一個1伏特2.4GHz具有電流匹配電荷幫浦之互補式金氧半頻

率合成器

研究生: 謝致遠 指導教授: 吳重雨教授

國立交通大學

電子工程學系電子研究所碩士班

摘要

THE REAL

本篇論文描述一個工作在低電壓 2.4GHz 的互補式金氧半整數除頻頻率合成 器中。本論文改良了一個已提出的電荷幫浦電路,這個新的電荷幫浦電路電路具 有電流匹配特性且不再具有 start-up 問題,可以有效的抑制雜頻的產生。並且 使用了電容切換的壓控振盪器來降低其增益,並得以更進一步的降低寄生雜頻。 一個基底驅動且可在低電壓操作的運算放大器被使用在電荷幫浦電路中。

以台灣積體電路製造股份有限公司以 0.25 微米製程實現,並自行量測完成。 量測結果顯示本架構可使雜頻訊號較主訊號低六十五分貝,相位雜訊在 1 MHz 偏 移量下每赫茲較主訊號低 111.14 分貝。這個電路所消耗的功率為 23 微瓦特。

A 1-V 2.4-GHz CMOS Frequency Synthesizer with Current-Match Charge Pump

Student: Chin-Yuan Hsieh

Advisor: Chung-Yu Wu

Electronics Engineering & Institute of Electronics

National Chiao-Tung University

A 1.3-V 2.4-GHz fully integrated frequency synthesizer for Bluetooth applications is proposed and designed in 0.25-um CMOS technology. An improved current-match charge pump circuit without the start-up problem is used to reduce the spur level. Moreover, a bandswitching VCO is used to reduce the Kvco and hence the spur level can be further reduced. The prescaler is designed in 1-V supply voltage without the supply-voltage boosting. In order to operate in 1-V supply voltage, an op-amp with bulk-driven differential transconductor has been used in the current-match charge.

The circuit is fabricated using a standard TSMC 0.25um CMOS process and has been measured completely. The measured phase noise at 1-MHz offset is -111.14dBc/Hz, and the spur level at 1MHz offset is -64.87dBc. The operating frequency range is from 2.4-GHz to 2.48-GHz. The frequency synthesizer can operate at 1.3-V of power supply and consume 23-mW.

誌 謝

首先,我要對我的指導教授吳重雨老師致上最誠摯的感謝。老師在這二年裡 不論在硬體或是軟體上提供了我一個最佳的學習環境。在學習上老師也給予了適 時的指導與啟發,使我不在錯誤當中打轉。

其次我要感謝實驗室的學長高宏鑫、鄭秋宏、廖以義、施育全、周忠昀、林 俐如、黃冠勳、江政達、王文傑、虞繼堯、蘇烜毅、蔡俊良、李彦伯、黃柏獅、 劉沂娟的努力,才使實驗室軟硬體設備一應俱全。在如此的環境下,我的論文才 能順利完成。再來我要感謝實驗室的同學吳瑞仁、蘇芳德、鄭建祥、張秦豪、許 德賢、丁彦、陳旻珓、陳勝豪、林韋霆、杜長慶、蘇紀豪、楊文嘉、李宗霖、邱 偉茗、林大新、王騰毅、張家華、曾偉信、阿爛、黃如琳、郭秉捷、張瑋仁、林 棋樺、李權哲、周政賢、蕭聖文、陳正瑞、陳政良……等,陪伴著我一起渡過了 這二年的研究生涯。

最後我要感謝我的父母對我二十多年來辛苦的付出,使我在學習之餘無後顧 之憂,還有我的女朋友賴玟均這幾年對我的關心和陪伴,使我得到了豐富的生活 與健康的人生。謹以此論文獻給關心我的人。

謝致遠

國立交通大學

中華民國九十三年七月

Contents

Chinese Abstract

English Abstract

Contents

Table Captions

Figure Captions

CHAP	TER	1 INTRODUCTION	1
1.1	BAC	KGROUND	.1
1.2	Rev	IEWS OF CMOS FREQUENCY SYNTHESIZERS	2
1.	2.1	2.4 GHz Frequency Synthesizer with Charge Pump	.2
1.	2.2	1 V Frequency Synthesizer	.3
1.3	Мот	TIVATIONS	4
1.4	Orc	GANIZATION OF THIS THESIS	4
CHAPTE	R 2	Basic Theory	5
2.1	ΤΥΡ	E I PLL	5
2.2	Сна	RGE-PUMP PLL	7
2.	2.1	Issue of Type I PLL	.7
2.	2.2	Phase and Frequency Detector	.8
2.	2.3	Basic Charge-pump PLL1	11
2.3	Арр	LICATION IN FREQUENCY SYNTHESIZER1	7
2.4	Non	IIDEAL EFFECTS IN CHARGE-PUMP PLL1	8

2.5	The Curre	ENT-MISMATCH EFFECT OF CHARGE PUMP AND REVIEWS O	F
	CURRENT-M	NATCH CHARGE PUMP	20
CHAPTER	8 3 1-V 9 REC	5-GHz DIRECT-CONVERSION FRONT-END CEIVER	25
3.1 I	Design Co	NSIDERATION	25
3.2	Circuit Re	ALIZATIONS	27
3.2.	.1 1 V C	harge pump	27
	3.2.1.1	Current-match Charge pump	27
	3.2.1.2	The Start-up Problem of Current-match Charge	
		Pump	30
	3.2.1.3	The Input Rail-to-rail Op-amp used in the 1-V	
		Current-match Charge Pump	31
3.2.	.2 1-V 2	.4G Voltage Control Oscillator	35
	3.2.2.1	Trade-off Between K_{vco} and Tuning Range	35
	3.2.2.2	Band-switching VCO	36
3.2.	.3 1 V F	requency Divider	38
3.2.	.4 Phas	e and Frequency Detrctor	43
3.3	SIMULATION	Results	45

CHAPTER 4 EXPERIMENTAL RESULTS......58

4.1	MEASUREMENT RESULTS OF THE BAND-SWITCHING VCO59
4.2	MEASUREMENT RESULTS OF THE 2.4 GHZ FREQUENCY
	SYNTHESIZER60
4.3	COMPARISON65

4.4	DISCUSSION	66
4	4.4.1 Discussion 1	.67
2	4.4.2 Discussion 2	.68
2	4.4.3 Discussion 3	.69
4	4.4.4 Discussion 4	.69

CHAPTER 5 CONCLUSIONS and FUTURE

71	WORKS	
71	USIONS	5.1
71	ES.	5.2 REFEF
	EI AN TROC	

Table Caption

Table 1-1 Reviews of 2.4 GHz frequency synthesizers	2
Table 3-1 Parameter information of Fig 3-5	.44
Table 3-2 Parameter information of Fig 3-8	.44
Table 3-3 Simulation summary	.57
Table 4-1 Measurement summary	.65
Table 4-2 Comparison	65
Table 4-3 Comparison of re-simulation and re-design with parasitic resisters	.67

Figure Captions

Fig 1-1 1V frequency synthesizer with voltage doubler
Fig 1-2 Additional spur appear when using voltage doubler
Fig 2-1 PLL block diagram
Fig 2-2 Unit gain buffer5
Fig 2-3 The linear model of type I PLL
Fig 2-4 (a) PFD block diagram (b) PFD state diagram (c) PFD timing diagram9
Fig 2-5 (a) PFD implementation (b) PFD characteristic10
Fig 2-6 simple charge-pump PLL
Fig 2-7 Linear model of simple charge-pump PLL12
Fig 2-8 Add R_P to compensate the loop and C_2 to reduce ripple on the control
voltage14
Fig 2-9 The impedance of loop filter15
Fig 2-10 Interrelation between pole and zero in third-order PLL
Fig 2-11 Block diagram of frequency synthesizer17
Fig 2-12 (a) A small input phase difference (b) Dead zone of charge pump current18
Fig 2-13 Coincident pulses generated by PFD with zero phase difference19
Fig 2-14 Effect of mismatch current in charge pump19
Fig. 2-15 Conventional charge pump circuits20
Fig. 2-16 The concept of current matching characteristic
Fig. 2-17 Examples for charge pump circuit with perfect current matching
characteristics
Fig 3-1 The PLL loop filter design (a) PLL loop design software (b) Bode-plot of the
loop gain and phase margin in this frequency synthesizer26
Fig 3-2 Block diagram of the integer-N frequency synthesizer used in this design27

Fig 3-3 Current-match charge pump architecture used in this design [5]28
Fig 3-4 (a)The feedback loop of the current-match charge pump shows in fig
3-1,(b)The equivalent circuit of the circuit in (a)29
Fig 3-5 New current-match charge pump. M21 and M22 are added to solve the
start-up problem. The parameter information is in Table 3-131
Fig 3-6 The conventional input rail-to-rail stage
Fig 3-7 The dead zone of conventional op-amp explanation33
Fig 3-8 The 1-V input rail-to-rail op-amp using the bulk driven input stage. The
parameter information is in Table 3-234
Fig 3-9 The ideal 3-bits VCO output frequency v.s. control voltage
Fig 3-10 The band-switching VCO select bands from the channel selecting signal37
Fig 3-11 Band-switching VCO
Fig 3-12 Block diagram of frequency divider
Fig 3-13 Block diagram of the program and pulse swallow counter
Fig 3-14 Resettable D-flipflop used in program counter and pulse swallow counter.40
Fig 3-15 Dual modulus \div 32/33 frequency divider block diagram
Fig 3-16 Dual modulus $\div 4/5$ frequency divider block diagram41
Fig 3-17 (a) NAND-SCL flipflop used in the prescaler. (b) TSPC flipflop used in
prescaler42
Fig 3-18 The circuit realization of the PFD44
Fig 3-19 Charging simulation of charge pump (a) reference clock. (b) counter output.
(c) the control voltage of VCO. (d) I_{up} and I_{down} of the charge pump45
Fig 3-20 Discharging simulation of charge pump (a) reference clock. (b) counter
output. (c) the control voltage of VCO. (d) I_{up} and I_{down} of charge pump46
Fig 3-21 Simulation results of the current-steering charge pump without
current-match structure

Fig 3-22 Simulation results of the new current-match charge pump48
Fig 3-23 The mismatch current simulations of charge pump with process variation,
and compare the results with the charge pump without feedback loop49
Fig 3-24 The start-up simulation results of the current-match charge pump at 2.5-V
power supply50
Fig 3-25 Simulation results of the VCO and the \div 32/33 prescaler51
Fig 3-26 Simulation results of the VCO and the $\div 32/33$ prescaler
Fig 3-27 The simulation results of pulse swallow counter53
Fig 3-28 The simulation results of the band-switching VCO55
Fig 3-29 The close loop simulation of the PLL56
Fig 4-1 Chip micrograph of the complete frequency synthesizer
Fig 4-2 Comparison of measurement result and simulation result. The tuning range is
for Vc1Vc2=00
Fig 4-3 Tuning ranges of the band-witching VCO after adjust the bias nodes
Fig 4-4 Measurement setup of the frequency synthesizer. Additional loop filter, clock
generator and band-pass filter are used60
Fig 4-5 Measurement setup. Adding by-pass capacitors to reduce the spur level61
Fig 4-6 Without using by-pass capacitors the spur level is -29dBc @ 1MHz offset61
Fig 4-7 By using by-pass capacitors helps the spur level decreased to -48dBc @
1MHz offset62
Fig 4-8 Using by-pass capacitors to filter the noise and using battery to get more clear
bias and supply voltage, the spur level is decreased to -64.97dBc @ 1MHz
offset62
Fig 4-9 The testing signal board63
Fig 4-10 The testing DC board

Fig 4-11 Phase noise measurement result, at 1MHz offset the phase noise is -111.14
dBc/Hz64
Fig 4-12 The presacler measurement through tapping buffer
Fig 4-13 settling time testing, the srttling is less than 70 us64
Fig 4-14 The parasitic resisters of metal line in layout
Fig 4-15 VCO re-simulation and re-design with parasitic resistor67
Fig 4-16 Parasic resistors of prescaler VDD and ground
Fig 4-17 (a)Capacitance of MOS in inversion mode (b) Capacitance of MOS in
accumulation mode [20]69

Fig 4-18 E-TSPC $\div 2/3$ dual-modulus frequency divider used in [21]70
Fig 4-19 Simulation results of the maximum operating frequency V.S. supply voltage
(using Fig 4-19 circuits)
1896
A DELLEVILLE