
國立交通大學

電 子 工 程 學 系 電 子 研 究 所 碩 士 班

碩 士 論 文

應用於單晶片多處理器系統之任務結合方法

Task Binding on Multi-Processor System-on-Chip

研 究 生：周 志 杰

指導教授：周 景 揚 博士

中 華 民 國 九 十 三 年 七 月

應用於單晶片多處理器系統之任務結合方法

Task Binding on Multi-Processor System-on-Chip

研 究 生：周志杰 Student: Chen-Ling Chou

指導教授：周景揚 博士 Advisor: Dr. Jing-Yang Jou

國立交通大學

電子工程學系 電子研究所碩士班

碩士論文

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical Engineering and Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE
in

Electronics Engineering

July 2004
Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 三 年 七 月

 i

應用於單晶片多處理器系統之任務結合方法

研究生：周志杰 指導教授：周景揚 博士

國 立 交 通 大 學

電 子 工 程 學 系 電 子 研 究 所 碩 士 班

摘要

採用單晶片網路為通訊架構來建立以矽智財元件為基礎之系統

單晶片是一種新的設計方法。這種設計方法的特性是具有高度的可重

複使用性以及延展性。在這篇論文裡，我們詳述一個二步驟的任務結

合演算法。利用這個演算法所建立的工具可將一個以參數化任務圖所

描述的應用結合至以二維網狀交換器為通訊骨幹之單晶片多處理器

系統平台上。該演算法嘗試將任務結合至可使用的計算資源上並且使

得整個應用的運算時間降到最小以及將系統效能提升至最大。結合軟

體處理器以及交換器模型之後，我們可以模擬整個系統。在短時間之

內，我們可以檢視系統的效能並且萃取重要的平台參數。

 ii

Task Binding on Multi-Processor
System-on-Chip

Student: Chieh-Chieh Chou Advisor: Dr. Jing-Yang Jou

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

Abstract

Network-on-Chip is a new design paradigm for designing core based

System-on-Chip. It features high degree of reusability and scalability. In this thesis,

we describe a two-step task binding algorithm that has been used to build a tool to

map an application, described by a parameterized task graph, onto Multi-Processor

System-on-Chip platform with a two dimensional mesh of switches as a

communication backbone. The algorithm tries to find a mapping of tasks to available

computational resources so that the overall execution time of the application is

minimized and the system performance gain is maximized. By incorporating software

processor and switch models, a system simulation can be performed. And in few

minutes, the system performance gain can be assessed and some important platform

parameters can be extracted.

 iii

Acknowledgment

First and foremost, I would like to express my sincere gratitude to my advisor

Professor Jing-Yang Jou for his suggestions and guidance throughout the years. As my

advisor, he not only helped me on my work, but also gave me a lot of valuable advice

on my life. I was such a lucky guy to have worked with him. Also, I would like to

thank Cheng-Yeh Wang, Liang-Yu Lin, and Pao-Jui Huang; they were the first people

I would go to whenever I needed support or to share my happiness and sorrow.

Without their help, I wouldn’t have finished my work and learned so much. Special

thanks to EDA lab and VSP lab members, for their company and friendship; it has

been a great time to be together with them. Finally, I would like to express my sincere

gratitude to my family and all my friends, who have always helped and encouraged

me a lot.

 iv

Contents

摘要...i

Abstract ..ii

Acknowledgment ... iii

Contents ..iv

List of Figures ...vi

List of Tables.. viii

Chapter 1 Introduction ...1

1.1 A Design Paradigm Shift..1

1.2 Related Works ..2

1.3 Thesis Organization ...3

Chapter 2 Preliminary ..4

2.1 Our Platform ..4

2.2 Switch Design ..5

2.2.1 Switching Strategies..5

2.2.2 Features of Our Switch ...8

2.2.3 Switch Model ..12

2.3 Our Design Flow..14

Chapter 3 Task Binding..17

3.1 Problem Formulation ...17

3.2 Task Binding Flow...18

3.3 Task Mapping...19

3.3.1 Simulated Annealing...20

 v

3.3.2 Cost Function ..22

3.3.3 Annealing Schedule ..23

3.4 Connection Path Assignment ...24

3.4.1 Pathfinder Algorithm ..24

3.4.2 Routing Resource Graph...26

3.4.3 Cost Function ..29

Chapter 4 Experimental Results...32

4.1 Experiment Flow..32

4.2 Experimental Results ...34

4.2.1 Routability Analysis..34

4.2.2 Performance Analysis ...35

4.2.3 Scalability Analysis...37

Chapter 5 Conclusion and Future Work...40

Reference ...42

VITA..46

 vi

List of Figures

Figure 1 Our platform ..4

Figure 2 Deadlock..8

Figure 3 Two unidirectional virtual channels multiplexed across a physical channel...9

Figure 4 Messages make progress rather than being blocked......................................10

Figure 5 Virtual channels sharing the bandwidth of a physical channel using

round-robin schedule ...10

Figure 6 Virtual channels sharing the bandwidth of a physical channel using weighted

round-robin schedule ...11

Figure 7 Inside the switch ..12

Figure 8 Processor 1 sending two works to processor 2..14

Figure 9 Our design flow ...15

Figure 10 Task binding flow ..19

Figure 11 Local versus global optima..21

Figure 12 Pseudo-code for generic simulated annealing placer22

Figure 13 A bounding box..23

Figure 14 Pseudo-code for Pathfinder algorithm...25

Figure 15 Routing resource graph for a processor and its local switch27

Figure 16 Routing resource graph for a switch..28

Figure 17 Routing resource graph across a physical channel29

Figure 18 Our experiment flow..32

Figure 19 Mapping between output of each case and its corresponding task graph....33

Figure 20 A task with two inputs and three outputs...34

 vii

Figure 21 Requirement of channel width factor over 765 cases..................................35

Figure 22 Performance measurement ..36

Figure 23 Relationship between communication load and processor utilization rate .37

Figure 24 Experiment with the maximum number of inputs or outputs equal to 438

Figure 25 Experiment with the maximum number of inputs or outputs equal to 739

 viii

List of Tables

Table 1 Comparison of different switching strategies ...7

Table 2 Base cost for each type of routing resource ..30

 1

Chapter 1

Introduction

1.1 A Design Paradigm Shift
As silicon technology scales, people today are able to integrate billions of

transistors on a chip. However, as more and more components are integrated, several

problems emerge. First of all, shared-bus based system does not work well. Usually,

buses can efficiently handle 3 to 10 communication partners, but they do not scale to

higher numbers [1][2][3]. Secondly, since technology scaling works better for

transistors than for interconnecting wires, wire delay is no longer negligible. It’s hard

to maintain global synchrony, for long and global wires make system performance

unpredictable [1][3][4]. Thirdly, each component in a complex system is usually

developed by different teams at different times with different design languages and

tools. At system level, these components are not easily composable because a tiny

change in one part may have unexpected effects on other seemingly unrelated parts of

the system [1]. Consequently, more design efforts are spent on verification, which in

turn lowers the design productivity and delays product development.

Recently, Networks-on-Chip design methodology is proposed to solve these

problems. A typical NoC architecture provides a scalable communication

infrastructure for interconnected components; and Globally Asynchronous Locally

Synchronous (GALS) style of large chip implementation is supported. Each

component could be implemented as a separate clock domain and could communicate

 2

to other components using asynchronous communication through switches. By

managing communication channels properly, data transmission can coexist peacefully.

This allows arbitrary components to be integrated and connected to a network, while

adding new resources to a bus-based system has great impact on system performance

[5][6][7]. Also, each component can be designed and verified independently because

each one is guaranteed to comply with the network protocol standard. By reusing

pre-designed and pre-verified components, a new system can be quickly built-up and

much verification effort can be saved.

1.2 Related Works
There are many research works in this field. [8][9][10][11] propose integrated

modeling, simulation and implementation environment. In [8], NoC infrastructure and

processors are modeled, and then simulation is performed to find the optimal network

configuration. [9] and [10] try to refine the network communication protocol and a

protocol controller is synthesized in [10]. [11] tries to model multiprocessor and

real-time operating system to analyze the behavior of a complex system that has

real-time applications running on a multiprocessor platform.

Design issues of the NoC architecture, including switch design, network

topology and protocol, are discussed in [7][12][13]. [12] proposes a data-transfer

method called Black-Bus, which saves up to 75% of routing tags compared to the

global addressing scheme used in traditional packet network. [7] exploits circuit

switching technique to guarantee communication bandwidth. [13] proposes a

communication protocol stack that can guarantee traffic bandwidth. In both [7] and

[13], 2D-mesh is chosen as the network topology.

[14] proposes a two-step genetic algorithm that has been used to build a tool for

 3

binding an application, described by a parameterized task graph, onto NoC

architecture with a two dimensional mesh of switches as a communication backbone.

To calculate the execution time of the system, a NoC architecture specific

communication delay model is presented. The algorithm tries to bind tasks onto

processors so that the overall execution time of the application is minimized.

In our work, we try another way to bind tasks onto processors for two reasons.

First, connection paths between each pair of interconnected tasks are pre-allocated in

our platform, which is not in [14]. Second, a task graph will be manipulated before

tasks are mapped onto processors. Therefore, no scheduling will be performed in the

binding process.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 introduces our

Multi-Processor System-on-Chip (MPSoC) platform, the switch design considerations,

the model of this switch and our design flow. In Chapter 3, details about task binding

techniques we use are presented. Then, experiment flow and experimental results are

given and discussed in Chapter 4. Finally, the conclusion is made in Chapter 5.

 4

Chapter 2

Preliminary

2.1 Our Platform
As shown in Figure 1, there are two components in our platform: processors and

switches. Each processor contains 32K bytes of local memory and connects to the

local switch. Each switch connects to the four neighboring switches and the local

processor.

Switch Switch Switch

Switch Switch Switch

Switch Switch Switch

Processor Processor Processor

Processor Processor Processor

Processor Processor Processor

Figure 1 Our platform

 5

The topology of the network is 2D mesh. The reasons why we choose it are three

folds. First, as shown in [15], because of the simple connection and easy routing

provided by adjacency, it is widely used in parallel computing platforms. Second, the

interconnect length between nodes is uniform, which ensures the uniformity of the

performance and overall scalability of the network. And last, it meets the inherent

constraint of IC manufacturing technology.

The way how data communication is carried out in the network is as follows: if a

processor wants to pass information to any other processor, it sends information to the

local switch. The switch then decides which adjacent switch is to receive the

information. If the local processor of this switch is the destination, then the

information is received by this processor; otherwise, the procedure just repeats until

the information is sent to the destination.

2.2 Switch Design

2.2.1 Switching Strategies

Before we get to know how our switch works, knowledge about common

switching strategies is required. Common switching strategies can be classified into

two categories: connection-oriented switching and connectionless switching [16]. For

connection-oriented switching, also named circuit switching, a connection from the

source to the destination is established before data transmission. Once the connection

is established, the full bandwidth of the hardware path is available. Circuit switching

is generally a good switching strategy if data transmission is long and infrequent. That

is, when the time to establish the connection compared to the time to transmit data is

 6

short, the strategy is advantageous. Since there is a dedicated connection of data

transmission, the available bandwidth is known, meaning that the latency can be

guaranteed—this is really good for real-time applications. But, when connection is

reserved for the duration of one data transmission, other data transmission may not

use resources occupied by the connection. This may degrade the overall network

performance.

 Alternatively, for connectionless switching, data can be partitioned into packets.

Each packet can be individually routed from the source to the destination without any

connection reserved prior to data transmission. As a result, the bandwidth utilization is

more efficient.

Popular packet switching strategies include store-and-forward, virtual

cut-through and wormhole. For store-and-forward, a packet is completely buffered at

each intermediate node before it can be forwarded to the next node. Compared to

circuit switching, its performance is better when data transmission is short and

frequent since it does not require the existence of dedicated connection. However, the

switch implementation is expensive because the switch should have the capability to

buffer a whole packet.

 Store-and-forward assumes that a whole packet must be available before it can

be forwarded to the next node. This is not generally true, however, because the first

few bytes of a packet may contain routing information. A switch can start forwarding

information to the next node as soon as routing information of a packet is available.

The switching technique which exploits this is referred to as virtual-cut-through. In

the absence of blocking, the latency experienced by data transmission using this

method is shorter, implying higher bandwidth utilization. On the other hand, if the

header of a packet is blocked during data transmission, a packet can be completely

buffered until it can be transferred. In this way, virtual-cut-through works just as

 7

effectively as store-and-forward. Of course, the switch implementation is still

expensive considering it has to buffer a whole packet.

 It’s difficult to construct a switch that is small, compact, fast, and capable of

storing a whole packet. In wormhole switching, a packet is further decomposed into

smaller units. In this way, a switch only has to be capable of storing a few units when

data transmission is blocked. This suggests that the buffer requirement within a switch

is substantially reduced over the requirements for virtual-cut-through. Hence, a switch

can be much smaller and faster. However, when the head of a packet is blocked, the

following parts of the packet cannot move on. This forms a blocking path and causes

a pause in other data transmission in turn. Under this situation, latency of data

transmission is unpredictable [17].

Switching strategy Strength Weakness

Circuit switching Bandwidth and latency are

guaranteed

 Good for real-time

applications

 Not good when data

transmission is short and

frequent

Store and forward Good when data transmission

is short and frequent

 Buffer size is big

Virtual cut through High bandwidth utilization Buffer size is big

Wormhole Buffer size is small

 High bandwidth utilization

 Blocking paths may cause

network performance

unpredictable

Table 1 Comparison of different switching strategies

 8

 Before we move on to next section, characteristics of all mentioned switching

strategies are summarized in Table 1.

2.2.2 Features of Our Switch

Our switch has four important features. First, circuit switching is chosen because

it does not require much memory. Usually, we don’t have too much memory on chip,

for its size is large. Also, it supports real-time applications. This is not true for

connectionless switching strategies.

Then, we exploit the idea of virtual channel flow control [18]. If parts of data are

buffered at the input or output of each physical channel, once a message occupies the

buffer, no other messages can ever access that channel until it is released. Even worse,

a situation named deadlock, a network state where no messages can advance because

each message requires a physical channel occupied by other message, could happen.

Figure 2 illustrates such a situation.

Figure 2 Deadlock

In fact, a physical channel can be divided into several unidirectional virtual

 9

channels, each realized as a pair of buffers multiplexed across a physical channel. For

example, in Figure 3 buffer a1 and b1 form a unidirectional virtual channel flowing

from a1 to b1; buffer b2 and a2 form another from b2 to a2. Assuming that these two

virtual channels share the bandwidth of the physical channel equally, each virtual

channel operates as if on a separate physical channel, only with half of the original

bandwidth.

Figure 3 Two unidirectional virtual channels multiplexed across a physical channel

By dividing a physical channel into several virtual channels, messages can make

progress rather than being blocked. For example, Figure 4 shows two messages

crossing the physical channel between switch 1 and switch 2. Without virtual channels,

one message may prevent the other from advancing, depending on which gets the

privilege of the physical channel first. However, with virtual channels multiplexed

across the physical channel, both messages continue to make progress at a rate which

is half the achievable if there are no virtual channels. Since the time required for a

message to wait until it is transferred is reduced, the average latency is decreased. As

a result, the physical channel utilization rate is higher and the network throughput is

increased. By continuing to add virtual channels, the overall message latency and

network throughput can be improved further—at the cost of more buffer size and

 10

complex multiplexer.

Figure 4 Messages make progress rather than being blocked

Third, although the bandwidth of a physical channel can be equally shared

among all virtual channels, this is generally not a good idea. As shown in Figure 5,

instead of sharing bandwidth equally, we use a round-robin schedule to grant rights to

each virtual channel. Only when messages are to be transmitted over some virtual

channels does our round-robin schedule give rights to them. Those virtual channels

without data transmission cannot, and do not have to, access the physical channel.

Buffer A

Buffer B

Buffer C

Buffer A

Buffer B

Buffer C

A B C

A1 B1 C1 A2 B2 C2 A3 B3 C3 A4

TIME

Figure 5 Virtual channels sharing the bandwidth of a physical channel using round-robin schedule

 11

Moreover, if we find out there is heavy traffic over some virtual channels, we can

grant privilege to them more frequently using weighted round-robin schedule shown

in Figure 6. All we have to do is to configure our switch.

A B C

A1 B1 C1A2 B2 C2A3 B3 C3A4

TIME

Figure 6 Virtual channels sharing the bandwidth of a physical channel

using weighted round-robin schedule

 Last, for traditional networks, the number of nodes is not known and the

behavior of communication is not predetermined. This is not true for on-chip

networks, where the number of nodes and the behavior of communication can be

known before run-time. Therefore, we can have dedicated connection paths

established in advance by reserving the corresponding virtual channels for them. With

proper configuration, our switching method acts just like circuit switching. Still, if

demanded, we can allocate more bandwidth to some connection paths by using the

weighted round-robin schedule mentioned above. This suggests that our switching

technique can do the same thing as does circuit switching to support real-time

applications.

 To summarize, features of our switch are listed below:

 12

 Small and fast

 Re-configurable

 Provides efficient bandwidth utilization

 Supports for real-time applications: dedicated connection paths can be

reserved

 Bandwidth of each connection path can be configured

2.2.3 Switch Model

As shown in Figure 7, each switch has five pairs of input and output ports.

Output ports at North (N), East (E), South (S), and West (W) connect to the

corresponding input ports of the adjacent switches. The output port at E side of the

left switch, for example, connects to the input port at W side of the right switch. The

remaining output and input ports at O side connect to and from the local processor

respectively.

D
EC

ISIO
N

D
EC

ISIO
N

D
EC

ISIO
N

D
EC

ISIO
N

Figure 7 Inside the switch

 13

 There are four queues at each side. Each queue stores data ready to be transferred

to and received from the adjacent switch. For the input part of a queue, the label on it

indicates that the received data will be transferred later to that side of the switch. For

instance, the input part of the queue labeled N at the E side of a switch stores data to

the N side of the same switch.

 On the other hand, for the output part of a queue, the label on it indicates to

which side the stored data is transferred in the adjacent switch. For example, the

output part of the queue labeled S at the E side of a switch stores data that will later be

transferred to the S side of the adjacent switch.

 As mentioned in 2.2.2, a physical channel can be divided into several virtual

channels. Our switch supports four modes with channel width factors equal to 1, 2, 4,

and 8 respectively. Here, the channel width factor indicates the maximum allowable

number of virtual channels passing each input/output queue at each side of a switch.

Since there are always four input and output queues at each side of a switch, the

number of virtual channels connecting to the adjacent switch at each side are four

times the channel width factor. Therefore, if the channel width factor is 2, there will

be at most 8 virtual channels flowing out and 8 flowing in each side of a switch.

Here, data is transmitted over pipeline buses. In Figure 8, a grey line indicates a

transmission path from processor 1 to processor 2. Here, processor 1 is trying to send

two packets ‘a’ and ‘b’ to processor 2. The transmission steps are as follows: first, in

Figure 8(a), processor 1 sends ‘a’ to its local switch, S1; in the next cycle, ‘a’ is sent to

S2 while ‘b’ is sent to S1 at the same time as shown in Figure 8(b); then in (c), ‘a’

arrives in its destination, processor 2, while ‘b’ is sent to S2; finally, ‘b’ also arrives at

processor 2 at the fourth cycle, finishing the transmission.

 14

Figure 8 Processor 1 sending two works to processor 2

Since details of a transaction are not our focus in the switch model, we only need

to know that it takes three cycles for a packet to pass a virtual channel. Therefore, the

latency experienced by each packet is three times the number of virtual channels it

passes plus the time this packet waits when it is blocked. In worst case, the bandwidth

available to this packet is the minimum one of all virtual channels it passes along the

transmission path.

2.3 Our Design Flow
Figure 9 depicts our design flow that starts with an application. Initially, the

algorithm for the application is chosen and partitioned into interacting tasks. Then,

these tasks and their relationship will be modeled by a graph model. In this graph

model, the computation and communication amount required for each individual task

and paired tasks will be indicated. Since many algorithms contain feedback loops, an

iteration bound, which is the lower bound on the achievable iteration period, will be

imposed. It is not possible to achieve an iteration period less than the iteration bound,

even when infinite resources are available. Here we will examine if our algorithm

 15

meets the performance constraints. If not, we will modify and repartition the

algorithm again, repeating the same procedure until those constraints are met.

Figure 9 Our design flow

After the algorithm analysis step, processors for each task will be allocated. We

will try schedule these tasks. In this step, two important factors are considered:

memory size and computing power. For the former, since each processor has only

limited memory size, we must make sure that the required data for and the

intermediate data generated by a task can be stored into a processor. For the latter, we

wish to share task loads equally among the allocated processors so that no processor is

idle while others are busy. By carefully handling these points, the system performance

will be improved because each processor will be utilized to the maximum.

The task binding process is performed next. In this step, we decide which task

should be mapped onto which processors. The interacting tasks should be always

mapped onto processors in the same region, reducing the time spent on their

interaction. In our platform, dedicated connection paths reserved in advance are used

when processors communicate. When assigning connection paths, we try best to find

 16

the shortest path between each paired processors, while avoiding over usage of

routing resources.

Finally, all information generated will be collected and fed to our simulator. We

can run some applications on our simulator to see if they work well on our platform.

 17

Chapter 3

Task Binding

In this chapter, the task binding problem will be discussed. First, the problem

formulation of task binding will be given in 3.1. Then our solution to the problem is

presented in 3.2. Finally, details of the techniques we exploit to solve this problem

will be shown in 3.3 and 3.4.

3.1 Problem Formulation
Task binding problem can be formulated as:

Given

 Applications A1~Ak

 Corresponding task graph (directed-acyclic graph) Gi = G(V, E) for each

application Ai

With

 Each vertex vЄVi representing a task to run on one processor, and the

amount of computation shown in the vertex

 Each edge eЄEi indicating data transmission along the arrow, and the

amount of communication shown by the edge

 NVi representing total number of vertices in Gi, and NV representing the

 18

summation of NVi; NV be less or equal to the number of processors

available

We wish to

 Map each vertex onto a processor

 Place connected tasks as close as possible to reduce interaction time

 Find a corresponding connection path for each edge

 Minimize the total routing resource requirement

3.2 Task Binding Flow
The process of task binding tries to find out a solution that every vertex in task

graphs be mapped onto a processor, and for each pair of connected vertices, a

connection path be reserved for communication. Here, because of the problem

complexity, the process is divided into two parts.

The former part of the process, task mapping, is analogous to placement problem

in FPGA. But in our problem, instead of determining which logic block within an

FPGA should implement each of the logic blocks required by the circuit, we decide

which processor should execute which task.

The latter part of the process, connection path assignment, does almost the same

as does routing techniques in FPGA. In FPGA, there can be one source node and

many sink nodes connecting to a signal wire. On the contrary, in our platform, only

one source node and one sink node can be connected to the ends of a virtual channel.

This is because it is data that we want to pass along a virtual channel, not voltages.

 In Figure 10, the flow of task binding is shown. First, a task graph containing the

 19

computation/communication information for all tasks is given. Note that this task

graph should be a directed-acyclic graph. After this, we exploit placement techniques

used in FPGA to map tasks onto processors. If any two tasks communicate, processors

in the same region will be allocated for these tasks. Then, we’ll reserve connection

paths for these tasks. Therefore, when data transmission is to occur, pre-allocated and

dedicated connection paths will be used. Finally, the position information of processor

belonging to each task, the information of connection path for any two interconnected

processors and the number of virtual channels needed across a physical channel will

be reported.

Figure 10 Task binding flow

3.3 Task Mapping
The three major placers commonly in use today are min-cut, simulated annealing,

and analytic based placers. Usually, the use of analytic based placers is often followed

by iterative improvement [19]. Since design of architecture of on-chip-networks is an

important issue, we wish to explore much different architecture. Thus, the

optimization goals of our placer may change from architecture to architecture. Among

the three types of commonly used placers, the simulated annealing based placer can

be more easily adapted to new optimization goals than min-cut and analytic based

placers [20]. Therefore, we use simulated-annealing technique to map tasks onto

processors.

 20

3.3.1 Simulated Annealing

Simulated annealing proposed in [21] is a widely used heuristic to solve several

combinatorial optimization problems including many well known CAD ones. It

belongs to the class of non-deterministic algorithms. As its name suggests, simulated

annealing mimics the annealing process used to gradually cool molten metal to

produce high-quality metal objects. During the process, a metal is heated to a very

high temperature and then slowly cooled down. At some proper cooling rate, the

process has a very good chance of producing high-quality metal objects. If we

compare optimization to the annealing process, the attainment of a good solution is

analogous to that of refined metal objects.

For a combinatorial optimization problem, we wish to find out solutions with

low costs in the solution space, which is a set containing all possible solutions. Some

of these solutions correspond to local optima, while others may be global optima. In

Figure 11, the solutions are shown along the x-axis. It is assumed that two consecutive

solutions are local neighbors, which are solutions that can be reached from the

original one with only a slight change. The cost of solution grows in the positive

direction along the y-axis. Here, S1, S2, and L are local optima since all the local

neighbors have higher and thus inferior costs. Among these three solutions, L, also

called global optimum, has the minimum cost.

The process of an iterative improvement scheme starts with an initial solution.

Then the solution is refined again and again. Finally the procedure stops if it finds an

optimum solution. For a greedy algorithm, if we start with an initial solution, say I in

Figure 11, we gradually slide down the “hill” because the costs there are lower and

stop once we reach S1. Although S1 is the best solution we can ever find, it is still a

local optimum solution. The initial solution given prevents us from the global

 21

optimum solution. There is no way for a greedy algorithm to find the global minimum

solution under this situation, unless it “climbs the hill”.

S1

L

S2

ICost

Solution Space

Figure 11 Local versus global optima

Simulated annealing is such a hill-climbing algorithm. This time the algorithm

starts again with the initial solution I and examines its neighborhood. If a neighboring

solution has a lower cost, it is always accepted. On the contrary, if a neighboring

solution is worse, the algorithm occasionally accepts this inferior solution, since there

may be times that the algorithm finds a better solution once it goes beyond the hill. By

doing so, the algorithm escapes from getting stuck at a local optimum solution S1.

 Pseudo-code for a generic simulated annealing based placer is shown in Figure

12. Here, a cost function is defined to assess the quality of the solution. We start with

an initial solution by mapping tasks randomly onto processors. Then, a large number

of swaps are made within a region, specified by the range limiter R, to gradually

improve the solution and the change in cost is calculated. The swap is always

accepted should the cost decrease. Otherwise, it still has a chance to be accepted. The

probability of acceptance is given by TDiffe /− , where Diff is the change in cost a

change makes, and T is a parameter called temperature that controls the likelihood of

 22

accepting moves. Initially, T is very high, which suggests that any move will be easily

accepted. Then, it is gradually decreased as the solution is refined. Eventually, the

probability of accepting a move that makes the solution worse will be very low.

Figure 12 Pseudo-code for generic simulated annealing placer

3.3.2 Cost Function

In FPGA placement, a placer usually tries to minimize the total wiring

(wire-length driven), places blocks so as to balance the wiring density

(routability-driven), or to maximize system performance (timing-driven). For a

wire-length driven placer, estimation of wire length can be done by using the

semi-perimeter method [19]. The method tries to find the smallest bounding box that

encloses all the pins to be connected. The estimated wire length is half the perimeter

of this rectangle. For example, in Figure 13, the estimated wire length is 9.

 23

Figure 13 A bounding box

Since in our problem a connection path always connects to only two processors,

the semi-perimeter method accurately calculates the distance that the transmitted data

would travel. Therefore, if we let the cost of a solution be the summation of all

distances between each paired processors, and try to minimize the cost, any pair of

connecting processors will be placed as close as possible.

3.3.3 Annealing Schedule

The rate at which the temperature is decreased, the exit criterion to terminate the

process, the number of moves attempted at each temperature, and the method by

which potential swaps are made are defined by the annealing schedule. A good

annealing schedule is essential to make sure high quality solution obtained in a

reasonable time.

Because we still wish to explore much different architecture, the optimization

goals of our placer may change from architecture to architecture. Therefore, a good

fixed annealing schedule is still not enough. We need a schedule that automatically

adapts to new architecture, no matter what our cost function is. Here we incorporate

some best features from [20], [22], [23], and [24].

First, an initial solution is generated and some swaps are made. The initial

 24

temperature is set to twenty times the standard deviation of the costs of these swaps

[22]. The temperature is gradually adjusted to stay around a productive temperature

where a significant fraction of swaps that makes improvement over the original

solution are accepted [20]. Second, the number of moves attempted at each

temperature is determined by a function of the number of processors, since the

number of processors differs from case to case [24]. Then, the region within swaps are

made is adjusted to keep the fraction of swaps accepted around 0.44 for as long as

possible [23]. Finally, the procedure terminates when the temperature is less than

some small fraction of the average cost of the solutions the algorithm examined [20].

Since detail of the annealing schedule is not our focus, we omit them from this thesis.

3.4 Connection Path Assignment

3.4.1 Pathfinder Algorithm

Once processors for all the tasks have been chosen, a router tries to assign

connection paths between any pair of interconnected processors. Here, we use the

router algorithm like the one proposed in [25] to solve this problem. This router is

essentially a variant of maze router [26]. It runs Dijkstra’s algorithm [27] to find the

shortest, the lowest cost, path between a sender and a receiver processor. The

Pathfinder algorithm [25] then performs a multiple of routing iterations to rip up some

or all nets and reroute them by different paths, in case there is a competition for

routing resources that makes the routing illegal. However, note that ripping up and

rerouting these nets only affect the net ordering. These nets are all routed by the same

maze routing algorithm.

 25

The cost of using a routing resource n is defined in [25] as:

)()]()([)(npnhnbnCost ×+= ,

and pseudo-code for the Pathfinder algorithm is shown in Figure 14. The Pathfinder

algorithm exploits the idea from Nair [28] to repeatedly rip up and reroute every path

until all congestion is resolved. Ripping-up and rerouting every net once is called a

routing iteration. During the first iteration, every path is routed for minimum cost,

even if this leads to overuse of some routing resources. However, a routing in which

some resources are overused is not a legal solution. As a consequence, when overuse

exists at the end of a routing iteration, more iteration must be performed to resolve

this situation.

During each iteration, the present congestion cost, p(n), will be updated every

time a path is ripped-up and rerouted. At the end of each iteration, the historical

congestion cost, h(n), of overusing a routing resource is updated to record the severity

of historical congestion over this routing resource. Therefore, it is less probable for

the router algorithm to find a path passing this resource in the next iteration. As a

result, all congestion will be gradually resolved.

Figure 14 Pseudo-code for Pathfinder algorithm

 26

3.4.2 Routing Resource Graph

The internal representation we incorporated here should be as architecture

independent as possible, so we can easily describe different architecture without

making any change to the algorithm. Here we use routing resource graph

representation [25] to describe architecture internally.

In routing resource graph representation, processors and buffers over virtual

channels become nodes. Virtual channels become directed edges, indicating that data

over them flows unidirectionally. For each node, a capacity is assigned to specify the

maximum number of different paths that can use this node in a legal routing. And the

number of different paths currently using each node is indicated in the occupancy

field. Since potential connections all become edges in a routing resource graph,

routing a connection corresponds to finding a path in the graph, starting from a

SOURCE node to a SINK node.

Figure 15 illustrates how the part of the routing resource graph between a

processor and its local switch is constructed. For data flowing out the processor, it

starts at a SOURCE node and flows to the OUT node. After it arrives at the OUT node,

it chooses to which one of the four SW_IN nodes it will go. Here, the label indicated

in each SW_IN node suggests that this node will later connect to the SW_OUT node

at that side of the switch.

 27

D
EC

ISIO
N

D
EC

ISIO
N

Figure 15 Routing resource graph for a processor and its local switch

Since data flowing into the processor may come from any of the four sides of the

local switch, there are four corresponding SW_OUT nodes, each connecting to the IN

node. The IN node then connects to the SINK node. Once data arrives the SINK node,

its journey stops.

 Here, the capacity of each SW_IN or SW_OUT type node is set equal to the

channel width factor. The channel width factor is the maximum allowable number of

paths passing these two type nodes. If the channel width factor is four, at most four

connection paths may pass any of these nodes. Because data on these nodes may flow

into or out SOURCE, OUT, IN, SINK type nodes, the capacity of each these nodes is

four times the channel width factor.

 Figure 16 shows how the part of the routing resource graph inside a switch is

constructed. For reason of clarity, we only show edges to and from the local processor.

After data flows out from the local processor, it can choose to go to the adjacent

switch at any side. This is modeled by four pairs of SW_IN and SW_OUT nodes. On

 28

the contrary, the situation that data can flow from the adjacent switch at each side is

modeled by another four pairs of SW_IN and SW_OUT nodes.

D
EC

ISIO
N

D
EC

ISIO
N

Figure 16 Routing resource graph for a switch

Finally, Figure 17 shows the part of the routing resource graph that will be used

when data flows to and from the adjacent switches. In this figure, the data transmitted

to the left switch is from any of the four SW_OUT nodes labeled W at the W side of

the right switch. A CHANX type node whose capacity is four times the channel width

factor is then passed. And, data goes to any of the four SW_IN nodes at the E side of

the left switch. If the one labeled N is chosen, for example, data will go to the

corresponding SW_OUT node at the N side of the left switch.

 29

I
N

O
U
T

O
U
T

I
N

N

E

O

S

E

E

E

E

CHAN
X

W

W

W

W

N

S

O

W

CHAN
X

Figure 17 Routing resource graph across a physical channel

3.4.3 Cost Function

Here we define the cost of a routing resource somewhat differently than [25].

The cost of using routing resource, n, is defined as:

)()()()(npnhnbnCost ××= ,

where b(n), h(n), and p(n) are the base cost, historical congestion, and present

congestion terms mentioned in 3.4.1. Instead of adding b(n) and h(n) together, we

multiply them. When adding terms together in cost function, it is very important to

make sure that they are properly normalized to the same range of magnitude so that

both terms work effectively. We avoid this by multiplying them together.

The base cost of a node, b(n), is set to reflect the latency that data transmission

will experience when passing this node. A router is encouraged to use as few nodes as

possible to route each connection path. Table 2 shows the base cost for each type of

routing resource. Note that no matter what exact cost is chosen for each type of

 30

routing resource, the router always makes sure that no routing resource is overused.

This is guaranteed by the congestion avoidance factors, h(n) and p(n), in the cost

function.

Resource Type Base Cost

SOURCE, OUT 0

SW_IN, SW_OUT 1

CHANX, CHANY 2

IN, SINK 0

Table 2 Base cost for each type of routing resource

In fact, SW_IN is a node that does not really exists in our switch. However, since

there is only one possible connection from a routing resource of type SW_IN to its

corresponding SW_OUT type resource, we can set both their costs to 1, which is half

the value of cost for CHANX or CHANY type resource. Somehow, if we set costs of

SW_IN and SW_OUT type node to 0 and 2, the router performance will degrade,

since the cost of SW_IN will always be 0 no matter what value h(n) and p(n) are. This

suggests that our router may not be aware of congestion problem on SW_IN type

node and may spend more time to resolve resource congestion problem.

On the other hand, since the maze expansion used to route a connection path

always begins with a pair of SOURCE and OUT type nodes, the exact costs set for

them do not matter. We set them to zero to save some computation. Also, the

expansion terminates when it reaches a pair of IN and SINK type node. By setting

their costs to zero, some CPU savings can be obtained because the maze expansion

tends to stop earlier before it expands further.

 31

The present congestion penalty is updated whenever any net is ripped-up and

re-routed according to

))])(1)([,0max(1)(facpncapacitynoccupancynp ×−++= ,

where occupancy(n) is the number of connection paths currently using routing

resource n and capacity(n) is the maximum allowable number of paths that can legally

use node n. The historical congestion factor is updated only after an entire routing

iteration. Its value during routing iteration i is:

1))]()([,0max()(
11

)(1 >×−+
=

= − ihncapacitynoccupancynh
i

nh
fac

i
i

The value of hfac can be kept constant for all routing iterations. The fact that h(n)

increments after each iteration already provides sufficient increase in the historical

congestion factor. As for pfac, the higher the value, the faster the speed that can be

reached when resource congestion problem happens in a routing iteration. However, if

it is assigned a small value initially and gradually incremented from iteration to

iteration, a better routing quality is obtained. The router under this condition will try

to solve congestion problem while maintaining all connection paths short.

 32

Chapter 4

Experimental Results

4.1 Experiment Flow
Figure 18 shows our experiment flow. First, we exploit Task Graph For Free

(TGFF) [29], a user-controllable, general-purpose, pseudorandom task graph

generator, to generate many random cases. Then, we extract some information from

the generated cases and pass them to our task binding tool. After each task is mapped

onto a processor and each connection path is assigned, we incorporate the routing

information with our platform simulator and run simulation. Finally, we use some

scripts to extract important parameters from the log file and analyze these data.

Figure 18 Our experiment flow

 33

For each case we generated, there will be 1 to 5 independent task graphs, each

containing at least 4 to 20 tasks. The maximum number of inputs/outputs of each task

is from 2 to 10.

Each case is composed of many nodes and arcs. A node represents a task to be

run on one processor. An arc drawn from one node to another node indicates that

communication exists between these two nodes, flowing from the former to the latter.

The amount of computation of a node and the amount of communication of an arc

will also be indexed by the numbers shown by the corresponding entries. The

mapping between TGFF output file and its corresponding task graph is shown in

Figure 19.

 TASK t0_0 TYPE 0
 TASK t0_1 TYPE 1
 TASK t0_2 TYPE 2
 TASK t0_3 TYPE 3
 TASK t0_4 TYPE 4
 TASK t0_5 TYPE 5
 TASK t0_6 TYPE 6
 TASK t0_7 TYPE 7

 ARC a0_0 FROM t0_0 TO t0_1 TYPE 36
 ARC a0_1 FROM t0_1 TO t0_2 TYPE 24
 ARC a0_2 FROM t0_1 TO t0_3 TYPE 10
 ARC a0_3 FROM t0_0 TO t0_4 TYPE 2

 ARC a0_4 FROM t0_4 TO t0_5 TYPE 47
 ARC a0_5 FROM t0_4 TO t0_6 TYPE 18
 ARC a0_6 FROM t0_4 TO t0_7 TYPE 12

Computation
Amount

Communication
Amount

Figure 19 Mapping between output of each case and its corresponding task graph

Our simulator uses two component models: the processor model and the switch

model described in 2.2.3. In our processor model, we assume that a processor begins

to operate only when all input data is available and the output buffer size is enough

for data that will be later generated. For example, the processor allocated for the task

shown in Figure 20 requires two input I0 and I1 from the preceding processors. Once

 34

it gets all the data, the processor checks to see if the buffer size is enough for output

data that will be later generated. If so, it begins to operate and puts all output data into

the buffer. The corresponding switches then start to send these data to the subsequent

processors.

Figure 20 A task with two inputs and three outputs

4.2 Experimental Results

4.2.1 Routability Analysis

In our platform the minimum channel width factor required is determined by the

maximum number of inputs or outputs of all tasks. (The channel width factor

indicates the maximum allowable number of virtual channels passing each

input/output queue at each side of a switch.) If a task requires five inputs, there is no

way for a switch with a channel width factor one to support them because only four

connection paths flowing into the corresponding processor could be established.

As shown in Figure 21, among the generated 765 cases, only 7 cases require a

 35

channel width factor of 4; and 4 cases, a factor of 6. A platform with a channel width

factor of 3 will be able to support all other cases. This suggests that the switch cost

can be very small, if the requirement for applications fall into the range of the

generated cases.

241

355

157

7 4
0

50

100

150

200

250

300

350

400

1 2 3 4 6

Channel Width Factor

N
um

be
r

of
 O

cc
ur

en
ce

Figure 21 Requirement of channel width factor over 765 cases

4.2.2 Performance Analysis

In our experiment, we assume that the computation amount for a task is the

number of cycles the allocated processor takes when it runs this task. Also, if the

bandwidth of each physical channel is one unit, we assume that a data transmission

runs a minimum of N cycles (under ideal condition), N equaling to the

communication amount indicated in the task graph.

After simulation, we collect information from the output file, calculate the

performance gain of the system and count the utilization rate of each processor. The

equations for system performance gain and processor utilization rate are listed in the

 36

shaded box in Figure 22. If an application composed of many tasks runs on only one

processor, the total time E required to run this application once will be the summation

of the computation time of all tasks. Suppose that the computation load is distributed

on N processors. The performance gain will be the system throughput T times E,

divided by the number of simulation cycles S. And the utilization rate for each

processor will be the performance gain divided by N. Note that in Figure 22 the

number of times a task has been executed in S cycles is indicated in the circle. For this

case, the system throughput equals to 7.

10

9 8

7

S = Simulation Cycle
E = Execution Time on One Processor
T = System Throughput
N = Number of Processors

Performance Gain = T*E/S
Processor Utilization Rate = T*E/S/N

Figure 22 Performance measurement

We experiment on 765 different cases with different communication loads. The

computation amount is set to an average of 200, with minimum and maximum value

equal to 100 and 300. The communication amount is set the same way when the ratio

of computation to communication equals to 1. Note here that the ratio is defined to be

the average computation amount divided by the average communication amount.

The relationship between communication load and average processor utilization

 37

rate is shown in Figure 23. Note that if we set the ratio to a value greater than 4, the

average processor utilization rate will be higher than 0.6. However, if the

communication load is heavier, say with a ratio below 3, the average processor

utilization rate falls quickly. This is not a favorable situation. To overcome this

problem, a designer may choose a system with greater physical channel bandwidth.

For example, if a system with a ratio equal to 2 is run on a platform with the original

physical channel bandwidth doubled, the average processor utilization rate will be

improved from an average value below 0.5 to an average value higher than 0.6.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12

Ratio of Computation to Communication

A
ve

ra
ge

 P
ro

ce
ss

or
 U

til
iz

at
io

n
R

at
e

Figure 23 Relationship between communication load and processor utilization rate

4.2.3 Scalability Analysis

If an application has a maximum number of inputs or outputs greater than 4,

there must be some physical channels shared by at least two virtual channels.

Therefore, some input/output data is not transmitted at full speed to the subsequent

 38

tasks. Having to wait longer, these tasks lower the system performance.

 Here we experiment on 765 tasks with a computation to communication ratio of

3. The reason why 3 is chosen is because the impact of maximum degree of inputs or

outputs is apparent when communication load is heavy. Otherwise it is not that clear,

since there is little traffic on the platform if the communication load is low.

In Figure 24, the straight line drawn from the left to the right predicts the

processor utilization rate, as a function of the number of processors on the platform.

With nearly 70 tasks distributed on our platform under such a heavy communication

load, the processor utilization rate still maintains above 0.5. This is because only few

physical channels are shared with the maximum number of inputs or outputs equal to

4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70 80

Number of Processors

A
ve

ra
ge

 P
ro

ce
ss

or
 U

til
iz

at
io

n
R

at
e

Figure 24 Experiment with the maximum number of inputs or outputs equal to 4

On the other hand, the scalability of our platform is not good with maximum

number of inputs or outputs equal to 7. In Figure 25, the straight line predicts the

processor utilization rate when the number of processors grows. With about 70 tasks

distributed on our platform, only processor utilization rate below 0.4 is achievable;

 39

should more tasks be mapped onto the platform, the processor utilization rate may be

worse.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70 80

Number of Processors

A
ve

ra
g
e

Pr
o
ce

ss
o
r
U

ti
liz

at
io

n
R
at

e

Figure 25 Experiment with the maximum number of inputs or outputs equal to 7

 40

Chapter 5

Conclusion and Future Work

In this work, the task binding problem is formulated and solved by techniques

similar to those of placement and routing in FPGA. By incorporating the processor

model, the switch model and the connection path information generated by our task

binding tool, systems with different configurations can be simulated in a short time.

Some important parameters are then extracted from the simulation output file and the

performance of the system can be assessed before the system is implemented.

 In Chapter 4, performances of systems with different configurations are

examined. The results show that the scheduling process discussed in 2.3 must not only

take computing power and memory size of each processor into consideration, but they

also have to pay close attention to the maximum number of inputs/outputs and the

communication load of the system. With our simulation environment feeding back

important factors, we wish to find an algorithm to solve the scheduling problem

`systematically and efficiently.

 Also, the buffer size at the input/output of a processor has impact on the system

performance. If the buffer size is unlimited, data transmission always finishes as soon

as possible since there is always space for data inside a processor. However, since

on-chip memory is very expensive, this can never be fulfilled. We wish to solve the

problem so that the total buffer size is minimized while the system performance is

maintained.

Last, since virtual channels may work at full bandwidth of the physical channel if

 41

no other data is transmitted along these virtual channels at the same time. We wish to

elaborate an accurate model of traffic contention and improve our task binding

algorithm further so that each processor can be utilized to the ultimate. In this way,

higher system performance can then be achieved without having to add any resource.

 42

Reference
[1] Axel Jantsch, and Hannu Tenhunen, Networks on Chip, Kluwer Academic

Publishers, 2003

[2] Adrijean Adriahantenaina, Hervé Charlery, Alain Greiner, Laurent Mortiez and

Cesar Albenes Zeferin, “SPIN: a scalable, packet switched, on-chip

micro-network,” in Proceedings of the Design, Automation and Test in Europe

Conference and Exhibition, 2003, supplements 70 – 73

[3] Cesar Albenes Zeferino and Altamiro Amadeu Susin, “SoCIN: a parametric and

scalable network-on-chip,” in Proceedings of the 16th Symposium on Integrated

Circuits and Systems Design, 2003, pages 169 – 174

[4] Partha Pratim Pande, Cristian Grecu, Andre Ivanov and Res Saleh, “Design of a

switch for network on chip applications,“ in Proceedings of the 2003

International Symposium on Circuits and Systems, 2003, volume 5, pages 217 –

220

[5] Luca Benini and Giovanni De Micheli, “Networks on chips: a new SoC

paradigm,” in Computer , 2003, volume 35, issue 1, pages 70 -78

[6] Shashi Kumar, Axel Jantsch, Juha-Pekka Soininen, Martti Forsell, Mikael

Millberg, Johny Öberg, Kari Tiensyrjä and Ahmed Hemani, “A network on chip

architecture and design methodology,“ in Proceedings of the IEEE Computer

Society Annual Symposium on VLSI, 2002, pages 105 – 112

[7] Daniel Wiklund and Dake Liu, “SoCBUS: switched network on chip for hard

real time embedded systems,” in Proceedings of the International Parallel and

Distributed Processing Symposium, 2003, pages 78 – 85

[8] Doris Ching, Patrick Schaumont and Ingrid Verbauwhede, “Integrated modeling

 43

and generation of a reconfigurable network-on-chip,” in Proceedings of the 18th

International Parallel and Distributed Processing Symposium, 2004, pages

139 – 145

[9] Marcello Coppola, Stephane Curaba, Miltos D. Grammatikakis, Giuseppe

Maruccia and Francesco Papariello, “OCCN: a network-on-chip modeling and

simulation framework,” in Proceedings of the Design, Automation and Test in

Europe Conference and Exhibition Designers’ Forum, 2004, volume 3, pages

174 – 179

[10] Robert Siegmund and Dietmar Muller, “Efficient modeling and synthesis of

on-chip communication protocols for network-on-chip design,” in Proceedings

of the 2003 International Symposium on Circuits and Systems, 2003, volume 5,

pages 81 – 84

[11] Jan Madsen, Shankar Mahadevan, Kashif Virk and Mercury Gonzalez,

“Network-on-chip modeling for system-level multiprocessor simulation,” in

Proceedings of the 24th IEEE International Real-Time Systems Symposium,

pages 265 – 274

[12] Kenichiro Anjo, Yutaka Yamada, Michihiro Koibuchi, Akiya Jouraku and

Hideharu Amano, "BLACK-BUS: a new data-transfer technique using local

address on networks-on-chips," in Proceedings of the 18th International Parallel

and Distributed Processing Symposium, 2004, pages 10 – 17

[13] Mikael Millberg, Erland Nilsson, Rikard Thid, Shashi Kumar and Axel Jantsch,

"The Nostrum backbone - a communication protocol stack for networks on

chip," in Proceedings of the 17th International Conference on VLSI Design,

2004, pages 693 – 696

[14] Tang Lei and Shashi Kumar, “A two-step genetic algorithm for mapping task

graphs to a network on chip architecture,” in Proceedings of the Euromicro

 44

Symposium on Digital System Design, 2003, pages 180 – 187

[15] William J. Dally, “Performance analysis of a k-ary n-cube interconnect

networks,” in IEEE Transactions on Computers, 1990, pages 775 – 785

[16] Jose Duato, Sudhakar Yalamanchili, Lionel Ni and Lionel M. Ni,

Interconnection Networks: An Engineering Approach, Institute of Electrical &

Electronics Enginee, 1997

[17] Li-Shiuan Peh and William J. Dally, “A delay model and speculative architecture

for pipelined routers,” in The 7th International Symposium on High-Performance

Computer Architecture, 2001, pages 255 – 266

[18] William J. Dally, “Virtual-channel flow control,” in Proceedings of the 17th

Annual International Symposium on Computer Architecture, 1990, pages 60 – 68

[19] Sadiq M. Sait and Habib Youssef, VLSI Physical Design Automation: Theory

and Practice, World Scientific Publishing Company, 1999

[20] Vaughn Betz, Jonathan Rose, Alexander Marquardt, Architecture and CAD for

deep-submicron FPGAs, Kluwer Academic Publishers, 1999

[21] S. Kirkpatrick, C. D. Gelatt Jr. and M. P. Vecchi, “Optimization by simulated

annealing,” in Science, 1983, volume 220, pages 498 – 516

[22] MD Huang, Fabio Romeo and Alberto Sangiovanni-Vincentelli, “An efficient

general cooling schedule for simulated annealing,” in International Conference

on Computer-Aided Design, 1986, pages 381 – 384

[23] Jimmy Lam and Jean-Marc Delosme, “Performance of a new annealing

schedule,” in Proceedings of the 25th ACM/IEEE Design Automation

Conference, 1988, pages 306 – 311

[24] William Swartz and Carl Sechen, “New algorithms for the placement and routing

of macro cells,” in International Conference on Computer-Aided Design, 1990,

pages 336 – 339

 45

[25] Carl Ebeling, Lary McMurchie, Scott A. Hauck and Steven Burns, “Placement

and routing tools for the Triptych FPGA,” in IEEE Transactions on Very Large

Scale Integration Systems, 1995, pages 473 – 482

[26] C. Y. Lee, “An algorithm for path connections and its applications,” in IRE

Transactions Electron Computing, 1961, volume EC 10, pages 346 – 365

[27] E. Dijkstra, “A note on two problems in connexion with graphs,” in Numerical

Math, 1959, volume 1, pages 269 – 271

[28] Ravi Nair, “A simple yet effective technique for global wiring,” in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

1987, pages 165 – 172

[29] Robert P. Dick, David L. Rhodes and Wayne Wolf , “TGFF: task graphs for

free,” in Proceedings of the 6th International Workshop on Hardware/Software

Codesign, 1998, pages 97 – 101

 46

VITA
Chih-Chieh Chou was born in Taipei, Taiwan on November 28, 1979. He

received the B.S. degree in Electronics Engineering from National Chiao Tung

University in June 2002 and entered the Institute of Electronics, National Chiao Tung

University in September 2002. His research interests include electronic design

automation (EDA) and VLSI design. He received the M.S. degree from National

Chiao Tung University in July 2004.

