
國 立 交 通 大 學

機 械 工 程 學 系

博 士 論 文

動態系統最佳化設計之計算方案與其應用

Computational Schemes for Dynamic System Optimal Design
and its Applications

研 究 生： 黃 智 宏

洪 景 華 教授
指導教授：

曾 錦 煥 教授

中 華 民 國 九十五 年 五 月

動態系統最佳化設計之計算方案與其應用
Computational Schemes for Dynamic System Optimal Design

and its Applications

研 究 生： 黃 智 宏 Student: Chih-Hung Huang

洪 景 華 Ching-Hua Hung
指導教授：

曾 錦 煥 Advisor: Ching-Huan Tseng

國 立 交 通 大 學

機械工程學系

博士論文

A Dissertation

Submitted to Department of Mechanical Engineering

College of Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Mechanical Engineering

 May 2006

Hsinchu, Taiwan, Republic of China

中 華 民 國 九十五 年 五 月

http://etds.ncl.edu.tw/theabs/site/sh/search_result.jsp?hot_query=Hung%2C+Ching-Hua&field=AD

動態系統最佳化設計之計算方案與其應用

 研究生：黃智宏 指導教授：洪景華 曾錦煥

國立交通大學機械工程學系

摘 要

ABSTRACT (IN CHINESE)

動態系統所引發的特性一直困擾著工程設計人員，而只在靜態系統模式下，採用最佳

化設計方法所求得的設計，則往往在實際的應用上有所不足。本文主要依據最佳設計與

最佳控制理論基礎，結合動態分析與數值分析求解技巧，發展一套通用之動態系統最佳

設計方法與軟體。

一般動態系統之最佳化問題可以轉換成標準的最佳控制問題，再透過離散技術轉換成

非線性規劃問題，如此便可利用現有之最佳化軟體進行求解。在本文中，首先將動態系

統的解題方法與流程發展為最佳控制分析模組，再將該模組與最佳化分析軟體 (MOST)

整合得到整合最佳控制軟體，可以用來解決各種類型的最佳控制問題。為驗證軟體的效

能與準確性，利用本文所發展之整合最佳控制軟體求解文獻資料中所提出之各類型最佳

控制問題。藉由分析結果之數值與控制軌跡曲線的比對，整合最佳控制軟體所求出之數

值解，在效能與準確性上都能與文獻資料所獲得的最佳解吻合，確認該整合最佳控制軟

體的確可以用來解決我們工程應用上的最佳控制問題。

另外，針對工程設計中存在的離散（整數）最佳控制問題，本文依據混合整數非線性

規劃法(mixed integer nonlinear programming) 做進一步的研究。猛撞型控制 (bang-bang

type control) 是常見的離散最佳控制問題，其複雜與難解的特性更是吸引諸多文獻探討

的主因。許多文獻針對此一問題所提出的方法多在控制函數的切換點數量為已知的假設

i

條件下所推導，但這並不符合實際工程上的應用需求，因為控制函數的切換點數量大多

在求解完成後才會得知。因此，本文針對此類型問題發展出兩階段求解的方法，第一階

段先粗略求解該問題在連續空間下的解，並藉此求得控制函數可能的切換點資訊，第二

階段再利用混合整數非線性規劃法求解該問題的真實解。發展過程中，加強型的分支界

定演算法 (enhanced branch-and-bound method)被實際應用並且納入前一階段所開發的整

合最佳控制軟體中，這也使得這個軟體可以同時處理實際動態系統中最常見的連續及離

散最佳控制問題。

最後，本文將所發展的整合最佳控制軟體用來求解兩個實際的工程應用問題：飛航高

度控制問題與車輛避震系統設計問題。兩個問題都屬於高階非線性控制問題，首先利用

本文中所建議的解題步驟建構完成這兩個問題的數學模型，接著直接利用本研究所發展

的軟體求解符合問題要求的最佳解。經由這些實際應用案例的驗證，顯示本文所發展的

方法與軟體的確可以提供工程師、學者與學生一個便利可靠的動態系統設計工具。

ii

Computational Schemes for Dynamic System Optimal Design

and its Applications

Ching-Hua Hung Student: Chih-Hung Huang Advisor: Ching-Huan Tseng

Department of Mechanical Engineering

National Chiao Tung University

ABSTRACT

The nonlinear behaviors of dynamic system have been of continual concern to both

engineers and system designers. In most applications, the designs – based on a static model

and obtained by traditional optimization methods – can never work perfectly in dynamic cases.

Therefore, researchers have devoted themselves to find an optimal design that is able to meet

dynamic requirements. This dissertation focuses on developing a general-purpose

optimization method, based on optimization and optimal control theory, one that integrates

dynamic system analysis with numerical technology to deal with dynamic system design

problems.

A dynamic system optimal design problem can be transformed into an optimal control

problem (OCP). Many scholars have proposed methods to solve optimal control problems and

have outlined discretization techniques to convert the optimal control problem into a

nonlinear programming problem that can then be solved using extant optimization solvers.

This dissertation applies this method to develop a direct optimal control analysis module that

is then integrated into the optimization solver, MOST. The numerical results of the study

indicate that the solver produces quite accurate results and performs even better than those

reported in the earlier literatures. Therefore, the capability and accuracy of the optimal control

problem solver is indisputable, as is its suitability for engineering applications.

iii

http://etds.ncl.edu.tw/theabs/site/sh/search_result.jsp?hot_query=Hung%2C+Ching-Hua&field=AD

A second theme of this dissertation is the development of a novel method for solving

discrete-valued optimal control problems arisen in many practical designs; for example, the

bang-bang type control that is a common problem in time-optimal control problems.

Mixed-integer nonlinear programming methods are applied to deal with those problems in this

dissertation. When the controls are assumed to be of the bang-bang type, the time-optimal

control problem becomes one of determining the switching times. Whereas several methods

for determining the time-optimal control problem (TOCP) switching times have been studied

extensively in the literature, these methods require that the number of switching times be

known before their algorithms can be applied. Thus, they cannot meet practical demands

because the number of switching times is usually unknown before the control problems are

solved. To address this weakness, this dissertation focuses on developing a computational

method to solve discrete-valued optimal control problems that consists of two computational

phases: first, switching times are calculated using existing continuous optimal control

methods; and second, the information obtained in the first phase is used to compute the

discrete-valued control strategy. The proposed algorithm combines the proposed OCP solver

with an enhanced branch-and-bound method and hence can deal with both continuous and

discrete optimal control problems.

Finally, two highly nonlinear engineering problems – the flight level control problem and

the vehicle suspension design problem – are used to demonstrate the capability and accuracy

of the proposed solver. The mathematical models for these two problems can be successfully

established and solved by using the procedure suggested in this dissertation. The results show

that the proposed solver allows engineers to solve their control problems in a systematic and

efficient manner.

iv

ACKNOWLEDGEMENT (誌謝)

博士論文的完成，首先要感謝及感念的是我的首位指導教授，『最佳化實驗室』的

大家長—曾錦煥教授，沒有他在學術課業上的指導，生活上的照應，待人處事經驗上的

分享，不會有這份論文的完成，僅將此論文獻給來不及在這上面簽名，我亦師亦父亦友

的 曾錦煥博士。

感謝我另一位指導教授 洪景華博士以及齒輪實驗室 蔡忠杓教授，在我們失去曾老

師、頓失依靠之際，毫無保留的給予我們最大的協助，讓這份論文得以順利完成，兩位

老師真心付出，讓學生滿心感激。

對於我的口試委員：清華大學動機系蕭主任德瑛、清華大學動機系宋震國老師、交

通大學機械系學蔡忠杓老師、台灣大學醫學工程研究所呂東武老師與崴昊科技陳申岳老

師，感謝您們不辭辛勞，能撥冗前來指導學生的論文口試，並給予許多適當的指正與寶

貴的建議，使學生的論文內容更加充實與完整。

從民國八十年進入『最佳化實驗室』至今已有 15 年，其間與數屆的學長姐、學弟

妹相互學習、討論與砥勉，讓我的學習及研究得以長進，也讓我感受到另一個家庭的溫

暖。在此，我要一併感謝他們，尤其是東武、宏榮與接興等學長們在我學習遭遇挫折與

困頓時給予我極大的鼓勵與支持，在此特別感謝。另外。對於我的同窗好友也是我事業

上的伙伴—寬賢，感謝你在這些年來給予我多方面的協助，讓我能有機會在學術研究之

外，增長實務與管理上的見識。

漫長的學習與研究過程中，需要的除了耐心與努力外，家庭溫暖的親情是支持我堅

持下去的主要動力。從小父母親在南部農村的困頓環境下，縮衣節食，即使四處借貸，

也堅持給我們就學的機會，讓我得以順利取得家族中第一個碩士學位。之後，內人雅惠

在我攻讀博士其間更是無怨無悔的照料家中大小事務，哺育兩個年幼的兒子(國賜與家

富)，她長年的包容與等待，讓我可以無後顧之憂，在此論文完成之際，對他們除了感

謝還是感謝！

v

TABLE OF CONTENTS

ABSTRACT (IN CHINESE) ...i

ABSTRACT ..iii

ACKNOWLEDGEMENT (誌謝)...v

TABLE OF CONTENTS ...vi

LIST OF TABLES ..ix

LIST OF FIGURES...x

NOMENCLATURE...xii

CHAPTER 1 INTRODUCTION..1
1.1 Dynamic Optimization and Optimization Control Problems1

1.2 Literature Review ..2

1.2.1 Methods for Optimal Control Problems ...2

1.2.2 Time-Optimal Control Problems ..4

1.3 Objectives ..5

1.4 Outlines..5

CHAPTER 2 METHODS FOR SOLVING OPTIMAL CONTROL PROBLEMS7
2.1 Introduction ...7

2.2 Canonical Formulation of Optimal Control Problems ..9

2.3 First-Order Necessary Condition – Euler Lagrangian Equation 11

2.4 Methods for Solving Optimal Control Problems...14

2.4.1 Indirect Methods...14

2.4.2 Direct Methods ...17

2.5 Summary..18

CHAPTER 3 COMPUTATIONAL METHODS AND NUMERICAL PRELIMINARIES
FOR SOLVING OCP ...23

3.1 Introduction ...23

3.2 Nonlinear Programming Problem..25

3.3 Sequential Quadratic Programming Method ...27

3.4 Admissible Optimal Control Problem Method..30

3.4.1 Discretization and Parameterization Techniques..31

3.4.2 Dynamic Constraint Treatments ...34

3.4.3 Design Sensitivity Analysis ..36

3.4.4 ODE Solvers for Solving Initial Value Problem...36

3.4.5 Numerical Integration Methods..38

vi

3.4.6 Interpolation Functions...38

3.4.7 Computational Algorithm of AOCP ...38

3.5 Summary..40

CHAPTER 4 A CONVENIENT SOLVER FOR SOLVING OPTIMAL CONTROL
PROBLEMS..47

4.1 Introduction ...47

4.2 Multifunctional Optimization System Tool - MOST...47

4.3 Structure of the Proposed OCP Solver ..49

4.4 The OCP Solver in Cooperation with MOST..51

4.5 User Interface for the OCP Solver...52

4.6 Systematic Procedure for Solving the OCP...52

4.7 Illustrative Examples ...53

4.7.1 The van der Pol Oscillator Problem...53

4.7.2 Time-optimal Control Problem: Overhead Crane System..............................55

4.8 Numerical Study ..58

4.9 Summary..59

CHAPTER 5 A COMPUTATIONAL SCHEME FOR SOLVING THE
DISCRETE-VALUED OPTIMAL CONTROL PROBLEM........................85

5.1 Introduction ...85

5.2 Problem Formulations ...86

5.2.1 Optimal Discrete-valued Control Problems ...86

5.2.2 Mixed-Discrete Optimal Control Problems..87

5.2.3 Time-Optimal Control Problems ..88

5.3 Mixed-Integer NLP Algorithm for Solving TOCP ..89

5.3.1 Integrating the AOCP and Enhanced Branch-and-Bound Method.................89

5.3.2 Algorithm for Solving Discrete-valued Optimal Control Problems...............90

5.4 Two-Phase Scheme for Solving TOCP..92

5.5 Illustrative Examples ...93

5.5.1 Third-Order System..93

5.5.2 Fourth-Order Systems: A Flexible Mechanism ..95

5.5.3 F-8 Fighter Aircraft...96

5.6 Summary..97

CHAPTER 6 ENGINEERING APPLICATIONS ..107
6.1 Flight Level Control Problem..107

6.1.1 Aircraft Model ..107

6.1.2 Numerical examples ... 110

vii

6.2 Vehicle Suspension Design Problem ... 111

6.2.1 Derivation of the Vehicle Model .. 112

6.2.2 Numerical Examples .. 117

6.3 Summary.. 119

CHAPTER 7 CONCLUSIONS AND FUTURE STUDY...136
7.1 Concluding Remarks ...136

7.2 Future Study ..137

REFERENCE ..140

VITA ..150

viii

LIST OF TABLES

Table 2.1 Comparison of the methods for solving optimal control problems.20

Table 4.1 Pseudo-code for the CTRLMF module of the AOCP algorithm.61

Table 4.2 MOST input file for the van der Pol oscillator problem. ..62

Table 4.3 Parameter file for the van der Pol oscillator problem. ..63

Table 4.4 Performance comparison of various numerical schemes for the oscillator problem,

case I. ..64

Table 4.5 Various dynamic constraint treatments for the oscillator problem, case III.65

Table 4.6 Comparison of various numerical schemes for the overhead crane system.66

Table 5.1 Results of various methods for the F-8 fight aircraft problem.98

Table 5.2 Optimal results for the fourth-order system...99

Table 6.1 User subroutines for the flight level tracking problem..121

Table 6.2 Optimal solutions for vehicle suspension. ...123

ix

LIST OF FIGURES

Figure 2.1 Solution process based on indirect methods. ...21

Figure 2.2 Solution process based on direct methods. ..22

Figure 3.1 Methods for continuous constrained NLPs (Wu, 2000)...42

Figure 3.2 Conceptual flowchart of the SQP method..43

Figure 3.3 Problem-transcribing Process...44

Figure 3.4 Dynamic constraint treatments...45

Figure 3.5 Conceptual flowchart of the AOCP method...46

Figure 4.1 The architecture of MOST..67

Figure 4.2 Architecture of the interface coupler. ...68

Figure 4.3 Architecture of the new interface coupler – IAOS...69

Figure 4.4 Structure chart of the OCP Solver. ...70

Figure 4.5 CTRLMF module...71

Figure 4.6 CTRLCF module..72

Figure 4.7 CTRMG module. ...73

Figure 4.8 CTRCG module. ..74

Figure 4.9 Connection architecture of MOST and OCP solver. ..75

Figure 4.10 User interfaces for MOST and the OCP solver. ...76

Figure 4.11 Flowchart for the OCP solver. ..77

Figure 4.12 Control and state trajectories for van de Pol oscillator problem, case I.78

Figure 4.13 Control and state trajectories for van de Pol oscillator problem, case II.79

Figure 4.14 Control and state trajectories of van de Pol oscillator problem, case III.80

Figure 4.15 Schematic of the overhead crane system (Hu et al., 2002)..................................81

Figure 4.16 State trajectories of the overhead crane system. ..82

Figure 4.17 Control trajectories for overhead crane system..83

Figure 4.18 State trajectories with different initial guess for overhead crane system.............84

Figure 5.1 Conceptual layout of the branching process. ...100

Figure 5.2 Flow chart of the algorithm for solving discrete-valued optimal control problems.

..101

Figure 5.3 Control trajectories for the third-order system...102

Figure 5.4 State trajectories for the fourth-order system (Phase II).103

Figure 5.5 Control trajectories for the fourth-order system. ...104

Figure 5.6 Control trajectories for the F-8 fighter aircraft. ...105

x

Figure 5.7 Trajectories of the states and control input for the F-8 fighter aircraft.106

Figure 6.1 Aircraft model (Lygeros, 2003)..124

Figure 6.2 Numerical results for the tracking problem. ..125

Figure 6.3 Trajectories for the minimum time problem. ...126

Figure 6.4 Six-degrees-of-freedom vehicle model ..127

Figure 6.5 Sinusoidal displacement functions...128

Figure 6.6 Vehicle speed histories for straight-ahead accelerating.129

Figure 6.7 Vehicle speed histories for straight-ahead braking...130

Figure 6.8 Driver’s seat acceleration for straight-ahead braking. ...131

Figure 6.9 Road displacement profiles for model validation (Haug and Arora 1979).132

Figure 6.10 Road displacement profiles for emergency braking...133

Figure 6.11 Vehicle speed and acceleration histories for emergency braking.......................134

Figure 6.12 Seat acceleration and pitch angle histories for emergency braking.135

Figure 7.1 Conceptual flow chart of a web-based dynamic optimization solver.139

xi

NOMENCLATURE

b design variables

d descent direction defined in SQP algorithm

k iteration counter

s the wing surface area

t0 start time

tf terminal time

u control variable vector

uc piecewise continuous control variable vector

ud discontinuous control variable vector

x state variable vector

BBk BFGS approximation of Hessian matrix

CL dimensionless lift coefficient

CD dimensionless drag coefficient

D the aerodynamic drag force of a aircraft

H Hamiltonian function

HL Hessian matrix of the Lagrangian function

I interpolation function of control variables

Jmax Cost bound of mixed-integer NLP

J0 function of performance index (cost function)

L the aerodynamic lift force of a aircraft

Lc (augmented) Lagrangian function

N number of time intervals

Ns maximum iteration number of AOCP algorithm

Ne number of equality constraints

xii

NT number of inequality constraints

P extended design variable vector

SD discretized control variable vector

S Parameter vector of interpolation function for controls

T the thrust exerted by the aircraft engine

T time grid vector

Ti ith time grid point

U class of all such admissible controls

Ud class of all discontinuous admissible controls

α step size of SQP algorithm

ε convergence parameter of SQP algorithm

λ vector of Lagrange multipliers

()
1

lζ ith parameter of interpolation function for l time grid

ρ the air density

Φi function of terminal state

Li integral part of performance index and functional

constraints

ψj dynamic constraint function

xiii

CHAPTER 1
INTRODUCTION

1.1 Dynamic Optimization and Optimization Control Problems

Over the past decade, applications for dynamic systems in engineering have increased

significantly. In most applications, the designs, which are based on a static model and

obtained by traditional optimization methods, cannot work perfectly in dynamic cases because

of their nonlinear behaviors. Therefore, researchers have devoted themselves to find an

optimal design that is able to meet dynamic requirements.

Most engineering applications are modeled dynamically using differential algebraic

equations (DAE) whose formulation consists of (a) differential equations that describe the

dynamic behavior – such as mass and energy balances – of the state of a given system and (b)

algebraic equations that ensure physical and dynamic relations. Usually, the dynamic

behaviors of a given system can be influenced by the choice of certain control variables. For

instance, a vehicle can be controlled by the steering wheel, the accelerator pedal, and the

brakes. At the same time, the state and/or control variables cannot assume any value but are

subject to certain restrictions, often resulting from safety regulations or physical limitations,

such as the altitude of an aircraft being above ground level or the steering angle of a vehicle

having a maximum limitation. In addition, engineers are particularly interested in those state

and control variables that fulfill all restrictions while also minimizing or maximizing a given

objective function. These problems are typically ones of dynamic optimization. By applying

modeling and optimization technologies, a dynamic optimization problem can be

reformulated as an optimal control problem (OCP).

Even though optimal control problems arise in various disciplines, not all engineers are

familiar with optimal control theory. On the other hand, most optimal control problems are

interpreted as an extension of nonlinear programming (NLP) problems to an infinite number

of variables and solved by numerical methods. For engineers who are inexperienced in

1

numerical techniques, implementing these numerical techniques is another obstacle in solving

dynamic optimization problems. Consequently, a general-purpose solver for optimal control

problems coupled with a systematic procedure could assist engineers in solving various

optimal control problems.

Time-optimal control problems (TOCP) have attracted the interest of researchers in

optimal control because, even they often arise in practical applications, their solutions are

difficult. In practical applications, one of the most common types of control function is the

piecewise-constant function by which a sequence of constant inputs is used to control a given

system with suitable switching times. Nevertheless, many methods proposed in the literature –

for example, the switching time computations algorithm (Lucas and Kaya, 2001) – assume

that the number of switching times is known before their algorithms are applied. In reality,

however, the number of switching times is generally unknown before most control problems

are solved. Therefore, an efficient algorithm for determining the switching times of TOCP

becomes important and attracts the interest of researchers.

1.2 Literature Review

1.2.1 Methods for Optimal Control Problems

Optimal control problems can be solved by a variational method (Pontryagin et al., 1962)

or by nonlinear programming approaches (Huang and Tseng, 2003, 2004; Hu et al., 2002;

Jaddu and Shimemura, 1999). The variational or indirect method is based on the solution of

first-order necessary conditions for optimality obtained from Pontryagin’s maximum principle

(Pontryagin et al., 1962). For problems without inequality constraints, the optimality

conditions can be formulated as a set of differential-algebraic equations, often in the form of a

two-point boundary value problem (TPBVP). The TPBVP can be addressed using many

approaches, including single shooting, multiple shooting, invariant embedding, or a

discretization method such as collocation on finite elements. On the other hand, if the problem

2

requires that active inequality constraints be handled, finding the correct switching structure,

as well as suitable initial guesses for the state and costate variables, is often very difficult.

Much attention has been paid in the literature to the development of numerical methods

for solving optimal control problems (Hu et al., 2002; Pytlak, 1999; Jaddu and Shimemura,

1999; Teo, and Wu, 1984; Polak, 1971), the most popular approach in this field is the

reduction of the original problem to a NLP problem. Nevertheless, in spite of extensive use of

nonlinear programming methods to solve optimal control problems, engineers still spend

much effort reformulating nonlinear programming problems for different control problems.

Moreover, implementing the corresponding programs for the nonlinear programming problem

is tedious and time consuming. Therefore, a general OCP solver coupled with a systematic

computational procedure for various optimal control problems has become an imperative for

engineers, particularly for those who are inexperienced in optimal control theory or numerical

techniques.

Additionally, in many practical engineering applications, the control action is restricted to

a set of discrete values. These systems can be classified as switched systems consisting of

several subsystems and switching laws that orchestrate the active subsystem at each time

instant. Optimal control problems for switched systems, which require solution of both the

optimal switching sequences and the optimal continuous inputs, have recently drawn the

attention of many researchers. The primary difficulty with these switched systems is that the

range set of the control is discrete and hence not convex. Moreover, choosing the appropriate

elements from the control set in an appropriate order is a nonlinear combinatorial optimization

problem. In the context of time optimal control problems, as pointed out by Lee et al. (1997),

serious numerical difficulties may arise in the process of identifying the exact switching

points. Therefore, an efficient numerical method is still needed to determine the exact control

switching times in many practical engineering problems.

3

1.2.2 Time-Optimal Control Problems

The TOCP is one of most common types of OCP, one in which only time is minimized

and the control is bounded. In a TOCP, a TPBVP is usually derived by applying Pontryagin’s

maximum principle (PMP). In general, time-optimal control solutions are difficult to obtain

(Pinch, 1993) because, unless the system is of low order and is time invariant and linear, there

is little hope of solving the TPBVP analytically (Kirk, 1970). Therefore, in recent research,

many numerical techniques have been developed and adopted to solve time-optimal control

problems.

One of the most common types of control function in time-optimal control problems is the

piecewise-constant function by which a sequence of constant inputs is used to control a given

system with suitable switching times. Additionally, when the control is bounded, a very

commonly encountered type of piecewise-constant control is the bang-bang type, which

switches between the upper and lower bounds of the control input. When the controls are

assumed to be of the bang-bang type, the time-optimal control problem becomes one of

determining the switching times, several methods for which have been studied extensively in

the literature (see, e.g., Kaya and Noakes, 1996; Bertrand and Epenoy, 2002; Simakov et al.,

2002). However, as already mentioned, in contrast to practical reality, these methods require

that the number of switching times be known before their algorithms can be applied. To

overcome the numerical difficulties arising during the process of finding the exact switching

points, Lee et al. (1997) proposed the control parameterization enhancing transform (CPET),

which they also extended to handle the optimal discrete-valued control problems (Lee et al.,

1999) and applied to solve the sensor-scheduling problem (Lee et al., 2001).

In similar manner, this dissertation focuses on developing a numerical method to solve

time-optimal control problems. This method consists of the two-phase scheme: first,

switching times are calculated using existing optimal control methods; and second, the

4

resulting information is used to compute the discrete-valued control strategy. The proposed

algorithm, which integrates the admissible optimal control problem formulation with an

enhanced branch-and-bound method (Tseng et al., 1995), is then implemented and applied to

some examples.

1.3 Objectives

The major purpose of this dissertation is to develop a computational method to solve the

time-optimal control problems and find the corresponding discrete-valued optimal control

laws. The other purpose of this dissertation is to implement a general OCP solver and provide

a systematic procedure for solving OCPs that provides engineers with a systematic and

efficient procedure to solve their optimal control problems.

1.4 Outlines

The dissertation is organized as follows. Chapter 2 introduces the formulations for various

optimal control problems and the general methods for solving such problems. Also briefly

discussed are problem-solving procedures and the difficulties with direct and indirect methods.

Chapter 3 specifically addresses the computational methods for solving optimal control

problems and presents the theoretical basis and numerical preliminaries for developing a

general optimal control problem solver. The architecture of the OCP solver and the systematic

procedure for solving the OCP are described in Chapter 4, which also present the details of

the implementation and user interface of the proposed solver. Here, the van der Pol oscillator

problem with various types of terminal conditions and the time-optimal control problem of

overhead crane control are used to demonstrate and verify the capability and accuracy of the

proposed OCP solver. Chapter 5 introduces a two-phase scheme that integrates the admissible

optimal control problem method and the enhanced branch-and-bound algorithm to efficiently

solve the bang-bang control problems in the field of engineering. In Chapter 6, the proposed

5

solver is applied to two practical engineering applications: the flight level control problem and

the vehicle suspension design problem. Finally, Chapter 7 draws some conclusions and makes

suggestions for further research.

6

CHAPTER 2
METHODS FOR SOLVING OPTIMAL CONTROL PROBLEMS

2.1 Introduction

Optimal control theory has been of considerable importance in a wide variety of

disciplines. Over the years, the theory has been developed for various applications in many

different fields, e.g., mechanical systems (Kim and Ha, 2001), automotive vehicle design

(Panagiotis, 2000; Jalili and Esmailzadeh, 2001), and manufacturing processes (Samaras and

Simaan, 2001). However, because most real-world problems are becoming too complex to be

solved analytically (Kirk, 1970), using computational algorithms to solve them is becoming

inevitable. As a result, several successful families of algorithms are now available in the

literature.

Techniques for the numerical solution of optimal control problems can be broadly divided

into direct and indirect methods (Bock, 1978; Stryk and Bulirsch, 1992). In the direct method,

the state and/or control variables are parameterized using a piecewise polynomial

approximation. Inserting these approximations into the cost functional, dynamic equations,

and constraints and boundary conditions leads to a static parameter optimization problem. On

the other hand, the indirect method is based on the solution of the first-order necessary

conditions for optimality obtained from Pontryagin’s maximum principle (Pontryagin et al.,

1962) or derived from the Hamilton-Jacobi-Bellman equation (Bellman, 1957).

Two early methods commonly used to solve optimal control problems are Bellman’s

dynamic programming (Bellman, 1957) and Pontryagin’s maximum principle (Pontryagin et

al., 1962). Dynamic programming, developed by Bellman in the late 1950s (Bellman, 1957;

Bellman and Dreyfus, 1962; Bellman and Kalaba, 1965), is a computational technique that

extends the decision-making concept to sequences of decisions, which together define an

optimal policy and trajectory. Subsequently, Soviet mathematician Pontryagin and his

7

colleagues (Pontryagin et al., 1962) developed the calculus of variations approach using a

maximum principle. Although both the dynamic programming method and PMP have been

used to solve optimal control problems, many practical problems described by strongly

nonlinear differential equations cannot be easily solved by either technique. As a result, many

approximation methods based on NLP methods are used to solve these practical problems (see,

e.g., Lin, 1992; Pytlak, 1999; Jaddu and Shimemura, 1999; Hu et al., 2002).

A nonlinear programming problem consists of a multivariable function subject to multiple

inequality and equality constraints. The solution to the nonlinear programming problem is

found by solving the Kuhn-Tucker points of equalities given by the first-order boundary

conditions. Conceptually, this procedure is analogous to solving optimal control problems

using Pontryagin’s maximum principle. Depending on the discretization technique applied,

methods that apply NLP solvers can be classified into two groups: simultaneous or sequential

strategies. In the simultaneous methods, the state and control variables are fully discretized

and thus usually lead to large-scale NLP problems that require special solution strategies

(Cervantes and Biegler, 1998; Betts and Huffman, 1992). However, in sequential methods –

also known as control variable parameterization methods – only the control variables are

discretized. Based on initial conditions and a set of control parameters, the system equations

are integrated with an ordinary differential equation (ODE) solver at each iteration to produce

cost functional (performance index) and constraint values used by a nonlinear programming

solver to find the control parameterization’s optimal coefficient values. The sequential

approach is a feasible path method, i.e., in each of iteration, the system equation is solved.

However, this procedure is robust only when the system contains stable modes. Otherwise,

finding a feasible solution for a given set of control parameters may be difficult. In this

dissertation, a different discretization technique – the shooting method – is implemented and

used in conjunction with sequential quadratic programming (SQP) to solve various types of

8

optimal control problems.

The shooting method serves as a bridge between sequential and simultaneous approaches

by partitioning the time domain into smaller time intervals and integrating the system

equations separately in each interval. Control variables are treated in the same manner as in

the sequential approach. Moreover, to obtain gradient information, sensitivities are obtained

for both the control variables and the initial state conditions in each time interval. Finally,

equality constraints are added to the nonlinear program in order to link the time intervals and

ensure that the states are continuous across each time interval. This method allows inequality

constraints for both the state and the controls to be imposed directly at the grid points. Thus,

the admissible optimal control problem (AOCP) formulation based on the shooting method is

adopted as the core of the proposed method.

2.2 Canonical Formulation of Optimal Control Problems

Considering a dynamical system described by the following nonlinear differential

equations on [0, tf]:

(), , (), () ,t t t=x f b x u� 0, ft t⎡ ⎤∈ ⎣ ⎦ (2.1)

with the initial condition

0(0) =x x , (2.2)

where tf is the terminal time, π∈b is the vector of design variables,

[]T
1 2() (), (), , () m

mt u t u t u t≡u ∈ is a vector of the control functions and

[]T
1 2() (), (), , () n

nt x t x t x t≡x ∈

n

is a vector of the state variables. The function

is assumed to be continuously differentiable with respect to all its

arguments, and is a given vector in . It is assumed that the process starts from t

: n mπ× × ×f

0x n
0 = 0

and ends at the fixed terminal time tf > 0. A process that starts from t0 ≠ 0 may be transformed

to satisfy this assumption by suitable shifting on the time axis. Let U be the class of all such

9

admissible controls. Then an optimal control problem may be stated formally as follows:

Given the dynamical system expressed in Eqs. (2.1) and (2.2), find u ∈ U such that the cost

functional (performance index)

() ()0 0 00
, (), , (), (),ft

f fJ t t t t= Φ + ∫b x b u xL t dt (2.3)

is minimized subject to the constraint

() ()
0

0; 1,.........,
, (), , (), (),

0; 1,....,
ft e

i i f f i
e T

i N
J t t t t t dt

i N N
= =⎧

= Φ + ⎨≤ = +⎩
∫b x b u xL (2.4)

and the following continuous inequality constraint on the function of the state and control:

(), (), (), 0; 1,.........,j t t t j qψ ≤ =b u x , 0, ft t⎡ ⎤∀ ∈ ⎣ ⎦ . (2.5)

where Φ0, L0, Φi, Li and ψj are continuously differentiable with respect to their respective

arguments. This problem is referred to as problem (PU). A control u ∈ U is said to be a

feasible control if it satisfies constraints (2.4) and (2.5).

The preceding definition extends the original Bolza problem to account for inequality

constraints because the original Bolza formulation, containing only equality constraints, is not

general for the OCP. It also fails to treat the design variables b, which may serve a variety of

useful purposes apart from the obvious design parameters, e.g., weight and velocity of a

vehicle. Moreover, when the terminal time tf is unconstrained (for optimization), a free-time

problem occurs. Otherwise, a fixed-time problem is given. In addition, the initial conditions

are separated from the functional constraints in Eq. (2.4) for practical considerations, and the

terminal conditions are treated as equality constraints in the first term of Eq. (2.4). The

differential equations for the system in Eq. (2.1) are written in general first-order form.

Equation (2.5) represents the mixed state and control inequality dynamic constraints.

According to the constraints encountered in practical applications, most constraints can be

classified under one of the following categories (Teo et al., 1991):

10

Type 1. Control bounds:

min max()t≤ ≤u u u , 0, ft t⎡ ⎤∀ ∈ ⎣ ⎦ (2.6)

Type 2. Terminal state constraint with fixed terminal time:

() 0; 1,.........,
, (),

0; 1,....,
e

i f f
e T

i N
t t

i N N
= =⎧

Φ ⎨≤ = +⎩
b x , tf is fixed. (2.7)

Type 3. Terminal state constraint with free terminal time:

(), (), 0i f ft tΦ b x =

=

 , tf is unspecified. (2.8)

Type 4. Interior point state constraint:

(), (), 0i l lt tΦ b x ,0 < tl < tf (2.9)

Type 5. Integral constraint:

()
0

0; 1,.........,
, (), (),

0; 1,....,
ft e

i
e T

i N
t t t dt

i N N
= =⎧

⎨≤ = +⎩
∫ b u xL (2.10)

Type 6. Continuous equality constraint on the function of the state and control:

(), (), (), 0i t t tΦ =b x u , 0, ft t⎡ ⎤∀ ∈ ⎣ ⎦ (2.11)

Type 7. Continuous inequality constraint on the function of the state and control:

(), (), (), 0i t t tΦ ≤b x u , 0, ft t⎡ ⎤∀ ∈ ⎣ ⎦ (2.12)

To develop a general optimal control solver, any constraint of type 2 to type 7 can be regarded

as a special case of Eqs. (2.4) and (2.5).

2.3 First-Order Necessary Condition – Euler Lagrangian Equation

The first-order necessary condition for optimality, known as the Euler-Lagrangian

equation, can be found in many research studies (e.g., Teo et al., 1991; Kirk, 1970). Given an

optimal control problem where control u ∈ U is chosen such that the cost functional defined

in Eq. (2.3) is minimized, then

11

() ()0 0 00
(), (), (),ft

f fJ t t t t= Φ + ∫x u xL t dt (2.13)

where Φ0 and L0 are continuously differentiable with respect to their respective arguments.

It should be noted that the cost functional may be regarded as depending explicitly only

on u, as x is implicitly determined by u from Eqs. (2.1) and (2.2). In addition, the design

variables vector, b, is treated as a constant and is not involved. The system equations (2.1) and

(2.2) can be appended to the cost functional by introducing the appropriate Lagrange

multiplier : n∈λ

() ()() () ()(){
()() () ()() () }

0 0 00

ft

f f

T

J t t t t t

t t t t t

= Φ +

dt⎡ ⎤ + −⎣ ⎦

∫u x , , x ,u

λ f , x ,u x

L

�
 (2.14)

The Hamiltonian function is defined as follows:

() () ()0H , x,u, λ , x ,u λ f , x ,uTt t t= +L (2.15)

It should again be noted that, if the system equation is satisfied, the appended cost

functional 0J is indifferent to the original . The time dependent Lagrange multiplier is

referred to as the costate vector, also known as the adjoint vector.

0J

Substituting Eq. (2.15) into Eq. (2.14) and integrating the last term by parts, the cost

functional becomes

() ()() ()() () ()() ()

() () ()(){ ()() ()}
0 0

0

0 0u x λ x λ x

H , x ,u , λ λ xf

T T

f f f

Tt

J t t t

t t t t t t d

= Φ − +

 + +∫ � t
 (2.16)

For a small variation c in u, the corresponding first-order variations in x and 0J are δ x

and 0Jδ , respectively, where 0Jδ is obtained by the chain rule:

12

() ()() ()() () ()() ()

() () ()() ()() ()

() () ()() ()

0
0

0

0 0
x

u λ x λ x
x

H , x ,u , λ
λ x

x

H , x ,u , λ
u

u

f

T T

f f

Tt

t
J t t

t t t t
t

t t t t
t dt

δ δ

δ

δ

⎡ ⎤∂Φ
= − +⎢ ⎥

∂⎢ ⎥⎣ ⎦
⎧⎡ ⎤∂⎪ + +⎢ ⎥⎨ ∂⎢ ⎥⎪⎣ ⎦⎩

⎫∂ ⎪ + ⎬∂ ⎪⎭

∫ � t

δ

 (2.17)

Since is arbitrary so far, it can be set as ()λ t

()() () () ()()H , x ,u , λ
λ

x
T t t t t

t
∂

= −
∂

� (2.18)

with boundary condition:

()() ()()0 x
λ

x
T f

f

t
t

∂Φ
=

∂
 (2.19)

As the initial condition x(0) is fixed, ()0δ x vanishes and Eq. (2.17) reduces to

() () () ()() ()0 0

* H , x ,u , λ
u u

u
ft t t t t

J tδ δ
⎧ ⎫∂

dt⎪ ⎪= ⎨ ⎬∂ ⎪⎪ ⎭⎩
∫ (2.20)

For a local minimum, it is necessary that 0Jδ vanishes for arbitraryδ x . Therefore, it is

necessary that

() () ()()
0

H , x ,u ,λ
u

t t t t∂
=

∂
 (2.21)

for all 0, ft t⎡∈ ⎣ ⎤⎦ , except on a finite set. It should be noted that this holds only if no bounds

on u exist; otherwise, the Pontryagin’s maximum principle to be discussed later will be

applied. Equations (2.1), (2.2), (2.18), (2.19), and (2.21) are the well-known Euler-Lagrangian

equations whose results can be summarized in the following theorem.

13

Theorem 2.1 If u*(t) is a control that yields a local minimum for the cost functional

(2.13), and x*(t) and λ*(t) are the corresponding state and costate, then it is necessary

that

()() () () ()() () () ()()* * *t f t t t t=x , x ,u , λ

()() () () ()()

* * *
*

T

T t t t t⎡ ⎤∂
⎢ ⎥=

∂⎢ ⎥⎣ ⎦
�

H , x ,u , λ

λ
(2.22a)

()*
00 =x x (2.22b)

* * *
*

T
t t t t

t
⎡ ⎤∂
⎢ ⎥= −

∂⎢ ⎥⎣ ⎦

� H , x ,u , λ
λ

x
(2.22c)

() ()()*
0

T

f
f

t
t

⎡ ⎤∂Φ
⎢ ⎥=
⎢ ⎥∂
⎣ ⎦

x
λ

x

0,

(2.22d)

and, for all ft t⎡ ⎤∈ ⎣ ⎦ 0,, except possibly on a finite subset of ⎡ ⎤t ⎣ f ⎦

()
,

() ()()
0

H , x ,u ,λ
u

t t t t∂
=

∂

(2.22e)

It should be noted that Eqs. (2.22a)-(2.22d) constitute 2n differential equations with n

boundary conditions for x* specified at t = 0 and n boundary conditions for λ* specified at t

= tf. This is referred to as a two-point boundary value problem. In principle, the dependence

on u* can be removed by solving u* as a function of x* andλ* from the m algebraic equations

in Eq. (2.22e) via the implicit function theorem, provided that the Hessian

HH
u u

T

uu
∂ ∂⎡ ⎤≡ ⎢ ⎥∂ ∂⎣ ⎦

is nonsingular at the optimal point.

2.4 Methods for Solving Optimal Control Problems

2.4.1 Indirect Methods

As mentioned in Section 1.2.1, the indirect method is based on the solution of the

first-order necessary conditions for optimality obtained from Pontryagin’s maximum principle

(Pontryagin et al., 1962), which has been modified and applied in various applications (see,

14

e.g., Xu and Antsaklis, 2004; Chyba et al.,2003; Steindl and Troger, 2003). For problems

without inequality constraints, the optimality conditions can be formulated as a set of

differential-algebraic equations (DAEs). Obtaining a solution to DAEs requires careful

attention to the boundary conditions because the state variables frequently have specified

initial conditions and costate (adjoint) variables whose final conditions result in a TPBVP that

is notoriously difficult to solve analytically and requires the use of iterative numerical

techniques (Kirk, 1970). On the other hand, if the problem requires that active inequality

constraints be handled, finding the correct switching structure together with suitable initial

guesses for state and costate variables is often very difficult because of a lack of physical

significance and the need for prior knowledge of the control’s switching structure. Many

numerical techniques, including single shooting, invariant embedding, and multiple shooting,

can be used to solve TPBVP, but PMP does not deal well with nonlinear optimal control

problems. Figure 2.1 shows a solution process based on indirect methods.

Pontryagin’s Maximum Principle

According to the Euler-Lagrangian equation for the unconstrained optimal control

problem of Section 2.3 depicts that the Hamiltonian function must necessarily be

stationary with respect to the control, i.e. 0H
u

∂
=

∂
 at optimality. However, the optimality

condition obtained in Section 2.3 does not have to be satisfied if the control is constrained

to lie on the boundary of a subset Us. Here, Us is a compact subset of . Then, the

Pontryagin’s maximum principle can be described by the following theorem:

r

Theorem 2.2 Given the problem, where the cost functional (2.13) is to be minimized

over U subjected to the system equations (2.1) and (2.2), if u*(t) ∈ U is an optimal

control, and x*(t) and λ*(t) are the corresponding state and costate, then it is

necessary that

15

()() () () ()() () () ()()
* * *

* * * *

T
t t t t

t f t t t t
⎡ ⎤∂
⎢ ⎥= =

∂⎢ ⎥⎣ ⎦
�

H , x ,u , λ
x , x ,u , λ

λ

()*
00 =x x

() ()()

T
 (2.23a)

 (2.23b)

()() ()* * *
T

t t⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

,u , λ

x

()

*
t t

t
∂

= −
∂

� H , x
λ (2.23c)

()()*
0 f

T
t

t
⎡ ⎤∂Φ
⎢ ⎥=

x
λ

0,

f ⎢ ⎥∂
⎣ ⎦

x (2.23d)

and, for all ft t⎡ ⎤∈ ⎣ ⎦ 0,, except possibly on a finite subset of ⎡ ⎤t ⎣ f ⎦

()

,

() ()() (() () ())* * * * *t t t t t t t t≤H , x ,u , λ H , x ,u , λ (2.23e)

for all 0, ft t⎡ ⎤∈ ⎣ ⎦ .

Dynamic Programming

Dynamic programming (DP), based on Bellman’s principle of optimality (Bryson and Ho,

1975; Bellman and Dreyfus, 1962; Bellman, 1957), requires solution of the

Hamilton-Jacobi-Bellman partial differential equation in a domain of the state space that

contains the optimal solution. In dynamic programming, the optimal control problem is

expressed as a state-variable feedback in graphical or tabular form. Optimal control strategies

must be determined by working backward from the final stages. In other words, this method

operates in sweeps through the state set, performing a full backup operation on each state.

Each backup updates the value of one state based on the value of all possible successor states.

The computational procedure for dynamic programming can be described briefly by the

following steps.

Step 1: Approximating the continuous-time system using a discrete-time system.

16

In this step, the time interval, [t0, tf], is divided into N equal spaced intervals, Δt, and

the performance index and state equations are converted into discrete form. Then, by

applying the principle of optimality, the performance index can be converted into

recurrent form:

()()
()

(){*
, D

*
(1),

min , (), ()

((, (), ()))}

N k N u N k

N k N

N k N k N k

t N k N k

− −

− −

− = − −

 + Δ ⋅ − −

J x b u x

J f b x u

L
 (2.24)

Step 2: Quantizing the admissible state and control values into a finite number of levels.

Step 3: Calculating and storing the minimum values of the performance index of each stage

from final state to initial state. In each stage, every quantized control value is tried at

each quantized state value to discover the corresponding state values of the next

stage. Additionally, the value of the performance index from current stage to final

stage is calculated and compared. The minimum performance index is then chosen

and stored. If the corresponding state values of the next stage are not in the

quantized grid points, interpolation is required.

Step 4: Showing the results.

2.4.2 Direct Methods

Direct methods try to solve the dynamic optimization problem directly without explicitly

solving the necessary conditions. Usually, these methods are based on an iterative procedure

that generates approximations to the optimal solution of the dynamic optimization problem

within each iteration step. For instance, the SQP method uses quadratic subproblems to

approximate a general nonlinear programming problem locally.

As mentioned in Section 2.1, most direct methods that apply NLP solvers can be classified

into simultaneous and sequential strategies. The important question for these numerical direct

methods is whether these iterative approximate algorithms converge to a solution of the

original problem or not. A solution process based on such methods is shown in Figure 2.2 and

17

their details will be introduced in Chapter 3.

2.5 Summary

The primary objective of this chapter has been to survey methods of the optimal control

problems and provide formulations of various types of optimal control problems. The

first-order necessary condition (Euler-Lagrangian equation) has also been briefly introduced

to provide the theoretical foundation for Pontryagin’s maximum principle. In addition, the

chapter has described two typical methods for solving optimal control problems – indirect and

direct approaches – whose advantages and drawbacks are listed in Table 2.1. Understanding

the advantages of and difficulties with these methods will help engineers apply them to

problem solving.

As regards applicability, dynamic programming (DP) is sometimes thought to be limited

because of “the curse of dimensionality” (Bellman, 1957), i.e., the fact that the number of

states often grows exponentially with the number of state variables. In reality, even though

large state sets do create difficulties, these are the inherent difficulties of the problem not of

DP as a solution method. In fact, the DP method can be used with today’s computers to solve

optimal control problems with millions of states. In particular, dynamic programming can deal

with multistage optimal control problems that are difficult to solve using other methods.

Nevertheless, even though dynamic programming can be used to solve optimal control

problems in nonlinear time-variant systems, using it to deal with time-optimal trajectory

planning is difficult in practice because it relies on the exact dynamic models of the system.

Yet, unfortunately, the time-optimal control problem is a very common application of the

optimal control problem.

In contrast, Pontryagin’s maximum principle, which provides the analytical foundation for

this study, can deal with various types of optimal control problem. However, in any such

control problem, PMP unfortunately leads to a nonlinear two-point boundary value problem

18

that, as earlier mentioned, is notoriously difficult to solve analytically and requires the use of

iterative numerical techniques (Kirk, 1970).

Furthermore, neither DP nor PMP can serve as a convenient and complete method for

reformulating different control problems. Rather, engineers either have to derive the state

equations, costate equations, and boundary conditions from PMP or have to reformulate the

discrete form of the system equations and performance index by applying the DP algorithm.

Engineers must then also implement numerical programs to solve the TPBVP using PMP or

execute recurrence equations using DP. For engineers inexperienced in optimal control theory

or numerical techniques, carrying out these theoretical derivations and program

implementations is difficult. Thus, a general-purpose solver is needed for various types of

optimal control problems.

From a practical viewpoint, of the two types of NLP methods compared in Section 2.1

(simultaneous and sequential strategies), the sequential NLP methods are the best for

developing a general-purpose problem solver.

19

Table 2.1 Comparison of the methods for solving optimal control problems.

Method Advantages Disadvantages / Difficulties

Dynamic

programming

method

1. Can obtain global optimal solutions.

2. Can deal with nonlinear constrained

time-variant systems.

4. Suits multistage optimal control

problems.

3. Is straightforward to program.

1. Hard to apply the algorithms for

time-optimal trajectory planning in

practice.

2. Inconvenient to reuse.

Pontryagin’s

minimum

principle

1. Provides the analytical foundation.

2. Can deal with various types of optimal

control problem.

1. Leads to a nonlinear TPBVP that is

difficult to solve.

2. Inconvenient to reuse.

Simultaneous

NLP methods

1. Can deal with path constraint

problems.

2. Can be implemented as a general OCP

solver.

1. The computational efficiency is

slowed for large-scale problems.

2. Needs extra efforts to deal with

inconsistency problem between

state equations and controls.

3. Needs a proper initial guess to

obtain the optimal solution.

Sequential

NLP methods

1. Can deal with various types of

nonlinear optimal control problem.

2. Easy to implement as a general OCP

solver.

3. Many well-developed numerical

schemes can be applied to solve

initial value problems.

4. Higher computational efficiency for

solving large-scale problems.

1. Needs a proper initial guess to

obtain the optimal solution.

2. Path constraints for the states may

not be satisfied between grid points.

20

Dynamic Optimization Problem

Necessary
Conditions

Complementarity Problem

Algorithm

Candidate

Check for optimality (sufficient conditions)

Figure 2.1 Solution process based on indirect methods.

21

Dynamic Optimization Problem

Iterative / approximative
Algorithm (SQP)

Solution

Check for convergence or optimality
(sufficient / necessary conditions)

Figure 2.2 Solution process based on direct methods.

22

CHAPTER 3
 COMPUTATIONAL METHODS AND NUMERICAL PRELIMINARIES

FOR SOLVING OCP

3.1 Introduction

The rapid advancements in modern computers have brought about a revolution in the

solutions to many physical and engineering problems, including optimal control problems.

However, most real-world problems are becoming too complex to allow analytical solution;

thus, computational methods must inevitably be used in solving them. As a result,

computational methodology has attracted the interest of many engineers and mathematicians,

and over the last two decades, many state-of-the-art computational methods for optimal

control theory – including collocation transcription and the AOCP method – have been

developed (see, e.g., Betts, 1998 and 2001; Hu et al., 2002; Jaddu and Shimemura, 1999; Lin,

1992; Pytlak, 1999).

Some earlier computational methods for solving optimal control problems were based on

the indirect approach that assumes the direct solution of a set of necessary optimality

conditions resulting from Pontryagin’s maximum principle. The adjoint (co-state) equations

are combined with the original state equations to form a TPBVP. This problem may be

efficiently solved using the shooting method discussed earlier, which guesses the unknown

initial values of the adjoint variables, integrates both system and adjoint equations forward,

and then reestimates the initial guesses from residuals at the end point (Bulirsch, 1971;

Lastman, 1978). Nevertheless, because of difficulties arising from the sensitivity and

instability of the solutions to the initial guesses, Bulirsch and his coworkers (1971, 1980)

introduced multiple shooting algorithms to improve convergence and stability. Multiple

shooting refers to the breaking up of a trajectory into subintervals, on each of which an

initial-value problem is defined. The solutions are then adjusted in successive iterations until

the boundary conditions and continuity properties at the ends of the subintervals are satisfied.

23

Multiple shooting is much more successful than its ancestor, the simple shooting method, in

which a single initial-value problem is defined. However, even though especially good

convergence properties are attributed to multiple-shooting algorithms, the necessity to define

the proper control structure and initialize the adjoint variables within a sufficient vicinity of

the optimal values still remains a serious limitation.

To avoid the drawbacks of shooting techniques, the direct methods have been studied

extensively during the last two decades (Betts, 1993; Barclay, 1997; Gill et al., 2002). One of

the most widely used methods for solving optimal control problems is the direct method

whose basis is the transformation of the optimal control problem into a NLP problem using

either the discretization or parameterization technique (see, e.g., Goh and Teo, 1988; Xu and

Antsaklis, 2004; Jaddu, 2002; Lee et al., 1999).

When the discretization technique is applied, the optimal control problem is converted

into a nonlinear programming problem with a large number of unknown parameters and

constraints (Betts, 1998). On the other hand, parameterizing the control variables (Goh and

Teo, 1988; Teo et al., 1991) requires integration of the system equations. Moreover, the

simultaneous parameterization of both the state variables and the control variables also results

in a nonlinear programming problem with a large number of parameters and equality

constraints.

As a prelude to discussing computational methods for solving optimal control problems,

the following sections introduce some fundamental NLP concepts. Also introduced is one of

the best and most frequently applied NLP methods for solving optimal control problems,

sequential quadratic programming (see Barclay, et al., 1998; Betts, 2000; Gill et al., 2002;

Kraft, 1994; Stryk, 1993). Subsequently, the AOCP method, which uses the discretization

technique to convert an OCP into a NLP problem, is proposed, and then a standard SQP

algorithm is applied to solve it. Also discussed are the dynamic constraint treatments and

24

design sensitivity analysis used in AOCP.

3.2 Nonlinear Programming Problem

Mathematically, the general form of a constrained NLP problem can be expressed as

follows:

minimize

 f(x)

subject to

g(x) ≤ 0 , xT = (x1, …, xn)

h(x) = 0

(3.1)

where f(x) is the objective function, and h(x) and g(x) are the equality and inequality

constraint functions, respectively. It should be noted that in the inequality constraint functions

g(x), the simple bounds of the design variables (xL ≤ x ≤ xU) are considered and classified.

Because maximization problems can be converted to minimization ones by negating their

objectives, only minimization problems are considered here, without loss of generality.

A general continuous constrained NLP problem is defined in Eq. (3.1) in which x is a

vector of continuous variables. Over the past three decades, a variety of methods has been

produced in a wide body of research to solve the general constrained continuous optimization

problem (Betts, 2001; Michalewicz et al., 1996; Horst and Tuy, 1993; Floudas and Pardalos,

1992; Hansen, 1992). Based on different problem formulations, existing methods can be

classified into three categories: penalty formulations, direct solutions, and Lagrangian

methods. Figure 3.1 classifies these methods according to their formulations, and the details

of these methods and their comparisons can be found in Wu (2000). Here, the SQP method

based on the Lagrangian method and adopted as an NLP solver in the AOCP algorithm is

introduced briefly.

In general, because Lagrangian methods work on equality constraints, inequality

25

constraints are first transformed into their equal equivalents before Lagrangian methods are

applied. For example, an inequality constraint can be transformed into an equality constraint

by adding a slack variable (Luenberger, 1984). Thus, a general continuous equality

constrained optimization problem can be formulated as follows:

minimize

 f(x)

subject to

h(x) = [h1(x), …, hm] T = 0

(3.2)

where xT = (x1, …, xn) is a vector of the continuous variables. Both f(x) and h(x) are assumed

to be continuous functions that are at least first-order differentiable. The augmented

Lagrangian function in continuous space in Eq. (3.2) is then defined as

() () () () 21
2

L , T
c x xf≡ ∇ + ∇ +x λ x λ h x h x (3.3)

where λ is a vector of the Lagrange multipliers. Compared to the conventional Lagrangian

function in continuous space defined as () () (T
c f≡ +x λ x λ h xL ,) , the augmented

Lagrangian function reduces the possibility of ill conditioning and is, therefore, more stable.

Various continuous Lagrangian methods have been developed to find the (local) optimum,

all based on first-order necessary conditions. To state these conditions, the concept of regular

points must first be introduced.

Definition 3.1. A point x, which satisfies constraints h(x) = 0, is said to be a regular point

(Luenberger, 1984) if the gradient vectors () ()1 2x , x , , xmh h h∇ ∇ ∇… () at point x are

linearly independent.

First-order necessary conditions for continuous constrained NLP problems.

Letting x be a (local) optimal solution of f(x) subject to constraints h(x) = 0, and assuming

that x is a regular point, then there exists such that m∈λ

26

() () 0T
x xf∇ + ∇ =x λ h x (3.4)

Based on the definition of a Lagrangian function, the necessary conditions for x to be a

constrained (local) optimal solution can be written as follows:

()
()

0

0

L ,

L ,
c

c

∇ =

∇ =
x

λ

x λ

x λ
 (3.5)

To ensure that the equilibrium point is an optimal solution, second-order sufficient

conditions are used to check that the solution is a strictly relative minimum subject to

constraints (Luenberger, 1984). These second-order sufficient conditions require second-order

derivatives, and the Hessian matrix of the Lagrangian function is needed to satisfy certain

conditions (Luenberger, 1984) if the solution to Eq. (3.5) is to be a strictly (local) optimal

solution. Here, The Hessian matrix of the Lagrangian can be defined as

 () ()L x x xxH L x, λ L x, λ
T

c c⎡ ⎤≡ ∇ ∇ = ∇⎣ ⎦

. Many searching methods based on first-order necessary conditions in continuous space have

been developed for solving constrained optimization problems (Bertsekas, 1982; Luenberger,

1984), including the first-order method, Newton’s method, modified Newton’s methods,

quasi-Newtonian methods, and sequential quadratic programming (Hribar, 1996; Boggs and

Tolle, 1995). A major advantage of these methods is that solving the first-order conditions

exactly matches the goal of locating a (local) optimal solution. Therefore, these algorithms are

usually efficient for solving continuous constrained NLPs. One of most popular methods for

solving constrained optimization is sequential quadratic programming, discussed briefly in the

next section.

3.3 Sequential Quadratic Programming Method

SQP, one of most popular Lagrangian methods for solving constrained NLPs, is also

widely applied to develop computational methods for solving optimal control problems (Betts,

2000; Buskens and Maurer, 2000; Volkwein, 2000; Barclay et al., 1997). SQP methods have

27

proven reliable and efficient for many practical constrained optimization problems. The

method described here is implemented in MOST (Tseng et al., 1993) and is similar to the

algorithm employed by SNOPT (Gill et al., 2002) software.

The SQP method is actually a generalization of Newton’s method (Luenberger, 1984) for

unconstrained optimization in the sense that it obtains search directions from a sequence of

quadratic programming (QP) subproblems. Each QP subproblem minimizes a quadratic model

of a certain Lagrangian function subject to linearized constraints. In its simplest form, an SQP

algorithm replaces f(x) in the Lagrangian function with a quadratic approximation and the

weighted constraint functions λTh(x) with their linear approximations:

() () ()

()

21
2
1
2

T T
xx c

T T

Q f

f

= ∇ + ∇

 = ∇ + L

d x d d x λ d

x d d H d

L ,
 (3.6)

where d refers to the descent direction (or search direction) and HL to the Hessian matrix of

the Lagrangian function. The descent direction d(k) of the kth iteration of SQP can be found by

solving the following quadratic problem, assuming equality constraints only:

minimize

 Q(d(k))

subject to

() ()() () ()h x h x d 0
Tk k k+ ∇ =

(3.7)

where xk is used to represented the values of the design variables of the kth iteration of SQP.

 The local convergence property of SQP is well defined when (x, λ) satisfies the

second-order sufficient conditions (Luenberger, 1984). That is, if point (x, λ) is sufficiently

close to an optimal solution (x*, λ*), then the sequence generated using the descent direction d

and the appropriate step size α will converge to x* at a second-order rate. The search step size

α can be obtained by applying a line search method.

28

The SQP method described here requires a more precise computation of the Hessian

matrix, ()2 L ,k k
xx c∇ x λ , at each step. However, it is usually replaced with a BFGS

approximation (Arora, 1989) BB

)

k updated at each iteration. Using a BFGS formula allows the

following simple update strategy to be defined:

() (
1

1

1

L , L ,
k k k

k x c k k x c k k

T T
k k k k k k

k k T T
k k k k k

+

+

+

= −

= ∇ − ∇

= − +

η x x
β x λ x λ

B η η B β βB B
η B η β η

(3.8)

Once the descent direction has been determined, the step size must be calculated based on

simultaneously decreasing the objective, as well as improving constraint satisfaction. To

accomplish this goal, a suitable unconstrained function must be developed upon which to base

the step size determination. Many unconstrained optimization methods, such as the golden

section search method, can be found in the literature (see Arora, 1989) and applied to

calculate the search step size, α.

Nevertheless, although SQP methods are generally efficient, they often require that

functions be differentiable and therefore cannot be applied directly to solving NLPs

containing discrete variables. Thus, a modified SQP algorithm in cooperation with an

enhanced branch-and-bound method is proposed here to solve discrete-valued NLP problems.

The details of this modified algorithm are introduced in Chapter 5 of this dissertation. The

details of SQP method implementation can be found in the literature (e.g., Arora, 1989; Boggs

and Tolle, 1995; Gill et al., 2002). Figure 3.2 presents a conceptual flowchart of the SQP

method, whose algorithm is briefly described below.

Algorithm: Sequential Quadratic Programming

Step 1. Choose x0, Ns (maximum number of iteration)

εi (for convergence and stopping), k = 1 (iteration counter).

Step 2. Find the descent direction d by solving the QP subproblem defined in Eqs. (3.6)

29

and Eq. (3.7).

Step 3. Check feasible and convergence criteria.

(a) Convergence for SQP:

IF (hj = 0, j = 1, …, m) THEN

IF (KT condition is satisfied) THEN

Algorithm converged, Stop.

(b) Stopping criteria:

Δx = xk+1 – xk

IF (ΔxTΔx ≤ εi) THEN Stop. (design variable not changing)

IF (k = Ns) THEN Stop. (maximum iteration reached)

Continue

Step 4. Calculate the step size α.

Step 5. Update Hessian matrix HL by applying BFGS approximation BBk (Eq. 3.8).

Step 6. k = k +1; Go to Step 2.

3.4 Admissible Optimal Control Problem Method

The admissible optimal control problem method is a direct method that transcribes an

optimal control problem into a NLP problem, a process shown in Figure 3.3. Whereas an NLP

problem consists of a finite set of variables and constraints, an optimal control problem can

involve continuous functions and be treated as an infinite-dimensional extension of an NLP

problem. However, most practical methods for solving optimal control problems require

Newton-based iterations with a finite set of variables and constraints. Therefore, a

discretization technique is needed to convert the infinite-dimensional problem into a

finite-dimensional approximation. On the other hand, a general optimal control problem may

include some dynamic constraints that make the problem complex and difficult to solve. Thus,

an efficient dynamic constraint treatment becomes more important for developing a general

30

optimal control solver. Presented below are two common design sensitivity analysis (DSA)

methods used to determine the effect of a change in the current design on the cost functional

and the constraint functions.

3.4.1 Discretization and Parameterization Techniques

Various discretization and parameterization techniques for state and control variables

allow for an optimal solution for the OCP via nonlinear programming. Jaddu and Shimemura

(1999) used quasi-linearization and state parameterization using Chebyshev polynomials to

solve constrained nonlinear optimal control problems. Hu et al. (2002) applied an enhanced

scheme based on the direct collocation and nonlinear programming problem (DCNLP) to

transform the system dynamics into constraints for nonlinear programming. Nevertheless,

although these simultaneous discretization methods are applied to many numerical examples

and solve them successfully, using a full discretization strategy sharply increases the number

of design variables. Therefore, a different discretization technique, in conjunction with SQP, is

implemented here, one used to solve various types of optimal control problems (Betts, 2000;

Barclay et al., 1997). This technique is based on the sequential method in which only the

control variables u are approximated by some interpolation function in each time interval. The

approximate trajectories x are generated by solving the initial-value problem defined in Eqs.

(2.1) and (2.2). This method, first proposed by Sage and White (1977), is termed the AOCP

method.

Control function parameterization. Parameterization of the control functions can be carried

out using the following process. First, the entire time interval 0 , ft t t⎡ ⎤∈ ⎣ ⎦ is subdivided into

N general unequal time intervals and the time grids are designated as

t0 = 0, t1, t2,…, tN-1, tN = tf (3.9)

The time intervals between the grid points are defined in a vector form as

31

T = [T1, T2,…, TN]T (3.10)

where and 1l l lT t t −= − 0
1

N

l f
l

T t t
=

= −∑ .

If at each time grid, control u(l) is treated as a set of m unknown parameters, then interval

0 , ft t⎡⎣ ⎤⎦ will have an Nm unknown parameter and can be represented as

SD =[u(1), u(2),…, u(N)]T

= [u1(t0),…, um(t0), u1(t1),…, um(t1),…, u1(tN-1),…, um(tN-1)]T

= [S1,…, Sm, Sm+1,…, S2m, S2m+1,…,S(N-1)m+1,…, SmN]T

(3.11)

where ()l m∈u is the vector of the control variables for the lth time interval [tl, tl+1]. This

formulation can be treated as a subset of the design variable vector, resulting in a total number

of k+N+Nm design variables:

P = [b1,…, bπ, T1,…, TN,…,S1,…, SN+1, SN+2,…,SmN]T (3.12)

Finding an accurate solution for any practical application requires one set of fine time grid

intervals. However, discretizing control functions with a fine time interval increases the

number of design variables considerably, especially for a practical optimal control problem

with a large number of control variables. Hence, certain parameterization techniques have

been developed to overcome this problem. If parameterization techniques are applied, control

function u(t) may be represented by an interpolation function, and the coefficients of the

interpolation function may be considered design variables instead of Ti and Si in Eq. (3.12).

For example, if the time grid is not considered a design variable, the interpolation function

based on a third-order polynomial u (1) = ()
1

lζ + ()
2

lζ × t + ()
3

lζ × t2 + ()
4

lζ × t3 can be used to

represent the first component of the control forces in u(t) and ()
1

lζ , ()
2

lζ , ()
3

lζ , and ()
4

lζ can

be treated as a subset of the design variables. Therefore, the control functions can be

approximated by interpolation functions I(t), where . The continuous time 0() : , m
ft t t⎡ ⎤ ∈⎣ ⎦I

32

optimal control problem with interpolation functions I(t) is thus reformulated as an NLP

problem without using approximate discretization. As noted earlier, the control functions, u(t),

are treated as a subset of the design variable vector P. Similarly, the terminal time tf can be

treated as one of the design variables in time interval vector T, e.g., . The

admissible control functions are represented in the form u(t) = I(S, T, t), and the state

variables are written in the form x(b, S, T, t) to emphasize that they are functions of the design

variable vector P. Here, S represents the parameter vector of interpolation function. As a

result, the admissible optimal control problem in an NLP formulation can be rewritten as

follows.

01

N
f i

t T
=

= ∑ i t+

dt

N

A design variable vector P = [bT, TT, ST]T must be found that minimizes the cost functional

()
()1

0 0

1
()
0

1

, (, , ,),

, (, ,), (, , ,),l

l

f f

N t l

t
l

J t t

t t t+
−

=

= Φ

⎡ ⎤ + ⎢ ⎥⎣ ⎦∑ ∫

b x b S T

b I S T x b S TL
 (3.13)

subject to

()

()1

()

()

, (, , ,),

0; 1,.........,
, (, ,), (, , ,),

0; 1,....,
l

l

l
i i f f

t el
it

e T

J t t

i
t t t dt

i N N
+

= Φ

= =⎧
 + ⎨≤ = +⎩

∫

b x b S T

b I S T x b S TL
 (3.14)

()() , (, ,), (, , ,), 0l
j t t tψ ≤b I S T x b S T

; []11,........., ; ,l lj q t t t += ∀ ∈ . (3.15)

and the system equation is represented as

()() , , (, , ,), (, ,) ,l t t t=x f b x b S T I S T� []1,l lt t t +∈ (3.16)

with the initial condition

() (0)
0 0() ; ()l

l lt t= =x x x x (3.17)

where l is used to indicate the index of the time grid, and the original optimal control problem

is divided into N subproblems. These NLP subproblems are solved sequentially from time

33

grid t0 to terminal time tf, and the solutions of the state variables obtained in each time interval

are then applied as initial values in the next time interval.

With AOCP, the system equation in Eq. (3.16), together with the initial conditions in Eq.

(3.17), forms an initial-value problem (IVP), and the corresponding values for the state

variables can be calculated by solving the problem using the design variable values in each

iteration. For integrating the state equations in Eqs. (3.16) and (3.17), some good first-order

differential equation methods are available that have a variable step size and error control, e.g.,

Adam’s method, the Runge-Kutta-Fehlberg method, and the backward difference formulae

(BDF) (Press et al., 1992). Those solvers can give accurate results with user-defined error

control. The state trajectories are internally approximated using interpolation functions in the

differential equation solvers. Values of the state and control variables between the grid points

can be also obtained with different types of interpolation schemes.

3.4.2 Dynamic Constraint Treatments

The continuum dynamic constraints in Eq. (2.5) must be satisfied over the entire time

interval at the optimum solution. Some procedures to eliminate time from these constraints

are employed to convert an admissible optimal control problem into an NLP problem. The

many treatments proposed to deal with the dynamic constraint problem – e.g., the equivalent

functional formulation (Haug and Arora, 1979) and worst-case design formulation (Hsieh and

Arora, 1984) – are introduced below.

(a) Conventional Formulation

With conventional formulation, discretization of the entire time interval [t0, tf] in equation

(3.9) into N subintervals can be carried out by fixing a time grid at the current design

iteration. Conceptually, the simplest way of replacing the continuum dynamic constraints

of equation (3.15) is to impose the constraint at all grid points. This approach is hereafter

referred to as the conventional formulation.

34

(b) Worst Case Design Formulation

Here, the dynamic constraints are treated as a worst-case design formulation (Hsieh and

Arora, 1984). Each continuum constraint of equation (3.15) is replaced by constraints at

the worst-response time points:

[, (, ,), (, , ,),] 0; 1, 2,..., ()
jt tt t t jβ mφ β= ≤ =b I S T x b S T (3.18)

where tj is a point of local maximum for the function φβ , and m(β) is the total number of

max points for the β th constraint. A numerical procedure is then used to locate all points tj

for the constraint in a given design and impose the constraint thereon.

(c) Subdomain Functional Formulation

For this formulation, the dynamic constraints are transformed into several equivalent

functional constraints by dividing the entire time domain into several subdomains, each

containing one local maximum point (Hsieh and Arora, 1984). Thus, the dynamic

constraints are replaced by the following constraints:

[]2

1

0 1 2 βb, I(S ,T ,), x(b,S ,T ,), , , , ..., ()j

j

t

t
t t t dt jβφ ≤ =∫ m (3.19)

where [t1j, t2j] is a small subdomain around a local maximum point tj for the constraint

function φβ.

(d) Equivalent Functional Formulation

Here, the dynamic constraints can be transformed into an equivalent functional form by

integrating them over the time interval (Haug and Arora, 1979) as

[]
0

0b, I(S ,T ,), x(b,S ,T ,),ft

t
t t tβφ dt ≤∫ (3.20)

where

[]
0

0,
b, I(S ,T ,), x(b,S ,T ,),

,
ft

t

if
t t t dt

if
β

β
β β

φ
φ

φ φ
= < 0;⎧

 ⎨= ≥ 0; ⎩
∫ (3.21)

at any time.

35

In this dissertation, the conventional formulation, the worst-case design formulation, and

the hybrid treatment for conventional and worst-case approach (shown in Figure 3.4) are

applied to deal with the dynamic constraint problem.

3.4.3 Design Sensitivity Analysis

It is important that a numerical method of optimization determine the effect of a change in

the current design on the performance index and constraint functions. In other words, the

gradients of the performance index and constraint functions with respect to design variables

must be evaluated using what is generally referred to as design sensitivity analysis (DSA).

The design sensitivity coefficients may be used directly in gradient-based iterative

optimization algorithms. Two methods for computing these gradients are the direct

differentiation method (DDM) and the adjoint variable method (AVM).

In the DDM, the first variation of the state equation is performed and then the forward

numerical integration scheme is used to solve the initial-value problem. The result is

substituted directly into the variation of the functional constraint or dynamic constraints with

respect to the design variables. The AVM transposes an adjoint vector and then solves the

terminal value problem using a backward numerical integration scheme. The result is then

used to solve the sensitivity coefficients. The details and implementation of these two

sensitivity analysis methods are discussed in Tseng (1987).

3.4.4 ODE Solvers for Solving Initial Value Problem

The dynamic behaviors for most optimal control problems are determined by a system of

ordinary differential equations with a given initial state. Because this system forms an IVP,

the numerical solution of the IVP for ordinary differential equations (ODEs) is fundamental to

most optimal control methods.

Finding accurate and efficient solution procedures for solving ODEs has long been a

36

problem of importance. However, in many practical situations, an analytical solution is either

impossible to find or extremely difficult to evaluate. Therefore, numerical solution procedures

for approximating solutions have become increasingly popular. Most numerical schemes for

solving ODEs can be classified as either one-step or multistep methods; however, one-step

methods like Euler’s are seldom used in practical situations because of their poor accuracy.

Rather, multistep methods – the most popular being the fourth-order Runge-Kutta method, the

backward differentiation method, and the Adams-Bashforth method – are most commonly

used to solve ODEs because of their high efficiency and accuracy.

Many well-developed packages or subroutines exist for solving differential equations,

incuding IMSL, Maple, Mathematica, and MATLAB. Most of these are based on the

Runge-Kutta method, the Adams formula, or the backward-differentiation formula. For this

dissertation, DDERKF, DDEABM, and DDEBDF, all developed by Sandia Laboratory, were

selected for the integration of state or design sensitivity equations. DDEBDF is based on the

variable-order (1–5) backward-differentiation formula, DDERKF is a fifth-order Runge-Kutta

code, and DDEABM is a variable-order (1–12) Adams-Bashforth code. These equation

solvers use variable-step-size algorithms and have good error control. The DDERKF and

DDEABM can be used to solve nonstiff and mildly stiff differential equations, while

DDEBDF is suitable for stiff equations. If the differential equation is very stiff, DDEBDF is

more efficient than DDERKF and DDEABM. In contrast, DDEBDF is far less efficient than

DDERKF and DDEABM for nonstiff equations. Since it is not known a priori whether the

differential equations are stiff, DDERKF and DDEABM may not be converged. Therefore,

DDEBDF must be used. To handle this situation, a subroutine has been developed that

controls the use of differential equations solvers. This subroutine first uses DDEABM and

then, if the intermediate output shows the problem to be stiff, a switch is made to DDEDBF.

With this implementation, the differential equation solvers can be used more reliably and

37

efficiently.

For most optimal control problems, their dynamical behaviors are determined by a system

of ordinary differential equations with a given initial state. It forms an IVP and hence the

numerical solution of the IVP for ODEs is fundamental to most optimal control methods.

3.4.5 Numerical Integration Methods

Two common integration schemes, Simpson’s rule and Gaussian quadrature, are adopted

in this dissertation to integrate the sensitivity coefficients and integral part of the functional

constraints into the adjoint variable method (AVM).

3.4.6 Interpolation Functions

For the admissible optimal control formulation, interpolation schemes are needed at

several places. First, to integrate the performance index and functional constraints,

information between the grid points is needed for a variable-step-size integration rule, e.g., a

Gaussian quadrature formula. Secondly, since variable-step-size differential equation solvers

are used in this dissertation, values for the state and control variables between the grid points

are needed to calculate the right-hand side of the sensitivity equations. Hence, an interpolation

scheme is required to obtain the information between grid points. Finally, in the treatment of

dynamic constraints, an interpolation scheme is necessary for locating the maximum points

for the worst-case formulation or for evaluating the integral for the functional formulation. In

the OCP solver developed in this dissertation, zero-order, first-order, and piecewise

cubic-spline interpolation functions are adopted.

3.4.7 Computational Algorithm of AOCP

For solving the optimal control problem, the essential idea of AOCP is to treat optimal

control problems as initial-value problems by using iterative methods of nonlinear

programming. The SQP method is selected to solve the nonlinear programming problems

38

transcribed from the discretization model of the original optimal control problem. Because

SQP is a generalized gradient-descent optimization method and subsequently converges to a

local rather than a global optimum, it solves the subproblem by providing both the direction

of design improvement and the step size along the search direction. In this dissertation, the

algorithms of AOCP and SQP are combined to form a general purpose solver, the OCP solver.

The architectural framework of the OCP solver, as illustrated in Figure 3.5, is composed

of two computational blocks: the SQP algorithm and the OCP solver. Because the SQP

algorithm is a well-known algorithm for optimization (Arora, 1989; Chong and Zak, 1996;

Rao, 1996), its implementation details can be found in a wide body of research and are

therefore skipped in this dissertation. Basically, in each iteration of SQP, the values of the

design variables are handed over to the OCP solver, which then uses them to calculate the

values of the cost functional and the constraints. As shown in Figure 3.5, the OCP solver

contains three major computational modules: discretization, calculation of current values of

the state variables by applying the ODE solver, and estimation of the values of the cost

functional and the constraints. Hence, the AOCP algorithm based on the SQP method can be

described as following:

AOCP Algorithm:

Step 1. Choose b0, u0, Ns (maximum number of iteration)

N (number of time intervals)

εi (for convergence and stopping), k = 0 (iteration counter).

Step 2. Execute the discretization and parameterization process and calculate values for

the following variables:

Time intervals T = [T1, T2,…, TN]T defined in Eq. (3.10).

Interpolation parameters S(k) by applying . ()() (, ,)u T I S Tk
k t=

Design variable vector () () () () () () ()
1 1 1, , , , , , ,P

Tk k k k k k k
N mb b T T S Sπ N⎡ ⎤= ⎣ ⎦" " " .

39

Step 3. Determinate the state variables x(k) by solving the initial-value problem defined in

Eqs. (3.16) and (3.17) with PP

(k).

Step 4. Calculate the values of the cost functional Eq. (3.13) and the constraints Eqs.(3.14)

and (3.15).

Step 5. Calculate the gradients of the cost functional and the constraints.

Step 6. Find the descent direction d by solving the QP subproblem defined in Eqs. (3.6)

and (3.7).

Step 7. Check feasible and convergence criteria.

 (a) Convergence for SQP:

 IF (KT condition is satisfied) THEN

 Algorithm converged, Stop.

 (b) Stopping criteria:

 ΔP = PP

(k+1) –P(k)
P

 IF (ΔPP

TΔP ≤ ε) THEN Stop. (design variable not changing) i

 IF (k = Ns) THEN Stop. (maximum iteration reached)

 Continue

Step 8. Calculate the step size α(k).

Step 9. Update the Hessian matrix H (k) by applying a BFGS approximation defined in Eq.

(3.8).

Step 10. k = k +1; Go to Step 2.

3.5 Summary

This chapter has introduced the numerical preliminaries – including NLP formulation,

the SQP method, the control parameterization technique, and dynamic constraint treatments –

for developing the OCP solver. Also discussed were methods for solving the NLP and the

40

41

first-order necessary condition for continuous constrained NLP problems. The text also

introduced the SQP method that serves as the kernel of proposed method, and provided its

algorithm. In addition, because this dissertation uses control parameterization with an

interpolation function to decrease the numbers of design variables and so make the solver

more efficient, discretization and parameterization techniques that transcribe the optimal

control problems into NLP problems were developed. Also introduced were several numerical

schemes involved in the proposed solver – including ODE solvers and integration and

interpolation schemes – and finally, the computational algorithm of the ACOP method that

will help implement the OCP solver.

Figure 3.1 Methods for continuous constrained NLPs (Wu, 2000).

42

43

Figure 3.2 Conceptual flowchart of the SQP method.

Initialization
Initial guess x0

Hessian matrix H = I
Iterative index k = 1

Calculate values of cost
function and constraints.

Calculate gradients of cost
function and constraints.

Calculate the descent
direction, d(k)

Meet the
convergence criteria ?

Line search
Search step size, α(k)

Update Hessian matrix
H(k)

Update design variables x(k)

x(k+1) = x(k) + α(k) d(k)

k = k + 1

Show results

Yes

No

Figure 3.3 Problem-transcribing Process.

44

Φ

t

Conventional formulation

Φ

t

Worst-case design formulation

Φ

t

Hybrid formulation

Figure 3.4 Dynamic constraint treatments.

45

Initialization
P(0), H(0)= I, k = 0

Gradients information

Descent directionconvergence?Searching step size

Update Hessian matrix

Update design variables

Show results

No

k = k + 1
Solve IVP

Performance index J0*
Constraints Ji*

Sequential
Discretization

X(k)

P(k)

Yes

(SQP)

AOCP

Figure 3.5 Conceptual flowchart of the AOCP method.

46

CHAPTER 4
 A CONVENIENT SOLVER FOR SOLVING OPTIMAL CONTROL

PROBLEMS

4.1 Introduction

Even though, over the last two decades, theoretical and numerical methods for solving

optimal control problems have been extensively studied and many well-designed algorithms

have been proposed, engineers must still expend much effort to reformulate the nonlinear

programming problems for different control problems. On the other hand, reworking the

corresponding programs for the nonlinear programming problem is a waste of time and even

more tedious. Therefore, developing a general OCP solver that offers a systematic process for

solving various optimal control problems has become imperative for engineers, particularly

for those who are inexperienced in optimal control theory or numerical techniques.

As mentioned in the previous chapter, many well-developed subroutines or program units

for numerical analysis are involved in developing a general OCP solver, e.g., integration

routines, ODE solvers, interpolation schemes, and general constrained optimization solvers. A

general OCP solver, named the OCP solver, was designed that consists of the subsystems or

components for such numerical subroutines. Its modular programming features enable the

OCP solver to choose different numerical schemes flexibly and be easily upgraded by

replacing subroutines with new versions. The implementation details of the kernel module and

user interface of the OCP solver are presented in following sections.

4.2 Multifunctional Optimization System Tool - MOST

In the AOCP method, the optimal control problem is converted into an NLP program so

that any reliable nonlinear constrained optimization solver can be applied to solve it

numerically. A great deal of attention has been paid to using the SQP method to solve NLP

problems (Tseng, 1987; Jaddu and Shimemura, 1999). For this dissertation, the

47

multifunctional optimization system tool MOST (Tseng, 1993), based on the SQP method, has

been chosen to solve the NLP problem. This powerful optimization software was developed to

solve multi-objective optimization problems with both continuous and discrete design

variables (Tseng et. al., 1993). The MOST software contains three main modules for dealing

with continuous variables, discrete variables, and multi-objective optimization, respectively.

In the primary module, a SQP method (Arora, 2004) is employed to perform the

single-objective optimization for problems with continuous design variables. The SQP is

selected because of its accuracy, efficiency, and robustness. MOST’s accuracy and stability

has been tested in the research using 115 test problems with 2 to 96 design variables given by

Hock and Schittkowski (1980) The results were satisfactory and also indicated that MOST

can handle large-scale engineering optimization with excellent convergence (Tseng et. al.,

1988a; 1988b). To cope with the discrete-valued optimal control problems arising from

discrete design variables, an enhanced branch-and-bound method (Tseng et. al., 1995) was

integrated into the program. In this module, the original design space of discrete variables is

converted into one with continuous variables by dropping the noncontinuous restrictions

sequentially. In each of the converted continuous design spaces, the SQP module described

above is then utilized to find the optimal values.

Nevertheless, in many engineering applications there frequently exist several mutually

conflicting or competing objectives and requirements. Therefore, multi-objective (vector)

optimization offers a very promising way to handle such problems. For multi-objective

optimization, MOST provides decision makers, goal programming, compromise programming,

and the surrogate worth trade-off method (Evans, 1984; Tseng and Lu, 1990) to help users

determine the best compromised solutions to nonlinear problems.

It is known that a rigorous formulation of the design problem helps the designer better

understand the problem and a proper mathematical formulation leads to a good solution.

48

MOST provides an input data file that includes the initial design, and it transcribes the design

problem by coding subroutines that include evaluation of the cost, in routine cusermf, and

constraint functions, in routine cusercf (see Figure 4.1). Because of its user-defined

subroutines, MOST can be extended to flexibly integrate other analysis packages, e.g.,

ANSYS (Yang et al. 1992; Lin et al., 1992), EUCLIS-IS (Wang, 1993), and MATHEMATICA

(Su, 1994). Moreover, with the assistance of an interface coupler, MOST can deal with the

complexity and large size of engineering systems that have no explicit relationships between

inputs and system outputs (Huang, 1994). The architecture of the MOST interface coupler is

shown in Figure 4.2. The IAOS, a new distributed version of the interface coupler, was

developed to deal with analysis packages installed on different machines (Huang, 1994). In

IAOS, MOST and the interface coupler are merged into a powerful new optimizer (see Figure

4.3).

4.3 Structure of the Proposed OCP Solver

The kernel of the OCP solver is written in FORTRAN and has been tested on a UNIX

platform. Because of the increased popularity and technical developments in the calculation

ability of the personal computer (PC), for this dissertation, the OCP solver has been

transplanted onto a PC platform. The structured chart for the entire OCP solver is given in

Figure 4.4, and the connections between the OCP solver and MOST are shown in Figure 4.9.

Four primary independent modules of the OCP solver are introduced below.

CTRLMF module: The structure of this module, given in Figure 4.5, links with MOST’s

user-defined subroutine cusermf and contains six subroutines. The control routine CTRLMF is

used to calculate the value of the performance index, to partition the array, and to check

available memory. The pseudocode for the CTRLMF module of the AOCP algorithm is shown

in Table 4.1.

CTRLCF module: This module, whose structure is shown in Figure 4.6, calculates the

49

constraint function values. First, the information on the state trajectory is passed from the

CTRLMF module and then the values of the functional constraints and dynamic constraints

are calculated in routine CTRLCF. In this module, subroutine PTCST is used to calculate the

number and values of dynamic constraints for the alternative treatments described in Section

3.4.2.

CTRLMG module: This module, illustrated in Figure 4.7, calculates the design derivatives of

the performance index by using the direct differentiation or adjoint variable method. In the

DDMMG routine, the design derivatives are calculated using direct differentiation (DDM); in

the AVMMG routine, by the adjoint variable method (AVM). The ANSAVM routine determines

the terminal conditions and integrates the adjoint differential equation using a backward

numerical integration scheme.

CTRLCG module: This module, outlined in Figure 4.8, is in charge of design sensitivity

analysis, which determines the effect of a change in the current design on the performance

index and constraint functions. Two common methods, DDM and AVM, described in Section

3.4.3, are implemented in this module. The control routine DDMCG is evaluated to obtain the

design derivatives using DDM. The information for state variable derivatives with respect to

the design variables is then passed from the CTRLMG module. If the AVM is needed to

calculate the design derivatives, the AVMCG routine is executed.

 In addition to these four modules, many useful routines are shared by a variety of

modules, e.g., DIFSOL, INGSOL, DDERKF, DDEABM, DDEBDF, SIMPSN, GAUSS, TBFIT,

TGVAL, and CTRLF. The routine DIFSOL contains three differential equation solvers (RKF,

ABM and DBF), and the routine INGSOL is used to calculate the value of an integral. In

INGSOL, the SIMPSN (bases on Simpson’s rule) and GAUSS (following the Gaussian

quadrature formula) are called on to evaluate the integral. Both the DDERKF and the

DDEABM can integrate a system of first-order differential equations, the first using the

50

Runge-Kutta-Fehlberg method and the second using the Adams-Bashforth-Moulton

predicator-corrector formulas for orders one through. The latter implements a backward

differentiation formula in the routine. The TBFIT is used to calculate the coefficients of the

interpolation function and the TGVAL, to calculate the value of functions and their derivatives.

4.4 The OCP Solver in Cooperation with MOST

Because of the extension flexibility of MOST, the OCP solver is herein treated as a MOST

module. The linkage of MOST to the OCP solver is composed of four user-defined MOST

subroutines: cusermf, cusermg, cusercf and cusercg. The OCP solver also has four

user-defined subroutines for defining an optimal control problem: USERMF, USERMG,

USERCF and USERCG. The architecture for MOST and the OCP solver is illustrated in

Figure 4.9.

In the OCP solver, the subroutine USERMF provides the cost functional value

(performance index value); subroutine USERCF provides the constraint function values; and

subroutines USERMG and USERCG provide the cost function gradient and the gradients of

the active constraints, respectively. A fifth subroutine, USEROU, can be developed by the user

to perform a subsequent optimality analysis for the optimal solution and obtain more output.

If the analytic expressions for the gradients in USERMG and USERCG are not available,

MOST provides the option of calculating gradients using a finite difference method that can

be specified as forward, backward, or central. More details are provided in the MOST 1.1

User’s Manual (Tseng et al., 1993). As the architecture given in Figure 4.9 shows,

connections exist between the optimizer MOST, the five user subroutines, and the four

independent modules, CTRLMF, CTRLMG, CTRLCF and CTRLCG, for the OCP solver. The

four modules contain the performance index, the functional and dynamic constraints, the

gradient of the performance index, and the constraint function gradients for the optimal

control problems, respectively. They can be connected to each other to form a general

51

constrained optimization solver.

4.5 User Interface for the OCP Solver

The user interface for the OCP solver consists of two parameter files and four subroutines.

Users can specify the optimization parameters and numerical schemes in the parameter files

of both MOST and the OCP solver, such as acceptable violation of constraints for feasible

designs, the differential equation solver, the integration rules, and the interpolation scheme.

The user interfaces for the OCP solver and MOST are shown in Figure 4.10.

The MOST optimal parameter file, shown in Table 4.2, is used to configure the optimizer

parameters (details can again be found in the MOST user manual [Tseng et. al., 1993]).

Details of the OCP parameter file fort.11 – which contains information on the number of

equations, grid points, equality and inequality functional constraints, and the parameters for

numerical schemes – can be found in Tseng (1987). Table 3 gives the OCP parameter file for

the van der Pol oscillator problem to be introduced in Section 4.7.1. Once all four necessary

user-defined subroutines, FFN, GFN, HFN, and Z0FN, are ready, they should be linked to the

OCP through the MOST kernel. Figure 4.10 shows the relationship between the user-defined

routines and the MOST modules. FFN evaluates the integral terms of the performance index

or functional constraints, while GFN calculates the values of the first term of the performance

index or functional constraints and the dynamic constraints. HFN is used to evaluates the

system state equation f(b, u(t), x(t),t), and finally, Z0FN is responsible for calculating the

initial values of the state variables, x(t0). Figure 4.11 gives a flowchart for the OCP solver.

4.6 Systematic Procedure for Solving the OCP

In this dissertation, the OCP is converted into an NLP problem using an admissible

optimal control problem formulation then the optimizer based on the SQP method is used to

solve the NLP problem numerically. These procedures can now be directly implemented, and

52

the complicated details of transformation and programming automatically completed, in the

proposed OCP solver. Because the optimal control and state trajectories are obtained and

recorded in the output files, engineers can follow an efficient and systematic procedure to

solve various optimal control problems. The procedure for solving the OCP with the OCP

solver is as follows:

1) Defining the OCP problem following the formulation defined in Section 2.2.

2) Preparing the parameter files and user-defined subroutines according to the

formulation.

3) Compiling the user’s subroutines and linking with the OCP solver.

4) Executing the OCP solver and obtaining the optimal results.

4.7 Illustrative Examples

Two types of optimal control problems mentioned in the literature have been used as test

problems to evaluate the performance of the proposed method. In the AOCP method, both the

acceptable violation of constraints for feasible designs and the acceptable tolerance for the

convergence parameter are 10-3. The numerical results for all example problems were

obtained on a Pentium 4 Celeron 1.2 GHz computer with 384 MB of RAM.

4.7.1 The van der Pol Oscillator Problem

The van der Pol oscillator problem was given and solved by Bullock and Franklin (1967)

using a second variation method. The problem was also used by Jaddu and Shimemura (1999)

to verify their computational method. In this dissertation, it is further used to evaluate the

performance and capabilities of the proposed method and the OCP solver. The van der Pol

oscillator problem can be formulated by the following minimization

dtuxxJ)(
2
1 22

2
2

1

5

00 ++= ∫ (4.1)

53

subject to

1 2
2

2 1 1 2

,

(1) .

x x

x x x x

=

= − + − +

�
� u

 (4.2)

with initial states xT(0) = [1, 0]T.

Based on this problem, Jaddu and Shimemura considered three cases that can also be

solved by the OCP solver: the unconstrained problem, the terminal state constrained problem,

and the terminal states and control constrained problem.

Case I: Free end point and no control constraints

The optimal solution for this problem found by Bullock and Franklin (1967) using a

second variation method was J0
* = 1.433508, while that found by Jaddu and Shimemura

(1999) using a ninth-order Chebyshev series to approximate x1(t) was J0
* = 1.4334872.

Using the OCP solver, in which the control variable u is discretized into 21 grid points,

the optimal value is J0
* = 1.4334723, smaller than both earlier reported results. The

numerical parameters for MOST are listed in Table 4.2, and the optimal control and state

trajectories are shown in Figure 4.12.

Case II: Terminal state constraint

()() () ()2 11x f f ft x t x tϕ = − + = 0 (4.3)

For this problem, Bullock and Franklin (1967), again using the second variation method,

found an optimal value of J0
* = 1.6905756, while Jaddu and Shimemura (1999), also

using a ninth-order Chebyshev series to approximate x1(t), found an optimal value of J0
* =

1.6857113. In this study, the terminal state constraint is treated as an equality constraint

and the other number parameters, the same as in case I. With the OCP package, the value

obtained is J0
* = 1.6856957. Figure 4.13 shows the optimal control and state trajectories

for the proposed OCP solver.

54

Case III: Terminal state constraints and saturation constraints on control

The terminal state constraints and the saturation constraints on control are described in

the following equation:

()
()

()

1 1

2 2

3

1 0,

0,

0 .75 0.

f

f

x t

x t

and u t

ψ

ψ

ψ

= + =

= =

 = − ≤

 (4.4)

When Bashein and Enns (1972) solved the problem, they obtained J0
* = 2.1439039,

while Jaddu and Shimemura (1999), this time using a twelfth-order Chebyshev series to

approximate x1(τ), found an optimal value of J0
* = 2.1443893. The solution produced by

the OCP solver is an optimal value of J0
* = 2.1375360. The optimal control and state

trajectories for the OCP solver are shown in Figure 4.14.

4.7.2 Time-optimal Control Problem: Overhead Crane System

Overhead cranes are widely used in factories and workplaces to transport objects. An

overhead crane system, like that sketched in Figure 4.15, is a high-order nonlinear system that

consists of a cart with a point load suspended by cables. The control problem is to transfer the

load from an arbitrary point A to point B in minimal time subject to the requirement of zero

residual vibration at point B. The control inputs are the horizontal acceleration of the cart and

the hoisting acceleration of the cable. Hu et al. (2002) proposed this problem and solved it

using an enhanced DCNLP method. In this dissertation, this problem will be used to

demonstrate the ability of the proposed method to solve a high-order time-optimal control

problem.

 Given ,1 zx = ,2 zx �= ,3 θ=x ,4 ωθ == �x ,5 lx = lx �=6 as the state variables, and ,1 zu ��=

 as the control inputs, the OCP formulation of the overhead crane system can be

minimized as follows

lu ��=2

55

 J0 = tf (4.5)
subject to

1 2

2 1

3 4

4 1 3 4 6 3 5

5 6

6 2

,
,
,

(cos 2 sin) / ,
,

.

x x
x u
x x
x u x x x g x x
x x
and x u

=
=
=

= − −
=

 =

�
�
�
�
�

�

 (4.6)

with initial conditions xT(t0) = [0, 0, 0, 0, 4, 0]T and terminal conditions xT(tf) = [10, 0, 0, 0,

4, 0]T where g is the gravitational acceleration.

The state and control constraints are as follows:

ftttfortxtx ≤≤≤≤≤ 062 ,1)(,1)(0 (4.7)

fi tttforitu ≤≤=≤ 02,1,5.0)((4.8)

Using the admissible control formulation delineated in the previous chapter, the control

variables are converted into design variables that can then be treated as design variable

boundaries. Furthermore, the state constraints are transferred into standard constraint form as

follows:

()
()

()
()

1 2

2 2

3 6

4 6

0

1 0

1 0 ,

1 0

x t

x t

x t

and x t .

ψ

ψ

ψ

ψ

= − ≤ ,

= − ≤ ,

= − − ≤

 = − ≤

 (4.9)

In this problem, both the state and the control variables are divided into 101 grid points.

The minimum time J* = tf = 12.0004 is solved in the OCP solver by applying a cubic

piecewise interpolation scheme to the control function. Two local optimal solutions are

obtained by the OCP solver with different initial points. The trajectories of the rope angle and

angular velocity are shown in Figure 4.16, in which the solid line represents the results

obtained by the DCNLP method (Hu. et al., 2002) and the dashed line represents a second

56

optimal solution obtained by the OCP solver. As the figure illustrates, the solid line totally

matches the results obtained by Hu et al. (2002), meaning that one of the optimal solutions

found by the OCP solver tallies exactly with the trajectories obtained by the DCNLP method

(Hu. et al., 2002). In addition, the performance index (terminal time, tf) obtained by the OCP

solver (tf ≅ 12.00) is very close to the result using the DCNLP method (tf ≅ 12.00). Moreover,

according to the trajectories shown in Figure 4.16, the amplitudes of rope angle and angular

velocity for the second optimal solution obtained by the OCP solver, as represented by the

dashed line, are smaller than the others. Figures 4.17 and Figure 4.18 depict the corresponding

inputs and states with local optimal solutions, respectively. In Figure 4.17, the trajectories of

the control inputs conform to the dynamic control constraints given in Eq. (4.8). According to

the state trajectories in Figure 4.18, the initial conditions, xT(t0) = [0, 0, 0, 0, 4, 0]T ,and the

terminal conditions, xT(tf) = [10, 0, 0, 0, 4, 0]T are satisfied. Obviously, all constraints are

fulfilled, thereby proving the correctness of the solutions. In other word, both solutions solved

by the OCP solver are local optimal solutions. In practice, small amplitudes of rope angle and

angular velocity for an overhead crane will be adopted because they benefit operational

safety.

As the numerical results show, both examples convert successfully into NLP problems

using the admissible control formulation and can then be solved using the AOCP method.

Moreover, the results of the numerical schemes of the proposed method are quite accurate.

With the OCP solver, users need not spend a vast amount of effort on programming to obtain

solutions. Rather, once the problems are formulated, the solver can be implemented and the

problems solved easily. In addition, rapidly advancing computer capabilities will ensure that

computing time for the OCP solver will decrease. Thus, users will be able to obtain optimal

results more quickly than before.

57

4.8 Numerical Study

To investigate how the numerical schemes affect the validity of the solution and

computational efficiency, both the van der Pol oscillator problem and the overhead crane

control problem are solved again using different numerical schemes and time intervals that

introduced in the previous chapter. Here, the finite-difference method (DSA=FDM) and the

DDM for sensitivity analysis are selected to evaluate their performance. Simpson’s rule

(INTG=SIMPSN) and the Gaussian quadrature formula (INTG=GAUSS) are used to carry

out the numerical integration over the time interval. DDERKF and DDEABM with the option

to switch to DDEBDF are selected for solving first-order differential equations with a relative

scalar error of 1.0E-8 and a scalar error of 1.0E-10. Three common interpolation schemes –

zero-order (INTP=Zero), first-order (INTP=First), and piecewise cubic-spline

(INTP=Cubic) – are chosen to estimate their effects upon the performances.

Table 4.4, which gives data types collected for the 24 cases of the case I van der Pol

oscillator problem, shows the total number of iterations (NIT) of the AOCP method, the

optimal value of the performance index (J0
*), and the convergence parameter (Conv. Par.) and

CPU time for the entire iterative process. The lower part of the table includes the mean values

for different conditions. In contrast, in the case III van der Pol oscillator problem, a dynamic

constraint is imposed that can be used to compare the dynamic treatments. The conventional

design (DTC=ALL), worst-case design (DTC=MAX), and hybrid design (DTC=HYB) for

dynamic constraints are selected to evaluate their performance. In this case, two different time

grid points are chosen to compare the effects on performance of either a coarse or fine mesh.

The comparison among these dynamic treatments with different mesh points is list in Table

4.5. These results indicate that the worst-case design needs more iterations and CPU time to

converge. In addition, the optimum performance index with a fine mesh is more accurate than

that with a coarse mesh. Similarly, the overhead crane control problem can be solved using

58

different numerical schemes (the results are shown in Table 4.6).

Overall, the results in Table 4.4 and Table 4.6 show the performance of all numerical

schemes to be quite accurate. However, the design sensitivity analysis using the

finite-difference method (FDM), the differential equation solver with integration using a

fifth-order Runge-Kutta algorithm (DDERKF), the Gaussian quadrature formula (GAUSS),

and the interpolation scheme with a first-order interpolation function give better performance

with respect to efficiency. From the Table 4.5 data, it is obvious that the fine mesh increases

computational cost, while dynamic constraint treatment using the conventional design

treatment (ALL) gives more efficient performance than the worst-case design treatment

(MAX).

4.9 Summary

This chapter has presented the major modules for the general optimal control problem

solver being developed, namely, the OCP solver. Discussed first was the multifunctional

optimization solver, MOST, which is used as the kernel of the proposed solver. To develop the

OCP solver, use of the interface coupler that integrates the MOST optimizer with other

analyzers via standard input/output files has been extended. In addition, the AOCP algorithm

has been implemented as an external analyzer module and involved in the OCP solver. The

discussion also presented the implementation details of the interface between MOST and the

AOCP module, as well as the user interface for the OCP solver.

The primary purpose of this dissertation is to present a systematic procedure for solving

optimal control problems with the OCP solver provided. To this end, the van der Pol oscillator

problem with various terminal states and control constraints and the overhead crane control

problem, a high-order nonlinear time-optimal control problem, were used to evaluate the

capability and accuracy of the OCP solver. A performance comparison among different

numerical schemes involved in the OCP solver was also carried out. The results indicate that

59

the proposed OCP solver can truly facilitate the solving of engineering control problems in a

systematic and efficient way.

60

Table 4.1 Pseudo-code for the CTRLMF module of the AOCP algorithm.

Calculate the values of the performance indexes J0 and return those values.

END

Calculate the state of the control variables at any time in [t0, tf] by applying

interpolation schemes.

Calculate the values of the state variables by solving the IVP with the backward

differentiation formulas (BDF) method.

ENDIF

ELSE (the IVP is stiff)

Calculate the values of the state variables by solving the IVP with the

Rung-Kutta-Fehlberg (RKF) method.

IF the IVP is non-stiff THEN

Substitute the values of control variables into the system equations Eq. (3.16) so the

system equations with the initial conditions in Eq. (3.17) form an initial value

problem (IVP).

Calculate the values of control variables at any time in [t0, tf] by applying

interpolation schemes.

BEGIN

Assign the values of the discretized control variables from design variable vector P.

CTRLMF(P, J0, nv, nobj, itr_k, ierr)

61

Table 4.2 MOST input file for the van der Pol oscillator problem.

 tit = van der Pol oscillator problem, case I
 nv = 21
 nobj = 1
 neql = 0
 niql = 0
 ntrs = 100
 ipr = 3
 iact = 5
 igrad = 1
 del = 1.0000e-05
 acs = 1.0000e-03
 acv = 1.0000e-03
 act = 1.0000e-12
 X[1]= 1.0 -10.0 10.0
 X[2]= 1.0 -10.0 10.0
 X[3]= 1.0 -10.0 10.0
 X[4]= 1.0 -10.0 10.0
 X[5]= 1.0 -10.0 10.0
 X[6]= 1.0 -10.0 10.0
 X[7]= 1.0 -10.0 10.0
 X[8]= 1.0 -10.0 10.0
 X[9]= 1.0 -10.0 10.0
 X[10]= 1.0 -10.0 10.0
 X[11]= 1.0 -10.0 10.0
 X[12]= 1.0 -10.0 10.0
 X[13]= 1.0 -10.0 10.0
 X[14]= 1.0 -10.0 10.0
 X[15]= 1.0 -10.0 10.0
 X[16]= 1.0 -10.0 10.0
 X[17]= 1.0 -10.0 10.0
 X[18]= 1.0 -10.0 10.0
 X[19]= 1.0 -10.0 10.0
 X[20]= 1.0 -10.0 10.0
 X[21]= 1.0 -10.0 10.0

62

Table 4.3 Parameter file for the van der Pol oscillator problem.

2 0 0 0 0
0. 2.0
3 0 2 2 64 1 0 1 3
2 1 2 101 3
0 1 1 0 0 0
1 1 0 0 1 0
2 1 0 0 1 0
0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
1 1 0 0 1 0
2 1 0 1 1 0

63

Table 4.4 Performance comparison of various numerical schemes for the oscillator problem,
case I.

DSA INTG DIFF INTP NIT J0* Conv. Par. CPU
Zero 11 1.4530 4.9577e-4 19.639
First 21 1.4333 7.6480e-4 6.069

DDERKF

Cubic 20 1.4334 5.4521e-4 18.146
Zero 11 1.4530 4.9577e-4 18.455
First 21 1.4333 7.6480e-4 19.147

SIMPSN

DDEABM

Cubic 20 1.4334 5.4521e-4 15.202
Zero 12 1.4422 9.7245e-4 20.499
First 21 1.4328 8.4954e-4 4.665

DDERKF

Cubic 20 1.4334 5.4616e-4 14.392
Zero 12 1.4422 9.7245e-4 19.078
First 21 1.4328 8.4954e-4 17.686

DDM

GAUSS

DDEABM

Cubic 20 1.4334 5.4616e-4 11.776
Zero 13 1.4530 3.6313e-4 3.615
First 21 1.4333 7.6261e-4 1.382

DDERKF

Cubic 20 1.4334 5.4124e-4 1.542
Zero 13 1.4530 3.6306e-4 3.615
First 21 1.4333 7.5959e-4 3.244

SIMPSN

DDEABM

Cubic 20 1.4334 5.4139e-4 2.333
Zero 14 1.4422 5.3821e-4 3.445
First 21 1.4328 8.4715e-4 0.752

DDERKF

Cubic 20 1.4334 5.4218e-4 0.871
Zero 14 1.4422 5.3905e-4 3.555
First 21 1.4328 8.3944e-4 2.754

FDM

GAUSS

DDEABM

Cubic 20 1.4334 5.4269e-4 1.603
Averages

DDM — — — 17.5 1.4380 6.957E-04 15.396
FDM — — — 18.2 1.4380 5.983E-04 2.393

— SIMPSN — — 17.3 1.4407 5.922E-04 12.707
— GAUSS — — 18.0 1.4361 7.154E-04 8.423
— — DDERKF — 17.8 1.4380 6.474E-04 7.918
— — DDEABM — 17.8 1.4380 6.466E-04 9.871
— — — Zero 12.5 1.4476 5.925E-04 11.488
— — — First 21.0 1.4331 8.047E-04 6.962
— — — Cubic 20.0 1.4334 5.438E-04 8.233

Bullock and Franklin (1967) J* = 1.433508
Jaddu and Shimemura (1999) J* = 1.433487

64

Table 4.5 Various dynamic constraint treatments for the oscillator problem, case III.

NGP DCT NIT Max. Vio. Conv. Para. J0* NMF NCF NTG CPU
ALL 27 5.01403e-9 8.79668e-5 2.13771 594 594 340 2.273
MAX 100 6.38948e-6 6.42630e-3 2.13758 2200 2200 243 8.34121
HYB 30 9.76433e-9 7.59396e-5 2.13772 660 660 388 2.594
ALL 41 8.03759e-8 6.72651e-5 2.13657 4183 4183 1764 34.710
MAX 100 1.91428e-5 1.23887e-4 2.13658 10205 10205 1110 79.635101
HYB 50 2.60229e-6 7.37412e-5 2.13658 5107 5107 2193 43.564

Averages
 ALL 34 4.26950E-8 7.76160E-5 2.13714 2388.5 2388.5 1052 18.4915
 MAX 100 1.27661E-5 3.27509E-3 2.13708 6202.5 6202.5 676.5 43.988
 HYB 40 1.30603E-6 7.48404E-5 2.13715 2883.5 2883.5 1290.5 23.079

65

Table 4.6 Comparison of various numerical schemes for the overhead crane system.

INTG DIFF INTP NIT Max. vio. Conv. Para. J0* CPU
Zero 101 6.73320E-06 8.42785E-04 12.17290 1590.31
First 95 5.31769E-09 9.40788E-04 12.04890 116.29

DDERKF

Cubic 92 2.16952E-09 7.97492E-04 12.04730 165.252
Zero 102 1.46089E-05 9.37978E-04 12.17290 1668.69
First 93 4.02915E-06 9.99191E-04 12.04880 800.555

SIMPSN

DDEABM

Cubic 60 3.72381E-06 6.89197E-04 12.00040 280.323
Zero 101 6.73320E-06 8.42785E-04 12.17290 1584.946
First 95 5.31769E-09 9.40788E-04 12.04890 114.797

DDERKF

Cubic 92 2.16952E-09 7.97492E-04 12.04730 162.769
Zero 102 1.46089E-05 9.37978E-04 12.17290 1599.916
First 93 4.02915E-06 9.99191E-04 12.04880 799.932

GAUSS

DDEABM

Cubic 60 3.72381E-06 6.89197E-04 12.00040 280.25
Average

SIMPSN — — 90.5 4.85042E-06 8.67905E-04 12.08187 770.2

GAUSS — — 90.5 4.85042E-06 8.67905E-04 12.08187 757.1

— DDERKF — 96.0 2.24690E-06 8.60355E-04 12.08970 622.4

— DDEABM — 85.0 7.45395E-06 8.75455E-04 12.07403 904.9

— — Zero 101.5 1.06711E-05 8.90382E-04 12.17290 1611.0

— — First 94.0 2.01723E-06 9.69990E-04 12.04885 457.9

— — Cubic 76.0 1.86299E-06 7.43345E-04 12.02385 222.1
Hu et al. (2002) ≅ 12

66

Start
Parameter file

of MOST

Initial design
lower & upper bounds

Convergence
Criteria

?

Show the results

Calculate the gradients of
cost and constraint

functions

Update design variables

P(k+1)=P(k)+αd

Stop

NO

Yes

cusermf
Calculate the values
of the cost functions

cusermg
Calculate the gradient
of the cost functions

cusercf
Provides constraint

functions values

cusercg
Calculate the gradients

of active constraints

cuserou
Perform post

optimality analyses

Figure 4.1 The architecture of MOST.

67

input files for
analysis
packages

output files for
analysis
packages

Analysis
software

Parameter file of MOST

caculate the no. of
marks & read the

positons of
marks in output files

read the marked
terms of output files

Run Analysis
software

initial design:
lower & upper bounds
and other parameters

assign a new
design value
to input files

cusermf

cusercf

Interface

enter new
design

variables

prepare the input
files for analysis

software

Run analysis
software

read data from
output files

evaluate
cost

evaluate
constraints

Final Results

caculate the no.
of marks & read
the positions of
marks in input

files

Figure 4.2 Architecture of the interface coupler.

68

Start

Xiaos.c

init.c

optfile.c

mostio.c

inp2.c

Stop

System
Information

 File

Non-marked
Files

Optimal
Prarmeter

File

Marked Files

Optimal Model
File

Optimal result
file

readinp()

writeinp()

init()

file_trans()

Figure 4.3 Architecture of the new interface coupler – IAOS.

69

Figure 4.4 Structure chart of the OCP Solver.

70

Figure 4.5 CTRLMF module.

71

Figure 4.6 CTRLCF module.

72

Figure 4.7 CTRMG module.

73

Figure 4.8 CTRCG module.

74

Start
Parameter file
of MOST

Given: Initial design,
lower & upper bounds,
 and other parameters

Optimal
design ?

Show results

Calculate the gradients of
cost and constraints

functions

Update design variables
P(k+1) = P(k) +α(k) d(k)

Stop

NO

Yes

cusermf

cuserou

cusercg

cusermg

cusercf

USERMF

USERCG

USERMG

USERCF

The OCP Solver

CTRLMF

CTRLCG

CTRLMG

CTRLCF

Figure 4.9 Connection architecture of MOST and OCP solver.

75

Final Results

Parameter file of MOST

initial design
lower & upper bounds
and other parameters The OCP Solver

Parameter files of
the OCP Solver

(fort.11)

USERMF

USERCF

USERMG

USERCG

cusermf

cusercf

cusermg

cusercg

cuserou
USEROU

Output file of the
OCP package

(fort.12)

FFN

GFN

HFN

Z0FN

CTRLPR

User interface

Subroutines

Figure 4.10 User interfaces for MOST and the OCP solver.

76

,i jJ φ

Figure 4.11 Flowchart for the OCP solver.

77

0.0 1.0 2.0 3.0 4.0 5.0
Time(sec.)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u

x1

x2

Figure 4.12 Control and state trajectories for van de Pol oscillator problem, case I.

78

0.0 1.0 2.0 3.0 4.0 5.0
Time(sec.)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

x1

x2

Figure 4.13 Control and state trajectories for van de Pol oscillator problem, case II.

79

0.0 1.0 2.0 3.0 4.0 5.0
Time(sec.)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

u
x1

x2

Figure 4.14 Control and state trajectories of van de Pol oscillator problem, case III.

80

z(t)

Θ(t)

l(t)

F(t)

A B

Figure 4.15 Schematic of the overhead crane system (Hu et al., 2002).

81

(a) Rope angle trajectory.

 (b) Angular velocity trajectory.

 Figure 4.16 State trajectories of the overhead crane system.

82

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
Time(sec.)

-0.8

-0.4

0.0

0.4

0.8

A
cc

el
er

at
io

n
(m

/s
2)

Control inputs
u1(Cart acceleration)
u2(Rope acceleration)

(a) Input trajectories of optimal solution 1.

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
Time(sec.)

-0.8

-0.4

0.0

0.4

0.8

A
cc

el
er

at
io

n
(m

/s
2)

Control inputs
u1(Cart acceleration)
u2(Rope acceleration)

(b) Input trajectories of optimal solution 2.

Figure 4.17 Control trajectories for overhead crane system.

83

0 5 10 15
Time(sec.)

-20

-10

0

10

20

State Trajectories
X1
X2
X3
X4
X5
X6

(a) State trajectories of optimal solution 1.

0 5 10 15
Time(sec.)

-20

-10

0

10

20

State Trajectories
X1
X2
X3
X4
X5
X6

(b) State trajectories of optimal solution 2.

Figure 4.18 State trajectories with different initial guess for overhead crane system.

84

CHAPTER 5
 A COMPUTATIONAL SCHEME FOR SOLVING THE

DISCRETE-VALUED OPTIMAL CONTROL PROBLEM

5.1 Introduction

Time-optimal control problems have attracted the interest of researchers in the area of

optimal control because they often occur in practical applications. Thus a series of essential

results has been published concerning applications of Pontryagin’s maximum principle to the

time-optimal control of finite dimensional linear systems and low-order nonlinear systems.

However, in the case of state- and/or control-constrained high-order nonlinear systems,

solving the two-point boundary value problem that results from Pontryagin’s maximum

principle is difficult. Moreover, analytic solutions are impractical if the dimension of a system

exceeds three (Kirk, 1970). Therefore, in recent research, many numerical techniques have

been developed and adopted to solve time-optimal control problems.

For a time-optimal control problem, one of the most common types of control function is

the piecewise-constant function by which a sequence of constant inputs is used to control a

given system with suitable switching times. Additionally, when the control is bounded, a very

commonly encountered type of piecewise-constant control is bang-bang, which switches

between the upper and lower bounds of the control input. When the controls are assumed to

be of the bang-bang type, the time-optimal control problem becomes one of determining the

switching times. Several methods for determining TOCP switching times have been

extensively studied in the literature (see, e.g., Kaya and Noakes, 1996; Bertrand and Epenoy,

2002; Simakov, 2002). However, in these methods, the number of switching times must be

known before their algorithms can be applied. In most practical cases, however, as pointed out

earlier, the number of switching times is unknown before the control problems are solved. To

overcome the numerical difficulties that arise during the process of finding the exact

switching points, Lee et al. (1997) propose the control parameterization enhancing transform

85

(CPET), which is also extended to deal with optimal discrete-valued control problems (Lee et

al., 1999) and applied to solve the sensor-scheduling problem (Lee et al., 2001).

In like manner, this dissertation focuses on developing a computational method to solve

discrete-valued optimal control problems. This method consists of two computational phases:

first, switching times are calculated using existing optimal control methods and second, the

resulting information is used to compute the discrete-valued control strategy. The proposed

algorithm, which integrates the existing optimal control solver with an enhanced

branch-and-bound method (Tseng et al., 1995), is implemented and applied to some example

systems, including that of the F-8 fighter aircraft.

5.2 Problem Formulations

5.2.1 Optimal Discrete-valued Control Problems

In many practical engineering applications, the control action is restricted to a set of

discrete values that forms a discrete-valued control problem. An optimal discrete-valued

control problem can be viewed as exactly determining the switching points of the optimal

discrete-valued control. The major difference between continuous and discrete-valued control

problems is the control function. For a piecewise-constant function ud:)0, f dt⎡⎣ U6 where

Ud is a finite set in , if um
d has a finite number of discontinuous or switching points, it is

referred to as an admissible control. Letting Ud be the class of all such admissible controls, in

like manner to problem (PU), the optimal discrete-valued control problem may be stated

formally as follows: Given the dynamic system (2.1, 2.2), ud ∈Ud must be found such that the

cost functional (performance index)

() ()0 0 00
, (), , (), (),ft

f f dJ t t t t= Φ + ∫b x b u xL t dt (5.1)

86

is minimized subject to the constraint

()

()
0

, (),

0 ; 1,.........,
, (), (),

0 ; 1,....,
f

i i f f

t e
i

e T

J t t

i N
t t t dt

i N N

= Φ

= =⎧
 + ⎨≤ = +⎩

∫ d

b x

b u xL
 (5.2)

and the following continuous inequality constraint on the function of the state and control:

(), (), (), 0 ; 1,.........,j d t t t j qψ ≤ =b u x , 0, ft t⎡ ⎤∀ ∈ ⎣ ⎦ . (5.3)

It should be noted that, for a given ud ∈ Ud, the right hand side of Eq. (2.1) may be

discontinuous at the switching points of ud. Denoting these switching points as t1, t2,…,tN and

also defining t0 and tN+1 such that 0 = t0< t1< t2<…< tN< tN+1 = tf, the solution x(t) is then

obtained in a piecewise manner by successive integration over each time interval [ti, ti+1], i =

0, 1, 2, …,N. The resulting x(t) is continuous and piecewise differentiable on (0, tf).

5.2.2 Mixed-Discrete Optimal Control Problems

Mixed-discrete control problems that control functions are mixed with continuous and

discrete functions is considered to meet the generality. For a continuous control variable, any

piecewise continuous function uc from [0, tf] into may be taken as an admissible control.

For optimal discrete-valued control problems, a piecewise-constant function u

m

d,

, may be taken as an admissible control, where U(d: 0,du ft ⎤⎦ 6 U d is a finite set in .

Letting U be the class of all such admissible controls, then a mixed-discrete optimal control

problem may be stated formally as follows: Given the dynamical system (2.1, 2.2), u = [u

m

c
T,

ud
T]T∈ U must be found such that the cost functional (performance index)

() ()0 0 00
, (), , (), (),ft

f fJ t t t t= Φ + ∫b x b u xL t dt (5.4)

is minimized subject to the constraint

87

()

()
0

, (),

0; 1,.........,
, (), (),

0; 1,....,
f

i i f f

t e
i

e T

J t t

i N
t t t dt

i N N

= Φ

= =⎧
+ ⎨≤ = +⎩
∫

b x

b u xL
 (5.5)

and the following continuous inequality constraint on the function of the state and control:

(), (), (), 0; 1,.........,j t t t j qψ ≤ =b u x 0, ft t⎡ ⎤∀ ∈ ⎣ ⎦ . (5.6)

5.2.3 Time-Optimal Control Problems

For a time-optimal control problem, the terminal time, tf, is not fixed and is treated as a

design variable in b. The system govern equations described by Eq. (2.1) are expressed in

general first-order form. Equation (5.5) represents the mixed state and control constraints, and

the terminal conditions are treated as equality constraints in its first term. Then the class of

time optimal control problems can be stated formally in the following manner.

Subject to the system (2.1, 2.2) together with the final condition,

()f ft =x x , (5.7)

control u ∈ U must be found such that tf is minimized, where xf is a given vector in . For

convenience, this time-optimal control problem will be referred to as problem (TP) whose

cost functional is then t

n

f . Clearly, the problem (TP) can be written as follows: Given the

dynamical system (2.1, 2.2), u ∈ U must be found such that the cost functional

0 0

ft

fJ dt= =∫ t , (5.8)

is minimized subject to the constraint Eq.(5.5) and continuous inequality constraint Eq.(5.6).

88

5.3 Mixed-Integer NLP Algorithm for Solving TOCP

Most discrete programming methods are based on the assumption that discontinuous

optimization problems are transformed into multiple continuous optimization subproblems to

take advantage of well-established continuous optimization algorithms. These continuous

optimization problems are solved by imposing constraints on the discreteness of the design

variables. The optimal discrete solution is taken from among the continuous solutions

obtained in the optimization sub-problems. However, the large number of discontinuous

design variables greatly increases the number of the continuous optimization subproblems.

Tseng et al. (1995) presented an enhanced branch-and-bound method for reducing the number

of executions of the continuous-optimization scheme by intelligently selecting the bounding

route. Because such an enhanced branch-and-bound method dramatically reduces the total

number of continuous optimization runs executed and speeds up its convergence (Tseng et al.,

1995), it is adopted herein and integrated with the AOCP to develop a mixed integer NLP

algorithm for solving time-optimal control problems.

5.3.1 Integrating the AOCP and Enhanced Branch-and-Bound Method

The algorithm developed in this dissertation consists of three major processes:

branching, the AOCP, and bounding. Initially, all discrete-valued restrictions are relaxed and

the resulting continuous NLP problem is solved using the AOCP. If the solution of continuous

optimum design problem occurs when all discrete-valued variable values are in the discrete

set Ud, which is preset by the user to meet practical requirements, then an optimal solution is

determined and the procedure ends. Otherwise, the algorithm selects one of the

discrete-valued variables whose value is not in the discrete set Ud – for example, the j-th

design variable, Pj, with value – and branches on it. ˆ
jP

Branching process: In the branching process, the original design domain is divided into

89

three subdomains by two allowable discrete values, ūi and ūi+1, that are nearest to the

continuous optimum, as shown in Figure 5.1. Among the three subdomains, subdomain II,

included in the continuous solution but not in the feasible discontinuous solution, is dropped.

In the other two subdomains, called nodes, two new NLP problems are formed by adding

simple bounds, ˆ
jP ui≤ and 1

ˆ
j iP u +≥ , respectively, to the continuous NLP problems. One of

the two new NLP problems is selected and solved next. Many search methods based on tree

searching – including depth-first search, breadth-first search and best-first search – can be

applied to choose the next branching node. The branching process is repeated in each of the

subdomains until the feasible optimal solution is found in which all the discrete variables have

allowable discrete values. Obviously, the number of subdomains may grow exponentially so

that a great deal of computing time is required. Thus in the enhanced branch-and-bound

method (Tseng et al., 1995), multiple branching and unbalanced branching strategies have

been developed to improve the efficiency of the method.

Bounding process: In discrete optimization, the minimum cost is always greater than or

equal to the cost of the original regular optimal design that was originally branched. This fact

provides a guideline for when branching should be stopped. If the branching process yields a

feasible discontinuous solution, then the corresponding cost value can be considered a bound.

Any other subdomain that imposes a continuous minimum cost larger than this bound need

not be branched further. This bounding strategy can be used to select the branching route

intelligently and avoid the need for a complete search over all the branches.

5.3.2 Algorithm for Solving Discrete-valued Optimal Control Problems

In this dissertation, the AOCP algorithm proposed in Section 3.4.7 is used as the core

iterative routine of the enhanced branch-and-bound method. All candidates will be evaluated

and finally an optimal solution can be found. Here, symbol S defined in Eq. (3.11) is used to

represent the discretized control variable set and the P defined in Eq. (3.12) is the design

90

variable vector. Assuming that the problem at least has one feasible solution, it can then be

proven that an optimal solution exists and can be found by the proposed method. The details

of the two-phase scheme algorithm are as follows and Figure 5.2 presents a schematic flow

chart of the algorithm for solving discrete-valued optimal control problems.

Algorithm: Combines AOCP and enhanced branch-and-bound methods

Initialization: Relax all discrete-valued restrictions and then place the resulting continuous

NLP problem on the branching tree.

Set the cost bound Jmax = ∞.

while (there are pending nodes in the branching tree) do

1. Select an unexplored node from the branching tree.

2. Control discretization.

3. Repeat (for k-th AOCP iteration)

(1). Solve the initial value problem for state variable x(k) of AOCP.

(2). Calculate the values of the cost function, J0, and the constraints.

(3). Solve the QPP

(k) problem by applying the BFGS method to obtain the descent

direction d(k).

(4). if (QPP

(k) is feasible and convergent) then exit AOCP.

(5). Find the step size α(k) of the SQP method by using the line search method.

(6). Update the design variable vector: PP

(k+1) = P(k)
P + α(k) d(k).

4. if (NLP is optimal) and (J0<Jmax) then

if (is feasible) then (1)k +S

Update the current best point by setting the cost bound Jmax = J0.

Add this node to the feasible node matrix.

else

Evaluate the values of criteria for selecting the branch node.

91

Choose a discrete-valued variable
(1)k

l

+

S ∉ U and branch it.

Add two new NLP problems into the branching tree.

Drop this node.

endif

else

Stop branching on this node.

endif

end while.

5.4 Two-Phase Scheme for Solving TOCP

The mixed integer NLP algorithm developed in this dissertation is one type of switching

time computation (STC) method. Most switching time computation methods (see, e.g., Kaya

and Noakes, 1996; Lucas and Kaya, 2001; Simakov et al., 2002) assume that the structure of

the control is bang-bang and the number of switching times is known. Unfortunately, the

information on the switchings of several practical time-optimal control problems is unknown

and hard to compute using analytical methods. Hence, to overcome this difficulty, this

dissertation proposes a two-phase Scheme that consists of the AOCP plus the mixed integer

NLP method. In Phase I, the AOCP is used to calculate the information on switchings with

rough time grids so that the information can be used in Phase II as the feasible initial design

of the mixed integer NLP method. This scheme is described briefly below.

Phase I: Find the information about the switching times and terminal time.

1. Solve the time-optimal control problem using continuous controls by following the

steps of the AOCP method proposed in Section 3.4.

2. Based on the numerical results, extract information about the switching times and

terminal time, tf.

92

Phase II: Calculate the exact solutions

3. Based on the information about switching times obtained in Phase I, treat the

switchings as design variables and add them into the time grid vector T defined in Eq.

(3.10). It should be noted that each interval between the upper and lower bounds on

each of those design variables must include one switching.

4. Insert the terminal time, tf, into the design variable vector P (see Eq. 3.12).

5. Discretize each control variable into the number of switchings plus one. Then the

discrete control vector, S, defined in Eq. (3.11) can be added to the design variable

vector P and the corresponding upper and lower bounds be limited by the original

bounds of the controls.

6. Solve the problem by applying the mixed integer NLP method, and then find the

optimal discrete-type control trajectories.

A third-order system shown in Section 5.5.1 is used to demonstrate the processes of this

numerical scheme.

5.5 Illustrative Examples

The numerical results for the following examples are obtained on an Intel Celeron 1.2

GHz computer with 512 MB of RAM memory. The AOCP is coded in FORTRAN, and C

language is used to implement the enhanced branch-and-bound method. The Visual C++ 5.0

and Visual FORTRAN 5.0 installed in a Windows 2000 operating system are adopted to

compile the corresponding programs. The total CPU times for solving the F-8 fighter craft

problem in Phase I and Phase II are 3.605 and 1.782 seconds, respectively.

5.5.1 Third-Order System

The following system of differential equations is a model of the third-order system

dynamics taken from Wu (1999).

93

21 xx =� , (5.9)

32 xx =� , (5.10)

3 310 10x x u= − +� . (5.11)

The problem here is to find the control |u| ≤ 10 in order to bring the system from the initial

state [-10, 0, 0]T to the final state [0, 0, 0]T in minimum time.

First, this problem is solved directly by the mixed integer NLP method. Assuming four

switching times (T1, T2, T3, T4) and five control arcs have values in the discrete set, Ud: {-10,

10}, the terminal time, tf, is treated as a design variable, so the design variable vector P can be

expressed as [T1, T2, T3, T4, tf, Ud1, Ud2, Ud3, Ud4, Ud5]T. Most notably, the final conditions of

the state variables are transferred to the equality constraints. Thus, the TOCP problem

becomes one of determining the switching times. Figure 5.3(a) presents the continuous

solution obtained by using the AOCP and the discrete solution determined by applying the

mixed integer NLP method proposed herein. The results indicate that the control trajectory

determined by the mixed integer NLP method is of the bang-bang type and the solution

consistent with the results obtained by Wu (1999).

As stated in Section 5.4, several assumptions must be made when the mixed integer NLP

method is applied to solving TOCP directly. Unfortunately, these assumptions cannot be

guaranteed to hold in practical cases. Consequently, the two-phase scheme proposed in this

dissertation is needed. For illustration, the third-order system is again solved using this

two-phase scheme. In Phase I, the two switching times are found to be [0.330, 0.725]T and the

terminal time tf is 0.7864. In the first phase, these switching data need not be accurate because

they are only used to help users decide on the number of switching times, the control arcs and

their corresponding boundaries. Thus, in Phase II, the design variable vector P is re-formed as

[T1, T2, tf, Ud1, Ud2, Ud3]T; the numerical result obtained by applying the mixed integer NLP

method is as presented in Figure 5.3(b). In Phase II, the switching times of the discrete control

94

input are [0.323, 0.713]T, and the terminal time tf is 0.7813 seconds. The control trajectory

also agrees with that obtained by Wu (1999).

5.5.2 Fourth-Order Systems: A Flexible Mechanism

A flexible mechanism was proposed and solved by Wu (1999). The OCP

formulation of this problem is to minimize

0 fJ t= (5.12)

subject to

1 2

2 1 3
1 1

3 4

4 1 3
2

() ,

()

,

().

x t x
k ux x x
m m

x x
kx x x

m

=

= − − +

=

= −

�

�

�

�

,

 (5.13)

control constraints

1 ()u t Mφ = ≤ (5.14)

with boundary conditions xT(0) = [0, 0, 0, 0]T and xT(tf) = [1, 0, 1, 0]T.

With admissible control formulation, the control variables are converted into design

variables and the control constraints are treated as the dynamic constraint. In this dissertation,

the system is solved by the OCP solver with the following parameters: k = 1.0 N-m-rad-1, m1 =

m2 = 1.0 kg-m2, and M = 1.0 N-m. The numbers of time-grid points for the control function

(NGP) are selected as 5, 11 and 51 to study the effect of coarser or finer mesh. Two initial

guesses, u (0) = 0.0 and u(0) = 1.0, for the control function with three piecewise interpolation

schemes – zero order, first order, and cubic spline – are used in this problem. The hybrid

method that combines the DDM and AVM for design sensitivity analysis is used to calculate

the design sensitivity coefficients.

The optimal solution for this problem is given in Table 5.2 and the trajectories of state

95

variables are shown in Figure 5.4 and Figure 5.5 shows the comparison of control trajectories

between Phase I and Phase II. All 18 test runs are successfully solved with the proposed

method, but the runs with a small number of control grid points (NGP) give higher optimum

values and less CPU time. The terminal time, tf, and the trajectories obtained in this work

agree with the results, tf ≅ 4.3, obtained by Wu (1999). The numerical results also show that

the proposed method has the capability to deal with the high-order time-optimal control

problem.

5.5.3 F-8 Fighter Aircraft

The F-8 fighter aircraft has been considered in several pioneering studies (e.g., Kaya and

Noakes, 1996; Banks and Mhana, 1992; Simakov et al., 2002) and has become a standard for

testing various optimal control strategies. A nonlinear dynamic model of the F-8 fighter

aircraft is considered below. The model is represented in state space by the following

differential equations:

2 2 2
1 1 3 1 3 1 2 1 30.877 0.088 0.47 0.019 3.846 3

1x x x x x x x x x x= − + − + − − +�

2 2
1 10.215 0.28 0.47 0.63u x u x u− + − + 3u ,

(5.15)

2 3x x=� , (5.16)

2 3
3 1 3 1 14.208 0.396 0.47 3.564 20.967x x x x x= − − − − −� u

3

 2 2
1 16.265 46 61.4x u x u u+ + + ,

(5.17)

where x1 is the angle of attack in radians, x2 is the pitch angle, x3 is the pitch rate and the

control input u represents the tail deflection angle. For convenience of comparison, the

standard settings (Kaya and Noakes, 1996; Lee et al., 1997) are used. A control |u| ≤ 0.05236

must be found that brings the system from its initial state []26.7 180 , 0, 0 Tπ to the final

state []0, 0, 0 T in minimum time.

96

When the two-phase scheme is applied, as described in Section 5.4, the switching times

computed in Phase I are 0.115, 2.067, 2.239, 4.995, and 5.282, and the terminal time is tf =

5.7417. These switching data are used to set the design variables and their corresponding

bounds, and then the problem is solved by the mixed integer NLP method. Finally, the

switching times for the discrete control input are 0.098, 2.027, 2.199, 4.944, and 5.265, and

the terminal time tf is 5.74216. Figure 5.6 shows the comparison of the controls between

Phase I and Phase II, while Figure 5.7 shows the trajectories of the states and the control of

Phase I and Phase II. This example is also solved by Kaya and Noakes (1996) using the

switching time computation method and by Lee et al. (1997) using the Control

Parameterization Enhancing Transform (CPET) method. Table 5.1 shows the terminal time tf,

switching times and the accuracy of terminal constraints computed by various methods for

this problem. According to the numerical results, the two-phase scheme provides a better

solution, and the accuracy of the terminal constraints is acceptable.

5.6 Summary

This chapter has proposed a novel numerical method for solving time-optimal control

problems with discrete-type control inputs that include the bang-bang type most commonly

encountered when the control is bounded. This two-phase computational scheme for finding a

discrete optimal control for time-optimal control problems is novel because its discrete

control can be more easily implemented than continuous control in practical applications. A

simple example, a third-order system, was presented to demonstrate the usage of the proposed

scheme. A flexible mechanism control problem and an F-8 fighter aircraft control problem

were also considered and solved by application of the proposed scheme. Numerical results

were obtained efficiently and accurately and provide evidence that the two-phase scheme

constitutes a viable method for solving time-optimal control problems with discrete-valued

controls.

97

Table 5.1 Results of various methods for the F-8 fight aircraft problem.

Method tf Switching Times

Accuracy of

Terminal

Constraints

STC

(Kaya and Noakes, 1996)
6.3867 0.0761, 5.4672, 5.8241, 6.3867 ≤ 10-5

CPET

(Lee et al., 1997)
6.0350 2.188, 2.352, 5.233, 5.563 ≤ 10-10

Two-phase scheme 5.7422 0.098, 2.027, 2.199, 4.944, 5.265 ≤ 10-10

98

Table 5.2 Optimal results for the fourth-order system.

u(t0) NGP INTP NIT J0
* Conv.Par. CPU

Zero 5 4.33196 1.04E-05 0.131
First 5 4.86764 5.69E-06 0.07

5

Cubic 5 4.90565 4.67E-07 0.06
Zero 15 4.30699 5.71E-09 1.382
First 7 4.28066 5.65E-06 0.35

11

Cubic 10 4.30041 1.52E-08 0.34
Zero 50 4.26239 1.38E-07 43.803
First 44 4.22087 3.50E-07 18.596

0.0

51

Cubic 40 4.22187 1.10E-08 12.659
Zero 6 4.33197 6.16E-07 0.12
First 7 4.86765 2.25E-07 0.091

5

Cubic 9 4.90560 3.72E-05 0.12
Zero 7 4.36249 3.51E-08 0.651
First 8 4.28064 1.09E-05 0.43

11

Cubic 10 4.30041 3.50E-07 0.39
Zero 49 4.26229 7.21E-08 42.872
First 42 4.22087 2.20E-06 17.315

1.0

51

Cubic 38 4.22187 2.88E-06 11.847

99

ūi ūi+1

J0

Pj

Continuous optimum point

ūi ūi+1

New lower boundNew upper bound

Original design domain

(I) (II) (III)

Figure 5.1 Conceptual layout of the branching process.

100

Initialization
1. Relax all discrete-valued restrictions
2. Place the resulting continuous NLP

problem on the branching tree.
3. Set the cost bound Jmax =

Is the branching tree
empty?

A

Select an unexplored node from
branching tree

Solve subproblem by applying
the OCP Solver (AOCP)

(NLP is optimal) &&
(J0<Jmax)

B

B

Yes

NO

NO

Is feasible ?

Drop this node

NO

Yes

Yes

Evaluate the values of criteria for selecting
branch object

Decide the branch of design variable

Branching process

Two new nodes
are added into
branching tree

Subdomain that
does not contain

any allowable value

Add a new
upper and

lower bounds

 Bounding process

Add the new
node to feasible

node matrix

Set new cost bound
Jmax= J0

Show results

Figure 5.2 Flow chart of the algorithm for solving discrete-valued optimal control problems.

101

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Time (sec.)

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

C
on

tro
l (

u)

Mixed Discrete NLP method (tf = 0.7813)
AOCP (tf = 0.7826)

(a) AOCP vs. a mixed-integer NLP method.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Time (sec.)

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

C
on

tro
l (

u)

Phase I (tf = 0.7864)
Phase II (tf = 0.7813)

(b) Phase I vs. Phase II.

Figure 5.3 Control trajectories for the third-order system.

102

0.0 1.0 2.0 3.0 4.0 5.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x3

x1

(a) x1 and x3

0.0 1.0 2.0 3.0 4.0 5.0
Time(sec.)

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

x4

x3

(b) x2 and x3

Figure 5.4 State trajectories for the fourth-order system (Phase II).

103

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Time(sec.)

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
on

tr
ol

 in
pu

t (
N

-m
)

Phase I (tf = 4.2398)
Phase II (tf=4.21794)

Figure 5.5 Control trajectories for the fourth-order system.

104

0.0 1.0 2.0 3.0 4.0 5.0 6.0
Time(sec.)

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

T
ai

l d
ef

le
ct

io
n

an
gl

e
(r

ad
.)

Phase I (tf = 5.74173)
Phase II (tf = 5.74216)

Figure 5.6 Control trajectories for the F-8 fighter aircraft.

105

0.0 1.0 2.0 3.0 4.0 5.0 6.0
Time(sec.)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

St
at

e
an

d
co

nt
ro

l v
ar

ia
lb

es

Tail deflection angle (rad.)
Angle of attack (rad.)
Pitch angle (rad.)
Pitch rate (rad./s)

(a) Phase I.

0 1 2 3 4 5 6
Time(sec.)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

St
at

e
an

d
co

nt
ro

l v
ar

ia
bl

es

Tail deflection angle (rad.)
Angle of attack (rad.)
Pitch angle (rad.)
Pitch rate (rad./s)

(b) Phase II.

Figure 5.7 Trajectories of the states and control input for the F-8 fighter aircraft.

106

CHAPTER 6
 ENGINEERING APPLICATIONS

6.1 Flight Level Control Problem

The flight level tracking that plays an important role in autopilot systems has received

considerable attentions from many researchers (Lygeros, 2003; Lygeros et al., 1999; Cook,

1997; Tomlin et al., 1996; Etkin and Redi, 1996). A commercial aircraft‘s cruising altitude is

typically assigned a flight level by air traffic control (ATC). To ensure aircraft separation,

each aircraft has its own flight level separated by a few hundred feet; however, changes in

flight level do happen occasionally and must be cleared by ATC. At all other times, the

aircraft crew must ensure that they remain within the allowed bounds of their assigned level.

At the same time, they must also maintain limits on factors such as speed, flight path angle,

and acceleration imposed by limitations of airframe and engine and passenger comfort

requirements or to avoid dangerous situations such as aerodynamic stall. In this paper, the

flight level tracking problem is formulated into an optimal control problem. For safety reasons,

the speed of the aircraft and the flight path angle must be kept within a safe “aerodynamic

envelope” (Tomlin et al., 1996) that can be translated into the dynamic constraints of the

optimal control problem. A flight level tracking problem and a minimum time problem are

outlined in the following sections and then solved using the proposed solver.

6.1.1 Aircraft Model

Much ATC research (e.g., Cook, 1997; Etkin and Redi, 1996) has applied a point mass

model to describe aircraft motion, considering only aircraft movement in a lateral direction. In

Figure 6.1, three coordinate frames are used to describe aircraft motion: Xg-Yg denotes the

ground frame; Xb-Yb, the body frame; and Xw-Yw, the wind frame. In addition, θ, γ, and α

denote the rotation angle between the frames; V ∈ represents the speed of the aircraft,

which is aligned with the positive Xw direction; and h is the aircraft’s altitude.

107

The equations of the motion can be derived from the force balance relationships:

cos sin
sin cos

mV T D mg
and mV L T mg

α γ
γ α γ

= − − ,
 = + − ,

�

�
 (6.1)

where T is the thrust exerted by the engine, D is the aerodynamic drag, and L is the

aerodynamic lift. By applying basic aerodynamics, the lift (L) and drag (D) can be

approximated by

2
2

2
2

(1) (1) ,
2

2

L
L

D
D

C s VL c a V

C s Vand D a V

ρ cα α

ρ

= + = +

 = = ,

 (6.2)

where CL, CD, and c are dimension-less lift and drag coefficients, s is the wing surface area

and ρ is the air density.

According to the admissible optimal control formulation described in Section 3.4, the air

model can be formulated by a three-state model with a state variable vector x(t) = [x1, x2, x3]T

= [V, γ, h]T and a control input vector u(t) = [u1, u2]T = [T, θ]T. By approximating α with a

small angle, the equations of the motion (system equations) can be written as

1 2

12
1 2 1

21

1 2

1sin 0

cos(1) 0

0 0sin

D

L

a x g x
m m

ua x ax cx g x
um x m

x x

⎡ ⎤ ⎡− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢

L

⎤

⎥
⎡ ⎤⎢ ⎥ ⎢ ⎥= − − + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

x�

⎥

 (6.3)

This model, proposed by Lygeros et al. (1999) and adopted here, extends the three dimensions

of an aerodynamic envelope protection problem. Taking into the consideration of safety

conditions, the aircraft speed and flight path angle are bounded in a rectangular limitation

called a “safe aerodynamic envelop.” Following Tomlin et al. (1996), Lygeros (2003)

proposed a simplified aerodynamic envelope that is adopted in this paper and translated into

the following dynamic constraints:

108

min 1 max

min 2 max

min 3 max

V x V
x

h x h
γ γ

≤ ≤ ,
≤ ≤
≤ ≤ ,

,

0
0
0

 (6.4)

Based on the NLP formulation described in Section 2.2, these constraints can be treated as

dynamic constraints and rewritten as follows:

1 1 min 2 1 max

3 2 min 4 2 max

5 3 min 6 3 max

: 0 , :
: 0 :
: 0 :

x V x V
x x
x h x h

φ φ
φ γ φ γ
φ φ

− + ≤ − ≤ ,
− + ≤ , − ≤ ,
− + ≤ , − ≤ ,

 (6.5)

To illustrate the capabilities of the proposed method, the flight level tracking problem and the

minimum time problem have been chosen.

Case I: Flight level tracking problem

This tracking problem is to find the controls that will maintain the system state x(t) as

close as possible to the desired state r(t) in the interval [t0, tf]. The performance index for the

tracking problem can be written as

0

2
0 ()

() ()ft

tt
J t t= −∫ Q

x r dt (6.6)

where Q(t) is a real symmetric n × n matrix that is positive semi-definite for all 0 , ft t t⎡ ⎤∈⎣ ⎦ .

The flight level tracking problem involves keeping the aircraft as near as possible to the

desired level and aircraft speed. Therefore, the performance index can be represented as

() () ()
0

2 2
0 1 1 2 2 3 3

1
2

ft

d d dt
J x x x x x x⎡ ⎤= − + − + −⎣ ⎦∫

2 dt (6.7)

where x1d is the desired aircraft speed, x2d is desired flight path angle and x3d is the assigned

altitude.

Case II: Minimum time problem

The minimum time problem is to transfer a system from an arbitrary initial state x(t0) = x0

to a specified target set St in minimum time. The performance index for the minimum time

109

problem can be written as

0
0 0

ft

f t
J t t d= − = ∫ t (6.8)

where tf is the first instant of time when x(t) and St intersect. In some emergencies, the aircraft

crew is asked to change their level as soon as possible.

6.1.2 Numerical examples

The following parameters, outlined here for case I, are used in both cases:

aL = 65.3 Kg/m, aD = 3.18 Kg/m, m = 160×103 Kg,

g = 9.81 m/s2, θmin = -20°, γmin = -20,

c = 6, θmax = 25°, γmax = 25,

Tmin = 60×103 N, Tmin = 120×103 N, Vmin = 92 m/s,

Vmax = 170 m/s, hmin = -150 m, hmax = 150 m

The initial values of the state variables are

x0 = [100, 20, -120]T (6.9)

and the purpose of this problem is to find a suitable control for maintaining the flight level

and keeping the aircraft altitude at the assigned level. Thus the desired states are set with

following values

r(t) = [150, 0, 0]T. (6.10)

In addition to the dynamic constraints proposed in Eq. (6.5), the control inputs are also limited

within the following bounds:

min 1 max

min 2 max

T u T
and uθ θ

≤ ≤ ,
 ≤ ≤ .

 (6.11)

Substituting these parameters into Eqs. (6.3) and (6.7), the flight tracking problem is

solved by the OCP solver. The numerical results are shown in Figure 6.2. As shown in Figure

6.2(a), all states meet the constraints, and the flight level and aircraft speed return to the

110

desired states. Table 6.1 shows the user subroutines for this case. Obviously, the OCP solver

provides an easily usable tool for solving dynamic optimization problems.

Case II: Minimum time problem

In this problem, the aircraft crew is asked to increase their altitude in minimum time. The

initial and final altitude are h0 = 0 m and hf = 500 m, respectively. All constraints imposed on

case I are also imposed on this case. The initial state x0 = [100, 0, 0]T, the final time, tf,

obtained by using the AOCP, is 73.98 seconds, and the final altitude is 499.928 m. The control

histories shown in Figure 6.3(a) and (b) give the state trajectories, which, as the figure

illustrates, all fall within the safe “aerodynamic envelope” (i.e., meet the dynamic

constraints).

6.2 Vehicle Suspension Design Problem

Many studies have treated the vehicle as a dynamic system, starting with the basic

properties of vehicle suspension, the stiffness and damping coefficients (Gillespie, 1992).

Thus the design of vehicle suspension systems has received much attention in the automotive

industry. Numerous researchers have examined semi-active and active vibration isolation for

suspension systems. Yet, despite recent advances in active and semi-active suspension

technology, vehicles with passive suspension systems still dominate current car production.

Tools must therefore be made available to vehicle designers for optimizing passive suspension

systems.

The model described here is a half-car model that allows independent vertical inputs to the

front and rear wheels and can thus simulate pitching and bouncing motions due to road inputs.

Two longitudinal forces, which can be positive to represent traction or negative to represent

braking, are applied to the front and rear axles to simulate the effects of vehicle acceleration

or deceleration. Cases of braking and accelerating while moving straight ahead are used to

validate the longitudinal vehicle dynamics.

111

An optimal design problem in relation to vehicle suspension is considered to maximize

vehicle ride performance, which may be evaluated according to passenger discomfort. The

response to driver’s seat to acceleration is commonly used as the objective of suspension

design. Three road profiles that excite pitch and bounce motions at a constant vehicle speed

are used to calculate the optimal suspension parameters. In this optimal design problem, the

objective is to minimize the extreme acceleration of the driver’s seat under a number of

constraints on the dynamic response and the design parameters. The optimal design of a

vehicle suspension system can be applied in diverse fields of research, including traction force

control, speed control, braking system design, to name a few. In this dissertation, an

emergency stop – a special case of vehicle speed control problem – is treated as a

time-optimal control problem and solved by the proposed AOCP method.

6.2.1 Derivation of the Vehicle Model

Half-car model

Although the quarter-car model has been commonly used in assessing vehicle ride

performance, it does not fully represent the rigid body motions that a motor vehicle may

exhibit. For example, the quarter-car model disregards pitching motions, which may be

important, particularly when the car travels over obstructions like road bumps and potholes.

Moreover, the quarter-car model is a multi-input system that responds with both pitch motions

and vertical bounce because of the longitudinal distance between the axles. These pitch and

bounce motions must be understood because they provide useful information on vertical and

longitudinal vibrations. As a result of these quarter-car limitations, half-car and full-car

models are used in several studies on suspension. Figure 6.4 depicts a nonlinear half-car

model with six degrees of freedom, modified from the model of Haug and Arora (1979). Two

additional longitudinal forces, traction or braking forces, are applied to the axles, allowing the

vehicle to be accelerated or decelerated. Shock absorbers are assumed to be rigidly joined to

112

the chassis without displacement or deflection in the longitudinal direction. Based on this

assumption, the longitudinal forces only change the speed and pitch angle of vehicle. The

governing equations for the vehicle can be derived from Lagrange’s equations

T T V 0i
i i i

d Q
dt

⎡ ⎤∂ ∂ ∂
− + − =⎢ ⎥∂ ∂ ∂⎣ ⎦z z z�

, i = 1,…,6 (6.12)

where T and V represent the system’s kinetic and potential energy, and Qi represent

nonconservative generalized forces. In Figure 6.4, the kinetic energy of the system can be

expressed as

2 2 2 2 2
1 1 2 2 3 3 4 4 5 5 6 6

1 1 1 1 1 1
2 2 2 2 2 2

T m z m z m z m z m z m= + + + + +� � � � � 2z� (6.13)

The potential energy V of the conservative forces is

2 2
1 2 3 1 2 4 2 3

1 1() (
2 12 2 3

L LV k z z z k z z z= + − + − −)

 2 2
3 5 2 3 4 4 1 6

1 2 1() (
2 3 2

Lk z z z k z R z+ − + + − ())

 2
5 5 2 6

1 ((
2

k z R z+ −))

(6.14)

and the virtual work done by the nonconservative forces is

1 2 3 1 2 3 1()(
12 12
L Lw c z z z z z z)δ δ δ δ= − + − + −� � �

 2 4 2 3 4 2 3()(
3 3
L Lc z z z z z z)δ δ δ− − − − −� � �

 3 5 2 3 5 2 3
2 2()(
3 3
L Lc z z z z z z)δ δ δ− − + − +� � �

 4 4 1 4 5 5 2 5() ()c z R z c z R zδ δ− − − −� �� � 6 3t tF z F H zδ δ+ +

6

1
i i

i
Q zδ

=

≡ ∑

(6.15)

where Ft = Ff + Fr is the total traction/braking force imposed on the vehicle. From Eq. (6.12),

the system equations describing the motion of half-vehicle model can be derived as follows

1 1 1 1 1 2 1 3 1 1 1 2 1 3 0
12 12
L Lm z c z c z c z k z k z k z+ − − + − − =�� � � � , (6.16)

2 2 1 1 2 1 2 3 3 1 2 3
2() (

12 3 3
L L Lm z c z z c c c z c c c+ + + + + + −�� � � �)

 2 4 3 5 1 1 2 1 2 3 3 1 2 3
2() (

12 3 3
L L Lc z c z k z z k k k z k k k− − − + + + + + −� �)

(6.17)

113

 , 2 4 3 5 0k z k z− − =

2 2 2

3 1 1 2 1 2 3 3 1 2
2 4() (

12 12 3 3 144 9 9
L L L L L L L

3)I z c z z c c c z c c c− + + − + + −�� � � �

 2 4 3 5 1 1 2 1 2 3
2 2(

3 3 12 12 3 3
L L L L L Lc z c z k z z k k k− + − + + −� �)

2 2 2

3 1 2 3 2 4 2 5
4 2()

144 9 9 3 3 t
L L L L Lz k k k k z k z F H+ + + − + = ,

(6.18)

4 4 2 2 2 3 4 2 4 2 2 2 3 4 2 4

4 1 6 4 1 6

() (
3 3

() ()

L Lm z c z c z z c c k z k z z k k

k R z c R z

+ − + + − − + +

= + ,

�� � � �

�

)
 (6.19)

5 5 3 2 3 3 5 3 5 3 2 3 3 5 3 5

5 2 6 5 2 6

2 2() (
3 3

() ()

L Lm z c z c z z c c k z k z z k k

k R z c R z

− + + + − + + +

= + ,

�� � � �

�

)
 (6.20)

and . 1 2 4 5 6() tm m m m z F+ + + =�� (6.21)

where mi represents the masses of the seat and driver, the main body, and the wheel and axles,

respectively. The parameters ki and ci represent the known stiffness and damping coefficients

of the suspension system. The moment of main body inertia about its center of mass is

denoted as I, while H is the vertical distance from the center of gravity (C.G.) to the ground,

and L is the total length of the wheel base. The functions R1(y) and R2(y) represent

displacements of the front and rear wheels, caused by undulations of the road surface on

which the vehicle is traveling. Once 6 , 1,...,6i iz z i+ = =� is defined, the vehicle system can be

transformed into a state-space equation of the form

= + +x Ax Bu W� (6.22)

where x(t) = [z1, z2, z3, …, z12]T represents the vector of state variables and the nonzero

elements of matrices A, B and W are given as follows:

114

()

()
()
()

()

1,7

3,9

5,11

7,2 1 1

7,7 1 1

7,9 1 1

8,2 1 2 3 2

8,4 2 2

8,7 1 2

8,9 1 2 3 2

8,11 3 2

9,2 1 2 3

9,4 2

9,7 1

2
9,9 1 2 3

9,11

1
1
1

(12)
()

(4 8) 12

(4 8) 12

3

12

(16 64) 144

2

A
A
A
A k m
A c m
A Lc m
A k k k m
A k m
A c m

A L c c c m
A c m

A L k k k I

A Lk I

A Lc I

A c c c L

A Lc

=

=

=

=

= −

=

= − + +

=

=

= − + −

=

= − + −

=

=

= − + +

= − ()
I

()

()
()

()

3

10,3 2 4

10,8 2 4

10,10 2 4 4

11,3 3 5

11,8 3 5

11,11 3 5 5

3

3

2 3

I

A Lk m
A c m

A c c m

A Lk m
A c m

A c c m

=

=

= − +

= −

=

= − +

9 1 2 4 5()B m m m m H I= + + +

()10 4 1 4 1 4()W k R y c R y m⎡ ⎤= +⎣ ⎦
�

()

()

()

()
()

()
() ()

()

2,8

4,10

6,12

7,1 1 1

7,3 1 1

7,8 1 1

8,1 1 2

8,3 1 2 3 2

8,5 3 2

8,8 1 2 3 2

8,10 2 2

9,1 1

2
9,3 1 2 3

9,5 3

9,8 1 2 3

9,10 2

1

1
1
1

12

(4 8) 12

12

(16 64) 144

2 3

4 8 12

3

A
A
A
A k m

A Lk m
A c m
A k m

A L k k k m
A k m

A c c c m
A c m

A Lk I

A L k k k

A Lk I

A c c c L I

A Lc I
A

I

=

=

=

= −

=

=

=

= − + −

=

= − + +

=

=

= − + +

= −

= − + −

=

()
()

()
()

0,2 2 4

10,4 2 4 4

10,9 2 4

11,2 3 5

11,5 3 5 5

11,9 3 5

3

2 3

k m

A k k m

A Lc m
A k m

A k k m

A Lc m

=

= − +

=

=

= − +

= −

12 1 2 4 51 ()B m m m m= + + +

()11 5 2 5 2 5()W k R y c R y m⎡ ⎤= +⎣ ⎦
�

For safety and comfort, six dynamic constraints are imposed on the system, whose

constraint equations may be written as

1 1() , 0 fz t t tθ≤ ≤ ≤�� (6.23)

2 3 1 2() () () , 0
12 f
Lz t z t z t t tθ+ − ≤ ≤ ≤ (6.24)

4 2 3 3() () () , 0
3 f
Lz t z t z t t tθ− − ≤ ≤ ≤ (6.25)

115

5 2 3 4
2() () () , 0
3 f
Lz t z t z t t tθ− + ≤ ≤ ≤ (6.26)

4 1 5() () , 0 fz t R t t tθ− ≤ ≤ ≤ (6.27)

5 2 6() () , 0 fz t R t t tθ− ≤ ≤ ≤ (6.28)

12 () , 0allow fz t v t t≤ ≤ ≤ (6.29)

where θ2 to θ6 are the maximum allowable displacements and vallow is the maximum allowable

speed.

Road surface displacement function

Because the dynamic response depends strongly on the vertical displacement history of

the wheels on the road surface, the input road conditions are very important. Most data used

in establishing the ride comfort criteria were obtained using sinusoidal inputs. Thus the road

surface displacement function plotted in Figure 6.5 is defined as a sinusoidal undulation with

amplitude x0 and variable half-wavelength li (Haug and Arora, 1979). The front tire

displacement v(y) at position y is thus defined as

1
1

0

1
1

0

1

1

i
i i

i

i
i i

i

(y y)x cos , y y y , i is odd
l

v(y)
(y y)x cos , y y y , i is even

l

π

π

−
−

−
−

⎧ ⎡ ⎤−
− ≤ ≤⎪ ⎢ ⎥

⎪ ⎣ ⎦= ⎨
⎡ ⎤−⎪ + ≤ ≤⎢ ⎥⎪ ⎣ ⎦⎩

 (6.30)

where y is a coordinate measured along the road and
1

ii
jj

y l
=

= ∑ . The vertical displacement

function for the front wheel can therefore be defined as

1

0
0

tv(y), y y
R (y)

, otherwise
≤ ≤⎧

= ⎨
⎩

 (6.31)

where yt is the final position of the road undulation. The vertical displacement of the rear

wheel has the same value as that of the front wheel but with a wheelbase lag. Therefore,

2 1() ()R y R y L= − (6.32)

116

where R1(y) is defined in Eq. (6.31).

6.2.2 Numerical Examples

This paper uses the numerical data from Haug and Arora (1979) to validate the model

specified in Section 6.2.1. The following parameters in the vehicle system equations are fixed

during the calculations; m1g = 290 lb, m2g = 4500 lb, m4g = m5g = 96.6 lb, I = 41,000

lb-in-sec2, H = 20 in, L = 120 in, k4 = k5 = 1500 lb / in, vallow = 1056 in / sec (60 mph), and c4

= c5 = 5 lb-sec / in. The coefficients of the suspension system are selected as design variables,

b = [k1, k2, k3, c1, c2, c3]T. The lower and upper bounds on b are [50, 200, 200, 2, 5, 5]T and

[500, 1000, 1000, 50, 80, 80]T, respectively. The maximum allowable values for the state

variable constraints in Eqs. (6.23) – (6.29) are selected to be [400, 2, 5, 5, 2, 2, 1056]T. The

units of z1, z2, z4, z5 and z6 are inches and those of z3 are radians.

Model validation

The physical phenomenon of rigid body motion can be used to confirm the correctness of

the vehicle model. Therefore, cases of braking and accelerating while traveling straight ahead

are considered here to validate the longitudinal vehicle dynamics. For convenience of

observation, the vehicle is assumed to travel along a straight path such that R1(y) = R2(y) = 0.

In cases of acceleration, the control problem is to determine a feasible acceleration trajectory

along which a vehicle with various initial speeds can arrive at a destination in minimal time.

Hence, one additional terminal constraint is imposed:

6 ()f tz t y= (6.33)

where yt is the destination. Similarly, one additional terminal constraint is included in cases of

braking

12 () 0fz t = (6.34)

All the acceleration and braking test cases are transformed into time-optimal control

117

problems and solved by applying the proposed NLP method. Figure 6.6 and Figure 6.7 show

the velocity trajectories of the vehicle with various starting speeds. As Figure 6.6 illustrates,

the vehicle accelerates at the maximum allowable acceleration until the speed constraint

defined in Eq. (6.29) becomes pertinent, from which point the speed is maintained. In contrast

to the cases of acceleration, the vehicle decelerates with maximal allowable deceleration until

it stops. Figure 6.8 shows the driver’s seat acceleration trajectory for the case of

straight-ahead braking. According to these results, the vehicle motion is consistent with the

motion of a rigid body, meaning that the longitudinal vehicle dynamics of the proposed model

are validated.

Optimal design of the vehicle suspension system

The vertical displacement functions and system equations specified in Section 3 can be

used to define an optimal suspension design problem. The driver is to be made as comfortable

as possible over a range of road conditions and traveling speeds. Thus, the design objective is

to minimize the maximum absolute acceleration of the driver’s seat by adjusting the vehicular

suspension properties subject to the constraints that certain relative displacements do not

exceed imposed limits. The objective function is therefore

0 1[0,]
max ()

ft t
J z

∈
= �� t (6.35)

where is the acceleration of the driver’s seat under the road conditions R1()z t�� 1(y) and R2(y)

as defined by Eqs. (6.31) and (6.32).

Two design cases considered by Haug and Arora (1979) are used here to examine the

correctness of the proposed method. Figure 6.9 represents the road displacement profiles in

the test cases. In case 1, the road surface profile includes a cavity. Case 2 involves two road

displacement profiles, presented in Figure 6.9(b) and (c). The speed of the vehicle in case 1 is

450 in/sec and that in case 2 is 960 in/sec. Table 6.2 gives the optimal solutions. A comparison

with the results present in the research sources (Hsieh and Arora, 1984; Haug and Arora, 1979)

118

shows that the results obtained by the proposed method are quite accurate.

Vehicle speed control problem

In most emergency situations, drivers must stop the vehicle quickly and safely. Changing

the speed of the vehicle according to the conditions of the road and the distance from the

current position to the site of accident is a vehicle speed control problem that the vehicle

model and system equations derived in Section 3 can be used to solve. In this case, the initial

speed of the vehicle is 880 in / sec (50 mph) and the road surface profile is as plotted in

Figure 6.10. According to the definition in Section 2.2, the emergency braking problem is

transformed into a time-optimal control problem that is then solved using the proposed NLP

method. The minimum time, tf = 3.4 seconds, and the terminal displacement, z6 = 1585.7

inches, are obtained using the OCP solver. Figure 6.11 shows the trajectories of the vehicle

speed and acceleration. Figure 6.12 plots the trajectories of the acceleration and pitch angle of

the passenger seat, which are of interest to vehicle designers. The solid bold curves at the

bottom of Figure 6.11 and Figure 6.12 represent the corresponding road profile. The

numerical results indicate that all the constraints are satisfied and the optimal control law that

solves the emergency braking problem is determined.

6.3 Summary

In this chapter, two practical applications, the flight level control problem and the vehicle

suspension design problem – both highly nonlinear optimal control problems – have been

formulated following the procedure suggested in this dissertation and solved by the proposed

OCP solver. In the case of the flight level control problem, two common types of optimal

control problem, the tracking problem and the minimum time problem, were derived to

simulate practical situations. The vehicle suspension design problem provided a useful

example of dynamic system design. After the problem has been formulated and the proper

constraints imposed, users can solve their dynamic optimization problems by applying the

119

proposed method.

Because the proposed solver provides a convenient tool for solving dynamic optimization

problems, proper modeling and formulating the physical problem become the major decisive

factors in whether the solution is meaningful or not. Moreover, the constraints must meet

actual environmental conditions or the solution will make no sense. Overconstraining the

problem will considerably increase the computational efforts and make obtaining the solution

harder. In contrast, loosely constraining the problem will provide no practically applicable

solution.

120

Table 6.1 User subroutines for the flight level tracking problem.

//-------Program parameters --
//B: Discrete design parameters of design variable vector. (INPUT)
// U: Admissible control function vector. (INPUT)
// Z: State variable vector. (INPUT)
// T: Given time grid point. (INPUT)
// G: First term of performance index or functional constraint or
// dynamic constraint. (OUTPUT)
// NV: Number of design variables for optimizer (INPUT)
// NU: Number of control functions. (INPUT)
// NEQ: Number of state equations (INPUT)
// N: Index of current number of function evaluation. (INPUT)
//
// --------------------------------FFN()---------------------------------------
// Routine to calculate the integral term of the performance index
// or functional constraint
void ffn(double *B, double *U, double *Z, double *T, double *F,

int NV, int NU, int NEQ, int N, int NBJ)
{
 if (N==0)

F = 0.5((Z[0]-150.0)*(Z[0]-150.0)) + (Z[1]*PI/180.0)
 * (Z[1] * PI/180.0) + (Z[2]*Z[2]);

 else
 *F = 0.0;

}
//----------------------- GFN() ---
// Routine to calculate the first term of the performance index or
// functional constraint or dynamic constraint
void gfn(double *B, double *U, double *Z, double *T, double *G,

int NV, int NU, int NEQ, int N, int NBJ)
{
 switch (N)
 {
 case 0:

*G = 0.0; break;
 case 1:
 *G = -1 * Z[0] + 92.0; break;

 case 2:
 *G = Z[0] – 170.0; break;

 case 3:
 *G = -1 * Z[1] -20.0; break;

 case 4:
 *G = Z[1] – 25.0; break;

 case 5:
 *G = -1 * Z[2] -150.0; break;

 case 6:
 *G = Z[2] – 150.0; break;
 };
}

121

Table 6.1 (cont.) User subroutines for the flight level tracking problem.
//---------------------- HFN() --
//Routine to calculate the state trajectory.
void hfn(double *B, double *U, double *Z, double *DZ, double *T,

int NV, int NU, int NEQ)
{

 DZ[0] = -1*((aD*Z[0]*Z[0]/m) + (g*sin(Z[1]*PI/180.0))) + U[0]
 *10000 / m;

 DZ[1] = (aL*Z[0]*(1-c*Z[1])/m) - (g*cos(Z[1]*PI/180.0)/Z[0]) +
aL*c*Z[0]*U[1]/m;

 DZ[2] = Z[0]*sin(Z[1]*PI/180.0);
}
//--------------------- Z0FN() ---
// Routine to calculate the initial state vector.
void z0fn(double *B, double *ZINT, int NV, int NEQ)
{
 ZINT[0] = 100.0;

ZINT[1] = 20.0;
ZINT[2] = -120.0;

}

122

Table 6.2 Optimal solutions for vehicle suspension.
(a) Case 1

 Haug and Arora (1979) Hsieh and Arora (1984) Proposed Method

k1 50.00 50.00 50.00

k2 200.00 204.10 200.00

k3 241.90 293.90 200.00

c1 12.89 30.87 39.96

c2 77.52 76.94 77.35

c3 80.00 80.00 80.00

Cost 257.40 255.80 254.00

(b) Case 2

 Haug and Arora (1979) Proposed Method

k1 50.00 191.90

k2 200.00 200.00

k3 200.00 200.00

c1 8.93 8.52

c2 45.92 25.24

c3 37.81 29.16

Cost 125.50 125.60

123

Figure 6.1 Aircraft model (Lygeros, 2003).

124

0 2 4 6 8
Ti

10
me(Sec.)

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

X1: Aircraft Speed (m/s)
X2: Flight Path Angle (deg.)
X3: Altitude distance(m)

x2

x1

x3

(a) State trajectories.

0 2 4 6 8
Ti

10
me(Sec.)

-20

-10

0

10

20

u1: the thrust (x 10000 N)
u2: the pitch angle (deg.)

u2

u1

(b) The thrust trajectory.

Figure 6.2 Numerical results for the tracking problem.

125

0 20 40 60
Time (Sec.)

-15

-10

-5

0

5

10

15

20

25

30

thrust (x10,000 N)
pitch angle (deg.)

(a) Control input trajectories.

0 20 40 60
Time(Sec.)

-200

0

200

400

600
X1: Aircraft Speed (m/s)
X2: Flight Path Angle (deg.)
X3: Altitude distance(m)

(b) State trajectories.

Figure 6.3 Trajectories for the minimum time problem.

126

Figure 6.4 Six-degrees-of-freedom vehicle model

127

Figure 6.5 Sinusoidal displacement functions.

128

0 5 10 15 20 25
Time (sec.)

0

200

400

600

800

1000

1200

V
el

oc
ity

 (i
n

/ s
ec

)

V = 0
V = 528 in/sec (30 mph)
V = 880 in/sec (50 mph)

0

0

0

Figure 6.6 Vehicle speed histories for straight-ahead accelerating.

129

0 0.5 1 1.5 2 2.5 3 3
Time (sec.)

.5

0

200

400

600

800

1000

1200

Ve
lo

ci
ty

 (i
n

/ s
ec

)

V = 528 in/sec (30 mph)
V = 880 in/sec (50 mph)
V = 1056 in/sec (60 mph)

0

0

0

Figure 6.7 Vehicle speed histories for straight-ahead braking.

130

0 0.5 1 1.5 2 2.5 3
Time

3.5
(sec.)

-40

-20

0

20

40

Se
at

 a
cc

el
er

at
io

n
(i

n
/ s

ec
2)

V = 30 mph (Tf = 1.51 sec.)
V = 50 mph (Tf = 2.51 sec.)
V = 60 mph (Tf = 3.02 sec.)

0

0

0

Figure 6.8 Driver’s seat acceleration for straight-ahead braking.

131

(a) Case I

(b) Case II – road profile 1.

(c) Case II – road profile 2.

Figure 6.9 Road displacement profiles for model validation (Haug and Arora 1979).

132

Figure 6.10 Road displacement profiles for emergency braking.

133

0 200 400 600 800 1000 1200 1400 1600
Displacement (in.)

0

200

400

600

800

1000

V
eh

ic
le

 S
pe

ed
 (

in
. /

 s)

Vehicle speed
Vehicle acceleration

-400

-300

-200

-100

0

100

200

V
eh

ic
le

 a
cc

el
er

at
io

n(
 in

 /
s2)

Figure 6.11 Vehicle speed and acceleration histories for emergency braking.

134

0 200 400 600 800 1000 1200 1400 1600
Displacement (in)

-40

-30

-20

-10

0

10

20

30

40

S
ea

t a
cc

el
er

at
io

n
(i

n
/ s

ec
2
)

Seat acceleration
Vehicle pitch angle

-6

-4

-2

0

2

Ve
hi

cl
e

pi
tc

h
an

gl
e

(D
eg

.)

Road Profile

Figure 6.12 Seat acceleration and pitch angle histories for emergency braking.

135

CHAPTER 7
 CONCLUSIONS AND FUTURE STUDY

7.1 Concluding Remarks

This study has introduced and compared two typical methods – the indirect and direct

approaches – usually used to solve optimal control problems. Because most of practical

control problems are described by strongly nonlinear differential equations that are difficult to

solve by indirect methods, direct methods have been widely studied in the recent literature

and are also adopted in this dissertation. In spite of extensive use of direct and indirect

methods to solve optimal control problems, engineers still expend much effort on

reformulating problems and implementing corresponding programs for different control

problems. Therefore, the first objective of this dissertation was to develop a convenient solver

and provide a systematic computational procedure capable of assisting engineers and students

easily solve their dynamic system design problems.

To this end, a computational AOCP method, one kind of sequential direct method, has

been developed and presented herein. Subsequently, it was implemented and coupled with

many robust numerical schemes to develop a general OCP solver. Besides outlining the

theoretical and numerical foundations involved in the proposed solver, the discussion detailed

the OCP solver implementation, including the dynamic constraint treatments, ODE solver,

sensitivity analysis, and so forth. The van der Pol oscillator problem with three different

terminal conditions and a highly nonlinear time-optimal control problem were used to

illustrate and verify the stability and capability of the proposed solver. In these examples,

different numerical schemes and different time intervals were applied to investigate the

numerical schemes’ effect on the validity of the solution and computational efficiency. The

results indicate that the OCP solver coupled with the systematic procedure suggested in this

study can truly facilitate the solving of engineering control problems in a systematic and

136

efficient way.

The other objective of this dissertation was to develop a novel method for solving

discrete-valued optimal control problems. Most traditional methods focus on the continuous

optimal control problems and fail when applied to a discrete-valued optimal control problem.

One common type of such problems is the bang-bang type control problem arising from

time-optimal control problems. When the controls are assumed to be of the bang-bang type,

the time-optimal control problem becomes one of determining the TOCP switching times.

Several methods for such determination have been studied extensively in the literature;

however, these methods require that the number of switching times be known before their

algorithms can be applied. As a result, they cannot meet practical situations in which the

number of switching times is usually unknown before the control problem is solved.

Therefore, to solve discrete-valued optimal control problems, this dissertation has focused on

developing a computational method consisting of two phases: (a) the calculation of switching

times using existing optimal control methods and (b) the use of the information obtained in

the first phase to compute the discrete-valued control strategy. The proposed algorithm

combines the proposed OCP solver with an enhanced branch-and-bound method. To

demonstrate the proposed computational scheme, the study applied third-order and

fourth-order systems and an F-8 fighter aircraft control problem considered in several

pioneering studies. Comparing the results of this study with the results from the literature

indicates that the proposed method provides a better solution and the accuracy of the terminal

constraints is acceptable. Finally, the proposed solver and procedure were applied to two

engineering applications: the flight level control problem and the vehicle suspension design

problems.

7.2 Future Study

Future study will focus on two topics: one is to develop a web-based dynamic

137

optimization solver and another one is to improve the global convergence of proposed method.

In terms of the former, although a convenient solver for dynamic optimization has been

developed in this dissertation, constructing a turnkey system for solving dynamic system

design problems is still a major problem for inexperienced engineers and students. In addition,

because of the resource limitation including finances and laboratory facilities, it is difficult to

provide each engineer with a turnkey system to solve his/her dynamic system design problem.

The advent of the Internet and distributed computing technologies suggest that a Web-based

optimization tool may provide a potential partial solution to this problem (Chu, 1999). A

Web-based dynamic optimization solver would also be useful to engineering curriculums

because students could share limited resource via the Internet. Many Internet techniques such

as Web service, Simple Object Access Protocol (SOAP), DataSocket, and XML, could be

applied to the development of such a solver, for which a conceptual flowchart is given in

Figure 7.1. For this suggested model, the proposed OCP solver would serve as a numerical

engine.

As regards improving global convergence, the convergency of the OCP solver depends

on good initial guesses that speed up optimization problem convergence and produce

high-precision solutions. However, it is difficult for the inexperienced to provide good initial

guesses that lie within the convergence domain. Therefore, a module that assists with

estimation of the optimal solution will be developed to help the novice making the proper

initial guess.

It is expected that the contents of Chapters 2 through 5 will be the basis for addressing

these two topics, which, because of modular programming techniques, can be effected by

adding external modules into the proposed solver or replacing the original modules with new

ones. This feature allows the proposed solver to be easily updated by state-of-the-art

algorithms.

138

Figure 7.1 Conceptual flow chart of a web-based dynamic optimization solver.

139

REFERENCE

Arora, J. S., Introduction to Optimum Design, McGraw-Hill, 2nd Ed., 2004.

Banks, S.P., and Mhana, K.J., “Optimal Control and Stabilization of Nonlinear systems,” IMA

Journal of Mathematical Control and Information, Vol. 9, pp. 179-196, 1992.

Barclay, A., Gill, Ph.E., and Rosen, J.B., “SQP methods and their application to numerical

optimal control,” Report NA97-3, Department of Mathematics, University of California,

San Diego, USA, 1997.

Belegundu, A.D., and Arora, J.S., “A Recursive Quadratic Programming Algorithm with

Active Set Strategy for Optimal Design,” International Journal for Numerical Methods in

Engineering, Vol. 20, pp. 803-816. , 1984

Bellman, R., Dynamic Programming, Princeton University Press, Princeton, New Jersey,

1957.

Bellman, R., Introduction to the Mathematical Theory of Control Processes, Vol. 2, Academic

Press, New York, 1971.

Bellman, R., and Dreyfus, S., Applied Dynamic Programming, Princeton University Press,

Princeton, New Jersey, 1962.

Bellman, R., and Dreyfus, R.E., Dynamic Programming and Modern Control Therapy,

Academic Press, Orlando, Florida, 1977.

Bertsekas, D.P., Constrained Optimization and Lagrange Multiplier Methods, Academic Press,

1982.

Bertrand, R., and Epenoy, R., “New Smoothing Techniques for Solving Bang-Bang Optimal

Control Problems – Numerical Results and Statistical Interpretation,” Optimal Control

Applications and Methods, Vol. 23, pp. 171-197, 2002.

Betts, J.T., and Huffmann, W.P., “Application of Sparse Nonlinear Programming to Trajectory

Optimization,” J. Guidance, Control and Dynamics, Vol. 15, pp. 198-206, 1992.

140

http://www3.oup.co.uk/imamci/
http://www3.oup.co.uk/imamci/

Betts, J.T., and Huffmann, W.P., “Path Constrained Trajectory Optimization Using Sparse

Sequential Quadratic Programming,” J. Guidance, Control and Dynamics, Vol. 16, pp.

59-68, 1993.

Betts, J.T., “Very Low-Thrust Trajectory Optimization Using A Direct SQP Method,” Journal

of Computational and Applied Mathematics, Vol. 120, pp. 27-40, 2000.

Betts, J.T., “Survey of Numerical Methods for Trajectory Optimization,” J. Guidance, Control

and Dynamics, Vol. 21, No. 2, pp. 193-207, 1998.

Betts, J.T., Practical Methods for Optimal Control Using Nonlinear Programming, SIAM,

Philadelphia, 2001.

Bock, H.G., “Numerical Solution of Nonlinear Multipoint Boundary Value Problems with

Application to Optimal Control,” ZAMM, Vol. 58, pp. 407-409, 1978.

Boggs, P.T., and Tolle, J.W., Sequential quadratic programming, Acta Numerica, pp. 1-52,

1995.

Bryson, A.E. Jr., and Ho, Y.C., Applied Optimal Control, John Wiley & Sons, New York,

1975.

Bryson, A.E. Jr., and Ross, S.E., Optimum rocket trajectories with aerodynamic drag, Jet

Propulsion, 1958.

Bulirsch, R., “Die Mehrzielmethode zur numerischen Losung von nichtlinearen

Randwertproblemen und Aufgaben der optimalen Steuerung,” Report of the Carl-Cranz

Gesellschaft, DLR, Oberpfa_enhofen, 1971.

Bullock, T.E., and Franklin, G.F., “A Second-order Feedback Method for Optimal Control

computations,” IEEE Transactions on Automatic Control, Vol. 12, pp. 666-673, 1967.

Buskens, C., and Maurer, H., “SQP-Methods for Solving Optimal Control Problems with

Control and State Constraints: Adjoint Variables, Sensitivity Analysis and Real-Time

Control,” Journal of Computational and Applied Mathematics, Vol.120, pp. 85-108, 2000.

141

Cervantes, A., and Biegler, L.T., “Large-Scale DAE Optimization using Simultaneous

Nonlinear Programming Formulations,” AIChE Journal, Vol. 44, pp. 1038, 1998.

Chu, K.C., “The development of a web-based teaching system for engineering education,”

Eng. Sci. Educ. J. Vol. 8, No. 3, pp. 115-118, 1999.

Chyba, M., Leonard, N.E., and Sontag, E. D., “Singular Trajectories in Multi-input

Time-Optimal Problems: Application To Controlled Mechanical Systems,” Journal of

Dynamical and Control Systems, Vol. 9, No. 1, pp. 103-129, 2003.

Cook, M.V., Flight Dynamics Principles, Wiley, New York, 1997.

Etkin, B., and Redi, L.D., Dynamics of Flight: Stability and Control, 3rd Ed., Wiley, New York,

1996.

Floudas, C.A., and Pardalos, P.M., Recent Advances in Global Optimization, Princeton

University Press, 1992.

Gill, P.E., Murray, W., and Saunders, M.A., “SNOPT: An SQP Algorithm for Large-Scale

Constrained Optimization,” SIAM Jounal of Optimization, Vol. 12, No. 4, pp. 979-1006,

2002.

Gillespie, T.D., Fundamentals of Vehicle Dynamics, Society of Automotive Engineers, 1992.

Goh, C.J., and Teo, K.L., “Control Parameterization: A Unified Approach to Optimal Control

Problems with General Constraints,“ Automatica, Vol. 24, pp. 3-18, 1988.

Hansen, E.R., Global Optimization Using Interval Analysis, M. Dekker, New York, 1992.

Haug, E.J., and Arora, J.S., Applied Optimal Design: Mechanical and Structural Systems,

John Wiley and Sons, New York, 1979.

Hock, W., and Schittkowski, K., Lecture Notes in Economics and Mathematical Systems 187 -

Test Examples for Non-linear Programming Codes, Spring-Verlag, New York, 1980.

Horst, R., and Tuy, H., Global optimization: Deterministic Approaches, Springer-Verlag,

Berlin, 1993.

142

Hribar, M.E., Large scale constrained optimization, Ph.D. Disertation, Northeasten University,

1996.

Hu, G.S., Ong, C.J., and Teo, C.L., “An Enhanced Transcribing Scheme for The Numerical

Solution of A Class of Optimal Control Problems,” Engineering Optimization, Vol. 34, No.

2, pp. 155-173, 2002.

Huang, C.H., “Integrating Analysis and Optimization Systems on X Window,” Master Thesis

in Mechanical Engineering, Department of Mechnaical Engineering, National Chiao-Tung

Univ., Taiwan, R.O.C., 1994.

Huang, C.H., and Tseng, C.H., “Computational Algorithm for Solving A Class of Optimal

Control Problems,” IASTED International Conference on Modelling, Identification, and

Control (MIC2003), Innsbruck, Austria, 2003, pp. 118-123.

Huang, C.H., and Tseng, C.H., “Numerical Approaches for Solving Dynamic System Design

Problems: An Application to Flight Level Control Problem,” Proceedings of the Fourth

IASTED International Conference on Modelling, Simulation, and Optimization

(MSO2004), Kauai, Hawaii, USA, 2004, pp. 49-54.

Huang, C.H., and Tseng, C.H., “A Convenient Solver for Solving Optimal Control Problems,”

Jounal of the Chinese Institute of Engineers, Vol. 28, pp. 727-733, 2005.

Huang, C.H., and Tseng, C.H., “A Two-Phase Computational Scheme for Solving Bang-Bang

Control Problems,” Optimization and Engineering, 2006. (Accepted)

Jaddu, H., “Direct Solution of Nonlinear Optimal Control Problems Using Quasilinearization

and Chebyshev Polynominals,” Journal of the Franklin Institute, Vol. 339, pp. 479-498,

2002.

Jaddu, H., and Shimemura, E., “Computational Method Based on State Parameterization for

Solving Constrained Nonlinear Optimal Control Problems,” International Journal of

Systems Science, Vol. 30, No. 3, pp. 275-282, 1999.

143

Jalili, N., and Esmailzadeh, E., “Optimum Active Vehicle Suspensions With Actuator Time

Delay,” ASME Trans. Journal of Dynamic Systems, Measurement, and Control, Vol. 123,

pp. 54-61, 2001.

Kim, T.H., and Ha, I.J., “Time-Optimal Control of a Single-DOF Mechanical System with

Friction,” IEEE Trans. Automat. Contr., Vol. 46, No. 5, pp.751-755, 2001.

Kirk, D.E., Optimal Control Theory: An Introduction, Prentice-Hall, 1970.

Kreyszig, E., Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, New

York, 1999.

Kaya, C.Y., and Noakes, J.L., “Computations and Time-Optimal Controls,” Optimal Control

Applications and Methods, Vol. 17, pp. 171-185, 1996.

Lee, H.W., Jennings, L.S., Teo, K.L., and Rehbock, V., “Control Parameterization Enhancing

Technique for Time Optimal Control Problems,” Dynamic Systems and Applications, Vol.

6, pp. 243-262, 1997.

Lee, H.W.J., Teo, K.L., Rehbock, V., and Jennings, L.S., “Control Parameterization

Enhancing Technique for Optimal Discrete-Valued Control Problems,” Automatica, Vol.

35, pp. 1401-1407, 1999.

Lin, S.Y., “Complete Decomposition Algorithm for Nonconvex Separable Optimization

Problems and Applications,” Automatica, Vol. 28, pp. 249-254, 1992.

Lee, H.W.J., Teo, K.L., and Andrew E.B. Lim, “Sensor Scheduling in Continuous Time,”

Automatica, Vol. 37, pp. 2017-2023, 2001.

Lucas, S.K., and Kaya, C.Y., “Switching-Time Computation for Bang-Bang Control Laws,”

Proceedings of the 2001 American Control Conference, pp. 176-181, 2001.

Luenberger, D.G., Linear and Nonlinear Programming. Addison-Wesley Publishing Company,

Reading, MA, 1984.

Lygeros, J., “Minimum Cost Optimal Control: An Application to Flight Level Tracking,”

144

IEEE 11th Mediterranean Conference on Control and Automation (MED’03), Rhodes,

Greece, June 18-20, 2003.

Lygeros, J., Tomlin, C., and Sastry, S., “Controllers for Reachability Specifications for Hybrid

Systems,” Automatica, pp. 349-370, 1999.

Michalewicz, Z., Dasgupta, D., LeRiche, R.G., and Schoenauer, M., “Evolutionary

Algorithms for Constrained Engineering Problems,” Computers and Industrial

Engineering Journal, Vol. 30, No.2, pp. 851-870, 1996.

Pinch, E.R., Optimal Control and the Calculus Variations, Oxford University Press Inc., New

York, 1993.

Pytlak, R., “Numerical Methods for Optimal Control Problems with State Constraints,”

Lecture Notes in Mathematics 1707, Springer-Verlag, Berlin, 1999.

Polak, E., Computation Method in Optimization, New York and London: Academic Press,

1971.

Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mischenko, E.F., The

Mathematical Theory of Optimal Processes, Wiley, 1962.

Powell, M.J.D., “The Convergence of Variable Metric Methods for Nonlinearly Constrained

Optimization Calculations,” in Nonlinear Programming, Vol. 3, edited by O.L.

Mangasarian et al., Academic Press, New York, 1978.

Press, W., Teukolsky, S.A., Vetterling, W.T., and Flannery, B., Numerical Recipes in C: The

Art of Scientific Computing, 2nd Edition, Cambridge, New York, 1992.

Pshenichny, B.N., “Algorithms for the General Problem of Mathematical Programming,＂

Kibernetica, No.5, 1978.

Pytlak, R., “Numerical Methods for Optimal Control Problems with State Constraints,”

Lecture Notes in Mathematics 1707, Springer-Verlag, Berlin, 1999.

Sage, A.P., and White, C.C. III, Optimum systems Control, 2nd Edition, Prentic Hall, 1977.

145

Samaras, N.S., and Simaan, M.A., “Optimized Trajectroy Tracking Control of Multistage

Dynamic Metal-Cooling Processes,” IEEE Tran. Ind. Applicat., Vol. 27, No. 3, pp.

920-927, 2001.

Simakov, S.T., Kaya, C.Y., and Lucas, S.K., “Computations for Time-Optimal Bang-Bang

Control Using A Lagrangian Formulation,” 15th Triennial World Congress, Barcelona,

Spain, 2002.

Steindl, A., and Troger, H., “Optimal Control of Deployment of a Tethered Subsatellite,”

Nonlinear Dynamics, Vol. 31, pp. 257–274, 2003.

Stoer, J., and Bulirsch, R., Introduction to Numerical Analysis, Springer, New York, 1980.

Stryk, O. and Bulirsch, R., “Direct and Indirect Methods for Trajectory Optimization,” Annals

Operation Research, Vol. 37, pp. 357-373, 1992.

Teo, K.L., Goh, C.J., and Wong, K.H., A Unified Computational Approach to Optimal Control

Problems, John Wiley & Sons, New York, 1991.

Teo, K.L., and Wu, Z.S., Computation Methods for Optimizing Distributed Systems,

Academic Press, Orlando, 1984.

Thanedar, P.B., Arora, J.S., and Tseng, C.H., “A Hybrid Optimization Method and Its Role in

Computer-Aided Design,” Comp. Struct., Vol. 23, pp. 305-314, 1986.

Tomlin, C., Lygeros, J., and Sastry, S., “Aerodynamic envelope protection using hybrid

control,” Computer Vision, and Materials Science, Cambridge University Press, New York,

1996.

Tseng, C.H., Optimal Design for Dynamics and Control Using a Sequential Quadratic

Programming Algorithm, PhD dissertation, Department of Mechanical Engineering, Iowa

University, 1987.

Tseng, C. H., and Arora, J. S., “On Implementation of Computational Algorithms of Optimal

Design 1: Preliminary Investigation,” International Journal for Numerical Methods in

146

Engineering, Vol. 26, pp.1365-1384, 1988a.

Tseng, C. H., and Arora, J. S., “On Implementation of Computational Algorithms of Optimal

Design 2: Extensive Numerical Investigation,” International Journal for Numerical

Methods in Engineering, Vol. 26, pp.1385-1402, 1988b.

Tseng, C.H., and Liao, W.C., Integrated Software for Multifunction Optimization, Master

Thesis in Mechanical Engineering, Department of Mechanical Engineering, National

Chiao Tung Univ., R.O.C., 1990.

Tseng, C. H., Liao, W. C., and Yang, T. C., MOST 1.1 User's Manual. Technical Report No.

AODL-93-01, Department of Mechanical Engineering, National Chiao Tung Univ.,

Taiwan, R.O.C., 1993.

Tseng, C.H., Wang, L.W., and Ling, S.F., “Enhancing Branch-And-Bound Method for

Structural Optimization,” Journal of Structural Engineering, Vol. 121, No. 5, pp. 831-837,

1995.

Volkwein, S., “Application of the Augmented Lagrangian-SQP Method to Optimal Control

Problems for the Stationary Burgers Equation,” Computational Optimization and

Applications, Vol. 16, pp. 57–81, 2000.

Wu, S.T., “Time-Optimal Control and High-Gain Linear State Feedback,” International

Journal of Control, Vol. 72, No.9, pp. 764-772, 1999.

Wu, Z., The Theory and Applications of Discrete Constrained Optimization Using Lagrange

Multipliers, PhD. Thesis in Computer Science, University of Illinois at

Urbana-Champaign, 2000.

Xu, X., and Antsaklis, P. J., “Optimal Control of Switched Systems Based on

Parameterization of the Switching Instants,” IEEE Transactions on Automatic Control, Vol.

49, No. 1, 2004.

Yang, T.C., Tseng, C.H., and Huang, C.H., “An Interface Coupler for Finite Element Analysis

147

and Optimization,” Proceedings of the 16th National Conference on Theoretical and

Applied Mechanics, Society of Theoretical and Applied Mechanics of the Republic of

China, Vol. 2, pp. 887-894., 1992.

148

AUTHOR’S PUBLICATION LIST

I. Referred Papers

1. C.H. Huang and C.H. Tseng, “An Integrated Two-Phase Scheme for Solving Bang-Bang
Control Problems,” Accepted for publication in Optimization and Engineering.

2. C.H. Huang and C.H. Tseng, “A Convenient Solver for Solving Optimal Control
Problems,” Journal of the Chinese Institute of Engineers, Vol. 28, pp. 727-733, 2005.

II. Conference Papers

1. C.H. Huang, and Tseng, C.H., “Numerical Approaches for Solving Dynamic System
Design Problems: An Application to Flight Level Control Problem,” Proceedings of the
Fourth IASTED International Conference on Modelling, Simulation, and Optimization
(MSO2004), Kauai, Hawaii, USA, 2004, pp. 49-54.

2. C.H. Huang, and Tseng, C.H., “Computational Algorithm for Solving A Class of Optimal
Control Problems,” IASTED International Conference on Modelling, Identification, and
Control (MIC2003), Innsbruck, Austria, 2003, pp. 118-123.

3. 黃智宏，毛彥傑與曾錦煥，大學機械工程教育創意教學改進計畫之說明，工程創造

力推動經驗交流研討會，第 107-113 頁，2003.

4. C.H. Huang, C.H. Tseng, and S.F. Ling, Integrating Analysis and Optimization Systems
with Distributed Computing System,” Proceedings of the 18th National Conference on
Theoretical and Applied Mechanics, Society of Theoretical and Applied Mechanics of
the Republic of China, Vol. 2, pp. 313-320, 1994.

5. T.C. Yang, C.H. Tseng, and C.H. Huang, "An Interface Coupler for Finite Element
Analysis and Optimization", Proceedings of the 16th National Conference on
Theoretical and Applied Mechanics, Keelung, December 1992.

6. S. Lin, C.H. Tseng, and C.H. Huang, "Integrating analysis and Optimum Design",
Proceedings of the 16th National Conference on Theoretical and Applied Mechanics,
Keelung, December 1992.

149

VITA

姓名：黃智宏 (Huang, Chih-Hung)

生日：民國 57 年 8 月 18 日

住址：台南縣新營市育德街 54 號

mailto: angushuang@ms93.url.com.tw

學歷：國立嘉義農業專科學校農業機械科

（民國 73 年 9 月至民國 78 年 6 月）

國立交通大學機械工程學系

（民國 78 年 9 月至民國 81 年 6 月）

國立交通大學機械工程研究所碩士班

（民國 81 年 9 月至民國 83 年 6 月）

國立交通大學機械工程研究所博士班

（民國 87 年 9 月至民國 95 年 5 月）

150

mailto:angushuang@ms93.url.com.tw

	ABSTRACT (IN CHINESE)
	ABSTRACT
	 ACKNOWLEDGEMENT (誌謝)
	 TABLE OF CONTENTS
	 LIST OF TABLES
	 LIST OF FIGURES
	 NOMENCLATURE
	CHAPTER 1
	CHAPTER 1 INTRODUCTION
	1.1 Dynamic Optimization and Optimization Control Problems
	1.2 Literature Review
	1.2.1 Methods for Optimal Control Problems
	1.2.2 Time-Optimal Control Problems

	1.3 Objectives
	1.4 Outlines
	CHAPTER 2 METHODS FOR SOLVING OPTIMAL CONTROL PROBLEMS
	2.1 Introduction
	2.2 Canonical Formulation of Optimal Control Problems
	2.3 First-Order Necessary Condition – Euler Lagrangian Equation
	2.4 Methods for Solving Optimal Control Problems
	2.4.1 Indirect Methods
	Pontryagin’s Maximum Principle
	Dynamic Programming

	2.4.2 Direct Methods

	2.5 Summary

	CHAPTER 3 COMPUTATIONAL METHODS AND NUMERICAL PRELIMINARIES FOR SOLVING OCP
	3.1 Introduction
	3.2 Nonlinear Programming Problem
	3.3 Sequential Quadratic Programming Method
	3.4 Admissible Optimal Control Problem Method
	3.4.1 Discretization and Parameterization Techniques
	3.4.2 Dynamic Constraint Treatments
	3.4.3 Design Sensitivity Analysis
	3.4.4 ODE Solvers for Solving Initial Value Problem
	3.4.5 Numerical Integration Methods
	3.4.6 Interpolation Functions
	3.4.7 Computational Algorithm of AOCP

	3.5 Summary

	CHAPTER 4 A CONVENIENT SOLVER FOR SOLVING OPTIMAL CONTROL PROBLEMS
	4.1 Introduction
	4.2 Multifunctional Optimization System Tool - MOST
	4.3 Structure of the Proposed OCP Solver
	4.4 The OCP Solver in Cooperation with MOST
	4.5 User Interface for the OCP Solver
	4.6 Systematic Procedure for Solving the OCP
	4.7 Illustrative Examples
	4.7.1 The van der Pol Oscillator Problem
	4.7.2 Time-optimal Control Problem: Overhead Crane System

	4.8 Numerical Study
	4.9 Summary

	CHAPTER 5 A COMPUTATIONAL SCHEME FOR SOLVING THE DISCRETE-VALUED OPTIMAL CONTROL PROBLEM
	5.1 Introduction
	5.2 Problem Formulations
	5.2.1 Optimal Discrete-valued Control Problems
	5.2.2 Mixed-Discrete Optimal Control Problems
	5.2.3 Time-Optimal Control Problems

	5.3 Mixed-Integer NLP Algorithm for Solving TOCP
	5.3.1 Integrating the AOCP and Enhanced Branch-and-Bound Method
	5.3.2 Algorithm for Solving Discrete-valued Optimal Control Problems

	5.4 Two-Phase Scheme for Solving TOCP
	5.5 Illustrative Examples
	5.5.1 Third-Order System
	5.5.2 Fourth-Order Systems: A Flexible Mechanism
	5.5.3 F-8 Fighter Aircraft

	5.6 Summary

	CHAPTER 6 ENGINEERING APPLICATIONS
	6.1 Flight Level Control Problem
	6.1.1 Aircraft Model
	6.1.2 Numerical examples

	6.2 Vehicle Suspension Design Problem
	6.2.1 Derivation of the Vehicle Model
	6.2.2 Numerical Examples

	6.3 Summary

	CHAPTER 7 CONCLUSIONS AND FUTURE STUDY
	7.1 Concluding Remarks
	7.2 Future Study

	 REFERENCE
	 VITA

