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應用於單晶片多處理器系統之任務結合方法 

 

研究生：周志杰 指導教授：周景揚 博士 

 

國 立 交 通 大 學 

電 子 工 程 學 系 電 子 研 究 所 碩 士 班 

 

摘要 

 

採用單晶片網路為通訊架構來建立以矽智財元件為基礎之系統

單晶片是一種新的設計方法。這種設計方法的特性是具有高度的可重

複使用性以及延展性。在這篇論文裡，我們詳述一個二步驟的任務結

合演算法。利用這個演算法所建立的工具可將一個以參數化任務圖所

描述的應用結合至以二維網狀交換器為通訊骨幹之單晶片多處理器

系統平台上。該演算法嘗試將任務結合至可使用的計算資源上並且使

得整個應用的運算時間降到最小以及將系統效能提升至最大。結合軟

體處理器以及交換器模型之後，我們可以模擬整個系統。在短時間之

內，我們可以檢視系統的效能並且萃取重要的平台參數。
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Task Binding on Multi-Processor 
System-on-Chip 

 

Student: Chieh-Chieh Chou Advisor: Dr. Jing-Yang Jou 

 

Department of Electronics Engineering 

Institute of Electronics 

National Chiao Tung University 

Abstract 

Network-on-Chip is a new design paradigm for designing core based 

System-on-Chip. It features high degree of reusability and scalability. In this thesis, 

we describe a two-step task binding algorithm that has been used to build a tool to 

map an application, described by a parameterized task graph, onto Multi-Processor 

System-on-Chip platform with a two dimensional mesh of switches as a 

communication backbone. The algorithm tries to find a mapping of tasks to available 

computational resources so that the overall execution time of the application is 

minimized and the system performance gain is maximized. By incorporating software 

processor and switch models, a system simulation can be performed. And in few 

minutes, the system performance gain can be assessed and some important platform 

parameters can be extracted.
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Chapter 1  

Introduction 
 

1.1 A Design Paradigm Shift 
As silicon technology scales, people today are able to integrate billions of 

transistors on a chip. However, as more and more components are integrated, several 

problems emerge. First of all, shared-bus based system does not work well. Usually, 

buses can efficiently handle 3 to 10 communication partners, but they do not scale to 

higher numbers [1][2][3]. Secondly, since technology scaling works better for 

transistors than for interconnecting wires, wire delay is no longer negligible. It’s hard 

to maintain global synchrony, for long and global wires make system performance 

unpredictable [1][3][4]. Thirdly, each component in a complex system is usually 

developed by different teams at different times with different design languages and 

tools. At system level, these components are not easily composable because a tiny 

change in one part may have unexpected effects on other seemingly unrelated parts of 

the system [1]. Consequently, more design efforts are spent on verification, which in 

turn lowers the design productivity and delays product development. 

Recently, Networks-on-Chip design methodology is proposed to solve these 

problems. A typical NoC architecture provides a scalable communication 

infrastructure for interconnected components; and Globally Asynchronous Locally 

Synchronous (GALS) style of large chip implementation is supported. Each 

component could be implemented as a separate clock domain and could communicate 
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to other components using asynchronous communication through switches. By 

managing communication channels properly, data transmission can coexist peacefully. 

This allows arbitrary components to be integrated and connected to a network, while 

adding new resources to a bus-based system has great impact on system performance 

[5][6][7]. Also, each component can be designed and verified independently because 

each one is guaranteed to comply with the network protocol standard. By reusing 

pre-designed and pre-verified components, a new system can be quickly built-up and 

much verification effort can be saved. 

 

1.2 Related Works 
There are many research works in this field. [8][9][10][11] propose integrated 

modeling, simulation and implementation environment. In [8], NoC infrastructure and 

processors are modeled, and then simulation is performed to find the optimal network 

configuration. [9] and [10] try to refine the network communication protocol and a 

protocol controller is synthesized in [10]. [11] tries to model multiprocessor and 

real-time operating system to analyze the behavior of a complex system that has 

real-time applications running on a multiprocessor platform. 

Design issues of the NoC architecture, including switch design, network 

topology and protocol, are discussed in [7][12][13]. [12] proposes a data-transfer 

method called Black-Bus, which saves up to 75% of routing tags compared to the 

global addressing scheme used in traditional packet network. [7] exploits circuit 

switching technique to guarantee communication bandwidth. [13] proposes a 

communication protocol stack that can guarantee traffic bandwidth. In both [7] and 

[13], 2D-mesh is chosen as the network topology. 

[14] proposes a two-step genetic algorithm that has been used to build a tool for 
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binding an application, described by a parameterized task graph, onto NoC 

architecture with a two dimensional mesh of switches as a communication backbone. 

To calculate the execution time of the system, a NoC architecture specific 

communication delay model is presented. The algorithm tries to bind tasks onto 

processors so that the overall execution time of the application is minimized. 

In our work, we try another way to bind tasks onto processors for two reasons. 

First, connection paths between each pair of interconnected tasks are pre-allocated in 

our platform, which is not in [14]. Second, a task graph will be manipulated before 

tasks are mapped onto processors. Therefore, no scheduling will be performed in the 

binding process. 

 

1.3 Thesis Organization 

The rest of the thesis is organized as follows. Chapter 2 introduces our 

Multi-Processor System-on-Chip (MPSoC) platform, the switch design considerations, 

the model of this switch and our design flow. In Chapter 3, details about task binding 

techniques we use are presented. Then, experiment flow and experimental results are 

given and discussed in Chapter 4. Finally, the conclusion is made in Chapter 5. 
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Chapter 2  

Preliminary 
 

2.1 Our Platform 
As shown in Figure 1, there are two components in our platform: processors and 

switches. Each processor contains 32K bytes of local memory and connects to the 

local switch. Each switch connects to the four neighboring switches and the local 

processor. 

 

Switch Switch Switch

Switch Switch Switch

Switch Switch Switch

Processor Processor Processor

Processor Processor Processor

Processor Processor Processor

 

Figure 1 Our platform 
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The topology of the network is 2D mesh. The reasons why we choose it are three 

folds. First, as shown in [15], because of the simple connection and easy routing 

provided by adjacency, it is widely used in parallel computing platforms. Second, the 

interconnect length between nodes is uniform, which ensures the uniformity of the 

performance and overall scalability of the network. And last, it meets the inherent 

constraint of IC manufacturing technology. 

The way how data communication is carried out in the network is as follows: if a 

processor wants to pass information to any other processor, it sends information to the 

local switch. The switch then decides which adjacent switch is to receive the 

information. If the local processor of this switch is the destination, then the 

information is received by this processor; otherwise, the procedure just repeats until 

the information is sent to the destination. 

 

2.2 Switch Design 
 

2.2.1 Switching Strategies 

Before we get to know how our switch works, knowledge about common 

switching strategies is required. Common switching strategies can be classified into 

two categories: connection-oriented switching and connectionless switching [16]. For 

connection-oriented switching, also named circuit switching, a connection from the 

source to the destination is established before data transmission. Once the connection 

is established, the full bandwidth of the hardware path is available. Circuit switching 

is generally a good switching strategy if data transmission is long and infrequent. That 

is, when the time to establish the connection compared to the time to transmit data is 
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short, the strategy is advantageous. Since there is a dedicated connection of data 

transmission, the available bandwidth is known, meaning that the latency can be 

guaranteed—this is really good for real-time applications. But, when connection is 

reserved for the duration of one data transmission, other data transmission may not 

use resources occupied by the connection. This may degrade the overall network 

performance. 

 Alternatively, for connectionless switching, data can be partitioned into packets. 

Each packet can be individually routed from the source to the destination without any 

connection reserved prior to data transmission. As a result, the bandwidth utilization is 

more efficient. 

Popular packet switching strategies include store-and-forward, virtual 

cut-through and wormhole. For store-and-forward, a packet is completely buffered at 

each intermediate node before it can be forwarded to the next node. Compared to 

circuit switching, its performance is better when data transmission is short and 

frequent since it does not require the existence of dedicated connection. However, the 

switch implementation is expensive because the switch should have the capability to 

buffer a whole packet. 

 Store-and-forward assumes that a whole packet must be available before it can 

be forwarded to the next node. This is not generally true, however, because the first 

few bytes of a packet may contain routing information. A switch can start forwarding 

information to the next node as soon as routing information of a packet is available. 

The switching technique which exploits this is referred to as virtual-cut-through. In 

the absence of blocking, the latency experienced by data transmission using this 

method is shorter, implying higher bandwidth utilization. On the other hand, if the 

header of a packet is blocked during data transmission, a packet can be completely 

buffered until it can be transferred. In this way, virtual-cut-through works just as 
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effectively as store-and-forward. Of course, the switch implementation is still 

expensive considering it has to buffer a whole packet. 

 It’s difficult to construct a switch that is small, compact, fast, and capable of 

storing a whole packet. In wormhole switching, a packet is further decomposed into 

smaller units. In this way, a switch only has to be capable of storing a few units when 

data transmission is blocked. This suggests that the buffer requirement within a switch 

is substantially reduced over the requirements for virtual-cut-through. Hence, a switch 

can be much smaller and faster. However, when the head of a packet is blocked, the 

following parts of the packet cannot move on. This forms a blocking path and causes 

a pause in other data transmission in turn. Under this situation, latency of data 

transmission is unpredictable [17]. 

 

Switching strategy Strength Weakness 

Circuit switching  Bandwidth and latency are

guaranteed 

 Good for real-time

applications 

 Not good when data

transmission is short and

frequent 

Store and forward  Good when data transmission

is short and frequent 

 Buffer size is big 

Virtual cut through  High bandwidth utilization  Buffer size is big 

Wormhole  Buffer size is small 

 High bandwidth utilization 

 Blocking paths may cause

network performance

unpredictable 

Table 1 Comparison of different switching strategies 
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 Before we move on to next section, characteristics of all mentioned switching 

strategies are summarized in Table 1. 

 

2.2.2 Features of Our Switch 

Our switch has four important features. First, circuit switching is chosen because 

it does not require much memory. Usually, we don’t have too much memory on chip, 

for its size is large. Also, it supports real-time applications. This is not true for 

connectionless switching strategies. 

Then, we exploit the idea of virtual channel flow control [18]. If parts of data are 

buffered at the input or output of each physical channel, once a message occupies the 

buffer, no other messages can ever access that channel until it is released. Even worse, 

a situation named deadlock, a network state where no messages can advance because 

each message requires a physical channel occupied by other message, could happen. 

Figure 2 illustrates such a situation. 

 

 
Figure 2 Deadlock 

 

In fact, a physical channel can be divided into several unidirectional virtual 
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channels, each realized as a pair of buffers multiplexed across a physical channel. For 

example, in Figure 3 buffer a1 and b1 form a unidirectional virtual channel flowing 

from a1 to b1; buffer b2 and a2 form another from b2 to a2. Assuming that these two 

virtual channels share the bandwidth of the physical channel equally, each virtual 

channel operates as if on a separate physical channel, only with half of the original 

bandwidth. 

 

 
Figure 3 Two unidirectional virtual channels multiplexed across a physical channel 

 

By dividing a physical channel into several virtual channels, messages can make 

progress rather than being blocked. For example, Figure 4 shows two messages 

crossing the physical channel between switch 1 and switch 2. Without virtual channels, 

one message may prevent the other from advancing, depending on which gets the 

privilege of the physical channel first. However, with virtual channels multiplexed 

across the physical channel, both messages continue to make progress at a rate which 

is half the achievable if there are no virtual channels. Since the time required for a 

message to wait until it is transferred is reduced, the average latency is decreased. As 

a result, the physical channel utilization rate is higher and the network throughput is 

increased. By continuing to add virtual channels, the overall message latency and 

network throughput can be improved further—at the cost of more buffer size and 
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complex multiplexer. 

 

 

Figure 4 Messages make progress rather than being blocked 

 

Third, although the bandwidth of a physical channel can be equally shared 

among all virtual channels, this is generally not a good idea. As shown in Figure 5, 

instead of sharing bandwidth equally, we use a round-robin schedule to grant rights to 

each virtual channel. Only when messages are to be transmitted over some virtual 

channels does our round-robin schedule give rights to them. Those virtual channels 

without data transmission cannot, and do not have to, access the physical channel.  

 

Buffer A

Buffer B

Buffer C

Buffer A

Buffer B

Buffer C

A B C

A1 B1 C1 A2 B2 C2 A3 B3 C3 A4

TIME

 

Figure 5 Virtual channels sharing the bandwidth of a physical channel using round-robin schedule 
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Moreover, if we find out there is heavy traffic over some virtual channels, we can 

grant privilege to them more frequently using weighted round-robin schedule shown 

in Figure 6. All we have to do is to configure our switch. 

 

A B C

A1 B1 C1A2 B2 C2A3 B3 C3A4

TIME

 

Figure 6 Virtual channels sharing the bandwidth of a physical channel 

using weighted round-robin schedule 

 

 Last, for traditional networks, the number of nodes is not known and the 

behavior of communication is not predetermined. This is not true for on-chip 

networks, where the number of nodes and the behavior of communication can be 

known before run-time. Therefore, we can have dedicated connection paths 

established in advance by reserving the corresponding virtual channels for them. With 

proper configuration, our switching method acts just like circuit switching. Still, if 

demanded, we can allocate more bandwidth to some connection paths by using the 

weighted round-robin schedule mentioned above. This suggests that our switching 

technique can do the same thing as does circuit switching to support real-time 

applications. 

 To summarize, features of our switch are listed below: 
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 Small and fast 

 Re-configurable 

 Provides efficient bandwidth utilization 

 Supports for real-time applications: dedicated connection paths can be 

reserved 

 Bandwidth of each connection path can be configured 

 

2.2.3 Switch Model 

As shown in Figure 7, each switch has five pairs of input and output ports. 

Output ports at North (N), East (E), South (S), and West (W) connect to the 

corresponding input ports of the adjacent switches. The output port at E side of the 

left switch, for example, connects to the input port at W side of the right switch. The 

remaining output and input ports at O side connect to and from the local processor 

respectively. 

 

D
EC

ISIO
N

D
EC

ISIO
N

D
EC

ISIO
N

D
EC

ISIO
N

 

Figure 7 Inside the switch 
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 There are four queues at each side. Each queue stores data ready to be transferred 

to and received from the adjacent switch. For the input part of a queue, the label on it 

indicates that the received data will be transferred later to that side of the switch. For 

instance, the input part of the queue labeled N at the E side of a switch stores data to 

the N side of the same switch. 

 On the other hand, for the output part of a queue, the label on it indicates to 

which side the stored data is transferred in the adjacent switch. For example, the 

output part of the queue labeled S at the E side of a switch stores data that will later be 

transferred to the S side of the adjacent switch. 

 As mentioned in 2.2.2, a physical channel can be divided into several virtual 

channels. Our switch supports four modes with channel width factors equal to 1, 2, 4, 

and 8 respectively. Here, the channel width factor indicates the maximum allowable 

number of virtual channels passing each input/output queue at each side of a switch. 

Since there are always four input and output queues at each side of a switch, the 

number of virtual channels connecting to the adjacent switch at each side are four 

times the channel width factor. Therefore, if the channel width factor is 2, there will 

be at most 8 virtual channels flowing out and 8 flowing in each side of a switch.  

Here, data is transmitted over pipeline buses. In Figure 8, a grey line indicates a 

transmission path from processor 1 to processor 2. Here, processor 1 is trying to send 

two packets ‘a’ and ‘b’ to processor 2. The transmission steps are as follows: first, in 

Figure 8(a), processor 1 sends ‘a’ to its local switch, S1; in the next cycle, ‘a’ is sent to 

S2 while ‘b’ is sent to S1 at the same time as shown in Figure 8(b); then in (c), ‘a’ 

arrives in its destination, processor 2, while ‘b’ is sent to S2; finally, ‘b’ also arrives at 

processor 2 at the fourth cycle, finishing the transmission. 
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Figure 8 Processor 1 sending two works to processor 2 

 

Since details of a transaction are not our focus in the switch model, we only need 

to know that it takes three cycles for a packet to pass a virtual channel. Therefore, the 

latency experienced by each packet is three times the number of virtual channels it 

passes plus the time this packet waits when it is blocked. In worst case, the bandwidth 

available to this packet is the minimum one of all virtual channels it passes along the 

transmission path. 

 

2.3 Our Design Flow 
Figure 9 depicts our design flow that starts with an application. Initially, the 

algorithm for the application is chosen and partitioned into interacting tasks. Then, 

these tasks and their relationship will be modeled by a graph model. In this graph 

model, the computation and communication amount required for each individual task 

and paired tasks will be indicated. Since many algorithms contain feedback loops, an 

iteration bound, which is the lower bound on the achievable iteration period, will be 

imposed. It is not possible to achieve an iteration period less than the iteration bound, 

even when infinite resources are available. Here we will examine if our algorithm 
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meets the performance constraints. If not, we will modify and repartition the 

algorithm again, repeating the same procedure until those constraints are met. 

 

 

Figure 9 Our design flow 

 

After the algorithm analysis step, processors for each task will be allocated. We 

will try schedule these tasks. In this step, two important factors are considered: 

memory size and computing power. For the former, since each processor has only 

limited memory size, we must make sure that the required data for and the 

intermediate data generated by a task can be stored into a processor. For the latter, we 

wish to share task loads equally among the allocated processors so that no processor is 

idle while others are busy. By carefully handling these points, the system performance 

will be improved because each processor will be utilized to the maximum. 

The task binding process is performed next. In this step, we decide which task 

should be mapped onto which processors. The interacting tasks should be always 

mapped onto processors in the same region, reducing the time spent on their 

interaction. In our platform, dedicated connection paths reserved in advance are used 

when processors communicate. When assigning connection paths, we try best to find 
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the shortest path between each paired processors, while avoiding over usage of 

routing resources. 

Finally, all information generated will be collected and fed to our simulator. We 

can run some applications on our simulator to see if they work well on our platform.
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Chapter 3  

Task Binding 
 

In this chapter, the task binding problem will be discussed. First, the problem 

formulation of task binding will be given in 3.1. Then our solution to the problem is 

presented in 3.2. Finally, details of the techniques we exploit to solve this problem 

will be shown in 3.3 and 3.4. 

 

3.1 Problem Formulation 
Task binding problem can be formulated as: 

 

Given 

 Applications A1~Ak 

 Corresponding task graph (directed-acyclic graph) Gi = G(V, E) for each 

application Ai 

 

With 

 Each vertex vЄVi representing a task to run on one processor, and the 

amount of computation shown in the vertex 

 Each edge eЄEi indicating data transmission along the arrow, and the 

amount of communication shown by the edge 

 NVi representing total number of vertices in Gi, and NV representing the 
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summation of NVi; NV be less or equal to the number of processors 

available 

 

We wish to 

 Map each vertex onto a processor 

 Place connected tasks as close as possible to reduce interaction time 

 

 Find a corresponding connection path for each edge 

 Minimize the total routing resource requirement 

 

3.2 Task Binding Flow 
The process of task binding tries to find out a solution that every vertex in task 

graphs be mapped onto a processor, and for each pair of connected vertices, a 

connection path be reserved for communication. Here, because of the problem 

complexity, the process is divided into two parts. 

The former part of the process, task mapping, is analogous to placement problem 

in FPGA. But in our problem, instead of determining which logic block within an 

FPGA should implement each of the logic blocks required by the circuit, we decide 

which processor should execute which task. 

The latter part of the process, connection path assignment, does almost the same 

as does routing techniques in FPGA. In FPGA, there can be one source node and 

many sink nodes connecting to a signal wire. On the contrary, in our platform, only 

one source node and one sink node can be connected to the ends of a virtual channel.  

This is because it is data that we want to pass along a virtual channel, not voltages. 

 In Figure 10, the flow of task binding is shown. First, a task graph containing the 
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computation/communication information for all tasks is given. Note that this task 

graph should be a directed-acyclic graph. After this, we exploit placement techniques 

used in FPGA to map tasks onto processors. If any two tasks communicate, processors 

in the same region will be allocated for these tasks. Then, we’ll reserve connection 

paths for these tasks. Therefore, when data transmission is to occur, pre-allocated and 

dedicated connection paths will be used. Finally, the position information of processor 

belonging to each task, the information of connection path for any two interconnected 

processors and the number of virtual channels needed across a physical channel will 

be reported. 

 

 

Figure 10 Task binding flow 

 

3.3 Task Mapping 
The three major placers commonly in use today are min-cut, simulated annealing, 

and analytic based placers. Usually, the use of analytic based placers is often followed 

by iterative improvement [19]. Since design of architecture of on-chip-networks is an 

important issue, we wish to explore much different architecture. Thus, the 

optimization goals of our placer may change from architecture to architecture. Among 

the three types of commonly used placers, the simulated annealing based placer can 

be more easily adapted to new optimization goals than min-cut and analytic based 

placers [20]. Therefore, we use simulated-annealing technique to map tasks onto 

processors. 
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3.3.1 Simulated Annealing 

Simulated annealing proposed in [21] is a widely used heuristic to solve several 

combinatorial optimization problems including many well known CAD ones. It 

belongs to the class of non-deterministic algorithms. As its name suggests, simulated 

annealing mimics the annealing process used to gradually cool molten metal to 

produce high-quality metal objects. During the process, a metal is heated to a very 

high temperature and then slowly cooled down. At some proper cooling rate, the 

process has a very good chance of producing high-quality metal objects. If we 

compare optimization to the annealing process, the attainment of a good solution is 

analogous to that of refined metal objects. 

For a combinatorial optimization problem, we wish to find out solutions with 

low costs in the solution space, which is a set containing all possible solutions. Some 

of these solutions correspond to local optima, while others may be global optima. In 

Figure 11, the solutions are shown along the x-axis. It is assumed that two consecutive 

solutions are local neighbors, which are solutions that can be reached from the 

original one with only a slight change. The cost of solution grows in the positive 

direction along the y-axis. Here, S1, S2, and L are local optima since all the local 

neighbors have higher and thus inferior costs. Among these three solutions, L, also 

called global optimum,   has the minimum cost. 

The process of an iterative improvement scheme starts with an initial solution. 

Then the solution is refined again and again. Finally the procedure stops if it finds an 

optimum solution. For a greedy algorithm, if we start with an initial solution, say I in 

Figure 11, we gradually slide down the “hill” because the costs there are lower and 

stop once we reach S1. Although S1 is the best solution we can ever find, it is still a 

local optimum solution. The initial solution given prevents us from the global 
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optimum solution. There is no way for a greedy algorithm to find the global minimum 

solution under this situation, unless it “climbs the hill”. 

 

S1

L

S2

ICost

Solution Space  

Figure 11 Local versus global optima 

 

Simulated annealing is such a hill-climbing algorithm. This time the algorithm 

starts again with the initial solution I and examines its neighborhood. If a neighboring 

solution has a lower cost, it is always accepted. On the contrary, if a neighboring 

solution is worse, the algorithm occasionally accepts this inferior solution, since there 

may be times that the algorithm finds a better solution once it goes beyond the hill. By 

doing so, the algorithm escapes from getting stuck at a local optimum solution S1. 

 Pseudo-code for a generic simulated annealing based placer is shown in Figure 

12. Here, a cost function is defined to assess the quality of the solution. We start with 

an initial solution by mapping tasks randomly onto processors. Then, a large number 

of swaps are made within a region, specified by the range limiter R, to gradually 

improve the solution and the change in cost is calculated. The swap is always 

accepted should the cost decrease. Otherwise, it still has a chance to be accepted. The 

probability of acceptance is given by TDiffe /− , where Diff is the change in cost a 

change makes, and T is a parameter called temperature that controls the likelihood of 
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accepting moves. Initially, T is very high, which suggests that any move will be easily 

accepted. Then, it is gradually decreased as the solution is refined. Eventually, the 

probability of accepting a move that makes the solution worse will be very low. 

 

 

Figure 12 Pseudo-code for generic simulated annealing placer 

 

3.3.2 Cost Function 

In FPGA placement, a placer usually tries to minimize the total wiring 

(wire-length driven), places blocks so as to balance the wiring density 

(routability-driven), or to maximize system performance (timing-driven). For a 

wire-length driven placer, estimation of wire length can be done by using the 

semi-perimeter method [19]. The method tries to find the smallest bounding box that 

encloses all the pins to be connected. The estimated wire length is half the perimeter 

of this rectangle. For example, in Figure 13, the estimated wire length is 9. 
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Figure 13 A bounding box 

Since in our problem a connection path always connects to only two processors, 

the semi-perimeter method accurately calculates the distance that the transmitted data 

would travel. Therefore, if we let the cost of a solution be the summation of all 

distances between each paired processors, and try to minimize the cost, any pair of 

connecting processors will be placed as close as possible. 

 

3.3.3 Annealing Schedule 

The rate at which the temperature is decreased, the exit criterion to terminate the 

process, the number of moves attempted at each temperature, and the method by 

which potential swaps are made are defined by the annealing schedule. A good 

annealing schedule is essential to make sure high quality solution obtained in a 

reasonable time. 

Because we still wish to explore much different architecture, the optimization 

goals of our placer may change from architecture to architecture. Therefore, a good 

fixed annealing schedule is still not enough. We need a schedule that automatically 

adapts to new architecture, no matter what our cost function is. Here we incorporate 

some best features from [20], [22], [23], and [24]. 

First, an initial solution is generated and some swaps are made. The initial 
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temperature is set to twenty times the standard deviation of the costs of these swaps 

[22]. The temperature is gradually adjusted to stay around a productive temperature 

where a significant fraction of swaps that makes improvement over the original 

solution are accepted [20]. Second, the number of moves attempted at each 

temperature is determined by a function of the number of processors, since the 

number of processors differs from case to case [24]. Then, the region within swaps are 

made is adjusted to keep the fraction of swaps accepted around 0.44 for as long as 

possible [23]. Finally, the procedure terminates when the temperature is less than 

some small fraction of the average cost of the solutions the algorithm examined [20]. 

Since detail of the annealing schedule is not our focus, we omit them from this thesis. 

 

3.4 Connection Path Assignment 
 

3.4.1 Pathfinder Algorithm 

Once processors for all the tasks have been chosen, a router tries to assign 

connection paths between any pair of interconnected processors. Here, we use the 

router algorithm like the one proposed in [25] to solve this problem. This router is 

essentially a variant of maze router [26]. It runs Dijkstra’s algorithm [27] to find the 

shortest, the lowest cost, path between a sender and a receiver processor. The 

Pathfinder algorithm [25] then performs a multiple of routing iterations to rip up some 

or all nets and reroute them by different paths, in case there is a competition for 

routing resources that makes the routing illegal. However, note that ripping up and 

rerouting these nets only affect the net ordering. These nets are all routed by the same 

maze routing algorithm. 
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The cost of using a routing resource n is defined in [25] as: 

 )()]()([)( npnhnbnCost ×+= , 

and pseudo-code for the Pathfinder algorithm is shown in Figure 14. The Pathfinder 

algorithm exploits the idea from Nair [28] to repeatedly rip up and reroute every path 

until all congestion is resolved. Ripping-up and rerouting every net once is called a 

routing iteration. During the first iteration, every path is routed for minimum cost, 

even if this leads to overuse of some routing resources. However, a routing in which 

some resources are overused is not a legal solution. As a consequence, when overuse 

exists at the end of a routing iteration, more iteration must be performed to resolve 

this situation. 

During each iteration, the present congestion cost, p(n), will be updated every 

time a path is ripped-up and rerouted. At the end of each iteration, the historical 

congestion cost, h(n), of overusing a routing resource is updated to record the severity 

of historical congestion over this routing resource. Therefore, it is less probable for 

the router algorithm to find a path passing this resource in the next iteration. As a 

result, all congestion will be gradually resolved. 

 

 

Figure 14 Pseudo-code for Pathfinder algorithm 
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3.4.2 Routing Resource Graph 

The internal representation we incorporated here should be as architecture 

independent as possible, so we can easily describe different architecture without 

making any change to the algorithm. Here we use routing resource graph 

representation [25] to describe architecture internally. 

In routing resource graph representation, processors and buffers over virtual 

channels become nodes. Virtual channels become directed edges, indicating that data 

over them flows unidirectionally. For each node, a capacity is assigned to specify the 

maximum number of different paths that can use this node in a legal routing. And the 

number of different paths currently using each node is indicated in the occupancy 

field. Since potential connections all become edges in a routing resource graph, 

routing a connection corresponds to finding a path in the graph, starting from a 

SOURCE node to a SINK node. 

Figure 15 illustrates how the part of the routing resource graph between a 

processor and its local switch is constructed. For data flowing out the processor, it 

starts at a SOURCE node and flows to the OUT node. After it arrives at the OUT node, 

it chooses to which one of the four SW_IN nodes it will go. Here, the label indicated 

in each SW_IN node suggests that this node will later connect to the SW_OUT node 

at that side of the switch. 
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Figure 15 Routing resource graph for a processor and its local switch 

 

Since data flowing into the processor may come from any of the four sides of the 

local switch, there are four corresponding SW_OUT nodes, each connecting to the IN 

node. The IN node then connects to the SINK node. Once data arrives the SINK node, 

its journey stops. 

 Here, the capacity of each SW_IN or SW_OUT type node is set equal to the 

channel width factor. The channel width factor is the maximum allowable number of 

paths passing these two type nodes. If the channel width factor is four, at most four 

connection paths may pass any of these nodes. Because data on these nodes may flow 

into or out SOURCE, OUT, IN, SINK type nodes, the capacity of each these nodes is 

four times the channel width factor.  

 Figure 16 shows how the part of the routing resource graph inside a switch is 

constructed. For reason of clarity, we only show edges to and from the local processor. 

After data flows out from the local processor, it can choose to go to the adjacent 

switch at any side. This is modeled by four pairs of SW_IN and SW_OUT nodes. On 
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the contrary, the situation that data can flow from the adjacent switch at each side is 

modeled by another four pairs of SW_IN and SW_OUT nodes. 
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Figure 16 Routing resource graph for a switch 

 

Finally, Figure 17 shows the part of the routing resource graph that will be used 

when data flows to and from the adjacent switches. In this figure, the data transmitted 

to the left switch is from any of the four SW_OUT nodes labeled W at the W side of 

the right switch. A CHANX type node whose capacity is four times the channel width 

factor is then passed. And, data goes to any of the four SW_IN nodes at the E side of 

the left switch. If the one labeled N is chosen, for example, data will go to the 

corresponding SW_OUT node at the N side of the left switch. 
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Figure 17 Routing resource graph across a physical channel 

 

3.4.3 Cost Function 

Here we define the cost of a routing resource somewhat differently than [25]. 

The cost of using routing resource, n, is defined as: 

)()()()( npnhnbnCost ××= , 

where b(n), h(n), and p(n) are the base cost, historical congestion, and present 

congestion terms mentioned in 3.4.1. Instead of adding b(n) and h(n) together, we 

multiply them. When adding terms together in cost function, it is very important to 

make sure that they are properly normalized to the same range of magnitude so that 

both terms work effectively. We avoid this by multiplying them together. 

The base cost of a node, b(n), is set to reflect the latency that data transmission 

will experience when passing this node. A router is encouraged to use as few nodes as 

possible to route each connection path. Table 2 shows the base cost for each type of 

routing resource. Note that no matter what exact cost is chosen for each type of 
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routing resource, the router always makes sure that no routing resource is overused. 

This is guaranteed by the congestion avoidance factors, h(n) and p(n), in the cost 

function. 

 

Resource Type Base Cost 

SOURCE, OUT 0 

SW_IN, SW_OUT 1 

CHANX, CHANY 2 

IN, SINK 0 

Table 2 Base cost for each type of routing resource 

 

In fact, SW_IN is a node that does not really exists in our switch. However, since 

there is only one possible connection from a routing resource of type SW_IN to its 

corresponding SW_OUT type resource, we can set both their costs to 1, which is half 

the value of cost for CHANX or CHANY type resource. Somehow, if we set costs of 

SW_IN and SW_OUT type node to 0 and 2, the router performance will degrade, 

since the cost of SW_IN will always be 0 no matter what value h(n) and p(n) are. This 

suggests that our router may not be aware of congestion problem on SW_IN type 

node and may spend more time to resolve resource congestion problem. 

On the other hand, since the maze expansion used to route a connection path 

always begins with a pair of SOURCE and OUT type nodes, the exact costs set for 

them do not matter. We set them to zero to save some computation. Also, the 

expansion terminates when it reaches a pair of IN and SINK type node. By setting 

their costs to zero, some CPU savings can be obtained because the maze expansion 

tends to stop earlier before it expands further. 
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The present congestion penalty is updated whenever any net is ripped-up and 

re-routed according to 

 ))])(1)([,0max(1)( facpncapacitynoccupancynp ×−++= , 

where occupancy(n) is the number of connection paths currently using routing 

resource n and capacity(n) is the maximum allowable number of paths that can legally 

use node n. The historical congestion factor is updated only after an entire routing 

iteration. Its value during routing iteration i is: 

 
1))]()([,0max()(
11

)( 1 >×−+
=

= − ihncapacitynoccupancynh
i

nh
fac

i
i  

The value of hfac can be kept constant for all routing iterations. The fact that h(n) 

increments after each iteration already provides sufficient increase in the historical 

congestion factor. As for pfac, the higher the value, the faster the speed that can be 

reached when resource congestion problem happens in a routing iteration. However, if 

it is assigned a small value initially and gradually incremented from iteration to 

iteration, a better routing quality is obtained. The router under this condition will try 

to solve congestion problem while maintaining all connection paths short. 
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Chapter 4  

Experimental Results 
 

4.1 Experiment Flow 
Figure 18 shows our experiment flow. First, we exploit Task Graph For Free 

(TGFF) [29], a user-controllable, general-purpose, pseudorandom task graph 

generator, to generate many random cases. Then, we extract some information from 

the generated cases and pass them to our task binding tool. After each task is mapped 

onto a processor and each connection path is assigned, we incorporate the routing 

information with our platform simulator and run simulation. Finally, we use some 

scripts to extract important parameters from the log file and analyze these data. 

 

 

Figure 18 Our experiment flow 
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For each case we generated, there will be 1 to 5 independent task graphs, each 

containing at least 4 to 20 tasks. The maximum number of inputs/outputs of each task 

is from 2 to 10.  

Each case is composed of many nodes and arcs. A node represents a task to be 

run on one processor. An arc drawn from one node to another node indicates that 

communication exists between these two nodes, flowing from the former to the latter. 

The amount of computation of a node and the amount of communication of an arc 

will also be indexed by the numbers shown by the corresponding entries. The 

mapping between TGFF output file and its corresponding task graph is shown in 

Figure 19. 

 

 TASK t0_0       TYPE 0
 TASK t0_1       TYPE 1
 TASK t0_2       TYPE 2
 TASK t0_3       TYPE 3
 TASK t0_4       TYPE 4
 TASK t0_5       TYPE 5
 TASK t0_6       TYPE 6
 TASK t0_7       TYPE 7

 ARC a0_0        FROM t0_0  TO  t0_1 TYPE 36
 ARC a0_1        FROM t0_1  TO  t0_2 TYPE 24
 ARC a0_2        FROM t0_1  TO  t0_3 TYPE 10
 ARC a0_3        FROM t0_0  TO  t0_4 TYPE 2

 ARC a0_4        FROM t0_4  TO  t0_5 TYPE 47
 ARC a0_5        FROM t0_4  TO  t0_6 TYPE 18
 ARC a0_6        FROM t0_4  TO  t0_7 TYPE 12

Computation 
Amount

Communication 
Amount

 
Figure 19 Mapping between output of each case and its corresponding task graph 

 

Our simulator uses two component models: the processor model and the switch 

model described in 2.2.3. In our processor model, we assume that a processor begins 

to operate only when all input data is available and the output buffer size is enough 

for data that will be later generated. For example, the processor allocated for the task 

shown in Figure 20 requires two input I0 and I1 from the preceding processors. Once 
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it gets all the data, the processor checks to see if the buffer size is enough for output 

data that will be later generated. If so, it begins to operate and puts all output data into 

the buffer. The corresponding switches then start to send these data to the subsequent 

processors. 

 

 
Figure 20 A task with two inputs and three outputs 

 

4.2 Experimental Results 
 

4.2.1 Routability Analysis 

In our platform the minimum channel width factor required is determined by the 

maximum number of inputs or outputs of all tasks. (The channel width factor 

indicates the maximum allowable number of virtual channels passing each 

input/output queue at each side of a switch.) If a task requires five inputs, there is no 

way for a switch with a channel width factor one to support them because only four 

connection paths flowing into the corresponding processor could be established. 

As shown in Figure 21, among the generated 765 cases, only 7 cases require a 
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channel width factor of 4; and 4 cases, a factor of 6. A platform with a channel width 

factor of 3 will be able to support all other cases. This suggests that the switch cost 

can be very small, if the requirement for applications fall into the range of the 

generated cases. 
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Figure 21 Requirement of channel width factor over 765 cases 

 

4.2.2 Performance Analysis 

In our experiment, we assume that the computation amount for a task is the 

number of cycles the allocated processor takes when it runs this task. Also, if the 

bandwidth of each physical channel is one unit, we assume that a data transmission 

runs a minimum of N cycles (under ideal condition), N equaling to the 

communication amount indicated in the task graph. 

After simulation, we collect information from the output file, calculate the 

performance gain of the system and count the utilization rate of each processor. The 

equations for system performance gain and processor utilization rate are listed in the 
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shaded box in Figure 22. If an application composed of many tasks runs on only one 

processor, the total time E required to run this application once will be the summation 

of the computation time of all tasks. Suppose that the computation load is distributed 

on N processors. The performance gain will be the system throughput T times E, 

divided by the number of simulation cycles S. And the utilization rate for each 

processor will be the performance gain divided by N. Note that in Figure 22 the 

number of times a task has been executed in S cycles is indicated in the circle. For this 

case, the system throughput equals to 7. 

 

10

9 8

7

S = Simulation Cycle
E = Execution Time on One Processor
T = System Throughput
N = Number of Processors

Performance Gain = T*E/S
Processor Utilization Rate = T*E/S/N

 

Figure 22 Performance measurement 

 

We experiment on 765 different cases with different communication loads. The 

computation amount is set to an average of 200, with minimum and maximum value 

equal to 100 and 300. The communication amount is set the same way when the ratio 

of computation to communication equals to 1. Note here that the ratio is defined to be 

the average computation amount divided by the average communication amount. 

The relationship between communication load and average processor utilization 
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rate is shown in Figure 23. Note that if we set the ratio to a value greater than 4, the 

average processor utilization rate will be higher than 0.6. However, if the 

communication load is heavier, say with a ratio below 3, the average processor 

utilization rate falls quickly. This is not a favorable situation. To overcome this 

problem, a designer may choose a system with greater physical channel bandwidth. 

For example, if a system with a ratio equal to 2 is run on a platform with the original 

physical channel bandwidth doubled, the average processor utilization rate will be 

improved from an average value below 0.5 to an average value higher than 0.6. 
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Figure 23 Relationship between communication load and processor utilization rate 

 

4.2.3 Scalability Analysis 

If an application has a maximum number of inputs or outputs greater than 4, 

there must be some physical channels shared by at least two virtual channels. 

Therefore, some input/output data is not transmitted at full speed to the subsequent 
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tasks. Having to wait longer, these tasks lower the system performance. 

 Here we experiment on 765 tasks with a computation to communication ratio of 

3. The reason why 3 is chosen is because the impact of maximum degree of inputs or 

outputs is apparent when communication load is heavy. Otherwise it is not that clear, 

since there is little traffic on the platform if the communication load is low. 

In Figure 24, the straight line drawn from the left to the right predicts the 

processor utilization rate, as a function of the number of processors on the platform. 

With nearly 70 tasks distributed on our platform under such a heavy communication 

load, the processor utilization rate still maintains above 0.5. This is because only few 

physical channels are shared with the maximum number of inputs or outputs equal to 

4. 
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Figure 24 Experiment with the maximum number of inputs or outputs equal to 4 

 

On the other hand, the scalability of our platform is not good with maximum 

number of inputs or outputs equal to 7. In Figure 25, the straight line predicts the 

processor utilization rate when the number of processors grows. With about 70 tasks 

distributed on our platform, only processor utilization rate below 0.4 is achievable; 
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should more tasks be mapped onto the platform, the processor utilization rate may be 

worse. 
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Figure 25 Experiment with the maximum number of inputs or outputs equal to 7 
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Chapter 5  

Conclusion and Future Work 
 

In this work, the task binding problem is formulated and solved by techniques 

similar to those of placement and routing in FPGA. By incorporating the processor 

model, the switch model and the connection path information generated by our task 

binding tool, systems with different configurations can be simulated in a short time. 

Some important parameters are then extracted from the simulation output file and the 

performance of the system can be assessed before the system is implemented. 

 In Chapter 4, performances of systems with different configurations are 

examined. The results show that the scheduling process discussed in 2.3 must not only 

take computing power and memory size of each processor into consideration, but they 

also have to pay close attention to the maximum number of inputs/outputs and the 

communication load of the system. With our simulation environment feeding back 

important factors, we wish to find an algorithm to solve the scheduling problem 

`systematically and efficiently. 

 Also, the buffer size at the input/output of a processor has impact on the system 

performance. If the buffer size is unlimited, data transmission always finishes as soon 

as possible since there is always space for data inside a processor. However, since 

on-chip memory is very expensive, this can never be fulfilled. We wish to solve the 

problem so that the total buffer size is minimized while the system performance is 

maintained. 

Last, since virtual channels may work at full bandwidth of the physical channel if 



 41

no other data is transmitted along these virtual channels at the same time. We wish to 

elaborate an accurate model of traffic contention and improve our task binding 

algorithm further so that each processor can be utilized to the ultimate. In this way, 

higher system performance can then be achieved without having to add any resource.
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