S

=

4

i
St
18

WIS ETOEER

7

T~~~

Az 4% 100Mpixels T g JPEG XR B2 s Bk 3t

Over 100Mpixels‘Real Fime JPEG-XR Encoder Design

FERB-O—%+tA

A2 4% 100Mpixels 2 FpF JPEG XR % W rg FL 3"
Over 100Mpixels Real Time JPEG-XR Encoder Design

Boyo4 i T Student : Chien-Shan Ding
IR RRE Advisor : Tian-Sheuan Chang

A Thesis
Submitted to College of Electrical and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of

Master of Science
in

Electronics and Electro-Optical Engineering
July 2012

Hsinchu, Taiwan, Republic of China

H#k 100Mpixels ZHIB JPEG-XR ¥ 4415 2 &%

%‘;‘i DRSS «pr %?IJ}? 55/] Tﬁ =
B> 2 i 2 5 78 R Ty kg E R R L
3 £

BRI AT M B PR s 2F S iﬁ*%af%wwﬂﬁﬁéﬂﬂ%ﬁﬁ
B 3 oM RO fodR o Y A B 5 R g g‘F‘ FAERARE & o
Microsoft 1B 3 e 378% (h R ﬁﬂﬂﬂ:ﬁﬂ‘ JPEG XR 7 # 2R 1§ SR “fFl F AR el

E RS i SRa JPEG ¥ JPEG2000 "”33}%)3 i NPER

EJPEGXR P B R BP9 5 2B &HA ﬁémﬁﬂg_gf —;?3 | oy B R o —
i g i BgL;';‘(Adaptive Normalization) » = ¥_7F # %7 { 737 h #cdF
“'E)%»(Adaptlve Scan): % = i p] §_%| %78 i 79 Huffman Tabel ¥ i 3] & it VR E S

“’%wﬁ}&uﬂm?ﬁ£“ﬁ%% THLAE gy L 3 %ﬁﬁﬁﬁ
53&‘34‘: »lrﬂgglj,:,\;% —/\Qﬁ,_‘m;ph OLL;;;%/.\Q:* ,:\.,FB,{;
E'?r‘n;fi‘ﬁ T‘f | % T ¥ A BcHcp 2 }; P*’;;‘;} D HBCR i 4 o iEm P"J
t‘m#—‘ﬁ ¢ H a9 imﬁ\/ﬁ%mﬁ:}"w}iﬂ?:}gAEJ@—]‘ FEJLE > [F ok

SR Hfﬂ%* B e ol BenE B H WEE‘?F’&m%]»hﬁ .

EHEB G AR APERI KT IR c KR e REFT AR
%¢ﬁﬁj%F%&@$ﬁﬂﬁﬁuﬁ;ﬁ%%$mf@1w’“@§%Jﬁk
E B A Ko HFE 5 4 mﬁ;] I € E 77 4248 1 Pixel/Cycle- 12 45 Synposys Design
Compller0.18 um CMOS £ = m.f%%z?;& Z_100MHz sig it 2.7 » B 5 & Gate
Count 3 235,377 m Z i¢ * enSRAMS * |- B] 2 992 X 3 channels o %8 % e &
EY a4 E 37 100Mpixels o

V\J
H o

G

Over 100Mpixels Real Time JPEG-XR Encoder Design

student : Chien-Shan Ding Advisors : Dr. Tian-Sheuan Chang

Degree Program of Electrical and Computer Engineering
National Chiao Tung University

ABSTRACT

In modern industry, although high resolution-and wide dynamic range images had
be used with in several applications like digital camera sensors, web display devices,
so the compression of visual information-becomes more and more important. JPEG
XR [1] is an new image coding-standard, based on high definition (HD) Photo
developed by Microsoft [3]. It'supports high compression performance higher than
JPEG and JPEG2000.

Entropy coding was the throughput bottleneck in-previous architectures. There are
three feedback loops in entropy coding stage; (1) Control of ModelBits, (2) Updating
of the scanning order, and (3) Decision of the Huffman table to be used. Therefore,
how to design a pipelined module in a straightforward implementation or processing
Macroblocks in parallel structure becomes main design challenge. We generalized the
characteristic of Normalization (Update ModelBits) and took adventage of reduction
of Levels. Our propose pipeline controller can optimal the encoding forward steps to
decrease un-necessary data processing. We could safely pipeline all the encoding
processes including the entropy coding and achieves higher throughput than those of
related works.

After our optimization, estimation of the encoding speed in our implementation is
measured. The four images with same size but different manner are tested and
represent quite similar results. The calculated throughput in terms of pixel/cycle
shows that our implementation can achieve more than 1 pixel/cycle. The architecture
Is synthesized by Synposys Design Compiler with 0.18 um CMOS standard cell
library. The result shows that the gate count of the designed JPEG XR encoder with
100MHez as target frequency is 235,377, number of used SRAMs is required by 992

x 3 channels. An over 100Mpixels real time JPEG XR encoder is designed.

B Bl

BACRRHAN O R RpEE L R E R ARG XA LA RN PR BRI P
EPHWASFIBERERZLITERE S o o BAEY R Y ROl A AIETG RN FB o 2 0h o KIRFJE S A

FREAT LR B PEF R BRI REPE P L LR A S RA ST § A Ak A
oot PR SRR Ya HedE o

BHA O AR % i TR R B g
Bl d MARGe (HEGERR -

CEBE P AT e kR AR Ery

EHEAFTT 2R HEAFIERAF AN A ERT FLLP e RAT 1 skihfgimm g ?
BI R BE T TR (TR 2’»\—%’852:&4 AR Wi fij;}p%‘]‘gég\;}g{;}\ HRL T > 455 4R 15 2 Hay
A A A T R TR e

Bois B AR A B) FI R A g B B BATM S SR AR R B SR B
SRR R S SR A B A I R R S A dr§ 0 AR B

Aol RARSHSE ER Y AN Milhlay) AN 1 RS P F B e d g 0 B E

BB A AL, A LA R A e e A e FE T RAT T R R L R
Bl PREERpE NF R FE N S TR iR Pl S

-iv-

Contents

1 Introduction 1
1.1 Motivation 1
1.2 ThesisOrganization i i 2
2 Overview of JPEG XR 3
2.1 ColorSpace Convert .. o . U 4
2.2 PCT:PhotoCoreTransform« .. i ve o v o i e 5
221 Ty Transform. . oo o o i ol s e 5
222 T Transform & . 0 T 6
2.2.3 Togaeqq Transform . e 7
2.3 Quantization. . . © oo 9
2.4 Prediction 0 et e 10
24.1 DCPrediction 10
24.2 LPBandPrediction. 11
243 HPBandPrediction 12
25 AdaptiveScan e 13
2.6 UpdateModelbits 17
27 Run-LevelCoding. 18
2.8 CodedBlockPattern 19
29 HuffmanCoding 20

2.10 Bitstream Structure 20

3 Architecture design of JPEG XR

3.1 Profiling
3.2 DesignChallenges

3.2.1 Mismatch Data Processing Sequence

3.2.2 CodeBlockPattern

3.2.3 Architecture Of Entropy Coding
3.3 SystemOverview
3.4 Colorspaceconverter
3.5 Architectureof PCT.
3.6 Predictionstructure L.
3.7 Codedblockpattern.

3.8 Structure of adaptive scan and entropy coding

3.8.1 DataDependency .. . oo
3.8.2 Adaptive scan structure ..o .o L. L L L
3.8.3 Huffmanencoder o, Lo el L
3.8.4 Adaptive Huffman Coding ..«

3.8.5 Architecture of Packetizer=

4 Performance Analysis and Implementation Results

4.1 Performance Bottlenecks v o L.
4.2 Enhancement

4.3 Coding Speed Estimation

5 Conclusion

List of Figures

21 Encoding FlowOfJPEG XR 4
2.2 Color Space Convert Of JPEGXR 5
2.3 Ty transform flow Of JPEG XR. 6
2.4 T, transformflow OfJPEG XR. 7
2.5 T,idgoqq transform flow OfJIPEG XR. 8
2.6 Photo Core Transform Flow OfJPEGXR.~. 8
2.7 Prediction of DC coefficients of blocks. 10
2.8 Prediction pseudocode for DC coefficients. 11
2.9 Prediction of AD coefficients of blocks.o 12
2.10 Prediction pseudo code for AC-coefficients. [1] 13
2.11 Prediction from leftfor AC coefficientsinanintraMB. 14
2.12 Prediction from top for AC coefficientsinanintraMB. 14
2.13 Traditional Zig-Zag scan pattern.” oL 16

2.14 Initial DC scan patterns (a) lowpass and highpass horizontal scan pattern,
and (b) highpass vertical scan pattern.[1] 16

2.15 Inverse scan order (a)just prior to an exchange operation occurring be-

tween shaded coefficients, (b) subsequent to exchange operation. 17
2.16 Normalization and Flexbits (If Modelbits=4). 19
2.17 VLC Coding Tablesused iInJPEG XR. 21
2.18 Image structure hierarchy. o0 22

2.19 Layout of JPEG XR bitstream: Image header is followed by a sequence

of tiles which are in Spatial or Frequency mode. 22

3.2 Three pipeline stages of JPEG XR architecture.
3.3 Structure of color space converter
3.4 Structure overview of Thtransform.
3.5 Structure overview of T odd transform..
3.6 Structure overview of T oddodd transform.
3.7 Architectureof full PCT stage.
3.8 Structure overview of prediction.o Lo
3.9 Structure overview of pipelinestage 3.
3.10 Structure overview of adaptivescan.
3.11 Implementation of Run Level Encoder
3.12 Structure overview of Huffman Coding.
3.13 Structure of pre-concentrate for Huffmanencoderesult.
3.14 Structure overview of Adaptive Huffman Encoder.

3.15 Implementation of Packetizer. o ..o

4.1 Variation of High-Pass band update Modelbits in pre Macroblock

List of Tables

2.1 Structureof CBP 19
4.1 Average clusters of one block after entropy coding result(HP part) 44
4.2 Benchmark of JPEG XRencoder 46

4.3 Performance comparison among related works and the proposed architec-

..................................... 46
4.4 Gate count summarization of the proposed architecture

ture

Chapter 1

| ntroduction

In modern industry, although high resolution and wide dynamic range images had be
used with in several applications like digital camera sensors, web display devices, and
video games, so the compression of audio-visual information becomes more and more
important, especially for applications on mobile devices. Due to advances in very large
scale integration (VLSI) technology, many image processing applications has become
popular in our daily life. For satisfaction of the high quality image compression, the

new compression standard,namely JPEG XR, is discussed and designed with the VLSI

architecture.

1.1 Motivation

JPEG XR [1] is an new image coding standard, based on high definition (HD) Photo
developed by Microsoft [3]. It supports high compression performance higher than JPEG,
and also has an advantage over JPEG 2000 [4] in terms of computational cost. Besides,
JPEG XR is expected to be widespread for many devices including embedded systems in
the near future. In this paper, we propose a novel architecture for JPEG XR encoding.
In previous architectures, entropy coding was the throughput bottleneck because it was
implemented as a sequential algorithm to handle data with dependency.

We found that normalization of JPEG XR is help to reduce the number of coefficients,

and we could safely and effectively process all pipelined encoding stages including the

entropy coding. For the test in our JPEG XR implementationcareencode the image
data over 1 pixel pre clock which could only be achieved 0.5 pixel/pre clock by previous

works.

1.2 Thesis Organization

This thesis is organized as follows. Chapter 2 is the overview of JPEG XR standards and
the algorithm analysis. Chapter 3 introduces the pipeline architecture of JPEG XR and
it's optimization . Chapter 4 is our experiment results and performance compared to other
JPEG XR encoder. Finally, we will give some conclusions in chapter 5, and the future

works are listed as well.

Chapter 2

Overview of JPEG XR

The coding flow of JPEG XR is shown in Figure 2.1. First step is to convert one input
RGB image to YUV format by using color space converter. Then transform YUV space
domain into frequency domain in orderto reduce the data size of image. The frequency
transform is also play an important role like discrete cosine transform (DCT) of JPEG.
In JPEG XR , we call this transform-is photo core transform (PCT). The PCT is applied
to a rectangular area called a macroblock (MB). When lossy compression, one transform
called photo overlap transform (PQT).is applied to reduce block noise , which offer occurs
at MB boundaries. The PCT and POT are based on lapped biorthogonal transforms [5],
[6].

After frequency transformer, the transformed coefficients will be quantized. At loss-
less mode of JPEG XR, the POT is no required to perform and Quantization Factor will
be 1. Following block coefficient prediction process, the quantized coefficients of DC
bands, AD bands, AC bands are replaced by prediction engine which detect for horizon-
tal or vertical way to enhance compression rate. Adaptive scan unit scan the predicted
coefficients of different bands with distinct adaptive scan order. The scanned data are
rearranged to two bitstreams, one is run-level form and another is flexbits format. Finally,
entropy coding unit encode the run-level components to JPEG XR bitstreams by using

adaptive Huffman tables. Hereafter, the details of each process are described.

Figure 2.1: Encoding Flow Of JPREG XR

2.1 Color Space Convert

The RGB color space is the'most prevalent choice for computer graphics because color
display use red, green, and blue to create the desired color. Therefore, the choice of the
RGB color space simplifies the architecture and design of the system. Also, a system
that is designed using the RGB color space can take advantage of a large number of
existing software routines, since this color space has been around for a number of years.
However, RGB is not very efficient when dealing with "real-world” images. Because the
human eye has different characteristics of sensitivity for chroma and luminance. For these
reasons, many video standards use luma and two color difference signals. The purpose of
RGB to YUV conversion is to reflect the color sensitivity. When color space is converted
from RGB to YUV in this JPEG XR encoder. Then, the most important and detailed
information of image like texture are concentrated on Y channel. The color conversion is

reversible, in other words, it is lossless conversion.

F=B-=R

U:R—GJ{L—W
2
Y:Gw{[—/J

2

Figure 2.2: Color Space Convert Of JPEG XR
2.2 PCT : Photo Core Transform

All the operator of JPEG XR compute with a MB, which consist$®¥k 16 coefficients.
In PCT/POT process stage, the MB is partitioned intoi16 4 blocks. The PCT/POT
is applied to these blocks and convert input image from space domain into frequency
domain. The JPEG XR includes two PCT stages and two optional POT stages. Our
proposed architecture had no support POT stages because it is non-essential and this paper
focus on lossless compression speed.

The PCT is inspired by.thé x 4 DCT, yet it is-fundamentally different. The first
key difference is that the DCT is linear whereas the PCT is nonlinear. The second key
difference is that due to the fact that it is defined on real numbers, the DCT is not a lossless
operation in the integer to integer space. The PCT is defined on integers and is lossless in
this space. The third key differenceis that the 2D-DCT is a separable operation. The PCT
IS non-separable by design.

The PCT is composed of three kinds of basic operations namegl¥d»p, Topbpopp

transform. These transforms are designed with 4 input and 4 output Hardmart transforms

[6].

2.2.1 Ty Transform

The Hadamard transform is a 2-point operator that can mathematically be described by
equation (2.1). The 2x2 Hadamard transform is developed by taking the Kronecker prod-

uct of the 2-point Hadamard with itself as seen in equation (2.2).

1
Ty = — (2.1)
V2 (1 -1

1 1 1 1

111 =1 1 =1
TH = KTOTL(TH,TH) = = (22)

211 1 -1 -1

1 -1 -1 1

The Ty Transform is possible to implement this 2-D Hadamard transform by using

only trivial lifting steps [6] as shown indescribed in Figure 2.3 [6].

L S| I i
112 112 -1 -
: Y _
b i > C
A
[Y 1 L » B
d ' L » 0

Figure 2.3: Ty transform flow Of JPEG XR.

2.2.2 T, Transform

The odd transform was developed by taking the Kronecker product of a 2-point rotation
operator described in equation (2.3) and the 2-point Hadamard operator .
T, — —cosg Sing 2.3)

T
Slng COSg

The transform can be reduced to a set of equations including four that are non-trivial

as described in Figure 2.4 [6] .

2.2.3 T,4d04q Transform

The odd-odd transform was developed by taking the Kronecker product of a 2-point ro-
tation operator with itself. The transform can be reduced to a set of equations including
three that are non-trivial as described in Figure 2.5 [6].

In the PCT stagel, all 16 blocks is applied to 3 kind of filter operatiofn; Topp,
Toppopp transform. First step, the filter operation is applieddtox 4 areas evenly
straddling blocks in two dimensions, and each block is decomposed into one direct current
(DC) coefficient and 15 alternating current (AC) coefficients. After completion of the first
transform stage, the 16 DC coefficients are concentrated to onéiews block. Applie
this new block into transforms as same as pct stagel again. As a result of these two stages
of PCT, each MB is decomposed into 240 high-pass (HP) coefficients (AC coefficients of
PCT stage 1), 15 low-pass (LP) coefficients (AC coefficients of PCT stage 2), and one DC
coefficient (DC coefficient of PCT stage 2). These operations are repeated for all color
planes. This process about:the relation among HP, LP,;and DC coefficients is shown in

Figure 2.6.

v 38| |

Figure 2.4: T4, transform flow Of JPEG XR.

-
(s -]

v
>

v
L=

Figure 2.5: PEG XR.

First stage Second stage

Figure 2.6: Photo Core Transform Flow Of JPEG XR.

2.3 Quantization

Quantization is a process whereby the transform coefficients are essentially divided to
reducing the number of bits and rounded to an integer value, called the quantized value.
De-quantization is the process where essentially coefficients are reconstructed from their
quantized values by multiplying them. The divisor in quantization and multiplier in de-
guantization are usually identical and referred to as the quantization parameter or QP. In
the lossless coding mode of JPEG XR, QP = 1. For lossy coding; QP

QP is chosen to be an integer chosen from a harmonic scale. This is determined by
another integer QPIndex as per the rule: When QP is smaller than 16, QUANT is the same
as QP. In the other cases, QUANT is given by the following equation,

QP = Qplndex fOT Qplnder<16
QP = ((QPrnaex%16) +.16)-< ((QPrndec > 4)—1) otherwise

The symbol “%” denotes remainder of integer division.or the mod function.

When Qplndex \ § 255,
QP is given by ((255%16) + 16) < (15=1) = 507904.

On the decoder side, each entropy decoded transform coefficient is de-quantized by
multiplying the coefficient with QP. On the encoder side, the specific rounding factor in
the process of quantization is implementation specific, and is not covered in this docu-
ment. In the lossless mode, coefficients are passed through (i.e. multiplied or divided by
1) on both the encoder and decoder.

Each MB and each frequency component can be quantized with each quantization
parameter. In other words, QP is allowed to differ across AC, lowpass and DC bands. The
DC QP within attile is fixed. The DC QP across tiles may vary. The AC and lowpass QPs
within a tile may take on either the same value, or one of a multiple value set. This may

changed at every MB and is signaled in the bitstream.

2.4 Prediction

When coding an intra block, the DC coefficients, lowpass and highpass bands coefficients
are coded by intra prediction. Intra prediction is an operation used in JPEG XR standards
to reduce the spatial redundancy betwe&er 16 blocks. It also be efficient to enhance the
compress rate. When tiling is used, each tile is deemed to be a separate image for the pur-
pose of DCAC prediction, to ensure independent decoding of tiles. In order to determine
valid predict orientation for current marcoblock ,JPXR XR should record one DC and
three AD coefficients from individual neighboring top and left macroblock first. Through
the calculation with the analysis of algorithms, the optimal predition data obtained from
TOP or LEFT macroblock compute target macroblock smallest coefficients.

There are three levels of prediction: DC prediction, LP prediction, and HP prediction
used in JPEG XR standard . DC prediction is.illustrated in Figure 2.7. The quantized
coefficients are predicted with four alternative modes: Predict from Left ,Predict from
Top, Predict from TOP and LEFT, or Null Predict. Which mode to pick is determined
from the position of the macroblock; as well as the DC values to the left, top and top-left
of the macroblock. Further; if the image has color channels, the corresponding values of

the chroma channels are also used:

2.4.1 DC Prediction

The DC prediction mode (dmode) pseudoode is showing in Figure 2.8, [MBx,MBYy]
is the macroblock index of the current macroblock in the X and Y directions in an image,
starting from [0,0].

For example, the DC coefficients of block X is predicted from the DC coefficients of

DT

chrominance

luminance

Figure 2.7: Prediction of DC coefficients of blocks.

10

blocks TOP, LEFT or TOREFT. In computing the prediction of block X. If the absolute
value of a horizontal gradient is less than the absolute value of a vertical gradient, then
the quantized DC (QDC) of block TOP is used as the prediction, else if the absolute value
of a horizontal gradient is larger, then the QDC of block Left is used. If the above two are

all no established, then predict current QDC with average of TOP and LEFT.

2.4.2 LP Band Prediction

The LP prediction depends on DC prediction, as shown in Figure 2.9. The LP coefficients
in the first row or in the first column are predicted with three previous LP coefficients from

TOP, LEFT, or TORLEFT macroblock. The direction of LP prediction is the sam®@&s

prediction.

If (mx == 0 and my == 0)
dc_mode = Null predict

Else if (mx == 0)
dc_mode = Predict fromytop

Else if (my == 0)
dc_mode = Predict from,left

Else {
diff h = abs (D - L) // luminance
diff v = abs (D - T) // luminance

If (chrominance channels are available) {
diff h = diff h * scale + sumgOver chrominance,channelsy{ abs (D - L) }
diff v = diff v * seale + sum over chrominance channels { abs (D - T) }

}

If (diff h * orient weight < diff v) {
dc_mode = Predict from top

}

Else if (diff v * orient weight <"diff h) {
dc_mode = Predict from left

}

Else {
dc_mode = Predict from left and top

}

}

Where
scale = 8 for YUV 420, 4 for YUV 422, 2 otherwise
orient weight = 4

Figure 2.8: Prediction pseudo code for DC coefficients.

11

Top AD block

i
/s

%

R %,
7

Left AD block Current
AD block

Figure 2.9: Prediction of AD coefficients of blocks.

2.4.3 HP Band Prediction

The highpass prediction made is determined by the pseade shown as below Figure
2.10. There are 6 coefficients in the low passid is used to determine the orientation of
AC prediction, based on a'simple metric associated with each macroblock.

Three modes are allowed for all blocks within @ macreblock for which in-macroblock
prediction is possible. For blocks that have no valid reference within the macroblock, null
prediction is used. The three modes are:

1. Predict from left (predictor = DCAC [letbtlock within macroblock])

2. Predict from top (predictor = DCAC [toblock within macroblock])

3. Null predict (predictor = 0)

Prediction from left is shown in Figure 2.11. Prediction from top(Figure 2.12) is
similar, with the pattern of arrows transposed to point downwards. The first column of
blocks is not predicted in highpass band prediction.

In the implementation of a JPEG XR codec (encoder or decoder), the total information
that needs to be available for future use is 1 DC + 6 LP = 7 coefficients per macroblock
channel(chanel Y,U,V). Therefore, at most 21 coefficients need to be cached per mac-

roblock for YUV444 encode mode. Further, the coefficients used for "prediction from

12

diff_h = abs(lowpass(4)) + abs(lowpass(8)) + abs(lowpass(12))
diff v = abs(lowpass(1)) + abs(lowpass(2)) + abs(lowpass(3))

If (chrominance is present) {
diff h=diff h + abs(lowpass_U(4)) + abs(lowpass_V(4))
diff v=diff v+ abs(lowpass_U(1)) + abs(lowpass_V(1))
]

If (diff_h * orient_weight < diff v) {

highpass. DCAC_mode = Predict from top
]
Else if (diff_v * orient_weight < diff_h) {

highpass. DCAC_mode = Predict from left
]
Else {

highpass. DCAC_mode = Null predict
]

Figure 2.10: Prediction pseudo code for AC coefficients. [1]

left” can be replaced after.the next macroblock is coded.. For YUV 444, therefore, it is
necessary to only cache 12 coefficients-per macroblock for use in the next row of mac-

roblocks.

2.5 Adaptive Scan

Coefficient scanning is the process of reordering the array of transform coefficients into a
linear array. This is also commonly referred to as zig-zag scan in JPEG standard. Within a
block of data, coefficients are scanned in a deterministic pattern as shown in the example
in Figure 2.13. This is similar to the traditional zig-zag scan applied4ox<a4 block.

In this example, the first coefficient in the linear array is the top left entry (DC) of the
transform coefficient matrix. The second coefficient in the linear array is the transform
coefficient marked 1 and so on. Thus, the representation of Figure 2.13 uniquely deter-
mines a scan pattern. Scan patterns in JPEG XR are not required to be continuous as in

the above example. Further, scan patterns in JPEG XR are allowed to change scan order

13

ot s F = rr
- A AN o i
Y = R N
" " o
17 B2 e 7
= o A A o
N N B N
'h"ﬁ ht Y ™
"(.u] o —]
N | RS o N |
o B B B
o 3 2
s o
#, o
:\:: e Jﬁ N 7
N IN TN N :
A o N

Figure 2.11: Prediction fromleft for AC coefficients in anraniVIB.

RRha 1 R A ARy
o [t \..1"(..« ‘h\f} E::
‘f-{ ") ! " N iy
. R A R i
N R el | RN
o -
R e A RNR RN ;
N | RS =
A 4
\ “C\N@MQ BRENEEEE
S A Py =
¢ ;\ A J\
% Z 7 i

Figure 2.12: Prediction from top for AC coefficients in an anWiB.

14

with adaptive rules which are defined below.

Three scan patterns are used in JPEG XR. These are referred to as the lowpass, high-
pass horizontal and highpass vertical scan patterns. The lowpass scan pattern is used to
encode/decode the lowpass transform coefficients in a macroblock. The highpass hori-
zontal and vertical scan patterns are used to encode/decode the highpass transform co-
efficients in a macroblock. Macroblocks that are signaled as dominant horizontal use
the highpass horizontal scan pattern, and likewise for vertical. Macroblocks showing no
dominance of orientation also use the highpass horizontal scan pattern. The scan pattern
is derived from the macroblock DC prediction pattern as defined in 2.8. The three scan
patterns are initialized to a specific ordering at the start (top left macroblock) of each tile.
The lowpass scan pattern and the highpass horizontal scan pattern are initialized to the
pattern shown in Figure 2.14(a)[1], and the highpass vertical scan pattern is initialized to
the pattern shown in Figure 2.14(b)[1]. All.color channels within a macroblock use the
same corresponding scan pattern.

In the adaptive scanning, only 15-coefficients in the black@ matrix) are define as
a 1D array. The array elements refer to the transform coefficient index (from 0 through
15, in raster order for thé x4 transform block), in order of their scan. Thus, the scan
pattern shown in Figure 2.14(a) can be written as:

Order[]= 1,45, 2,8,6,9, 3,12,10,7, 13,11,14,15

For each of the three scan patterns, another 1D array which is called "scan weight” is
created. This is initialized with descending values as shown:

Weight[] = 28,26,24, 22,20,18,16, 14,12,10, 6,4,2,0

The array "Weight” tallies the incidence of occurrence of the particular coefficient.
The scan weight is updated while current processing coefficients is not zero. When a
coefficient with non-zero value is scanned, the weight corresponding to this coefficient
order is incremented by one. Then the scan order is sorted again according to the values
of weight. If Weight Array is found that Weight[n} Weight[n - 1], an exchange operation
is applied to the scan order. During the exchange step, the scan orders and corresponding
Weight of n and n - 1 are switched. Then the new updated order is obtained

Figure 2.15(a) shows a situation where Totalsfnfotals[n - 1], indicated by shaded

15

&\\9 -

RSP
AN
IR

Figure 2.13: Traditional Zig-Zag scan pattern.

X037 X13|7]|9
112|510 02611
416|912 1151214
8 1111314 418 |13/10

(a) (b)

Figure 2.14: Initial DC scan patterns (a) lowpass and highpasizontal scan pattern,

and (b) highpass vertical scan pattern.[1]

16

elements. The arrows show the elements that need to be exathahige table of Figure
2.15(a) also shows the Order and Totals arrays subsequent to the exchange, and Figure
2.15(b) shows the corresponding scan order indices ot the block. Exchange, when

triggered, occurs subsequent to encoding or decoding. Therefore, the adaptation is causal.

2.6 Update Modelbits

Wide dynamic range input data resulting in wider dynamic range transform coefficients
during the process of encoding an image. It also large the range of quantized transform
coefficients when encode image with small or unity quantization factors. Adaptive co-
efficient normalization is a step in the JPEG XR encoder which processes the transform
coefficients to render it suitable for efficient entropy coding.

JPEG XR tracking a statistical measure of variance of transform coefficients in adap-
tive coefficient normalization process. Based on this measure, the current transform co-

efficients are regrouped into two data arrays. One.is noarmalized coefficients,the second is

0 4 1 7
0 0 0 0 scan | 1 2 3 4 5 6 7 8 9 | 10
level | O | 4 | © 0 0 [) [) o | - 0
© 10 13 8
0 0 0 0 W | 34 |34 | 28 | 26 | 24 | 22 | 20 | 20 | 20 | 14
2 14 15 1 Update weight
4 0 0 0 Wnew‘34|35|28|26|24|22|20|20|21‘14
6 9 12 3
0 1 0 0
(a)
0 4 2 7
0 0 0 0 scan 1 2 3 4 5 6 7 8 9 10
level | -4 | o 0 0 0) EE) 0
5 10 13 9
0 0 0 0 w | 35 | a4 | 28 | 26 | 24 | 22 | 20 [21 | 20 | 14
1 14 i, 11
-4 0 0 0 Woew | 36 | 34 [28 [26 [24 [22 | 20 [22 | 20 [14
6 8 12 3
0 1 0 0

(b)

Figure 2.15: Inverse scan order (a)just prior to an exchapgeation occurring between

shaded coefficients, (b) subsequent to exchange operation.

17

dyadic bins which called Flexbits. Instead of encoding thagform coefficient, its bin id

is sent using an efficient entropy code. Subsequently, an in-bin address locating the trans-
form coefficient within its respective bin is sent. This index is sent with a fixed length
code called Modelbits. Sign information is also sent if necessary. Adaptive coefficient
normalization is used for all frequency bands including DC, lowpass and highpass.

The data flow of entropy coding in JPEG XR is shown in Figure 2.16. In the en-
tropy coding, first, scanned coefficients are shifted according to ModelBits. Bits of each
coefficient are separated into FlexBits and normal data. Shifted data which are non-zero
are concentrated to compute next one ModelBits with different weight when coding in
different bands.

The FlexBits are considered as the shift-out data in normalization, while the normal
data means the normalized coefficients after shift . The normalization process is exempli-
fied in Figure 2.16. If ModelBits is-equalto-4. The least significant four bits are output as
FlexBits, and the other bits are output as-normal data. While FlexBits are output without
any entropy coding, normal data is-sent to the run-level coder, which encodes the normal

data into stream with period interleaved runs and levels.

2.7 Run-Level Coding

JPEG XR Run-Level Encode(RLE) is one compress method which similar to the Run-
Length-Encode algorithm in JPEG. The purpose is in order to reduce repeatability of zero
coefficients between any two non-zero coefficients. The arranged coefficients are given
two different symbols: RUN and LEVEL. RUN means the numbers of successive zeros
before non-zero coefficient, and LEVEL is orignal non-zero coefficients. After processing
of RLE algorithm, the RLE results are coded with independent Huffman tables. Figure

2.16 describes the process of RLE.

18

Coefficients Normal Data m

28(011100)
-79(10110001)
-650(10101110110)
2(010) s
-3(101) s
75(01001011) 4(0100)

i
<
(7]

'.I‘ndex | 28 | index | 5 | Run(t) | index | 41 | Run(@) | index | 4 | ... |
Coded
Bitstream §
> 0111 [0001 | 1001 |'s| 0110 [0010 ['s| 1101 [s] 1011] ..]

Figure 2.16: Normalization and Flexbits (If-Modelbits = 4).

2.8 Coded Block-Pattern

The JPEG XR supports to using a coded block pattern(CBP) to signal ALL-ZERO blocks.
CBP for one macroblock consists of 18 bits pre channel(each of YUV444). In addition
16 bits to marked HP coefficients of each 16 blocks, extern other 2 bits labeled DC coef-
ficient and LP block. By using this CBP, which be decoded from bitstream, the run-level

decoding , Huffman decoding can be skipped when CBP flag shows that is all-zero block.

Table 2.1: Structure of CBP
Y Channel CBP

DC | LP HP
1bit | 1bit 16bits

19

2.9 Huffman Coding

Finally, these runs, levels, and CBPs are coded using adaptive Huffman coding. The co-
efficient levels and signs are encoded according to their frequency band and use different
Huffman Tables to generate the corresponding resulting bitstream. All used adaptable
predefined Huffman tables are listed as Figure 2.17 [7]. Huffman coding is the most
common coding using in image compress. It also be one lossless compress method, in
other words, it is reversible. The Huffman coding of JPEG XR is some different to other
standards. The Huffman table using in a general coding scheme is one fixed table. But
in JPEG XR, several tables but smaller are prepared, and current table on use is adap-
tively selected based on benchmark calculated by Adaptive Huffman Coding engine. The
use of small predefined Huffman Tables helps maintain a small memory footprint and
the estimation algorithm is computationally light. Many but small separated Huffman ta-
bles is more efficient for Huffman Coder to search Symbol corresponding to the coding
coefficient.

The effectiveness is given for-a given symbol sequence of each table. Owing to this
scheme, an effective coding with shorter code length is achieved. In this adaptive Huff-
man coding, the weight called Delta of current coding Symbol are calculated and the
differences are accumulated: If the accumulated value runs up to the threshold, the cur-
rent table (Table X) is changed to'the most effective one, which is Table (X-1) or Table
(X+1). This change occurs only after processing target macroblock. As a result of these

processing, scanned coefficients entropy coded.

2.10 Bitstream Structure

Figure 2.18 [1] shows the JPEG XR image structure hierarchy. JPEG XR support max
256 columns of tiles in the horizontal direction and max 256 rows of tiles in the vertical
direction. Thus, an image may contain max 65536 tiles. When an image only contains
one tile, it is said to be untiled. If the number of tiles is greater than 1, the image is said
to be tiled. Tiles form a regular pattern on the image in other words, tiles in a horizontal

row are aligned with the same height; tiles in a vertical column are of the same width and

20

SYMBOL

] 0000 1 0010 1 001 010 0 1 01 0000 00000

1 00 0001 00010 001 1 1 1 0 0000 o000 0001 00001

2 000 000D 00 0000 000 D000 000 0000 000 0001 2 001 10 o1 01

3 000 0001 00 0001 000 0001 00001 0001 3 0 0001 0004 10 1

4 00100 0ot 00001 00010 000 0010 4 01 11 " 0001

5 010 010 010 010 o1 5 0001 001 001 001

8 00101 00011 000 0010 000 0001 0000 0060

7 1 11 o1 o 0010 SYMBOL

2 D010 o1 100 o001 000 0011 - a 1
All code tables used in HD

3 0001 100 101 100 0011 g 1 o1
Photo for coefficient and

10 0o 00001 000 0011 00 0001 0000 0001 2 oot

coded block pattern
11 011 101 oot 101 oot 3 ooo

coding, enumerated in
binary

1 £ 0000 001
] o010 o010 9 ik
3 00001 0001 4 o
1 00010 00 0001 2 1 001 2 1 1 * e
B 1 on 3 001 0001 1 01 000 . 1
8 011 00001 4 oo 00001 2 001 a0t > i
7 00011 000 0000 5 00000 00 0000 3 0006 a10 L voa
[0014 000 0001 5 00001 00 0001 4 0001 ot g o

Figure 2.17: VLC Coding Tablesused in JPEG XR.

aligned. Subject to the above, tiles may be of arbitrary size which is a multiple of 16 and
macroblock aligned.

There are two fundamental modes of operation of JPEG XR affecting the structure of
the bitstream Spatial and Frequency. In both the modes, the bitstream is laid out as a
header, followed by a sequence of tiles as shown in Figure 2.19 [1] .

In the Spatial Mode, the bitstream of each tile is laid out in macroblock order. The
compressed bits pertinent to each macroblock are located together. Macroblock data is
laid out in raster scan order: scanning left to right, top to bottom.

In the Frequency Mode, the bitstream of each tile is laid out as a hierarchy of bands.
The first band is referred to as DC. The DC band carries information of the DC value of
each macroblock, in raster scan order. The second band is referred to as Lowpass. This
band carries information of the lowpass coefficients which are fifteen in number in each
macroblock (for each color plane, with some exceptions). The third band is called the
AC band and carries information of the remaining 240 coefficients of each macroblock
colorplane. Finally, the fourth band called Flexbits is an optidager that carries in-

formation regarding the low order bits of the AC coefficients particularly for lossless and

21

MB aligned
image

T
|
|
I |
|
:I :\ Input
|
|
|
|

image

Macroblock
RS

Figure 2.18: Image structure hierarchy.

WG FOR | WOEXTE. | EET R -+

“'MB Structure
MB_1 | MB 2 | MB.3 | «veerreeeeemnemmnernnnenns

[bC | HIGHPASS | FLEXBITS
. Bitstream Structure

Figure 2.19: Layout of JPEG XR bitstream: Image header igi@d by a sequence of

tiles which are in Spatial or Frequency mode.

22

low loss cases.

23

Chapter 3

Architecture design of JPEG XR

3.1 Profiling

The full coding of JPEG XR process with three main parts: Frequency Transform, Pre-
diction and Entropy Coding.. Before our design of JPEG XR encoder architecture, per-
formance for each encoding stage in-C sample code builded by Microsoft is analyzed.
Analysis for CPU processing time is described in Figure 3.1(a), Entropy Coding account
for most of CPU usage and reach to'85%. Amount them, the entropy coding of coeffi-
cients in high pass band cost the most resources and up to 77%. Because there are 240
coefficients in high pass band encoded.in each macroblock, but only 15 coefficients in
low pass band and 1 dc coefficient are processed.

Entropy Coding contains many feedback mechanisms to detect the status of the cur-
rent coefficient to optimize the best compression ratio of Entropy Coding. For example,
adjust the normalization shift-bit numbers to enhance the performance of RUN-LEVEL
coder. Adaptive scanning change the coefficient scan-order to concentrate all non-zero
coefficients to improve the hit rate of the coefficient scanning. Adaptive Huffman Table
switch different tables to minimum the using bits as much as possible. Although the op-
timized adaptive computing is helpful to increase the image compression ratio, but the
relative computational complexity is also increase the cost of encoder architecture. Due
to these problems, how to design these architectures become challenge to achieve high-

speed performance for current embedded systems such as digital still cameras. How to

24

PCT Stage2
1%

(a) (b)
Profiling Of Lossless JPEG XR Encoding Profiling Of Entropy Coding

Figure 3.1:

speed up the entropy coding in high pass band is the primary task in architecture design
of JPEG XR Encoder. The Entropy Coding of JPEG XR process with three parts: Adap-
tive Scan, Huffman Coding, Bitstream Putting. As the profiling of Entropy Coding stage,
Figure 3.1(b), which also shows that huffman coding including of Index, Level, and Run
costs 55% of total entropy coding usage. Our proposed architecture of Entropy Stage is
also divided into three stages with pipeline buffers. The pipelined architecture can help
to decrease the timing of critical patch and increase the throughput. The buffers record
the arranged result from adaptive scanning smoothly, for this reason, the processed co-
efficients by RLE can be send to each huffman look-up table independently. Namely,
our proposed huffman coding can translate Index, Level and Run to relative codewords
without data dependency and improve the encode throughput.

The coding complexity of the prediction stage is fewest than PCT stage and Entropy
stage, because that only 52 coefficients in one macroblock are necessary to be predicted.

Pipelined structure can balance the different complexities of these three stages effectively.

25

But in Entropy Coding stage, the data dependency of codinfliceats also become the

main bottleneck of full encoder. On the other hand, by considering the data dependency of
all encoding processes including entropy coding, the fully pipelined structure is proposed,
so the bottleneck in entropy coding is overcome and it achieves higher throughput than

those of related works.

3.2 Design Challenges

The design challenges about implementation of JPEG XR architecture are described as

below list.

3.2.1 Mismatch Data Processing Sequence

The encoding sequences in blocks are differentwhenprocess PCT, Prediction and Entropy
Coding. That means the processed-result of PCT can not be transmitted to prediction
stage currently. Similarly, the entropy coding also can not compute the predicted result

directly. The buffers for recording operated coefficients temporarily is required, which

will increase the cost of hardware!

3.2.2 Code Block Pattern

Coded block pattern(CBP) is one unit which is used to signal ALL-ZERO blocks. The
normalized coefficients are detected and counted, then the blocks which contain all coef-
ficients to be zeros are labeled. In the structure of JPEG XR bitstream, the CBP is com-
pressed and arranged in the front of bitstream of each band. The entropy result should be

held until the processing of CBP is ready.

3.2.3 Architecture Of Entropy Coding

According to the analysis of JPEG XR profiling, Entropy Coding is the most complex
stage of all. Three feedback mechanisms which contain Adaptive Scan, ModelBits and

Adaptive Huffman used to optimize the best compression ratio are all executed in this

26

stage. The status of the current coefficients are detected, rdisponded weights are

concentrated to calculate out great solution for replacement of original one. The data
dependency of coding coefficients in Entropy Coding stage become the main bottleneck
of full encoder. Proposed architecture should overcome the complexity and accelerate the

throughput of computing.

3.3 System Overview

The pipeline stage of this designed JPEG XR encoder can be divided into three Processing
Element (PE) stages, as shown in Figure 3.2. The color conversion and PCT modules are
computing with thet x 4 block matrix structure without feedback information, they are
sensible to arranged into the same stage at the beginning. The input RGB image convert
to YUV data and transfer into frequency coefficients in this stage. After processing of this
stage, the coefficients of DC,AD,AC bands are saved into pipeline buffer.

The prediction unit is used as second stage.. There are different direction compar-

0 1 2 3 0 ! 2 3 0 1 4 5
4 5 6 7
é)’)) 4 5 6 7 B B o o 2 3 6 7
S 8 9 10 | 11 12 13 14 15 8 9 12 | 13
9 12 13 14 15 0 4 8 12 10 1 14 15
Q
@ 1 5 9 13
@
2 [o [0 | Update Modelbits o
3 7 11 15 T g
_ Adaptive Huffman e
3 T T =
= 0ng
= S o |8 Prediction Bz =)
g |9 c | |5 Se m2 mz @8 <
o o 5 [©]) 2 sl clled =
S SlNlol = Non-Zero S BRBIPFE o
3 S| R 2 Scan o2 awlad =8| =
< =L = c wleo < o N)
& |2 5 |3 AR LS
N -) =
° 5) - " || CBP detection || T || 5
= ° -
3 5 5
& Flexbits
Prediction
Line Buffer CBP Encoder

Figure 3.2: Three pipeline stages of JPEG XR architecture.

27

isons for separate DC,AD,AC bands to process predictiontifmumcThis stage also need
prepare one buffer of line for coefficients prediction use when prediction mode is “Pre-
dict From Top”. Then the entropy encoding module which have highly data dependency

is divided as the third stage. The data dependency cause this stage to become the most
complex architecture of full IPEG XR design. The three main complex data dependency
controller resulting coding speed in lower performance. This section will be discussed in

later chapters.

3.4 Color space converter

Color domain converter is one simple process unit which is builded with only two adder
and two subtractor. Figure 3.3 describes the structure how RGB data are converted into

YUV data from input image.

3.5 Architecture of PCT

Figure 3.4 shows the implementation of the Hadamard transform, whick contains only
trivial operations. In total there are 8 instances-of addition / subtraction.

Figure 3.5 shows the implementation of thgl, transform, which contains only
trivial operations. In total there are 24 instances of addition / subtraction.

Figure 3.6 shows the implementation of thglhopp transform, whick contains

only trivial operations. In total there are 19 instances of addition / subtraction.

R (Y

G—(-) S
Taa®

B - v

Figure 3.3: Structure of color space converter

28

SHIFT

AOUT

Sy |

CIN cout

[E— — ——

DIN / 1 / D OUT

L — ——
L

Figure 3.4: Structure overview of Th transform.

Figure 3.5: Structure overview of T odd transform.

Figure 3.6: Structure overview of T oddodd transform.

29

1 ‘ ﬁ Th H Th
m Th ‘ HTO(M
m Th :H Todd
DC,AD

Blocks H { H Th ‘ Toddodd

<~

Pipeline
Buffer

Photo Core Transform

SJUDIANJA00 967,

Selected Blocks

Figure 3.7: Architecture of full PCT stage.

The PCT process is designed with two stages. One Macroblock is devided into 16
blocks then 16 coefficients-of each block are transferrd to the processing of main PCT
architecture include &, Topnps Toppopp transform. Every transformer can process 4
coefficient pre clock and every block must be calculated with all three transform. After
completion of the first transform stage, the 16 DC coefficients are stored and arranged in
one new4 x 4 block. MUX selector is designed and applied this new block into trans-
forms as same as pct stagel processing again. In the pct stage2 , the DC and AD bands
are generated. The Y,U,V channels are independent and could be designed to parallel

computing with no interfere with each other. Figure 3.7 shows the structure of full PCT

transform.

3.6 Prediction structure

Prediction is the most simple unit of full JPEG XR implementation . The block diagram

of our prediction module is shown in Figure 3.8. Prediction mode detectors are used

30

—

dOL1 woud
1437 woi4

of=|=]x

= |lolo|e

olo|o|x

olo|lo|e
olo|lo|e
olo|lo|=
olo|lo|=
olo|=|e

Y
©
o]
5 Y
® 3
W 5
5 AD TOP 1]) a ;"J
' 1 o c
g =
2 AD TOP 2) b {> 3
o E—4F -
3
AD TOP 3 IL A S
o] -) —

SRAM
TOP BLOCK

Figure 3.8: Structure overview of prediction.

to collect the necessary coefficients and calculate the correct prediction orientation for
each DC,AD or AC band of target MB. The saved prediction value of neighboring top

or left macroblock is output according to the prediction mode. FSM applied the selected
block into Prediction Actuator and choose the right prediction value from TOP or LEFT
coefficients registers. Since macroblocks are processed in raster scan order, the data for
the current row of macroblocks should be stored. In the proposed architecture, the data of
the neighboring top macroblock is stored in SRAM, and that of the neighboring top-left
and left macroblocks is stored in registers. Prediction Actuator play the role to subtract
the input coefficients and the corresponding selected prediction value, then save the result

both to the registers of block and the pipeline sram for next stage use.

3.7 Coded block pattern

CBP is one special unit in JPEG XR design different to other image compression. CBP

unit use 18 bits array for each channel of one macroblock to signal block which consist

31

ALL-Zero coefficients. Zero Detector is designed to checkhd turrent coefficient is

zero or not. After collection of status of all coefficients ,256 mark bits are arranged into
three parts. One bit is for DC pattern ,and following 15 bits are re-organized with WIRE-
OR operation then resulted new one bit. This bit is for AD symbol. The remaining 240
bits are re-organized with 15 bits as one group by same operation as AD region. AC band

consume 15 bits for CBP symbols in each channel.

3.8 Structure of adaptive scan and entropy coding

The final stage of full JEEG XR architecture is the most complex part than other two
stages. There are three main complex data dependency loops affect the encode perfor-
mance of the operation in the entropy encoding module. The data flow dependency of
entropy encoding is shown as Figure- 3.9. The first one is the adaptive-scan function

which is used to caculate coefficients distribution.and refresh one new scan order table for

Adaptive Huffman
Update ModelBits Controller
Controller
o
5 (w3
o
. t
3 = =3
z 3 g
=R =]
g 5 9
ES o
© a5
L : :
=
8
Adaptive Scan B
Order Array
N’/

Figure 3.9: Structure overview of pipeline stage 3.

32

next block scan use. The second one is the Update ModelBitsuvd&ibn block, which

can decides how many bits are used to represent one coefficient and let RUN-LEVEL
coefficients arrangement be more efficient. And the Adaptive Huffman Encode function
choose the most efficient Huffman table to minimize the number of total entropy bits.

From the data flow path of Figure 3.9, the dependency path from the RLE Coder func-
tion block to the Update Model Bits block affect the efficiency of the encode. The scan
order of DC/AD/AC coefficients decided by Adaptive Scan Order function block also
require the feedback information from RLE Coder function block. The Adaptive Huff-
man Encode function block also needs to be updated according to the Index/Level/Run
information. Coefficients after Adaptive Scan will be divided into two parts, one is bit-
streams which is called Flexbits and another one is re-arranged coefficients coded by RLE
module. JPEG XR use different Huffman Tables for each data ranked according to their
symbol: Index, Level or Run. TheCodewords of Index ,Level and Run are concentrated
before packet to bitstream because it can reduce the loading of Packetizer then speed up
the encoding.

Our proposed Entropy‘Stage of designed JPEG XR is also divided into three stages,
as shown in Figure 3.9. The pipelined architecture can help to increase the throughput
and decrease the timing of critical patch. Adaptive scan and Run-Level encoder precess
in the first stage. Consider the feedback patch-in this stage, related Update Modelbits
Unit and “Scan Table Updater” are also designed in the same stage. Following Huffman
Code Generator is placed in stage two, in the same, this stage should achieve related
Adaptive Huffman Controller to update the optimal Huffman Table. The first codeword
pre-concentration is also designed in this stage. In the final stage, Packagetizer arrange
the concentrated codewords from entropy coding stage then output the wdp file. 1deally,
the designed entropy coding can reduce the timing of critical path to 1/3 and increase the

throughput about 3 times by well arranged pipeline timing schedule.

3.8.1 Data Dependency

The pipeline buffers are used to solve the problem of data dependency. In Entropy Coding

Stage, one completely bitstream code is concentrated by information of Level and Run,

33

then the scanned data can be processed to huffman code whequaléd Level and Run
are ready. First, one example of hype-pipeline structure is expressed. Assumes that one
current block is processed in Entropy Coding Stage, which is shown as follows:

Block=[L1,R,R,R, L2, R, R, L3, L4, L5, End]

The designed “Level Reg” and “Run Reg” are used for hype-pipeline register between
Adaptive Scan Stage and Huffman Coding Stage. In the first cycle of adaptive scan, Level
Reg is updated to L1 and Run Reg is reset to Zero. After the 4th cycle of adaptive scan,
the value of Run Reg is updated to R(3). In the 5th cycle, Adaptive Scan gets L2 and
detects that counting of current Runs is finish. But the L2 can not be updated to Level
Reg in this cycle, Huffman Coding Stage should be notified firstly to process the L1 which
is kept in Level Reg and the R(3) of Run Reg. Otherwise, L1 of Level Reg has not yet
been processed to huffman code but been refreshed to L2. Correct processing cycles of
Adaptive Scan FSM are shown as-ollowing.

Adaptive Scan FSM = [L1, R(1), R(2); R(3), OK, L2, R(1), R(2), OK, L3, OK, L4,

OK, L5, OK]

For Huffman Coding Stage, it requires 15 cycles to finish huffman code translation
of Index, Level, and Run. .Now considering the structure.of pipeline buffers, the Level
Register Array and Run Register Array are prepared to record the result of Adaptive Scan
Stage. Adaptive Scan processes the coefficients of .current block and arranges them to
RLE format with 10 cycles. The arranged coefficients are recorded into register arrays
which are shown as following.

Level Array = [L1, L2, L3, L4, L5]

Run Array = [R(3), R(2), R(0), R(0), R(0)]

For Huffman Coding Stage with pipeline buffers, it only requires 5 cycles to finish all
huffman code translation. Adaptive Scan is unnecessary to check the status of Huffman
Coding because of our proposed pipeline buffers, thus, the re-arranged result of adaptive
scan stage can be recorded smoothly. Another coming advantage is that recorded data in
the buffers can be send to each Huffman Look-Up Table independently. That is to say,
huffman coding can translate Index, Level and Run to relative codewords without data

dependency and improve the encode throughput. This advantage become more obvious

34

when parallel Adaptive Scan structure is designed. Becduespdrallel Adaptive Scan
can process coefficients of one block faster than Huffman Coding. The data of parallel
scanning may contains more than 2 Levels in one cycle, that means, the data dependency

become worse when use hype-pipeline structure.

3.8.2 Adaptive scan structure

In the adaptive scanning module as shown in Figure 3.10, data of current block is selected
to zero detector for Run/Level checking according to scan order. If input coefficient is
detected as Level, the weight corresponding to the coefficient scan order is incremented
by one. Then the weight of current scan order will be compared with last scan order.

If the weight of current scan order is larger, the scan order of current one and last one
should be exchange to optimal the adaptive scan. The updated scan order is obtained as
the result of scan order sorting. After scan of one block finish, the scan order is sorted
into newer status for next block using.-After the processing of the adaptive scan module,

then the rearranged coefficients are hormalized-according to ModelBits, and decomposed

Adaptive Scan FSM
(Level Count=Non-Zero?)

0J8Z-UoN

Pipeline Buffer

Run
Level
Level A Run

J{ S FlexBit 1
v . Level FIexB!t -
;CU Level B RIn FlexBit 3
g 9 i 3 ~un B FlexBit 4
% 2 S g Level FlexBit 5
2 - S 3 . 2 Level C Run FlexBit 6
: 2 2 = Run C
s o 3 ?I'I"I Level
: — . g_ Run
Q ' FlexBit 13
FlexBit A Level FlexBit 14
FlexBit B Run

FlexBit C FlexBit 15

Scan Order Update Order
END
Coefficient Scan Table

Figure 3.10: Structure overview of adaptive scan.

35

into normal data and FlexBits. Flexbits is composed from thi#-sut coefficient with

shifter which is controlled by ModelBits. JPEG XR group ModelBits into six types: DC
band Y channel and C channel ,AD band Y channel and C channel, AC band Y channel
and C channel . C channel include U and V channels. Normal data is sent to the run-level
encoder and coded into runs and levels. ModelBits is also needed to be updated once in
every MB based on the normalized result as total numbers of "Levels”.

In our new designed architecture of adaptive scan, the FSM of this stage can receive
the non-zero value of current block which is calculated when prediction stage and detect
current scan sequence if all non-zero coefficients are processed. If the current scan counter
reach to total need-to-scan level coefficients, FSM controller stop the current scan and
save back the updated scan order. Then next scan block is began to set to initial status.
Adaptive scan feedback mechanism will let coefficients which are probable Levels be

arranged to the front of all scan sequence.. Positive scan sequence detector is help to

LevelA)

Level B

00—

)
e

Run_Flag3 +

un

J
(NN

—Run_Flg 1/2/3 77

il

S

—RUN [—

—Levels Number
22—
—» Level Count—»
—»
(O

Figure 3.11: Implementation of Run Level Encoder

36

reduce un-necessary power consumption and save more tiperimgefor the next phase
of coefficients scan.

As the analysis of adaptive scan result, the average number of normalized coefficients
in high pass band is 5 Levels of one block. That is to say, in order to ensure the com-
puting fluency of the entire entropy coding stage, adaptive scan stage should finish all
coefficients scanning under 5 cycle. So the huffman coding stage can process the entropy
coding without waiting. Our proposed adaptive scan structure improves the comparator
array to faster 3 times than original design. Scan controller selects 3 coefficients in each
cycle and processes Level Detection to match the updated weights by designed parallel
comparator array. Adaptive scan processor swap the orders and weights according to re-
sult of comparison and refresh updated values to registers in next cycle. For each block
composed with 15 coefficients, it just requires 5 cycles to be completed all coefficients
scanning, which even be faster because of the adaptive order influence.

Run Level Encoder with parallel structure is also designed to determine and clas-
sify the multiple data from.scanning-results. Three scanned coefficients and their new
updated flags namely “Runflag” are re-arranged to Run-Level-Coding format by this
encoding unit. The first value of RUN array may contain four possible combinations:
(A)Coefficient 1 is Level, (B)Coefficient 1 is Run, (C)Coefficients 1 and 2 are Runs,
(D)Coefficients 1, 2 and 3 are all Runs. One particularly noteworthy logical judgment
is that conditions(C) and (D) will not‘hold when condition(A) is true. According to the
same logic, the condition(D) will not hold when (E)Coefficient 2 is Level, regardless of
condition(A) is true or not. Two AND operators linked to the input Runflags serve as role
as the above description. Runflagl is connected to these two AND operators for checking
condition(C) or (D) if true or false. Similarly, Runflag2 is also connected to the second
and third AND operators for conditional judgment. Multiplexers are designed to arrange
correct computed Runs and normalized Levels according to distribution of Runflags. Base
on the updated counter of Levels, the organized results are saved to the buffers called RL-
CBuf and FlexBitsBuf. One prepared register in advance records the count of last Run to
accumulate the passible continuing runs which should be send for next computing in next

scan. Figure 3.11 shows the implementation of our purposed Run Level Encoder.

37

3.8.3 Huffman encoder

Figure 3.12 shows how the Level, Run and Index choose the suitable Huffman tables to
generate the RLE codewords. The “Run” and “Level” are generated after RLE module,
and “Index” is also created according to arrangement of the “Run” and “Level”. In the
Huffman encoding stage, they are translated to the relative codewords by different Huff-
man index tables. According the type and value of input data, Codewords and Codesizes
are generated from the corresponding Huffman Tables. All outputted Codewords are con-
centrated to become the bitstream of JPEG XR file. The Huffman encoder in the JPEG
XR is different from the other standards. JPEG XR supply many but small Huffman ta-
bles for each type and can adaptively choose the best one from these tables to optimal the
codesize of Run, Level and Index. Thus, JPEG XR can get the best compression ratio by
following describing adaptive huffman controller.

After the Huffman encoding, three sets of codewords are produced and concentrated as
one by pre-concentrater. Pre-concentrater is composed with 2 groups of “Barrel Shifter”

and “Bitwise OR Operator”. First group of shifter shift the second concentrate codeword

o Huffman Encode FSM
ol
° (Counter=Level Count?)
5
Adaptive Huffman Controller
(I Huffman Table Series 12 |\
First Index I Huffman Table Series 6 | Ilr:] iz(%zzzv:izf
: S
g _ PEIEREL PEIEREL J
=
% [I Huffman Table Series 7 |\
m | Level Index Table | | Level Codeword
8 IE_; | Level Codesize
% | Level Fixed Length Table | .
% evel Delta Table
2 (&
~ (T)\
IE: | Huffman Table Series 5 |
| R N
Run
Run Bin Table
g »

Figure 3.12: Structure overview of Huffman Coding.

38

according the first concentrate codesize. The shifted codewd is arranged to the end

of first codeword, then OR Operator is processed to combine these two codewords and the
longer updated codeword is generated. The second group of concentrater process the third
input codeword with the result of first concentrater. Architecture of Pre-Concentrater also
be designed to contrate the Flexbits separated by Adaptive Scan stage. The structure of
Pre-Concentrater is described as Figure 3.13 As the previous description of the above
operation, the whole RLE codeword and RLE codesize will be produced to the packetizer

of the entropy coding stage three.

3.8.4 Adaptive Huffman Coding

Runs and Levels are coded using adaptive Huffman tables, meanwhile, the difference of
the code length which is coded from Delta Tables are also accumulated. The tables are
changed if the accumulated result runs up or down to the threshold of detection. These
thresholds for detection are.called-Upper Band and Lower Band. When accumulated
result reach Upper Band, it means that the probability of partial Levels and Runs is rel-

atively high. So the another designed Huffman Table may be suitable for next block

Index Codeword
Index Codesize -

Flexbits A sze)
Flexbits Size A l

Level Codeword

Barrel
Shifter

Level Codesize Vo)
Flexbits B .
Flexbits Size B
Run Codeword

Concentrated
??rrel Codeword
Flexbits C Shifter
Flexbits Size C
Concentrated >
+ Codesize
e

Figure 3.13: Structure of pre-concentrate for Huffman eraedult.

39

encode, Huffman Table is updated. On the otherwise, the qoersee of Lower Band

will change the Huffman Table to the opposite side. Figure 3.14 shows the implementa-
tion of Adaptive Huffman Encoder. Discriminiant Register accumulates the value resulted
from delta table, then the detection of upper/lower band generates the relative judgement

for Table Selector to choose the suitable huffman table.

3.8.5 Architecture of Packetizer

The packetizer architecture is based on the [12] architecture which is shown in Figure
3.15. Itis designed to combining all the RLE codewords and the FlexBits to generating
the JPEG XR compressed file. The concentrate bus width support 32 bits for one complete
format. The module detect the input codesize first, then shift the input codeword to the
corresponding placement. ACC register accumlate the size of all input Codesizes and
send out “OK” signal when amassed size reach-32 or higher. At the same time, the bus

"Word” is ready for main controller to-collect and output IPEG XR file.

‘ Huffman Table Series 7-1
Index Codeword Codesize

0 1 2

1 2 2 L
Upper Band ?

2 3 2 Lower Band ?

3 1 3)

4 1 4 -

5 0 5 B

6 1 5

Huffman Table Series 7-2 —

Index Codeword Codesize ‘
Table Index | gl

0 1 1 Index Delta L

1 1 2 0 1

% 1 3 ! 0
2 1

3 1 4
3 -1

4 1 5) 4 1

5 0 6 5 1

6 1 6 6 1

Figure 3.14: Structure overview of Adaptive Huffman Encoder

40

overflow

il

Ready
Output Word

41

Chapter 4

Performance Analysis and

Implementation Results

In this chapter, we analysis the perfarmance of ourimplementation of JPEG XR encoder,

including the encoding benchmark, and the coding comparison.

4.1 Performance Bottlenecks

There are three feedback loops.in adaptive scanning and entropy coding; (1) Control of
ModelBits, (2) Updating of the scanning order,-and (3) Decision of the Huffman table to

be used. Therefore how to design a pipelined module in a straightforward implementation
become a challenge. Used width in ModelBits should be calculated out at the end of the
encoding of the current macroblock. The next block scan order is according to the com-
puting result of scan weight in last block. The selection of Huffman table is also decided

by constantly revised delta value from every used Huffman code. For these reasons, it is

difficult to design processing macroblock in parallel encode structure.

4.2 Enhancement

Before discussing of performance improvements, we focus on some interesting and par-

ticular design of JPEG XR. Figure 4.1 shows the variation about “Update Modelbits”

42

Coefficients Number of High Pass Band

250

200

150 B B

100I | I I I I I I
N T I i . Ll ..l e il I nl. 1 b
A R R R R R AR, AR

123456 7 891011121314 151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

= Coefficients/Macroblock

(@)
Modelbit Length of High Pass Band

45
4 !

3.5

3 |

25

2
15 III I

: 1l
0

123456 7 8 91011121314151617 18 19 20 21 22 23 24 25 26 27

8 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
W modelbits

o

7 58 59 60 61

N
@
@

2

@

3

(®)

Figure 4.1: Variation of High-Pass band update Modelbitsenacroblock

adjust bits-number relative-to the sum of current macroblock in every band of every chan-
nel. One partial image with siZe8 x 128 pixels captured from Lena.bmp is inputted for
simulation, the total numbers of coefficients in high-pass band and the Modelbits width
of current macroblock are recorded. The X-direction of Figure 4.1 count up for selected
coded macroblock, the Y-direction of Figure 4.1(a) shows the coefficients number of
High-Pass band and (b) shows the used ModelBits width in every current macroblock.
Notice that the accumulated weight is growing up when high-throughput marcoblock is
coding, and the Update ModelBits controller will increase the ModelBits size to improve
whole Levels counts in next macroblock. Otherwise, ModelBits processor also reduce
the ModelBits size when coding low-throughput macroblock in order to prevent the much
Flexbits sizes influence the compress rate of JPEG XR bitstream.

Further, scan patterns in JPEG XR are allowed to change scan order with adaptive
rules. The updated scan order enhance the performance of Run-Level Encode in positive

way. That means the scan coefficients are arranged in the front of scan array as larger

43

probability as passible. Therefor, the architecture of atling stages are designed with
coefficients counter and detector to determine current processing if finish or not. The
reason is described as above and the original Hard-Coding State Machine structure is
replaced. FSMs of each stages complete all the need working and transit “Finish” infor-
mation to another FSMs then ready for execution of next step. Processors no waste any
energy in dealing with un-necessary operation.

Faster scan structure is also invented in 3 times than rudimental design. 15 coefficients
of each block could be done in less than 5 clocks. Speed up the separation of Run-Level
data and Flexbits advantage to accelerate the computing of Huffman encode stage. The
latency of scan stage is shorter, the entropy coding stage could encode the data with min-
imal waiting and increase the throughput in straight. Consider that coefficients scanning
result the Flexbits with large amount of data, and fixed 15 cluster of memory always be
required to recode the Flexbits when ModelBits width is not zero. Pre-Concentrater is
designed not only for concentrate Run and Level codewords, 3 Flexbits also be massed
into one new sum of Flexbits. For-packetizer, it just need more 5 clocks to collect all
Flexbits into bitstreams of IPEG XR. The total numbers of RLE’s result and concentrated
Flexbits in our design comes 10 in average of one block(High-Pass band). The statistic

result lists as below Table 4.1

Table 4.1: Average clusters of'one block after entropy coding result(HP part)

Pic Name Lena.bmp Baboon.bmp Peppers.omp F16.omp

Resolution 512 x 512 012 x 512 512 x 512 512 x 512

Blocks(HP) 49152 49152 49152 49152
Totals(HP) 478609 465136 465785 466797
Average 9.74 9.46 9.48 9.5

44

4.3 Coding Speed Estimation

After our optimization, estimation of the encoding speed in our implementation is listed
in Table 4.2. The four images with same size but different manner are tested and repre-
sent quite similar results. The format of each imagélis x 512 pixels and the color
domain is RGB 24bits, then the whole sub-pixels in one image conmaing 512 x 3 =
786432. In our measure, four tested images are encoded to wdp files with lossless mode
and consuming time are also list in Table 4.2. The measure clock cycle is 10 ns, and the
calculated throughput in terms of pixel/cycle shows that our implementation can achieve
more than 1 pixel/cycle. The performance comparison with related works is described. In
[9], JPEG XR encoding process is decomposed into (1) PCT/POT, (2)Quantization, (3)
Prediction, (4) adaptive scanning, and (5) entropy coding. These five stages work in a
pipeline manner. The throughput of this design .is choked in the PCT/POT module and
achieve 0.80 pixel/cycle. But this design process the entropy result and flexbits into bit-
streams with CPU, seems no described any hardware architecture about Packetizer. In
design [8], encoding process is-decomposed.into three main stages which are same to
ours. Base on [8], [9], the pracess of third stage is decomposed into three phases, which
work in a pipeline manner.” This can contribute to the reduction of the timing of critical
path to 1/3, and performance of this design is 112 fps for 4:4:4 CIF format at 62.5 MHz,
which is equivalent to 0.54 pixel/cycle for one component.

The comparison of performance is summarized in Table 4.3. The throughput is listed
for one component for the case of YUV 4:4:4. In [8] and [9],although the entropy coding
is pipelined by three phases, the encoding process is bottlenecked by the entropy coding.
In our proposed optimization, throughput is improved to 2 times than these related works.
Therefore, our proposed architecture can achieve higher performance faster than other
related words.

Our proposed JPEG XR encoder is designed by using Verilog-HDL to evaluate the
present architecture. The architecture is synthesized by Synposys Design Compiler with
0.18 um CMOS standard cell library. The resultis summarized in Table 4.4. The synthesis

use 100MHz as the target frequency and our report about gate area is summarized in the

45

Table 4.2: Benchmark of JPEG XR encoder

Pic Name Lena.omp Baboon.bomp Peppers.omp F16.bmp
Resolution 512 x 512 512 x 512 512 x 512 512 x 512
Total Pixels(YUV444) 786,432 786,432 786,432 786,432

WDP File Size(Bytes) 454K 591K 493K 395K

Encoding Time(ns) 7,359,835 7,198,545 7,233,145 7,244,795

Throughput(Pixel/Cycle) 1.069 1.092 1.087 1.085

Table 4.3: Performance comparison among related works angrtiposed architecture

Architecture| Throughput(Pixel/Cycle PS
[9] 0.54
[10] 0.80 No Packetizer
[11] 1.58 Only PCT/POT
ours 1.00

column named gate counts. In.the column of SRAM., the sizes gN&Rfor each
module are also summarized. The result shows that the gate count of the designed JPEG
XR encoder is 235,377. The number of SRAMSs is require@%3/x 3channels, which

the predict buffer is configured @80 x 3channels when input image horizontal size is

1920 pixels.

46

Table 4.4: Gate count summarization of the proposed art¢urec

Paper [9] [10] [11] Ours

Frequency 62.5 MHz (0.18um) 125 MHz (0.13um) 250 MHz (90nm) O WHz (0.18um)

Bus Width 32 bits 14 bits 16 bits

Module name Gate count SRAM -Gate count-. SRAM Gate count SRAMe Gaint SRAM

PCT/POT 100,500 73,340
o 316,898 256 x 3 90,692 256 X 2 1640 256 x 3
Quantization (POT1.2) (only PCT)
o 256 x 3 256 x 3
Prediction 81,980 6,726° 120 x 7 None 62,029
480 % 3 480 x 3
CBP Unknown None 1,946
Adaptive scan 105,323 41,990 None 63,009
Entropy coding None 32,069
Packetizer None None 2,806
Control Unit 1,866 178
Top 506,167 992 x 3 142,157 1,352 235,377 992 x 3

47

Chapter 5

Conclusion

In this paper, we propose a novel and faster hardware architecture of JPEG XR, which is
a new image coding standard and have advanced compression. One three-stage pipeline
lossless JPEG XR encoder with YUV 4:4:4 was designed to support next generation HDR
display. In previous architectures, the encoding throughput is limited in entropy coding
stage because it was implementedto-process coefficients according to the gathered statis-
tics of running Macroblock.

We generalized the characteristic of-‘Normalization(Update ModelBits) and took ad-
vantage of reduction of Levels. Our propose pipeline controller can optimal the forward
step of the encoding to decrease un-necessary-data processing. We could safely pipeline
all the encoding processes including the entropy coding and achieves higher throughput
than those of related works. In contrast to the complete and similar related architecture
[9], our propose structure is twice as fast.

However, detection of finish in each processing stage and asymmetric pipeline exe-
cution time still cause the holding of processing unit and bring down the coding speed.
Making higher record length of pipeline buffers or adaptive buffer controller may over-

come this bottleneck remains as a future work.

48

Bibliography

[1] Microsoft Corporation, HD Photo specification version 1.0, Nov. 2006.

[2]

[3]
[4]

[5]

[6]

[7]

[8]

S. Srinivasan, C. Tu, S. L. Regunathan, and G. J. Sullivan, “HD Photo: a new image

coding technology for digital photography,” in Proc. SPIE, vol.6696, Aug. 2007.
Microsoft Corporation, “HD Photo device porting kit,” Nov. 2006.

ISO/IEC 15444-1: “Informationtechnology X JPEG 2000 image coding system X

part 1: core coding system.”,2002.

H. S. Malvar, “Biorthogonal and nonuniform lapped transforms for transform coding
with reduced blocking.and ringing artifact$EEE Transactions on Signal Process-
ing, vol. 46, pp.1043 V-="1053; Apr. 1998.

Maalouf, A.; Larabi, M.-C..“Low-complexity hierarchical lapped transform for
lossy-to-lossless image coding in JPEG XR / HD Photo” Image Processing (ICIP),
16th IEEE International Conference on Digital Object Identifpgr.5 - 8,2009.

S. Groder, Modeling and systhesis of the HD Photo compression algorithm, Masters

thesis, Rochester Institute of Technology, Aug. 2008.

C.-H. Pan, C.-Y. Chien, W.-M. Chao, S.-C. Huang, and L.-G. Chen, “Architecture
design of full HD JPEG XR encoder for digital photography applicatiofsEE
Transactions on Consumer Electronigsl. 54, pp.963 V- 971, Aug. 2008.

[9] C.-Y. Chien, S.-C. Huang, C.-H. Pan, C.-M. Fang, and L.-G. Chen, “Pipelined arith-

metic encoder design for lossless JPEG XR encoder,” in Proc. oflE8&h Inter-

national Symposium on Consumer Electronpys 144 V- 147, May 2009.

49

[10] Hattori, K.; Tsutsui, H.; Ochi, H.; Nakamura, Y., “A Highhroughput Pipelined Ar-
chitecture for JPEG XR Encoding” Embedded Systems for Real-Time Multimedia,
IEEE/ACM/IFIP 7th Workshop on Digital Object Identifjgap.9 - 17, 2009.

[11] Sheng-Wei Fan, Jia-Wai Chen, and Jiun-In Guo, LOW BANDWIDTH
HD1080@60FPS JPEG-XR TRANSFORM DESIGNYLSI Design, Automation,
and Test (VLSI-DATApr 2012.

[12] L.V. Agostini, I.S. Silva, and S. Bampi, “Pipelined Entropy Coders for JPEG Com-
pression,”’Integrated Circuits and Systems Design, Proceedings 15th Symposium
pp. 9 - 14, Sept. 2002

50

	封面
	Over 100Mpixels Real Time JPEG-XR Encoder Design
	Over 100Mpixels Real Time JPEG-XR Encoder Design
	Master of Science

	摘要
	Degree Program of Electrical and Computer Engineering
	National Chiao Tung University

	9667507

