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I 

具降階估測器之可變結構控制器設計

學生：魏吉佑     指導教授：陳永平 教授 

 

國立交通大學  電機學院  電機與控制學程碩士班 

摘 要       

本論文主要在設計可變結構控制器用來控制部份狀態變數無法量測之系統，針對無

法量測之狀態變數，此控制器結合 Kudva 所使用的 Luenberger 降階估測器，此估測器能

在雜訊干擾的情況下準確估測狀態變數，不受雜訊的影響，此外此控制器也使用順滑層

來減抑不當的切跳現象並且消除匹配式雜訊。本論文針對三種不同的狀況來設計可變結

構控制法則，包括具匹配式雜訊系統之穩定性控制，具非匹配式雜訊系統之穩定性控

制，以及具非匹配式雜訊系統之追蹤控制，除了詳細列出控制法則的推導過程外，最後

還利用六個不同的範例來進行數值模擬驗證，分別探討雜訊維度對降階估測器的影響，

匹配式雜訊與非匹配式雜訊對受控系統穩定性與效能的影響，以及雜訊對輸出追蹤控制

的影響，根據模擬結果，此可變結構控制器確實能達到所預設的控制目的。 



 II

Reduced-Order Observer-Based Sliding Mode 

Controller Design 

 
Student：Chi-Yu Wei     Advisors：Prof. Yon-Ping Chen 

Degree Program of Electrical and Computer Engineering 
National Chiao-Tung University  

ABSTRACT 

This thesis presents reduced-order observer-based sliding mode controller (ROSMC) 

design. The reduced-order observer, a kind of Luengerger observer and designed by Kudva, is 

used to accurately estimate the unmeasurable state variables, even under the influence of 

undesirable disturbance. Besides, the ROSMC also employs a sliding layer to reduce the 

chattering phenomenon and eliminate the matched disturbance. There are three cases 

discussed in this thesis, including stability control of system with matched disturbance, 

stability control of system with mismatching disturbance, and output tracking control of 

system with disturbance. To demonstrate the usefulness of the ROSMC, there are six 

examples given and simulated by the software package MATLAB. The simulation results are 

mainly used to show the effect on the observer caused by the dimension of unmeasurable state 

variables, the effect on the system stability and performance caused by matched and 

mismatching disturbance, the effect on the output tracking control caused by disturbance. 

Form the simulation results, the developed ROSMC is indeed able to achieve the desired 

control goal. 
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Chapter 1 

Introduction 

1.1 Motivation 

This thesis will focus on the sliding mode controller design for a system with 

unmeasurable state variables. Unfortunately, a sliding mode control is commonly based on the 

feedback of full state variables. That means it is difficult to design a sliding mode control 

when unmeasurable state variables exist. To solve this problem, it is required for the sliding 

mode control to combine an observer to estimate the unmeasurable state variables. Hence, 

how to choose an appropriate observer for the sliding mode control becomes an important 

task in this thesis. 

There are several observers proposed to estimate these unmeasurable state variables, 

including the sliding observer [1] and the reduced order observer [2]. The sliding observer is 

proposed by Utkin for systems without noise and achieves good performance. However, the 

sliding observer is only limited to noiseless systems and not extendable to general systems, 

which often inevitably suffer from noises. Hence, in order to deal with noises existing in 

general systems, Kudva presented the reduced-order Luenberger observer [2], which has been 

shown robust to noises. In addition, it has been found that both the sliding mode observer and 

the reduced-order Luenberger observer are constrained to the same conditions. Clearly, the 

reduced-order Luenberger observer is indubitably better than the sliding mode observer and 

more suitable for systems encountering noises. Therefore, this thesis will employ the 

reduced-order Luenberger observer to estimate the unmeasurable state variables while design 

the sliding mode control, which is called the reduced-order observer-based sliding mode 

controller, or ROSMC in short. 
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1.2 Research background 

The feature of sliding mode control system is claimed to result in superb system 

performance, which includes insensitivity to parameter variations and complete rejection of 

matched disturbances [3]. The sliding mode control research community has risen to respond 

to the critical challenge, chattering phenomenon, which is the only obstacle for sliding mode 

to become one of the most significant discoveries in modern control theory [4-7]. Many 

analytical design methods were proposed to reduce the affects of chattering [8-12] and the use 

of sliding layer is the commonest one, which, however, inevitably decreases the control 

precision [13]. In general, the design of a sliding mode control is composed of two basic steps. 

For the first step, design a sliding function to guarantee the desired system performance in the 

sliding mode. For the second step, develop the control law to drive the system trajectories into 

the sliding layer in a finite time and stay thereafter [1, 13-15]. 

When unmeasurable state variables exist, the use of observer to estimate is required. The 

sliding mode observer design method has been proposed by Utkin, where some sufficient 

conditions of uncertain input need to be satisfied for the asymptotic convergence of the 

estimated state [16]. By selecting appropriate gains for the sliding mode observer, it can be 

guaranteed that the convergence of any initial estimated state to its true state in a finite time 

[17]. Once the estimated state reaches the true state, it will remain on the trajectory of the true 

state or within a very small region around the true state. However, the sliding mode observer 

is designed under the assumption that the measurement is not corrupted by noise, so it may 

not perform well for a system with noise [1]. 

Recently, many investigators have focused on the reduced-order Luenberger observers 

for the state estimation of linear systems subject to unknown inputs. Besides the observability 

conditions, some other conditions in terms of the zeros of the system characteristic 

polynomial are also needed for the observer to be designable [2, 18-21]. This thesis had tried 

to develop sliding mode observer to LTI system with disturbance, but found that it required 

the same restricted conditions as those of the reduced-order Luenberger observer proposed by 

Kudva. Clearly, the reduced-order Luenberger observer is indubitably better than the sliding 

mode observer and more suitable for systems encountering disturbance. Hence, this thesis will 

adopt the observer proposed by Kudva to deal with the unknown-input [2]. 
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1.3 Thesis organization 

The thesis is organized as follows. The mathematical model of observer design is 

introduced in Chapter 2, including the reduced order observer and the sliding mode observer. 

In Chapter 3, the sliding mode controller is designed based on the reduced-order observer for 

three cases, which are regulation control for matched disturbance, regulation control for 

mismatching disturbance, and output tracking control for disturbance system. In chapter 4, the 

simulation and results will be shown to demonstrate the usefulness of the reduced-order 

observer-based sliding mode controller (ROSMC). Form the simulation results, the developed 

ROSMC is indeed able to achieve the desired control goal. Finally, the conclusions and future 

research will be proposed in Chapter 5. 



 - 4 -

Chapter 2 

The Mathematical Model of Observer Design 

In this chapter, two kinds of observers, reduced order observer [2] and sliding mode 

observer [1], are introduced in Section 2.1 and 2.2 respectively for a class of linear 

time-invariant systems with matched and mismatched uncertainties and disturbances. Both 

observers are found restricted to the same conditions within the design process. In fact, the 

reduced order observer is more convenient when applying to system control problems. 

Therefore, only the reduced order observer will be adopted in Chapter 3, combined into the 

sliding mode control design.  

 

2.1 Reduced order observer design 

In general, an observer is required when a controller design faces insufficient 

information of system states. Here, introduce the reduced order observer proposed by Kudva 

et al. [2] for the linear time-invariant system expressed as 

 ( ) ( ) ( ) ( )t t t t= + +x Ax Bu Ed  (2-1) 

where ( ) nt ∈ℜx  is the system state, ( ) mt ∈ℜu  is the control input, and ( ) qt ∈ℜd  is the 

disturbance. Without loss of generality, let the system state be decomposed into two parts, x1(t) 

and x2(t), i.e., ( ) ( ) ( )1 2

TT Tt t t⎡ ⎤= ⎣ ⎦x x x , where ( )1
pt ∈ℜx is measurable and ( )2

n pt −∈ℜx  

is not obtainable. Hence, (2-1) can be rewritten as  

 
( )
( )

( )
( ) ( ) ( )1 111 12 1 1

2 221 22 2 2

t t
t t

t t
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

x xA A B E
u d

x xA A B E
 (2-2) 

where 11 12 1

21 22 1

,
⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎝ ⎠

A A B
A A B

 is controllable since ( ),A B  is controllable, and ( )12 22,A A  is 

an observable pair. Then, an observer of order of (n-p) to estimate ( )2 tx  is constructed as 

below[2]: 
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 ( ) ( ) ( ) ( )1t t t t= + +z Fz Jx Nu  (2-3) 

where 

 
22 12

21 11

2 1

−
+ −
−

F = A LA
J = FL A LA
N = B LB

 (2-4) 

Since ( )22 12,A A  is an observable pair, there exists an ( )n p p− ×∈ℜL  such that F is of Hurwitz 

and contain desired stable eigenvalues. Further choose the estimated state of ( )2 tx  as 

 ( ) ( ) ( )2 1ˆ t t t= +x z Lx  (2-5) 

then find the derivative of ( )2ˆ tx  from (2-2) and (2-3) as 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
2 1

1 11 1 12 2 1 1

ˆ t t t

t t t t t t t

= +

= + + + + + +

x z Lx

Fz Jx Nu L A x A x B u E d
 (2-6) 

Define the estimated error as 

 ( ) ( ) ( )2 2 2ˆt t t= −x x x  (2-7) 

and then achieve the derivative of ( )2 tx  from (2-2) and (2-6) as 

 ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 1ˆt t t t t= − = + −x x x Fx E LE d  (2-8) 

where 22 12F = A - LA  has been chosen to contain stable eigenvalues. In order to eliminate 

the effect caused by the disturbance ( )td , the term 2 1E - LE  must vanish to achieve 

( )2 0t →x  as t →∞ , i.e., ( ) ( )2 2ˆ t t→x x  as t →∞ . Clearly, the reduced order observer 

should be designed under the following two conditions: 

 i) 22 12−F = A LA  has stable eigenvalues (2-9) 

 ii) 2 1− =E LE 0  (2-10) 

In fact, it is not easy to choose L satisfying (2-9) and (2-10) simultaneously. To deal with 

such problem, an algorithm is given next to suitably design L. 

The existence condition of L to satisfy (2-9) and (2-10) has been introduced by Kudva, et. 

al. as below: [2] 

 [ ]( )1
1 11 12

2

rank rank rank q
⎡ ⎤

= = =⎢ ⎥
⎣ ⎦

E
E A A E

E
, and p q≥  (2-11) 

Clearly, E and 1E  are of full rank. Besides, the dimension of the measurable state ( )1 tx  is 
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not less than that of the disturbance ( )td . Once (2-11) is guaranteed, L can be selected as 

 ( )2 1 1 1p= + −+ +L E E Γ I E E  (2-12) 

where ( ) 1

1 1 1 1
T T−+E = E E E  is the generalized inverse of 1E , then 1 1 q

+ =E E I , and 

( )n p p− ×∈ℜΓ  is designed to satisfy (2-9). Consider two conditions of p q=  and p q>  to 

choose matrix L. For the first condition p q= , 1E  should be square and invertible, which 

leads to 1 1 0p − =+I E E . Then, (2-12) becomes 

 1
2 1

−L = E E  (2-13) 

and (2-9) can be rewritten as 

 1
22 12 22 2 1 12

−− = −F = A LA A E E A  (2-14) 

Clearly, the stability of F can not be determined by Γ . Hence, if F in (2-14) is not stable, 

then the observer (2-3) is unable to estimate the system state x. On the other hand, if F in 

(2-14) is stable, then the observer (2-3) is available for estimating x. For the second condition 

p q> , 1E  is no more square and invertible, i.e., 1 1 0p − ≠+I E E . By substituting (2-12) into 

(2-9), F can be rearranged as 

 

( )( )
( )

22 2 1 1 1 12

22 2 1 12 1 1 12

1 2

p

p

− + −

= − + −

= +

+ +

+ +

F = A E E Γ I E E A

A E E A Γ I E E A

Φ ΓΦ

 (2-15) 

where 1 22 2 1 12= − +Φ A E E A  and ( )2 1 1 12p= − +Φ I E E A . Clearly, it is required to find a matrix 

Γ  which guarantees F is stable. If such a matrix Γ  does not exist, it is not possible to 

design the reduced order observer (2-3). In case that Γ  exists, then L can be chosen as (2-12) 

accordingly and the design of the observer (2-3) is completed which can successfully estimate 

2x  as given in (2-5). 

 

2.2 Sliding mode observer design  

This section will introduce the sliding mode observer proposed by Utkin et al. [1] for the 

linear time-invariant system, which is a full order observer and more complicated than the 

reduced order observer introduced in Section 2.1. In addition, this sliding mode observer and 

the reduced order observer are restricted to the same conditions given (2-9) and (2-10). Hence, 
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this thesis will only employ the reduced order observer and the sliding mode observer is 

introduced in this section just for reference.  

The sliding mode observer design is applied to the same system (2-2), shown in Section 2.1 

and rewritten as 

 
( )
( )

( )
( ) ( ) ( )1 111 12 1 1

2 221 22 2 2

t t
t t

t t
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

x xA A B E
u d

x xA A B E
 (2-16) 

where ( )1
pt ∈ℜx  is obtainable and ( )2

n pt −∈ℜx  is not measurable. Note that ( )12 22,A A  

is an observable pair. The sliding mode observer proposed by Utkin is constructed as 

below[1]: 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 11 1 12 2 1

2 21 1 22 2 2

ˆ ˆ ˆ

ˆ ˆ ˆ

t t t t t

t t t t t

⎧ = + + −⎪
⎨

= + + +⎪⎩

x A x A x B u v

x A x A x B u Lv
  (2-17) 

where ( ) ( )( )1 2ˆ ˆ,t tx x  represents the state estimate for ( ) ( )( )1 2,t tx x , ( )n p p− ×∈ℜL  is a 

constant feedback gain matrix and p∈ℜv  is a discontinuous vector defined component wise 

by  

 ( ) ( )( )1t M sgn t= ⋅v x  (2-18) 

where M R+∈  will be determined later. From (2-16) and (2-17), the error dynamics are 

given by: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 11 1 12 2 1

2 2 2 21 1 22 2 2

ˆ

ˆ

t t t t t t t

t t t t t t t

⎧ = − = + − −⎪
⎨

= − = + + −⎪⎩

x x x A x A x v E d

x x x A x A x Lv E d
 (2-19) 

Let  

 ( ) ( ) ( )2 2 1t t t= +e x Lx  (2-20) 

then the derivative of ( )2 te  is  

 ( ) ( ) ( ) ( ) ( ) ( )2 2 1 22 2 21 1 2t t t t t t= + = + −e x Lx A x A x E d  (2-21) 

where  
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22 22 12

21 21 11 22

2 2 1

= +

= + −

= +

A A LA

A A LA A L

E E LE

 (2-22) 

Further substituting (2-18) into (2-19) of ( )1 tx  yields 

 ( ) ( ) ( ) ( ) ( )1 11 1 12 2 1t t t t t= + − −x A x A x v E d  (2-23) 

where 11 11 12= −A A A L . By premultiplying ( )1
T tx  into (2-23), it can be attained that 

 
( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( )
1 1 1 11 1 12 2 1 1

1 11 1 12 2 1                   

T T

T

t t t t t Msgn t t

t t t M δ

= + − −

< + − +

x x x A x A x x E d

x A x A x E
 (2-24) 

Clearly, if M is chosen as  

 ( ) ( )( )11 1 12 2 1M max t t δ σ= + + +A x A x E  (2-25) 

where 0σ > , then (2-24) becomes  

 ( ) ( ) ( )1 1 1< T t t tσ−x x x  (2-26) 

which guarantees ( )1 tx  reaches zero in a finite time as t →∞ , i.e., ( ) ( )1 1ˆ t t→x x .as 

t →∞ . Hence (2-21) can be rewritten as 

 ( ) ( ) ( )2 22 2 2t t t= −e A e E d   (2-27) 

where the truth of ( ) ( )2 2t t=e x  has been adopted from (2-20). There are two important 

conditions listed as below: 

 i) The eigenvalues of 22 22 12= +A A LA  are stable. (2-28) 

 ii) 2 2 1 0= + =E E LE  (2-29) 

With these two conditions, the estimation error ( )2 te  will approach zero as t →∞ , i.e., 

( ) ( )2 2ˆ t t→x x  as t →∞ . This confirms the success of the sliding mode observer (2-17). 

However, the conditions shown in (2-28) and (2-29) are the same as (2-9) and (2-10), required 
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for the reduced order observer. Since the sliding mode observer is much more complicated, 

the reduced order observer will be used in the sliding mode controller design in the next 

chapter.
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Chapter 3 

Reduced-Order Observer-Based Sliding 

Mode Controller Design  

In this Chapter, the sliding mode controller is designed based on the reduced-order 

observer for three cases, including regulation control for matched disturbance in Section 3.1, 

regulation control for mismatching disturbance in Section 3.2, and tracking control for 

mismatching disturbance in Section 3.3.  

3.1 Reduced-order observer-based sliding mode controller 

design for matched disturbance 

In this section, consider reduced-order observer-based sliding mode controller design for 

matched disturbance system, expressed as 

 ( ) ( ) ( ) ( )( )t t t t= + +x Ax B u d  (3-1) 

where ( ) nt ∈ℜx  is the system state, ( ) mt ∈ℜu  is the control input, ( ) qt ∈ℜd  is the 

disturbance, ( ), A B  is controllable, and that can transform into (2-2) with E replaced by B. 

The reduced-order observer in (2-5) will be used here to estimate the unmeasurable state 

variables. As usual, the first step in the sliding mode controller design is choosing an 

appropriate sliding function, such that the system trajectory is steered to the control goal in 

the sliding mode. Let the sliding function be 

 ( ) ( ) ( )
( )

1

2

ˆ
ˆ

t
t t

t
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

x
s Cx C

x
 (3-2) 

where ( )det 0≠CB . The matrix C can be determined by the transformation matrix method 

[13], to guarantee the system stability in the sliding mode ( )=0ts . For the second step, the 

control algorithm is designed to drive the system into the sliding mode based on the 

approaching condition [13]. To derive the control algorithm, differentiating (3-2) yields 



 - 11 -

 ( ) ( ) ( ) ( ) ( )( )ˆ ˆt t t t t= = + +s Cx CAx CB u d  (3-3) 

Then, the equivalent control input ( )eq tu  in the sliding mode can be found from 

 ( ) ( ) ( ) ( )( )ˆ 0
eq

equ u
t t t t

=
= + + =s CAx CB u d  (3-4) 

which leads to  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 oˆeq eq eqt t t t t− −= − − = +u CB CAx CB CBd u u  (3-5) 

Note that the equivalent control input is partitioned into two parts shown as 

 ( ) ( ) ( )1o ˆeq t t−= −u CB CAx  (3-6) 

 ( ) ( ) ( )1
eq t t−= −u CB CBd  (3-7) 

where ( )o
eq tu  is the dominant part and ( )eq tu  is related to the disturbance ( )td . Clearly, 

because of the existence of ( )td  in ( )eq tu , the control input u can not directly adopt the 

equivalent control ( )eq tu , instead it is set as 

 ( ) ( ) ( )( ) ( )o

maxeq eqt t t sgnσ= − +u u u s  (3-8) 

where the upper bound of ( )eq tu  is selected as ( ) ( ) 1

maxeq t γ−=u CB  with ( )tγ ≥ CBd  

and σ  is a positive constant. By substituting (3-8) into (3-3), the derivative of ( )ts  

becomes 

 ( ) ( ) ( ) ( )t sgn tγ σ= − + +s s CBd  (3-9) 

Further premultiplying Ts  results in 

 ( ) ( ) ( ) ( ) ( ) ( )1T t t
t t t tγ σ σ γ

γ
⎛ ⎞

= − − + = − − −⎜ ⎟⎜ ⎟
⎝ ⎠

s CBd
s s s s s CBd s s

s
 (3-10) 

Since ( )tγ ≥ CBd  and 0σ > , (3-10) becomes 

 ( ) ( )T t t σ< −s s s  (3-11) 

which evidently guarantee the reach and sliding condition. As a consequence, ( ) 0t →s  in a 

finite time. It is well known that the chatting exists due to the use of ( )sgn s  in the control 

algorithm (3-8). Hence, to ameliorate such undesired chatting, the switching function ( )sgn s  

is often replaced by the saturation function, expressed as 
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 ( )
   >

, =
   

sat
ε

ε
ε

ε

⎧
⎪⎪
⎨
⎪ ≤⎪⎩

s s
s

s
s s

 (3-12) 

where 0ε >  is the thickness of the sliding layer s ε≤ . Therefore, the control algorithm 

(3-8) is changed into 

 ( ) ( ) ( ) ( ) ( ) ( )1 1ˆ - sat ,u t t sγ σ ε− −= − +CB CAx CB  (3-13) 

which will drive the system trajectory into the sliding layer, not in the sliding mode, in a finite 

time and force it to stay within there. Once the system trajectory is bounded in the sliding 

layer, it will move toward the control goal and then around there. In other words, the control 

goal can not be precisely attained and the matched disturbance is not completely eliminated 

since the system trajectory is not restricted in the sliding mode. The errors are caused by the 

use of saturation function and depend on the scale of the matched disturbance and the 

eigenvalues chosen for the sliding mode. The effect of the matched disturbance and the 

eigenvalues will be demonstrated later by the simulation results in Section 4.1. 

 

3-2 Reduced-order observer-based sliding mode controller 

design for mismatching disturbance 

In this section, the reduced order observer is used to design the mismatching disturbance 

of LTI system, described as 

 ( ) ( ) ( ) ( )+t t t t= +x Ax Bu Ed  (3-14) 

where ( ) nt ∈ℜx  is the system state, ( ) mt ∈ℜu  is the control input, ( ) qt ∈ℜd  is the 

mismatching disturbance since ≠E BQ , ( ), A B  is controllable, and that can transform into 

(2-2). The reduced-order observer (2-5) will be used here to estimate the unmeasurable state 

variables. The first step in the sliding mode controller design is to choose an appropriate 

sliding function, such that the system trajectory will be moved to the control goal in the 

sliding mode. Let the sliding function be 

 ( ) ( ) ( )
( )

1

2

ˆ
ˆ

t
t t

t
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

x
s Cx C

x
 (3-15) 
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where ( )det 0≠CB . The matrix C can be determined by the transformation matrix method 

[13], such that the system is stabilized in the sliding mode ( )=0s t . For the second step, the 

control algorithm is designed to drive the system into the sliding mode based on the 

approaching condition. In the design process, the derivative of (3-15) is obtained as 

 ( ) ( ) ( ) ( ) ( )ˆ ˆt t t t t= = + +s Cx CAx CBu CEd  (3-16) 

Then, the equivalent control input ( )eq tu in the sliding mode can be found by 

 ( ) ( ) ( ) ( )ˆ 0
eq

equ u
t t t t

=
= + + =s CAx CBu CEd  (3-17) 

which leads to 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 oˆeq eq eqt t t t t− −= − − = +u CB CAx CB CEd u u  (3-18) 

Note that the equivalent control input is partitioned into two parts, shown as 

 ( ) ( ) ( )1o ˆeq t t−= −u CB CAx  (3-19) 

 ( ) ( ) ( )1
eq t t−= −u CB CEd  (3-20) 

where ( )o
eq tu  is the dominant part and ( )eq tu  is related to the disturbance ( )td . Clearly, 

because of the existence of ( )td  in ( )eq tu , the control input u can not directly adopt the 

equivalent control ( )eq tu , instead it is set as 

 ( ) ( ) ( )( ) ( )o

maxeq eqt t t sgnσ= − +u u u s  (3-21) 

where the upper bound of ( )eq tu is ( ) ( ) 1

maxeq t γ−=u CB  with ( )tγ ≥ CEd  and σ  is a 

positive constant. Further substituting (3-21) into (3-16) yields 

 ( ) ( ) ( ) ( )t sgn tγ σ= − + +s s CEd  (3-22) 

and premultiplying Ts  results in 

 
( ) ( ) ( ) ( )

( ) ( )               1

T t t t t

t t

γ σ

σ γ
γ

= − − +

⎛ ⎞
= − − −⎜ ⎟⎜ ⎟

⎝ ⎠

s s s s s CEd

s CEd
s s

s

 (3-23) 

Since ( )tγ ≥ CEd  and 0σ > , (3-23) becomes 

 ( ) ( )T t t σ< −s s s  (3-24) 

which evidently guarantees the reaching and sliding condition. As a consequence, ( ) 0t =s  

in a finite time and the chattering exists due to the use of ( )sgn s  in (3-21). Hence, to 
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ameliorate such undesired chattering, the switching function ( )sgn s  is often replaced by the 

saturation function, expressed as 

 ( )
   >

, =
   

sat
ε

ε
ε

ε

⎧
⎪⎪
⎨
⎪ ≤⎪⎩

s s
s

s
s s

 (3-25) 

where 0ε >  is the thickness of the sliding layer s ε≤ . Therefore, the control algorithm 

(3-21) is changed into 

 ( ) ( ) ( ) ( ) ( ) ( )1 1ˆ ,u t t sat sγ σ ε− −= − − +CB CAx CB  (3-26) 

and the system trajectory will be steered into the sliding layer, not in the sliding mode, during 

a finite time and then stays therein. Once the system trajectory is bounded in the sliding layer, 

it will move toward the control goal 0→x  and finally go around there. As a result, the 

control goal can not be precisely attained and the mismatching disturbance can not be 

eliminated in the sliding layer. The errors are caused by the use of saturation function, the 

scale of the mismatching disturbance and the eigenvalues chosen for the sliding mode. The 

effect of the mismatching disturbance and the eigenvalues will be demonstrated later by the 

simulation results in Section 4.2.  

 

3-3 Reduced-order observer-based sliding mode controller 

design output tracking control for disturbance 

In this section, the reduced-order observer is used to design tracking control for 

disturbance with LTI system as 

 ( ) ( ) ( ) ( )+t t t t= +x Ax Bu Ed  (3-27) 

where ( ) nt ∈ℜx  is the system state, ( ) mt ∈ℜu  is the control input, ( ) qt ∈ℜd  is the 

disturbance, and ( ), A B  is controllable. Without loss of generality, the system state x(t) is 

preprocessed to contain measurable part ( )1 tx and unmeasurable part ( )2 tx , i.e., 

( ) ( ) ( )1 2
T

t t t= ⎡ ⎤⎣ ⎦x x x . Here, the reduced-order observer (2-5) will be used here to estimate 

the unmeasurable state variables. The control goal is to fulfill tracking control for the output 
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 ( ) ( )t t=y Gx  (3-28) 

where G is full rank. That means the controller is designed to drive the output to follow the 

desired trajectory ( )d ty , i.e., the tracking error 

 ( ) ( ) ( )dt t t= −e y y  (3-29) 

will vanish as t →∞ . 

For the sliding mode tracking controller design, first define a new state concerning the 

tracking error, expressed as 

 ( ) ( )
0

t
t dτ τ= ∫h e  (3-30) 

then 

 ( ) ( ) ( ) ( )dt t t t= = −h e y y  (3-31) 

Clearly, by combining (3-27) and (3-31), the system can be reconstructed as 

 ( ) ( ) ( ) ( ) ( )p p pt t t t t= + + +p A p B u E d f  (3-32) 

where ( ) ( )
( )
t

t
t

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x
p

h
, p

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A 0
A

G 0
, p

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

B
B

0
, p

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

E
E

0
, ( ) ( )d

t
t

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

0
f

y
. Note that 

( )p pA B  is controllable since the pair ( )A B  is controllable. The first step in the sliding 

mode controller design is to choose an appropriate sliding function, such that the system 

trajectory can trace the control goal in the sliding mode. Let the sliding function be 

 ( ) ( ) ( )
( )

ˆ
ˆ

t
t t

t
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

x
s Cp C

h
 (3-33) 

where ( )det 0p ≠CB  and C can be determined by the transformation matrix method [13], 

such that the system is stabilized in the sliding mode ( )=0s t . For the second step, the control 

algorithm is designed to drive the system into the sliding mode based on the approaching 

condition.  

Once C is determined in the first step, then the control algorithm is derived by 

differentiating (3-33) as 

 ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆp p pt t t t t t= = + + +s Cp CA p CB u CE d Cf  (3-34) 

The equivalent control ( )eq tu  can be found from 

 ( ) ( ) ( ) ( ) ( )ˆ 0
eq

p p eq pu u
t t t t t

=
= + + + =s CA p CB u CE d Cf  (3-35) 
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which leads to 

 ( ) ( ) ( )0
eq eq eqt t t= +u u u  (3-36) 

with nominal part 

 ( ) ( ) ( ) ( ) ( )1 1o ˆeq p p pt t t
− −

= − −u CB CA p CB Cf  (3-37) 

and disturbance 

 ( ) ( ) ( )1

eq p pt t
−

= −u CB CE d  (3-38) 

Because of the existence of ( )td  in ( )eq tu , the control input u is generally designed as 

 ( ) ( ) ( )( ) ( )o

max
,eq eqt t t sat sσ ε= − +u u u  (3-39) 

where σ  is a positive constant and ( ) ( ) 1

maxeq pt γ
−

=u CB  with ( )p tγ ≥ CE d  is the 

upper bound of ( )eq tu . The saturation function is given as 

 ( )
   >

, =
   

sat
ε

ε
ε

ε

⎧
⎪⎪
⎨
⎪ ≤⎪⎩

s s
s

s
s s

 (3-40) 

where 0ε >  is the thickness of the sliding layer s ε≤ . By substituting (3-39) into (3-34), 

the derivative of ( )ts becomes 

 ( ) ( ) ( ) ( ), pt sat s tγ σ ε= − + ⋅ +s CE d  (3-41) 

Further premultiplying Ts  results in 

 ( ) ( ) ( ) ( ) ( ) ( )
1 pT

p

t t
t t t tγ σ σ γ

γ
⎛ ⎞

= − − + = − − −⎜ ⎟⎜ ⎟
⎝ ⎠

s CE d
s s s s s CE d s s

s
 (3-42) 

Since ( )p tγ ≥ CE d  and 0σ > , (3-42) becomes 

 ( ) ( )T t t σ< −s s s  (3-43) 

which evidently guarantees the reaching and sliding condition of the sliding mode ( ) 0t =s  

in a finite time. By substituting (3-36) into (3-32), obtained as 

 
( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( )( )1 1

p p eq p

p p p p p p

t t t t t

t t t
− −

= + + +

= − + − +

p A p B u E d f

I B CB C A p I B CB C E d f
 (3-44) 

Above equation, consider relationship with eigenvalues of C, disturbance and ( )yd t . If 
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p p=E B Q  is matched disturbance and ( )yd t  is constant, then restructures (3-44) as 

 ( ) ( )( ) ( ) ( )( )1

p p pt t t
−

= − +p I B CB C A p f  (3-45) 

The design eigenvalues of C can be chosen such that ( )( ) ( ) ( )( )1

p p p t t
−

− +I B CB C A p f  is 

Hurwitz, and then ( ) ( ) ( ) 0
T

t t t⎡ ⎤= =⎣ ⎦p x h  as t →∞ , hence 

( ) ( ) ( ) ( ) 0d∞ = ∞ = ∞ − ∞ =h e y y , and then attains the control goal ( )y t  to ( )yd t , that 

will simulate in Section 4.3 case 1.  

If p p≠E B Q  is mismatching disturbance and ( )yd t  is constant, then restructure (3-44) 

as 

 ( ) ( )( ) ( ) ( )( ) ( )( ) ( )1 1

p p p p p pt t t t
− −

= − + + −p I B CB C A p f I B CB C E d  (3-46) 

The mismatching disturbance is not remove, and then will make control error, such that 

output tracking control not exact tracks ( )ty  to ( )d ty . In order to reduce tracking error that 

can chooses the design eigenvualues of C distant from origin in left phase plane, but that can 

make control input have high gain, that will be simulate in Section 4.3 case 2. 

If p p≠E B Q  is mismatching disturbance and ( )yd t  is not constant i.e., ( )d cos t=y , 

then must be affected with mismatching disturbance and dy , and then the output tracking 

control not complete tracks ( )ty  to ( )d ty . In order to reduce tracking error that can 

chooses the design eigenvualues of C distant from origin in left phase plane, but that can 

make control input have high gain, that will be introduce in Section 4.3 case 3. 
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Chapter 4 

Simulation and Result 

In this chapter, consider six case of reduced-order observer-based sliding mode 

controller design. There are the matched disturbance system and the dimension p q= , the 

matched disturbance system and the dimension p q> , the mismatching disturbance system 

for controller stability, the output tracking with matched disturbance system and tracking 

trajectory is constant, the output tracking with mismatching disturbance and tracking 

trajectory is constant, and the output tracking with mismatching disturbance system and 

tracking trajectory is not constant. 

 

4.1 Observer-based sliding mode controller design for 

matched disturbance 

In this section, using reduced-order observer-based sliding mode controller design to 

simulates two case, there are matched disturbance system that dimension of measurable equal 

dimension of disturbance, and matched disturbance system that dimension of measurable 

greater than dimension of disturbance. 

In Case 1, consider a LTI system (3-1) suffering from the matched disturbance, the 

system state be decomposed into two parts ( ) ( ) ( )1 2

TT Tt t t⎡ ⎤= ⎣ ⎦x x x , where ( )1 tx is 

measurable and ( )2 tx  is not obtainable. Then the system reconstruct as: 

 
( )
( )

( )
( ) ( ) ( )( )1 1

2 2

1 1 1
2 3 1

t t
t t

t t
⎡ ⎤ ⎡ ⎤−⎡ ⎤ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

x x
u d

x x
 (4-1) 

The matched disturbance is assumed as 

 ( ) ( ) ( ) 10.5 sin 2 cos 0.1sin
4
td t t t xππ⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (4-2) 

Apparently, the upper bound of the matched disturbance is obtained as 
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 ( ) ( ) +1d t t≤ x  (4-3) 

The system dimension of measurable part and the dimension of disturbance represent as 

 ( ) [ ]( ) ( )11 12

1
1 1 1

1
rank rank p rank rank q

⎛ ⎞⎡ ⎤
= − = = = = =⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠
A A B  (4-4) 

The first step is to design the reduced order observer, and the observer (2-3) represent as 

 ( ) ( ) ( ) ( )1t t t t= + +z Fz Jx Mu  (4-5) 

where 

 ( )
22 12

21 11

2 1

3 1
2 1

1 1

− = − − ×

+ − = + − × −

− = − ×

F = A LA L
J = FL A LA FL L
M = B LB L

 (4-6) 

And the reduced order observer should be designed under two conditions of (2-9) and (2-10). 

Because the dimension p q= , hence, the matrix L can be chosen as (2-13) by 

 1
2 1 1− = −L = B B  (4-7) 

where L is not chosen by Γ . By substituting (4-7) into (4-6) and the observer (4-5) rewrite as 

 ( ) ( ) ( )12 3t t t= − +z z x  (4-8) 

In this case, the eigenvalue of F is stable, then it is completed estimate 2x  as given in (4-8) 

successfully. The second step is using this information to design the sliding mode controller, 

Let the sliding function be 

 ( ) ( )ˆt t=s Cx  (4-9) 

Because the eigenvalues of A are -0.2679 and -3.7321, then the matrix C can be determined 

by the transformation matrix method and via the pole-assignement method to appoint the 

eigenvalue is -4, and =CB I , hence, the design C as 

 [ ]= 1 0C  (4-10) 

The design input ( )tu  as (3-12) by 

 ( ) ( ) ( ) ( ) [ ] ( ) ( )( ) ( )ˆ ˆ ˆ1 1 1 ,t t sgn t t satγ σ ε= − − + = − − − +u CAx s x x s  (4-11) 

where 0σ =  and sliding layer 0.01 0.01ε− ≤ ≤ . The simulation results as: 

Figure 4.1 to Figure 4.8 are simulation results with initial condition ( ) [ ]0 10 7 T=x  and 

( )0 0=z . Figure 4.1 shows the MATLAB simulink connection diagram, that contains system, 

reduced-order observer, sliding mode controller, and disturbance. Figure 4.2 shows the 

observer state error, that at 4.87s convergence to approach of zero, that after into sliding layer, 
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and the convergence speed from (17, 0s) to (2.3, 1s), conform the ( ) 2eig = −F . Figure 4.3 

shows the sliding surface, that at 3.115s into the sliding layer, and then it effect the control 

input u that has a disjunctive part that from -0.9769 to 0.08283 at this time shows in Figure 

4.5, it possible two reason that the observer does not completely estimated, and sliding 

surface must bound in sliding layer, hence, must has higher gain instant to conform two 

possible reasons. Figure 4.4 shows the sliding surface bound into s ε≤  after complete 

estimate, Figure 4.6 shows the disturbance, that the range between -1 and 1.35. Figure 4.7 and 

4.8 illustrate the system state variable all converge to 0=x . 
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Figure 4.1 The MATLAB slimulink connection diagram 

 
Figure 4.2 The observer state error 

 

Figure 4.3 The sliding surface ( )ts  
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Figure 4.4 The sliding surface ( )ts  bound in s ε≤  

 

Figure 4.5 The control input ( )tu  

 

Figure 4.6 The disturbance ( )td  
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Figure 4.7 The system state ( )1 tx  

 

Figure 4.8 The system state ( )2 tx  and observer state ( )2ˆ tx  
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In case 2, consider a LTI system (3-1) suffering from the matched disturbance, the 

system state be decomposed into three parts ( ) ( ) ( ) ( )1 2 3

TT T Tt t t t⎡ ⎤= ⎣ ⎦x x x x , where ( )1 tx  

and ( )2 tx  are measurable and ( )3 tx  is not obtainable. Then the system reconstruct as: 

 
( )
( )
( )

( )
( )
( )

( ) ( )( )
1 1

2 2

3 3

-0.277 1 -0.002 1
-1.71 -0.178 -12.2 0

0 0 -6.67 1

t t
t t t t
t t

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

x x
x x u d
x x

 (4-12) 

The matched disturbance is assumed as 

 ( ) ( ) ( ) 10.5 sin 2 cos 0.1sin
4
td t t t xππ⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (4-13) 

Apparently, the upper bound of the matched disturbance is obtained as 

 ( ) ( ) +1d t t≤ x  (4-14) 

The system dimension of measurable part and the dimension of disturbance represent as 

 

( )

( )

11 12

0.277 1 -0.002
2

1.71 0.178 12.2

1
0 1
1

rank rank p

rank rank q

⎛ − ⎞⎡ ⎤
= = =⎜ ⎟⎢ ⎥− − −⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥= = =⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

A A

B

 (4-15) 

where the dimension p q> . The first step is to design the reduced order observer, and the 

observer (2-3) represent as 

 ( ) ( ) ( ) ( )1t t t t= + +z Fz Jx Mu  (4-16) 

where 

 [ ]

22 12

21 11

2 1

0.002
6.67

12.2

0.277 1
0 0

1.71 0.178

1
1

0

−⎡ ⎤
− = − − × ⎢ ⎥−⎣ ⎦

−⎡ ⎤
+ − = + − × ⎢ ⎥− −⎣ ⎦

⎡ ⎤
− = − × ⎢ ⎥

⎣ ⎦

F = A LA L

J = FL A LA FL L

M = B LB L

 (4-17) 

And the reduced order observer should be designed under two conditions of (2-9) and (2-10). 

Because the dimension p q> , hence, the matrix L can be chosen as (2-12) by 

 ( ) [ ]2 1 1 1

0 0
1 0

0 1p
⎡ ⎤

= + − = + ⎢ ⎥
⎣ ⎦

+ +L B B Γ I B B Γ  (4-18) 

where L can be chosen by Γ . The matrix L can affect the observer estimate speed, that 
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determine for eigenvalues of F. By substituting (4-18) into (4-16) and design the eigenvalues 

of F are -1, -5, and -10 respectively, then the L represent separately as 

 
[ ]
[ ]
[ ]

1 0.4648

1 0.1369

1 0.273

= −

= −

= − −

L

L

L

 (4-19) 

By substituting (4-19) into (4-17), then the observer (4-16) rewrite as 

 

( ) ( ) [ ] ( )
( )

( ) ( ) [ ] ( )
( )

( ) ( ) [ ] ( )
( )

1

2

1

2

1

2

1 1.5192 0.6173     

5 4.9589 0.3396     

10 9.2588 3.6821     

t
t t

t

t
t t

t

t
t t

t

⎡ ⎤
= − − ⎢ ⎥

⎣ ⎦
⎡ ⎤

= − − ⎢ ⎥
⎣ ⎦
⎡ ⎤

= − − ⎢ ⎥
⎣ ⎦

x
z z

x

x
z z

x

x
z z

x

 (4-20) 

Therefore, it is completed which can successfully estimate 3x  as given in (4-20). The second 

step is using this information to design the sliding mode controller, let the sliding function be 

 ( ) ( )ˆt t=s Cx  (4-21) 

Because the eigenvalues of A are -0.2275±1.3067i and -6.67, then the matrix C can be 

determined by the transformation matrix method and via the pole-assignment method to 

appoint the eigenvalues are -1 and -4, and =CB I , hence, the design C as 

 [ ]= 0.1323 -0.2659 0.8677C  (4-22) 

The design input ( )tu u as (3-12) by 

 
( ) ( ) ( ) ( )

[ ] ( ) ( )( ) ( )
ˆ

ˆ ˆ0.4180 0.1796 -2.5438 1 ,

t t sgn

t t sat

γ σ

ε

= − − +

= − − +

u CAx s

x x s
 (4-23) 

where 0σ =  and sliding layer 0.01 0.01ε− ≤ ≤ . The simulation results as: 

Figure 4.9 to Figure 4.18 are simulation results with initial condition ( ) [ ]0 10 7 3 T=x  

and ( )0 5=z . Figure 4.9 shows the MATLAB simulink connection diagram, that contains 

system, reduced-order observer, sliding mode controller, and disturbance. Figure 4.10 shows 

the observer state error, that at 8.453s, 1.771s and 0.9199s convergence to approach of zero 

respectively, therefore, Figure 4.11 shows the convergence speed from (4.746, 0s) to (1.744, 

1s), (7.042, 0s) to (0.04736, 1s), (9.911, 0s) to (0.0004488, 1s), conform the ( ) 1eig = −F , 

( ) 5eig = −F , ( ) 10eig = −F  respectively, and the eigenvalues of F distant from origin in 
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left phase plane, the observer accurate estimate soon. Figure 4.12 shows the sliding surface, 

that at 0.3244s, 0.191s, and 0.2413s into the sliding layer respectively, and then it lead to the 

control input have disjunctive parts shows in Figure 4.14 at these time, and the sliding surface 

guarantee bound into sliding layer after accurate estimate show in Figure 4.13. Figure 4.15 

shows the disturbance, that the range between -1 and 1.3. Figure 4.16, 4.17 and 4.18 illustrate 

the system state variable all converge to 0=x .  



 - 27 -

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 The MATLAB slimulink connection diagram 

 
Figure 4.10 The observer state error 

 
Figure 4.11 The observer state error of convergence speed 
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Figure 4.12 The sliding surface ( )ts  

 

Figure 4.13 The sliding surface ( )ts  bound in s ε≤  

 

Figure 4.14 The control input ( )tu  
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Figure 4.15 The disturbance ( )td  

 

Figure 4.16 The system state ( )1 tx  

 

Figure 4.17 The system state ( )2 tx  
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Figure 4.18 The system state ( )3 tx  and observer state ( )3ˆ tx  
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4.2 Observer-based sliding mode controller design for 

mismatching disturbance 

In this section, using reduced-order observer-based sliding mode controller design to 

simulates a mismatching disturbance of LTI system. Consider a LTI system (3-1) suffering 

from the mismatching disturbance, the system state be decomposed into three parts 

( ) ( ) ( ) ( )1 2 3

TT T Tt t t t⎡ ⎤= ⎣ ⎦x x x x , where ( )1 tx  and ( )2 tx  are measurable and ( )3 tx  is 

not obtainable. Then the system reconstruct as: 

 
( )
( )
( )

( )
( )
( )

( ) ( )
1 1

2 2

3 3

-0.277 1 -0.002 1 1
-1.71 -0.178 -12.2 0 1

0 0 -6.67 1 0

t t
t t t t
t t

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

x x
x x u d
x x

 (4-24) 

The mismatching disturbance is assumed as 

 ( ) ( ) ( ) 10.5 sin 2 cos 0.1sin
4
td t t t xππ⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (4-25) 

Apparently, the upper bound of the mismatching disturbance is obtained as 

 ( ) ( ) +1d t t≤ x  (4-26) 

The system dimension of measurable part and the dimension of disturbance represent as 

 

( )

( )

11 12

0.277 1 -0.002
2

1.71 0.178 12.2

1
1 1
0

rank rank p

rank rank q

⎛ − ⎞⎡ ⎤
= = =⎜ ⎟⎢ ⎥− − −⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥= = =⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

A A

E

 (4-27) 

where the dimension p q> . The first step is to design the reduced order observer, and the 

observer (2-3) represent as 

 ( ) ( ) ( ) ( )1t t t t= + +z Fz Jx Mu  (4-28) 

where 

 [ ]

22 12

21 11

2 1

0.002
6.67

12.2

0.277 1
0 0

1.71 0.178

1
0

1

−⎡ ⎤
− = − − × ⎢ ⎥−⎣ ⎦

−⎡ ⎤
+ − = + − × ⎢ ⎥− −⎣ ⎦

⎡ ⎤
− = − × ⎢ ⎥

⎣ ⎦

F = A LA L

J = FL A LA FL L

M = E LE L

 (4-29) 
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And the reduced order observer should be designed under two conditions of (2-9) and (2-10). 

Because the dimension p q> , hence, the matrix L can be chosen as (2-12) by 

 ( ) [ ]2 1 1 1

0.5 0.5
0 0

0.5 0.5p

−⎡ ⎤
= + − = + ⎢ ⎥−⎣ ⎦

+ +L E E Γ I E E Γ  (4-30) 

where L can be chosen by Γ . The matrix L can affect the observer estimate speed, that 

determine for eigenvalues of F, shows in Section 4.1. By substituting (4-30) into (4-29) and 

design the eigenvalue of F is -10, that can convergence to approach of zero soon, then the L 

represent as 

 [ ]0.273 0.273= −L  (4-31) 

By substituting (4-31) into (4-29), then the observer (4-28) rewrite as 

 ( ) ( ) [ ] ( )
( )

1

2

10 -3.1212 2.4084
t

t t
t

⎡ ⎤
= − − ⎢ ⎥

⎣ ⎦

x
z z

x
 (4-32) 

Therefore, it is completed which can successfully estimate 3x  as given in (4-28). The second 

step is using this information to design the sliding mode controller, let the sliding function be 

 ( ) ( )ˆt t=s Cx  (4-33) 

Because the eigenvalues of A are -0.2275±1.3067i and -6.67, then the matrix C can be 

determined by the transformation matrix method and via the pole-assignment method to 

appoint the eigenvalues are [-1 -2], [-2 -6.67] and [-2+2i -2-2i] respectively, and =CB I , 

hence, the design C as 

 
[ ]
[ ]
[ ]

= 0.1259 0.1251 0.8741

= 0.1457 0.6575 1.1457

= 0.1264 0.3129 1.1264

−

− −

− −

C

C

C

 (4-34) 

The design input ( )tu  as (3-12) respective represent by 

 

( ) ( ) ( ) ( )
[ ] ( ) ( )( ) ( )

( ) [ ] ( ) ( )( ) ( )

( ) [ ] ( ) ( )( ) ( )

ˆ

ˆ ˆ0.1790 0.1482 4.3043 1 ,

ˆ ˆ1.1647 0.0287 0.3800 1 ,

ˆ ˆ0.5701 0.0707 3.6955 1 ,

t t sgn

t t sat

t t t sat

t t t sat

γ σ

ε

ε

ε

= − − +

= − − − +

= − − − +

= − − − − +

u CAx s

x x s

u x x s

u x x s

 (4-35) 

where 0σ =  and sliding layer 0.01 0.01ε− ≤ ≤ . The simulation results as: 

Figure 4.19 to Figure 4.27 are simulation results with initial condition ( ) [ ]0 10 7 3 T=x  

and ( )0 5=z . Figure 4.19 shows the MATLAB simulink connection diagram, that contains 
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system, reduced-order observer, sliding mode controller, and disturbance. Figure 4.20 shows 

the observer state error, because constant the eigenvalues of F, hence, the state error at 

0.7944s convergence to approach of zero, and the convergence speed from (-2.819, 0s) to 

(-0.000128, 1s), conform the ( ) 10eig = −F . Figure 4.21 shows the sliding surface, that at 

0.3867s, 0.2631s, and 0.123s into the sliding layer respectively, and then it effect the control 

input that have disjunctive parts in these time show in Figure 4.23. Figure 4.22 shows the 

sliding surface guarantees bound into sliding layer after accurate estimate. Figure 4.24 shows 

the disturbance, that the range between -1 and 1.3. Figure 4.25, 4-26 and 4.27 illustrate the 

system state variable all converge to approach 0=x , because the system affected 

mismatching disturbance, then it uncompleted converge to 0=x . 
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Figure 4.19 The MATLAB slimulink connection diagram 

 
Figure 4.20 The observer state error 

 

Figure 4.21 The sliding surface ( )ts  
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Figure 4.22 The sliding surface ( )ts  bound in s ε≤  

 

Figure 4.23 The control input ( )tu  

 

Figure 4.24 The disturbance ( )td  
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Figure 4.25 The system state ( )1 tx  

 

Figure 4.26 The system state ( )2 tx  

 

Figure 4.27 The system state ( )3 tx  and observer state ( )3ˆ tx  
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4.3 Observer-based sliding mode controller design for output 

tracking 

In this section, using reduced-order observer-based sliding mode controller design to 

simulates three cases, there are output tracking that tracking trajectory ( )d ty  is constant 

with matched disturbance, output track that tracking trajectory ( )d ty  is constant with 

mismatching disturbance, and output track that tracking trajectory ( )d ty  is not constant with 

mismatching disturbance. 

In case 1, use the matched disturbance of LTI system, and output tracks control ( )ty  to 

( )d ty . The system and the observer design same with Section 4.1 case 2, hence, it is 

completed which can successfully estimate ( )3x t  as given in (4-20), and the observer 

rewrites as 

 ( ) ( ) [ ] ( )
( )

1

2

10 9.2588 3.6821  
t

t t
t

⎡ ⎤
= − − ⎢ ⎥

⎣ ⎦

x
z z

x
 (4-36) 

The control goal is to fulfill tracking control for the output 

 ( ) [ ] ( )1 2 0t t=y x  (4-37) 

Assume the tracking error e as 

 ( ) ( ) ( )dt t t= −e y y  (4-38) 

where ( )d ty  is output tracking control trajectory, and design ( ) 10d t =y  is constant. Hence, 

the system can be reconstructed as 

 

( )
( )
( )
( )

( )
( )
( )
( )

( ) ( )( )

1 1

2 2

33

0.277 1 0.002 0
1.71 0.178 12.2 0

ˆ ˆ0 0 6.67 0
1 2 0 0

01
00
01

0 d

t t
t t

tt
tt

t t

⎡ ⎤ ⎡ ⎤− −⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− − −⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥−
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥+ + +
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦

x x
x x

xx
HH

u d

y

 (4-39) 

The first step in the sliding mode controller design is to choose an appropriate sliding function, 

such that the system trajectory can trace the control goal in the sliding mode. Let the sliding 
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function be 

 ( ) ( )

( )
( )
( )
( )

1

2

3

ˆ
ˆ

t
t

t t
t
t

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x
x

s Cp C
x
H

 (4-40) 

Because the eigenvalues of A are 0, -0.2275±1.3067i and -6.67, then the matrix C can be 

determined by the transformation matrix method and via the pole-assignment method to 

appoint the eigenvalues are [ ]1 4 6.67− − − , and =CB I , hence, the design C as 

 [ ]0.4694 1.0692 1.4694 0.6575= − − −C  (4-41) 

The design input ( )tu  as (3-39) represent by 

 
( ) ( ) ( ) ( )

[ ] ( ) ( )( ) ( )
ˆ

ˆ ˆ1.3008 1.5941 3.2442 0 1 ,

t t sgn

t t sat

γ σ

σ ε

= − − +

= − − − + +

u CAx s

x x s
 (4-42) 

where σ  is 8, and sliding layer 0.01 0.01ε− ≤ ≤ . The simulation results as: 

Figure 4.28 to Figure 4.35 are simulation results with initial condition ( ) [ ]0 10 7 5 T=x  

and ( )0 0=z . Figure 4.28 shows the MATLAB simulink connection diagram, that contains 

system, reduced-order observer, sliding mode controller, and disturbance. Figure 4.29 shows 

the observer state error, that at 0.9773s convergence to approach zero, and the convergence 

speed from (16.91, 0s) to (0.0007658, 1s), conform the ( ) 10eig = −F . Figure 4.30 shows the 

sliding surface, that at 0.725s into the sliding layer, and then it affect the control input that 

have disjunctive parts in this time shows in Figure 4.32. Figure 4.31 shows the sliding surface 

bound into s ε≤ . Figure 4.33 shows the disturbance, that the range between -1.2 and 1.25. 

Figure 4.34 shows the output tracking control ( )ty  to ( )d ty , because this is matched 

disturbance system and ( )d ty  is constant, then the control output can complete track to 

( ) 10d t =y , that introduced in Section 3.3. Figure 4.35 shows the control output error. 
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Figure 4.28 The MATLAB slimulink connection diagram 

 
Figure 4.29 The observer state error 

 

Figure 4.30 The sliding surface ( )ts  
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Figure 4.31 The sliding surface ( )ts  bound in s ε≤  

 

Figure 4.32 The control input ( )tu  
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Figure 4.34 The output tracking control ( )ty  to ( )d ty  

 
Figure 4.35 The output tracking control error 
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In Case 2 and Case 3, use the mismatching disturbance of LTI system, and output 

tracking control ( )ty  to ( )d ty , and then will consider two condition of ( ) 10d t =y  is 

constant in case 2 and ( ) ( )=d t cos ty  is not constant in case 3. The system and the observer 

design same with Section 4.2, hence, it is completed that can successfully estimate ( )3x t  as 

given in (4-32), and the observer rewrites as 

 ( ) ( ) [ ] ( )
( )

1

2

10 -3.1212 2.4084
t

t t
t

⎡ ⎤
= − − ⎢ ⎥

⎣ ⎦

x
z z

x
 (4-43) 

The control goal is to fulfill tracking control for the output 

 ( ) [ ] ( )1 2 0t t=y x  (4-44)  

Assume the tracking error e as 

 ( ) ( ) ( )dt t t= −e y y  (4-45) 

Hence, the system (3-32) can be reconstructed as 

 

( )
( )
( )
( )

( )
( )
( )
( )

( )

( )

1 1

2 2

33

0.277 1 0.002 0 1
1.71 0.178 12.2 0 0

ˆ ˆ0 0 6.67 0 1
1 2 0 0 0

01
01
00

0 d

t t
t t

t
tt
tt

t

⎡ ⎤ ⎡ ⎤− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥+ +
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦

x x
x x

u
xx
HH

d

y

 (4-46) 

The first step in the sliding mode controller design is to choose an appropriate sliding function, 

such that the system trajectory can trace to control goal in the sliding mode. Let the sliding 

function be 

 ( ) ( )

( )
( )
( )
( )

1

2

3

ˆ
ˆ

t
t

t t
t
t

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x
x

s Cp C
x
H

 (4-47) 

Because the eigenvalues of A are 0, -0.2275±1.3067i and -6.67, then the matrix C can be 

determined by the transformation matrix method and via the pole-assignment method to 

appoint the eigenvalues are [ ]1 2 3− − − , [ ]1 4 2 4 2i i− − + − −  and [ ]2 6.67 12− − −  

respectively, and =CB I , hence, the design C as 
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[ ]
[ ]
[ ]

= 0.0046 0.4114 1.0046 0.1479

= 0.3219 0.7977 1.3219 0.4929

= 0.3681 1.9060 1.3681 3.9451

− − − −

− − −

− − −

C

C

C

 (4-48) 

The design input ( )tu  as (3-12) respective represent by 

 

( ) ( ) ( ) ( )
[ ] ( ) ( )( ) ( )

( ) [ ] ( ) ( )( ) ( )

( ) [ ] ( ) ( )( ) ( )

ˆ

ˆ ˆ0.5569 0.2272 1.6816 0 1 ,

ˆ ˆ0.9603 1.1657 0.9155 0 1 ,

ˆ ˆ0.5839 7.919 14.1287 0 1 ,

t t sgn

t t sat

t t t sat

t t t sat

γ σ

σ ε

σ ε

σ ε

= − − +

= − − − − + +

= − − − + +

= − − − − + +

u CAx s

x x s

u x x s

u x x s

 (4-49) 

where σ  are 0, 3, 38 respective in Case 2, and σ  are 0, 1, 15 respective in Case 3, and 

sliding layer 0.01 0.01ε− ≤ ≤ . The simulation results as: 

In case2, Figure 4.36 to Figure 4.43 are simulation results with initial condition 

( ) [ ]0 10 7 5 T=x  and ( )0 0=z . Figure 4.36 shows the MATLAB simulink connection 

diagram that contains system, reduced-order observer, sliding mode controller, and 

disturbance. Figure 4.37 shows the observer state error, because constant the eigenvalues of F, 

hence, the state error at 0.8338s convergence to zero, and the convergence speed from (4.181, 

0s) to (0.0001898, 1s), conform the ( ) 10eig = −F . Figure 4.38 shows the sliding surface, 

that at 0.2092s, 0.2086s, and 0.1964s into the sliding layer respectively, and then it effect the 

control input that have disjunctive parts in these time shows in Figure 4.40 and the design 

eigenvalues of C distant from origin in left phase plane, then the input u must be higher gain. 

Figure 4.39 shows the sliding surface bound into s ε≤ . Figure 4.41 shows the disturbance, 

that the range between -1.12 and 1.32. Figure 4.42 shows the output tracking control ( )ty  to 

( )d ty , because the system affected mismatching disturbance and constant ( )d ty , then the 

control output can not complete track to ( ) 10d t =y , conform with introduced Section 3.3. 

Figure 4.35 shows the control output error, and the design eigenvalues of C distant from 

origin in left phase plane more approach ( ) 10d t =y . 
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Figure 4.36 The MATLAB slimulink connection diagram 

 
Figure 4.37 The observer state error 

 

Figure 4.38 The sliding surface ( )ts  
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Figure 4.39 The sliding surface ( )ts  bound in s ε≤  

 

Figure 4.40 The control input ( )tu  

 

Figure 4.41 The disturbance ( )td   
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Figure 4.42 The output tracking control ( )ty  to ( )d ty   

 
Figure 4.43 The output tracking control error 
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In case 3, Figure 4.44 to Figure 4.50 are simulation results with initial condition 

( ) [ ]0 10 7 5 T=x  and ( )0 0=z . Figure 4.44 the observer state error, because constant the 

eigenvalues of F, hence, the state error at 0.8338s convergence to zero, and the convergence 

speed from (4.181, 0s) to (0.0001898, 1s), conform the ( ) 10eig = −F . Figure 4.45 shows the 

sliding surface, that at 0.1643s, 0.2883s, and 0.5745s into the sliding layer respectively, and 

then it effect the control input have disjunctive parts in these time shows in Figure 4.47, and 

the design eigenvalues of C distant from origin in left phase plane, then the input u must be 

higher gain. Figure 4.46 shows the sliding surface bound into s ε≤ . Figure 4.48 shows the 

disturbance, that the range between -1 and 1.25. Figure 4.49 shows the output tracking control 

( )ty  to ( )d ty , because the system affected mismatching disturbance and not constant 

( )d ty , then the control output can not complete track to ( ) ( )d t cos t=y , conform with 

introduced Section 3.3. Figure 4.50 shows the control output error, and the design eigenvalues 

of C distant from origin in left phase plane more approach ( ) ( )d t cos t=y . 
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Figure 4.44 The observer state error 

 

Figure 4.45 The sliding surface ( )ts   

 

Figure 4.46 The sliding surface ( )ts  bound in s ε≤  
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Figure 4.47 The control input ( )tu  

 

Figure 4.48 The disturbance ( )td  

 

Figure 4.49 The tracking control output ( )ty  to ( )d ty  
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Figure 4.50 The tracking control output error 
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Chapter 5 

Conclusions and future research 

The reduced-order observer-based sliding mode controller design combines with 

reduced-order observer and sliding mode controller. The basic theorem related to the reduced 

order observer has been introduced in Chapter 2. The reduced-order observer is used to 

estimate unmeasurable state variables and with these estimated information the sliding mode 

controller for the LTI system is designed in Chapter 3. There are three cases discussed, 

including stability control of system with matched disturbance, stability control of system 

with mismatching disturbance, and output tracking control of disturbance system. Most 

importantly, all the cases can reach control goal and have good performance. 

In Chapter 4, use MATLAB simulink to simulate six cases, which are matched 

disturbance system with dimension p q= , matched disturbance system with dimension 

p q> , mismatching disturbance system for controller stability, output tracking control for 

constant trajectory, and output tracking control to trace time-varying trajectory for 

mismatching disturbance. The reduced order observer was given to accurately estimate the 

unmeasurable state variables and not affected by disturbance [2]. The convergence rate of the 

estimation depends on the eigenvalues of the observer. The sliding mode controller can 

completely reject the matched disturbance in the sliding mode [3]. Consequently, the 

reduced-order observer-based sliding mode controller can successfully eliminate the matched 

disturbance and reach the control goal. 

The problem concerning fast tracking trajectory still exists and the developed ROSMC is 

not able to trace such trajectory effectively. Besides, the ROSMC is also restricted to the 

condition of invariant zeros to the unknown inputs. In the future, it is needed to improve the 

proposed ROSMC to deal with such problems.  
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