Downloaded 04/28/14 to 140.113.38.11. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM J. COMPUT. © 1989 Society for Industrial and Applied Mathematics
Vol. 18, No. 2, pp. 244-257, April 1989 004

SCHEDULING PRECEDENCE GRAPHS IN SYSTEMS WITH
INTERPROCESSOR COMMUNICATION TIMES*

JING-JANG HWANGTY, YUAN-CHIEH CHOW%, FRANK D. ANGER§, AND CHUNG-YEE LEE}

Abstract. The problem of nonpreemptively scheduling a set of m partially ordered tasks on n identical
processors subject to interprocessor communication delays is studied in an effort to minimize the makespan.
A new heuristic, called Earliest Task First (ETF), is designed and analyzed. It is shown that the makespan
werr generated by ETF always satisfies wpp = (2 - l/n)wf,i,,’. + C, where wf)"p)l is the optimal makespan without
considering communication delays and C is the communication requirements over some immediate
predecessor-immediate successor pairs along one chain. An algorithm is also provided to calculate C. The
time complexity of Algorithm ETF is O(nm?).
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1. Introduction. An extensively studied problem in deterministic scheduling theory
is that of scheduling a set of partially ordered tasks on a nonpreemptive multiprocessor
system of identical processors in an effort to minimize the overall finishing time, or
“makespan.” So much literature has been produced in the related area that a number
of review articles have been published, including excellent summaries by Coffman [1],
Graham et al. [3], and Lawler, Lenstra, and Rinnooy Kan [6]. The underlying comput-
ing system of this classical problem is thought to have no interprocessor overhead
such as processor communication or memory contention. Such an assumption is a
reasonable approximation to some real multiprocessor systems; therefore, applications
can be found for the derived theory [5]. The assumption, however, is no longer valid
for message-passing multiprocessors or computer networks, since interprocessor com-
munication overhead is clearly an important aspect in such systems and is not negligible.

In this paper, interprocessor communication overhead is made part of the problem
formulation and corresponding solutions are derived. The augmented multiprocessing
model starts with a given set I'={T,, T5, - -, T,,} of m tasks, each with processing
time w(T;), and a system of n identical processors. The tasks form a directed acyclic
graph (DAG) in which each edge represents the temporal relationship between two
tasks and is associated with a positive integer (7T, T'), the number of messages sent
from an immediate predecessor T to an immediate successor T’ upon the termination
of the immediate predecessor. The task model is called an “enhanced directed acyclic
graph (EDAG)” and is denoted as a quadruple G= G(I", >, w, n).

To characterize the underlying system, a parameter 7(P, P') is introduced to
represent the time to transfer a message unit from processor P to P’. The system is
then denoted as S = S(n, 7), where n is the number of identical processors. By varying
the values of 7(P, P'), the system model can be used to model several types of systems
such as a fully connected system, a local area network, or a hypercube. To accommodate
the deterministic scheduling approach, we further assume that the communication
subsystem is contention free. Mathematically speaking, the time to take (T, T’) units
of messages from P to P'is 7(P, P")x n(T, T'), a deterministic value. Figure 1 shows
an example of the computing model and a feasible schedule.
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FiG. 1. An example. (a) The EDAG model; (b) the system model; (c) schedules with and without

communication delays.

The computing model described above is an extension of Rayward-Smith’s earlier
model [7], which was confined to unit communication times (UCT) and unit execution
times (UET). He shows that the problem of finding the minimum makespan is NP-
complete and also presents a heuristic. The heuristic, called “generalized list schedul-
ing,” adopts the same greedy strategy as Graham’s list scheduling [2]: No processor
remains idle if there is some task available that it could process. For UET and UCT
models, a task T can be processed on the processor P; at time ¢ if T has no immediate
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predecessors, or each immediate predecessor of T has been scheduled (to start) on
processor P; at time =t—1 or on processor P;# P; at time =¢—2. A schedule using
Rayward-Smith’s heuristic always satisfies

. 2 . 1
(1.1) wg§(3—-;)><wopt—<l—~;>,

where wg is the length of the greedy schedule and wgy, is the length of the optimal
schedule.

This work generalizes Rayward and Smith’s assumptions on communication times
and execution times. The main result offers a new heuristic and its performance bound.
The method is named “Earliest Task First (ETF)” and was first presented in Hwang’s
dissertation [4]. This paper simplifies the presentation, reduces its time complexity,
and improves the performance bound. The main result indicates that the length of an
ETF schedule is bounded by the sum of Graham’s bound for list scheduling and the
‘“communication requirement’’ over some immediate predecessor-immediate successor
pairs along one chain that can be calculated using Algorithm C of § 3. In notation this
is expressed as follows:

1 .
(1.2) wETF§<2_;)wg;t+C~

In (1.2), wﬁ,';,)t denotes the optimal schedule length obtained by ignoring the inter-
processor communication and is different from g, in (1.1). The term (2—1/n)w’)
is the Graham bound for list scheduling [2].

When ETF is applied to a problem with UET and UCT assumptions, its schedule

length satisfies
1 .
(1.3) wETF§(3“"’;) wa,'];t—l

since C = w{p,—1. Both bounds ((1.1) and (1.3)) are close since 3 is the dominant
factor in both expressions; but we should note that the bound on ETF uses wf,'p)t, which

is smaller than wg,, in (1.1), as the base multiplier.

2. ETF—A new heuristic. Section 2.1 presents a simple approach, named ELS,
for solving the scheduling problem formulated in § 1. ELS (extended list scheduling)
is a straightforward extension of Graham’s LS (list scheduling) method. The unsatisfac-
tory performance of ELS motivates the development of ETF.

2.1. ELS—a simple solution. The ELS method adopts a two-phase strategy. First,
it allocates tasks to processors by applying LS as if the underlying system were free
of communication overhead. Second, it adds necessary communication delays to the
schedule obtained in the first phase.

Graham’s worst-case bound of LS as stated in (2.1) [2] provides a basis for deriving
a similar bound for ELS:

. 1\ |
1) wg;g<z—;)w;,:,.

It is obvious that the difference between an ELS and an LS schedule, using the same
task list L, is bounded by the total maximum communication requirement:

(2.2) OUELS(L)"wg(lf)é Tmax X > n(T, T),

Tel, T'e Sy
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where 7, = max {7(P, P')} is used to calculate the maximum communication require-
ments, and S denotes the set of immediate successors of T. We shall also use Dy to
denote the set of immediate predecessors of T in later sections. Combining (2.1) and
(2.2), we obtain (2.3):

(23) wELsé(z_l)wt()lgt"—Tmaxx Z n(T, T,)
n Tel,T'eSt

The question raised here is whether the bound shown in (2.3) is the best possible.
It is not hard to show that all maximum communication requirements may actually
produce communication delays. However, to show that the bound stated in (2.3) is
tight, it is necessary to produce an ELS schedule in which the schedule of computational
tasks is the worst and, at the same time, almost no communications can be overlapped
with the computations in the same schedule. This is not obvious since, in general, a
longer schedule will allow more overlapping between computation and communication.
Nevertheless, the example in Fig. 2 shows that the bound stated in (2.3) is asymptotically
achievable as ¢ and & approach zero. We summarize the result in Theorem 2.1.

THEOREM 2.1. Any ELS schedule is bounded by the sum of Graham’s bound and
the total communication requirement ((2.3)). Furthermore, this bound is the best possible.

EEEEN 1 1

A=max{1,'-t ! -l}

(a)

S(nQ tcomm)
where f.omm =38 for all P, # P,
(b)

Fi1G. 2. A worst-case example for Theorem 2.1. (a) The EDAG model; (b) the system model; (c) an
optimal schedule on an ideal system; (d) an LS schedule and its corresponding ELS schedule.
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F1G. 2—continued

2.2. ETF—a new heuristic. The performance of ELS is unsatisfactory when dealing
with communication delays, as indicated by Theorem 2.1. ETF, the core of this paper,
has a much better performance bound. ETF adopts a simple greedy strategy: the earliest
schedulable task is scheduled first. The algorithm is event-driven and is to be described
in detail in the following paragraphs.

A task is called available when all its predecessors have been scheduled. Let A
and I be the sets of available tasks and free processors, respectively, with A=
{T: D=} and I ={P,, - - -, P,} initially. The starting time of T is denoted as s(T);
the finishing time is f(T); the processor to which T is assigned is p(T). These three
values for all tasks are the output of the scheduling algorithm.

The starting time of an available task is determined by several factors: when its
preceding tasks are finished, how long the communication delays take, and where the
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task and its predecessors are allocated. Let r(T, P) denote the time the last message
for T arrives at processor P; mathematically,

0 if T has no predecessors,
(2.4) (1 P)=1 max {£(T)+n(T', T)x (p(T), P)}.

Then the earliest starting time of an available task T can be calculated by

(2:5) e,(T) =max {CM, min {r(T, P)}}

where CM, called ““current moment,” denotes the curent time of the event clock. By
definition, I is the set of free processors at time = CM. Now, the earliest starting time
among all available tasks, eg, is calculated as follows:

(2.6) e;= min {e,(T)}.

The greedy strategy of ETF wants to find TeA and Pel such that el =e(T)=
max {CM, (T, P)}.

Since we assume arbitrary communication delays in our model, a newly available
task after the event clock is advanced may have an earlier starting time than that of
the select task T. To overcome such a difficulty, a second time variable, called “‘next
moment” and abbreviated as NM, is introduced to keep track of the scheduling process.
NM denotes the earliest time after CM at which one or more currently busy processors
become free. NM is set to oo if all processors are free after CM. It is clear that the
scheduler will not generate any available task that can be started earlier than e if
NM = e;. The scheduling decision will be made in this case; otherwise the event clock
is advanced and the decision is postponed.

Conflicts may occur during the scheduling process when two available tasks have
the same starting time. To resolve the conflicts, we adopt a priority task list L as we
did in LS and ELS methods. Such a strategy is called ETF/LS. If the priority list L
is obtained through the critical-path analysis, then the method is called ETF/CP.
Algorithm ETF below is a simple ETF implementation in which conflicts are resolved
arbitrarily.

Example. Consider the same EDAG task graph and the same three-processor
system as given in Fig. 1. The ETF schedule is presented in Fig. 3. Table 1 shows the
detail of the scheduling process. In Table 1, i denotes ith execution of the inner loop
of executing Algorithm ETF when it is applied to the given problem. The values of
CM and NM at the beginning of ith execution of the inner loop are denoted as cm(i)
and nm(i), respectively. T is the available task selected when CM = cm(i) and NM =
nm(i); T = NONE means no task available at the current moment. The scheduling
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F1G. 3. An ETF schedule.
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TABLE 1

I CM (I) NM (I) T Decision
1 0 Y T, made
2 0 6 T, made
3 0 5 T, made
4 0 4 None

5 4 5 None

6 5 6 T, postponed
7 6 © Ts made
8 6 12 T, made
9 6 12 T, made
10 6 12 None
11 12 13 None
12 13 0 T, made
13 All tasks have been scheduled

decision of T is made if es =nm(i) and postponed otherwise.

ALGoriTHM ETF.
(0) Initialize: I« {P,, - -, P,}, A<{T: Dy=}, Q< I, CM<«0, and NM <« 0,
r(T, P) <0 for each T€ A and each Pe I
(1) While |Q|<m Do
begin
(1.1) While I # and A# < Do
begin
(1.1.1) Find TeAand Pel such that
min min ¥(T, P) = r(T P) = temp, let e; = max {CM, temp}.

TeA Pel
(1.1.2) If e =NM
then
Assign T to run on p: p(T)e—P s(T)<— er; f(T)<—s(T)+;u(T)
A< A- (T}, I<I—- {P} append T to Q,
1ff(T)< NM then NM<—f(T)
else exit the inner loop.
end
(1.2) Proceed: CM « NM, find new NM.
(1.3) Repeat for each T, P such that T just finished on P:
I« I+{P}, repeat for each T'€ St:
dr=ds—1; if d-=0 then T' is newly available
(1.4) For each newly available task T’ do
A< A+{A'},
for each processor P, r(T', P)=maxrcp, {f(T)+n(T, T')x7(p(T), P)}
end.

3. Analysis of ETF. Some properties of ETF are to be established in this section.
The time complexity is analyzed first, followed by the three lemmas that help to explain
the way ETF works. The establishment of a performance bound concludes this section.

THEOREM 3.1. The time complexity of ETF is O(nm?), where n and m are the
number of processors and the number of tasks, respectively.

Proof. The ETF algorithm consists of a main loop containing an inner loop. It is
obvious that the main loop repeats at most m times since some task “finishes” in step
1.2 each time. The running time depends on the number of repetitions of the inner
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loop. We observe that there are two mutually exclusive possibilities after executing an
iteration of the inner loop: (1) When e; = NM, the selected available task T was
scheduled. (2) When e; > NM or I = or A=, the inner loop was exited. For the
latter case, the CM was moved forward to NM (by executing step 1.2, which follows
the inner loop) and at least one task was finished at the new CM. Consequently, the
inner loop repeats at most 2m times (since the algorithm either schedules a task or
finishes at least one task for each iteration of the inner loop).

Each task becomes newly available once during the scheduling process;
therefore, the total running time of step 1.4 is O(nm®). The most time-consuming step
is generally step 1.1.1, which takes O(nm) for each execution and O(nm?) for at most
2m executions. 0

We introduce some conventions here. Let z be the number of iterations of statement
1.1, and let i be an index of a particular iteration, i =z By an execution of state-
ment 1.1, we mean the execution of the whole inner loop. When I = or A=(J, the
statement 1.1 is also considered being executed once, though the substatements 1.1.1
and 1.1.2 are skipped. Let the sequences cm (1), cm (2), - -,cm (z) and nm (1),
nm (2), - - - ,nm (z) denote values carried by variables CM and NM, respectively, at
the beginning of each execution of statement 1.1. If the scheduling decision of a task
T is made during the ith execution of statement 1.1, then i is called the decision order
of T and denoted as do (T), and cm (i) is called the decision time of T and denoted
as dt (T). Note that not every integer i, ] =i =z, is a decision order of some task. We
define e (i) as the earliest starting time among all available tasks while CM carries
the value cm (i); e,(T, i) is similarly defined for each available task T and is calculated
by (2.5).

LeEMMA 1. For any task T, dt (T)= s(T) holds and there exists no task T' such that
dt(T)<f(T")<s(T) or dt (T)<dt(T")<s(T).

Proof. The first part is obvious since each task was scheduled to start at a time
no less than the value of the current moment at which the decision is made (see
statements 1.1.1 and 1.1.2 of Algorithm ETF).

Suppose that T' is a task such that dt(T)<f(T')<s(T). Let do(T)=1i and
do (T') =j. We have four cases:

(1) T was scheduled after T'(i>j). We get nm (i) = f(T’) by definition and thus,
nm (i) = f(T") < s(T) follows. According to the decision principle (statement (1.1.2)),
T should not be scheduled at the ith execution of statement 1.1. This contradicts
do(T)=1i

(2) T was scheduled before T'(i<j) and T’ has no predecessors. T’ became
available from the first execution of statement 1.1. Thus, e(T,i)=s(T)>f(T")>
s(T")=e,(T', j)= e, (T, i). (The last inequality is due to the fact that the earliest starting
time of a task is nondecreasing after it becomes available, since CM is nondecreasing
(see (2.25)). The result e,(T, i)>e,(T’, i) implies that T’ instead of T should have
been selected in the ith execution of statement 1.1. This leads to a contradiction.

(3) T was scheduled before T’ and f(T*)=cm (i), where T* is a last finished
predecessor of T'. The assumption f(T*)=cm (i) implies T’ became available before
the ith execution of statement 1.1. Thus, the same argument for case (2) leads to a
contradiction.

(4) T was scheduled before T’ and f(T*)>cm (i), where T* is a last finished
predecessor of T'. For this case, we have dt (T) <f(T*)<s(T). We replace T' by T*,
find the last predecessor of the new T, called T* again, and repeat the same argument.
One of the four cases may happen. If one of cases (1), (2), and (3) occurs, then we
are done; otherwise the process is continued. Since a new task T* with earlier finish
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time is obtained in each cycle, we will reach the case f(T*)=cm (i) in a finite number
of cycles if case (4) occurs repeatedly. This concludes the proof of the second part.

Suppose now that dt (T) <dt (T’') < s(T). We can find a task T* such that f(T*) =
dt (T') since a decision is made only at some cm at which a task is finished. This
contradicts the second part of this lemma. 0

LemMMA 2. If s(T)<s(T’), then do (T)<do (T’) and dt (T)=dt(T’).

Proof. Suppose s(T)<s(T'), do(T)=i, do(T')=j, i>j. Since the current-
moment sequence is nondecreasing, two possibilities can be discussed: (1) dt (T)>
dt (T"), or (2) dt(T)=dt(T'). For (1), we apply the first part of Lemma 1 and get
dt (T")<dt(T)=s(T)<s(T’). This contradicts the second part of Lemma 1. For (2)
T and T are available at cm (i)=cm (j), and e (T",j)=s(T)>s(T)=¢e,(T,i)=
e,(T, j). During the jth execution of statement 1.1, T should have been selected instead
of T. This is a contradiction. a

LemMA 3. Let T and T' be two tasks satisfying f(T) <dt (T'). Then there exists an
integer i such that cm (i) =f(T). In other words, the current-moment sequence cannot
skip any time point at which a task is finished until all tasks have been scheduled.

Proof. Let do (T')=j. Then 0=cm (1) = f(T) <cm (j). Since the current-moment
sequence is nondecreasing, an index k can be found such that cm (k)=f(T)<
cm (k+1). If cm (k) =f(T), then we are done. If cm (k) <f(T)<cm (k+1) and T is
not a task scheduled when CM =cm (k), then T is a task whose scheduling decision
was made earlier. Then f(T)<cm (k+1)=nm (k) contradicts nm (k)=f(T). If
cm (k)<f(T)<cm (k+1) and T is a task scheduled at ¢cm (k), then NM should have
been moved backward to f(T), and thus cm (k+1) = nm (k) = f(T) after the scheduling
of T. This is also a contradiction. 0

THEOREM 3.2. For any EDAG task model G = G(I', >, u, ) to be scheduled on
a system S = S(n, 7), the schedule length, wgrr, obtained by ETF always satisfies

1 A
(3'1) wETF§<2_;) xwg‘gt_'_cmax

where C.,,, is the maximum communication requirement along all chains in 1". That is,
-1

(3.2) Cinax = max {Tmaxx > (T, T, ): (T, --.T,) isachainin F}.
i=1

Proof. The set of all points of time in (0, wgrE) can be partitioned into two subsets
A and B. A is defined to be the set of all points for which all processors are executing
some tasks. B is defined to be the set of all points of time for which at least one
processor is idle (maybe all processors are idle due to simultaneous communication
delays). If B is empty, then all processors complete their last assignment at wgrr and
no idle interval can be found with (0, wgrr). The ETF schedule is indeed optimal and
thus the theorem holds obviously. We thus assume B is nonempty. In the interest of
mathematical rigor, we suppose B is the disjoint union of g open intervals (b,, b,,) as
below:

B=(b,,b,)U--Ul(b,,b,)

where b, <b, <b,<b, <--:<b, <b,.

We claim that we can find a chain of tasks,

X: Tlr—é T}/-n_). T T}l’
such that
1-1

q ]
(3.3) E] (br,—bz,.)ékz1 p(T)+ Y TmaX (T, T;,).

k=1
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In other words, the total length of B is no longer than the sum of all computational
times and all pessimistic communication requirements along the chain X. We say that
the chain X covers the set B.

Let T, denote a task that finishes in the ETF schedule at time wgre. Let s(T;)
denote the time at which T; is started as scheduled by ETF. There are three possibilities
regarding the starting time of T :

(1) s(T,)=bh,.

(2) s(T;)e B, i.e., there exists an integer h, h = g, such that

(3.4) b, <s(T,)<b,,
(3) s(T;)e A but s(T;)> b, i.e., there exists an integer h, h=q —1, such that
(3.5) b, =s(T,)=b,,, or b, =s(T;).

If the first possibility occurs, then the task T; by itself constitutes a chain that
satisfies our claim. We shall show for the second and the third possibilities, respectively,
that we can always add one or more tasks to the chain to extend the covered part of
B to the left. To say a set of points is covered by a chain means that the length of the
set is less than or equal to the sum of computation times and communication require-
ments along the chain, where communication requirements are estimated pessimistically
(using Tmax)-

Let us first consider the second possibility. Let h be the index satsifying (3.4).
Then T; alone has covered part of B from its right end to somewhere in between b,
and b,,. The mission here is to add the second task, T;,, to the chain. By the definition
of B there is some processor P, that was idle during (s(T; ) —e¢, s(T},)) for some £ > 0.
We consider three cases separately:

Case 1. T, did not become available until s(T},).

Case 2. TI became available at a time earlier than s(T;,) but later than time zero.

Case 3. T; became available at time zero.

For Case 1, we simply take the last finished predecessor of T} as T,,.

For Case 2, let T* be the last finished immediate predecessor of Tj. Then
S(T*)<s(T,,). We further consider three subcases: (i) There exists no task T assigned
to run P, w1th s(T)>s(T;,)—e. (ii) There exists at least one task T assigned to run
on P, with s(T)> s(T,), but there exists no task T assigned on P, with s(T)=s(T;).
(iii) There exists a task T assigned to run on P, with s(T)=s(T,).

For the first subcase (of Case 2), since no task is blocking T}, from starting earlier
on P,, it must be that r(T;, P,)=s(T,). Let T, be an immediate predecessor of T}
whose message to T arrives at P, at time r(T;, Pa). Let p(T,) = Ps. Then 7(Pg, P,) X
n(T,, T,)=r(T,, Pa) —f(T,) =z s(T;) — f(T,,). This result indicates that the communica-
tion requirement from T}, to T;, covers the interval (f(T},), s(T;,)), and hence the covered
part of B is shifted further left from s(T;) after T, is added to the chain. Furthermore,
the parameter 7(Pg, P,) can be replaced by 7,,,.. This completes the first subcase.

For the second subcase (of Case 2), we let T, be the first task allocated on P,
after s(T;). By Lemma 2, do (T;) <do (T,). The allocation of T, on P, cannot be a
reason to block the possibility of T} utilizing P, at an earlier time. The reason T; did
not take such an advantage is agam due to (T, P,)=s(T,). T, can therefore be
found in the same way as in the first subcase.

We assume a task T, satisfying p(T,)= P, and s(T,)=s(T;) in the last subcase.
Now both do (T,)>do (T;,) and do (T,) <do (T;,) are possible. If do (T,)>do (T,),
then T, was scheduled later than T; ; hence, the same argument used in the prev1ous
subcase prevails. We need to argue why r(T;, P,)= s(T;,) when do (T,) <do (T;). Let
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us assume do (T,) = k and consider two situations separately: (1) dt (T,) <s(T,), and
(2) dt(T,) =s(t,). For (1), at the beginning of the kth execution of the inner loop,
both T, and T, were available. (T; was available since f(T*)=dt (T,) guaranteed by
Lemma 1.) If r( s Pa)<s(T,), then "> and not T,, should have been selected in
the kth execution of the inner loop. For (2), we let cm be the largest value in the
current-moment sequence satisfying f(T*)=cm> s(T,). (The existence of such cm is
guaranteed by Lemma 3.) At CM =cm, T, was unscheduled and T} was available. T,
could not block T; from occupying P, at a time earlier than s(T,). If r(T,, P,)<s(T,),
then T; should have been allocated on P, and started at an earlier time when CM
carried the value cm. This contradiction implies that r(T;, P,) = s(T;). Based on this
result, the same technique as before can be applied to add a second task T}, to the
chain finishing all subcases of Case 2.

Case 3 is indeed impossible. We can obtain r(T} , P,) = s(T},) as we did above for
Case 2; on the other hand, we have a contradictory fact that r(T; , P,) =0dueto Dy = .

We have completed our discussion of the second possibility. Let us summarize
the results obtained so far. Suppose T; <b,, for some h = q. We constructed a second
task T}, such that T, precedes T} and

Iu'( _]|)+/'L( )+dex><77( J2o j|)
z(b, = b))+ -+(b,,, — b, )+ (b, —s(T))+s((T;)—s(T},)).

Since s(T;) is an interior point of (b, b, ), at least some new portion (maybe all) of
(by,, b,,) has been covered now.

The location of s(T},), once again, has three possibilities:

(1) s(T,)=b,.

(2) s(T,)eB.

(3) s(T,)e A but s(T,)>b,.

If the first possibility happens, then we are done. If not, we repeat our arguments to
construct a third task or more tasks. (The third possibility may lead to adding more
than one task in one cycle.) The cycle can be repeated until the starting time of the
last added task satisfies the first possibility.

Now, it remains to show how to add tasks to the chain in the case of the third
possibility (3. 5) Suppose that h is the integer such that b, =s(T;)=b,,,, or h =g when
b, = s(T). LetF {T: Tis apredecessor of T; satisfying s(T)= = b ,or T =T, }. Clearly,
I ¢. Let T*e1 such that s(T)< b,, for any immediate predecessor T of T*. Then
T* is either a predecessor of T, or T, itself. In either case, we can always construct
a sequence of tasks:

T =T,

Ja-1

Jd -2
Although these tasks are not scheduled during B, the last added task, T*, is closer to
uncovered points of B. The task T* will play the same role as T}, did in the discussion
about the second possibility. The mission again is to add a task T, to the chain. There
are three cases:

Case 1. T* did not become available until b,,.

Case 2. T* became available at a time earlier than b, but later than time zero.

Case 3. T* became available at time zero.

We finish Case 1 by setting T, to be the last finished predecessor of T*. Case 3
is impossible by the same argument for Case 3 of the second possibility.

For Case 2, let T* be the last finished predecessor of T*. Then f(T*) <b, =s(T").
By the definition of B there is some processor P, that was idle during the time
(b, —&, b,,) for some £>0. We ask the same question as before. Why had T* not
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been allocated on P, while it was available and P, was idle? Let T, be the task
assigned to run on P, at b, . Then f(T*)=dt(T,)=s(T,) by Lemma 1. As in the last
subcase of Case 2 for the second possibility, (1) do (T,)>do (T*) and (2) do (T,) <
do (T*) are distinguished. Two situations for (2) are further discussed separately: (1)
dt(T,)<s(T,), and (2) dt(T, )—s(Ta). The same techniques can be applied to
conclude that r(T*, P,)= b, . Let T;, be the immediate predecessor whose message
reaches P, at r(T*, P,) assuming T be allocated on P,. This task is exactly what we
want.

After T;, together with T;, _,---, T, is added to the chain, the enlarged chain
clearly covers all of B from some pomt on, and this is a greater part of B than the
initial one. We repeat the whole process by considering three possibilities regarding
the position of s(T;,). The process is repeated until s(T;) = b, is satisfied by the added
task in the chain. Finally, a chain satisfying our claim (see (3.3)) is constructed.

The important thing to note about this claim is

-1

Z p(di)=(n—1)x Z s (T )+ 1 X Tiax X Z T, T;)

where the left-hand sum is over all empty tasks. (A processor is said to be executing
an empty task when it is idle.) But the fact that T, IR T; is a chain implies that it
takes at least Y| _, p( T;,) to finish all tasks in I' in any schedule, even on an ideal
system, i.e.,

1
L‘;tg Z :U“(

The following inequality is obvious:

TZF u(T)=nx w(()ip>l'

Consequently,

wETF_:I< Z #(Tk)+ Z /J~(¢ ))

T,el’

1 ; ; 1-1
n(nwggl+<n~1>w5,,;+n><me L (T 7))

1 ) 1-1
=(2“—) i-);(_‘_'rmaxx Z "7( Jr41 ’I;k)

The theorem follows immediately by replacing the communication requirements along
a particular chain by C,,,. 0

The bound stated in Theorem 3.2 can be reduced by giving an algorithm to
construct the task chain and the corresponding communication requirements used to
cover idle times. The proof of Theorem 3.2 actually finds a chain X: T, - - -, T]I such
that |B|=Y,_, w(T;, )+ certain communication times. The last term, called C in the
following discussion, corresponds to the sum of just enough terms of the form
7(p(T,. ), P.)xn(T,,,, T;,) to““cover” the times at which (1) no task in the constructed
chain is running, and (2) at least one processor is idle. Since it can frequently happen
that all processors are busy while communication is taking place, much of the time
Coax 1s “hidden” by being overlapped with computation of other tasks. We are therefore
led to a better bound for wgre that even coincides with Graham’s bound if all
communication is hidden. The algorithm assumes that all processors were idle for
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t <0, and each task was scheduled to run during a closed time interval [¢,, t,]. It
calculates an upper bound C for the “unhidden” communication of the constructed
chain.

ALGORITHM C

Input: An ETF Schedule

Output: C

(0) C <0, find a task T that was scheduled to finish last.

(1) Let u=1Lu.b.' {t: t=s(T) and at least one processor is idle at t}.

(2) If u=0 then output C and stop.

(3) If u<s(T) then find a task T’ such that T’ is either a predecessor of T with
s(T')z u or T itself but s( T*) < u for any immediate predecessor T* of T'. Replace
Ty T.

(4) Let T’ be the last finished predecessor of T. If f(T') = u then replace T by T’ and
go to (1).

(5) Find a processor P, that was idle during (u—e¢, u) for some &£>0, find a task
T'e Dr such that f(T)+7(p(T), P)xn(T, T)=r(T,P,), C<«C+
7(p(T"), P,)xn(T', T), replace T by T, go to step 1.

In general, C is much smaller than C,,,, depending on the case. It serves, however,
to replace C,,., in the performance bound of Theorem 3.2, and this is stated in the
corollary below.

CoroLLARY. An ETF schedule is bounded from above by the sum of the Graham’s
bound and the output of Algorithm C. Mathematically,

1 .
(3.6) wETF§<2—;>wf,'p),+ C.

4. Conclusion and discussion. An essential result of multiprocessor scheduling
theory is the introduction of the list-scheduling method and the establishment of its
performance guarantee. In this paper, we first extend the LS method to address the
issue of communication delays. Theorem 2.1 indicates that the extended method, named
ELS, fails to shorten communication delays, at least in worst cases. The new heuristic
presented in this paper effectively reduces communication delays and also maintains
the strength of the classical list scheduling.

It should be noted that the performance bound of ETF is made possible by the
assumption of no communication contention; however, it is clear that the contention-
free attribute alone does not guarantee the same bound.

Assume no communication contention is indispensable for maintaining the deter-
ministic approach; but, strictly speaking, this assumption is only valid in fully connected
systems or systems with contention-free protocols. For the later case, the protocol
overhead should be included in the estimation of the communication parameters.

To expand the application domain of this theoretic work, we would rather consider
the deterministic scheduling as a planning tool for task allocation suitable for most
highly connected systems. Though each task is scheduled to start at some specific time,
it will be started whenever enabled in the actual execution. In the case the actual start
time of a task is later than its scheduled start time due to the queueing delay caused
by communication contention, the succeeding tasks may become incapable of starting
their execution at their scheduled times. This “postponement” may propagate. In the
extreme case the postponement may propagate down to the critical execution path

' Least upper bound.
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and then lengthen the total scheduled time of the graph. However, to some extent,
queueing delay can be absorbed in noncritical paths. Only the portion of queueing
delay that cannot be absorbed will lengthen the total graph’s execution time. For this
reason, the sensitivity of the no-communication contention assumption can be relaxed
in real applications.
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