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ABSTRACT

This thesis presents reduced-order observer-based sliding mode controller (ROSMC)
design. The reduced-order observer, a‘’kind of Luengerger observer and designed by Kudva, is
used to accurately estimate the -unmeasurable state variables, even under the influence of
undesirable disturbance. Besides, the ROSMC. also -employs a sliding layer to reduce the
chattering phenomenon and eliminate the matched disturbance. There are three cases
discussed in this thesis, including stability control of system with matched disturbance,
stability control of system with mismatching disturbance, and output tracking control of
system with disturbance. To demonstrate the usefulness of the ROSMC, there are six
examples given and simulated by the software package MATLAB. The simulation results are
mainly used to show the effect on the observer caused by the dimension of unmeasurable state
variables, the effect on the system stability and performance caused by matched and
mismatching disturbance, the effect on the output tracking control caused by disturbance.
Form the simulation results, the developed ROSMC is indeed able to achieve the desired

control goal.
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Chapter 1

Introduction

1.1 Motivation

This thesis will focus on the sliding mode controller design for a system with
unmeasurable state variables. Unfortunately, a sliding mode control is commonly based on the
feedback of full state variables. That means it is difficult to design a sliding mode control
when unmeasurable state variables exist. To solve this problem, it is required for the sliding
mode control to combine an observer to estimate the unmeasurable state variables. Hence,
how to choose an appropriate observer for the sliding mode control becomes an important

task in this thesis.

There are several observers proposed to“estimate these unmeasurable state variables,
including the sliding observer [1] and.the-reduced order observer [2]. The sliding observer is
proposed by Utkin for systems without noise and achieves good performance. However, the
sliding observer is only limited to noiseless'systems and not extendable to general systems,
which often inevitably suffer from noises. Hence, in order to deal with noises existing in
general systems, Kudva presented the reduced-order Luenberger observer [2], which has been
shown robust to noises. In addition, it has been found that both the sliding mode observer and
the reduced-order Luenberger observer are constrained to the same conditions. Clearly, the
reduced-order Luenberger observer is indubitably better than the sliding mode observer and
more suitable for systems encountering noises. Therefore, this thesis will employ the
reduced-order Luenberger observer to estimate the unmeasurable state variables while design
the sliding mode control, which is called the reduced-order observer-based sliding mode
controller, or ROSMC in short.



1.2 Research background

The feature of sliding mode control system is claimed to result in superb system
performance, which includes insensitivity to parameter variations and complete rejection of
matched disturbances [3]. The sliding mode control research community has risen to respond
to the critical challenge, chattering phenomenon, which is the only obstacle for sliding mode
to become one of the most significant discoveries in modern control theory [4-7]. Many
analytical design methods were proposed to reduce the affects of chattering [8-12] and the use
of sliding layer is the commonest one, which, however, inevitably decreases the control
precision [13]. In general, the design of a sliding mode control is composed of two basic steps.
For the first step, design a sliding function to guarantee the desired system performance in the
sliding mode. For the second step, develop the control law to drive the system trajectories into
the sliding layer in a finite time and stay thereafter [1, 13-15].

When unmeasurable state variables exist, the use of observer to estimate is required. The
sliding mode observer design method has been proposed by Utkin, where some sufficient
conditions of uncertain input need to be satisfied for the asymptotic convergence of the
estimated state [16]. By selecting appropriate gains for the sliding mode observer, it can be
guaranteed that the convergence -of any initial’'estimated state to its true state in a finite time
[17]. Once the estimated state reaches the true state, it will remain on the trajectory of the true
state or within a very small region around the true state. However, the sliding mode observer
is designed under the assumption that the measurement is not corrupted by noise, so it may

not perform well for a system with noise [1].

Recently, many investigators have focused on the reduced-order Luenberger observers
for the state estimation of linear systems subject to unknown inputs. Besides the observability
conditions, some other conditions in terms of the zeros of the system characteristic
polynomial are also needed for the observer to be designable [2, 18-21]. This thesis had tried
to develop sliding mode observer to LTI system with disturbance, but found that it required
the same restricted conditions as those of the reduced-order Luenberger observer proposed by
Kudva. Clearly, the reduced-order Luenberger observer is indubitably better than the sliding
mode observer and more suitable for systems encountering disturbance. Hence, this thesis will

adopt the observer proposed by Kudva to deal with the unknown-input [2].



1.3 Thesis organization

The thesis is organized as follows. The mathematical model of observer design is
introduced in Chapter 2, including the reduced order observer and the sliding mode observer.
In Chapter 3, the sliding mode controller is designed based on the reduced-order observer for
three cases, which are regulation control for matched disturbance, regulation control for
mismatching disturbance, and output tracking control for disturbance system. In chapter 4, the
simulation and results will be shown to demonstrate the usefulness of the reduced-order
observer-based sliding mode controller (ROSMC). Form the simulation results, the developed
ROSMC is indeed able to achieve the desired control goal. Finally, the conclusions and future

research will be proposed in Chapter 5.



Chapter 2

The Mathematical Model of Observer Design

In this chapter, two kinds of observers, reduced order observer [2] and sliding mode
observer [1], are introduced in Section 2.1 and 2.2 respectively for a class of linear
time-invariant systems with matched and mismatched uncertainties and disturbances. Both
observers are found restricted to the same conditions within the design process. In fact, the
reduced order observer is more convenient when applying to system control problems.
Therefore, only the reduced order observer will be adopted in Chapter 3, combined into the

sliding mode control design.

2.1 Reduced order observer design

In general, an observer IS required when'a controller design faces insufficient
information of system states. Here, ‘introduce.the reduced order observer proposed by Kudva

et al. [2] for the linear time-invariant system expressed as

x(t)=Ax(t)+Bu(t)+ Ed(t) (2-1)
where x(t)e®R" is the system state, u(t)eR"™ is the control input, and d(t)eR? is the
disturbance. Without loss of generality, let the system state be decomposed into two parts, x;(t)
and x,(t), i.e., x(t):[xlT (t) x; (t)]T, where x, (t) e RPis measurable and x,(t)eR"P

is not obtainable. Hence, (2-1) can be rewritten as
v, (t t B E
rl( )}{Aﬂ Aﬂ}{"’l( )}{ 1},(0{ 1}1(0 (2-2)
X, (t) A, A, |l x, (t) B, E,
A, A, || B ; . . .
where : is controllable since (A4,B) is controllable, and (A,,4,,) is
A21 A22 1

an observable pair. Then, an observer of order of (n-p) to estimate x, (t) is constructed as

below[2]:



2(t) = Fz(t)+Jx, (t)+ Nu(t) (2-3)

where
F=4,-1LA,
J=FL+ A, -LA, (2-4)
N=B,-LB,

Since (A4,,,4,,) is an observable pair, there exists an LR """ such that F is of Hurwitz
and contain desired stable eigenvalues. Further choose the estimated state of x,(t) as
X, (t)=z(t)+Lx,(t) (2-5)

then find the derivative of x, (t

)
% (1) =2(t)+ L, (1)

= Fz(t)+Jx, (t)+ Nu(t)+ L( Ayx, (t)+ A,x, (t)+ Bu(t)+ Ed(t))

from (2-2) and (2-3) as
(2-6)

Define the estimated error as

%, (1) =%, (t)—x,(t) (2-7)
and then achieve the derivative of<x, (t),/ffom(2-2).and (2-6) as

%, (1) =X, (1) - %, (t)= Fx, (1) +(E, -~ LE)d (1) (2-8)
where F =A,,- LA, has been chosen to-contain stable eigenvalues. In order to eliminate
the effect caused by the disturbance “d(t), the term E,-LE, must vanish to achieve
%,(t)>0 as t—>w, ie, x,(t)—>x,(t) as t—>o. Clearly, the reduced order observer

should be designed under the following two conditions:

i) F=A,—LA, hasstable eigenvalues (2-9)
i) E,—LE =0 (2-10)
In fact, it is not easy to choose L satisfying (2-9) and (2-10) simultaneously. To deal with

such problem, an algorithm is given next to suitably design L.

The existence condition of L to satisfy (2-9) and (2-10) has been introduced by Kudva, et.

al. as below: [2]

2

El
rankE, = rank [E } =rank([4, A,]E)=q,and p=>q (2-11)

Clearly, E and E, are of full rank. Besides, the dimension of the measurable state x, (t) is



not less than that of the disturbance d (t) Once (2-11) is guaranteed, L can be selected as
L=E,E; +T(I,-EE;) (2-12)
where E; =(E1TE1)71 E] is the generalized inverse of E,, then E/E,=I,, and

I'e R s designed to satisfy (2-9). Consider two conditions of p=q and p>q to
choose matrix L. For the first condition p=gq, E, should be square and invertible, which
leadsto I,-E E =0.Then, (2-12) becomes

L=E,E (2-13)
and (2-9) can be rewritten as

F=A4,,-LA,=A4,-E,E ‘A, (2-14)
Clearly, the stability of F can not be determined by I". Hence, if F in (2-14) is not stable,

then the observer (2-3) is unable to estimate the system state x. On the other hand, if F in

(2-14) is stable, then the observer (2-3) is available for estimating x. For the second condition
p>q, E, isnomore square and invertible, 1.e.;.7, — E,E] #0. By substituting (2-12) into
(2-9), F can be rearranged as
F=A4, —(E2E1+ +I'{1, —ElE;))A12

= Ay, —E,EA,+ F(1,“E,E") A, (2-15)

=& +I'D,
where @, = A,,— E,E; 4, and &, =(I,-E,E/)A, . Clearly, it is required to find a matrix
I' which guarantees F is stable. If such a matrix I" does not exist, it is not possible to
design the reduced order observer (2-3). In case that I" exists, then L can be chosen as (2-12)

accordingly and the design of the observer (2-3) is completed which can successfully estimate

x, asgiven in (2-5).

2.2 Sliding mode observer design

This section will introduce the sliding mode observer proposed by Utkin et al. [1] for the
linear time-invariant system, which is a full order observer and more complicated than the
reduced order observer introduced in Section 2.1. In addition, this sliding mode observer and

the reduced order observer are restricted to the same conditions given (2-9) and (2-10). Hence,

-6-



this thesis will only employ the reduced order observer and the sliding mode observer is

introduced in this section just for reference.

The sliding mode observer design is applied to the same system (2-2), shown in Section 2.1

and rewritten as

L)Z ((tt))} ) Bz jlik ((tt))} {ﬁj u(t) {2}" (t) (2-16)

where x, (t)eRP® is obtainable and x,(t)e®R"" is not measurable. Note that (A,,,A,,)

is an observable pair. The sliding mode observer proposed by Utkin is constructed as

below[1]:

{aum@lumm (t)+ Bau(t) (1) o1

X, (t) = A, %, (1) + A,,%, (t)+ B,u(t) + Ly (t)
where (%, (t),x,(t)) represents the state estimate for (x,(t),x,(t)), LeR"™® is a

constant feedback gain matrix and v e R* isa discontinuous vector defined component wise
by
v(t)=M -sgn(%,(t)) (2-18)

where M e R, will be determined later. From (2-16) and (2-17), the error dynamics are

given by:
{ (6)= 5 (1) £ (1) = 4% (1) + Ao (0) (1)~ Ed (1) 019
X, (1) = X, (1) =, (1) = A%, (8) + A%, (1) + Ly (t) - Eod ()
Let
e,(t)=x,(t)+Lx,(t) (2-20)
then the derivative of e, (t) is
é, () =X, (t)+ Lx, (t) = A,%, (1) + 4,5, (1) - E,d (t) (2-21)

where



1:121 =A, + LA11 - ‘:lzzL (2-22)

Further substituting (2-18) into (2-19) of fcl(t) yields
X, ()= A%, (t)+ 4,5, (1) -v(t) - Ed(t) (2-23)

where A, = A, — A, L. By premultiplying ] ; (t) into (2-23), it can be attained that

%] (1) % (1) = & (t)(Au%, (1) + 4,5, (1) Msgn (%, (1)) - Ed (1))

< |& (t)H(H/]H;cl(t)JrAlzic2 (t)H— M +||El||§) (24
Clearly, if M is chosen as
M = max (| 4,% (t) + 4, %, (1) +| | )+ o (2-25)
where o >0, then (2-24) becomes
% (1) %,(1)< -ofwft)] (2-26)

which guarantees X, (t) reaches-zero”in a finite time as t—o, i, X (t)— x(t).as

t — oo. Hence (2-21) can be rewritten as

é,(t)=A,e,(t)—E,d(t) (2-27)
where the truth of e, (t)=x,(t) has been adopted from (2-20). There are two important

conditions listed as below:

i) The eigenvalues of A4,, = 4,,+ LA,, are stable. (2-28)
iy E,=E,+LE, =0 (2-29)
With these two conditions, the estimation error e, (t) will approach zero as t —» o, i.e,
x,(t) > x,(t) as t—>oo. This confirms the success of the sliding mode observer (2-17).

However, the conditions shown in (2-28) and (2-29) are the same as (2-9) and (2-10), required



for the reduced order observer. Since the sliding mode observer is much more complicated,
the reduced order observer will be used in the sliding mode controller design in the next

chapter.



Chapter 3

Reduced-Order Observer-Based Sliding

Mode Controller Design

In this Chapter, the sliding mode controller is designed based on the reduced-order
observer for three cases, including regulation control for matched disturbance in Section 3.1,
regulation control for mismatching disturbance in Section 3.2, and tracking control for

mismatching disturbance in Section 3.3.

3.1 Reduced-order observer-based sliding mode controller

design for matched disturbance

In this section, consider reduced-arder observer-based sliding mode controller design for

matched disturbance system, expressed as

x(t)=Ax(t)+ B(u(t)+d(t)) (3-1)
where x(t) e R" is the system state, u(t)e®R" is the control input, d(t)eR" is the
disturbance, (A4, B) is controllable, and that can transform into (2-2) with E replaced by B.

The reduced-order observer in (2-5) will be used here to estimate the unmeasurable state
variables. As usual, the first step in the sliding mode controller design is choosing an
appropriate sliding function, such that the system trajectory is steered to the control goal in

the sliding mode. Let the sliding function be

s(t)=Cx(t)= CL’: 8} (3-2)

where det(CB)=0. The matrix C can be determined by the transformation matrix method

[13], to guarantee the system stability in the sliding mode s(t)=0. For the second step, the

control algorithm is designed to drive the system into the sliding mode based on the

approaching condition [13]. To derive the control algorithm, differentiating (3-2) yields

-10-



$(t)=Cx(t) = CA%(t)+ CB(u(t)+d (1)) (3-3)

Then, the equivalent control input u, (t) in the sliding mode can be found from

$(),, = CA%(t)+ CB(u, (t)+d(t))=0 (3-4)
which leads to

u,, (t)=—(CB) " CAx(t)~(CB) " CBd (t)=ul, (t)+ii, (t) (3-5)
Note that the equivalent control input is partitioned into two parts shown as

ug, (t)=—(CB)" c4x(t) (3-6)

ii,, (t)=—(CB) " CBd (t) (3-7)

where ug, (t) is the dominant part and ,, (t) is related to the disturbance d(t). Clearly,
because of the existence of d(t) in #,(t), the control input u can not directly adopt the

equivalent control u, (t), instead it is set as

u(t) =, (1)

where the upper bound of &, (t) is selected-as

i, (1)] g% o) son(¥) (3-8)

g (t)| =(CB)'y with y=>|CBd(t)|

and o is a positive constant.7By 'substituting (3-8) into (3-3), the derivative of s(t)

becomes
$(t)=—(r+o)sgn(s)+CBd (t) (3-9)
Further premultiplying s' results in
. s(t)CBd (t
0507l alfestcna -l 1-*OPO) @0
Since y >|CBd(t)| and o >0, (3-10) becomes
s' (t)s(t) < —(7||S|| (3-11)

which evidently guarantee the reach and sliding condition. As a consequence, s(t) —>0 ina
finite time. It is well known that the chatting exists due to the use of sgn(s) in the control

algorithm (3-8). Hence, to ameliorate such undesired chatting, the switching function sgn(s)

is often replaced by the saturation function, expressed as

-11 -



o s>
sat (s, £)= I (3-12)

S
> o<

where &> 0 is the thickness of the sliding layer [s| <& . Therefore, the control algorithm
(3-8) is changed into

u(t)=—(CB) " CAx(t)-(CB) " (y +0o)sat(s,s) (3-13)
which will drive the system trajectory into the sliding layer, not in the sliding mode, in a finite
time and force it to stay within there. Once the system trajectory is bounded in the sliding
layer, it will move toward the control goal and then around there. In other words, the control
goal can not be precisely attained and the matched disturbance is not completely eliminated
since the system trajectory is not restricted in the sliding mode. The errors are caused by the
use of saturation function and depend on the scale of the matched disturbance and the
eigenvalues chosen for the sliding mode. The effect of the matched disturbance and the

eigenvalues will be demonstrated later:by the simulation results in Section 4.1.

3-2 Reduced-order observer-based sliding mode controller

design for mismatching disturbance

In this section, the reduced order observer is used to design the mismatching disturbance

of LTI system, described as

x(t)=Ax(t)+ Bu(t)+Ed (t) (3-14)
where x(t) e R" is the system state, u(t)e®R" is the control input, d(t)eR" is the
mismatching disturbance since E # BQ, (A,B) is controllable, and that can transform into

(2-2). The reduced-order observer (2-5) will be used here to estimate the unmeasurable state
variables. The first step in the sliding mode controller design is to choose an appropriate
sliding function, such that the system trajectory will be moved to the control goal in the

sliding mode. Let the sliding function be

$(t)= CR(t) = cL’z m (3-15)
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where det(CB) #0. The matrix C can be determined by the transformation matrix method

[13], such that the system is stabilized in the sliding mode s(t)=0. For the second step, the

control algorithm is designed to drive the system into the sliding mode based on the

approaching condition. In the design process, the derivative of (3-15) is obtained as
$(t) = Cx(t) = CA%(t)+CBu(t)+ CEd(t) (3-16)

Then, the equivalent control input u,, (t) in the sliding mode can be found by

$(t) vy = CAx(t)+ CBu,, (t)+ CEd (t)=0 (3-17)
which leads to

u,,(t)=—(CB)" CAx(t)~(CB) " CEd (t)=ul, (t)+ii, (1) (3-18)
Note that the equivalent control input is partitioned into two parts, shown as

ug, (t)=—(CB)" c4x(t) (3-19)

ii,, (t)=—(CB) " CEd(t) (3-20)

where ug, (t) is the dominant part and i (t), is related to the disturbance d(t). Clearly,
because of the existence of d(t) in i, (t); the Control input « can not directly adopt the

equivalent control u,, (1), instead it is sef'as

u(t) = Uy (t)_(

where the upper bound of i, (t)is

i, (t)Hm1X f a)sgn(s) (3-21)

i, (t)”max =(CB) "y with y>|CEd(t)| and o isa
positive constant. Further substituting (3-21) into (3-16) yields
$(t)=—(r+o)sgn(s)+CEd(t) (3-22)
and premultiplying s™ results in
s'(0)3(t) =7 ls|-olls|+s(t)CEa(t)

- ol - 2120 @29

Since y 2|CEd(t)| and o >0, (3-23) becomes
s' (t)s(t)<—o|s| (3-24)
which evidently guarantees the reaching and sliding condition. As a consequence, s(t)=0

in a finite time and the chattering exists due to the use of sgn(s) in (3-21). Hence, to
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ameliorate such undesired chattering, the switching function sgn(s) is often replaced by the
saturation function, expressed as

A
o lsl>e

sat(s,&)= s (3-25)
S
2 Jsl<e
where & >0 is the thickness of the sliding layer [s|<&. Therefore, the control algorithm
(3-21) is changed into
u(t)=—(CB)" CAx(t)-(CB) " (y+0o)sat(s,¢) (3-26)
and the system trajectory will be steered into the sliding layer, not in the sliding mode, during
a finite time and then stays therein. Once the system trajectory is bounded in the sliding layer,
it will move toward the control goal x — 0 and finally go around there. As a result, the
control goal can not be precisely attained and the mismatching disturbance can not be
eliminated in the sliding layer. The errors are caused by the use of saturation function, the
scale of the mismatching disturbance and the eigenvalues chosen for the sliding mode. The

effect of the mismatching disturbance and- the eigenvalues will be demonstrated later by the

simulation results in Section 4.2!

3-3 Reduced-order observer-based sliding mode controller

design output tracking control for disturbance

In this section, the reduced-order observer is used to design tracking control for

disturbance with LTI system as

x(t)=Ax(t)+ Bu(t)+Ed (t) (3-27)
where x(t) e R" is the system state, u(t)e®R" is the control input, d(t)eR" is the
disturbance, and (A, B) is controllable. Without loss of generality, the system state x(t) is

preprocessed to contain measurable part x(t) and unmeasurable part x,(t) , i.e.,

x(t)=[x(t) x, (t):|T . Here, the reduced-order observer (2-5) will be used here to estimate

the unmeasurable state variables. The control goal is to fulfill tracking control for the output
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y(t) = Gx(t) (3-28)
where G is full rank. That means the controller is designed to drive the output to follow the

desired trajectory y, (t) i.e., the tracking error

e(t)=p(t)—y,(t) (3-29)

will vanishas t - .

For the sliding mode tracking controller design, first define a new state concerning the

tracking error, expressed as

h(t)=| e(r)dz (3-30)
then

h(t)=e(t)=y(t)-y, (1) (3-31)
Clearly, by combining (3-27) and (3-31), the system can be reconstructed as

p(t)=A p(t)+Bu(t)+Ed(t)+ f(t) (3-32)

where p(t):[:gﬂ Apz{g ﬂ sz{]ﬂ, Epz{lﬂ, f(t):{_ydo(t)] Note that

(Ap Bp) is controllable since the pair (A B) is controllable. The first step in the sliding

mode controller design is to choose an appropriate sliding function, such that the system
trajectory can trace the control goal in the sliding mode. Let the sliding function be

s(t)=Cp(t)= CDEIH (3-33)

where det(CBp);tO and C can be determined by the transformation matrix method [13],
such that the system is stabilized in the sliding mode s(t)=0. For the second step, the control
algorithm is designed to drive the system into the sliding mode based on the approaching

condition.

Once C is determined in the first step, then the control algorithm is derived by
differentiating (3-33) as

$(t)=Cp(t)=CA,p(t)+CBu(t)+CE d(t)+Cf (t) (3-34)

The equivalent control u,, (t) can be found from

5(t)

L, =04, p(t)+CBu, (t)+CE d(t)+Cf (t)=0 (3-35)
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which leads to

o (1) = gy (1) + 1 (1) (3-36)
with nominal part
u,(t)=—(CB,) C4,p(t)-(CB,) ¢Cr (1) (3-37)

and disturbance
ii,, (t)=—(CB,) CE,d(t) (3-38)

Because of the existence of d(t) in i, (t), the control input « is generally designed as
(1) =, (1)~ [y (1)

where o is a positive constant and

+a)sat(s,g) (3-39)

max

i (1) =(CB,) y with y>|CEd(t) is the

upper bound of ,, (t) . The saturation function is given as

N
o ls>e

sat(s, &)= (3-40)

5 o<
where &> 0 is the thickness of the sliding layer ‘s < & . By substituting (3-39) into (3-34),
the derivative of s(t)becomes
$(t)=—(r+o)-sat(s,&)+CE d(t) (3-41)
Further premultiplying s’ results in

0507 el stcg,a(0) el 1- 2L @

Since 72HCEpd(t)H and o >0, (3-42) becomes
s (H)s(t)<—cs| (3-43)
which evidently guarantees the reaching and sliding condition of the sliding mode s(t)zo
in a finite time. By substituting (3-36) into (3-32), obtained as
P(t)=A,p(t)+ By (t)+ Ed (1) + ()
g 4 (3-44)
=(I—Bp(CBp) C)App(t)+(I—Bp(CBp) C)(Epd(t)+f(t))

Above equation, consider relationship with eigenvalues of C, disturbance and y,(t). If
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E,=B,0 ismatched disturbance and y, (t) is constant, then restructures (3-44) as
p(0)=(7-B,(cB,)" C)(4,p(t)+ £ (1) (3-45)
The design eigenvalues of C can be chosen such that (I—Bp (CBD)_1C)(App(t)+f(t)) is

Hurwitz, and then p(t)= [x(t) h(t)}T =0 as t>o hence

h(o)=e(®)=y(o)-y,(»)=0, and then attains the control goal y(t) to y,(t), that

will simulate in Section 4.3 case 1.

If E, = B,Q ismismatching disturbance and y, (t) is constant, then restructure (3-44)
as
. -1 -1
p(t):(I—Bp(CBp) C)(App(t)+f(t))+(I—Bp(CBp) C)Epd(t) (3-46)
The mismatching disturbance is not remove, and then will make control error, such that
output tracking control not exact tracks,sp(t)1t0, y, (t). In order to reduce tracking error that

can chooses the design eigenvualues of € distant from origin in left phase plane, but that can
make control input have high gain, that will be simulate in Section 4.3 case 2.

If E,#B,Q is mismatching disturbance-and .y, (t) is not constant i.e., y, =cos(t),
then must be affected with mismatching ‘disturbance and y,, and then the output tracking

control not complete tracks y(t) to y,(t). In order to reduce tracking error that can

chooses the design eigenvualues of C distant from origin in left phase plane, but that can

make control input have high gain, that will be introduce in Section 4.3 case 3.
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Chapter 4

Simulation and Result

In this chapter, consider six case of reduced-order observer-based sliding mode

controller design. There are the matched disturbance system and the dimension p=q, the
matched disturbance system and the dimension p >q, the mismatching disturbance system

for controller stability, the output tracking with matched disturbance system and tracking
trajectory is constant, the output tracking with mismatching disturbance and tracking
trajectory is constant, and the output tracking with mismatching disturbance system and

tracking trajectory is not constant.

4.1 Observer-based:sliding’.mode controller design for

matched disturbance

In this section, using reduced-order”observer-based sliding mode controller design to
simulates two case, there are matched disturbance system that dimension of measurable equal
dimension of disturbance, and matched disturbance system that dimension of measurable

greater than dimension of disturbance.

In Case 1, consider a LTI system (3-1) suffering from the matched disturbance, the
system state be decomposed into two parts x(t)=|x/ () x; (t)T, where x,(t) is

measurable and x, (t) is not obtainable. Then the system reconstruct as:

peeiEPR MARACCRE
The matched disturbance is assumed as
d(t)= O.S(Sin (27t)+ cos(%tj}o.lsin (t)x (4-2)

Apparently, the upper bound of the matched disturbance is obtained as
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Jd (©)] < (1) +1 (4-3)

The system dimension of measurable part and the dimension of disturbance represent as
1
rank (4, A,)=rank([-1 1])=p=rank(B)= rank(LD =q=1 (4-4)

The first step is to design the reduced order observer, and the observer (2-3) represent as
2(t)=Fz(t)+Jx, (t)+Mu(t) (4-5)
where
F=A4,-LA,=-3-Lx1
J=FL+A, — LA, = FL+2-Lx(-1) (4-6)
M=B,-LB =1-Lx1

And the reduced order observer should be designed under two conditions of (2-9) and (2-10).
Because the dimension p =q, hence, the matrix L can be chosen as (2-13) by

L=B,B'=-1 (4-7)
where L is not chosen by I'. By substituting (4:7) into (4-6) and the observer (4-5) rewrite as

£(t)=—2z(t)+3x(t) (4-8)
In this case, the eigenvalue of F:is stable, then it'is completed estimate x, as given in (4-8)

successfully. The second step is Using-this-information to design the sliding mode controller,

Let the sliding function be
s(t)=Cx(t) (4-9)
Because the eigenvalues of A4 are -0.2679 and -3.7321, then the matrix C can be determined

by the transformation matrix method and via the pole-assignement method to appoint the

eigenvalue is -4, and CB =1, hence, the design C as

c=[1 0] (4-10)
The design input u(t) as (3-12) by

u(t)=—CAx(t)—(y+o)sgn(s)=-[-1 1]x(t)-(|%(t)|+1)sat(s.c)  (4-11)
where o =0 and sliding layer —0.01< & <0.01. The simulation results as:
Figure 4.1 to Figure 4.8 are simulation results with initial condition x(0)=[10 7]T and

z(O) =0. Figure 4.1 shows the MATLAB simulink connection diagram, that contains system,

reduced-order observer, sliding mode controller, and disturbance. Figure 4.2 shows the

observer state error, that at 4.87s convergence to approach of zero, that after into sliding layer,
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and the convergence speed from (17, 0s) to (2.3, 1s), conform the eig(F) =-2. Figure 4.3

shows the sliding surface, that at 3.115s into the sliding layer, and then it effect the control
input « that has a disjunctive part that from -0.9769 to 0.08283 at this time shows in Figure
4.5, it possible two reason that the observer does not completely estimated, and sliding

surface must bound in sliding layer, hence, must has higher gain instant to conform two

possible reasons. Figure 4.4 shows the sliding surface bound into [s| <& after complete

estimate, Figure 4.6 shows the disturbance, that the range between -1 and 1.35. Figure 4.7 and

4.8 illustrate the system state variable all convergeto x=0.
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In case 2, consider a LTI system (3-1) suffering from the matched disturbance, the
system state be decomposed into three parts x(t)z[xlT (1) x (1) x; (t)]T , where x; (t)
and x,(t) are measurable and x;(t) is not obtainable. Then the system reconstruct as:

()] [0277 1 -00027 x,(t)] [1
X,(t)[=] -L71 0178 -12.2 || x,(t)|+| O |(u(t)+d(t)) (4-12)
X (t) 0 0 667 || x,(t)| |1

The matched disturbance is assumed as
d(t)= O.S(S,in(27zt)+cos(%tD+0.1$in(t)x1 (4-13)

Apparently, the upper bound of the matched disturbance is obtained as
o (O] <[ ()] +2 (4-14)
The system dimension of measurable part and the dimension of disturbance represent as

rank (4, A,)=rank —0.34 . 00021
woee 971 gars 122 P7

1 (4-15)

rank (B)=rank| |0 ||=g=1
1

where the dimension p>q. The first:step is-10 design the reduced order observer, and the

observer (2-3) represent as

§(t) = Fz(t)+Jx, (t) + Mu(t) (4-16)
where
F=A,—LA,=-667—Lx {_O'OOZ}
~12.2
J=FL+ A, — LA, = FL+[0 0]—Lx[_0'277 ! } (4-17)
~171 -0.178

1
M=BZ—LBlzl—L>{ }
0

And the reduced order observer should be designed under two conditions of (2-9) and (2-10).

Because the dimension p > q, hence, the matrix L can be chosen as (2-12) by
N N 00
L=B,B +I'(I,-BB)=[1 0]+T 0 1 (4-18)
where L can be chosen by I'. The matrix L can affect the observer estimate speed, that
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determine for eigenvalues of F. By substituting (4-18) into (4-16) and design the eigenvalues
of F are -1, -5, and -10 respectively, then the L represent separately as
L=[-1 0.4648]
L=[-1 0.1369] (4-19)
L=[-1 -0.273]
By substituting (4-19) into (4-17), then the observer (4-16) rewrite as
#(t) =1z (t)-[1.5192 0.6173]{)‘1(0}

X (t)
)

#(t) =5z (t)—[4.9589 o.3396]L’§1 ((EJ (4-20)

¢(t)=-10z(t)-[9.2588 3.6821]{"1(0}

x, (1)
Therefore, it is completed which can successfully estimate x, as given in (4-20). The second
step is using this information to design the sliding mode controller, let the sliding function be
s(t)=Cx(t) (4-21)
Because the eigenvalues of A4 are -0.2275+1.30671-and -6.67, then the matrix C can be

determined by the transformation matrix: method and via the pole-assignment method to

appoint the eigenvalues are -1 and -4, and CB'=T, hence, the design C as

C=[O.1323 -0.2659 0.8677] (4-22)
The design input u(t)u as (3-12) by

u(t)=—-CAx(t)—(y+o)sgn(s)

4-23
=—[0.4180 0.1796 -2.5438]%(t)—( (4-23)

fc(t)”+1)sat(s,£)

where o =0 and sliding layer —0.01< ¢ <0.01. The simulation results as:
Figure 4.9 to Figure 4.18 are simulation results with initial condition x(0)=[10 7 3]T
and z(O):S. Figure 4.9 shows the MATLAB simulink connection diagram, that contains

system, reduced-order observer, sliding mode controller, and disturbance. Figure 4.10 shows
the observer state error, that at 8.453s, 1.771s and 0.9199s convergence to approach of zero

respectively, therefore, Figure 4.11 shows the convergence speed from (4.746, 0s) to (1.744,
1s), (7.042, 0s) to (0.04736, 1s), (9.911, 0s) to (0.0004488, 1s), conform theeig(F):—l,

eig(F)=-5, eig(F)=—-10 respectively, and the eigenvalues of F distant from origin in
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left phase plane, the observer accurate estimate soon. Figure 4.12 shows the sliding surface,
that at 0.3244s, 0.191s, and 0.2413s into the sliding layer respectively, and then it lead to the
control input have disjunctive parts shows in Figure 4.14 at these time, and the sliding surface
guarantee bound into sliding layer after accurate estimate show in Figure 4.13. Figure 4.15
shows the disturbance, that the range between -1 and 1.3. Figure 4.16, 4.17 and 4.18 illustrate

the system state variable all convergeto x=0 \
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4.2 Observer-based sliding mode controller design for

mismatching disturbance

In this section, using reduced-order observer-based sliding mode controller design to
simulates a mismatching disturbance of LTI system. Consider a LTI system (3-1) suffering

from the mismatching disturbance, the system state be decomposed into three parts
x(t)z[xlT (t) x(t) x; (t)T, where x,(t) and x,(t) are measurable and x,(t) is

not obtainable. Then the system reconstruct as:

x(t)| [-0277 1 -0002] x(t)] [1 1
x,(t)|=] -1.71 -0.178 -12.2 || x,(t) |+| O |u(t)+|1 |d(t) (4-24)
X, (t) 0 0 -6.67 || x,(t)| |1 0

The mismatching disturbance is assumed as
d(t):O.S(Sin(27z‘t)+cos(%tn+0.lsin(t)x1 (4-25)

Apparently, the upper bound of the mismatching disttrbance is obtained as
o (O] <[] +2 (4-26)
The system dimension of measurable part andthe dimension of disturbance represent as

-0.277 1 -0.002
rank (4, A,)=rank
-1.71 -0.178 -12.2

1 (4-27)
rank (E)=rank||1||=q=1
0

where the dimension p >q. The first step is to design the reduced order observer, and the
observer (2-3) represent as
z(t)=Fz(t)+Jx, (t)+ Mu(t) (4-28)

where

~0.002
F=dy—LAd,=-667-Lx|

(4-29)

0277 1
J=FL+A, —LA, =FL+[0 0]—L><[ }

-1.71 -0.178

1
M=E2—LE1:0—L><H
1

-31-



And the reduced order observer should be designed under two conditions of (2-9) and (2-10).
Because the dimension p >, hence, the matrix L can be chosen as (2-12) by

0.5 —0.5}

4-30
-05 05 (4-30)

L=E,E +I(I,-EE/)=[0 0]+r{

where L can be chosen by I'. The matrix L can affect the observer estimate speed, that
determine for eigenvalues of F, shows in Section 4.1. By substituting (4-30) into (4-29) and
design the eigenvalue of F'is -10, that can convergence to approach of zero soon, then the L

represent as
L=[0.273 -0.273] (4-31)
By substituting (4-31) into (4-29), then the observer (4-28) rewrite as
t
z(t)=-10z(t)—[-3.1212 2.4084]{)61( )} (4-32)
x, (1)

Therefore, it is completed which can successfully estimate x, as given in (4-28). The second

step is using this information to design the:sliding mode controller, let the sliding function be
s(t)=Cx(1) (4-33)
Because the eigenvalues of A4 -are -0.2275+1.:3067i -and -6.67, then the matrix C can be
determined by the transformation matrix_method and via the pole-assignment method to
appoint the eigenvalues are [-1 -2, [-2 -6.67] and [-2+2i -2-2i] respectively, and CB =1,
hence, the design C as
C:[0.1259 -0.1251 0.8741]

C=[—0.l457 —0.6575 1.1457] (4-34)
C=[-0.1264 -0.3129 1.1264]
The design input u(t) as (3-12) respective represent by
u(t)=-CAx(t)—(y+o)sgn(s)
=-[0.1790 0.1482 —4.3043]x(t)—(|%(
=[x (

u(t)=-[11647 -0.0287 0.3800]%(t)— (|

)| +1)sat(s,¢)

t
t (4-35)

)| +1)sat(s,¢)
u(t)=-[05701 -0.0707 —-3.6955]x(t)—(

x(t)|+1)sat(s, )
where o =0 andsliding layer —0.01< & <0.01. The simulation results as:
Figure 4.19 to Figure 4.27 are simulation results with initial condition x(0)=[10 7 3]T

and z(0)=5. Figure 4.19 shows the MATLAB simulink connection diagram, that contains
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system, reduced-order observer, sliding mode controller, and disturbance. Figure 4.20 shows
the observer state error, because constant the eigenvalues of F, hence, the state error at

0.7944s convergence to approach of zero, and the convergence speed from (-2.819, 0s) to

(-0.000128, 1s), conform the eig(F):—lo. Figure 4.21 shows the sliding surface, that at

0.3867s, 0.2631s, and 0.123s into the sliding layer respectively, and then it effect the control
input that have disjunctive parts in these time show in Figure 4.23. Figure 4.22 shows the
sliding surface guarantees bound into sliding layer after accurate estimate. Figure 4.24 shows
the disturbance, that the range between -1 and 1.3. Figure 4.25, 4-26 and 4.27 illustrate the
system state variable all converge to approach x=0, because the system affected

mismatching disturbance, then it uncompleted convergeto x=0.
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4.3 Observer-based sliding mode controller design for output

tracking

In this section, using reduced-order observer-based sliding mode controller design to

simulates three cases, there are output tracking that tracking trajectory y, (t) is constant
with matched disturbance, output track that tracking trajectory y, (t) is constant with

mismatching disturbance, and output track that tracking trajectory y, (t) IS not constant with

mismatching disturbance.

In case 1, use the matched disturbance of LTI system, and output tracks control y(t) to
Vs (t) The system and the observer design same with Section 4.1 case 2, hence, it is

completed which can successfully estimate x, (t) as given in (4-20), and the observer

rewrites as

o\ x, (1)

z(t)=-10z(t)—[9.2588 3.6821] (4-36)

X; (1)

The control goal is to fulfill tracking control for the output

y(O)=[1 2 0]x(t) (4-37)
Assume the tracking error e as

e(t)=p(t)—y,(t) (4-38)

where y, (t) is output tracking control trajectory, and design y, (t)=10 is constant. Hence,

the system can be reconstructed as

% (t)] [-0277 1 -0.002 07 x(t)
X ()| | 171 -0178 -122 0| x,(t)
L)l | o 0  —6.67 0 x(t)
(H(t) 1 2 0 O H(t) (4-39)
1 0
0 0
1 (u(t)+d(t))+ 0
0 —JVq

The first step in the sliding mode controller design is to choose an appropriate sliding function,

such that the system trajectory can trace the control goal in the sliding mode. Let the sliding
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function be
(4-40)

Because the eigenvalues of A are 0, -0.2275+1.3067i and -6.67, then the matrix C can be

determined by the transformation matrix method and via the pole-assignment method to

appoint the eigenvalues are [-1 -4 —6.67],and CB =1, hence, the design C as
C:[—0.4694 -1.0692 1.4694 —0.6575] (4-41)
The design input u(t) as (3-39) represent by

u(t)=-CAx(t)-(y+o)sgn(s)

=-[1.3008 -15941 32442 0]%(t)—(|%(t)|+1+0)sat(s.) (442
where o is 8, and sliding layer —0.01< ¢ <0.01. The simulation results as:
Figure 4.28 to Figure 4.35 are simulation results.with initial condition x(0)=[10 7 5]T
and z(0)=0. Figure 4.28 shows the MATLAB simulink connection diagram, that contains

system, reduced-order observer,-sliding mode controller, and disturbance. Figure 4.29 shows
the observer state error, that at 0.9773s convergence to approach zero, and the convergence

speed from (16.91, 0s) to (0.0007658, 1s),'conform the eig (F )=-10. Figure 4.30 shows the

sliding surface, that at 0.725s into the sliding layer, and then it affect the control input that

have disjunctive parts in this time shows in Figure 4.32. Figure 4.31 shows the sliding surface

bound into [s| <& . Figure 4.33 shows the disturbance, that the range between -1.2 and 1.25.
Figure 4.34 shows the output tracking control y(t) to y, (t) because this is matched
disturbance system and y, (t) is constant, then the control output can complete track to

¥, (t)=10, that introduced in Section 3.3. Figure 4.35 shows the control output error.
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In Case 2 and Case 3, use the mismatching disturbance of LTI system, and output

tracking control y(t) to y,(t), and then will consider two condition of y,(t)=10 is
constant in case 2 and y, (t)=cos(t) is not constant in case 3. The system and the observer

design same with Section 4.2, hence, it is completed that can successfully estimate x, (t) as

given in (4-32), and the observer rewrites as

z(t)=-10z(t)-[-3.1212 2.4084][)61 (t)} (4-43)
x, (t)
The control goal is to fulfill tracking control for the output
y(t)=[1 2 0]x(t) (4-44)
Assume the tracking error e as
e(t)=y(t)=y(t) (4-45)

Hence, the system (3-32) can be reconstructed as

[%(t)] [-0277 180002, 0 x(1)] [1
()| _| 171 0478 =422, Ol x,(t)| |0 (0
X, (1) 0 0. 667 0%, (1)] |1
| H(t)] 1 2 0  Ooj|H(t)] |0 (4-46)
1 0
1 0
u d(t)+ 0
0 —Jq

The first step in the sliding mode controller design is to choose an appropriate sliding function,
such that the system trajectory can trace to control goal in the sliding mode. Let the sliding

function be

t

=

=

(t)
s(t)=Cp(t)=C 28 (4-47)

(t
H(t)

=)

Because the eigenvalues of A are 0, -0.2275+1.3067i and -6.67, then the matrix C can be
determined by the transformation matrix method and via the pole-assignment method to

appoint the eigenvalues are [-1 -2 -3], [-1 —4+2i -4-2i] and [-2 -6.67 -12]

respectively, and CB = I, hence, the design C as
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C=[-0.0046 -0.4114 -1.0046 -0.1479]
C=[-0.3219 -0.7977 1.3219 -0.4929] (4-48)
C=[-0.3681 -1.9060 1.3681 -3.9451]

The design input u(t) as (3-12) respective represent by

u(t)=—-CAx(t)—(y+o)sgn(s)
~[05569 -0.2272 -1.6816 0]%(t)—(|%(t

)H +1+ 0') sat(s, 8)
(4-49)

x(t
u(t)=-[0.9603 -1.1657 0.9155 0]%(t)—(|%(t)|+1+0o)sat(s,¢)
x(t

u(t)=—[-05839 -7.919 14.1287 0]%(t)—(|%(t)|+1+0c)sat(s,)

where o are 0, 3, 38 respective in Case 2, and o are 0, 1, 15 respective in Case 3, and
sliding layer —0.01< ¢ <0.01. The simulation results as:

In case2, Figure 4.36 to Figure 4.43 are simulation results with initial condition
x(0)=[10 7 S]T and z(0)=0. Figure 4.36 shows the MATLAB simulink connection

diagram that contains system, reduced-order observer, sliding mode controller, and
disturbance. Figure 4.37 shows the .observer state error, because constant the eigenvalues of F,

hence, the state error at 0.8338s convergence to zero, and the convergence speed from (4.181,

0s) to (0.0001898, 1s), conform: the eig(F):—lO. Figure 4.38 shows the sliding surface,

that at 0.2092s, 0.2086s, and 0.1964s into the sliding layer respectively, and then it effect the
control input that have disjunctive partsiin these time shows in Figure 4.40 and the design

eigenvalues of C distant from origin in left phase plane, then the input  must be higher gain.

Figure 4.39 shows the sliding surface bound into |s| <& . Figure 4.41 shows the disturbance,
that the range between -1.12 and 1.32. Figure 4.42 shows the output tracking control y(t) to
¥, (t), because the system affected mismatching disturbance and constant y, (t), then the

control output can not complete track to y, (t)=10, conform with introduced Section 3.3.

Figure 4.35 shows the control output error, and the design eigenvalues of C distant from

origin in left phase plane more approach y, (t)=10.
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In case 3, Figure 4.44 to Figure 4.50 are simulation results with initial condition
x(0)=[10 7 5]T and z(0)=0. Figure 4.44 the observer state error, because constant the

eigenvalues of F, hence, the state error at 0.8338s convergence to zero, and the convergence

speed from (4.181, 0s) to (0.0001898, 1s), conform the eig (F )=-10. Figure 4.45 shows the

sliding surface, that at 0.1643s, 0.2883s, and 0.5745s into the sliding layer respectively, and
then it effect the control input have disjunctive parts in these time shows in Figure 4.47, and

the design eigenvalues of C distant from origin in left phase plane, then the input  must be

higher gain. Figure 4.46 shows the sliding surface bound into ||s|< & . Figure 4.48 shows the
disturbance, that the range between -1 and 1.25. Figure 4.49 shows the output tracking control
y(t) to y, (t) because the system affected mismatching disturbance and not constant
¥4 (t), then the control output can not complete track to y,(t)=cos(t), conform with

introduced Section 3.3. Figure 4.50 shows the control output error, and the design eigenvalues

of C distant from origin in left phase plane,;more approach y, (t)=cos(t).
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Chapter 5

Conclusions and future research

The reduced-order observer-based sliding mode controller design combines with
reduced-order observer and sliding mode controller. The basic theorem related to the reduced
order observer has been introduced in Chapter 2. The reduced-order observer is used to
estimate unmeasurable state variables and with these estimated information the sliding mode
controller for the LTI system is designed in Chapter 3. There are three cases discussed,
including stability control of system with matched disturbance, stability control of system
with mismatching disturbance, and output tracking control of disturbance system. Most

importantly, all the cases can reach control goal and have good performance.

In Chapter 4, use MATLAB.simulink to simulate six cases, which are matched

disturbance system with dimengion; p=¢, matched disturbance system with dimension
p >(q, mismatching disturbance system for controller stability, output tracking control for

constant trajectory, and output tracking=control -to trace time-varying trajectory for
mismatching disturbance. The reduced.order observer was given to accurately estimate the
unmeasurable state variables and not affected by disturbance [2]. The convergence rate of the
estimation depends on the eigenvalues of the observer. The sliding mode controller can
completely reject the matched disturbance in the sliding mode [3]. Consequently, the
reduced-order observer-based sliding mode controller can successfully eliminate the matched

disturbance and reach the control goal.

The problem concerning fast tracking trajectory still exists and the developed ROSMC is
not able to trace such trajectory effectively. Besides, the ROSMC is also restricted to the
condition of invariant zeros to the unknown inputs. In the future, it is needed to improve the

proposed ROSMC to deal with such problems.
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