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and its Applications

Ching-Hua Hung

Student:  Chih-Hung Huang  Advisor: Ching-Huan Tseng

Department of Mechanical Engineering

National Chiao Tung University

ABSTRACT

The nonlinear behaviors of dynamic system have been of continual concern to both
engineers and system designers. In most applications, the designs — based on a static model
and obtained by traditional optimizationimethods — can never work perfectly in dynamic cases.
Therefore, researchers have devoted themselves to find an optimal design that is able to meet
dynamic requirements. This -dissertation focuses- on developing a general-purpose
optimization method, based on optimization and optimal control theory, one that integrates
dynamic system analysis with numerical technology to deal with dynamic system design
problems.

A dynamic system optimal design problem can be transformed into an optimal control
problem (OCP). Many scholars have proposed methods to solve optimal control problems and
have outlined discretization techniques to convert the optimal control problem into a
nonlinear programming problem that can then be solved using extant optimization solvers.
This dissertation applies this method to develop a direct optimal control analysis module that
is then integrated into the optimization solver, MOST. The numerical results of the study
indicate that the solver produces quite accurate results and performs even better than those
reported in the earlier literatures. Therefore, the capability and accuracy of the optimal control

problem solver is indisputable, as is its suitability for engineering applications.
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A second theme of this dissertation is the development of a novel method for solving
discrete-valued optimal control problems arisen in many practical designs; for example, the
bang-bang type control that is a common problem in time-optimal control problems.
Mixed-integer nonlinear programming methods are applied to deal with those problems in this
dissertation. When the controls are assumed to be of the bang-bang type, the time-optimal
control problem becomes one of determining the switching times. Whereas several methods
for determining the time-optimal control problem (TOCP) switching times have been studied
extensively in the literature, these methods require that the number of switching times be
known before their algorithms can be applied. Thus, they cannot meet practical demands
because the number of switching times is usually unknown before the control problems are
solved. To address this weakness, this dissertation focuses on developing a computational
method to solve discrete-valued optimal control'problems that consists of two computational
phases: first, switching times -ar¢.calculated using existing continuous optimal control
methods; and second, the information-obtained in the first phase is used to compute the
discrete-valued control strategy. The'proposed algorithm combines the proposed OCP solver
with an enhanced branch-and-bound method and hence can deal with both continuous and
discrete optimal control problems.

Finally, two highly nonlinear engineering problems — the flight level control problem and
the vehicle suspension design problem — are used to demonstrate the capability and accuracy
of the proposed solver. The mathematical models for these two problems can be successfully
established and solved by using the procedure suggested in this dissertation. The results show
that the proposed solver allows engineers to solve their control problems in a systematic and

efficient manner.

v
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CHAPTER 1
INTRODUCTION

1.1 Dynamic Optimization and Optimization Control Problems

Over the past decade, applications for dynamic systems in engineering have increased
significantly. In most applications, the designs, which are based on a static model and
obtained by traditional optimization methods, cannot work perfectly in dynamic cases because
of their nonlinear behaviors. Therefore, researchers have devoted themselves to find an
optimal design that is able to meet dynamic requirements.

Most engineering applications are modeled dynamically using differential algebraic
equations (DAE) whose formulation consists of (a) differential equations that describe the
dynamic behavior — such as mass and energy balances — of the state of a given system and (b)
algebraic equations that ensure physical and'.dynamic relations. Usually, the dynamic
behaviors of a given system can+be influenced by.the choice of certain control variables. For
instance, a vehicle can be controlled by-the steering wheel, the accelerator pedal, and the
brakes. At the same time, the state"and/or contrel variables cannot assume any value but are
subject to certain restrictions, often resulting from safety regulations or physical limitations,
such as the altitude of an aircraft being above ground level or the steering angle of a vehicle
having a maximum limitation. In addition, engineers are particularly interested in those state
and control variables that fulfill all restrictions while also minimizing or maximizing a given
objective function. These problems are typically ones of dynamic optimization. By applying
modeling and optimization technologies, a dynamic optimization problem can be
reformulated as an optimal control problem (OCP).

Even though optimal control problems arise in various disciplines, not all engineers are
familiar with optimal control theory. On the other hand, most optimal control problems are
interpreted as an extension of nonlinear programming (NLP) problems to an infinite number

of variables and solved by numerical methods. For engineers who are inexperienced in



numerical techniques, implementing these numerical techniques is another obstacle in solving
dynamic optimization problems. Consequently, a general-purpose solver for optimal control
problems coupled with a systematic procedure could assist engineers in solving various
optimal control problems.

Time-optimal control problems (TOCP) have attracted the interest of researchers in
optimal control because, even they often arise in practical applications, their solutions are
difficult. In practical applications, one of the most common types of control function is the
piecewise-constant function by which a sequence of constant inputs is used to control a given
system with suitable switching times. Nevertheless, many methods proposed in the literature —
for example, the switching time computations algorithm (Lucas and Kaya, 2001) — assume
that the number of switching times is known before their algorithms are applied. In reality,
however, the number of switching times is generally unknown before most control problems
are solved. Therefore, an efficient algorithm for determining the switching times of TOCP

becomes important and attracts the interest-of researchers.

1.2 Literature Review

1.2.1 Methods for Optimal Control Problems

Optimal control problems can be solved by a variational method (Pontryagin et al., 1962)
or by nonlinear programming approaches (Huang and Tseng, 2003, 2004; Hu et al., 2002;
Jaddu and Shimemura, 1999). The variational or indirect method is based on the solution of
first-order necessary conditions for optimality obtained from Pontryagin’s maximum principle
(Pontryagin et al., 1962). For problems without inequality constraints, the optimality
conditions can be formulated as a set of differential-algebraic equations, often in the form of a
two-point boundary value problem (TPBVP). The TPBVP can be addressed using many
approaches, including single shooting, multiple shooting, invariant embedding, or a

discretization method such as collocation on finite elements. On the other hand, if the problem



requires that active inequality constraints be handled, finding the correct switching structure,
as well as suitable initial guesses for the state and costate variables, is often very difficult.

Much attention has been paid in the literature to the development of numerical methods
for solving optimal control problems (Hu et al., 2002; Pytlak, 1999; Jaddu and Shimemura,
1999; Teo, and Wu, 1984; Polak, 1971), the most popular approach in this field is the
reduction of the original problem to a NLP problem. Nevertheless, in spite of extensive use of
nonlinear programming methods to solve optimal control problems, engineers still spend
much effort reformulating nonlinear programming problems for different control problems.
Moreover, implementing the corresponding programs for the nonlinear programming problem
is tedious and time consuming. Therefore, a general OCP solver coupled with a systematic
computational procedure for various optimal control problems has become an imperative for
engineers, particularly for those who are inexperieénced in optimal control theory or numerical
techniques.

Additionally, in many practical engineering-applications, the control action is restricted to
a set of discrete values. These systems can be classified as switched systems consisting of
several subsystems and switching laws that orchestrate the active subsystem at each time
instant. Optimal control problems for switched systems, which require solution of both the
optimal switching sequences and the optimal continuous inputs, have recently drawn the
attention of many researchers. The primary difficulty with these switched systems is that the
range set of the control is discrete and hence not convex. Moreover, choosing the appropriate
elements from the control set in an appropriate order is a nonlinear combinatorial optimization
problem. In the context of time optimal control problems, as pointed out by Lee et al. (1997),
serious numerical difficulties may arise in the process of identifying the exact switching
points. Therefore, an efficient numerical method is still needed to determine the exact control

switching times in many practical engineering problems.



1.2.2 Time-Optimal Control Problems

The TOCP is one of most common types of OCP, one in which only time is minimized
and the control is bounded. In a TOCP, a TPBVP is usually derived by applying Pontryagin’s
maximum principle (PMP). In general, time-optimal control solutions are difficult to obtain
(Pinch, 1993) because, unless the system is of low order and is time invariant and linear, there
is little hope of solving the TPBVP analytically (Kirk, 1970). Therefore, in recent research,
many numerical techniques have been developed and adopted to solve time-optimal control
problems.

One of the most common types of control function in time-optimal control problems is the
piecewise-constant function by which a sequence of constant inputs is used to control a given
system with suitable switching times. Additionally, when the control is bounded, a very
commonly encountered type of piecewise-constant control is the bang-bang type, which
switches between the upper and lower bounds of.the control input. When the controls are
assumed to be of the bang-bang type; the-time-optimal control problem becomes one of
determining the switching times, several.methods for which have been studied extensively in
the literature (see, e.g., Kaya and Noakes, 1996; Bertrand and Epenoy, 2002; Simakov et al.,
2002). However, as already mentioned, in contrast to practical reality, these methods require
that the number of switching times be known before their algorithms can be applied. To
overcome the numerical difficulties arising during the process of finding the exact switching
points, Lee et al. (1997) proposed the control parameterization enhancing transform (CPET),
which they also extended to handle the optimal discrete-valued control problems (Lee ef al.,
1999) and applied to solve the sensor-scheduling problem (Lee et al., 2001).

In similar manner, this dissertation focuses on developing a numerical method to solve
time-optimal control problems. This method consists of the two-phase scheme: first,

switching times are calculated using existing optimal control methods; and second, the



resulting information is used to compute the discrete-valued control strategy. The proposed
algorithm, which integrates the admissible optimal control problem formulation with an
enhanced branch-and-bound method (Tseng et al., 1995), is then implemented and applied to

some examples.

1.3 Objectives

The major purpose of this dissertation is to develop a computational method to solve the
time-optimal control problems and find the corresponding discrete-valued optimal control
laws. The other purpose of this dissertation is to implement a general OCP solver and provide
a systematic procedure for solving OCPs that provides engineers with a systematic and

efficient procedure to solve their optimal control problems.

1.4 Outlines

The dissertation is organized:as follows. Chapter 2 introduces the formulations for various
optimal control problems and the general methods for solving such problems. Also briefly
discussed are problem-solving procedures and the difficulties with direct and indirect methods.
Chapter 3 specifically addresses the computational methods for solving optimal control
problems and presents the theoretical basis and numerical preliminaries for developing a
general optimal control problem solver. The architecture of the OCP solver and the systematic
procedure for solving the OCP are described in Chapter 4, which also present the details of
the implementation and user interface of the proposed solver. Here, the van der Pol oscillator
problem with various types of terminal conditions and the time-optimal control problem of
overhead crane control are used to demonstrate and verify the capability and accuracy of the
proposed OCP solver. Chapter 5 introduces a two-phase scheme that integrates the admissible
optimal control problem method and the enhanced branch-and-bound algorithm to efficiently

solve the bang-bang control problems in the field of engineering. In Chapter 6, the proposed



solver is applied to two practical engineering applications: the flight level control problem and
the vehicle suspension design problem. Finally, Chapter 7 draws some conclusions and makes

suggestions for further research.



CHAPTER 2
METHODS FOR SOLVING OPTIMAL CONTROL PROBLEMS

2.1 Introduction

Optimal control theory has been of considerable importance in a wide variety of
disciplines. Over the years, the theory has been developed for various applications in many
different fields, e.g., mechanical systems (Kim and Ha, 2001), automotive vehicle design
(Panagiotis, 2000; Jalili and Esmailzadeh, 2001), and manufacturing processes (Samaras and
Simaan, 2001). However, because most real-world problems are becoming too complex to be
solved analytically (Kirk, 1970), using computational algorithms to solve them is becoming
inevitable. As a result, several successful families of algorithms are now available in the
literature.

Techniques for the numerical solution of optimal control problems can be broadly divided
into direct and indirect methods (Bock; 1978; Stryk and Bulirsch, 1992). In the direct method,
the state and/or control variables: areparameterized using a piecewise polynomial
approximation. Inserting these approximations into the cost functional, dynamic equations,
and constraints and boundary conditions leads to a static parameter optimization problem. On
the other hand, the indirect method is based on the solution of the first-order necessary
conditions for optimality obtained from Pontryagin’s maximum principle (Pontryagin et al.,
1962) or derived from the Hamilton-Jacobi-Bellman equation (Bellman, 1957).

Two early methods commonly used to solve optimal control problems are Bellman’s
dynamic programming (Bellman, 1957) and Pontryagin’s maximum principle (Pontryagin et
al., 1962). Dynamic programming, developed by Bellman in the late 1950s (Bellman, 1957;
Bellman and Dreyfus, 1962; Bellman and Kalaba, 1965), is a computational technique that
extends the decision-making concept to sequences of decisions, which together define an

optimal policy and trajectory. Subsequently, Soviet mathematician Pontryagin and his



colleagues (Pontryagin et al., 1962) developed the calculus of variations approach using a
maximum principle. Although both the dynamic programming method and PMP have been
used to solve optimal control problems, many practical problems described by strongly
nonlinear differential equations cannot be easily solved by either technique. As a result, many
approximation methods based on NLP methods are used to solve these practical problems (see,
e.g., Lin, 1992; Pytlak, 1999; Jaddu and Shimemura, 1999; Hu et al., 2002).

A nonlinear programming problem consists of a multivariable function subject to multiple
inequality and equality constraints. The solution to the nonlinear programming problem is
found by solving the Kuhn-Tucker points of equalities given by the first-order boundary
conditions. Conceptually, this procedure is analogous to solving optimal control problems
using Pontryagin’s maximum principle. Depending on the discretization technique applied,
methods that apply NLP solvers can be classified into two groups: simultaneous or sequential
strategies. In the simultaneous methods, the state and control variables are fully discretized
and thus usually lead to large-scale INLP-problems -that require special solution strategies
(Cervantes and Biegler, 1998; Betts and Huffman, 1992). However, in sequential methods —
also known as control variable parameterization methods — only the control variables are
discretized. Based on initial conditions and a set of control parameters, the system equations
are integrated with an ordinary differential equation (ODE) solver at each iteration to produce
cost functional (performance index) and constraint values used by a nonlinear programming
solver to find the control parameterization’s optimal coefficient values. The sequential
approach is a feasible path method, i.e., in each of iteration, the system equation is solved.
However, this procedure is robust only when the system contains stable modes. Otherwise,
finding a feasible solution for a given set of control parameters may be difficult. In this
dissertation, a different discretization technique — the shooting method — is implemented and

used in conjunction with sequential quadratic programming (SQP) to solve various types of



optimal control problems.

The shooting method serves as a bridge between sequential and simultaneous approaches
by partitioning the time domain into smaller time intervals and integrating the system
equations separately in each interval. Control variables are treated in the same manner as in
the sequential approach. Moreover, to obtain gradient information, sensitivities are obtained
for both the control variables and the initial state conditions in each time interval. Finally,
equality constraints are added to the nonlinear program in order to link the time intervals and
ensure that the states are continuous across each time interval. This method allows inequality
constraints for both the state and the controls to be imposed directly at the grid points. Thus,
the admissible optimal control problem (AOCP) formulation based on the shooting method is

adopted as the core of the proposed method.

2.2 Canonical Formulation of Qptimal 'Control Problems

Considering a dynamical system, described by’ the following nonlinear differential

equations on [0, #]:

= f(t.b.x(t).u®), te0,,] 2.1)

with the initial condition

x(0) =x,, (2.2)

where # is the terminal time, beR" is the vector of design variables,

u(t)z[ul(t),uz(t),---,um(t)]TER’" is a vector of the control functions and

x(t)= [x1 (@), x,(1), -+, x, (t)]T eR" is a vector of the state variables. The function
fRxR*xR"xR"™ — R"is assumed to be continuously differentiable with respect to all its
arguments, and X, is a given vector in R". It is assumed that the process starts from #) = 0

and ends at the fixed terminal time #,> 0. A process that starts from 7y # 0 may be transformed

to satisfy this assumption by suitable shifting on the time axis. Let U be the class of all such



admissible controls. Then an optimal control problem may be stated formally as follows:

Given the dynamical system expressed in Egs. (2.1) and (2.2), find # € U such that the cost

functional (performance index)

Jy =@, (b, x(t,),1, )+ jof £, (b, u(t),x(0),t)dt 2.3)

is minimized subject to the constraint

0, i=1...... ,N

e

Iy =
Ji =, (b x(t,).t, )+ [ £, (b, ”(t)’x(t)’t)dt{s 0; i=N,+1., N,

and the following continuous inequality constraint on the function of the state and control:

(2.4)

v, (b.u().x(0).0)<0;j =g V1[0t ]. (2.5)

where @y, Lo, O, L; and y;are continuously differentiable with respect to their respective

arguments. This problem is referred toias preblem (Py). A control u € U is said to be a

feasible control if it satisfies constraints (2.4):and (2.5).

The preceding definition extends,thé-original Bolza problem to account for inequality
constraints because the original Bolza formulation; containing only equality constraints, is not
general for the OCP. It also fails to treat the design variables b, which may serve a variety of
useful purposes apart from the obvious design parameters, e.g., weight and velocity of a
vehicle. Moreover, when the terminal time # is unconstrained (for optimization), a free-time
problem occurs. Otherwise, a fixed-time problem is given. In addition, the initial conditions
are separated from the functional constraints in Eq. (2.4) for practical considerations, and the
terminal conditions are treated as equality constraints in the first term of Eq. (2.4). The
differential equations for the system in Eq. (2.1) are written in general first-order form.
Equation (2.5) represents the mixed state and control inequality dynamic constraints.

According to the constraints encountered in practical applications, most constraints can be

classified under one of the following categories (Teo et al., 1991):
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Type 1. Control bounds:

u. <ut)<u__ viel0.t, ] (2.6)

Type 2. Terminal state constraint with fixed terminal time:

=0; i=1,...... N _
CD,.(b,x(rf),zf){SO; =N AL N, , 1y is fixed. 2.7)

Type 3. Terminal state constraint with free terminal time:

D, (b, x(tf),l‘f) =0 , tris unspecified. (2.8)

Type 4. Interior point state constraint:

@, (b, x(1,),t,)=0 0<t<t (2.9)

Type 5. Integral constraint:

J-l/ r (b (t) (t) t)dt :0, l:1, ......... ’Ne 210
i D u D X s .
o " <O i=N, + LN, (210
Type 6. Continuous equality constraint on the function-of the state and control:
@, (b, x(t)u(t),t)=0  ¥ie|0,z,] (2.11)

Type 7. Continuous inequality constraint on the function of the state and control:

@, (b, x(1),u(t),t)<0  Vte|0,t,] (2.12)

To develop a general optimal control solver, any constraint of type 2 to type 7 can be regarded

as a special case of Egs. (2.4) and (2.5).

2.3 First-Order Necessary Condition — Euler Lagrangian Equation

The first-order necessary condition for optimality, known as the Euler-Lagrangian

equation, can be found in many research studies (e.g., Teo et al., 1991; Kirk, 1970). Given an

optimal control problem where control # € U is chosen such that the cost functional defined

in Eq. (2.3) is minimized, then
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Jy =@, (x(t,)t,)+ jo’ £, (u(), x(0), 1) dt 2.13)

where @y and £, are continuously differentiable with respect to their respective arguments.

It should be noted that the cost functional may be regarded as depending explicitly only
on u, as x is implicitly determined by u from Egs. (2.1) and (2.2). In addition, the design
variables vector, b, is treated as a constant and is not involved. The system equations (2.1) and

(2.2) can be appended to the cost functional by introducing the appropriate Lagrange

multiplierAe R":

; (2.14)
(2(0)) [ (t2x(2) (1)) = %(1) ]}
The Hamiltonian function is defined.as folows:
H(t,x,u,i):LO (t,x,u)+ﬂTf(t,x,u) (2.15)

It should again be noted that, if the system equation is satisfied, the appended cost
functional J,is indifferent to the original ;- The time dependent Lagrange multiplier is

referred to as the costate vector, also known as the adjoint vector.
Substituting Eq. (2.15) into Eq. (2.14) and integrating the last term by parts, the cost

functional becomes

(2.16)

+
=3 ~
~
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~
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—~
~
N
N—
+
—_
Y
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~
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~
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N—_———
&

For a small variation ¢ in u, the corresponding first-order variations in x and J, are Jx

and &J,, respectively, where &.J,is obtained by the chain rule:
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+Itf{[5H (1, )x (f),ﬂ(t))Jr(i(t))T}x(t) 2.17)

OH (t,x(t),u(t),A(t)) 5u(;)}dt

+

ou

Since A(t) is arbitrary so far, it can be set as

(i(t))T OH (1,x(1),u(t),A(1)) 218

ox

with boundary condition:

(i(tf))T _ o, (x(1,)) (2.19)

ox

As the initial condition x(0) is fixed,-'6x(0) vanishes.and Eq. (2.17) reduces to

5, (u'")= j;’ {aH(t’x(t)’u(t)’i(t)) 5u(t)}dt (2.20)

ou

For a local minimum, it is necessary that 5.J, vanishes for arbitrary 5x . Therefore, it is

necessary that

aH(t,x(t),u(t),l(t)) o 2.21)

forall te [0, t ] , except on a finite set. It should be noted that this holds only if no bounds

on u exist; otherwise, the Pontryagin’s maximum principle to be discussed later will be
applied. Equations (2.1), (2.2), (2.18), (2.19), and (2.21) are the well-known Euler-Lagrangian

equations whose results can be summarized in the following theorem.
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Theorem 2.1 If u(¢) is a control that yields a local minimum for the cost functional
(2.13), and x*(¢) and 1 (¢) are the corresponding state and costate, then it is necessary

that

(¥ (1) - OH (1,x"(t),u(1),4'(1)) (0 ()i (), (1) @220

OA
x (0)=x, (2.22b)
(2* (t)) _ aH(t,x* (t)é:* (f),ﬂ* (t)) T 220
At,)= %}:(5’)) T (2.22d)

and, forall e [0, tf] , except possibly,on a finite subset of [O, tf] ,

O H (t,x(1),u(r),4(1)) (2.22¢)
Ou

It should be noted that Egs. (2.22a)(2:22d)-constitute 2n differential equations with n

boundary conditions for x" specified ‘at #=0:and n boundary conditions for 1" specified at

= tr. This is referred to as a two-point boundary value problem. In principle, the dependence

on u" can be removed by solving u” as a function of x and 2~ from the m algebraic equations

in Eq. (2.22¢) via the implicit function theorem, provided that the Hessian
T

H = 0 [G_H} is nonsingular at the optimal point.

“ = ou| ou

2.4 Methods for Solving Optimal Control Problems

2.4.1 Indirect Methods
As mentioned in Section 1.2.1, the indirect method is based on the solution of the
first-order necessary conditions for optimality obtained from Pontryagin’s maximum principle

(Pontryagin et al., 1962), which has been modified and applied in various applications (see,
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e.g., Xu and Antsaklis, 2004; Chyba et al.,2003; Steindl and Troger, 2003). For problems
without inequality constraints, the optimality conditions can be formulated as a set of
differential-algebraic equations (DAEs). Obtaining a solution to DAEs requires careful
attention to the boundary conditions because the state variables frequently have specified
initial conditions and costate (adjoint) variables whose final conditions result in a TPBVP that
is notoriously difficult to solve analytically and requires the use of iterative numerical
techniques (Kirk, 1970). On the other hand, if the problem requires that active inequality
constraints be handled, finding the correct switching structure together with suitable initial
guesses for state and costate variables is often very difficult because of a lack of physical
significance and the need for prior knowledge of the control’s switching structure. Many
numerical techniques, including single shooting, invariant embedding, and multiple shooting,
can be used to solve TPBVP, but.PMP does not-deal well with nonlinear optimal control
problems. Figure 2.1 shows a solution process based on indirect methods.
Pontryagin’s Maximum Principle
According to the Euler-Lagrangian equation for the unconstrained optimal control

problem of Section 2.3 depicts that the Hamiltonian function must necessarily be

: : . OH o o
stationary with respect to the control, i.e. on =0 at optimality. However, the optimality
u

condition obtained in Section 2.3 does not have to be satisfied if the control is constrained
to lie on the boundary of a subset Us. Here, U is a compact subset of R". Then, the

Pontryagin’s maximum principle can be described by the following theorem:

Theorem 2.2 Given the problem, where the cost functional (2.13) is to be minimized

over Usubjected to the system equations (2.1) and (2.2), if u (f) € U is an optimal

control, and x*(f) and A *(t) are the corresponding state and costate, then it is

necessary that
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T

(x* (t))T _ aH(t,x* (t),u* (f)’l* (t)) =f(t,x* (t),u* (t),l* (t)) (2.23a)

OA
x (0)=x, (2.23b)
(i*(t)):_ 8H(z,x*(t)a§:*(t),,1*(t)) 2230
x(zf)z M (2.23d)

and, forall e [0, tf] , except possibly on a finite subset of [O, tf] ,

H(1,x (1), (£),2 (1)) < H (1,5 (0), (1), 4 (1)) (2.23¢)

forall te [0, lf] .

Dynamic Programming

Dynamic programming (DP), based ‘on Bellman’s principle of optimality (Bryson and Ho,
1975; Bellman and Dreyfus, 1962; Bellman, 1957), requires solution of the
Hamilton-Jacobi-Bellman partial differential equation in a domain of the state space that
contains the optimal solution. In dynamic programming, the optimal control problem is
expressed as a state-variable feedback in graphical or tabular form. Optimal control strategies
must be determined by working backward from the final stages. In other words, this method
operates in sweeps through the state set, performing a full backup operation on each state.
Each backup updates the value of one state based on the value of all possible successor states.

The computational procedure for dynamic programming can be described briefly by the
following steps.

Step 1: Approximating the continuous-time system using a discrete-time system.

16



In this step, the time interval, [7, #/], is divided into N equal spaced intervals, A¢, and
the performance index and state equations are converted into discrete form. Then, by
applying the principle of optimality, the performance index can be converted into

recurrent form:

*

i (X (N =k)) = min {£, (b,u(N = k), x(N - )
, (2.24)
+J o (AL f (b, X(N —k),u(N —k)))}

Step 2: Quantizing the admissible state and control values into a finite number of levels.

Step 3: Calculating and storing the minimum values of the performance index of each stage
from final state to initial state. In each stage, every quantized control value is tried at
each quantized state value to discover the corresponding state values of the next
stage. Additionally, the value of the performance index from current stage to final
stage is calculated and compared. The minimum performance index is then chosen
and stored. If the corfesponding -state. values of the next stage are not in the

quantized grid points, interpolation is required.

Step 4: Showing the results.

2.4.2 Direct Methods

Direct methods try to solve the dynamic optimization problem directly without explicitly
solving the necessary conditions. Usually, these methods are based on an iterative procedure
that generates approximations to the optimal solution of the dynamic optimization problem
within each iteration step. For instance, the SQP method uses quadratic subproblems to
approximate a general nonlinear programming problem locally.

As mentioned in Section 2.1, most direct methods that apply NLP solvers can be classified
into simultaneous and sequential strategies. The important question for these numerical direct
methods is whether these iterative approximate algorithms converge to a solution of the

original problem or not. A solution process based on such methods is shown in Figure 2.2 and
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their details will be introduced in Chapter 3.

2.5 Summary

The primary objective of this chapter has been to survey methods of the optimal control
problems and provide formulations of various types of optimal control problems. The
first-order necessary condition (Euler-Lagrangian equation) has also been briefly introduced
to provide the theoretical foundation for Pontryagin’s maximum principle. In addition, the
chapter has described two typical methods for solving optimal control problems — indirect and
direct approaches — whose advantages and drawbacks are listed in Table 2.1. Understanding
the advantages of and difficulties with these methods will help engineers apply them to
problem solving.

As regards applicability, dynamic,pfogramming (DP) is sometimes thought to be limited
because of “the curse of dimensionality” {Bellman, 1957), i.e., the fact that the number of
states often grows exponentially. with the-number of state variables. In reality, even though
large state sets do create difficulties, these are the inherent difficulties of the problem not of
DP as a solution method. In fact, the DP method can be used with today’s computers to solve
optimal control problems with millions of states. In particular, dynamic programming can deal
with multistage optimal control problems that are difficult to solve using other methods.
Nevertheless, even though dynamic programming can be used to solve optimal control
problems in nonlinear time-variant systems, using it to deal with time-optimal trajectory
planning is difficult in practice because it relies on the exact dynamic models of the system.
Yet, unfortunately, the time-optimal control problem is a very common application of the
optimal control problem.

In contrast, Pontryagin’s maximum principle, which provides the analytical foundation for
this study, can deal with various types of optimal control problem. However, in any such

control problem, PMP unfortunately leads to a nonlinear two-point boundary value problem
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that, as earlier mentioned, is notoriously difficult to solve analytically and requires the use of
iterative numerical techniques (Kirk, 1970).

Furthermore, neither DP nor PMP can serve as a convenient and complete method for
reformulating different control problems. Rather, engineers either have to derive the state
equations, costate equations, and boundary conditions from PMP or have to reformulate the
discrete form of the system equations and performance index by applying the DP algorithm.
Engineers must then also implement numerical programs to solve the TPBVP using PMP or
execute recurrence equations using DP. For engineers inexperienced in optimal control theory
or numerical techniques, carrying out these theoretical derivations and program
implementations is difficult. Thus, a general-purpose solver is needed for various types of
optimal control problems.

From a practical viewpoint, of.the two types of NLP methods compared in Section 2.1
(simultaneous and sequential strategies), the sequential NLP methods are the best for

developing a general-purpose problem:solver.

19



Table 2.1 Comparison of the methods for solving optimal control problems.

Method Advantages Disadvantages / Difficulties
. Can obtain global optimal solutions. 1. Hard to apply the algorithms for
) . Can deal with nonlinear constrained time-optimal trajectory planning in
Dynamic ) ] ]
] time-variant systems. practice.
programming ) ) ) )
. Suits multistage optimal control 2. Inconvenient to reuse.
method

problems.

. Is straightforward to program.

Pontryagin’s

. Provides the analytical foundation.

1. Leads to a nonlinear TPBVP that is

minimum . Can deal with various types of optimal difficult to solve.
principle control problem. 2. Inconvenient to reuse.
. Can deal with path constraint 1. The computational efficiency is
problems. slowed for large-scale problems.
) . Can be implemented as a general OCP | 2. Needs extra efforts to deal with
Simultaneous ) )
solver. inconsistency problem between
NLP methods )
state equations and controls.
3. Needs a proper initial guess to
obtain the optimal solution.
. Can deal with various types of 1. Needs a proper initial guess to
nonlinear optimal control problem. obtain the optimal solution.
. Easy to implement as a general-QCP 2. Path constraints for the states may
) solver. not be satisfied between grid points.
Sequential .
. Many well-developed numerical
NLP methods

schemes can be applied to solve

initial value problems.

. Higher computational efficiency for

solving large-scale problems.
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Figure 2.1 Solution proeess based on indirect methods.
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Figure 2.2 Solution process based on direct methods.
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CHAPTER 3
COMPUTATIONAL METHODS AND NUMERICAL PRELIMINARIES
FOR SOLVING OCP

3.1 Introduction

The rapid advancements in modern computers have brought about a revolution in the
solutions to many physical and engineering problems, including optimal control problems.
However, most real-world problems are becoming too complex to allow analytical solution;
thus, computational methods must inevitably be used in solving them. As a result,
computational methodology has attracted the interest of many engineers and mathematicians,
and over the last two decades, many state-of-the-art computational methods for optimal
control theory — including collocation transcription and the AOCP method — have been
developed (see, e.g., Betts, 1998 and 2001; Hu et al., 2002; Jaddu and Shimemura, 1999; Lin,
1992; Pytlak, 1999).

Some earlier computational methods for solving optimal control problems were based on
the indirect approach that assumes “the direct solution of a set of necessary optimality
conditions resulting from Pontryagin’s maximum principle. The adjoint (co-state) equations
are combined with the original state equations to form a TPBVP. This problem may be
efficiently solved using the shooting method discussed earlier, which guesses the unknown
initial values of the adjoint variables, integrates both system and adjoint equations forward,
and then reestimates the initial guesses from residuals at the end point (Bulirsch, 1971;
Lastman, 1978). Nevertheless, because of difficulties arising from the sensitivity and
instability of the solutions to the initial guesses, Bulirsch and his coworkers (1971, 1980)
introduced multiple shooting algorithms to improve convergence and stability. Multiple
shooting refers to the breaking up of a trajectory into subintervals, on each of which an
initial-value problem is defined. The solutions are then adjusted in successive iterations until

the boundary conditions and continuity properties at the ends of the subintervals are satisfied.
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Multiple shooting is much more successful than its ancestor, the simple shooting method, in
which a single initial-value problem is defined. However, even though especially good
convergence properties are attributed to multiple-shooting algorithms, the necessity to define
the proper control structure and initialize the adjoint variables within a sufficient vicinity of
the optimal values still remains a serious limitation.

To avoid the drawbacks of shooting techniques, the direct methods have been studied
extensively during the last two decades (Betts, 1993; Barclay, 1997; Gill et al., 2002). One of
the most widely used methods for solving optimal control problems is the direct method
whose basis is the transformation of the optimal control problem into a NLP problem using
either the discretization or parameterization technique (see, e.g., Goh and Teo, 1988; Xu and
Antsaklis, 2004; Jaddu, 2002; Lee ef al., 1999).

When the discretization technique is applied, the optimal control problem is converted
into a nonlinear programming problem with.a large number of unknown parameters and
constraints (Betts, 1998). On the other-hand,-parameterizing the control variables (Goh and
Teo, 1988; Teo et al., 1991) requires integration of the system equations. Moreover, the
simultaneous parameterization of both the state variables and the control variables also results
in a nonlinear programming problem with a large number of parameters and equality
constraints.

As a prelude to discussing computational methods for solving optimal control problems,
the following sections introduce some fundamental NLP concepts. Also introduced is one of
the best and most frequently applied NLP methods for solving optimal control problems,
sequential quadratic programming (see Barclay, et al., 1998; Betts, 2000; Gill et al., 2002,
Kraft, 1994; Stryk, 1993). Subsequently, the AOCP method, which uses the discretization
technique to convert an OCP into a NLP problem, is proposed, and then a standard SQP

algorithm is applied to solve it. Also discussed are the dynamic constraint treatments and
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design sensitivity analysis used in AOCP.

3.2 Nonlinear Programming Problem

Mathematically, the general form of a constrained NLP problem can be expressed as
follows:
minimize
fx)
subject to (3.1)
gx)<0, x'=(x,...,x)
h(x)=0
where f(x) is the objective function, and A(x) and g(x) are the equality and inequality
constraint functions, respectively. It should benoted that in the inequality constraint functions
g(x), the simple bounds of the design variables (x; < x < xy) are considered and classified.
Because maximization problems can_be<converted to minimization ones by negating their
objectives, only minimization problems are considered here, without loss of generality.

A general continuous constrained NLP problem is defined in Eq. (3.1) in which x is a
vector of continuous variables. Over the past three decades, a variety of methods has been
produced in a wide body of research to solve the general constrained continuous optimization
problem (Betts, 2001; Michalewicz et al., 1996; Horst and Tuy, 1993; Floudas and Pardalos,
1992; Hansen, 1992). Based on different problem formulations, existing methods can be
classified into three categories: penalty formulations, direct solutions, and Lagrangian
methods. Figure 3.1 classifies these methods according to their formulations, and the details
of these methods and their comparisons can be found in Wu (2000). Here, the SQP method
based on the Lagrangian method and adopted as an NLP solver in the AOCP algorithm is
introduced briefly.

In general, because Lagrangian methods work on equality constraints, inequality
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constraints are first transformed into their equal equivalents before Lagrangian methods are
applied. For example, an inequality constraint can be transformed into an equality constraint
by adding a slack variable (Luenberger, 1984). Thus, a general continuous equality

constrained optimization problem can be formulated as follows:

minimize
Sx)
(3.2)
subject to
h(x) = [71(X), ..., hm] " =0
where x' = (xi, ..., x,) is a vector of the continuous variables. Both f{x) and h(x) are assumed

to be continuous functions that are at least first-order differentiable. The augmented

Lagrangian function in continuous space in Eq. (3.2) is then defined as
L. (x,2)=V f(x)+ lTVxh(x)Jr%Hh(x)Hz (3.3)

where A is a vector of the Lagrange multipliers. Compared to the conventional Lagrangian
function in continuous space defined as L (x,4)=f(x)+2A"h(x), the augmented
Lagrangian function reduces the possibility of ill conditioning and is, therefore, more stable.
Various continuous Lagrangian methods have been developed to find the (local) optimum,
all based on first-order necessary conditions. To state these conditions, the concept of regular

points must first be introduced.

Definition 3.1. A point x, which satisfies constraints A(x) = 0, is said to be a regular point
(Luenberger, 1984) if the gradient vectors Vi (x),Vh,(x),...,Vh, (x) at point x are
linearly independent.

First-order necessary conditions for continuous constrained NLP problems.

Letting x be a (local) optimal solution of f{x) subject to constraints A(x) = 0, and assuming

that x is a regular point, then there exists 4 € R"such that
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V.f(x)+2'V h(x)=0 (3.4)

Based on the definition of a Lagrangian function, the necessary conditions for x to be a

constrained (local) optimal solution can be written as follows:

V.L.(x,2)=0
V,L, (x, i) =0
To ensure that the equilibrium point is an optimal solution, second-order sufficient

(3.5)

conditions are used to check that the solution is a strictly relative minimum subject to
constraints (Luenberger, 1984). These second-order sufficient conditions require second-order
derivatives, and the Hessian matrix of the Lagrangian function is needed to satisfy certain
conditions (Luenberger, 1984) if the solution to Eq. (3.5) is to be a strictly (local) optimal

solution. Here, The Hessian matrix of the Lagrangian can be defined as
H, =V [V.L(x2)] =V_L(x4)

. Many searching methods based.on first-order nécessary conditions in continuous space have
been developed for solving constrained optimization problems (Bertsekas, 1982; Luenberger,
1984), including the first-order method, Newton’s method, modified Newton’s methods,
quasi-Newtonian methods, and sequential quadratic programming (Hribar, 1996; Boggs and
Tolle, 1995). A major advantage of these methods is that solving the first-order conditions
exactly matches the goal of locating a (local) optimal solution. Therefore, these algorithms are
usually efficient for solving continuous constrained NLPs. One of most popular methods for
solving constrained optimization is sequential quadratic programming, discussed briefly in the

next section.

3.3 Sequential Quadratic Programming Method

SQP, one of most popular Lagrangian methods for solving constrained NLPs, is also
widely applied to develop computational methods for solving optimal control problems (Betts,

2000; Buskens and Maurer, 2000; Volkwein, 2000; Barclay et al., 1997). SQP methods have
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proven reliable and efficient for many practical constrained optimization problems. The
method described here is implemented in MOST (Tseng et al., 1993) and is similar to the
algorithm employed by SNOPT (Gill et al., 2002) software.

The SQP method is actually a generalization of Newton’s method (Luenberger, 1984) for
unconstrained optimization in the sense that it obtains search directions from a sequence of
quadratic programming (QP) subproblems. Each QP subproblem minimizes a quadratic model
of a certain Lagrangian function subject to linearized constraints. In its simplest form, an SQP
algorithm replaces f{x) in the Lagrangian function with a quadratic approximation and the
weighted constraint functions A'h(x) with their linear approximations:

O(d)=Vf(x) d +%dTV§x L. (x,2)d
(3.6)

=Vf(x)' d+%dTHLd
where d refers to the descent direction (of search direction) and Hj, to the Hessian matrix of
the Lagrangian function. The descent direction @ of the 4™ iteration of SQP can be found by
solving the following quadratic problem; assuming equality constraints only:
minimize
o)

: 3.7
subject to 3-7)

h(x)+Vh(x™) d® =0
where x* is used to represented the values of the design variables of the ™ iteration of SQP.
The local convergence property of SQP is well defined when (x, A) satisfies the
second-order sufficient conditions (Luenberger, 1984). That is, if point (x, A) is sufficiently
close to an optimal solution (x", "), then the sequence generated using the descent direction d
and the appropriate step size o will converge to x~ at a second-order rate. The search step size

o can be obtained by applying a line search method.
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The SQP method described here requires a more precise computation of the Hessian

matrix, V2, Lc(xk,)f) , at each step. However, it is usually replaced with a BFGS

approximation (Arora, 1989) B updated at each iteration. Using a BFGS formula allows the

following simple update strategy to be defined:
My = X =Xy
ﬂk :Vx Lc (xk+l’)"k)_vx Lc (xk’j’k)

B -B _Bk”k’ikTBk n BB
k+1 k g T
n, By B.n,

(3.8)

Once the descent direction has been determined, the step size must be calculated based on
simultaneously decreasing the objective, as well as improving constraint satisfaction. To
accomplish this goal, a suitable unconstrained function must be developed upon which to base
the step size determination. Many uncenstrained optimization methods, such as the golden
section search method, can be .found-in the literature (see Arora, 1989) and applied to
calculate the search step size, a.

Nevertheless, although SQP ‘methods are generally efficient, they often require that
functions be differentiable and therefore cannot be applied directly to solving NLPs
containing discrete variables. Thus, a modified SQP algorithm in cooperation with an
enhanced branch-and-bound method is proposed here to solve discrete-valued NLP problems.
The details of this modified algorithm are introduced in Chapter 5 of this dissertation. The
details of SQP method implementation can be found in the literature (e.g., Arora, 1989; Boggs
and Tolle, 1995; Gill et al., 2002). Figure 3.2 presents a conceptual flowchart of the SQP
method, whose algorithm is briefly described below.

Algorithm: Sequential Quadratic Programming

Step 1. Choose xp, Vs (maximum number of iteration)

& (for convergence and stopping), k£ =1 (iteration counter).

Step 2. Find the descent direction d by solving the QP subproblem defined in Egs. (3.6)
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and Eq. (3.7).
Step 3. Check feasible and convergence criteria.
(a) Convergence for SQP:
IF(hj=0,j=1,...,m) THEN
IF (KT condition is satisfied) THEN
Algorithm converged, Stop.
(b) Stopping criteria:
Ax = T 3
IF (Ax"Ax < &) THEN Stop. (design variable not changing)
IF (k= N;) THEN Stop. (maximum iteration reached)
Continue
Step 4. Calculate the step size o
Step 5. Update Hessian matrix Hg by applying BEGS approximation By (Eq. 3.8).

Step 6. k =k +1; Go to Step 2

3.4 Admissible Optimal Control Problem Method

The admissible optimal control problem method is a direct method that transcribes an
optimal control problem into a NLP problem, a process shown in Figure 3.3. Whereas an NLP
problem consists of a finite set of variables and constraints, an optimal control problem can
involve continuous functions and be treated as an infinite-dimensional extension of an NLP
problem. However, most practical methods for solving optimal control problems require
Newton-based iterations with a finite set of variables and constraints. Therefore, a
discretization technique is needed to convert the infinite-dimensional problem into a
finite-dimensional approximation. On the other hand, a general optimal control problem may
include some dynamic constraints that make the problem complex and difficult to solve. Thus,

an efficient dynamic constraint treatment becomes more important for developing a general
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optimal control solver. Presented below are two common design sensitivity analysis (DSA)
methods used to determine the effect of a change in the current design on the cost functional

and the constraint functions.

3.4.1 Discretization and Parameterization Techniques

Various discretization and parameterization techniques for state and control variables
allow for an optimal solution for the OCP via nonlinear programming. Jaddu and Shimemura
(1999) used quasi-linearization and state parameterization using Chebyshev polynomials to
solve constrained nonlinear optimal control problems. Hu et al. (2002) applied an enhanced
scheme based on the direct collocation and nonlinear programming problem (DCNLP) to
transform the system dynamics into constraints for nonlinear programming. Nevertheless,
although these simultaneous discretization methods are applied to many numerical examples
and solve them successfully, using a full-discretization strategy sharply increases the number
of design variables. Therefore, aidifferent discretization technique, in conjunction with SQP, is
implemented here, one used to solve vatious types of optimal control problems (Betts, 2000;
Barclay et al., 1997). This technique is based on the sequential method in which only the
control variables u are approximated by some interpolation function in each time interval. The
approximate trajectories x are generated by solving the initial-value problem defined in Egs.
(2.1) and (2.2). This method, first proposed by Sage and White (1977), is termed the AOCP
method.

Control function parameterization. Parameterization of the control functions can be carried
out using the following process. First, the entire time interval 7 € [Z‘O, t f} is subdivided into

N general unequal time intervals and the time grids are designated as
th=0,1,t,..., In1, IN— If (39)

The time intervals between the grid points are defined in a vector form as
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T=[T,T,...Tn]" (3.10)

N
where 1, =t,—¢,_ and ZT; =t,—1, .
=1

If at each time grid, control #” is treated as a set of m unknown parameters, then interval

|:t0 ) ff:| will have an Nm unknown parameter and can be represented as
So=[u, u®,.., ™"

= [ ul(lo),..., um(lo), ul(tl),..., um(tl),..., ul(tN_l),..., um(tN_l)]T (311)

[ Styeees Sins Setse-os Sams Sometse - SO-Dme1s- - o5 Sun]

where u") € R”is the vector of the control variables for the /" time interval [#, t1+/]. This
formulation can be treated as a subset of the design variable vector, resulting in a total number
of k+N+Nm design variables:

P= [ bl:"': b”: Tl:"': TN)"'9S1:"') SN+1, SN+29-'-’SmN]T (312)

Finding an accurate solution:for any practical application requires one set of fine time grid
intervals. However, discretizing ‘eontrol functions with a fine time interval increases the
number of design variables considerably, especially for a practical optimal control problem
with a large number of control variables. Hence, certain parameterization techniques have
been developed to overcome this problem. If parameterization techniques are applied, control
function u(f) may be represented by an interpolation function, and the coefficients of the
interpolation function may be considered design variables instead of 7; and S; in Eq. (3.12).

For example, if the time grid is not considered a design variable, the interpolation function

based on a third-order polynomial ) = £+ % t +¢Px £+£P % £ can be used to
. ! ! ! I}
represent the first component of the control forces in u(f) and &, ¢, £, and ¢ can

be treated as a subset of the design variables. Therefore, the control functions can be

approximated by interpolation functions I(¢), where I(¢): [to,tf] e R™. The continuous time
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optimal control problem with interpolation functions I(t) is thus reformulated as an NLP
problem without using approximate discretization. As noted earlier, the control functions, u(z),

are treated as a subset of the design variable vector P. Similarly, the terminal time #; can be
treated as one of the design variables in time interval vector T, e.g., t, = ZZITZ. +t,. The

admissible control functions are represented in the form u(r) = I(S, 7, ¢), and the state
variables are written in the form x(b, S, 7, ) to emphasize that they are functions of the design
variable vector P. Here, § represents the parameter vector of interpolation function. As a
result, the admissible optimal control problem in an NLP formulation can be rewritten as
follows.

A design variable vector P=[b", T", S"]" must be found that minimizes the cost functional

Jy =@, (b,x(b,S.T.1,).t,)

= l141
+ [ j ol (b,I(S,T,t),x(b,S,T,z‘),t)dt}

=1

(3.13)

subject to

JO =@, (b,x(b,S.,T,1,),t,)

+J‘:+l LE'I) (b, I(S,T,t),x(b,S, T,f),t)dt{

l//f(‘l) (b,I(S,T,t),x(b,S,T,t),t) <0 =l ,q; Vte [l‘,,tm]. (3.15)
and the system equation is represented as
x" = f(1,b,x(b,S,T,1),I(S,T,1)), telt,t,,] (3.16)
with the initial condition
xP(t)=x; xV@,) = x, (3.17)

where / 1s used to indicate the index of the time grid, and the original optimal control problem

is divided into N subproblems. These NLP subproblems are solved sequentially from time
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grid 7y to terminal time #; and the solutions of the state variables obtained in each time interval
are then applied as initial values in the next time interval.

With AOCP, the system equation in Eq. (3.16), together with the initial conditions in Eq.
(3.17), forms an initial-value problem (IVP), and the corresponding values for the state
variables can be calculated by solving the problem using the design variable values in each
iteration. For integrating the state equations in Egs. (3.16) and (3.17), some good first-order
differential equation methods are available that have a variable step size and error control, e.g.,
Adam’s method, the Runge-Kutta-Fehlberg method, and the backward difference formulae
(BDF) (Press et al., 1992). Those solvers can give accurate results with user-defined error
control. The state trajectories are internally approximated using interpolation functions in the
differential equation solvers. Values of the state and control variables between the grid points

can be also obtained with different types of interpolation schemes.

3.4.2 Dynamic Constraint Treatments

The continuum dynamic constraints in Eq. (2.5) must be satisfied over the entire time
interval at the optimum solution. Some procedures to eliminate time from these constraints
are employed to convert an admissible optimal control problem into an NLP problem. The
many treatments proposed to deal with the dynamic constraint problem — e.g., the equivalent
functional formulation (Haug and Arora, 1979) and worst-case design formulation (Hsieh and
Arora, 1984) — are introduced below.

(a) Conventional Formulation

With conventional formulation, discretization of the entire time interval [fy, #] in equation
(3.9) into N subintervals can be carried out by fixing a time grid at the current design
iteration. Conceptually, the simplest way of replacing the continuum dynamic constraints
of equation (3.15) is to impose the constraint at all grid points. This approach is hereafter

referred to as the conventional formulation.
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(b) Worst Case Design Formulation

Here, the dynamic constraints are treated as a worst-case design formulation (Hsieh and
Arora, 1984). Each continuum constraint of equation (3.15) is replaced by constraints at

the worst-response time points:
Py, 1(S,T,1),x(b,S,T,1),1] =, S 0; j=1,2,...m(p) (3.18)

where ¢ is a point of local maximum for the function ¢g, and m(3) is the total number of
max points for the ™ constraint. A numerical procedure is then used to locate all points #
for the constraint in a given design and impose the constraint thereon.

(c) Subdomain Functional Formulation

For this formulation, the dynamic constraints are transformed into several equivalent
functional constraints by dividing thelentire time domain into several subdomains, each
containing one local maximum |point (Hsich and Arora, 1984). Thus, the dynamic

constraints are replaced by the following constraints:
j &, [, 1(S,T,1),x(b, 8Tt ),1]dt <07 =1,2,.c.,m(PB) (3.19)

where [t t»j] is a small subdomain around a local maximum point ¢ for the constraint
function .

(d) Equivalent Functional Formulation

Here, the dynamic constraints can be transformed into an equivalent functional form by

integrating them over the time interval (Haug and Arora, 1979) as
[ #,[b,1(S,T,1),(b,8,T,1),1]dr <0 (3.20)

where

:0, lf¢ﬂ<0;

:¢ﬁ’ lf¢p >0, (3-21)

[ 8,[6,1(S,T,1),x(5,8,T,1),1] dt{

at any time.
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In this dissertation, the conventional formulation, the worst-case design formulation, and
the hybrid treatment for conventional and worst-case approach (shown in Figure 3.4) are

applied to deal with the dynamic constraint problem.

3.4.3 Design Sensitivity Analysis

It is important that a numerical method of optimization determine the effect of a change in
the current design on the performance index and constraint functions. In other words, the
gradients of the performance index and constraint functions with respect to design variables
must be evaluated using what is generally referred to as design sensitivity analysis (DSA).
The design sensitivity coefficients may be used directly in gradient-based iterative
optimization algorithms. Two methods for computing these gradients are the direct
differentiation method (DDM) and the adjoint-variable method (AVM).

In the DDM, the first variation of the state equation is performed and then the forward
numerical integration scheme is used to“solve the initial-value problem. The result is
substituted directly into the variation of the functienal constraint or dynamic constraints with
respect to the design variables. The AVM transposes an adjoint vector and then solves the
terminal value problem using a backward numerical integration scheme. The result is then
used to solve the sensitivity coefficients. The details and implementation of these two

sensitivity analysis methods are discussed in Tseng (1987).

3.4.4 ODE Solvers for Solving Initial Value Problem

The dynamic behaviors for most optimal control problems are determined by a system of
ordinary differential equations with a given initial state. Because this system forms an IVP,
the numerical solution of the IVP for ordinary differential equations (ODEs) is fundamental to
most optimal control methods.

Finding accurate and efficient solution procedures for solving ODEs has long been a
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problem of importance. However, in many practical situations, an analytical solution is either
impossible to find or extremely difficult to evaluate. Therefore, numerical solution procedures
for approximating solutions have become increasingly popular. Most numerical schemes for
solving ODEs can be classified as either one-step or multistep methods; however, one-step
methods like Euler’s are seldom used in practical situations because of their poor accuracy.
Rather, multistep methods — the most popular being the fourth-order Runge-Kutta method, the
backward differentiation method, and the Adams-Bashforth method — are most commonly
used to solve ODEs because of their high efficiency and accuracy.

Many well-developed packages or subroutines exist for solving differential equations,
incuding IMSL, Maple, Mathematica, and MATLAB. Most of these are based on the
Runge-Kutta method, the Adams formula, or the backward-differentiation formula. For this
dissertation, DDERKF, DDEABM, and DDEBDE; all developed by Sandia Laboratory, were
selected for the integration of state or design sensitivity equations. DDEBDF is based on the
variable-order (1-5) backward-differentiation-formula; DDERKF is a fifth-order Runge-Kutta
code, and DDEABM is a variable-order (1=12) Adams-Bashforth code. These equation
solvers use variable-step-size algorithms and have good error control. The DDERKF and
DDEABM can be used to solve nonstiff and mildly stiff differential equations, while
DDEBDF is suitable for stiff equations. If the differential equation is very stiff, DDEBDF is
more efficient than DDERKF and DDEABM. In contrast, DDEBDF is far less efficient than
DDERKF and DDEABM for nonstiff equations. Since it is not known a priori whether the
differential equations are stiff, DDERKF and DDEABM may not be converged. Therefore,
DDEBDF must be used. To handle this situation, a subroutine has been developed that
controls the use of differential equations solvers. This subroutine first uses DDEABM and
then, if the intermediate output shows the problem to be stiff, a switch is made to DDEDBF.

With this implementation, the differential equation solvers can be used more reliably and
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efficiently.
For most optimal control problems, their dynamical behaviors are determined by a system
of ordinary differential equations with a given initial state. It forms an IVP and hence the

numerical solution of the IVP for ODEs is fundamental to most optimal control methods.

3.4.5 Numerical Integration Methods
Two common integration schemes, Simpson’s rule and Gaussian quadrature, are adopted
in this dissertation to integrate the sensitivity coefficients and integral part of the functional

constraints into the adjoint variable method (AVM).

3.4.6 Interpolation Functions

For the admissible optimal control formulation, interpolation schemes are needed at
several places. First, to integrate the performance index and functional constraints,
information between the grid pomnts.is needed for a variable-step-size integration rule, e.g., a
Gaussian quadrature formula. Secondly, sinee-variable-step-size differential equation solvers
are used in this dissertation, values forthe state’and control variables between the grid points
are needed to calculate the right-hand side of the sensitivity equations. Hence, an interpolation
scheme is required to obtain the information between grid points. Finally, in the treatment of
dynamic constraints, an interpolation scheme is necessary for locating the maximum points
for the worst-case formulation or for evaluating the integral for the functional formulation. In
the OCP solver developed in this dissertation, zero-order, first-order, and piecewise

cubic-spline interpolation functions are adopted.

3.4.7 Computational Algorithm of AOCP
For solving the optimal control problem, the essential idea of AOCP is to treat optimal
control problems as initial-value problems by using iterative methods of nonlinear

programming. The SQP method is selected to solve the nonlinear programming problems
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transcribed from the discretization model of the original optimal control problem. Because
SQP is a generalized gradient-descent optimization method and subsequently converges to a
local rather than a global optimum, it solves the subproblem by providing both the direction
of design improvement and the step size along the search direction. In this dissertation, the
algorithms of AOCP and SQP are combined to form a general purpose solver, the OCP solver.
The architectural framework of the OCP solver, as illustrated in Figure 3.5, is composed
of two computational blocks: the SQP algorithm and the OCP solver. Because the SQP
algorithm is a well-known algorithm for optimization (Arora, 1989; Chong and Zak, 1996;
Rao, 1996), its implementation details can be found in a wide body of research and are
therefore skipped in this dissertation. Basically, in each iteration of SQP, the values of the
design variables are handed over to the OCP solver, which then uses them to calculate the
values of the cost functional and the constraints.»As shown in Figure 3.5, the OCP solver
contains three major computational modules: discretization, calculation of current values of
the state variables by applying -the ODE-solver, and estimation of the values of the cost
functional and the constraints. Hence, the AOCP. algorithm based on the SQP method can be
described as following:
AOCP Algorithm:
Step 1. Choose by, uy, Ny (maximum number of iteration)
N (number of time intervals)
& (for convergence and stopping), k£ = 0 (iteration counter).
Step 2. Execute the discretization and parameterization process and calculate values for
the following variables:

Time intervals T=[ Ty, T,..., T ]" defined in Eq. (3.10).

Interpolation parameters S* by applying u, (T)=1(S",T,?).

sYr o

. . T
Design variable vector P* = [bl(k),- b TR T S --,anlj}] .
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Step 3. Determinate the state variables X by solving the initial-value problem defined in
Egs. (3.16) and (3.17) with P,
Step 4. Calculate the values of the cost functional Eq. (3.13) and the constraints Eqgs.(3.14)
and (3.15).
Step 5. Calculate the gradients of the cost functional and the constraints.
Step 6. Find the descent direction d by solving the QP subproblem defined in Egs. (3.6)
and (3.7).
Step 7. Check feasible and convergence criteria.
(a) Convergence for SQP:
IF (KT condition is satisfied) THEN
Algorithm converged, Stop.
(b) Stopping criteria:
AP = D _plh)
IF (AP'AP < &) THEN Stop.(designrvariable not changing)
IF (k= N;) THEN Stop. (maximum iteration reached)
Continue
Step 8. Calculate the step size .
Step 9. Update the Hessian matrix H ¥ by applying a BFGS approximation defined in Eq.
(3.8).

Step 10. k =k +1; Go to Step 2.

3.5 Summary

This chapter has introduced the numerical preliminaries — including NLP formulation,
the SQP method, the control parameterization technique, and dynamic constraint treatments —

for developing the OCP solver. Also discussed were methods for solving the NLP and the
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first-order necessary condition for continuous constrained NLP problems. The text also
introduced the SQP method that serves as the kernel of proposed method, and provided its
algorithm. In addition, because this dissertation uses control parameterization with an
interpolation function to decrease the numbers of design variables and so make the solver
more efficient, discretization and parameterization techniques that transcribe the optimal
control problems into NLP problems were developed. Also introduced were several numerical
schemes involved in the proposed solver — including ODE solvers and integration and
interpolation schemes — and finally, the computational algorithm of the ACOP method that

will help implement the OCP solver.
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Figure 3.1 Methods for continuous constrained NLPs (Wu, 2000).

42



Update design variables x
LD Z 0 B g0

k=k+1

Initialization
Initial guess xy
Hessian matrix H = |
Iterative index k=1

y

Update Hessian matrix

HY

A

Line search

Search step size, o

A 4

Calculate values of cost
function and constraints.

A 4

Calculate gradients of cost
function and constraints.

A 4

Calculate the descent
direction, d®

Meet the
convergence criteria ?

( Show results >

Figure 3.2 Conceptual flowchart of the SQP method.
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CHAPTER 4
A CONVENIENT SOLVER FOR SOLVING OPTIMAL CONTROL
PROBLEMS

4.1 Introduction

Even though, over the last two decades, theoretical and numerical methods for solving
optimal control problems have been extensively studied and many well-designed algorithms
have been proposed, engineers must still expend much effort to reformulate the nonlinear
programming problems for different control problems. On the other hand, reworking the
corresponding programs for the nonlinear programming problem is a waste of time and even
more tedious. Therefore, developing a general OCP solver that offers a systematic process for
solving various optimal control problems has become imperative for engineers, particularly
for those who are inexperienced in optimal control theory or numerical techniques.

As mentioned in the previous.chaptef, many well-developed subroutines or program units
for numerical analysis are involved 1 developing a general OCP solver, e.g., integration
routines, ODE solvers, interpolation schemes, and general constrained optimization solvers. A
general OCP solver, named the OCP solver, was designed that consists of the subsystems or
components for such numerical subroutines. Its modular programming features enable the
OCP solver to choose different numerical schemes flexibly and be easily upgraded by
replacing subroutines with new versions. The implementation details of the kernel module and

user interface of the OCP solver are presented in following sections.

4.2 Multifunctional Optimization System Tool - MOST

In the AOCP method, the optimal control problem is converted into an NLP program so
that any reliable nonlinear constrained optimization solver can be applied to solve it
numerically. A great deal of attention has been paid to using the SQP method to solve NLP

problems (Tseng, 1987; Jaddu and Shimemura, 1999). For this dissertation, the
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multifunctional optimization system tool MOST (Tseng, 1993), based on the SQP method, has
been chosen to solve the NLP problem. This powerful optimization software was developed to
solve multi-objective optimization problems with both continuous and discrete design
variables (Tseng et. al., 1993). The MOST software contains three main modules for dealing
with continuous variables, discrete variables, and multi-objective optimization, respectively.

In the primary module, a SQP method (Arora, 2004) is employed to perform the
single-objective optimization for problems with continuous design variables. The SQP is
selected because of its accuracy, efficiency, and robustness. MOST’s accuracy and stability
has been tested in the research using 115 test problems with 2 to 96 design variables given by
Hock and Schittkowski (1980) The results were satisfactory and also indicated that MOST
can handle large-scale engineering optimization with excellent convergence (Tseng et. al.,
1988a; 1988b). To cope with theidiscrete-valued optimal control problems arising from
discrete design variables, an enhanced branch-and-beund method (Tseng et. al., 1995) was
integrated into the program. Inthis medules-the.original design space of discrete variables is
converted into one with continuous. variables' by dropping the noncontinuous restrictions
sequentially. In each of the converted continuous design spaces, the SQP module described
above is then utilized to find the optimal values.

Nevertheless, in many engineering applications there frequently exist several mutually
conflicting or competing objectives and requirements. Therefore, multi-objective (vector)
optimization offers a very promising way to handle such problems. For multi-objective
optimization, MOST provides decision makers, goal programming, compromise programming,
and the surrogate worth trade-off method (Evans, 1984; Tseng and Lu, 1990) to help users
determine the best compromised solutions to nonlinear problems.

It is known that a rigorous formulation of the design problem helps the designer better

understand the problem and a proper mathematical formulation leads to a good solution.
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MOST provides an input data file that includes the initial design, and it transcribes the design
problem by coding subroutines that include evaluation of the cost, in routine cusermf, and
constraint functions, in routine cusercf (see Figure 4.1). Because of its user-defined
subroutines, MOST can be extended to flexibly integrate other analysis packages, e.g.,
ANSYS (Yang et al. 1992; Lin et al., 1992), EUCLIS-IS (Wang, 1993), and MATHEMATICA
(Su, 1994). Moreover, with the assistance of an interface coupler, MOST can deal with the
complexity and large size of engineering systems that have no explicit relationships between
inputs and system outputs (Huang, 1994). The architecture of the MOST interface coupler is
shown in Figure 4.2. The IAOS, a new distributed version of the interface coupler, was
developed to deal with analysis packages installed on different machines (Huang, 1994). In
IAOS, MOST and the interface coupler are merged into a powerful new optimizer (see Figure

43).

4.3 Structure of the Proposed OCP Solver

The kernel of the OCP solver s written in. FORTRAN and has been tested on a UNIX
platform. Because of the increased popularity and technical developments in the calculation
ability of the personal computer (PC), for this dissertation, the OCP solver has been
transplanted onto a PC platform. The structured chart for the entire OCP solver is given in
Figure 4.4, and the connections between the OCP solver and MOST are shown in Figure 4.9.
Four primary independent modules of the OCP solver are introduced below.

CTRLMF module: The structure of this module, given in Figure 4.5, links with MOST’s

user-defined subroutine cusermf and contains six subroutines. The control routine CTRLMF is
used to calculate the value of the performance index, to partition the array, and to check
available memory. The pseudocode for the CTRLMF module of the AOCP algorithm is shown
in Table 4.1.

CTRLCF module: This module, whose structure is shown in Figure 4.6, calculates the
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constraint function values. First, the information on the state trajectory is passed from the
CTRLMF module and then the values of the functional constraints and dynamic constraints
are calculated in routine CTRLCF. In this module, subroutine PTCST is used to calculate the
number and values of dynamic constraints for the alternative treatments described in Section
3.4.2.

CTRLMG module: This module, illustrated in Figure 4.7, calculates the design derivatives of

the performance index by using the direct differentiation or adjoint variable method. In the
DDMMG routine, the design derivatives are calculated using direct differentiation (DDM); in
the AVMMG routine, by the adjoint variable method (AVM). The ANSAVM routine determines
the terminal conditions and integrates the adjoint differential equation using a backward
numerical integration scheme.

CTRLCG module: This module, outlined in Figure 4.8, is in charge of design sensitivity

analysis, which determines the effect of a change.in-the current design on the performance
index and constraint functions. Two common-methods, DDM and AVM, described in Section
3.4.3, are implemented in this module. The control routine DDMCG is evaluated to obtain the
design derivatives using DDM. The information for state variable derivatives with respect to
the design variables is then passed from the CTRLMG module. If the AVM is needed to
calculate the design derivatives, the AVMCG routine is executed.

In addition to these four modules, many useful routines are shared by a variety of
modules, e.g., DIFSOL, INGSOL, DDERKF, DDEABM, DDEBDF, SIMPSN, GAUSS, TBFIT,
TGVAL, and CTRLF. The routine DIFSOL contains three differential equation solvers (RKF,
ABM and DBF), and the routine /INGSOL is used to calculate the value of an integral. In
INGSOL, the SIMPSN (bases on Simpson’s rule) and GAUSS (following the Gaussian
quadrature formula) are called on to evaluate the integral. Both the DDERKF and the

DDEABM can integrate a system of first-order differential equations, the first using the
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Runge-Kutta-Fehlberg method and the second using the Adams-Bashforth-Moulton
predicator-corrector formulas for orders one through. The latter implements a backward
differentiation formula in the routine. The TBFIT is used to calculate the coefficients of the

interpolation function and the TGVAL, to calculate the value of functions and their derivatives.

4.4 The OCP Solver in Cooperation with MOST

Because of the extension flexibility of MOST, the OCP solver is herein treated as a MOST
module. The linkage of MOST to the OCP solver is composed of four user-defined MOST
subroutines: cusermf, cusermg, cusercf and cusercg. The OCP solver also has four
user-defined subroutines for defining an optimal control problem: USERMF, USERMG,
USERCF and USERCG. The architecture for MOST and the OCP solver is illustrated in
Figure 4.9.

In the OCP solver, the subroutines USERMF  provides the cost functional value
(performance index value); subreuting USERCE provides the constraint function values; and
subroutines USERMG and USERCG provide the cost function gradient and the gradients of
the active constraints, respectively. A fifth subroutine, USEROU, can be developed by the user
to perform a subsequent optimality analysis for the optimal solution and obtain more output.
If the analytic expressions for the gradients in USERMG and USERCG are not available,
MOST provides the option of calculating gradients using a finite difference method that can
be specified as forward, backward, or central. More details are provided in the MOST 1.1
User’s Manual (Tseng et al., 1993). As the architecture given in Figure 4.9 shows,
connections exist between the optimizer MOST, the five user subroutines, and the four
independent modules, CTRLMF, CTRLMG, CTRLCF and CTRLCG, for the OCP solver. The
four modules contain the performance index, the functional and dynamic constraints, the
gradient of the performance index, and the constraint function gradients for the optimal

control problems, respectively. They can be connected to each other to form a general
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constrained optimization solver.

4.5 User Interface for the OCP Solver

The user interface for the OCP solver consists of two parameter files and four subroutines.
Users can specify the optimization parameters and numerical schemes in the parameter files
of both MOST and the OCP solver, such as acceptable violation of constraints for feasible
designs, the differential equation solver, the integration rules, and the interpolation scheme.
The user interfaces for the OCP solver and MOST are shown in Figure 4.10.

The MOST optimal parameter file, shown in Table 4.2, is used to configure the optimizer
parameters (details can again be found in the MOST user manual [Tseng et. al., 1993]).
Details of the OCP parameter file fort.1/ — which contains information on the number of
equations, grid points, equality and, ifiequality functional constraints, and the parameters for
numerical schemes — can be found in Tseng (1987). Table 3 gives the OCP parameter file for
the van der Pol oscillator problem to be-introduced in Section 4.7.1. Once all four necessary
user-defined subroutines, FFN, GFN, HFN, and ZOFN, are ready, they should be linked to the
OCP through the MOST kernel. Figure 4.10 shows the relationship between the user-defined
routines and the MOST modules. FFN evaluates the integral terms of the performance index
or functional constraints, while GFN calculates the values of the first term of the performance
index or functional constraints and the dynamic constraints. HFN is used to evaluates the
system state equation f(b, u(t), x(¢),t), and finally, ZOFN is responsible for calculating the

initial values of the state variables, x(#)). Figure 4.11 gives a flowchart for the OCP solver.

4.6 Systematic Procedure for Solving the OCP

In this dissertation, the OCP is converted into an NLP problem using an admissible
optimal control problem formulation then the optimizer based on the SQP method is used to
solve the NLP problem numerically. These procedures can now be directly implemented, and
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the complicated details of transformation and programming automatically completed, in the
proposed OCP solver. Because the optimal control and state trajectories are obtained and
recorded in the output files, engineers can follow an efficient and systematic procedure to
solve various optimal control problems. The procedure for solving the OCP with the OCP
solver is as follows:

1) Defining the OCP problem following the formulation defined in Section 2.2.

2) Preparing the parameter files and user-defined subroutines according to the

formulation.
3) Compiling the user’s subroutines and linking with the OCP solver.

4) Executing the OCP solver and obtaining the optimal results.

4.7 lllustrative Examples

Two types of optimal control-problems mentioned in the literature have been used as test
problems to evaluate the performance of the proposed'method. In the AOCP method, both the
acceptable violation of constraints”for. feasible designs and the acceptable tolerance for the
convergence parameter are 10~. The numerical results for all example problems were

obtained on a Pentium 4 Celeron 1.2 GHz computer with 384 MB of RAM.

4.7.1 The van der Pol Oscillator Problem

The van der Pol oscillator problem was given and solved by Bullock and Franklin (1967)
using a second variation method. The problem was also used by Jaddu and Shimemura (1999)
to verify their computational method. In this dissertation, it is further used to evaluate the
performance and capabilities of the proposed method and the OCP solver. The van der Pol
oscillator problem can be formulated by the following minimization

1 ¢5
J, = ?jo (x2+x2+u?)dt (4.1)
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subject to

X, =Xx,,
. , (4.2)
X, =-x,+0=x)x, +u.

with initial states x'(0) = [1, 0]".

Based on this problem, Jaddu and Shimemura considered three cases that can also be
solved by the OCP solver: the unconstrained problem, the terminal state constrained problem,
and the terminal states and control constrained problem.

Case I: Free end point and no control constraints
The optimal solution for this problem found by Bullock and Franklin (1967) using a
second variation method was Jo* = 1.433508, while that found by Jaddu and Shimemura

(1999) using a ninth-order Chebyshev series to approximate x;(f) was Jo = 1.4334872.

Using the OCP solver, in which'the control variable u is discretized into 21 grid points,

the optimal value is Jo = 14334723, smaller than both earlier reported results. The

numerical parameters for MOST arelisted. in Table 4.2, and the optimal control and state

trajectories are shown in Figure 4.12.

Case II: Terminal state constraint

(p(x(zf)):1—x2(tf)+xl(tf)=0 (4.3)

For this problem, Bullock and Franklin (1967), again using the second variation method,
found an optimal value of Jo = 1.6905756, while Jaddu and Shimemura (1999), also
using a ninth-order Chebyshev series to approximate x;(¢), found an optimal value of J," =
1.6857113. In this study, the terminal state constraint is treated as an equality constraint
and the other number parameters, the same as in case I. With the OCP package, the value
obtained is Jo = 1.6856957. Figure 4.13 shows the optimal control and state trajectories

for the proposed OCP solver.
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Case I1I: Terminal state constraints and saturation constraints on control

The terminal state constraints and the saturation constraints on control are described in

the following equation:
W, = X (z‘f)+1: 0,
v,=x(t,)=0, (4.4)
and v, =u (t)— 0.75<0.

When Bashein and Enns (1972) solved the problem, they obtained Jo = 2.1439039,
while Jaddu and Shimemura (1999), this time using a twelfth-order Chebyshev series to
approximate x;(t), found an optimal value of J, = 2.1443893. The solution produced by
the OCP solver is an optimal value of J," = 2.1375360. The optimal control and state

trajectories for the OCP solver are shown in Figure 4.14.

4.7.2 Time-optimal Control Problem: Overhead Crane System

Overhead cranes are widely-used in-factories and workplaces to transport objects. An
overhead crane system, like that sketehed in Figure.4.15, is a high-order nonlinear system that
consists of a cart with a point load suspended by cables. The control problem is to transfer the
load from an arbitrary point A to point B in minimal time subject to the requirement of zero
residual vibration at point B. The control inputs are the horizontal acceleration of the cart and
the hoisting acceleration of the cable. Hu et al. (2002) proposed this problem and solved it
using an enhanced DCNLP method. In this dissertation, this problem will be used to
demonstrate the ability of the proposed method to solve a high-order time-optimal control

problem.

Given x,=z,x,=2,x;,=60,x,=0=w, x; =1, x;, =1 as the state variables, and u, =2Z,

U, =1 as the control inputs, the OCP formulation of the overhead crane system can be

minimized as follows
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Jo=tt 4.5)

subject to
X, =X, ,
X, =u,
X, =X
3 4
. . (4.6)
x, = (u,cosx; —2x,x, —gsinx;)/x,,
X = Xg

and X, =u,.
with initial conditions x'(#,) = [0, 0, 0, 0, 4, 0]" and terminal conditions x"(¢) = [10, 0, 0, 0,
4, 0]" where g is the gravitational acceleration.

The state and control constraints are as follows:

0<x,(1)<1, |xg0)|<1, for t,<t<1, (4.7)
u, (1)< 0.5, i=12 for fp <t <t (4.8)

Using the admissible control fermulation-delincated in the previous chapter, the control
variables are converted into deSign variablestthat can then be treated as design variable
boundaries. Furthermore, the state constraints are transferred into standard constraint form as
follows:

W, = —X, (t)é 0,
v, :xZ(t)—lé 0,

¥, :—x6(t)—1£0,
and v, =x,(t)-1<0.

(4.9)

In this problem, both the state and the control variables are divided into 101 grid points.
The minimum time J* = t; = 12.0004 is solved in the OCP solver by applying a cubic
piecewise interpolation scheme to the control function. Two local optimal solutions are
obtained by the OCP solver with different initial points. The trajectories of the rope angle and
angular velocity are shown in Figure 4.16, in which the solid line represents the results

obtained by the DCNLP method (Hu. et al., 2002) and the dashed line represents a second
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optimal solution obtained by the OCP solver. As the figure illustrates, the solid line totally
matches the results obtained by Hu et al. (2002), meaning that one of the optimal solutions
found by the OCP solver tallies exactly with the trajectories obtained by the DCNLP method
(Hu. et al., 2002). In addition, the performance index (terminal time, #) obtained by the OCP
solver (= 12.00) is very close to the result using the DCNLP method (#= 12.00). Moreover,
according to the trajectories shown in Figure 4.16, the amplitudes of rope angle and angular
velocity for the second optimal solution obtained by the OCP solver, as represented by the
dashed line, are smaller than the others. Figures 4.17 and Figure 4.18 depict the corresponding
inputs and states with local optimal solutions, respectively. In Figure 4.17, the trajectories of
the control inputs conform to the dynamic control constraints given in Eq. (4.8). According to
the state trajectories in Figure 4.18, the initial conditions, xT(to) =0, 0, 0, 0, 4, O]T ,and the
terminal conditions, xT(tf) =[10, 050, 0, 4, O]T are satisfied. Obviously, all constraints are
fulfilled, thereby proving the correctness of thesolutions. In other word, both solutions solved
by the OCP solver are local optimal solutiens=In-practice, small amplitudes of rope angle and
angular velocity for an overhead crane will be adopted because they benefit operational
safety.

As the numerical results show, both examples convert successfully into NLP problems
using the admissible control formulation and can then be solved using the AOCP method.
Moreover, the results of the numerical schemes of the proposed method are quite accurate.
With the OCP solver, users need not spend a vast amount of effort on programming to obtain
solutions. Rather, once the problems are formulated, the solver can be implemented and the
problems solved easily. In addition, rapidly advancing computer capabilities will ensure that
computing time for the OCP solver will decrease. Thus, users will be able to obtain optimal

results more quickly than before.
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4.8 Numerical Study

To investigate how the numerical schemes affect the validity of the solution and
computational efficiency, both the van der Pol oscillator problem and the overhead crane
control problem are solved again using different numerical schemes and time intervals that
introduced in the previous chapter. Here, the finite-difference method (DSA=FDM) and the
DDM for sensitivity analysis are selected to evaluate their performance. Simpson’s rule
(INTG=SIMPSN) and the Gaussian quadrature formula (INTG=GAUSS) are used to carry
out the numerical integration over the time interval. DDERKF and DDEABM with the option
to switch to DDEBDF are selected for solving first-order differential equations with a relative
scalar error of 1.0E-8 and a scalar error of 1.0E-10. Three common interpolation schemes —
zero-order  (INTP=Zero), first-order,..(INTP=First), and piecewise cubic-spline
(INTP=Cubic) — are chosen to estimate théit effects tipon the performances.

Table 4.4, which gives data-types collected for the 24 cases of the case I van der Pol
oscillator problem, shows the total number-of iterations (NIT) of the AOCP method, the
optimal value of the performance index (Jo*), and the convergence parameter (Conv. Par.) and
CPU time for the entire iterative process. The lower part of the table includes the mean values
for different conditions. In contrast, in the case III van der Pol oscillator problem, a dynamic
constraint is imposed that can be used to compare the dynamic treatments. The conventional
design (DTC=ALL), worst-case design (DTC=MAX), and hybrid design (DTC=HYB) for
dynamic constraints are selected to evaluate their performance. In this case, two different time
grid points are chosen to compare the effects on performance of either a coarse or fine mesh.
The comparison among these dynamic treatments with different mesh points is list in Table
4.5. These results indicate that the worst-case design needs more iterations and CPU time to
converge. In addition, the optimum performance index with a fine mesh is more accurate than

that with a coarse mesh. Similarly, the overhead crane control problem can be solved using
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different numerical schemes (the results are shown in Table 4.6).

Overall, the results in Table 4.4 and Table 4.6 show the performance of all numerical
schemes to be quite accurate. However, the design sensitivity analysis using the
finite-difference method (FDM), the differential equation solver with integration using a
fifth-order Runge-Kutta algorithm (DDERKF), the Gaussian quadrature formula (GAUSS),
and the interpolation scheme with a first-order interpolation function give better performance
with respect to efficiency. From the Table 4.5 data, it is obvious that the fine mesh increases
computational cost, while dynamic constraint treatment using the conventional design
treatment (ALL) gives more efficient performance than the worst-case design treatment

(MAX).

4.9 Summary

This chapter has presented the major-moedules for the general optimal control problem
solver being developed, namely, the. OCP solver. Discussed first was the multifunctional
optimization solver, MOST, which is used as the Kernel of the proposed solver. To develop the
OCP solver, use of the interface coupler that integrates the MOST optimizer with other
analyzers via standard input/output files has been extended. In addition, the AOCP algorithm
has been implemented as an external analyzer module and involved in the OCP solver. The
discussion also presented the implementation details of the interface between MOST and the
AOCP module, as well as the user interface for the OCP solver.

The primary purpose of this dissertation is to present a systematic procedure for solving
optimal control problems with the OCP solver provided. To this end, the van der Pol oscillator
problem with various terminal states and control constraints and the overhead crane control
problem, a high-order nonlinear time-optimal control problem, were used to evaluate the
capability and accuracy of the OCP solver. A performance comparison among different

numerical schemes involved in the OCP solver was also carried out. The results indicate that
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the proposed OCP solver can truly facilitate the solving of engineering control problems in a

systematic and efficient way.
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Table 4.1 Pseudo-code for the CTRLMF module of the AOCP algorithm.

CTRLMF(P, Jy, nv, nobj, itr_k, ierr)
BEGIN
Assign the values of the discretized control variables from design variable vector P.

Calculate the values of control variables at any time in [fy, #] by applying

interpolation schemes.

Substitute the values of control variables into the system equations Eq. (3.16) so the

system equations with the initial conditions in Eq. (3.17) form an initial value

problem (IVP).
IF the IVP is non-stiff THEN

Calculate the values of the state variables by solving the IVP with the
Rung-Kutta-Fehlberg (RKF) method.

ELSE (the I'VP is stiff)

Calculate the values of the state variables by solving the IVP with the backward
differentiation formulas (BDF) method.

ENDIF

Calculate the state of the control variables at any time in [#, #] by applying

interpolation schemes.

Calculate the values of the performance indexes Jy and return those values.

END
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Table 4.2

MOST input file for the van der Pol oscillator problem.

tit

= van der Pol oscillator problem, case |

nv =21

nobj =1

neql =0

nigl =0

ntrs =100

ipr =3

lact =5

igrad =1

del =1.0000e-05

acs =1.0000e-03

acv  =1.0000e-03

act =1.0000e-12
X[1]=1.0 -10.0 10.0
X[2]=1.0 -10.0 10.0
X[3]=1.0 -10.0 10.0
X[4]=1.0 -10.0 10.0
X[5]=1.0 -10.0 10.0
X[6]=1.0 -10.0 10.0
X[7]=1.0 -10.0 10.0
X[8]1.0 -10.0 10.0
X[9]=1.0 -10.0 10.0
X[10]=1.0 -10.0 10.0
X[11]=1.0 -10.0 10.0
X[12]=1.0 -10.0 10.0
X[13]=1.0 -10.0 10.0
X[14]=1.0 -10.0 10.0
X[15]=1.0 -10.0 10.0
X[16]=1.0 -10.0 10.0
X[17]=1.0 -10.0 10.0
X[18]=1.0 -10.0 10.0
X[19]=1.0 -10.0 10.0
X[20]=1.0 -10.0 10.0
X[21]=1.0 -10.0 10.0
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Table 4.3 Parameter file for the van der Pol oscillator problem.

110010
210010
000000
100000
200000
110010
210110
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Table 4.4 Performance comparison of various numerical schemes for the oscillator problem,

case L.

DSA INTG DIFF INTP NIT Jo* Conv. Par. CPU
DDM SIMPSN DDERKF Zero 11 1.4530 4.9577e-4  19.639
First 21 1.4333 7.6480¢e-4 6.069
Cubic 20 1.4334 5.4521e-4 18.146
DDEABM Zero 11 1.4530 4.9577e-4  18.455
First 21 1.4333 7.6480e-4  19.147
Cubic 20 1.4334 5.4521e-4  15.202
GAUSS DDERKF Zero 12 1.4422 9.7245¢-4  20.499
First 21 1.4328 8.4954¢-4 4.665
Cubic 20 1.4334 5.4616e-4 14.392
DDEABM Zero 12 1.4422 9.7245¢-4  19.078
First 21 1.4328 8.4954e-4  17.686
Cubic 20 1.4334 5.4616e-4 11.776
FDM SIMPSN DDERKF Zero 13 1.4530 3.6313¢-4 3.615
First 21 1.4333 7.6261¢-4 1.382
Cubic 20 1.4334 5.4124¢-4 1.542
DDEABM Zero 13 1.4530 3.6306e-4 3.615
First 21 1.4333 7.5959¢-4 3.244
Cubic 20 1.4334 5.4139¢-4 2.333
GAUSS DDERKF Ziero 14 1.4422 5.3821e-4 3.445
First 21 1.4328 8.4715¢-4 0.752
Cubic 20 1.4334 5.4218¢-4 0.871
DDEABM Zero 14 1.4422 5.3905¢-4 3.555
Eirst 21 1.4328 8.3944¢-4 2.754
Cubic 20 1.4334 5.4269¢-4 1.603

Averages

DDM — — = 17.5 1.4380 6.957E-04 15.396
FDM — — — 18.2 1.4380 5.983E-04 2.393
— SIMPSN — — 17.3 1.4407 5.922E-04 12.707
— GAUSS — — 18.0 1.4361 7.154E-04 8.423
— — DDERKF — 17.8 1.4380 6.474E-04 7.918
— — DDEABM — 17.8 1.4380 6.466E-04 9.871
— — — Zero 12.5 1.4476 5.925E-04 11.488
— — — First 21.0 1.4331 8.047E-04 6.962
— — — Cubic 20.0 1.4334 5.438E-04 8.233
Bullock and Franklin (1967) J* =1.433508
Jaddu and Shimemura (1999) J* =1.433487
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Table 4.5 Various dynamic constraint treatments for the oscillator problem, case III.

NGP DCT NIT Max. Vio. Conv. Para. Jo* NMF NCF NTG CPU
ALL 27 5.01403¢-9 8.79668¢-5 2.13771 594 594 340 2273
21 MAX 100 6.38948e-6 6.42630e-3  2.13758 2200 2200 243  8.341
HYB 30 9.76433e-9 7.59396e-5 2.13772 660 660 388 2.594
ALL 41 8.03759e-8 6.72651e-5 2.13657 4183 4183 1764 34.710
101 MAX 100 1.91428e-5 1.23887e-4 2.13658 10205 10205 1110 79.635
HYB 50 2.60229¢-6 7.37412¢-5 2.13658 5107 5107 2193 43.564
Averages
ALL 34 4.26950E-8 7.76160E-5 2.13714 2388.5 2388.5 1052 18.4915
MAX 100 1.27661E-5 3.27509E-3  2.13708 6202.5 6202.5 676.5 43.988
HYB 40 1.30603E-6 7.48404E-5 2.13715 2883.5 2883.5 1290.5 23.079
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Table 4.6 Comparison of various numerical schemes for the overhead crane system.

INTG DIFF INTP  NIT Max. vio. Conv. Para. Jo* CPU
SIMPSN DDERKF Zero 101 6.73320E-06 8.42785E-04 12.17290 1590.31
First 95 5.31769E-09 9.40788E-04 12.04890 116.29
Cubic 92 2.16952E-09 7.97492E-04 12.04730 165.252
DDEABM  Zero 102 1.46089E-05 9.37978E-04 12.17290 1668.69
First 93 4.02915E-06 9.99191E-04 12.04880 800.555
Cubic 60 3.72381E-06 6.89197E-04 12.00040 280.323
GAUSS DDERKF Zero 101 6.73320E-06 8.42785E-04 12.17290 1584.946
First 95 5.31769E-09 9.40788E-04 12.04890 114.797
Cubic 92 2.16952E-09 7.97492E-04 12.04730 162.769
DDEABM  Zero 102 1.46089E-05 9.37978E-04 12.17290 1599.916
First 93 4.02915E-06 9.99191E-04 12.04880 799.932
Cubic 60 3.72381E-06 6.89197E-04 12.00040  280.25
Average
SIMPSN _ _ 90.5 4.85042E-06 8.67905E-04 12.08187 770.2
GAUSS _ _ 90.5 4.85042E-06 8.67905E-04 12.08187 757.1
_ DDERKF _ 96.0 2.24690E-06 8.60355E-04 12.08970 622.4
— DDEABM _ 85.0 7.45395E-06 8.75455E-04 12.07403 904.9
— _ Zero 101.5_+1:06711TE-057,8.90382E-04  12.17290 1611.0
— _ First 94:0 2.01723E=06. ‘9:.69990E-04  12.04885 457.9
— _ Cubic 76.0 [1-86299E-06: 7.43345E-04  12.02385 222.1
Hu et al. (2002) =12

66



Parameter file
/ of MOST / >y

Initial design
lower & upper bounds

Update design variables

P(k+1):P(k)+OLd

-y

cusermg cusermf

Calculate the gradient| {Calculate the values
of the cost functions | of the cost functions

Calculate the gradients of

cost and constraint
functions

A

cusercg cusercf
Calculate the gradients || Provides constraint
of active constraints functions values

Convergence

Criteria
?

Perform post _
optimality analyses Show the results

cuserou

v
=N

Figure 4.1 The architecture of MOST.

67



Parameter file of MOST I

initial design:
lower & upper bounds
and other parameters

ﬂ

enter new

design
variables

P
prepare the input

files for analysis
software

Run analysis
software

)

read data from |-

/—1 Interface '\

caculate the no. )
of marks & read

the positions of
marks in input
files

i

( K N
assign a new

design value
to input files

Run Analysis
software

output files
—

)

evaluate

cost g
——

evaluate
constraints

Final Results I

Figure 4.2 Architecture of the interface coupler.

read the marked
terms of output files

?

caculate the no. of
marks & read the
positons of
marks in output files

68

—

input files for
analysis
packages

\/

Analysis
software

\J
output files for
analysis
packages



System
Information
File

init.c

\A

init()

Marked Files

file_trans()

Optimal Model
File

optfile.c

Y

Optimal
Prarmeter
File

» readinp()

mostio.c

A

writeinp()

Non-marked
Files

inp2.c

\i

Stop

_ | Optimal result

file

Figure 4.3 Architecture of the new interface coupler — [AOS.

69




MOST user-defined subroutines

:

cusermf < cusercf > <cusermg> ( Cusercg > < Cuser OU.)
A J A J A

]

-

The OCP Package (Tseng 1987)

N

CTRLM

E -
s

y
CTRLCF

v
CTRLMG

(USERCF) CUSERMG) <USERCG> (USEROU)
I T (R

v
CTRLCG

CTRLPR

CTRLFT

ANALYS

PTCST

v

CTRLF

v

INGSOL

PREPRO

ANSDDM

ANSAVM

CTRLF

CTRLF

INGSOL

INGSOL

INGSOL DDMMG AVMMG DDMCG AVMCG
PREPRO INGSOL

ANSAVM

CTRLF

INGSOL

Figure 4.4 Structure chart of the OCP Solver.



The Structure of Module CTRLMF

CTRLPR

CTRLFT

ANALYS

CTRLMF

A\ 4

CTRLF

y

INGSOL

PREPRO

DDERKF

i

A

i

DIFSOL

TBFIT

TGVAL

SIMPSN

» DDEABM

DDEBDF

i

Figure 4.5 CTREMF module.

71




/ The Structure of Module CTRLCF

SIMPSN

» INGSOL
\ » PTCST
Figure 4.6 CTRLCF module.

72



The Structure of Module CTRLMG

CTRLMG

DDMMG

ANSDDM

DIFSOL

A

DDERKF

i

» DDEABM

AVMMG

CTRLF

A,

TBFIT
TGVAL

SIMPSN

— INGSOL

DGDZEN

ANSAVM

DIFSOL |«

i

DDEBDF

i

DDERKF

- » CIRLF

TBFIT
TGVAL

SIMPSN

» INGSOL

» DDEABM

DDEBDF

Ui

Figure 4.7 CTRMG module.

73




The Structure of Module CTRLCG \

SIMPSN

y

— DDMCG

INGSOL

DGDZEN

DDERKF

i

CTRLCG

ANSAVM

DIFSOL » DDEABM

J

i

TBEIT DDEBDF
“—> AVMCG |« » CIRLF
TGVAL
SIMPSN
» INGSOL

Figure 4.8 CTRCG module.

74



Parameter file
of MOST
y Y

Start

Given: Initial design,
lower & upper bounds,
and other parameters

Update design variables
pkth) = pk) 4 Q,(k) d®

A

Calculate the gradients of
cost and constraints
functions

A

design ?

Show results

A 4

| Stop |

cuserou

Figure 4.9 Connection architecture of MOST and OCP solver.

75




Parameter file of MOST I

Y

initial design
lower & upper bounds
and other parameters

cusermf

)
cusercf

~——

)
cusermg

~—

N

cusercg

~——

cuserou

Final Results I

The OCP Solver

CTRLPR

USERCF

USERCG

USEROU

User interface

Parameter files of
the OCP Solver
(fort.11)

([ Subroutines

FFN

GFN

HFN

Output file of the
OCP package
(fort.12)

Figure 4.10 User interfaces for MOST and the OCP solver.

76



AOCP

Initialization
Guess an initial P k=0 Discretization Module
Hessian matrix H"=Identity I "| Discretize the control variables
Time intervals: N
PO
A

CTRLMF Module
Update design variables | k=k+1 (1) Calculate the state variables
1 PED=pR 4 g Bgh | by solving the IVP with P%.

(2) Calculate the values of

performance indexes.

Update Hessian matrix H Jo PG
n Finite difference method
A 4
_ CTRLCF Module
Line search v Calculates the values of functional
Searching the step size and dynamic constraints.
a® Gradients of cost functions and
constraints
Jis 9,

)4

Check convergence .QP Sprmblem. .
W< o9 Searching the descent direction
[|d™] = € % 4O

Show results

Figure 4.11 Flowchart for the OCP solver.

77



1.2

0.0 1.0 2.0 3.0 4.0 5.0
Time(sec.)

Figure 4.12 Control and state trajectories for va# de Pol oscillator problem, case 1.
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Figure 4.13 Control and state‘trajectories for.van de Pol oscillator problem, case II.
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Figure 4.14 Control and state'trajectories of van de Pol oscillator problem, case II1.
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Figure 4.15 Schematic of the overhead crane system (Hu et al., 2002).
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Figure 4.16 State trajectories of the overhead crane system.
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CHAPTER 5
A COMPUTATIONAL SCHEME FOR SOLVING THE
DISCRETE-VALUED OPTIMAL CONTROL PROBLEM

5.1 Introduction

Time-optimal control problems have attracted the interest of researchers in the area of
optimal control because they often occur in practical applications. Thus a series of essential
results has been published concerning applications of Pontryagin’s maximum principle to the
time-optimal control of finite dimensional linear systems and low-order nonlinear systems.
However, in the case of state- and/or control-constrained high-order nonlinear systems,
solving the two-point boundary value problem that results from Pontryagin’s maximum
principle is difficult. Moreover, analytic solutions are impractical if the dimension of a system
exceeds three (Kirk, 1970). Thereforeyin tecent research, many numerical techniques have
been developed and adopted to solve timé-optimal control problems.

For a time-optimal control problem, oné of the most common types of control function is
the piecewise-constant function by. which a sequence of constant inputs is used to control a
given system with suitable switching times. Additionally, when the control is bounded, a very
commonly encountered type of piecewise-constant control is bang-bang, which switches
between the upper and lower bounds of the control input. When the controls are assumed to
be of the bang-bang type, the time-optimal control problem becomes one of determining the
switching times. Several methods for determining TOCP switching times have been
extensively studied in the literature (see, e.g., Kaya and Noakes, 1996; Bertrand and Epenoy,
2002; Simakov, 2002). However, in these methods, the number of switching times must be
known before their algorithms can be applied. In most practical cases, however, as pointed out
earlier, the number of switching times is unknown before the control problems are solved. To
overcome the numerical difficulties that arise during the process of finding the exact

switching points, Lee ef al. (1997) propose the control parameterization enhancing transform
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(CPET), which is also extended to deal with optimal discrete-valued control problems (Lee et
al., 1999) and applied to solve the sensor-scheduling problem (Lee et al., 2001).

In like manner, this dissertation focuses on developing a computational method to solve
discrete-valued optimal control problems. This method consists of two computational phases:
first, switching times are calculated using existing optimal control methods and second, the
resulting information is used to compute the discrete-valued control strategy. The proposed
algorithm, which integrates the existing optimal control solver with an enhanced
branch-and-bound method (Tseng et al., 1995), is implemented and applied to some example

systems, including that of the F-8 fighter aircraft.

5.2 Problem Formulations

5.2.1 Optimal Discrete-valued Control Problems

In many practical engineering applications, the control action is restricted to a set of
discrete values that forms a discrete-valued control problem. An optimal discrete-valued
control problem can be viewed asexactly determining the switching points of the optimal

discrete-valued control. The major difference between continuous and discrete-valued control

problems is the control function. For a piecewise-constant function ug: [0, tf) — U, where

U, is a finite set in R"™, if u, has a finite number of discontinuous or switching points, it is

referred to as an admissible control. Letting U, be the class of all such admissible controls, in
like manner to problem (P,), the optimal discrete-valued control problem may be stated

formally as follows: Given the dynamic system (2.1, 2.2), uq €U, must be found such that the

cost functional (performance index)

Jy =@, (b,x(t,)t, )+ jof Lo (b, (), x(1), 1) dt (5.1)

86



1s minimized subject to the constraint

J,=®, (b, x(t,).t,)
i=1. N, (5.2)

Ly I
+J'0 Li(b,ud(t),x(t),f)dt{so; i=N,+1,...,N,

and the following continuous inequality constraint on the function of the state and control:
v, (bu, (0, X(0,0) <0 5 j=N,nq V1[0, ]. (5.3)

It should be noted that, for a given ug € U,, the right hand side of Eq. (2.1) may be

discontinuous at the switching points of #,. Denoting these switching points as #,, t,,...,ty and
also defining #y and #y+; such that 0 = < #;< 1,<...< ty< ty+; = ¢, the solution x(¢) is then
obtained in a piecewise manner by successive integration over each time interval [z, 4], i =

0, 1, 2, ...,N. The resulting x(¢) is continuous and pieccewise differentiable on (0, #).

5.2.2 Mixed-Discrete Optimal Control Problems
Mixed-discrete control probléms that control functions are mixed with continuous and

discrete functions is considered to meet the generality. For a continuous control variable, any

piecewise continuous function u. from [0, #] into R™ may be taken as an admissible control.

For optimal discrete-valued control problems, a piecewise-constant function u,,

u, :(O,tf] — U,, may be taken as an admissible control, where Uq is a finite set in R".

Letting U be the class of all such admissible controls, then a mixed-discrete optimal control

problem may be stated formally as follows: Given the dynamical system (2.1, 2.2), u = [ u.’,

us' 1'e U must be found such that the cost functional (performance index)
Iy
Jy =@, (b,x(t,).t, )+ jo L, (b, u(t), x(t),t)dt (5.4)

1s minimized subject to the constraint
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J,=®,(b,x(t,),t,)

ty ZO; = gecernnnes ,N (5-5)
+ IO L, (b, u(t), x(t),t)dt <0

and the following continuous inequality constraint on the function of the state and control:

v, (B,u(t), X(1),t) <0, j = 1,.ecceerq vie[ot,]. (5.6)

5.2.3 Time-Optimal Control Problems

For a time-optimal control problem, the terminal time, #; is not fixed and is treated as a
design variable in b. The system govern equations described by Eq. (2.1) are expressed in
general first-order form. Equation (5.5) represents the mixed state and control constraints, and
the terminal conditions are treated as equality constraints in its first term. Then the class of
time optimal control problems can be stated formally in the following manner.

Subject to the system (2.1, 2.2) together with the final condition,
x(t,)=x,, (5.7)
control u € U must be found such that #is minimized, where xyis a given vector in R". For

convenience, this time-optimal control problem will be referred to as problem (TP) whose

cost functional is then #;. Clearly, the problem (TP) can be written as follows: Given the

dynamical system (2.1, 2.2), u € U must be found such that the cost functional

J, =j0’f dt=t,, (5.8)

is minimized subject to the constraint Eq.(5.5) and continuous inequality constraint Eq.(5.6).
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5.3 Mixed-Integer NLP Algorithm for Solving TOCP

Most discrete programming methods are based on the assumption that discontinuous
optimization problems are transformed into multiple continuous optimization subproblems to
take advantage of well-established continuous optimization algorithms. These continuous
optimization problems are solved by imposing constraints on the discreteness of the design
variables. The optimal discrete solution is taken from among the continuous solutions
obtained in the optimization sub-problems. However, the large number of discontinuous
design variables greatly increases the number of the continuous optimization subproblems.
Tseng et al. (1995) presented an enhanced branch-and-bound method for reducing the number
of executions of the continuous-optimization scheme by intelligently selecting the bounding
route. Because such an enhanced branch-and-bound method dramatically reduces the total
number of continuous optimization runs-executéd and speeds up its convergence (Tseng et al.,
1995), it is adopted herein and-integrated with the AOCP to develop a mixed integer NLP

algorithm for solving time-optimal control problems.

5.3.1 Integrating the AOCP and Enhanced Branch-and-Bound Method

The algorithm developed in this dissertation consists of three major processes:
branching, the AOCP, and bounding. Initially, all discrete-valued restrictions are relaxed and
the resulting continuous NLP problem is solved using the AOCP. If the solution of continuous
optimum design problem occurs when all discrete-valued variable values are in the discrete
set Ug, which is preset by the user to meet practical requirements, then an optimal solution is
determined and the procedure ends. Otherwise, the algorithm selects one of the

discrete-valued variables whose value is not in the discrete set Uq — for example, the j-th

design variable, P;, with value f’] — and branches on it.

Branching process: In the branching process, the original design domain is divided into
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three subdomains by two allowable discrete values, #; and #;.;, that are nearest to the
continuous optimum, as shown in Figure 5.1. Among the three subdomains, subdomain II,
included in the continuous solution but not in the feasible discontinuous solution, is dropped.
In the other two subdomains, called nodes, two new NLP problems are formed by adding

simple bounds, PJ <u, andf’j >u.,,, respectively, to the continuous NLP problems. One of

o
the two new NLP problems is selected and solved next. Many search methods based on tree
searching — including depth-first search, breadth-first search and best-first search — can be
applied to choose the next branching node. The branching process is repeated in each of the
subdomains until the feasible optimal solution is found in which all the discrete variables have
allowable discrete values. Obviously, the number of subdomains may grow exponentially so
that a great deal of computing time is required. Thus in the enhanced branch-and-bound
method (Tseng et al., 1995), multiple branching and unbalanced branching strategies have
been developed to improve the efficiency of the method.

Bounding process: In discrete optimization, the minimum cost is always greater than or

equal to the cost of the original regular optimal design that was originally branched. This fact
provides a guideline for when branching should be stopped. If the branching process yields a
feasible discontinuous solution, then the corresponding cost value can be considered a bound.
Any other subdomain that imposes a continuous minimum cost larger than this bound need
not be branched further. This bounding strategy can be used to select the branching route

intelligently and avoid the need for a complete search over all the branches.

5.3.2 Algorithm for Solving Discrete-valued Optimal Control Problems

In this dissertation, the AOCP algorithm proposed in Section 3.4.7 is used as the core
iterative routine of the enhanced branch-and-bound method. All candidates will be evaluated
and finally an optimal solution can be found. Here, symbol § defined in Eq. (3.11) is used to

represent the discretized control variable set and the P defined in Eq. (3.12) is the design
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variable vector. Assuming that the problem at least has one feasible solution, it can then be
proven that an optimal solution exists and can be found by the proposed method. The details
of the two-phase scheme algorithm are as follows and Figure 5.2 presents a schematic flow
chart of the algorithm for solving discrete-valued optimal control problems.
Algorithm: Combines AOCP and enhanced branch-and-bound methods
Initialization: Relax all discrete-valued restrictions and then place the resulting continuous
NLP problem on the branching tree.
Set the cost bound J,,,,, = ©.
while (there are pending nodes in the branching tree) do
1. Select an unexplored node from the branching tree.
2. Control discretization.
3. Repeat (for k-th AOCP iteration )
(1).Solve the initial valug-problem for state variable x™ of AOCP.
(2).Calculate the values of the'cost-funetion, Jy, and the constraints.
(3).Solve the QP¥ problem’ by-applyifig' the BEGS method to obtain the descent
direction d .
(4).if (QP¥ is feasible and convergent) then exit AOCP.
(5).Find the step size a” of the SQP method by using the line search method.
(6). Update the design variable vector: P**” = p®+ q® g®.
4. if (NLP is optimal) and (Jy<J,..x) then
if (S**" s feasible ) then
Update the current best point by setting the cost bound J,,,c = J.
Add this node to the feasible node matrix.
else

Evaluate the values of criteria for selecting the branch node.
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Choose a discrete-valued variable S;M ¢ U and branch it.

Add two new NLP problems into the branching tree.
Drop this node.
endif
else
Stop branching on this node.
endif

end while.

5.4 Two-Phase Scheme for Solving TOCP

The mixed integer NLP algorithm developed in this dissertation is one type of switching
time computation (STC) method. Most switching time computation methods (see, e.g., Kaya
and Noakes, 1996; Lucas and Kaya, 2001; Simakov ez al., 2002) assume that the structure of
the control is bang-bang and the number of switching times is known. Unfortunately, the
information on the switchings of several ‘practical time-optimal control problems is unknown
and hard to compute using analytical methods. Hence, to overcome this difficulty, this
dissertation proposes a two-phase Scheme that consists of the AOCP plus the mixed integer
NLP method. In Phase I, the AOCP is used to calculate the information on switchings with
rough time grids so that the information can be used in Phase II as the feasible initial design
of the mixed integer NLP method. This scheme is described briefly below.

Phase I: Find the information about the switching times and terminal time.

1. Solve the time-optimal control problem using continuous controls by following the
steps of the AOCP method proposed in Section 3.4.
2. Based on the numerical results, extract information about the switching times and

terminal time, ¢
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Phase I1: Calculate the exact solutions

3. Based on the information about switching times obtained in Phase I, treat the
switchings as design variables and add them into the time grid vector T defined in Eq.
(3.10). It should be noted that each interval between the upper and lower bounds on
each of those design variables must include one switching.

4. Insert the terminal time, #, into the design variable vector P (see Eq. 3.12).

5. Discretize each control variable into the number of switchings plus one. Then the
discrete control vector, S, defined in Eq. (3.11) can be added to the design variable
vector P and the corresponding upper and lower bounds be limited by the original
bounds of the controls.

6. Solve the problem by applying the mixed integer NLP method, and then find the
optimal discrete-type controlitrajectories.

A third-order system shown insSection 5.5.1-1s used to demonstrate the processes of this

numerical scheme.

5.5 Hlustrative Examples

The numerical results for the following examples are obtained on an Intel Celeron 1.2
GHz computer with 512 MB of RAM memory. The AOCP is coded in FORTRAN, and C
language is used to implement the enhanced branch-and-bound method. The Visual C++ 5.0
and Visual FORTRAN 5.0 installed in a Windows 2000 operating system are adopted to
compile the corresponding programs. The total CPU times for solving the F-8 fighter craft

problem in Phase I and Phase II are 3.605 and 1.782 seconds, respectively.

5.5.1 Third-Order System
The following system of differential equations is a model of the third-order system

dynamics taken from Wu (1999).
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X, =X, (5.9)
X, = X;, (5.10)
%, =—10x, +10u . (5.11)

The problem here is to find the control || < 10 in order to bring the system from the initial
state [-10, 0, 0]" to the final state [0, 0, 0]" in minimum time.

First, this problem is solved directly by the mixed integer NLP method. Assuming four
switching times (7, T, T3, T4) and five control arcs have values in the discrete set, Ug: {-10,
10}, the terminal time, #; is treated as a design variable, so the design variable vector P can be
expressed as [T, T», T3, T4, ty, Uas, Uaz, Uaz, Ua, Ud5]T. Most notably, the final conditions of
the state variables are transferred to the equality constraints. Thus, the TOCP problem
becomes one of determining the switching tithes. Figure 5.3(a) presents the continuous
solution obtained by using the AOCP-and the discrete solution determined by applying the
mixed integer NLP method proposed herein. The results indicate that the control trajectory
determined by the mixed integer NLP. method is of the bang-bang type and the solution
consistent with the results obtained by Wu (1999).

As stated in Section 5.4, several assumptions must be made when the mixed integer NLP
method is applied to solving TOCP directly. Unfortunately, these assumptions cannot be
guaranteed to hold in practical cases. Consequently, the two-phase scheme proposed in this
dissertation is needed. For illustration, the third-order system is again solved using this
two-phase scheme. In Phase I, the two switching times are found to be [0.330, 0.725]" and the
terminal time #r1s 0.7864. In the first phase, these switching data need not be accurate because
they are only used to help users decide on the number of switching times, the control arcs and
their corresponding boundaries. Thus, in Phase I, the design variable vector P is re-formed as
[T1, T2, tr, Ui, Uao, Ud3]T; the numerical result obtained by applying the mixed integer NLP

method is as presented in Figure 5.3(b). In Phase 11, the switching times of the discrete control

94



input are [0.323, 0.713]", and the terminal time tris 0.7813 seconds. The control trajectory

also agrees with that obtained by Wu (1999).

5.5.2 Fourth-Order Systems: A Flexible Mechanism
A flexible mechanism was proposed and solved by Wu (1999). The OCP

formulation of this problem is to minimize

Jy=t, (5.12)
subject to
xl(t):x2 9
) k u
Xy = _;(xl —x3)+;,
, ‘ 1 (5.13)
Xy =X, ,
x, =—(x, —x;).
m,

control constraints
¢ =|u()| <M (5.14)
with boundary conditions x'(0)=[0, 0, 0, 0]" and xT(sz) =[1, o, 1, o]"

With admissible control formulation, the control variables are converted into design
variables and the control constraints are treated as the dynamic constraint. In this dissertation,
the system is solved by the OCP solver with the following parameters: k£ = 1.0 N-m-rad”, m; =
m,= 1.0 kg-m?, and M = 1.0 N-m. The numbers of time-grid points for the control function
(NGP) are selected as 5, 11 and 51 to study the effect of coarser or finer mesh. Two initial
guesses, u (0) = 0.0 and u(0) = 1.0, for the control function with three piecewise interpolation
schemes — zero order, first order, and cubic spline — are used in this problem. The hybrid
method that combines the DDM and AVM for design sensitivity analysis is used to calculate
the design sensitivity coefficients.

The optimal solution for this problem is given in Table 5.2 and the trajectories of state
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variables are shown in Figure 5.4 and Figure 5.5 shows the comparison of control trajectories
between Phase I and Phase II. All 18 test runs are successfully solved with the proposed
method, but the runs with a small number of control grid points (NGP) give higher optimum
values and less CPU time. The terminal time, #; and the trajectories obtained in this work
agree with the results, #r= 4.3, obtained by Wu (1999). The numerical results also show that
the proposed method has the capability to deal with the high-order time-optimal control

problem.

5.5.3 F-8 Fighter Aircraft

The F-8 fighter aircraft has been considered in several pioneering studies (e.g., Kaya and
Noakes, 1996; Banks and Mhana, 1992; Simakov et al., 2002) and has become a standard for
testing various optimal control strategiés." A-nonlinear dynamic model of the F-8 fighter
aircraft is considered below. The model is represented in state space by the following

differential equations:

X, =—0.877x, + x; — 0.088x,x, + 0.47x7=0.019x; — x/x, +3.846x;

(5.15)
—0.215u +0.28xu —0.47x,u” +0.63u’
X, =X, (5.16)
%, =—4.208x, —0.396x, —0.47x; —3.564x] —20.967u
(5.17)

+6.265x"u +46xu” +61.4u°

where x; is the angle of attack in radians, x; is the pitch angle, x3 is the pitch rate and the
control input u represents the tail deflection angle. For convenience of comparison, the

standard settings (Kaya and Noakes, 1996; Lee et al., 1997) are used. A control |u| < 0.05236

must be found that brings the system from its initial state [26.77[/ 180, O, O]T to the final
state [O, 0, O]T in minimum time.
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When the two-phase scheme is applied, as described in Section 5.4, the switching times
computed in Phase I are 0.115, 2.067, 2.239, 4.995, and 5.282, and the terminal time is ¢, =
5.7417. These switching data are used to set the design variables and their corresponding
bounds, and then the problem is solved by the mixed integer NLP method. Finally, the
switching times for the discrete control input are 0.098, 2.027, 2.199, 4.944, and 5.265, and
the terminal time # is 5.74216. Figure 5.6 shows the comparison of the controls between
Phase I and Phase II, while Figure 5.7 shows the trajectories of the states and the control of
Phase I and Phase II. This example is also solved by Kaya and Noakes (1996) using the
switching time computation method and by Lee et al. (1997) using the Control
Parameterization Enhancing Transform (CPET) method. Table 5.1 shows the terminal time #,
switching times and the accuracy of terminal constraints computed by various methods for
this problem. According to the numerical results;. the two-phase scheme provides a better

solution, and the accuracy of the-terminal constraints'is acceptable.

5.6 Summary

This chapter has proposed a novel numerical method for solving time-optimal control
problems with discrete-type control inputs that include the bang-bang type most commonly
encountered when the control is bounded. This two-phase computational scheme for finding a
discrete optimal control for time-optimal control problems is novel because its discrete
control can be more easily implemented than continuous control in practical applications. A
simple example, a third-order system, was presented to demonstrate the usage of the proposed
scheme. A flexible mechanism control problem and an F-8 fighter aircraft control problem
were also considered and solved by application of the proposed scheme. Numerical results
were obtained efficiently and accurately and provide evidence that the two-phase scheme
constitutes a viable method for solving time-optimal control problems with discrete-valued

controls.
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Table 5.1 Results of various methods for the F-8 fight aircraft problem.

Accuracy of

Method ty Switching Times Terminal
Constraints

STC

6.3867 0.0761, 5.4672, 5.8241, 6.3867 <107
(Kaya and Noakes, 1996)

CPET

6.0350 2.188,2.352,5.233, 5.563 <101
(Lee et al., 1997)

Two-phase scheme ~ 5.7422  0.098, 2.027, 2.199, 4.944, 5.265 <101
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Table 5.2 Optimal results for the fourth-order system.

*

u(t) NGP  INTP NIT Jy Conv.Par. CPU
0.0 5 Zero 5 433196 1.04E-05 0.131
First 5 4.86764 5.69E-06 0.07
Cubic 5 4.90565 4.67E-07 0.06
11 Zero 15 4.30699 5.71E-09 1.382
First 7 4.28066 5.65E-06 0.35
Cubic 10 430041 1.52E-08 0.34
51 Zero 50  4.26239 1.38E-07 43.803
First 44 422087 3.50E-07 18.596
Cubic 40 422187 1.10E-08 12.659
1.0 5 Zero 6 433197 6.16E-07 0.12
First 7 4.86765 2.25E-07 0.091
Cubic 9  4.90560 3.72E-05 0.12
11 Zero 7 436249 3.51E-08 0.651
First 8  4.28064 1.09E-05 0.43
Cubic 10 4.30041 3.50E-07 0.39
51 Zero 49 426229 7.21E-08 42.872
First 42 422087 2.20E-06 17.315
Cubic 38 ..4.22187 2.88E-06 11.847
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Figure 5.1 Conceptual layout of the branching process.
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1. Relax all discrete-valued restrictions
2. Place the resulting continuous NLP
problem on the branching tree.
3. Set the cost bound J,,,, = ®©

Is feasible ?
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Figure 5.2 Flow chart of the algorithm for solving discrete-valued optimal control problems.
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(b) Phase I vs. Phase II.

Figure 5.3 Control trajectories for the third-order system.
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Figure 5.4 State trajectories for the fourth-order system (Phase II).

103



Control input (N-m)

1.4

1.2

1.0

0.8 -
0.6 -
04
0.2
0.0 -
-0.2

-04
-0.6 [
-0.8 [
-1.0
-1.2

_____ Phase I (¢,= 4.2398)

Phase I1 (t4.21794)

0.0

0.5

Figure 5.5 Control trajectories for the fourth-order system.
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Figure 5.7 Trajectories of the states and control input for the F-8 fighter aircraft.
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CHAPTER 6
ENGINEERING APPLICATIONS

6.1 Flight Level Control Problem

The flight level tracking that plays an important role in autopilot systems has received
considerable attentions from many researchers (Lygeros, 2003; Lygeros et al., 1999; Cook,
1997; Tomlin et al., 1996; Etkin and Redi, 1996). A commercial aircraft‘s cruising altitude is
typically assigned a flight level by air traffic control (ATC). To ensure aircraft separation,
each aircraft has its own flight level separated by a few hundred feet; however, changes in
flight level do happen occasionally and must be cleared by ATC. At all other times, the
aircraft crew must ensure that they remain within the allowed bounds of their assigned level.
At the same time, they must also maintain limits on factors such as speed, flight path angle,
and acceleration imposed by limitations of airframe and engine and passenger comfort
requirements or to avoid dangerous.situations-such as aerodynamic stall. In this paper, the
flight level tracking problem is formulatéd-into-an optimal control problem. For safety reasons,
the speed of the aircraft and the flight-path angle must be kept within a safe “aerodynamic
envelope” (Tomlin ef al., 1996) that can be translated into the dynamic constraints of the
optimal control problem. A flight level tracking problem and a minimum time problem are

outlined in the following sections and then solved using the proposed solver.

6.1.1 Aircraft Model

Much ATC research (e.g., Cook, 1997; Etkin and Redi, 1996) has applied a point mass
model to describe aircraft motion, considering only aircraft movement in a lateral direction. In
Figure 6.1, three coordinate frames are used to describe aircraft motion: X,-Y, denotes the
ground frame; X,-Yy, the body frame; and Xy-Yy, the wind frame. In addition, €, y, and o
denote the rotation angle between the frames; V<R represents the speed of the aircraft,
which is aligned with the positive Xy, direction; and # is the aircraft’s altitude.
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The equations of the motion can be derived from the force balance relationships:

mV =T cosa—D—mgsiny, 6.1

and mVy=L+Tsina—mgcosy,
where T is the thrust exerted by the engine, D is the aerodynamic drag, and L is the
aerodynamic lift. By applying basic aerodynamics, the lift (L) and drag (D) can be

approximated by

2
L:CLST'OV(1+ca)zaLV2(1+ca),

(6.2)

2
and chDs—szaDVz,
2

where Cp, Cp, and ¢ are dimension-less lift and drag coefficients, s is the wing surface area
and p is the air density.

According to the admissible optimal control formulation described in Section 3.4, the air
model can be formulated by a thiee-state model with a state variable vector x(¢) = [x1, x2, x3]"
= [V, 7 h]" and a control input vector u(2) = fui, us]" = [T, 0]". By approximating « with a

small angle, the equations of the motion (system equations) can be written as

a : 1
——L x, —gsinx, — 0
m m
. la CoS X a u
x=|-Ltx(-cx,)-g 21410 “Lx | (6.3)
m X, m u,
X, sin x, 0 0

This model, proposed by Lygeros ef al. (1999) and adopted here, extends the three dimensions
of an aerodynamic envelope protection problem. Taking into the consideration of safety
conditions, the aircraft speed and flight path angle are bounded in a rectangular limitation
called a “safe aerodynamic envelop.” Following Tomlin et al. (1996), Lygeros (2003)
proposed a simplified aerodynamic envelope that is adopted in this paper and translated into
the following dynamic constraints:
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V

min
]/mjn S x2 S 7/max o (64)
h. <x,<h

max ?

<x, <V

max °

Based on the NLP formulation described in Section 2.2, these constraints can be treated as
dynamic constraints and rewritten as follows:

¢:—x+V. <0, ¢:x-V <0,

¢3:_‘x2+7/minso’ ¢4:x2_7/max£05 (65)
g :—x;+h . <0, @:x;—h_ <0,

To illustrate the capabilities of the proposed method, the flight level tracking problem and the
minimum time problem have been chosen.
Case I: Flight level tracking problem

This tracking problem is to find thé controls that will maintain the system state x(¢) as
close as possible to the desired state #(7) in the interval [7), #/]. The performance index for the

tracking problem can be written as
Jy=| @y -r@)|, dr 6.6)
o Jg o(1) '

where Q(?) is a real symmetric n x n matrix that is positive semi-definite for all ¢ € [to, tf].

The flight level tracking problem involves keeping the aircraft as near as possible to the

desired level and aircraft speed. Therefore, the performance index can be represented as

J,=— [(xl —xld)2 +(x2—x2d)2 +(x3 —de)szt (6.7)

where x4 is the desired aircraft speed, x»4 is desired flight path angle and x3q4 is the assigned
altitude.
Case II: Minimum time problem

The minimum time problem is to transfer a system from an arbitrary initial state x(¢y) = xo

to a specified target set S; in minimum time. The performance index for the minimum time
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problem can be written as

t
=" ar (6.8)

fy

J,=t,—t

where #/1s the first instant of time when x(#) and St intersect. In some emergencies, the aircraft

crew is asked to change their level as soon as possible.

6.1.2 Numerical examples

The following parameters, outlined here for case I, are used in both cases:

ap= 65.3 Kg/m, ap =3.18 Kg/m, m=160x10° Kg,
2=9.81 m/s’, Ormin = -20°, Yimin = -20,

c=6, Ornax = 25°, Vmax = 25,

Tinin = 60x10° N, Tinin = 120%%10° N, Vinin = 92 m/s,
Vinax = 170 m/s, i = -150'm, Bmax = 150 m

The initial values of the state-variables-are
xo =100, 20, -120]" (6.9)
and the purpose of this problem is to find a suitable control for maintaining the flight level
and keeping the aircraft altitude at the assigned level. Thus the desired states are set with
following values
(1) =[150, 0, 0]". (6.10)
In addition to the dynamic constraints proposed in Eq. (6.5), the control inputs are also limited

within the following bounds:

1. <u<T

max

6.11
and 0, <u,<06_ . (o10)

Substituting these parameters into Eqgs. (6.3) and (6.7), the flight tracking problem is
solved by the OCP solver. The numerical results are shown in Figure 6.2. As shown in Figure
6.2(a), all states meet the constraints, and the flight level and aircraft speed return to the
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desired states. Table 6.1 shows the user subroutines for this case. Obviously, the OCP solver
provides an easily usable tool for solving dynamic optimization problems.
Case II: Minimum time problem

In this problem, the aircraft crew is asked to increase their altitude in minimum time. The
initial and final altitude are 4yp = 0 m and /= 500 m, respectively. All constraints imposed on
case I are also imposed on this case. The initial state xo = [100, O, O]T, the final time, #;
obtained by using the AOCP, is 73.98 seconds, and the final altitude is 499.928 m. The control
histories shown in Figure 6.3(a) and (b) give the state trajectories, which, as the figure
illustrates, all fall within the safe ‘“aerodynamic envelope” (i.e., meet the dynamic

constraints).

6.2 Vehicle Suspension Design Preblem

Many studies have treated the vehicle:as @ dynamic system, starting with the basic
properties of vehicle suspension, the stiffness-and damping coefficients (Gillespie, 1992).
Thus the design of vehicle suspension systems has received much attention in the automotive
industry. Numerous researchers have examined semi-active and active vibration isolation for
suspension systems. Yet, despite recent advances in active and semi-active suspension
technology, vehicles with passive suspension systems still dominate current car production.
Tools must therefore be made available to vehicle designers for optimizing passive suspension
systems.

The model described here is a half-car model that allows independent vertical inputs to the
front and rear wheels and can thus simulate pitching and bouncing motions due to road inputs.
Two longitudinal forces, which can be positive to represent traction or negative to represent
braking, are applied to the front and rear axles to simulate the effects of vehicle acceleration
or deceleration. Cases of braking and accelerating while moving straight ahead are used to

validate the longitudinal vehicle dynamics.
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An optimal design problem in relation to vehicle suspension is considered to maximize
vehicle ride performance, which may be evaluated according to passenger discomfort. The
response to driver’s seat to acceleration is commonly used as the objective of suspension
design. Three road profiles that excite pitch and bounce motions at a constant vehicle speed
are used to calculate the optimal suspension parameters. In this optimal design problem, the
objective is to minimize the extreme acceleration of the driver’s seat under a number of
constraints on the dynamic response and the design parameters. The optimal design of a
vehicle suspension system can be applied in diverse fields of research, including traction force
control, speed control, braking system design, to name a few. In this dissertation, an
emergency stop — a special case of vehicle speed control problem — is treated as a

time-optimal control problem and solved by the proposed AOCP method.

6.2.1 Derivation of the Vehicle Model
Half-car model

Although the quarter-car model has been commonly used in assessing vehicle ride
performance, it does not fully represent the rigid body motions that a motor vehicle may
exhibit. For example, the quarter-car model disregards pitching motions, which may be
important, particularly when the car travels over obstructions like road bumps and potholes.
Moreover, the quarter-car model is a multi-input system that responds with both pitch motions
and vertical bounce because of the longitudinal distance between the axles. These pitch and
bounce motions must be understood because they provide useful information on vertical and
longitudinal vibrations. As a result of these quarter-car limitations, half-car and full-car
models are used in several studies on suspension. Figure 6.4 depicts a nonlinear half-car
model with six degrees of freedom, modified from the model of Haug and Arora (1979). Two
additional longitudinal forces, traction or braking forces, are applied to the axles, allowing the

vehicle to be accelerated or decelerated. Shock absorbers are assumed to be rigidly joined to
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the chassis without displacement or deflection in the longitudinal direction. Based on this
assumption, the longitudinal forces only change the speed and pitch angle of vehicle. The

governing equations for the vehicle can be derived from Lagrange’s equations

d|oT| 0T oV )
—|—|-——+—-0=0,i=1,...,6 .
e g e o

where T and V represent the system’s kinetic and potential energy, and Q; represent

nonconservative generalized forces. In Figure 6.4, the kinetic energy of the system can be

expressed as

1, 1 5, 1 5, 1 L 1 5, 1
T :5m1212 +Em2222 +Em3z32 +Em4zj +Em5252 +5mézé (6.13)

The potential energy V of the conservative forces is

1 L 1 L
4 :Ekl(zz +EZ3 ~z)’ +Ek2(z4 % _323)2

1 2L )
+—ky(zs—z, +—z,) =k, (z, — R (2))’ (6.14)
2 3 2
1
+Ek5 (Zs - Rz (Zs ))2

and the virtual work done by the hionconservative forces is
. L. . 5
ow=—c/(z, JrEZ3 -z, )0z, +E523 +0z,))
. . L. L
—0,(2, %, _323)(524 -0z, _§523)
2L 2L

—ey(Es =5y + T 582 =82, + 267 (6.15)
—c,(2,— RSz, —c5(2,— R,)0z, +F,0z, + F,Hz,

=00,
i=1

where F; = F¢ + F, is the total traction/braking force imposed on the vehicle. From Eq. (6.12),

the system equations describing the motion of half-vehicle model can be derived as follows

. . . L . L
mz, + ¢z, — ¢z, —60123 +kz —kz, _Eklz3 =0, (6.16)
N . . L L 2L
m,z, + ¢z, + z,(c, + ¢, +c3)+z3(Ec1 +§c2 —?c3)
(6.17)

) ) L L 2L
—C,Z, —Cyzs —kyz, + z,(k, + k, +k3)+z3(Ek1 +§k2 —?k3)

113



L 2L I r A1’
Iz, 12clzl+zz(12cl+3cz ?03)+z3(mcl+ 5 c, 5 )
L . 2L . L L L 2L
—§0224+?C3ZS _Eklzl+zz(akl+§k2_?k3) (618)
r r AL L 2L
+Z3(mk] +?k2 +Tk3)—§k224 +?k225 :F;H,
m,z, +c,z —£cz' +z,(c,+c,)—k,z —£kz +z,(k, +k,)
4<4 242 323 4\*¥2 4 242 323 4\"2 4 (619)
=k,R (z;)+c,R(z,),
2L 2L
mz,—c,z,+—cZ, +z(c;+c)—kyz, +—kyz, + z. (k, + k)
5<5 3<2 333 S5\¥3 5 3<2 333 S5\V3 5 (620)
= kiR, (z) +csR,(24),
and (m,+m,+m,+my)zZ, =F,. (6.21)

where m; represents the masses of the seat and driver, the main body, and the wheel and axles,
respectively. The parameters k; and ¢; represent the known stiffness and damping coefficients
of the suspension system. The.moment of main body inertia about its center of mass is
denoted as I, while H is the vertical distance from the center of gravity (C.G.) to the ground,
and L is the total length of the “wheel base. ‘The functions R;(y) and Ry(y) represent
displacements of the front and rear wheels, caused by undulations of the road surface on

which the vehicle is traveling. Once z,, =z,,i=1...,6 is defined, the vehicle system can be

transformed into a state-space equation of the form
xX=Ax+Bu+W (6.22)

where x(¢) = [z1, 22, z3, ..., zlz]T represents the vector of state variables and the nonzero

elements of matrices A, B and W are given as follows:
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A, =1 Ay =1
4, =1 Agp, =1
A, =k/m A, ==k /m,
A, ==c/m, A,y =Lk [(12m,)
A, g =Le, [(12m)) A =c¢ [m,
Ag’z=—(kl+k2+/(73)/m2 A&l=kl/m2
A, =k, /m, Ay =—L(k, + 4k, —8ky) [(12m, )
Ag; =cym, A5 = ks/mz
Ay =—L(c, +4c, —8c;)/(12m,) Ay =—(c,+c,+¢;)/m,
Ay =¢;/m, Ao =, /m,
Ay, =—L(k, +4k, —8k;)/(121) Ay, =Lk [(121)
Ay, =Lk, /(31) Ay, ==L (k, +16k, + 64k,) /(1441
Ay, =Le /(121) Ay =—2Lk, [(31)
Ayy =—(c, +16c, +64c,)[* [(1441) Ayg =—(c,+4c,—8¢c;)L/(121)
Ay =—2Le; [(31) Ayro=Le, [(31)
Ay =Lk, /(3m,) Ay, =ky [m,
Aog=c,/m, Aoy =—(ky+k,)/m,
Ao =—(c, +¢,)/m, Ao =Le,[(3m,)
Ay =—2Lk; /(3my) Ay, =k [m;
Ay = cy/m; A, s :—(k3+k5)/m5
Ay = —(03 + ¢ )/m5 A= —ZLCS/(SmS)
By =(m +my+m, +m)H /I By, =1/(m, +m, +m, +my)
W, = [k4R1 (¥)+cR, (y)]/m4 W, = [kSR2 (¥)+csR, (y)]/m5

For safety and comfort, six dynamic constraints are imposed on the system, whose

constraint equations may be written as

Z(0)|<6, 0<r<t, (6.23)
L
z,(t) +Ez3 D-z®)|<b,, 0<1<t, (6.24)
L < <r<
24(t)—zz(t)—§z3(t) <6, 0<r<t, (6.25)
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2L
2(0) -2+ 50 <6, 0<1<y, (6.26)

|z,()-R (1| <6, 0<t<t, (6.27)
|z,(1) - R, ()| < 6,, 0<t<t, (6.28)
2, (8) SVgp» 0511, (6.29)

where 6, to 6 are the maximum allowable displacements and vyyjow 1S the maximum allowable
speed.
Road surface displacement function

Because the dynamic response depends strongly on the vertical displacement history of
the wheels on the road surface, the input road conditions are very important. Most data used
in establishing the ride comfort criteria were .obtained using sinusoidal inputs. Thus the road
surface displacement function plotted. in Figure 6.5 1s defined as a sinusoidal undulation with
amplitude xp and variable half-wavelength /i (Haug and Arora, 1979). The front tire
displacement v(y) at position y1s thus defined as

X, {l—cos”(y;—yil)}, Y <y<y, i is odd

i

Wy)= (6.30)

il ) )
X, {1+cosm}, Y7 <Y<y, i is even

where y is a coordinate measured along the road and )’ = Zil_zl [, . The vertical displacement

function for the front wheel can therefore be defined as

V(y) 0<y<y,

6.31
0, otherwise ( )

Rl()’)={

where y, is the final position of the road undulation. The vertical displacement of the rear

wheel has the same value as that of the front wheel but with a wheelbase lag. Therefore,

R,(y)=R(y-1) (6.32)
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where Ri(y) is defined in Eq. (6.31).

6.2.2 Numerical Examples

This paper uses the numerical data from Haug and Arora (1979) to validate the model
specified in Section 6.2.1. The following parameters in the vehicle system equations are fixed
during the calculations; m;g = 290 1b, myg = 4500 Ib, msg = msg = 96.6 1b, I = 41,000
lb-in-secz, H=201n, L =120 in, k4 = ks = 1500 Ib / in, vayow = 1056 in / sec (60 mph), and ¢,
= c¢5 =5 lb-sec / in. The coefficients of the suspension system are selected as design variables,
b = ki, ks, k3, ¢y, c2, 03]T. The lower and upper bounds on b are [50, 200, 200, 2, 5, 5]T and
[500, 1000, 1000, 50, 80, 80]T, respectively. The maximum allowable values for the state
variable constraints in Egs. (6.23) — (6.29) are selected to be [400, 2, 5, 5, 2, 2, 1056]". The
units of z1, z,, z4, Zs and zg are inches andsthose, of z3 are radians.
Model validation

The physical phenomenon of rigid body motion can be used to confirm the correctness of
the vehicle model. Therefore, cases of braking and accelerating while traveling straight ahead
are considered here to validate the longitudinal vehicle dynamics. For convenience of
observation, the vehicle is assumed to travel along a straight path such that R;(y) = Ra(y) = 0.
In cases of acceleration, the control problem is to determine a feasible acceleration trajectory
along which a vehicle with various initial speeds can arrive at a destination in minimal time.

Hence, one additional terminal constraint is imposed:
z(t;) =y, (6.33)
where y; is the destination. Similarly, one additional terminal constraint is included in cases of

braking
z,(t,)=0 (6.34)

All the acceleration and braking test cases are transformed into time-optimal control
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problems and solved by applying the proposed NLP method. Figure 6.6 and Figure 6.7 show
the velocity trajectories of the vehicle with various starting speeds. As Figure 6.6 illustrates,
the vehicle accelerates at the maximum allowable acceleration until the speed constraint
defined in Eq. (6.29) becomes pertinent, from which point the speed is maintained. In contrast
to the cases of acceleration, the vehicle decelerates with maximal allowable deceleration until
it stops. Figure 6.8 shows the driver’s seat acceleration trajectory for the case of
straight-ahead braking. According to these results, the vehicle motion is consistent with the
motion of a rigid body, meaning that the longitudinal vehicle dynamics of the proposed model
are validated.
Optimal design of the vehicle suspension system

The vertical displacement functions and system equations specified in Section 3 can be
used to define an optimal suspension design problem. The driver is to be made as comfortable
as possible over a range of road conditions and-traveling speeds. Thus, the design objective is
to minimize the maximum absolute acceleration-of the driver’s seat by adjusting the vehicular
suspension properties subject to the constraints that certain relative displacements do not

exceed imposed limits. The objective function is therefore

J, = max |21(t)| (6.35)

1e[0,t,]
where Z (¢) 1s the acceleration of the driver’s seat under the road conditions R;(y) and Ra(y)

as defined by Eqgs. (6.31) and (6.32).

Two design cases considered by Haug and Arora (1979) are used here to examine the
correctness of the proposed method. Figure 6.9 represents the road displacement profiles in
the test cases. In case 1, the road surface profile includes a cavity. Case 2 involves two road
displacement profiles, presented in Figure 6.9(b) and (c). The speed of the vehicle in case 1 is
450 in/sec and that in case 2 is 960 in/sec. Table 6.2 gives the optimal solutions. A comparison

with the results present in the research sources (Hsieh and Arora, 1984; Haug and Arora, 1979)
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shows that the results obtained by the proposed method are quite accurate.
Vehicle speed control problem

In most emergency situations, drivers must stop the vehicle quickly and safely. Changing
the speed of the vehicle according to the conditions of the road and the distance from the
current position to the site of accident is a vehicle speed control problem that the vehicle
model and system equations derived in Section 3 can be used to solve. In this case, the initial
speed of the vehicle is 880 in / sec (50 mph) and the road surface profile is as plotted in
Figure 6.10. According to the definition in Section 2.2, the emergency braking problem is
transformed into a time-optimal control problem that is then solved using the proposed NLP
method. The minimum time, # = 3.4 seconds, and the terminal displacement, zs = 1585.7
inches, are obtained using the OCP solver. Figure 6.11 shows the trajectories of the vehicle
speed and acceleration. Figure 6.12 plots the trajectories of the acceleration and pitch angle of
the passenger seat, which are of interest to vehicle designers. The solid bold curves at the
bottom of Figure 6.11 and Figure 16.12 represent  the corresponding road profile. The
numerical results indicate that all the constraints are satisfied and the optimal control law that

solves the emergency braking problem is determined.

6.3 Summary

In this chapter, two practical applications, the flight level control problem and the vehicle
suspension design problem — both highly nonlinear optimal control problems — have been
formulated following the procedure suggested in this dissertation and solved by the proposed
OCP solver. In the case of the flight level control problem, two common types of optimal
control problem, the tracking problem and the minimum time problem, were derived to
simulate practical situations. The vehicle suspension design problem provided a useful
example of dynamic system design. After the problem has been formulated and the proper

constraints imposed, users can solve their dynamic optimization problems by applying the
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proposed method.

Because the proposed solver provides a convenient tool for solving dynamic optimization
problems, proper modeling and formulating the physical problem become the major decisive
factors in whether the solution is meaningful or not. Moreover, the constraints must meet
actual environmental conditions or the solution will make no sense. Overconstraining the
problem will considerably increase the computational efforts and make obtaining the solution
harder. In contrast, loosely constraining the problem will provide no practically applicable

solution.
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Table 6.1 User subroutines for the flight level tracking problem.

[[~=====- Program parameters

//B: Discrete design parameters of design variable vector. (INPUT)

//'U: Admissible control function vector. (INPUT)

// Z: State variable vector. (INPUT)

/I 'T: Given time grid point. (INPUT)

// G: First term of performance index or functional constraint or

/l dynamic constraint. (OUTPUT)

// NV: Number of design variables for optimizer (INPUT)

// NU: Number of control functions. (INPUT)

// NEQ: Number of state equations (INPUT)

// N: Index of current number of function evaluation. (INPUT)

//

// FFN()

// Routine to calculate the integral term of the performance index

// or functional constraint

void ffn(double *B, double *U, double *Z, double *T, double *F,
int NV, int NU, int NEQ, int N, int NBJ)

{

if (N==0)

*F =0.5*((Z[0]-150.0)*(Z[0]-150,0)) +:(Z[.1 ]*P1/180.0)
*(Z[1] * P1/180.0) + (Z|2)*Z]2));
else
*F=0.0;

}
// GFN()

// Routine to calculate the first term of the performance index or

// functional constraint or dynamic constraint

void gfn(double *B, double *U, double *Z, double *T, double *G,
int NV, int NU, int NEQ, int N, int NBJ)

{
switch (N)
{
case 0:
*G=0.0; Dbreak;
case 1:
*G=-1*Z[0] +92.0; break;
case 2:
*G =Z[0] - 170.0; break;
case 3:
*G=-1*7[1]-20.0; break;
case 4:
*G =Z[1] - 25.0; break;
case 5:
*G=-1*7Z[2]-150.0; break;
case 6:

*G =Z7Z[2]-150.0; break;
s
}
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Table 6.1 (cont.) User subroutines for the flight level tracking problem.

// HFN()

//Routine to calculate the state trajectory.

void hfn(double *B, double *U, double *Z, double *DZ, double *T,
int NV, int NU, int NEQ )

{

DZ[0] = -1*((aD*Z[0]*Z[0]/m) + (g*sin(Z[1]*P1/180.0))) + U[0]
*10000 / m;

DZ[1] = (aL*Z[0]*(1-c*Z[1])/m) - (g*cos(Z[1]*P1/180.0)/Z[0]) +

al.*c*Z[0]*U[1])/m;

DZ[2] = Z[0]*sin(Z[1]*P1/180.0);

}

// ZOFN()

// Routine to calculate the initial state vector.

void zOfn(double *B, double *ZINT, int NV, int NEQ )

{
ZINT[0] = 100.0;

ZINT[1] = 20.0;
ZINT[2] = -120.0;

}
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Table 6.2 Optimal solutions for vehicle suspension.

(a) Case 1

Haug and Arora (1979) Hsieh and Arora (1984) Proposed Method
ki 50.00 50.00 50.00
k> 200.00 204.10 200.00
ks 241.90 293.90 200.00
i 12.89 30.87 39.96
) 77.52 76.94 77.35
c3 80.00 80.00 80.00
Cost 257.40 255.80 254.00
(b) Case 2

Haug and Arora (1979) Broposed Method
ki 50.00 191.90
k> 200.00 200.00
ks 200.00 200.00
cl 8.93 8.52
) 45.92 25.24
3 37.81 29.16
Cost 125.50 125.60
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Figure 6.2 Numerical results for the tracking problem.
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Figure 6.3 Trajectories for the minimum time problem.
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Figure 6.7 Vehicle speed histories for straight-ahead braking.
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CHAPTER 7
CONCLUSIONS AND FUTURE STUDY

7.1 Concluding Remarks

This study has introduced and compared two typical methods — the indirect and direct
approaches — usually used to solve optimal control problems. Because most of practical
control problems are described by strongly nonlinear differential equations that are difficult to
solve by indirect methods, direct methods have been widely studied in the recent literature
and are also adopted in this dissertation. In spite of extensive use of direct and indirect
methods to solve optimal control problems, engineers still expend much effort on
reformulating problems and implementing corresponding programs for different control
problems. Therefore, the first objective of this dissertation was to develop a convenient solver
and provide a systematic computational procedure capable of assisting engineers and students
easily solve their dynamic system design problems:

To this end, a computationale AOCP-method, one kind of sequential direct method, has
been developed and presented herein. Subsequently, it was implemented and coupled with
many robust numerical schemes to develop a general OCP solver. Besides outlining the
theoretical and numerical foundations involved in the proposed solver, the discussion detailed
the OCP solver implementation, including the dynamic constraint treatments, ODE solver,
sensitivity analysis, and so forth. The van der Pol oscillator problem with three different
terminal conditions and a highly nonlinear time-optimal control problem were used to
illustrate and verify the stability and capability of the proposed solver. In these examples,
different numerical schemes and different time intervals were applied to investigate the
numerical schemes’ effect on the validity of the solution and computational efficiency. The
results indicate that the OCP solver coupled with the systematic procedure suggested in this

study can truly facilitate the solving of engineering control problems in a systematic and
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efficient way.

The other objective of this dissertation was to develop a novel method for solving
discrete-valued optimal control problems. Most traditional methods focus on the continuous
optimal control problems and fail when applied to a discrete-valued optimal control problem.
One common type of such problems is the bang-bang type control problem arising from
time-optimal control problems. When the controls are assumed to be of the bang-bang type,
the time-optimal control problem becomes one of determining the TOCP switching times.
Several methods for such determination have been studied extensively in the literature;
however, these methods require that the number of switching times be known before their
algorithms can be applied. As a result, they cannot meet practical situations in which the
number of switching times is usually unknown before the control problem is solved.
Therefore, to solve discrete-valued.optimal control problems, this dissertation has focused on
developing a computational method consisting.of two-phases: (a) the calculation of switching
times using existing optimal control methods-and (b) the use of the information obtained in
the first phase to compute the discrete-valued control strategy. The proposed algorithm
combines the proposed OCP solver with an enhanced branch-and-bound method. To
demonstrate the proposed computational scheme, the study applied third-order and
fourth-order systems and an F-8 fighter aircraft control problem considered in several
pioneering studies. Comparing the results of this study with the results from the literature
indicates that the proposed method provides a better solution and the accuracy of the terminal
constraints is acceptable. Finally, the proposed solver and procedure were applied to two
engineering applications: the flight level control problem and the vehicle suspension design

problems.

7.2 Future Study

Future study will focus on two topics: one is to develop a web-based dynamic
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optimization solver and another one is to improve the global convergence of proposed method.
In terms of the former, although a convenient solver for dynamic optimization has been
developed in this dissertation, constructing a turnkey system for solving dynamic system
design problems is still a major problem for inexperienced engineers and students. In addition,
because of the resource limitation including finances and laboratory facilities, it is difficult to
provide each engineer with a turnkey system to solve his/her dynamic system design problem.
The advent of the Internet and distributed computing technologies suggest that a Web-based
optimization tool may provide a potential partial solution to this problem (Chu, 1999). A
Web-based dynamic optimization solver would also be useful to engineering curriculums
because students could share limited resource via the Internet. Many Internet techniques such
as Web service, Simple Object Access Protocol (SOAP), DataSocket, and XML, could be
applied to the development of such a solver, forswhich a conceptual flowchart is given in
Figure 7.1. For this suggested model, the proposed OCP solver would serve as a numerical
engine.

As regards improving global convergence, the convergency of the OCP solver depends
on good initial guesses that speed up optimization problem convergence and produce
high-precision solutions. However, it is difficult for the inexperienced to provide good initial
guesses that lie within the convergence domain. Therefore, a module that assists with
estimation of the optimal solution will be developed to help the novice making the proper
initial guess.

It is expected that the contents of Chapters 2 through 5 will be the basis for addressing
these two topics, which, because of modular programming techniques, can be effected by
adding external modules into the proposed solver or replacing the original modules with new
ones. This feature allows the proposed solver to be easily updated by state-of-the-art

algorithms.
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