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Monte Carlo integration of multiphoton ionization matrix elements in the weak-field regime
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An adaptive Monte Carlo algorithm is applied, as a test case, to the evaluation of multiphoton
ionization matrix elements for hydrogen. This study indicates that a Monte Carlo approach may be
useful in treating high-order multiphoton ionization of alkali-metal atoms, and possibly other
atoms, by weak fields.

I. INTRODUCTION

Within lowest-order perturbation theory there are
numerous methods for calculating cross sections for mul-
tiphoton ionization of atoms. Many of these methods
rely on the analytic form of the electron wave function,
and hence apply only to one-electron atoms. More gen-
eral methods, which apply to multielectron atoms, are
often limited by the order N of the multiphoton process,
with the computation time increasing rapidly as N in-
creases. Thus, so far, applications to alkali-metal
atoms, ' to carbon, to the rare-earth metals, ' and to
the rare gases, "have been restricted to N ~ 6.

For the alkali-metal atoms, an approximate atomic
Green's function can be constructed in terms of the regu-
lar and irregular Coulomb wave functions, either by us-
ing experimentally derived information on the quantum
defects ' '' or by approximating rW(r), where W(r) is
the Herman-Skillman potential, by a series of straight
lines. For other multielectron atoms it might become
possible to construct an atomic Green's function, perhaps

by using multichannel quantum defect theory or by other
means. To the extent that an atomic Green's function
can be constructed, the problem of calculating multipho-
ton ionization cross sections (in lowest-order perturbation
theory) reduces to that of evaluating a multidimensional
integral. The dimensionality of the integral increases
linearly with N, and the question naturally arises as to
whether Monte Carlo integration is appropriate. As a
test case, we have applied an adaptive Monte Carlo algo-
rithm' to the integration of multiphoton ionization ma-
trix elements for hydrogen (exact results are available for
comparison). We report some results below, and observe
that if only, say, 10% accuracy is required, this algorithm
is quite eScient.

II. METHOD

Assuming a single-particle radial Green s function
g

+
( r &, r2 ), where the subscript a includes the energy, or-

bital angular momentum, and perhaps other quantum
numbers, the problem at hand is to evaluate an integral
of the form'

dr% drN —1 drl u (rN )rxg (rN rN —1)rN —1 g (r2 rl )rl u (rl )
0 0 0 N N —I 1 0

(2.1)

where u (r) and u (r) are, respectively, the initial and
0 N

final radial wave functions. If Eo is the initial energy of
the electron, and if co is the frequency of the field, the en-
ergy associated with the nth step of the ionization pro-
cess, that is, the energy appearing in g+ ( r„+&, r„), is

n

E„=EO+ nba .

For r —~ we have, ignoring a factor independent of r,

Eo +m %co & 0, we see that as r increases g
+

( r, r ') de-
n

creases exponentially if n & No, or behaves as an oscillat-
ing outgoing wave if n ~ No. We can rotate the paths of
integration into the upper right quadrants of the r„
planes to make g+ (r„+&,r„) vanish exponentially for

n

~r„+&~ —~ even when n ~%0. However, if we do this we
cause ua (r~), which is a standing wave, to explode ex-

ponentially for
~ rz ~

—ac. To circumvent this, we write+, ikn r+ l y n In(2kn r)

where, for n ~ 0,

k„=(2plfi )' (ED+ nhco+iyi)'y

(2.2)

(2.3)

u (r)=u+ (r)+u (r),
N N N

where u+ (r) and u (r) are, respectively, the outgoing
N N

and ingoing wave components, and we make use of the re-
lation '

where y„=Ze pl(fi k„), and where p is the electron
mass, g is positive but infinitesimal, and Z is the effective
atomic number. If No is the smallest integer m for which

N —N 0
M' '=2 Re(M+' ') 2~i g J' 'M' —", (2.4a)

j=1
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where M+' ' is obtained from M' ' by replacing u (r) by u+ (r) and where

Jz = drlv . dr& ~+iu (rz)rzg~ (rz, rz i) . rz &+iu (rN j+I)(Ã) + +
( 0 N w —j j N —j (2.4b)

r„=a„y„l(1 —y„), (2.5)

where y„ is now the (real) integration variable. Choosing
a„ to be complex, that is,

a„=~a„~exp(i8„),

with 0&8„&m.j2, amounts to rotating the paths of in-

tegration into the upper right quadrants of the r„planes;
this ensures that the integrand vanishes exponentially as
any of the y„approach 1. We choose O„=m./4, for all n.
The integration points were initially selected at random
throughout the intervals O~y„~ 1. However, the distri-
bution of points in r space is affected by our choice of the
magnitudes of the a„, and this choice must be made judi-
ciously in order to make the integration efficient. We
chose

(2.6)

recognizing that, after complex rotation of the r„, the
right-hand side of (2.6) is roughly the significant range of
integration over r„.

where u (r) is the continuum radial wave function of
n

the electron corresponding to the energy E„, n No.
Note that for j = 1 Eq. (2.4b) becomes

J'& '= dru+ r ru r
L

Consequently, we have only to evaluate the integrals
M+'"' and J'"', with No ~n ~N. For these integrals we
can convert the range of integration from [0, ~ ] to [0,1]
via the transformation

III. DISCUSSION

W'e used the adaptive Monte Carlo algorithm described
by Lepage. ' This is an iterative procedure; the integra-
tion points (in y space) are selected at random in the first
iteration, but in subsequent iterations these points are
selected with a nonuniform probability distribution
which weights the regions where the integrand is largest.
In Tables I and II we show some results for hydrogen, in-
itially in its ground state. [We normalized u (r) to uni-

ty, and we normalized u (r) on the energy scale. ] Table

I illustrates the variation in the values of the integrals
M+' ' from one iteration to the next. (The number of in-
tegration points was held fixed from one iteration to the
next. ) The values begin to settle down, though quite
slowly, as the number of iterations increases; we did not
attempt to extrapolate beyond the last iteration, but of
course, in general, extrapolation would be useful. We
also show in Table I the cumulative standard deviation at
each iteration, where this quantity is defined by Eq. (5) of
Lepage. ' The values for the cumulative standard devia-
tion may seem large, but relative to the magnitudes of
M' ' they are not so large. In Table II we give estimates
of the complete matrix elements at different orders and
wavelengths. ' Generally speaking, it is not difficult to
achieve an accuracy of 10%. Note that even for N =7
we used only 1.6X10 integration points. Were we to
evaluate this seven-dimensional integral by using a prod-
uct of one-dimensional quadrature rules, with, say, 20
points per dimension (a modest number, considering the
integrand is oscillatory) we would use a total of 1.3 X 10
points. Of course, one could take advantage of the fact
that g (r, r') can be expressed as a product (or sum of

TABLE I. Values of M+' ' and of the cumulative standard deviation (SD) at the ith iteration of the
0

Monte Carlo calculation. The wavelength is A, =4339.3 A and the polarization is circular. The num-

bers in square brackets represent powers of 10. We used 90000 integration points for N=5, and
120000 points for N =6.

1

2
3
4
5
6
7
8
9

10
11
12

1.53[7]
1.41[7]
3.73[6]
2.37[6]
2.91[6]
2.06[6]
1.97[6]
1.77[6]
1.77[6]
1.92[6]
2.09[6]
2.21[6]

N=5
Im(M+ ' ~))

—6.07[6]
—3.19[6]
—3.48[6]—4.71[6]
—4.40[6]
—5.48[6]
—4.92[6]
—4.89[6]
—4.77[6]
—4.66[6]
—4.72[6]
—4.68[6]

SD

1.9[7]
5.1[6]
2.9[6]
1.4[6]
1.2[6]
7.9[5]
6.4[5]
5.5[5]
4.8[5]
4.4[5]
4.2[5]
3.9[5]

Re(M ' ')

—6.35[8]
—7.99[8]—7.00[8]

2.28[7]
7.69[7]
8.43[7]
9.36[7]
9.75[7]
1.08[8]
1.05[8]
1.08[8]
1.05[8]

N=6
Im(M+(~) )

6.06[8]
3.87[8]
1.14[8]
6.87[7]
9.97[7]
7.26[7]
7.61[7]
7.51[7]
7.29[7]
7.70[7]
7.72[7]
7.64[7]

SD

8.5[8]
6.2[8]
5.2[8]
9.8[7]
3.7[7]
3.1[7]
2.3[7]
1.7[7]
1.4[7]
1.2[7]
1.0[7]
9.7[6]
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TABLE II. Values of the complete matrix elements M' ' at the n, th iteration of the Monte Carlo
calculation, using n„points, compared to results that are exact (to the figures given) for different wave-

lengths k of circularly polarized light. The numbers in square brackets represent powers of 10.

X (A) n;

Monte Carlo
ReM' ImM(") Rem")

Exact
ImM'

3200

4339

5063

50 000
80 000
90 000

120000
120 000
160000

12
12
12
12
10
10

1.24[5]
3.99[6]
4.41[6]
3.68[8]
2.53[8]
2.39[10]

0
1.27[6]
0
4.03[7]
0
2.53[9]

1.26[5]
3.99[6]
4.72[6]
3.70[8]
2.76[8]
2.57[10]

0
1.22[6]
0
4.08[7)
0
2.60[9]

products) of functions of only a single integration vari-
able, r or r'. Using this property, and splitting the total
N-dimensional volume into N t subregions inside each of
which the integration variables satisfy a permutation of
the inequality

r& &r2 « . r&,

the integral M+' ' can be expressed as a sum of N! in-
tegrals, each of which is a product of N one-dimensional
integrals whose integrands depend on only one variable.
This simplification was exploited earlier. The shortcom-
ing of this procedure is that N! grows very rapidly with
N, and the computational time grows exponentially. In
our Monte Carlo calculations reported here, we exploited
the factorization of g (r, r') as a product of Coulomb
functions, without breaking the total integration volume
into N. subregions, by forming a relatively sparse grid of
n;„, points in r space on which the regular and irregular
Coulomb wave functions were evaluated. Thus we set up
two tables, each of dimensions N X n;„„for the Coulomb
wave functions. [For ~2kr i

)2(l + 1+ iy ~
) we rapidly

evaluated the Coulomb wave functions by asymptotic ex-
pansion. ] The Green's function g (r, r'), at any points r

and r', was then evaluated by interpolation between tabu-
lated points. This technique reduced the time for in-
tegrand evaluations to a reasonable level, with the total
computational time increasing with N only as (roughly)

There should be no difficulty in applying this method
to alkali-metal atoms, where the quantum defect is
nonzero; the (approximate) Green's function still
factorizes —see, for examples, Refs. 4 and 5. However,
for other multielectron atoms there remains the problem
of developing a tractable approximation to the Green's
function. We hope that this study will stimulate further
exploration of Monte Carlo methods in the treatment of
high-order multiphoton ionization.
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