPEG-4 standard.

The MPEG-4 IPMP Extension system, or IPMPX system, is now at the stage of Final Draft

Amendment. In the 62nd MPEG meeting in October 2002, the MPEG-4 IPMP system is

declared to become a new part, part 13, of MPEG-4 standard.

IPMP Extension system has several benefits to the industry and end users. Many Digital

Rights Management systems use the same or similar components to perform the

functionalities of DRM. However, there are too many redundant designs that waste times and

money. Using IPMP extension could reduce the redundant work. For instance, company A

designs an AES decryption tool, and different DRM systems adopting the IPMP Extension

could use this tool directly without redesigning the same tool.

IPMP Extension also provides some mechanisms for the secure communication between

components, for instance, Tool to Tool or Terminal to Tool. Mutual Authentication is

introduced to perform the secure communication with the authenticated channel. Furthermore,

IPMP Extension provides the interoperability by clearly identifying what is provided by the

architecture and what must be provided by a DRM system. And, the renewability is also an

advantage using IPMP Extension. Because there is an elementary stream called IPMP ES in

IPMP Extension in MPEG-4, the whole IPMP Extension system can change the parameters

dynamically. The user can choose whatever tools, encryption, decryption, audio watermarking,

or video watermarking, to plug them into the IPMP Extension system. This results in IPMP

Extension being more flexible.

MPEG-4 IPMP system is a message based system. The standard specifies the interface

and protocol for these messages. Such that, tools, such as encryption, decryption, or

watermarking, developed by many different companies could be plug into the system through

the common interface/protocol. This makes the development of IPMP tools be free from the

whole IPMP system.

The basic concept of MPEG-4 IPMP system is a Virtual Terminal, which contains mainly

two parts, Tool Manager (TM) [1] and Message Router (MR) [1]. The Message Router, as the

 6

name, is to pass the message to the corresponding receiver. All IPMP Tool Messages are

routed through this terminal. However, Tool Manager is to manage and connect all the IPMP

Tools to perform the IPMPX function. The architecture of MPEG-4 IPMP Extension is

illustrated in Figure 2. All the details will be described as follows.

Figure 2 MPEG-4 IPMPX system [1]

2.2.1 IPMP Tool Manager

The Tool Manager [1] here is a conceptual entity to perform some functionalities of

managing all the IPMP Tools within the Terminal. Where the conceptual entity means that

there may be no real instance of IPMP Tool Manager, but only be some functions or methods

to achieve the function. An IPMP Tool Manager within an IPMP system should parse the

IPMP Tool List, which is a list of IPMP Tools that are required for content consumption.

Receiving the IPMP Tool List that dispatched from the Terminal, Tool Manager resolves the

alternative list, and parametric description within the IPMP Tool List. If there are any IPMP

Tools that are not available at the local side, the IPMP Tool Manager has to retrieve these

IPMP Tools remotely, from the media content delivery server or from the website. Because it

is allowed in the IPMP Extension system that IPMP Tool could be carried within a elementary

stream called IPMP Tool ES, the IPMP Tool Manager has to retrieve the IPMP Tools from the

IPMP Tool ES. Since the IPMP Tool Manager has to manage all the IPMP Tools in the

 7

Terminal, it should also instantiate the IPMP Tool instances required for content consumption,

and then maintain the mapping table of each IPMP Tool and context.

2.2.2 IPMP Message Router

The IPMP Message Router [1], as the IPMP Tool Manager is a conceptual entity to

perform the message routing. There are many IPMP messages that can be divided into two

groups, IPMP Tool Message, and IPMP Device Message. We will give the details about these

two kinds of IPMP messages in section 2.3.2. Except to routing the IPMP messages, the IPMP

Message Router should also parse the IPMP Tool Descriptor dispatched from the Terminal.

The IPMP Tool Descriptor contains some information for IPMP Tool initialization. Also, the

IPMP Message Router handles the IPMP elementary stream, which contains the dynamic

IPMP information for updating the IPMP system.

2.2.3 Terminal

The Terminal [1] is an environment where the IPMP system performs its functionalities.

For example, it may be an IM1 terminal or any compatible terminals that could perform

content consumption combining with the IPMP system. The Terminal should receive the

IPMP Tool Descriptor, IPMP elementary stream, and the IPMP Tool Descriptor Pointer from

the bitstream and dispatch them to the IPMP Message Router. And, it receives the IPMP Tool

List from bitstream and dispatches this to the IPMP Tool Manager. The description above is

the work of Terminal related with IPMP. There still some work done by the Terminal such as

decoding the bitstream data, displaying, etc.

2.2.4 IPMP Tool

The IPMP Tool [1] is the component that really performs the functionalities of IPMP.

Such functionalities include encryption, decryption, watermarking insertion, watermarking

extracting, authentication, etc. The IPMP Tools may be instantiated in the IPMP Control

Points to perform the data processing or may be instantiated outside all the IPMP Control

Points to perform other functionalities that are not related with the data, for instance, mutual

authentication. The IPMP Tools within the IPMP Extension system should be able to receive

 8

the IPMP messages that routed by IPMP Message Router. These messages may come from

other IPMP Tools or from the bitstream. When an IPMP Tool receives the IPMP message, the

process of the message is implementation dependant and is not defined in the specification.

2.2.5 IPMP Control Point (IPMP Filter)

IPMP Control Points [1] are the place where the IPMP Tools perform its function. IPMP

Control Points are just like the Filters with one or more IPMP Tools plugged inside. For

example, there is one IPMP Control Point between the decoder and decoding buffer, and one

between the decoder and the composition buffer. Then, the IPMP Tool that is to decrypt the

stream data will be inserted into the IPMP Control Point between the decoder and decoding

buffer. And, the IPMP Tool that is to extract the watermarking will be plugged into the IPMP

Control Point between the decoder and composition buffer. There allows multiple IPMP Tools

to be plugged into one IPMP Control Point. In the MPEG-4 IPMP Extension specification,

there are four IPMP Control Points defined, the two described above, the one between

composition buffer and compositor, and the one of BIFS tree. There reserves some positions

for user defining.

2.3 MPEG-4 IPMP Extension Specification

This chapter gives the details about the MPEG-4 IPMP Extension specification. We first

give the details about the IPMP control information that defined in the specification. Because

there are numerous IPMP message defined in the MPEG-4 IPMP Extension specification, we

only take some for example and describe them in detail. Finally, we give a possible scenario

of the process of IPMP.

2.3.1 IPMP Control Information

The IPMP control information may be contained in the Initial Object Descriptor (IOD) [1],

Object Descriptor update command [1], or IPMP elementary stream [1], and is to specify how

the IPMP system works. The IPMP control information is composed of IPMP Tool List

Descriptor [1], IPMP Tool Descriptor [1], and IPMP Tool Descriptor Pointer [1]. We give the

detail about them as later. Before describing these, we first give the detail about the IOD.

 9

Initial Object Descriptor

This is an extension of the InitialObjectDescriptor being extended by adding

IPMP_ToolListDescriptor and IPMP_ToolDescriptor and IPMP Tool Descriptor Pointer. The

syntax of an InitialObjectDescriptor is illustrated as follows [1].

class InitialObjectDescriptor extends ObjectDescriptorBase : bit(8) tag=
InitialObjectDescrTag
{
 bit(10) ObjectDescriptorID;
 bit(1) URL_Flag;
 bit(1) includeInlineProfileLevelFlag;
 const bit(4) reserved=0b0000;
 if (URL_Flag) {
 bit(8) URLLength;
 bit(8) URLstring[URLLength];
 } else {
 bit(8) ODProfileLevelIndication;
 bit(8) sceneProfileLevelIndication;
 bit(8) audioProfileLevelIndication;
 bit(8) visualProfileLevelIndication;
 bit(8) graphicsProfileLevelIndication;
 ES_Descriptor esDescr[1 .. 255];
 OCI_Descriptor ociDescr[0 .. 255];
 IPMP_DescriptorPointer ipmpDescrPtr[0 .. 255];
 IPMP_ToolListDescriptor toolListDescr[0 .. 1];
 IPMP_ToolDescriptor ipmpToolDescriptor[0 .. 255];
 }
 ExtensionDescriptor extDescr[0 .. 255];
}

At the beginning, the Terminal must access IOD for the initialization of IPMP system.

Here, we only concern about the stuffs associated with IPMP system, IPMP Tool List

Descriptor, IPMP Tool Descriptor, and IPMP Tool Descriptor Pointer. Note that there may be

multiple IPMP Tool Descriptor and multiple IPMP Tool Descriptor pointers, however, there is

only one IPMP Tool List Descriptor within the IOD.

IPMP Tool List Descriptor

The IPMP Tool List Descriptor is to transport the list of the required IPMP Tools for

content consumption, and the data structure is shown as follows [1].

class IPMP_ToolListDescriptor extends BaseDescriptor :

 10

 bit(8) tag=IPMPToolListDescrTag
{
 bit(8) numTools;
 IPMP_Tool ipmpTool[numTools];
}

The IPMP_Tool above is the data structure to describe the IPMP Tool. In the

specification, the IPMP Tool List Descriptor allows three modes for describing the required

IPMP Tools for content consumption, Unique, Alternates, and Parametric. The structure of

IPMP_Tool is shown as follows [1].

class IPMP_Tool extends BaseDescriptor :
 bit(8) tag= IPMP_ToolTag
{
 bit(128) IPMP_ToolID;
 bit(1) isAltGroup;
 bit(1) isParametric;
 const bit(6) reserved=0b0000.00;
 if(isAltGroup){
 bit(8) numAlternates;
 bit(128) specificToolID[numAlternates];
 }
 if(isParametric)
 ByteArray toolParamDesc;
 int(8) numURLs;
 ByteArray ToolURL[numURLs];
}

The IPMP_ToolID is a 128-bit identifier to distinct every IPMP Tool that is required for

content consumption in Terminal. Using the unique mode, the IPMP Tool is described by a

unique ID, IPMP_ToolID and set both isAlterantes and isParametric as zero. While using the

Alternate mode, Terminal is allowed to choose one of the alternate IPMP Tools specified in

specificToolID[numAlternates]. When the parametric mode is used, the ByteArray,

toolParamDesc, conveys the parametric description of the IPMP Tool with the Tool ID,

IPMP_ToolID. The parametric description is used when a used IPMP Tool has the following

features.

1. It is based on a popular algorithm.

2. It has many equivalent implementations of the same variable.

3. It will be computationally intensive, leading to platform-specific optimized

implementations, from a wide variety of vendors.

 11

The parametric description, or configuration, is used for instantiation of an IPMP Tool

instance or for the mode change of an IPMP Tool. In the specification, the schema of the

parametric description is not specified, but only a basic infrastructure in the current version.

Basically, the parametric description may contain the following information, version of the

parametric description, the class of the IPMP Tool, the sub-class of the IPMP Tool, and the

sub-class-specific information. The class of IPMP Tool specifies what kind of the IPMP Tool

is, decryption, rights description language parser, or others. If the IPMP Tool is specified as a

decryption tool, the detail information, such as AES, DES, etc, is described by the sub-class of

IPMP Tool. In order to specify some more detail information such as number of bits, block

size, etc, we use the sub-class-specific information.

IPMP Tool Descriptor

The IPMP Tool List Descriptor specifies what IPMP Tools are required for the content

consumption, and the IPMP Tool Descriptor provides IPMP Tools with the information for

initialization. The data structure of the IPMP Tool Descriptor is shown as follows [1].

class IPMP_ToolDescriptor() extends BaseDescriptor : bit(8) tag =
IPMP_ToolDescrTag
{
 bit(16) IPMP_ToolDescriptorID;
 bit(128) IPMP_ToolID;
 if (IPMP_ToolID == 0)
 ByteArray URLString;
 else
 {
 bit(1) isInitialize;
 const bit(7) reserved = 0b0000.000
 if(isInitialize)
 IPMP_Initialize init;
 bit(8) numOfData;
 IPMP_Data_BaseClass[numOfData] IPMPX_data;
 }
}

The IPMP Tool Descriptor carries the IPMP information for one or more IPMP Tools. It

may be conveyed in the IOD, OD update command, or IPMP elementary stream. Within it,

the IPMP_ToolDescriptorID is the unique identifier of the IPMP Tool Descriptor, and the

generation of the IPMP_ToolDescriptorID is the implementation issue. The IPMP Tool that is

 12

described by the IPMP Tool Descriptor is specified by the IPMP_ToolID. However, if the

IPMP_ToolID is zero, the remote IPMP Tool Descriptor is pointed by the URLString. If the

IPMP_ToolID is a nonzero value, the following data, IPMP_Initialize, and IPMPX_data are

the IPMP information carried by the IPMP Tool Descriptor for IPMP Tools. The data structure

if IPMP_Initialize is shown as follows [1].

class IPMP_Initialize()
{

bit(8) controlPointCode;
bit(8) sequenceCode;
bit(8) numOfData;
IPMP_Data_BaseClass[numOfData] IPMPX_data;

}

The IPMP Tool Descriptor carries IPMP_Initialize when the isInitialize is set to one. It

makes one or more IPMP Tools to be instantiated at the position that is specified by the

controlPointCode and sequenceCode. Here the controlPointCode specified in the specification

is shown in the following table [1].

controlPointCode Description

0x00 No control point.
0x01 Control Point between the decode buffer and the decoder.
0x02 Control Point between the decoder and the composition buffer.
0x03 Control Point between the composition buffer and the

compositor.
0x04 BIFS Tree
0x05-0xDF ISO Reserved
0xE0-0xFE User defined
0xFF Forbidden

When there are multiple IPMP Tools within the same one IPMP Control Point, the order of

processing data is decided by the sequenceCode. The IPMP Tool with the higher

sequenceCode processes the data first.

And the instantiated IPMP Tools is provided with the IPMP information contained in

IPMPX_data. The data type, IPMP_Data_BaseClass, is an expandable base class, and there

are many kinds of IPMP data expanded from it. The definition of IPMP_Data_BaseClass is

shown as follows [1].

abstract aligned(8) expandable(2^28-1) class IPMP_Data_BaseClass: bit(8) tag=0 ..
255

 13

{
 bit(8) Version;
}

The data types extended from the IPMP_Data_BaseClass is specified by the tag value

shown as follows [1].

8-bit Tag Value Symbolic Name

0x00 Forbidden
0x01 IPMP_OpaqueData_tag
0x02 IPMP_AudioWatermarkingInit_tag
0x03 IPMP_VideoWatermarkingInit _tag
0x04 IPMP_SelectiveDecryptionInit_tag
0x05 IPMP_KeyData _tag
0x06 IPMP_SendAudioWatermark_tag
0x07 IPMP_SendVideoWatermark _tag
0x08 IPMP_RightsData _tag
0x09 IPMP_Secure_Container_tag
0x0A IPMP_AddToolNotificationListener_tag
0x0B IPMP_RemoveToolNotificationListener_tag
0x0C IPMP_InitAuthentication_tag
0x0D IPMP_MutualAuthentication_tag
0x0E IPMP_UserQuery_tag
0x0F IPMP_UserQueryResponse_tag
0x10 IPMP_ToolParamCapabilitiesQuery_tag
0x11 IPMP_ToolParamCapabilitiesResponse_tag
0x12 IPMP_GetTools_tag
0x13 IPMP_GetToolsResponse_tag
0x14 IPMP_GetToolContext_tag
0x15 IPMP_GetToolContextResponse_tag
0x16 IPMP_ConnectTool_tag
0x17 IPMP_DisconnectTool_tag
0x18 IPMP_NotifyToolEvent_tag
0x19 IPMP_CanProcess_tag
0x1A – 0xCF ISO Reserved
0xD0 – 0xFE User Defined
0xFF Forbidden

In the specification, all the data structure of the types listed above is illustrated. Take the

IPMP_Opaque_data for example, the data structure of it is shown below [1].

class IPMP_OpaqueData extends IPMP_Data_BaseClass
: bit(8) tag = IPMP_OpaqueData_tag
{
 ByteArray opaqueData;
}

The opaqueData is the opaque IPMP information that is conveyed to IPMP Tools. This is

 14

the simplest example that is extended from the IPMP_DataBaseClass. The definitions of all

the others can be found in the specification.

IPMP Tool Descriptor Pointer

The IPMP Tool Descriptor Pointer exists in the ipmpToolDescrPtr section of an OD or

ESD structure. It is a pointer that points to an IPMP Tool Descriptor by specifying an IPMP

Tool Descriptor ID within it. The IPMP Tool Descriptor Pointer existing in an object

descriptor indicates that all streams referred to by embedded elementary descriptor are subject

to protection and management by the IPMP Tool specified in the pointed IPMP Tool

Descriptor. And, the IPMP Tool Descriptor Pointer that is contained in an elementary stream

descriptor indicates that the stream associated with the ES descriptor is subject to protection

and management by the IPMP Tool specified in the referenced IPMP Tool Descriptor. Every

IPMP Tool Descriptor pointer results in a unique instance of the corresponding IPMP Tool.

The data structure shown below is the IPMP Tool Descriptor Pointer [1].

class IPMP_DescriptorPointer extends BaseDescriptor :
bit(8) tag = IPMP_DescrPtrTag
{
 bit(8) IPMP_DescriptorID;
 if (IPMP_DescriptorID == 0xff){
 bit(16) IPMP_ToolDescriptorID;
 bit(16) IPMP_ES_ID;
 }
}

The IPMP_Descriptor above is to back compatible with the IPMP Hook, so we ignore this.

The IPMP_ES_ID specified in the IPMP Tool Descriptor Pointer is to indicate the identifier of

the IPMP elementary stream that carries the IPMP information for the referenced IPMP Tool

indicated by the IPMP Tool Descriptor with its identifier as IPMP_ToolDescriptorID. Figure 3

gives a simple example about the mapping relationship of OD, ESD, IPMP Tool Descriptor,

and IPMP Tool Descriptor Pointer.

In this example, the OD_UPADATE part has two ODs with one ESD and one IPMP Tool

Descriptor Pointer contained within each. And, the IPMP UPDATE part has two IPMP Tool

Descriptor that are going to pointed by the IPMP Tool Descriptor Pointer within the

OD_UPDATE part. The right half part of Figure 3 shows the resolved diagram of the left half

 15

part. The IPMP Tool Descriptor Pointer within the OD A containing an ESD C indicates that

there is one IPMP Tool at the AUDIO ES. It is the same for the VIDEO ES. There are many

cases of use and scope of the IPMP Descriptors and declaration, and they are illustrated at the

Annex F in the MPEG-4 IPMP Extension specification [1].

OD UPDATE

OD=A OD=B

IPMP UPDATE

AUDIO

ESD=C

IPMP PTR

VIDEO

ESD=D

IPMP PTR

TOOL ID

IPMP DSCR=E

INITIALIZ

AUDIO
DB

VIDEO
DB

DEC

DEC
TOOL ID

INITIALIZ

IPMP DSCR=F

CONTEXT ID=A_F

CONTEXT ID=B_E

Figure 3 Sample of IPMP Tool context ID mapping [1]

2.3.2 IPMP Messages

The IPMP Messages is a very important part of the MPEG-4 IPMP Extension

specification, because the MPEG-4 IPMP Extension is a message framework. The IPMP

Messages enable the dynamic updating of the IPMP system. These messages carry the

time-varying IPMP information for the IPMP Tools or Terminal to change the configuration

simultaneously with the content consumption. The IPMP Messages can be divided into two

types, IPMP Tool Message, and IPMP Device Message.

IPMP Tool Message

This kind of message is to carry the IPMP information for interaction between the IPMP

Tools or to carry the IPMP information from the content for updating the IPMP Tools. The

basic data structure of IPMP Tool Message is shown as follows, and there are two kinds of

IPMP Messages extending from it, IPMP Message From Bitstream, and IPMP Tool Descriptor

From Bitstream [1].

Aligned(8) abstract expandable(228-1)class IPMP_ToolMessageBase: bit(8) tag = 0 {
 bit(8) Version;
 bit(32) Msg_ID;
 bit(32) sender;
 bit(32) recipient;
}

 16

The addressing of the IPMP Tool Message is specified by the Context ID of the IPMP

Tools. When we instantiating an IPMP Tool, the IPMP Tool must be assigned a unique

Context ID by the Terminal or IPMP Tool Manager for addressing. The Context ID is 32-bit

long. In the IPMP Tool Message, the sender and recipient of this message is clearly specified

by this unique Context ID. However, the generation of the Context ID is not specified in the

specification, it is an implementation issue.

The 32-bit Msg_ID is assigned to the message when the message is generated. This ID is

assigned by the generator of the message and all messages sent in response to the message

shall include the ID of the original message.

class IPMP_MessageFromBitstream extends IPMP_ToolMessageBase :
 bit(8) tag = IPMP_MessageFromBitstream_tag
{
 bit(8) numMessages;
 IPMP_StreamDataUpdate message[numMessages];
}

Above, we show the data structure of the IPMP Message From Bitstream [1]. The IPMP

Message From Bitstream is extended from the IPMP_ToolMessageBase with the tag value,

0x01. It is to deliver IPMP_StreamDataUpdates [1] received in the content to the IPMP Tools

specified in the IPMP_StreamDataUpdate. IPMP_StreamDataUpdate could be viewed as a

container for the IPMP_DataBaseClass [1]. The data structure of IPMP_StreamDataUpdate is

shown as follows.

aligned(8) expandable(228-1) class IPMP_StreamDataUpdate
{
 bit(16) IPMPS_Type;
 if (IPMPS_Type == 0)
 bit(8) URLString[sizeOfInstance-2];
 else if (IPMPS_Type == 1){
 bit(16) IPMP_ToolDescriptorID;
 bit(8) numOfData;
 IPMP_Data_BaseClass[numOfData] IPMP_ExtendedData
 }else{
 bit(8) IPMP_data[sizeOfInstance-2];
 }
}

 17

IPMPS_Type specifies the type of IPMP system. If the IPMPS_Type equals to zero, it is

forbidden, and a remote IPMP_StreamDataUpdate is indicated by the URLString. The

IPMPS_Type with value 0x0002 to 0x2000 are reserved for future ISO use, and the

IPMP_StreamDataUpdate conveys the opaque data, IPMP_data to IPMP Tools. IPMPS_Type

with value 0x0001 indicates a MPEG-4 IPMP Extension system, and the

IPMP_StreamDataUpdate carries the IPMP_ExtendedData for IPMP Tools.

IPMP Device Message

The IPMP Device Message is defined in the annex I in the specification and is to deliver

the IPMP information in the distributed environment. In the distributed environment, every

IPMP device should be assigned a unique 128-bit Device ID. The data structure of the IPMP

Device Message is shown bellow [1].

Aligned(8) abstract expandable(228-1)class IPMP_DeviceMessageBase: bit(8) tag = 0
{
 bit(8) Version;
 bit(128) sender_deviceID;
 bit(128) recipient_deviceID;

bit(32) Msg_ID;
}

The IPMP_DeviceMessageBase is an expandable base class and all the tags extended

from it are shown bellow [1].
8-bit Tag Value Symbolic Name
0x00 Forbidden
0x01 IPMP_RequestContent _tag
0x02 IPMP_ResponseToContentRequest _tag
0x03 IPMP_ ContentTransfer_tag
0x04 IPMP_RequestTool_tag
0x05 IPMP_ResponseToToolRequest_tag
0x06 IPMP_ DeviceID_Broadcasting_tag
0x07 IPMP_ DeviceID_Received_tag
0x08 IPMP_InitAuthentication_tag
0x09 IPMP_MutualAuthentication_tag
0x0A IPMP_ SecureMessage_tag
0x0B – 0xCF ISO Reserved
0xD0 – 0xFE User Defined
0xFF Forbidden

2.3.3 Using IPMP

In this section, after describing all the associated concepts, we give a simple example on

 18

using the IPMP Extension. The following chart, Figure 4, shows the basic idea of MPEG-4

IPMP Extension system. We describe the scenario of content consumption step by step as

follows.

Term inal-Tool Message Interchange Interface

IPMP Tool 1 IPMP Tool 2 IPMP Tool n

IPMP Inform ation

Content

IPMP Tool ID(s)

A lternate IPMP Tool ID(s)

Term inal

Missing IPMP
Tools

Obtain M issing IPMP
Tool(s)

Content Request

Content Delivery

Term inal-IPMP Tool
Com m unications

IPMP Tool List

IPMP Tool E lem entary
Stream

IPMP Tool Manager

Param etric Tool
Description(s)

...

Figure 4 MPEG-4 IPMP basic concept [1]

1. User request specific content

The standard does not specify that how the content is requested. However, the following

recommendations are made for the order in which different part of the Content are received

and used. First, the IPMP requirement should be placed with or before media requirement.

Second, before delivery of the media content, access IPMP information and/or restrictions

should be done. For example, if we play a media file that is in the MPEG-4 format and is

protected by the IPMP extension, we first access the IPMP requirement and some IPMP

information before we really start to access the media content. It is quiet reasonable that the

terminal should access and own the information that protects the media content before

accessing the media data.

2. IPMP Tool Descriptor access

Before the content consumption, the terminal should access the Initial Object Descriptor

 19

first. So, the terminal accesses the IPMP Tool List Descriptor within the IOD to get the list of

the IPMP Tools that are required for the content consumption. And, according to the IPMP

Tool List Descriptor, terminal determines the tools that are required to consume the media

content. The IPMP Tool Descriptor is also conveyed within the IOD, and should be accessed

by the terminal here.

3. IPMP Tool Retrieval

The method to retrieve IPMP Tools is not specified in the standard. However, missing

IPMP Tools could be retrieved from a website or other remote device. The missing IPMP

Tools may be retrieved from an IPMP Tool Stream if available.

4. Instantiation of IPMP Tools

The IPMP Tools required to consume the Content are instantiated locally or remotely

according to the IPMP Tool List Descriptor received before. Then, the IPMP Tool instances

are provided with IPMP Tool Descriptors for their initialization. The IPMP Tool Descriptor

that results in the instantiation of the IPMP Tool contains the IPMPInitialize information that

provides the IPMP Control Point code and the sequence code to inform the Terminal to

instantiate the IPMP Tool at the right position.

5. Initialize and update the IPMP system

After setting up the whole IPMP system according to the Initial Object Descriptor, the

content consumption begins. With the content consumption, the IPMP information for

updating the IPMP system is conveyed within the IPMP ES or the OD update command. The

updating information is received and turned into the IPMP messages that are routed by the

IPMP Message Router. And, there are some IPMP messages for the negotiation between the

IPMP Tools are routed to corresponding IPMP Tools by the Message Router, too. All the steps

described above can be requested again during the content consumption, and the request may

be implicit within the process or be request by the User.

 20

Chapter 3

Overview of MPEG-21 Resource Delivery Test Bed

The main purpose of this platform is to provide a flexible and fair environment for

evaluating streaming technologies for MPEG-4 contents over IP network. Because of the

modulization of this test bed, users can easily replace the components by their own designs

into the system. For example they can replace the media codec to evaluating the decoding

algorithm, or replace the streamer to simulate the performance of different streaming methods.

With this test bed, users can simulate different channel characteristics of various networks [6].

The overall architecture of the test bed is shown in Figure 5. The entire test bed can be

divided into three parts: Server, Client, and the Network Emulator. We give an overview of

these parts as follows.

Figure 5 Architecture of MPEG-21 Testbed [5]

The Server system first gets ready to accept the request for specific media content form

the Client. A Client is then connected to the streaming Server. It sends a request using the

RTSP message, DESCRIBE, to the Server. In this message, the terminal capability, and user

RTSP
mux with
terminal&
user XDI

Decoder

Media
Channels

(RTP, UDP)

Control
Channel

(RTSP,TCP)

RTSP
mux with

SDP

Packet
Buffer

Output
Buffer

Network
Emulator

Offline
Media

Encoder

TCP

Network
Profile

Server

Media
Database

Stream
BufferNetwork Interface

UDPUDP

Client

TCP

Client
Controller

control

RTP/
RTCP

RTP/
RTCP

RTSP
demux
with

terminal&
user XDI

Packet
Loss

Monitor
QoS

Decision

QoS
Decision

Streamer

terminal
& user XDI

NISTnet

NISTnet

Network Interface

media

Packet
Buffer

DIA

media

1

1

CDI, XDI,
IOD

network
XDI

XDI
media

Server
Controller

IPMPFilter
(PostDIA)

IPMPFilter
(PreDecoder)

IPMPFilter
(PostDecoder)

User Characteristics

control

RTSP
demux

with SDP

 21

characteristics, etc. are included. Then, the Server prepares the requested file and sets up the

streaming system in order to stream out the media content over the Network. There is an

acknowledging message called DESCRIBE_ACK from Server to Client to inform the Client

that the media data at the Server side is ready. An RTSP message, SETUP, is then sent form

Client to Server to request for setting up the transport session for the requested media content.

After setting up the RTP channel for content delivery, the Server acknowledged the Client

with a message called SETUP_ACK. Receiving this acknowledging message, the Client

sends the message, “PLAY” to inform the Server that the Client is ready for content

consumption. Then, the content consumption begins after the PLAY_ACK message is sent to

the Client from the Server side. During the content consumption, whenever the user stops the

procedure of the content consumption, an RTSP message, TEARDOWN, is sent from Client

to Server to stop the content delivery [6].

We now give some more details about the modules inside the test bed system. There are

mainly three parts: Server, Client, and Network Emulator. There are several common modules

in between Server and Client. So, the descriptions below are divided into four parts, Server

components, Client components, Common components, and Network Emulator.

3.1 Server components

The Server part acts as a media streaming server to provide digital media content

streaming service to the Clients. One Server can provide services to several Clients. There are

seven components within the Server: Media Database, DIA (Digital Item Adaptation),

Streamer, Packet Buffer, QoS Decision, Server Controller, and IPMP Subsystem.

The functionalities of each component are described below. The IPMP Subsystem and

QoS Decision will be discussed later.

Media Database

All the Media Contents are offline encoded and stored in the Media Database. The Media

Database is responsible for opening the file of the Media Content that the Client requests.

[6]

DIA

 22

DIA (Digital Item Adaptation) performs media resource adaptation by the DIA

processing engine. The CDI (Content Digital Item) and static XDI (Context Digital Item)

information is required for initialization of DIA. And DIA receives the information from

the Server Controller and setups its process with the provided information. [6]

Streamer

When a specific Media Content is requested by the Client, it is moved from the database

to the Streamer. The Streamer accepts commands from the Server Controller, and

segments a requested bitstream into video packets according to the MPEG-4

specification. [6]

Server Controller

Server Controller handles the control messages, such as REQUEST, SETUP, PLAY,

TEARDOWN, that come from the Client side through the RTSP channel. After receiving

these messages, the Server Controller processes these messages and set up the system for

processing different protocols. [6]

3.2 Client components

The Client part is to consume the digital media content coming from the Server. The

Client receives the media data from the server through the Network Interface and playbacks

the media content such as video, audio, or both. There are eight components at Client side:

Packet Buffer, Stream Buffer, Decoder, Output Buffer, Packet Loss Monitor, QoS Decision,

Client Controller, and IPMP Subsystem. The functionalities of each component are described

below. The IPMP Subsystem and QoS Decision will be discussed later.

Stream Buffer

The component Stream Buffer is to store temporally the bitstream data unpacketed from

the Packet Buffer. And the data saved in the Stream Buffer will be accessed by the

decoder for decoding process. The Stream Buffer is designed as a circular buffer. And

there is a flag that records the current access location in the Stream Buffer. When there is

no data in the Stream Buffer, then Decoder holds the decoding process and the Stream

 23

Buffer gets the data from the Packet Buffer for the following decoding process. The

decoding process restarts when the Stream Buffer is fulfilled. [6]

Decoder

The Decoder here is a multimedia decoder component that is to fetch the coded units

from the Stream Buffer and to output the decoded data to the Output Buffer for

displaying. The real decoding process is done after the coded units fetched by the

Decoder. Here the decoding process may be for video or for audio. [6]

Output Buffer

The Output Buffer component is to save the decoded data that comes from the Decoder

temporarily. The Decoder should dump the decoded data into this component. Then, the

output device could access the decoded data and display. [6]

Packet Loss Monitor

The Packet buffer Monitor here is to handle the lost packet and generates retransmission

messages. In the current implementation, the standard RTSP GET_PARAMETER

method is used to request for packet retransmission. The component checks the Packet

Buffer for the lost packets. The trigger of the checking behavior is the Client-side timer.

If there any packet loss has been notified, Packet Loss Monitor informs the Client

Controller to issue the retransmission request to the Server side. [6]

Client Controller

The Client Controller is to integrate all the components at the Client side and to controls

these components. And the Client Controller watches the GUI user inputs then processes

these inputs. When there are any lost packets that detected by the Packet Loss Monitor,

the Client Controller is informed to send the retransmission request for the lost packets.

[6]

3.3 Common components

In this section we introduce the modules that are shared by both client and server.

 24

Packet Buffer

Real-time Transport Protocol/ Real-time Control Protocol (RTP/ RTCP, RFC-1889) is

used as the media transport mechanism. The Packet Buffer implements an RTP packet

buffer data structure.

At the Server side, after being packeted by the Streamer, all the video packets are

buffered in the Packet Buffer as the RTP payload. Then, the video packets are sent out

according to the pre-scheduled time set by the Streamer. However, at the Client side, the

Packet Buffer is to buffer all the packets that come from the Network. This component is

used at both Server and Client side with different initializations. [6]

QoS Decision

This component estimates the channel condition and provides some QoS information for

rate adaptation. Here, the channel condition is the network profile designed in the system.

Therefore, users could modify the network profile as they wish to test different channel

conditions. [6]

IPMP Subsystem

The IPMP Subsystem exists at both Client and Server sides. It performs the

functionalities of intellectual property protection, such as encryption, decryption,

watermarking insertion, and extraction. There are several sub-modules inside the IPMP

Subsystem. They are Message Router (MR), Tool Manager (TM), IPMP Filters or IPMP

Control Points, IPMP Tools, and Terminal. Because the MPEG-4 IPMP system is a

message-based infrastructure, we need a module called Message Router to route the

messages to corresponding destination. The messages may come from IPMP Tools,

Terminal, or other IPMP devices. The Tool Manager manages the IPMP Tools, such as

maintaining the Tool mapping table, or retrieving the missing IPMP Tools from a remote

site. Then, the IPMP Tools is to perform the IPMP functionalities. There can be several

IPMP Tools working within one IPMP system. For instance, at Client side, it can be an

DES decryption algorithm, an video watermarking extractor, and an authentication tool.

The IPMP Filter is an access point where the IPMP Tools can exercise their functions.

The Terminal here plays the interface between the test bed system and the IPMP system.

 25

The description of the IPMP system in the above is very rough. The details about the

IPMP system in the test bed will be discussed later.

3.4 Network

In order to connect the Server and the Client and to a simulated transmission channel, a

standard RTSP/RTP-based network interface is used. Three categories of network protocols

including the network-layer protocol, transport protocol, and session control protocol are

adopted as shown in Figure 6.

 Layered Video Data Application Control

Commands Base Layer Enhancement Layer

RTSP RTP/RTCP

TCP UDP

IP

Data Link

Physical Layer

Figure 6 Network protocol [6]

The Real-time Transport Protocol (RTP) is to transmit multimedia streams from end to

end. And the Real-time Streaming Transport Protocol (RTSP) is used to transmit the control

messages reliably. RTSP specifies the messages and procedures to control the media

streaming passing through an established channel. There are four basic message types used in

the test bed: DESCRUBE, SETUP, PLAY, and TEARDOWN. The DESCRIBE message is

sent from Client to Server for requesting a specific media content. It provides the information

such as terminal capability or user characteristics to the Server. Then, the SETUP message is

to setup a media delivery session between Server and Client with the information contained in

the DESCRIBE message. After setting up the channel, Client sends a PLAY message to

inform the Server to start transporting the media content via the set up session. Finally, the

TEARDOWN message is to end the transport and to close the session.

Here, the test bed adopts an IP network emulator named NISTnet [9] to provide

 26

repeatable network environments. It can emulate practical wide-area heterogeneous network

environments. It is a LINUX based IP network emulator developed by the National Institute

of Standard Technology, USA. There are many controllable parameters that could be set by

user, such as packet loss ratio, jitter, bandwidth variation, and delay.

 27

Chapter 4

IPMP Reference Software

In this chapter, we introduce two IPMP reference softwares, IM1, and PSL MPEG-2

IPMP Extension reference software.

4.1 IM1 IPMPX Reference Software

IM1, the AHG on System Reference Software Implementation is a group that is

responsible for developing and integrating the MPEG-4 system part reference software for

MPEG committee. Here, the software implementation is one of the implementaions of

MPEG-4 system part. We only focus on the IPMP related parts. Figure 7 shows the software

structure of IPMP system in the IM1. As description before, the IPMP system are mainly

seperated into three parts, IM1 Terminal, Tool Manager, and Message Router.

Message Router Tool Manager

IM1 Terminal

Received IPMP Tool
Descriptor from bitstream

Parse IPMP Tool Descriptor,
possibly request IO streams from

terminal, ask TM to instantiate
tool at the given control point

Possible
thread

handling
input/output
and/or IPMP

Stream

Setup Input, Output, IPMP
Streams

Instantiate IPMP Tool,
maintain table

SetFilter()

SetupIPMPStream()

Give MediaStream
pointers of Input/Output,

and/or IPMP streams

Receive IPMP Tool List
from IOD

Parse IPMP Tool List,
resolve Alt list, Param

Desc, retrieve tools

Retrieve Tool from Tool
ES

Creat an IPMP Tool ES
decoder to handle Tool ES

ProcessIPMPTool
Descriptor()

ConnectTool()

ReceiveToolList
Descriptor()

CreatToolESDecoder()

Tool 's instance

MessageParser/
Routing

MessageParser

ReceiveMessage()

DisConnectTool()

Destroy IPMP Tool,
maintain table

GoNoGo()

SetTMPointer()

SetMRPointer()

ProcessOD()

ProcessESD() ReleaseFilter()

Figure 7 IPMPX system in IM1 [3]

 28

 In IM1, the Message Router and the Tool Manager are composed of some method to

achieve their function, that is, they only define the interface of the Tool Manager and the

Message Router. Most member functions of Message Router and Tool Manager are declared

as virtual functions. The class hierarchy is shown in Figure 8, which clearly specifies the

relationship between the main classes.

Figure 8 IPMPX class hierarchy in IM1

We can easily obtain that there are mainly four basic classes, IPMP System, TMInterface,

MRInterface, and IPMPToolInterface.

4.1.1 IPMPToolInterface

IPMPToolInterface is an abstract class that should be implemented by any IPMP Tools. It

has the API as the follows.

 /**
 * messaging interface.
 * @param size the size of the message

* @param message one of the messages defined in MPEG-4 IPMP Extension, or a
user-defined message

 * @return true if successful
 */
 virtual bool ReceiveMessage(ToolMessage*) = 0;

4.1.2 MRInterface

MRInterface is the main interfaces that implement the functionalities of a Message

 29

Router. Because the MRInterface inherit the class, IPMPToolInterface, MRInterface must

implement the API « ReceiveMessage(ToolMessage*) » also. And it is a conceptual entity

with its APIs as follows.

 /**

* Setting tool manager's pointer, so that the MR can use it to access TM's member
functions

 * @param tmPointer a pointer to an object derived from TM_interface
 * @return true if successful
 */
 virtual bool SetTMPointer(TM_Interface * tmPointer) = 0;

 /**
 * Called by the Terminal to process an OD
 * @param pOD pointer to the object descriptor to be processed by the MR
 * @return true if successful
 */
 virtual bool ProcessObjectDescriptor(ObjectDescriptor* pOD) = 0;

 /**
 * Called by the Terminal to inform the MR that an OD is not valid anymore.
 * @param pOD pointer to the OD to be removed
 * @return true if successful
 */
 virtual bool RemoveObjectDescriptor(ObjectDescriptor* pOD) = 0;

 /**
 * Called by the Terminal to process an IPMPToolDescriptor.
 * @param descriptor the IPMPToolDescriptor to be processed by the MR
 * @return true if successful
 * NOTE: this descriptor object will be deleted after calling this method. The IPMPX
 * system shall take this into account and copy it into its own memory space if necessary
 */
 virtual bool ProcessIPMPDescriptor(IPMP_Descriptor* descriptor) =0;

 /**

* Called by the Terminal to inform the MR that an IPMPToolDescriptor is not valid
anymore.

 * @param descriptor pointer to the IPMPToolDescriptor to be removed
 * @return true if successful
 */
 virtual bool RemoveIPMPDescriptor(IPMP_Descriptor* descriptor) = 0;

 /**
 * Called by the Terminal to process an Elementary Stream Descriptor.

* @param pESD pointer to the Elementary Stream Descriptor to be processed by the
MR

 30

 * @return true if successful
 */
 virtual enum ACCESS_PERMISSION ProcessESDescriptor(ES_Descriptor* pESD) = 0;

 /**
 * Called by the Terminal to inform the MR that an ESDescriptor is not valid anymore.
 * @param pESD pointer to the Elementary Stream Descriptor to be removed
 * @return true if successful
 */
 virtual bool RemoveESDescriptor(ES_Descriptor* pESD) = 0;

 /**
 * Called by the Terminal to create a sink for an IPMP stream.
 * @param pOD a pointer to the Object Descriptor where the ipmp stream is declared
 * @param pESD a pointer to the relevant Elementary Stream Descriptor
 * @param ipmpStream the MediaStream object handling the IPMP stream
 * @return true if successful
 */

virtual bool SetUpIPMPStream(ObjectDescriptor *pOD, ES_Descriptor* pESD,
MediaStream* ipmpStream) = 0;

 /**

* Called by the Terminal to destroy a sink for an IPMP stream, that was previously
created by the Terminal

 * using the SetUpIPMPStream method.
 * @param pESD a pointer to the relevant Elementary Stream Descriptor
 * @return true if successful
 */

 virtual bool RemoveIPMPStream(ES_Descriptor *pESD) = 0;

4.1.3 TMInterface

The TMInterface is an independant class that does not inherit any classes, and is to

implement the conceptual enity of IPMP Tool Manager. It has the APIs as follows.

 /**

* setting message router's pointer, so that the TM can use it to access MR's member
functions

 * @param tmPointer the pointer to the Message Router
 * @return true if successful
 */
 virtual bool SetMRPointer(MR_Interface * tmPointer) = 0;

 /**
 * Called by the MR to indicate a tool is no longer needed.
 * @param toolPtr the pointer to the tool to be disconnected
 * @return true if successful

 31

 */
 virtual bool DisconnectTool(void* toolPtr) = 0;

 /**
 * Called by the MR to request a tool be instantiated.
 * @param OD_id the id of the Object Descriptor in which scope the tool will run
 * @param pESD a pointer to the ESD of the Elementary Stream protected by the tool
 * @param toolDescriptor the descriptor carrying initialization information for the tool
 * @return the pointer to the tool
 */

virtual void* ConnectTool(ES_Descriptor *pESD, IPMP_Descriptor* toolDescriptor) =
0;

 /**
 * Called by the Terminal to pass a Tool elementary stream
 * @param tool_ES the interface to the media stream implemented in IM1
 * @param tool_ESD the relevant Elementary Stream Descriptor
 * @return true if successful
 */
 virtual bool ReceiveToolES(MediaStream *tool_ES, ES_Descriptor *tool_ESD) = 0;

 /**
 * Called by the Terminal when a Tool elementary stream is removed
 * @param pESD a pointer to the relevant Elementary Stream Descriptor
 * @return true if successful
 */
 virtual bool RemoveToolES(ES_Descriptor *pESD) = 0;

 /**
 * Called by the Terminal to pass the tool list.
 * @param toolList the list of tools as defined in MPEG-4 IPMP Extension
 * @return true if successful
 */

virtual bool ReceiveIPMP_ToolListDescriptor(IPMP_ToolListDescriptor* toolList) =
0;

4.1.4 IPMPSystem

The class, IPMPSystem, is mainly to create and destroy the IPMPServices object that

inherits the MRInterface and TMInterface. It has the member function as follows.

 /**
 * Instantiate an IPMPServices object
 * @param szServiceURL the URL identifying this IPMP Service
 * @param toolList the list of tools contained in the inital Tool list

* @return an IPMPServices object containing the Tool Manager and the Message
Router

 32

 */
virtual IPMPServices *CreateIPMPServices (const char *szServiceURL,
IPMP_ToolListDescriptor* toolList) = 0;

 /**
 * Delete an IPMPServices object
 * @param pIPMPServices the pointer to the IPMPServices to be removed
 * @return true if successful
 */
 virtual bool RemoveIPMPServices(IPMPServices *pIPMPServices) = 0;

At the bottom of the whole hierarchy, there still two classes, IPMPXFull, and

IPMPServicesFull. The IPMPXFull inheriting from IPMPSystem is to create and destroy the

IPMPServicesFull object to perform the IPMP functionalities. And, the two classes can be

viewed as the classes to implement all the virtual functions of their parents, that is, implement

all the interfaces of the MR, TM, and IPMP Tool. So, we do not list the APIs of the bottom

two classes, IPMPXFull, and IPMPServicesFull.

 33

4.2 PSL MPEG-2 IPMP-X Reference Software

Message Router

Tool Manager

MPEG-2 Terminal

Received IPMPDescriptor
from PMT, build up control

graph

Setup Input, Output
Elementary Streams at
specified control point

Instantiate IPMP Tool, update table
entry

Receive IPMP Tool List from
IPMP Control Info in PSI

Parse IPMP Tool List, resolve Alt
list, Param Desc, retrieve tools

Retrieve Tool from Tool Container

Receive Tool Container from
IPMP Control Info in PSI

ConnectTool/DisconnectTool

Tool A's
instance

Receive Message
from Tool

MessagePar
ser

Destroy IPMP Tool, update table
entry

DEMUX

PSI
Content Stream

IPMP Control Information Table
Tool
List

Tool
Container

Audio ES

* * * *
* *

Video ES

IPMP ES
Rights

Container

PMT
IPMP Descriptor

* * * *
* *

Send Message to
Tool

Receive Message
from Terminal

Send Message to
Terminal

Sync between
terminal and

tool

Sync between
tool and tool

Tool B's
instance

MessagePar
ser

Other tool's
instance

MessagePar
ser

Figure 9 MPEG-2 IPMPX system software architecture [4]

 Because the MPEG-2 system part is quiet different from the MPEG-4 system part, we

only focus on the Message Interface that implemented by PSL. Even the difference exists

between the system part of MPEG-2 and MPEG-4, the IPMP messages are the same. The

Message Interface of PSL includes the implementation of the IPMP messages that specified in

the specification.

Basically, the MPEG-2 IPMP Extension is developed from the MPEG-4 IPMP Extension,

 34

so, they are almost the same except the part associated with the MPEG-2 system and MPEG-4

system.

Figure 9 shows the MPEG-2 IPMPX system software architecture, and the architecture is

familiar to the one in MPEG-4.

 Here, we do not concern about the APIs of every module within the MPEG-2 IPMPX

system. However, what we focus on is the IPMP Message structure of the IPMPX system

developed by PSL. In general, we can view the top class of the whole structure as the class

named BitField. All the data structure within the implementation should be turned into binary

data, so all the classes inherit from the BitField class for the translation between data structure

and the binary data. In the BitField class, there are four member functions that are declared as

pure virtual functions. All the classes that inherit from it must implement these functions.

They are listed as follows including the functionalities of them.

 /**
 * reads the data from the buffer and stores the fields internally.
 * Must be implemented in derived classes.
 * @param buf the buffer to read
 * @return the number of bits that have been read from the buffer
 */
 virtual int fromBuffer(const byte* buf) = 0;

 /**
 * writes the internal fields into the buffer
 * @param buf the buffer to write
 * @return the number of bits that have been written into the buffer
 */
 virtual int toBuffer(byte* buf) = 0;

 /**
 * checks if the syntax is correct.
 * @return true if the syntax is correct.
 */
 virtual bool checkSyntax() const = 0;

 /**
 * this method must be implemented in derived classes so that it returns the
 * size in bytes of the binary message generated by the toBuffer method.
 * @return the size (in bytes) of this class.
 */
 virtual unsigned int getSize() const = 0;

Then, the classes of the second layer are divided into many branches. Here, we only

 35

focus on the classes associated with the IPMP Messages, the ExpandableBaseClass. In the

ExpandableBaseClass, the virtual functions of BitField are implemented and it provides

another pure virtual function in order to compute the size of this object when serialized into a

bitstream. The declaration of the function is shown below including the description.

 /**
 * Compute the size (in bytes) of this object when serialized into a bitstream, according
 * to the current content of the member variables.
 * This method must be overloaded by any derived class to indicate the correct size.
 * This size does NOT include the object_id and the length of the ExpandableBaseClass.
 * @return the size in bytes.
 */
 virtual unsigned int sizeOfInstance() const = 0;

There is a special object named Length contained in the ExpandableBaseClass. The

Length class is also inherits from the BitField class. This object is to record the total size of

the object that inherits from the ExpandableBaseClass. The Length object has its size vary

from one to four bytes. In the current byte, if there are any concatenating bytes presenting the

length of the object, the first bit of the current byte will be true. So, the maximum size of the

object length is 228 bytes.

There are several branches expanded from the ExpandableBaseClass. They are

BaseDescriptor, ByteArray, IPMP_Data_BaseClass, IPMP_DeviceMessageBase, and

IPMP_ToolMessageBase.

The IPMP_DeviceMessageBase and IPMP_ToolMessageBase are the two kinds of basic

IPMP Messages that contain the IPMP information as described in section 2.3.2. The

IPMP_ToolMessageBase will contain the object IPMP_StreamDataUpdate inheriting directly

from the BitField. And there are several classes that inherit from the IPMP_ToolMessageBase.

They are IPMP_DescriptorFromBitstream, IPMP_MessageFromBitstream, and

IPMP_MessageFromTool. And they are all designed to contain the IPMP information as their

loads.

 Several classes inherit from the class IPMP_Data_BaseClass. They are the classes that

represent different IPMP information such as IPMP_GetTools, IPMP_GetToolResponse, and

etc. They have the name the same with tags that extended from the IPMP_Data_BaseClass

that is described in section 2.3.1.

 36

Figure 10 Class hierarchy of message interface of PSL IPMPX reference software

 Figure 10 shows the overall inherent relationship between classes within PSL MPEG-2

IPMP Extension reference software.

 37

Chapter 5

MPEG-4 IPMP Extension System Implementation on MPEG-21

Test Bed

This chapter describes our implementing of the MPEG IPMP Extension system on the

MPEG-21 test bed. Because of the existing architecture of the MPEG-21 Testbed, we have to

design an architecture that matches the MPEG-21 test bed. This software architecture is

modified from the MPEG-4 IPMP Extension system in IM1 and the MPEG-2 IPMP Extension

system developed by PSL. However, the entire system has been restructured and the software

is rewritten. The redesigned architecture contains mainly six modules. They are Message

Router, Tool Manager, Terminal, IPMPFilter, Context, and IPMP Tool. The relationship

among these modules is shown in Figure 11.

Figure 11 Relationships among modules in the IPMPX system

Here we focus on the modules, Context and IPMP Filter, because the functionalities of

the others have been described in the previous sections. First, we describe the concept of the

Context object. Then, we give the details about the design of the IPMP Filters. Next, the

design of Message Router, Tool Manager, Terminal, and the IPMP Tool are discussed.

Because MPEG-21 Testbed is separated into two sides, the Client side and the Server side,

when we discuss the IPMP subsystem, we will point out the differences between the designs

in both sides. Although, basically, the IPMP systems at the Client and the Server sides are

 38

almost the same, there still some differences between them. We will also discuss the design

the APIs of modules related to the IPMP subsystem.

5.1 Architecture Design

5.1.1 Context

Because there are many pieces of shared information among the modules in the IPMP

system, we move all the shared information to an entity called Context rather than distributing

them into individual modules. These modules including Tool Manager, Message Router,

Terminal, IPMP Filters, and IPMP Tools, are connected to the Context in order to retrieve the

shared information. The relationships between these modules and the Context are shown in

Figure 11.

Figure 12 Context hierarchy

The Context is designed as a tree structure for easily navigating the associated shared

data in it. In our design, the Context can be split into four levels, Top Context, Object Context,

ES Context, and Tool Context. And the relationships between the four levels of Context are

shown in Figure 12.

In the Testbed software, there is only one Top Context at each side to record the

 39

references to Tool Manager, Message Router and Terminal. And it also bookmarks the map of

the IPMP Tool Descriptor. The Context of the object level is empty in our design. In the

Context at ES level, we store the information about the ES Descriptor and the references to all

the IPMP Filters within the IPMP system. The bottom level of the Context in the tree structure

is the Context of Tools. It records the information of the Tool Descriptor and the references to

the IPMP Tools.

In order to construct the tree structure of the IPMP Context, the Contexts at any levels

has the following five members, context ID, context type, parent context, children context,

and top context. The context ID serves as the identifier of this context. The context type

records what type the context is. The parent context and children context are the links to the

tree structure. For instance, for an IPMP ES Context, it has the children contexts as Tool

Contexts, and the parent context as the Object Context. We show the tree structure of the

Context and its links in Figure 13. The arrow with the symbol, *, denotes that there may be

multiple objects.

Figure 13 Links between four level contexts

 As shown in Figure 13, the Context has a tree structure, and we can easily find the

shared information by navigating through the context tree. The links of the context tree are

discussed earlier, now we discuss the links of the contexts and the shared entity. There are

different types of members in the contexts depending on the context type. Figure 14 shows the

 40

relationships of modules of IPMP system and the four level Contexts. From the Figure 14, we

observe that it is easy to find the component of the IPMP system by searching the context tree.

Figure 14 Search the context tree

Figure 15 Relationship between IPMP Context and other modules

 From the link diagram shown in Figure 14, for instance, if there is an IPMP Tool A that

wants to send a message to IPMP Tool B, A first finds the context tree for the Message Router

 41

in the Top Context, then it passes the message to the Message Router. After receiving and

determining the recipient of this message, the Message Router identifies the IPMP Tool B in

the Context tree, from Top to Object, from Object to ES and from ES to Tool. Then it routes

the message to the IPMP Tool B. The method to find the other components is the same.

 The relationship between the IPMP Context and other modules associated with IPMP

Subsystem is shown in Figure 15. All modules associated with the IPMP Subsystem have

relationship with IPMP Context.

5.1.2 IPMP Control Points (IPMP Filters)

Considering the original architecture of MPEG-21 Testbed, it is important to choose the

appropriate IPMP Control Points and insert the IPMP Filters at those locations. By surveying

the MPEG-21 Testbed, we finally allocate three IPMP Control Points on the MPEG-21

Testbed, one at the server side and the other two at the client side.

The IPMP Control Points at client side are allocated between the Stream Buffer and the

Decoder, and between the Decoder and Output Buffer. In Figure 2, there is an IPMP Control

Point defined in between the Decoder Buffer and the Decoder. It is mapped to the one

between the Stream Buffer and the Decoder (PreDecoderFilter) in our design. And there is

also one IPMP Control Point defined between the Decoder and the Composition Buffer in

Figure 2. However, there is no Compositor designed in MPEG-21 Testbed, so we mapped this

IPMP Control Point to the one between the Decoder and the Output Buffer

(PostDecoderFilter).

Since the specification of MPEG-4 IPMPX mainly focuses on the client side only, our

design on the server side is inferred from the client side design. The PreDecoder Filter at

client side is mapped to the IPMP Control Point between the DIA module and Streamer at

server side and is called PostDIAFilter. In current implementation, we insert an IPMP Tool to

perform the decryption in PreDecoderFilter at client side, and an IPMP Tool for real-time

encryption in the PostDIAFilter at server side.

The IPMP Control Point between the Decoder and the Output Buffer at client side has no

corresponding IPMP Control Point at server side. It is because the encoding of the media

content is done offline and the encoded media contents are stored in the module called Media

Database before streaming. In theory, the PostDecoderFilter is mapped to an IPMP Control

 42

Point between the encoder and the module providing the un-coded media content. The main

purpose of PostDecoderFilter is to extract or determine the watermarking of the un-coded

media content. In current design, we could perform watermarking insertion off-line, and

extract it by the PostDecoderFilter.

Figure 16 shows the relationships between the IPMP Control Points and IPMP system

and the modules related with the IPMP system at client side. Because the Decoder in the

MPEG-21 Testbed is designed base on the MPEG-4 reference decoder, it is not a passive

decoder. In other words, the Decoder is an active device that retrieves the stream data from

the Stream Buffer and puts the decoded data to the Output Buffer. The original concept of

IPMP Control Points is that they are somewhat like filters to filter the passing bitstream data.

However, in the MPEG-21 Testbed, the filter concept does not fit well here, and we have to

design the IPMP Control Points using the concept of processor.

Figure 16 Block diagram of IPMPX system at client side

Since the Decoder is an active component, it decides the actions of getting the data and

putting the decoded data. Hence, we design these two IPMP Filters as processors that are

attached to the Decoder, and process the bitstream data as similar to the function of the

Decoder. The Decoder retrieves the bitstream data from the Stream Buffer then passes data to

the PreDecoderFilter immediately before decoding it. After being processed by the

 43

PreDecoderFilter, the data are then returned to the Decoder and are decoded by the Decoder.

Before putting the data to the Output Buffer, the Decoder shall pass the decoded data to the

PostDecoderFilter for processing, and then puts the returned data to the Output Buffer.

Figure 17 Block diagram of IPMPX system at server side

Because the size of the data passed to the PreDecoderFilter and of the data processed by

PreDecoderFilter may be not the same, the Decoder may crash when gets data of the different

size. In order to avoid this problem, we modify slightly the Decoder by inserting a buffer

named “decoder buffer” into Decoder. Note here that the decoder buffer is not the Decoder

Buffer appear in the specification, but a simple buffer to buffer the bitstream data for the

Decoder before decoding. Therefore, this modification does not affect the software in terms of

satisfying the MPEG-21 Testbed specifications. The decoder buffer holds the data for the

Decoder so that the size of the data requested by Decoder is unchanged to prevent the

Decoder from crashes. In the original Decoder design, the operation of data access from the

Stream Buffer is spread over the entire decoding procedure, but this arrangement makes the

insertion of IPMP devices complicated. The inserted buffer collects the spread operations of

data access to ease the management of IPMP. The modification is show in Figure 18.

At server side, the design of the IPMP Filter, PostDIAFilter, is similar to that at client

side. And the relationships between the modules associated with the IPMP system and the

IPMP Control Points are shown in Figure 17. Here, the Streamer is an active module. So the

 44

PostDIAFilter processes the bitstream as Streamer’s will. The procedure of processing the

bitstream data is similar to that at client side.

Figure 18 Modification of Decoder

Nowadays, the design trend of the decoder is moving toward passive decoder in recent

streaming system. And the concept of filter is fit in such kind of system. However, in

MPEG-21 Testbed, the decoder is designed as an active decoder, so the concept of the filter is

not proper within. Therefore, in our design, we have to adapt the design scheme of processors.

5.2 Design and Implementation of Software

In the architecture of MPEG-21 Testbed shown in Figure 5, only three IPMP modules are

visible in the architecture. Two of them, PostDecoder Filter and PreDecoder Filter, are at the

Client side and the other one, PostDIA Filter, at the Server side. However, there are other

important modules that integral parts of IPMP system. They are Message Router, Tool

Manager, IPMP Tools, and the Terminal. Here, we discuss the API design and the

implementation issues of the IPMP system in MPEG-21 Testbed module by module.

5.2.1 Message Router

The relationship between the Message Router and other modules is shown in Figure 19.

 45

Figure 19 Relationship between Message Router and other modules

The Message Router of IPMP system in the MPEG-21 Testbed has four main tasks. The

Message Router here has to process the IPMP Tool Descriptor whenever the Terminal

receives it. The IPMP Tool Descriptor may come from the IOD or from the bitstream. At the

Server side, the IOD is stored in a file along with the media file. Before accessing the media

file, the Server has to access the IOD file of the requested media file for setting up the

streaming system and the IPMP system at the Server side. When the Terminal accesses the

IOD, it parses the IOD and then passes IPMP Tool Descriptor, ES Descriptor, and IPMP Tool

Descriptor Pointer to the Message Router for processing. The Message Router processes

IPMP Tool Descriptor in order to get the IPMP information, some for initializing IPMP Tools,

and routes it to the corresponding IPMP Tools. Moreover, after parsing the IPMP Tool

Descriptor, the Message Router informs the Tool Manager to connect the IPMP Tools to

specified location according to IPMP Tool Descriptor.

The Message Router also has to process the ESD coming from the Terminal in order to

parse the IPMP Tool Descriptor Pointer within it. The IPMP Tool Descriptor Pointer included

 46

in the ESD indicates the existence of an IPMP Tool with its description as the IPMP Tool

Descriptor pointed by the IPMP Tool Descriptor Pointer in the ES. The location within ES is

indicated by the control point code and sequence code within the IPMP Tool Descriptor.

Figure 20 The messaging procedure

During the content consumption, there may be many run-time messages carrying the

IPMP information generated by the IPMP Tools or coming from the bitstream. The Message

Router has to receive these messages and routes them to corresponding IPMP Tools, Terminal,

or other IPMP Devices. A possible scheme for the generating, routing, and receiving of the

message is shown in Figure 20. In Figure 20, the Server means the server system of Testbed

including the IPMP system at server side, and the Client means the client system including the

IPMP system at the client side. In the client-server messaging scheme, first, one of the IPMP

Tools at server side generates an IPMP message that has to be sent to one of the IPMP Tools at

the client side. The message is then passed to the Message Router. The Message router

receives the message from the IPMP Tool and determines that if the recipient of the message

is at server side. If the recipient of this message is locally available, the Message Router

routes the message to indicated IPMP Tool locally. However, if the recipient is at the client

side, the Message Router has to route the message to the Terminal first, and then the message

 47

is send to the client side through the control channel. The send message is first received by the

controller at the client side. Here we can view the controller as one part of the Terminal. Then

the controller passes the message to the Message Router for routing the message to the

corresponding IPMP Tool. Finally, the Message Router calls the API named ReceiveMessage()

to pass the message to the IPMP Tool. However, the process of the message within the IPMP

Tool is an implementation issue depending on the design of the IPMP Tool.

 The APIs associated with the Message Router are listed bellow.

Method:

int ProcessIPMPToolDescriptor(IPMPToolDescriptorD* IPMPtooldescriptor)

This API is called by the Terminal to process the IPMP Tool Descriptor. When the

Terminal receives the IOD from the server, it calls this function to pass

IPMPtooldescriptor contained in IOD to MessageRouter. The function returns zero when

succeed.

int ProcessESD(ESD* esd)

This API is called by the Terminal and processes the ES Descriptor. When the Terminal

receives the IOD from the server, it calls this function to pass all ESDs contained in IOD

to MessageRouter. The function returns zero when succeed.

int ProcessIPMPDescritorPoniterD (uint32 contextID, IPMPDescriptorPointerD* ptr)

This API is called when processing an ES Descriptor. MessageRouter instructs

ToolManager to instantiate an IPMPTool at the given control point of the given ES. The

contextID specifies the context where the pointer resides. The ptr contains the

information of which IPMPToolDescriptor is to be used. The function returns zero when

succeed.

int ReceiveMessage(IPMPToolMessageBase* msg)

This API is called by an IPMPTool or the Terminal. On receiving a message (the

parameter msg), MessageRouter determines and sends it to the corresponding recipient.

The function returns zero when succeed.

IPMPContext* GetContext()

 48

This API provides means to access the corresponding context. All IPMP objects can refer

to each other by navigating through the context tree.

5.2.2 Tool Manager

The relationship between the Tool Manager and other modules is shown in Figure 21.

Figure 21 Relationship between Tool Manager and other modules

In the MPEG-21 Testbed, the Tool Manager mainly takes charge of three jobs. It receives

the IPMP Tool List Descriptor passed from the Terminal. The IPMP Tool List Descriptor is

contained in the IOD and is passed to the Tool Manager when the Terminal accesses the IOD.

Receiving the IPMP Tool List Descriptor, the Tool Manager has to resolve the IPMP Tools

listed within. As described in chapter 2, the IPMP Tool List Descriptor supports three modes

for describing the IPMP Tools, unique, alternates, and parametric. In the current version, we

use the unique mode to indicate the required IPMP Tools. However, we also implement the

description of alternates and parametric mode. Hence, users interested in these two modes

 49

could use these two modes directly.

Besides processing the IPMP Tool List Descriptor, the Tool Manager is also responsible

for adding (or removing) the tool to (or from) the specified IPMP Filter. When the Tool

Manager is asked to add one IPMP Tool in an IPMP Filter, it should be fed with the IPMP

Tool Descriptor belonging to this IPMP Tool. However, the one who holds the information of

IPMP Tool Descriptor is the Message Router. So, it is reasonable that the Message Router

asks the Tool Manager to connect the IPMP Tool to the specific IPMP Filter. It is the same

from removing IPMP Tool from an IPMP Filter.

 The APIs associated with the Tool Manager are listed bellow.

Method:

int ReceiveToolListDescriptor(ToolListDescriptorD* tool_list)

This API is called by the Terminal and processes the IPMP tool list. When Terminal

receives the Tool List Descriptor in the IOD, the function is called to pass tool_list to

ToolManager. Then, the ToolManager resolves the tool IDs for later instantiation. Note

that the server-side and client-side resolving process may be quite different. The function

returns zero when succeed.

IPMPTool* ConnectTool(uint32 context_id, IPMPToolDescriptorD* descr)

Instantiate and connect a tool. When this method is invoked, the tool is instantiated by

the parameters specified in descr. Then, the ToolManager connects it to the specified

location (context_id specifies the ES to apply, and the control point is specified in descr).

int DisconnectTool(IPMPTool* tool_ptr)

Disconnect the given tool pointed by tool_ptr from the IPMPFilter. The function returns

zero when succeed.

IPMPContext* GetContext()

This API provides means to access the corresponding context. All IPMP objects can refer

to each other by navigating through the context tree.

 50

5.2.3 Terminal

The relationship between the Terminal and other modules is shown in Figure 22.

Figure 22 Relationship between Terminal and other modules

The Terminal class here can be viewed as the abstract of the one whole side Testbed

system except for the IPMP subsystem. It serves as the interacting interface between the

Testbed system and the IPMP subsystem. The interactions between the Testbed system and the

IPMP subsystem include local messaging and remote messaging. When there are any

messages with the recipient as the Terminal, the Message Router routes the messages to the

Terminal by calling the API, ReceiveMessage(), of Terminal. And the processes of receiving

messages by Terminal depend on the types of the messages.

As for the remote messaging, we design another API named SendMessageToBitstream()

to support this type of messages. In the Testbed system, we send remote IPMP messages

through the control channel. The message types, local or remote, are determined by the

Message Router when the Message Router receives the message from IPMP Tools. Then, if

the message is local message, the Message Router routes the message to the assigned IPMP

 51

Tool locally; otherwise, the Message Router calls the API, SendMessageToBitstream(), to

pass the message to Terminal for remote messaging.

 The APIs associated the Terminal are listed bellow.

Method:

int ReceiveMessage(IPMPToolMessageBase* msg)

This method is called by the MessageRouter to pass terminal specific IPMP messages.

The msg object is the message to be processed. The method returns zero when succeed.

int SendMessageToBitstream(IPMPToolMessageBase* msg)

This method is called by the MessageRouter to pass remote-terminal specific IPMP

messages. The msg object is the message to be sent to the other side. The method returns

zero when succeed.

IPMPContext* GetContext()

This API provides means to access the corresponding context. All IPMP objects can refer

to each other by navigating through the context tree.

5.2.4 IPMP Filter

The relationship between IPMP Filter and other modules is shown in Figure 23.

The IPMP Filters serves as the IPMP Control Points in the IPMP system within the

MPEG-21 Testbed. It supports that the user could add or remove the IPMP Tool in the IPMP

Filter. There are three IPMP Filters in MPEG-21 Testbed system, one at the server side, and

the other two at the client side. At the server side, in order to perform the encryption on the

media content bitstream, we allocate one IPMP Filter at the location between two modules,

DIA and Streamer. It is called the PostDIAFilter in the Testbed system. However, the

PostDIAFilter here allows user to add IPMP Tools, whose functions are other than encryption.

What kind of the IPMP Tool should be used is an application issue.

Since the encryption is performed at the server side, there must be one corresponding

IPMP Filter to perform the functionality of decryption at client side. So, we locate an IPMP

Filter between the Decoder and the Stream Buffer. It is called PreDecoderFilter. Because the

output data of the module, DIA, is in the bitstream format, and we do the encryption at the

 52

bitstream level, therefore, the PreDecoderFilter is located here to decrypt the data at the same

level.

Figure 23 Relationship between IPMP Filter and other modules

There is another IPMP Filter, PostDecoderFilter, located between the Decoder and the

Output Buffer. With this IPMP Filter, the functionality of extract watermarking from a

decoded bitstream data can be implemented. Note that there is no corresponding IPMP Filter

of the PostDecoderFilter at the server side because we assume that the insertion of the

watermarking is done offline. There could be other possible use of the IPMP Filters in

different combination, and it is an application issue. Here we will show one possible

application of them.

Because the data before being processed by the Filter and the data after being processed

may have different size, we design an API, ProcessData(), which has five parameters. The

caller of the API specifies the size of the input data for processing and the data buffer. After

processing the data the caller could get the processed data from the out_data_ptr with its size

specified in out_size_ptr. For example, there is one DES decryption tool in the

PreDecoderFilter, and the DES tool decrypts the data block by block. However, the size of the

bitstream data may not be multiples of blocks, so there may exist blocks with zero padding.

 53

When the DES tool decrypts a block with zero padding, it returns the data with the size differ

from the original block size, which is the input data size, ProcessData(). In order to solve this

problem, we need an API, ProcessData(), as described bellow.

 The APIs associated with the IPMP Filter are listed bellow.

Method:

int AddTool(IPMPTool* tool, uint8 sequence_code)

Add the given IPMPTool to the filter. The tool object is an initialized IPMPTool, and the

sequence_code specifies the priority of the tool. A higher value of sequence_code

denotes higher priority when processing data. This method returns zero when succeed.

int RemoveTool(IPMPTool* tool)

Remove the specified IPMPTool from the filter. The parameter tool specifies the

IPMPTool to be removed. This method returns zero when succeed.

int ProcessData(uint32 timestamp, uint8* in_data, uint32 in_size, uint8** out_data_ptr,

uint32* out_size_ptr)

This method iterates through each contained IPMPTool and chained all data processing

operations to produce the final result. The in_data is the input data buffer of length

in_size. The created output buffer is returned in out_data_ptr with length out_size_ptr.

This method returns zero when succeed.

In the current implementation of IPMP system embedded in the MPEG-21 Testbed

system, since the IPMP Filters are connected to the Streamer at the server side and to the

Decoder at the client side, the caller of the API, ProcessData(), should be the Streamer and the

Decoder. At the client side, the Decoder acquires the bitstream data from the Stream Buffer by

calling the API, GetBitstreamData(). After receiving the bitstream data from the Stream

Buffer, Decoder sends data to PreDecoderFilter before decoding the data. The data decoding

process should take place after the data are returned by the PreDecoderFilter. Before the

decoded data being sent to the Output Buffer, the Decoder sends them to the

PostDecoderFilter first. After getting the returned processed data, Decoder sends them to the

Output Buffer. The scheme of processing the bitstream data at client side is shown in Figure

24.

 54

StreamBuffer Decoder

OutputBuffer

PreDecoderFilter

PostDecoderFilter

1.1. GetBitstreamData()

1.2. ProcessData()

3.1. ProcessData()
3.2. WriteDecodedData()

2. Decode()

Figure 24 The procedure of processing data by IPMP Filter at client side

At server side, the Streamer gets the bitstream data from DIA by calling the API of DIA

named GetNextResourceUnit(), and then sends the data to PostDIAFilter for processing right

away. After getting the data returned by PostDIAFilter, the Streamer begins to process the

bitstream data. The detail scheme is shown in Figure 25.

DIA

PostDIAFilter

Streamer
1. GetNextResourceUnit()

2. ProcessData()

Figure 25 The procedure of processing data by IPMP Filter at server side

There may be multiple IPMP Tools within one IPMP Filter, so we design an

IPMPToolChain to record the IPMP Tools within the IPMP Filter. As described before, the

order of processing data is specified by the sequence code, and the IPMP Tool with higher

sequence code processes the data first. The procedure of processing the bitstream data could

be written as the pseudo codes bellow.

 55

 for (sequence_code=255; sequence_code >=0; sequence_code - -) {
 IPMPTool* tool = GetIPMPToolChain()[sequence_code];
 if (tool != 0) {
 if (first_flag != 1) {
 clear_the_buffer();
 set_in_out_buffer();
 } else {
 first_flag = 0;
 }

tool->ProcessData(timestamp, cur_in_data, cur_in_length, &cur_out_data,
&cur_out_length);

 }
 }

5.2.5 IPMP Tool

The relationship between IPMP Tool and other modules is shown in Figure 26.

Figure 26 Relationship between IPMP Tool and other modules

In order to make the design and implementation of the IPMP Tools more flexible, here

we design the IPMP Tool with the highest principle of simplicity. This class is designed as the

basis interface of an IPMP Tool. An IPMP Tool, for instance, the DES decryption tool, may

process the bitstream data in an ES. Thus, the ProcessData() API is a part of the basic

 56

interface of an IPMP Tool. And, the concept of designing this function is the same with the

one of the IPMP Filter.

An IPMP Tool should also have the capability to receive the message routed by the

Message Router. However, the procedure of processing the received message is the

implementation issue and hence we ignore it here.

 The APIs associated the IPMP Tools are listed bellow.

Method:

int ReceiveMessage(IPMPToolMessageBase* msg)

This API is called by the MessageRouter to pass a message to the IPMPTool object. The

parameter msg is the IPMP message to be handled by this tool. The function returns zero

when succeed.

int ProcessData(uint32 timestamp, uint8* in_data, uint32 in_size, uint8** out_data,

uint32* out_size)

This API is called by the IPMPFilter to process the given data. The parameter in_data, is

the input buffer of length in_size. The indirect pointer **out_data returns a pointer to the

processed data, and the size returned as out_size. The output buffer should be created

during the invocation of the method, and should be released somewhere else. The

IPMPFilter should take care of the release operations, except the last output buffer of the

IPMP tool chain. The function returns zero when succeed.

void Initialize(IPMPToolDescriptorD* init)

Initialize the IPMPTool by the given init object. This method is called by the

ToolManager after this tool object is instantiated.

IPMPContext* GetContext()

This API provides means to access the corresponding context. All IPMP objects can refer

to each other by navigating through the context tree.

 In the current implementation, we implement a pair of DES tool, one for encryption, and

the other for decryption. The basic feature of DES algorithm is that it is the block cipher

algorithm. In our implementation, we use the library called crypto++, a C++ class library of

 57

cryptographic primitives. It provides many implementations of cipher algorithm such as AES

(Rijndael), DES, and many other different algorithms in cipher. And the library provides both

stream cipher and block cipher. However, in our implementation, because we focus on the

IPMPX system design, not the design of encryption algorithm. We choose the one for easiest

implementation, the DES block cipher.

Figure 27 Flow chart of IPMP DES Tool

The DES cipher algorithm has been implemented in the library, crypto++. Its default

block size is 8 bytes, and the default key is also 8 bytes, too. Because these IPMP Tools are

associated with DES block cipher algorithm, when the data are processed, the data have the

size of multiples of block. Therefore, we design a simple buffer in the IPMP Tools to buffer

the tailing data whenever the accumulated data have the size as multiples of a block. In order

 58

to perform the real-time encryption at server side, we design the DES encryption tool with the

ability to generate the new key and send the new key to the decryption tool.

 The flowchart of the current implementation of the IPMP Tools with the DES block

cipher algorithm is shown in Figure 27.

 59

Chapter 6

Demo

In this chapter, we design an application example of MPEG-4 IPMPX system and

implement it. Here we only describe the client side of the MPEG-21 Testbed as our testing

environment and omit the server side and of network. Oenerally, to test the functionalities of

IPMPX system, it is sufficient to look at the client side only.

6.1 Structure

Figure 28 System diagram of our application

In this demonstration, we build up the system as shown in Figure 28. This demonstration

 60

is designed to test the functionality of IPMPX system for Conditional Access (CA).

The Decoder here is an active device. It acquires the bitstream data from the Stream

Buffer and writes the decoded data to the Output Buffer. Before decoding data, the Decoder

asks the PreDecoderFilter to process these data. After writing data to the Output Buffer, It first

as the PostDecoderFilter to process these decoded data. In this application, there are two

threads, the decoder thread and the thread for displaying the frame.

There are two IPMP Tools in the PreDecoderFilter, Key Tool and DES Decryption Tool.

The Key Tool is to read the key and send the key to DES Decryption Tool through IPMP

messages. The DES Decryption Tool is to decrypt the data. It is empty in the

PostDecoderFilter hence data processed by the PostDecoderFilter are unchanged.

6.2 Setup

We first offline encrypt a bitstream and store the bitstream in a media file. During the

encryption of the bitstream, the encryption procedure changes the encryption key periodically,

that is, one new key for a fix number of blocks. The key is generated by a random function.

The key list is stored in a key file for decryption. These jobs are done prior to testing the

IPMPX system as shown in Figure 28.

Except for the key file and the media file, there is still one important piece of data that

has to be prepared, the Initial Object Descriptor file. There are three main components in the

Initial Object Descriptor: IPMP Tool List, IPMP Tool Descriptor, and the IPMP Tool

Descriptor in the ESD. We must set up these three pieces of information. The attributes and

parameters of these three components are shown bellow.

IPMP_ToolListDescriptor

{

 numTools = 2;

 IPMPToolD[0]

 {

 IPMP_ToolID = [140, 113, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1];

 isAltGroup = 0;

 isParametric = 0;

 61

 numURLs = 0;

 ToolURL = NULL;

 }

 IPMPToolD[1]

 {

 IPMP_ToolID = [140, 113, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2];

 isAltGroup = 0;

 isParametric = 0;

 numURLs = 0;

 ToolURL = NULL;

 }

}

There is one IPMP Tool List in the Initial Object Descriptor. Because there are two IPMP

Tools in this demonstrating system, there must be two IPMPToolDs on the IPMP Tool

Descriptor List and numTools is set to be 2. Each IPMPToolD has its own unique

IPMP_ToolID within, which means that we use a unique mode to describe the required IPMP

Tools for content consumption.

IPMP_ToolDescriptor[0]

{

 IPMP_ToolDescriptorID = 1;

 IPMP_ToolID = [140, 113, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1];

 URLString = NULL;

 isInitialize = 1;

 IPMP_Initialize

 {

controlPointCode = 0x01;

sequenceCode = 220;

numOfData = 1;

IPMPX_data[0] : IPMP_OpaqueData

{

 opaquedata = {“duration to change the key”, “Initial Key”, “corr_tool”}

 62

};

 }

 numOfData = 0;

 IPMPX_data = NULL;

}

IPMP_ToolDescriptor[1]

{

 IPMP_ToolDescriptorID = 2;

 IPMP_ToolID = [140, 113, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2];

 URLString = NULL;

 isInitialize = 1;

 IPMP_Initialize

 {

controlPointCode = 0x01;

sequenceCode = 200;

numOfData = 1;

IPMPX_data[0] : IPMP_OpaqueData

{

 opaquedata = {“duration to change the key”, “Initial Key”, “corr_tool”}

};

 }

 numOfData = 0;

 IPMPX_data = NULL;

}

 Because there are two IPMP Tools instantiated in this demonstrating system, we need

two IPMP Tool Descriptors for them. Although there may be multiple IPMP Tools sharing the

same IPMP Tool Descriptor, the IPMP Tools appear in the demonstrating system are quite

different. The IPMP_ToolDescriptorID could be set at the users’ will, so we assign the value

to them as we wish. In both IPMP Tool Descriptors, the isInitialize is set to 1 to indicate that

the IPMP Tools are newly instantiated. The controlPointCode here are set to 0x01, which

means that these two IPMP Tools are both connected to the PreDecoderFilter. And the

 63

sequenceCode indicates the order for processing the data. Finally, the IPMPX_data carried in

IPMP_Initialize is set as IPMP_OpaqueData to carry initialization information for IPMP

Tools such as the duration for changing keys.

ES_Descriptor[0]

{

 ES_ID = 0;

 IPMP_ToolDescriptorPointer[0]

 {

 IPMP_ToolDescriptorID = 1;

 }

 IPMP_ToolDescriptorPointer[1]

 {

 IPMP_ToolDescriptorID = 2;

 }

}

 IPMP Tool Descriptor Pointers within the ES Descriptor indicate that the stream

described by this ESD is protected by the IPMP Tools indicated in the IPMP Tool Descriptors

pointed by them. The relationship among these pointers is shown in Figure 29.

Figure 29 Relationship of various pointers in the demonstration system.

 64

6.3 Execution

First, the Terminal accesses the Initial Object Descriptor in the IOD file, and resolves it.

Then it passes the IPMP Tool List Descriptor to the Tool Manager and passes the IPMP Tool

Descriptor and ES Descriptor to the Message Router. Tool Manager parses the IPMP Tool List

Descriptor to resolve the Tool IDs of the required IPMP Tools for content consumption and

then build up the IPMP Tool map. Message Router parses the IPMP Tool Descriptor to get the

information for initialing of IPMP Tools. Besides, Message Router parses the IPMP Tool

Descriptor Pointer in ESD to connect the required IPMP Tools to the locations specified in the

IPMP Tool Descriptor. During the procedure of setting up the IPMP system, the context tree is

built for navigation in the following steps.

The behavior of these modules, Message Router, Terminal, and IPMP Tools, in the IPMP

system after setting up the IPMP system is shown in Figure 30.

Figure 30 Messaging routine in the demonstration system

 In order to enable passing messages between the key tool and the DES description tool,

 65

the key tool generates an IPMP message with type GetToolContext and sends it to the

Terminal for querying the IPMP Tool with the IPMP Tool Descriptor specified in the message.

Then, the Terminal processes the message and retrieves the context tree for the context ID of

requested IPMP Tool. If found, the Terminal will generate the IPMP message with its type as

GetToolContextResponse and send it back to the IPMP Tool, which requests the context ID.

After getting the context ID of the DES decryption tool, the key tool informs the DES

decryption tool to change the key through the IPMP messages. The key tool inserts the key

data into the IPMP opaque data as a message and sends it to the DES decryption tool. If the

key is incorrect, the user can only view the video at very low quality or nothing at all.

However, if the negotiation of the IPMP Tools is not successful, the key tool will hold the

bitstream such that the user sees nothing in the display window.

Figure 31 Screenshot_1 of demonstration system

 As shown in Figure 31, the window with title “- ASP - Test” is the one for displaying.

And the message box shows the current status of processing. The main window of the entire

system is the one at right side. Entire process begins when user clicks the “Play” button.

 66

Figure 31 is the screenshot before displaying the media data. Hence, there is nothing in the

displaying window.

Figure 32 Screenshot_2 of demonstration system

The screenshot during displaying is shown in Figure 32. And the processing steps are

also shown in the message box. The message in the current message box indicates that the

Key Tool sends the key data to the DES Decryption Tool. And the content of the key is “52 90

49 F1 F1 BB E9 EB”.

 When the DES Decryption Tool decrypts data with incorrect key, the decrypted data are

viewed as lost packets by the Decoder. Hence the Decoder does not decode these data and

holds the process until the key is correct. When the key data is correct again, the Decoder

decodes these data again. Because of the lost data, the frames shown in the window are

fractured. We show this condition in Figure 33

 67

Figure 33 Screenshot_3 of demonstration system

Figure 34 Screenshot_4 of demonstration system

 68

 If the key is continuously correct for a certain time, the frames will be reconstructed

gradually as show in Figure 34. However there is only one “I frame” within entire sequence,

hence the reconstructions of the frames are slow. That is, we can not get the perfect frame

immediately when we get the correct keys.

 69

Chapter 7

Conclusion

Because the issues of Digital Rights Management become more and more important,

there are many companies that begin to develop their own Digital Rights Management

systems, such as the Microsoft Media Digital Rights Management systems. However, the

DRM systems come from different companies can not provide interoperable services among

them. Therefore, it is a trend to standardize the Digital Rights Management interfaces and

systems. The IPMPX system is an example of standardized Digital Rights Management

systems with powerful functionalities.

The advantages of using the IPMPX system for industry and the end users are as follows.

Many DRM solutions use similar or same tools for a number of functionalities. For

example, many different DRM systems use the same encryption algorithm. However, because

there are no specifications on the interface of these tools, they can not be reused in another

DRM system. Using the standardized IPMPX system could reduce redundant implementation

and thus can facilitate the design and distribution of tools.

The MPEG IPMPX system provides a common ground for mutual authentication of

IPMP Tools and Terminals such that the IPMP Tools and the Terminals can communicate with

each other through the secure authenticated channel. The mutual authentication can also

verify the trusty relationships between IPMP Tools and the Terminals.

In the MPEG IPMPX system, the IPMP messages are clearly defined and so are the

interfaces. Thus, the points of non-interoperability are clearly specified allowing industry to

further minimize incomparable issues.

From the application view point, the renewability of a DRM system must be provided.

The IPMPX system could verify the validity of certificates and credentials by using the

mutual authentication. Additionally, there are many updating messages routed dynamically to

update IPMP Tools or to insert new IPMP Tools.

 In an IPMPX system, one could choose whichever IPMP Tool to perform the

functionalities such as decryption, watermarking, user authentication or data integrity

checking. These functions provide through and yet flexible protection on the media content.

 70

 IPMPX is a system based on the message exchange concept. Hence there are a number

of messages dynamically generated and routed for the communication between the IPMP

Tools and the Terminals. The IPMP messages carry the IPMP information for updating the

IPMP Tools or resulting in a new instance of the IPMP Tool to perform a new functionality.

 IPMPX system is a practical DRM system and is a powerful one. However, the reference

software of the IPMPX system included in IM1 is strongly confined by the MPEG-4 system

software. It is very difficult to separate the IPMPX system from IM1 and port it to the

MPEG-21 Testbed. In order to test the functionalities of IPMPX system in a streaming

environment, we design and implement the IPMPX systems on the MPEG-21 Testbed.

 In this thesis, we design a new and standalone IPMPX system, separated from the other

parts of the MPEG-4 system. Then we implement this system on the MPEG-21 Testbed.

Furthermore, we give several application examples in using the IPMPX system with

MPEG-21 Testbed to show its powerful functionalities. The users of MPEG-21 Testbed could

use the IPMPX system at their choice. And since we provide the IPMPX system

implementation on the MPEG-21 Testbed, the manufactures of tools could insert the tools of

their own design into the IPMPX system easily and test and verify the functionalities of the

new tools.

 Until now, the IPMPX system is built mostly on the client side of the MPEG-21 Testbed

and is tested for its functionalities. However, there are several items remained to be done in

order to make the whole system more complete.

 In the current implementation, the bitstream comes from a pre-saved file, and there is no

server side online DRM operation. Therefore we should integrate the IPMPX system into the

server side and test it in real streaming environment for IPMPX system.

 Because the IPMPX system is very complicated, there still several functionalities that

have not yet been implemented, such as the IPMP Tool within ES (Elementary Stream). The

IPMPX system allows that the IPMP Tool required for content consumption can be carried by

the IPMP ES. The content provider can thus insert an IPMP Tool into the ES and transfer it

through the IPMP ES to the end user. This option is not implemented in current version of

software. We will continue to make this system as complete as possible in the future.

 Furthermore, in the current implementation, we include an IPMP decryption tool without

considering the effect of packet loss. However, in a real application streaming system, the

packet loss often occurs. So, we have a robust decryption tool that can tolerate the packet loss

 71

in a streaming environment. Further, we can test its robustness by the IPMPX system

embedded in MPEG-21 Testbed.

 MPEG-4 IPMPX and MPEG-2 IPMPX standards are completed. However, there is a

new version of IPMP to be adopted by MPEG-21. Until now, the IPMP in MPEG-21 is at the

status of requirement definition. As the MPEG group moves gradually their focus toward

MPEG-21, we naturally will continue the research work on MPEG-21 IPMP in the future.

 72

References

[1] C.A. Schultz, “Study of FPDAM ISO/IEC 14496-1:2001 / AMD3,＂ ISO/IEC JTC

1/SC 29/WG11 N4849, Klagenfurt, July 2002.

[2] J. Ming and S.M. Shen, “Study Text of ISO/IEC 13818-11/FCD,＂ ISO/IEC JTC 1/SC

29/WG11 N5469, Awaji, Dec 2002.

[3] J. Ming and C.A. Schultz, “MPEG-2 and MPEG-4 IPMP Extension Reference

Software Architecture based on IM1,＂ ISO/IEC JTC1/SC29/WG11 N4850, Fairfax,

May 2002.

[4] J. Liu, et al., “WD1.0 of ISO/IEC 13818-5:1997/AMD2:2003 MPEG-2 IPMP Reference

Software,” ISO/IEC JTC1/SC29/WG11 M9840, Trondheim, July 2003.

[5] C.J. Tsai, M. van der Shaar and Y.K. Lim, “Working Draft 3.0 of ISO/IEC TR2100-12

Multimedia Test Bed for Resource Delivery, ＂ ISO/IEC JTC1/SC29/WG11

MPEG2003/M10299, Hawaii, December 2003.

[6] C.N. Wang, et al., “FGS-Based Video Streaming Test Bed for MPEG-21 Universal

Multimedia Access with Digital Item Adaptation,＂ ISO/IEC JTC1/SC29/WG11

MPEG2003/M8887, October 2002.

[7] J. Bormans and K. Hill, “MPEG-21 Overview v.4,＂ ISO/IEC JTC1/SC29/WG11

N4801, Faifax, May 2002.

[8] J. King, et al. “MOSES Progress report on MPEG-4 IPMPX,” ISO/IEC JTC 1/SC

29/WG11 M9161, Awaji, Dec 2002.

[9] M. Carson and D. Santay, “NIST Net – A Linux-based Network Emulation Tool,” ACM

SIGCOMM Computer Communications Review, Volume33, Number3, July 2003.

 73

自 傳

范振韋: 民國 1980 年生於南投縣。 2002 畢業於台灣新竹的國立交通大學

電機與控制工程學系，之後進入該校電子工程所攻讀碩士學位。以 IPMP 為

論文研究主題。

Chen-Wei Fan was born in NanTou in 1980. He received the BS degree in
Electronic Control Engineering, National Chiao Tung University (NCTU),
HsinChu, Taiwan in 2002. His current research interests are Intellectual Property
Management and Protection.

