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摘 要 

ABSTRACT (IN CHINESE) 

動態系統所引發的特性一直困擾著工程設計人員，而只在靜態系統模式下，採用最佳

化設計方法所求得的設計，則往往在實際的應用上有所不足。本文主要依據最佳設計與

最佳控制理論基礎，結合動態分析與數值分析求解技巧，發展一套通用之動態系統最佳

設計方法與軟體。 

一般動態系統之最佳化問題可以轉換成標準的最佳控制問題，再透過離散技術轉換成

非線性規劃問題，如此便可利用現有之最佳化軟體進行求解。在本文中，首先將動態系

統的解題方法與流程發展為最佳控制分析模組，再將該模組與最佳化分析軟體 (MOST) 

整合得到整合最佳控制軟體，可以用來解決各種類型的最佳控制問題。為驗證軟體的效

能與準確性，利用本文所發展之整合最佳控制軟體求解文獻資料中所提出之各類型最佳

控制問題。藉由分析結果之數值與控制軌跡曲線的比對，整合最佳控制軟體所求出之數

值解，在效能與準確性上都能與文獻資料所獲得的最佳解吻合，確認該整合最佳控制軟

體的確可以用來解決我們工程應用上的最佳控制問題。 

另外，針對工程設計中存在的離散（整數）最佳控制問題，本文依據混合整數非線性

規劃法(mixed integer nonlinear programming) 做進一步的研究。猛撞型控制 (bang-bang 

type control) 是常見的離散最佳控制問題，其複雜與難解的特性更是吸引諸多文獻探討

的主因。許多文獻針對此一問題所提出的方法多在控制函數的切換點數量為已知的假設
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條件下所推導，但這並不符合實際工程上的應用需求，因為控制函數的切換點數量大多

在求解完成後才會得知。因此，本文針對此類型問題發展出兩階段求解的方法，第一階

段先粗略求解該問題在連續空間下的解，並藉此求得控制函數可能的切換點資訊，第二

階段再利用混合整數非線性規劃法求解該問題的真實解。發展過程中，加強型的分支界

定演算法 (enhanced branch-and-bound method)被實際應用並且納入前一階段所開發的整

合最佳控制軟體中，這也使得這個軟體可以同時處理實際動態系統中最常見的連續及離

散最佳控制問題。 

最後，本文將所發展的整合最佳控制軟體用來求解兩個實際的工程應用問題：飛航高

度控制問題與車輛避震系統設計問題。兩個問題都屬於高階非線性控制問題，首先利用

本文中所建議的解題步驟建構完成這兩個問題的數學模型，接著直接利用本研究所發展

的軟體求解符合問題要求的最佳解。經由這些實際應用案例的驗證，顯示本文所發展的

方法與軟體的確可以提供工程師、學者與學生一個便利可靠的動態系統設計工具。 

 

ii 



Computational Schemes for Dynamic System Optimal Design 

and its Applications   

Ching-Hua Hung Student: Chih-Hung Huang Advisor: Ching-Huan Tseng 

 

Department of Mechanical Engineering 

National Chiao Tung University 

 
ABSTRACT 

The nonlinear behaviors of dynamic system have been of continual concern to both 

engineers and system designers. In most applications, the designs – based on a static model 

and obtained by traditional optimization methods – can never work perfectly in dynamic cases. 

Therefore, researchers have devoted themselves to find an optimal design that is able to meet 

dynamic requirements. This dissertation focuses on developing a general-purpose 

optimization method, based on optimization and optimal control theory, one that integrates 

dynamic system analysis with numerical technology to deal with dynamic system design 

problems. 

A dynamic system optimal design problem can be transformed into an optimal control 

problem (OCP). Many scholars have proposed methods to solve optimal control problems and 

have outlined discretization techniques to convert the optimal control problem into a 

nonlinear programming problem that can then be solved using extant optimization solvers. 

This dissertation applies this method to develop a direct optimal control analysis module that 

is then integrated into the optimization solver, MOST. The numerical results of the study 

indicate that the solver produces quite accurate results and performs even better than those 

reported in the earlier literatures. Therefore, the capability and accuracy of the optimal control 

problem solver is indisputable, as is its suitability for engineering applications.  
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A second theme of this dissertation is the development of a novel method for solving 

discrete-valued optimal control problems arisen in many practical designs; for example, the 

bang-bang type control that is a common problem in time-optimal control problems. 

Mixed-integer nonlinear programming methods are applied to deal with those problems in this 

dissertation. When the controls are assumed to be of the bang-bang type, the time-optimal 

control problem becomes one of determining the switching times. Whereas several methods 

for determining the time-optimal control problem (TOCP) switching times have been studied 

extensively in the literature, these methods require that the number of switching times be 

known before their algorithms can be applied. Thus, they cannot meet practical demands 

because the number of switching times is usually unknown before the control problems are 

solved. To address this weakness, this dissertation focuses on developing a computational 

method to solve discrete-valued optimal control problems that consists of two computational 

phases: first, switching times are calculated using existing continuous optimal control 

methods; and second, the information obtained in the first phase is used to compute the 

discrete-valued control strategy. The proposed algorithm combines the proposed OCP solver 

with an enhanced branch-and-bound method and hence can deal with both continuous and 

discrete optimal control problems. 

Finally, two highly nonlinear engineering problems – the flight level control problem and 

the vehicle suspension design problem – are used to demonstrate the capability and accuracy 

of the proposed solver. The mathematical models for these two problems can be successfully 

established and solved by using the procedure suggested in this dissertation. The results show 

that the proposed solver allows engineers to solve their control problems in a systematic and 

efficient manner. 
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CHAPTER 1  
INTRODUCTION 

1.1 Dynamic Optimization and Optimization Control Problems 

Over the past decade, applications for dynamic systems in engineering have increased 

significantly. In most applications, the designs, which are based on a static model and 

obtained by traditional optimization methods, cannot work perfectly in dynamic cases because 

of their nonlinear behaviors. Therefore, researchers have devoted themselves to find an 

optimal design that is able to meet dynamic requirements. 

Most engineering applications are modeled dynamically using differential algebraic 

equations (DAE) whose formulation consists of (a) differential equations that describe the 

dynamic behavior – such as mass and energy balances – of the state of a given system and (b) 

algebraic equations that ensure physical and dynamic relations. Usually, the dynamic 

behaviors of a given system can be influenced by the choice of certain control variables. For 

instance, a vehicle can be controlled by the steering wheel, the accelerator pedal, and the 

brakes. At the same time, the state and/or control variables cannot assume any value but are 

subject to certain restrictions, often resulting from safety regulations or physical limitations, 

such as the altitude of an aircraft being above ground level or the steering angle of a vehicle 

having a maximum limitation. In addition, engineers are particularly interested in those state 

and control variables that fulfill all restrictions while also minimizing or maximizing a given 

objective function. These problems are typically ones of dynamic optimization. By applying 

modeling and optimization technologies, a dynamic optimization problem can be 

reformulated as an optimal control problem (OCP). 

Even though optimal control problems arise in various disciplines, not all engineers are 

familiar with optimal control theory. On the other hand, most optimal control problems are 

interpreted as an extension of nonlinear programming (NLP) problems to an infinite number 

of variables and solved by numerical methods. For engineers who are inexperienced in 
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numerical techniques, implementing these numerical techniques is another obstacle in solving 

dynamic optimization problems. Consequently, a general-purpose solver for optimal control 

problems coupled with a systematic procedure could assist engineers in solving various 

optimal control problems. 

Time-optimal control problems (TOCP) have attracted the interest of researchers in 

optimal control because, even they often arise in practical applications, their solutions are 

difficult. In practical applications, one of the most common types of control function is the 

piecewise-constant function by which a sequence of constant inputs is used to control a given 

system with suitable switching times. Nevertheless, many methods proposed in the literature – 

for example, the switching time computations algorithm (Lucas and Kaya, 2001) – assume 

that the number of switching times is known before their algorithms are applied. In reality, 

however, the number of switching times is generally unknown before most control problems 

are solved. Therefore, an efficient algorithm for determining the switching times of TOCP 

becomes important and attracts the interest of researchers. 

1.2 Literature Review 

1.2.1 Methods for Optimal Control Problems 

Optimal control problems can be solved by a variational method (Pontryagin et al., 1962) 

or by nonlinear programming approaches (Huang and Tseng, 2003, 2004; Hu et al., 2002; 

Jaddu and Shimemura, 1999). The variational or indirect method is based on the solution of 

first-order necessary conditions for optimality obtained from Pontryagin’s maximum principle 

(Pontryagin et al., 1962). For problems without inequality constraints, the optimality 

conditions can be formulated as a set of differential-algebraic equations, often in the form of a 

two-point boundary value problem (TPBVP). The TPBVP can be addressed using many 

approaches, including single shooting, multiple shooting, invariant embedding, or a 

discretization method such as collocation on finite elements. On the other hand, if the problem 
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requires that active inequality constraints be handled, finding the correct switching structure, 

as well as suitable initial guesses for the state and costate variables, is often very difficult.  

Much attention has been paid in the literature to the development of numerical methods 

for solving optimal control problems (Hu et al., 2002; Pytlak, 1999; Jaddu and Shimemura, 

1999; Teo, and Wu, 1984; Polak, 1971), the most popular approach in this field is the 

reduction of the original problem to a NLP problem. Nevertheless, in spite of extensive use of 

nonlinear programming methods to solve optimal control problems, engineers still spend 

much effort reformulating nonlinear programming problems for different control problems. 

Moreover, implementing the corresponding programs for the nonlinear programming problem 

is tedious and time consuming. Therefore, a general OCP solver coupled with a systematic 

computational procedure for various optimal control problems has become an imperative for 

engineers, particularly for those who are inexperienced in optimal control theory or numerical 

techniques. 

Additionally, in many practical engineering applications, the control action is restricted to 

a set of discrete values. These systems can be classified as switched systems consisting of 

several subsystems and switching laws that orchestrate the active subsystem at each time 

instant. Optimal control problems for switched systems, which require solution of both the 

optimal switching sequences and the optimal continuous inputs, have recently drawn the 

attention of many researchers. The primary difficulty with these switched systems is that the 

range set of the control is discrete and hence not convex. Moreover, choosing the appropriate 

elements from the control set in an appropriate order is a nonlinear combinatorial optimization 

problem. In the context of time optimal control problems, as pointed out by Lee et al. (1997), 

serious numerical difficulties may arise in the process of identifying the exact switching 

points. Therefore, an efficient numerical method is still needed to determine the exact control 

switching times in many practical engineering problems. 
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1.2.2 Time-Optimal Control Problems 

The TOCP is one of most common types of OCP, one in which only time is minimized 

and the control is bounded. In a TOCP, a TPBVP is usually derived by applying Pontryagin’s 

maximum principle (PMP). In general, time-optimal control solutions are difficult to obtain 

(Pinch, 1993) because, unless the system is of low order and is time invariant and linear, there 

is little hope of solving the TPBVP analytically (Kirk, 1970). Therefore, in recent research, 

many numerical techniques have been developed and adopted to solve time-optimal control 

problems. 

One of the most common types of control function in time-optimal control problems is the 

piecewise-constant function by which a sequence of constant inputs is used to control a given 

system with suitable switching times. Additionally, when the control is bounded, a very 

commonly encountered type of piecewise-constant control is the bang-bang type, which 

switches between the upper and lower bounds of the control input. When the controls are 

assumed to be of the bang-bang type, the time-optimal control problem becomes one of 

determining the switching times, several methods for which have been studied extensively in 

the literature (see, e.g., Kaya and Noakes, 1996; Bertrand and Epenoy, 2002; Simakov et al., 

2002). However, as already mentioned, in contrast to practical reality, these methods require 

that the number of switching times be known before their algorithms can be applied. To 

overcome the numerical difficulties arising during the process of finding the exact switching 

points, Lee et al. (1997) proposed the control parameterization enhancing transform (CPET), 

which they also extended to handle the optimal discrete-valued control problems (Lee et al., 

1999) and applied to solve the sensor-scheduling problem (Lee et al., 2001). 

In similar manner, this dissertation focuses on developing a numerical method to solve 

time-optimal control problems. This method consists of the two-phase scheme: first, 

switching times are calculated using existing optimal control methods; and second, the 

4 



resulting information is used to compute the discrete-valued control strategy. The proposed 

algorithm, which integrates the admissible optimal control problem formulation with an 

enhanced branch-and-bound method (Tseng et al., 1995), is then implemented and applied to 

some examples. 

1.3 Objectives 

The major purpose of this dissertation is to develop a computational method to solve the 

time-optimal control problems and find the corresponding discrete-valued optimal control 

laws. The other purpose of this dissertation is to implement a general OCP solver and provide 

a systematic procedure for solving OCPs that provides engineers with a systematic and 

efficient procedure to solve their optimal control problems. 

1.4 Outlines 

The dissertation is organized as follows. Chapter 2 introduces the formulations for various 

optimal control problems and the general methods for solving such problems. Also briefly 

discussed are problem-solving procedures and the difficulties with direct and indirect methods. 

Chapter 3 specifically addresses the computational methods for solving optimal control 

problems and presents the theoretical basis and numerical preliminaries for developing a 

general optimal control problem solver. The architecture of the OCP solver and the systematic 

procedure for solving the OCP are described in Chapter 4, which also present the details of 

the implementation and user interface of the proposed solver. Here, the van der Pol oscillator 

problem with various types of terminal conditions and the time-optimal control problem of 

overhead crane control are used to demonstrate and verify the capability and accuracy of the 

proposed OCP solver. Chapter 5 introduces a two-phase scheme that integrates the admissible 

optimal control problem method and the enhanced branch-and-bound algorithm to efficiently 

solve the bang-bang control problems in the field of engineering. In Chapter 6, the proposed 
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solver is applied to two practical engineering applications: the flight level control problem and 

the vehicle suspension design problem. Finally, Chapter 7 draws some conclusions and makes 

suggestions for further research. 
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CHAPTER 2  
METHODS FOR SOLVING OPTIMAL CONTROL PROBLEMS 

2.1 Introduction 

Optimal control theory has been of considerable importance in a wide variety of 

disciplines. Over the years, the theory has been developed for various applications in many 

different fields, e.g., mechanical systems (Kim and Ha, 2001), automotive vehicle design 

(Panagiotis, 2000; Jalili and Esmailzadeh, 2001), and manufacturing processes (Samaras and 

Simaan, 2001). However, because most real-world problems are becoming too complex to be 

solved analytically (Kirk, 1970), using computational algorithms to solve them is becoming 

inevitable. As a result, several successful families of algorithms are now available in the 

literature. 

Techniques for the numerical solution of optimal control problems can be broadly divided 

into direct and indirect methods (Bock, 1978; Stryk and Bulirsch, 1992). In the direct method, 

the state and/or control variables are parameterized using a piecewise polynomial 

approximation. Inserting these approximations into the cost functional, dynamic equations, 

and constraints and boundary conditions leads to a static parameter optimization problem. On 

the other hand, the indirect method is based on the solution of the first-order necessary 

conditions for optimality obtained from Pontryagin’s maximum principle (Pontryagin et al., 

1962) or derived from the Hamilton-Jacobi-Bellman equation (Bellman, 1957). 

Two early methods commonly used to solve optimal control problems are Bellman’s 

dynamic programming (Bellman, 1957) and Pontryagin’s maximum principle (Pontryagin et 

al., 1962).  Dynamic programming, developed by Bellman in the late 1950s (Bellman, 1957; 

Bellman and Dreyfus, 1962; Bellman and Kalaba, 1965), is a computational technique that 

extends the decision-making concept to sequences of decisions, which together define an 

optimal policy and trajectory. Subsequently, Soviet mathematician Pontryagin and his 
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colleagues (Pontryagin et al., 1962) developed the calculus of variations approach using a 

maximum principle. Although both the dynamic programming method and PMP have been 

used to solve optimal control problems, many practical problems described by strongly 

nonlinear differential equations cannot be easily solved by either technique. As a result, many 

approximation methods based on NLP methods are used to solve these practical problems (see, 

e.g., Lin, 1992; Pytlak, 1999; Jaddu and Shimemura, 1999; Hu et al., 2002). 

A nonlinear programming problem consists of a multivariable function subject to multiple 

inequality and equality constraints. The solution to the nonlinear programming problem is 

found by solving the Kuhn-Tucker points of equalities given by the first-order boundary 

conditions. Conceptually, this procedure is analogous to solving optimal control problems 

using Pontryagin’s maximum principle. Depending on the discretization technique applied, 

methods that apply NLP solvers can be classified into two groups: simultaneous or sequential 

strategies. In the simultaneous methods, the state and control variables are fully discretized 

and thus usually lead to large-scale NLP problems that require special solution strategies 

(Cervantes and Biegler, 1998; Betts and Huffman, 1992). However, in sequential methods – 

also known as control variable parameterization methods – only the control variables are 

discretized. Based on initial conditions and a set of control parameters, the system equations 

are integrated with an ordinary differential equation (ODE) solver at each iteration to produce 

cost functional (performance index) and constraint values used by a nonlinear programming 

solver to find the control parameterization’s optimal coefficient values. The sequential 

approach is a feasible path method, i.e., in each of iteration, the system equation is solved. 

However, this procedure is robust only when the system contains stable modes. Otherwise, 

finding a feasible solution for a given set of control parameters may be difficult. In this 

dissertation, a different discretization technique – the shooting method – is implemented and 

used in conjunction with sequential quadratic programming (SQP) to solve various types of 
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optimal control problems. 

The shooting method serves as a bridge between sequential and simultaneous approaches 

by partitioning the time domain into smaller time intervals and integrating the system 

equations separately in each interval. Control variables are treated in the same manner as in 

the sequential approach. Moreover, to obtain gradient information, sensitivities are obtained 

for both the control variables and the initial state conditions in each time interval. Finally, 

equality constraints are added to the nonlinear program in order to link the time intervals and 

ensure that the states are continuous across each time interval. This method allows inequality 

constraints for both the state and the controls to be imposed directly at the grid points. Thus, 

the admissible optimal control problem (AOCP) formulation based on the shooting method is 

adopted as the core of the proposed method. 

2.2 Canonical Formulation of Optimal Control Problems 

Considering a dynamical system described by the following nonlinear differential 

equations on [0, tf ]:  

( ), , ( ), ( ) ,t t t=x f b x u�  0, ft t⎡ ⎤∈ ⎣ ⎦  (2.1)

with the initial condition 

0(0) =x x , (2.2)

where tf is the terminal time, π∈b is the vector of design variables, 

[ ]T
1 2( ) ( ), ( ), , ( ) m

mt u t u t u t≡u ∈  is a vector of the control functions and 

[ ]T
1 2( ) ( ), ( ), , ( ) n

nt x t x t x t≡x ∈

n

is a vector of the state variables. The function 

is assumed to be continuously differentiable with respect to all its 

arguments, and  is a given vector in . It is assumed that the process starts from t

: n mπ× × ×f

0x n
0 = 0 

and ends at the fixed terminal time tf > 0. A process that starts from t0 ≠ 0 may be transformed 

to satisfy this assumption by suitable shifting on the time axis. Let U be the class of all such 
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admissible controls. Then an optimal control problem may be stated formally as follows: 

Given the dynamical system expressed in Eqs. (2.1) and (2.2), find u ∈ U such that the cost 

functional (performance index) 

( ) ( )0 0 00
, ( ), , ( ), ( ),ft

f fJ t t t t= Φ + ∫b x b u xL t dt  (2.3)

is minimized subject to the constraint 

( ) ( )
0

0; 1,.........,
, ( ), , ( ), ( ),

0; 1,....,
ft e

i i f f i
e T

i N
J t t t t t dt

i N N
= =⎧

= Φ + ⎨≤ = +⎩
∫b x b u xL  (2.4)

and the following continuous inequality constraint on the function of the state and control: 

( ), ( ), ( ), 0; 1,.........,j t t t j qψ ≤ =b u x  , 0, ft t⎡ ⎤∀ ∈ ⎣ ⎦ . (2.5)

where Φ0, L0, Φi, Li and ψj are continuously differentiable with respect to their respective 

arguments. This problem is referred to as problem (PU). A control u ∈ U is said to be a 

feasible control if it satisfies constraints (2.4) and (2.5). 

The preceding definition extends the original Bolza problem to account for inequality 

constraints because the original Bolza formulation, containing only equality constraints, is not 

general for the OCP. It also fails to treat the design variables b, which may serve a variety of 

useful purposes apart from the obvious design parameters, e.g., weight and velocity of a 

vehicle. Moreover, when the terminal time tf is unconstrained (for optimization), a free-time 

problem occurs. Otherwise, a fixed-time problem is given. In addition, the initial conditions 

are separated from the functional constraints in Eq. (2.4) for practical considerations, and the 

terminal conditions are treated as equality constraints in the first term of Eq. (2.4). The 

differential equations for the system in Eq. (2.1) are written in general first-order form. 

Equation (2.5) represents the mixed state and control inequality dynamic constraints. 

According to the constraints encountered in practical applications, most constraints can be 

classified under one of the following categories (Teo et al., 1991): 
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Type 1. Control bounds: 

min max( )t≤ ≤u u u   , 0, ft t⎡ ⎤∀ ∈ ⎣ ⎦  (2.6)

Type 2. Terminal state constraint with fixed terminal time: 

( ) 0; 1,.........,
, ( ),

0; 1,....,
e

i f f
e T

i N
t t

i N N
= =⎧

Φ ⎨≤ = +⎩
b x  , tf  is fixed. (2.7)

Type 3. Terminal state constraint with free terminal time: 

( ), ( ), 0i f ft tΦ b x =

=

 , tf is unspecified.  (2.8)

Type 4. Interior point state constraint: 

( ), ( ), 0i l lt tΦ b x  ,0 < tl < tf (2.9)

Type 5. Integral constraint: 

( )
0

0; 1,.........,
, ( ), ( ),

0; 1,....,
ft e

i
e T

i N
t t t dt

i N N
= =⎧

⎨≤ = +⎩
∫ b u xL    (2.10)

Type 6. Continuous equality constraint on the function of the state and control: 

( ), ( ), ( ), 0i t t tΦ =b x u  , 0, ft t⎡ ⎤∀ ∈ ⎣ ⎦  (2.11)

Type 7. Continuous inequality constraint on the function of the state and control: 

( ), ( ), ( ), 0i t t tΦ ≤b x u  , 0, ft t⎡ ⎤∀ ∈ ⎣ ⎦  (2.12)

To develop a general optimal control solver, any constraint of type 2 to type 7 can be regarded 

as a special case of Eqs. (2.4) and (2.5).   

2.3 First-Order Necessary Condition – Euler Lagrangian Equation 

The first-order necessary condition for optimality, known as the Euler-Lagrangian 

equation, can be found in many research studies (e.g., Teo et al., 1991; Kirk, 1970). Given an 

optimal control problem where control u ∈ U is chosen such that the cost functional defined 

in Eq. (2.3) is minimized, then 
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( ) ( )0 0 00
( ), ( ), ( ),ft

f fJ t t t t= Φ + ∫x u xL t dt  (2.13)

where Φ0 and L0 are continuously differentiable with respect to their respective arguments.  

It should be noted that the cost functional may be regarded as depending explicitly only 

on u, as x is implicitly determined by u from Eqs. (2.1) and (2.2). In addition, the design 

variables vector, b, is treated as a constant and is not involved. The system equations (2.1) and 

(2.2) can be appended to the cost functional by introducing the appropriate Lagrange 

multiplier : n∈λ

( ) ( )( ) ( ) ( )( ){
( )( ) ( ) ( )( ) ( ) }

0 0 00

ft

f f

T

J t t t t t

t t t t t

= Φ +

dt⎡ ⎤                                  + −⎣ ⎦

∫u x , , x ,u

λ f , x ,u x

L

�
 (2.14)

The Hamiltonian function is defined as follows: 

( ) ( ) ( )0H , x,u, λ , x ,u λ f , x ,uTt t t= +L  (2.15)

It should again be noted that, if the system equation is satisfied, the appended cost 

functional 0J is indifferent to the original . The time dependent Lagrange multiplier is 

referred to as the costate vector, also known as the adjoint vector. 

0J

Substituting Eq. (2.15) into Eq. (2.14) and integrating the last term by parts, the cost 

functional becomes 

( ) ( )( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ){ ( )( ) ( )}
0 0

0

0 0u x λ x λ x

H , x ,u , λ λ xf

T T

f f f

Tt

J t t t

t t t t t t d

= Φ − +

                           + +∫ � t
 (2.16)

For a small variation c in u, the corresponding first-order variations in x and 0J  are δ x  

and 0Jδ , respectively, where 0Jδ is obtained by the chain rule: 
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( ) ( )( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

0
0

0

0 0
x

u λ x λ x
x

H , x ,u , λ
λ x

x

H , x ,u , λ
u

u

f

T T

f f

Tt

t
J t t

t t t t
t

t t t t
t dt

δ δ

δ

δ

⎡ ⎤∂Φ
= − +⎢ ⎥

∂⎢ ⎥⎣ ⎦
⎧⎡ ⎤∂⎪                          + +⎢ ⎥⎨ ∂⎢ ⎥⎪⎣ ⎦⎩

⎫∂ ⎪                          + ⎬∂ ⎪⎭

∫ � t

δ

 (2.17)

Since  is arbitrary so far, it can be set as ( )λ t

( )( ) ( ) ( ) ( )( )H , x ,u , λ
λ

x
T t t t t

t
∂

= −
∂

�  (2.18)

with boundary condition: 

( )( ) ( )( )0 x
λ

x
T f

f

t
t

∂Φ
=

∂
 (2.19)

As the initial condition x(0) is fixed, ( )0δ x  vanishes and Eq. (2.17) reduces to  

( ) ( ) ( ) ( )( ) ( )0 0

* H , x ,u , λ
u u

u
ft t t t t

J tδ δ
⎧ ⎫∂

dt⎪ ⎪= ⎨ ⎬∂ ⎪⎪ ⎭⎩
∫  (2.20)

For a local minimum, it is necessary that 0Jδ  vanishes for arbitraryδ x . Therefore, it is 

necessary that  

( ) ( ) ( )( )
0

H , x ,u ,λ
u

t t t t∂
=

∂
 (2.21)

for all 0, ft t⎡∈ ⎣ ⎤⎦ , except on a finite set. It should be noted that this holds only if no bounds 

on u exist; otherwise, the Pontryagin’s maximum principle to be discussed later will be 

applied. Equations (2.1), (2.2), (2.18), (2.19), and (2.21) are the well-known Euler-Lagrangian 

equations whose results can be summarized in the following theorem. 
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Theorem 2.1 If u*(t) is a control that yields a local minimum for the cost functional  

(2.13), and x*(t) and λ*(t) are the corresponding state and costate, then it is necessary 

that 

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )* * *t f t t t t=x , x ,u , λ

( )( ) ( ) ( ) ( )( )

* * *
*

T

T t t t t⎡ ⎤∂
⎢ ⎥=

∂⎢ ⎥⎣ ⎦
�

H , x ,u , λ

λ  
(2.22a)

( )*
00 =x x  (2.22b)

* * *
*

T
t t t t

t
⎡ ⎤∂
⎢ ⎥= −

∂⎢ ⎥⎣ ⎦

� H , x ,u , λ
λ

x  
(2.22c)

( ) ( )( )*
0

T

f
f

t
t

⎡ ⎤∂Φ
⎢ ⎥=
⎢ ⎥∂
⎣ ⎦

x
λ

x

0,

 
(2.22d)

and, for all ft t⎡ ⎤∈   ⎣ ⎦ 0,, except possibly on a finite subset of ⎡ ⎤t  ⎣ f ⎦

( )
,  

( ) ( )( )
0

H , x ,u ,λ
u

t t t t∂
=

∂
 

(2.22e)

 

It should be noted that Eqs. (2.22a)-(2.22d) constitute 2n differential equations with n 

boundary conditions for x* specified at t = 0 and n boundary conditions for λ* specified at t 

= tf. This is referred to as a two-point boundary value problem. In principle, the dependence 

on u* can be removed by solving u* as a function of x* andλ* from the m algebraic equations 

in Eq. (2.22e) via the implicit function theorem, provided that the Hessian 

HH
u u

T

uu
∂ ∂⎡ ⎤≡ ⎢ ⎥∂ ∂⎣ ⎦

is nonsingular at the optimal point. 

2.4 Methods for Solving Optimal Control Problems 

2.4.1 Indirect Methods 

As mentioned in Section 1.2.1, the indirect method is based on the solution of the 

first-order necessary conditions for optimality obtained from Pontryagin’s maximum principle 

(Pontryagin et al., 1962), which has been modified and applied in various applications (see, 
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e.g., Xu and Antsaklis, 2004; Chyba et al.,2003; Steindl and Troger, 2003). For problems 

without inequality constraints, the optimality conditions can be formulated as a set of 

differential-algebraic equations (DAEs). Obtaining a solution to DAEs requires careful 

attention to the boundary conditions because the state variables frequently have specified 

initial conditions and costate (adjoint) variables whose final conditions result in a TPBVP that 

is notoriously difficult to solve analytically and requires the use of iterative numerical 

techniques (Kirk, 1970). On the other hand, if the problem requires that active inequality 

constraints be handled, finding the correct switching structure together with suitable initial 

guesses for state and costate variables is often very difficult because of a lack of physical 

significance and the need for prior knowledge of the control’s switching structure. Many 

numerical techniques, including single shooting, invariant embedding, and multiple shooting, 

can be used to solve TPBVP, but PMP does not deal well with nonlinear optimal control 

problems. Figure 2.1 shows a solution process based on indirect methods. 

Pontryagin’s Maximum Principle 

According to the Euler-Lagrangian equation for the unconstrained optimal control 

problem of Section 2.3 depicts that the Hamiltonian function must necessarily be 

stationary with respect to the control, i.e. 0H
u

∂
=

∂
 at optimality. However, the optimality 

condition obtained in Section 2.3 does not have to be satisfied if the control is constrained 

to lie on the boundary of a subset Us. Here, Us is a compact subset of . Then, the 

Pontryagin’s maximum principle can be described by the following theorem:  

r

Theorem 2.2 Given the problem, where the cost functional (2.13) is to be minimized 

over U subjected to the system equations (2.1) and (2.2), if u*(t) ∈ U is an optimal 

control, and x*(t) and λ*(t) are the corresponding state and costate, then it is 

necessary that 
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( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
* * *

* * * *

T
t t t t

t f t t t t
⎡ ⎤∂
⎢ ⎥= =

∂⎢ ⎥⎣ ⎦
�

H , x ,u , λ
x , x ,u , λ

λ

( )*
00 =x x

( ) ( )( )

T
 (2.23a)

 (2.23b)

( )( ) ( )* * *
T

t t⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

,u , λ

x

( )

*
t t

t
∂

= −
∂

� H , x
λ  (2.23c)

( )( )*
0 f

T
t

t
⎡ ⎤∂Φ
⎢ ⎥=

x
λ

0,

f ⎢ ⎥∂
⎣ ⎦

x  (2.23d)

and, for all ft t⎡ ⎤∈   ⎣ ⎦ 0,, except possibly on a finite subset of ⎡ ⎤t  ⎣ f ⎦

( )

,  

( ) ( )( ) ( ( ) ( ) ( ))* * * * *t t t t t t t t≤H , x ,u , λ H , x ,u , λ  (2.23e)

for all 0, ft t⎡ ⎤∈ ⎣ ⎦ . 

Dynamic Programming 

Dynamic programming (DP), based on Bellman’s principle of optimality (Bryson and Ho, 

1975; Bellman and Dreyfus, 1962; Bellman, 1957), requires solution of the 

Hamilton-Jacobi-Bellman partial differential equation in a domain of the state space that 

contains the optimal solution. In dynamic programming, the optimal control problem is 

expressed as a state-variable feedback in graphical or tabular form. Optimal control strategies 

must be determined by working backward from the final stages. In other words, this method 

operates in sweeps through the state set, performing a full backup operation on each state. 

Each backup updates the value of one state based on the value of all possible successor states.  

The computational procedure for dynamic programming can be described briefly by the 

following steps. 

Step 1: Approximating the continuous-time system using a discrete-time system. 
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In this step, the time interval, [t0, tf], is divided into N equal spaced intervals, Δt, and 

the performance index and state equations are converted into discrete form. Then, by 

applying the principle of optimality, the performance index can be converted into 

recurrent form: 

( )( )
( )

( ){*
, D

*
( 1),

min , ( ), ( )

( ( , ( ), ( )))}

N k N u N k

N k N

N k N k N k

t N k N k

− −

− −

− = − −

                   + Δ ⋅ − −

J x b u x

J f b x u

L
 (2.24)

Step 2: Quantizing the admissible state and control values into a finite number of levels. 

Step 3: Calculating and storing the minimum values of the performance index of each stage 

from final state to initial state. In each stage, every quantized control value is tried at 

each quantized state value to discover the corresponding state values of the next 

stage. Additionally, the value of the performance index from current stage to final 

stage is calculated and compared. The minimum performance index is then chosen 

and stored. If the corresponding state values of the next stage are not in the 

quantized grid points, interpolation is required. 

Step 4: Showing the results. 

2.4.2 Direct Methods 

Direct methods try to solve the dynamic optimization problem directly without explicitly 

solving the necessary conditions. Usually, these methods are based on an iterative procedure 

that generates approximations to the optimal solution of the dynamic optimization problem 

within each iteration step. For instance, the SQP method uses quadratic subproblems to 

approximate a general nonlinear programming problem locally. 

As mentioned in Section 2.1, most direct methods that apply NLP solvers can be classified 

into simultaneous and sequential strategies. The important question for these numerical direct 

methods is whether these iterative approximate algorithms converge to a solution of the 

original problem or not. A solution process based on such methods is shown in Figure 2.2 and 
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their details will be introduced in Chapter 3. 

2.5 Summary 

The primary objective of this chapter has been to survey methods of the optimal control 

problems and provide formulations of various types of optimal control problems. The 

first-order necessary condition (Euler-Lagrangian equation) has also been briefly introduced 

to provide the theoretical foundation for Pontryagin’s maximum principle. In addition, the 

chapter has described two typical methods for solving optimal control problems – indirect and 

direct approaches – whose advantages and drawbacks are listed in Table 2.1. Understanding 

the advantages of and difficulties with these methods will help engineers apply them to 

problem solving.  

As regards applicability, dynamic programming (DP) is sometimes thought to be limited 

because of “the curse of dimensionality” (Bellman, 1957), i.e., the fact that the number of 

states often grows exponentially with the number of state variables. In reality, even though 

large state sets do create difficulties, these are the inherent difficulties of the problem not of 

DP as a solution method. In fact, the DP method can be used with today’s computers to solve 

optimal control problems with millions of states. In particular, dynamic programming can deal 

with multistage optimal control problems that are difficult to solve using other methods. 

Nevertheless, even though dynamic programming can be used to solve optimal control 

problems in nonlinear time-variant systems, using it to deal with time-optimal trajectory 

planning is difficult in practice because it relies on the exact dynamic models of the system. 

Yet, unfortunately, the time-optimal control problem is a very common application of the 

optimal control problem. 

In contrast, Pontryagin’s maximum principle, which provides the analytical foundation for 

this study, can deal with various types of optimal control problem. However, in any such 

control problem, PMP unfortunately leads to a nonlinear two-point boundary value problem 
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that, as earlier mentioned, is notoriously difficult to solve analytically and requires the use of 

iterative numerical techniques (Kirk, 1970).  

Furthermore, neither DP nor PMP can serve as a convenient and complete method for 

reformulating different control problems. Rather, engineers either have to derive the state 

equations, costate equations, and boundary conditions from PMP or have to reformulate the 

discrete form of the system equations and performance index by applying the DP algorithm. 

Engineers must then also implement numerical programs to solve the TPBVP using PMP or 

execute recurrence equations using DP. For engineers inexperienced in optimal control theory 

or numerical techniques, carrying out these theoretical derivations and program 

implementations is difficult. Thus, a general-purpose solver is needed for various types of 

optimal control problems. 

From a practical viewpoint, of the two types of NLP methods compared in Section 2.1 

(simultaneous and sequential strategies), the sequential NLP methods are the best for 

developing a general-purpose problem solver. 
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Table 2.1 Comparison of the methods for solving optimal control problems. 

Method Advantages Disadvantages / Difficulties 

Dynamic 

programming 

method 

1. Can obtain global optimal solutions. 

2. Can deal with nonlinear constrained 

time-variant systems. 

4. Suits multistage optimal control 

problems. 

3. Is straightforward to program. 

1. Hard to apply the algorithms for 

time-optimal trajectory planning in 

practice. 

2. Inconvenient to reuse. 

Pontryagin’s 

minimum 

principle 

1. Provides the analytical foundation. 

2. Can deal with various types of optimal 

control problem. 

1. Leads to a nonlinear TPBVP that is 

difficult to solve. 

2. Inconvenient to reuse. 

Simultaneous 

NLP methods 

1. Can deal with path constraint 

problems. 

2. Can be implemented as a general OCP 

solver. 

1. The computational efficiency is 

slowed for large-scale problems. 

2. Needs extra efforts to deal with 

inconsistency problem between 

state equations and controls. 

3. Needs a proper initial guess to 

obtain the optimal solution. 

Sequential 

NLP methods 

1. Can deal with various types of 

nonlinear optimal control problem. 

2. Easy to implement as a general OCP 

solver. 

3. Many well-developed numerical 

schemes can be applied to solve 

initial value problems. 

4. Higher computational efficiency for 

solving large-scale problems. 

1. Needs a proper initial guess to 

obtain the optimal solution. 

2. Path constraints for the states may 

not be satisfied between grid points.
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Figure 2.1 Solution process based on indirect methods. 

21 



 

Dynamic Optimization Problem 

Iterative / approximative 
Algorithm (SQP) 

Solution 

Check for convergence or optimality 
(sufficient / necessary conditions) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Solution process based on direct methods. 
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CHAPTER 3  
 COMPUTATIONAL METHODS AND NUMERICAL PRELIMINARIES 

FOR SOLVING OCP 

3.1 Introduction 

The rapid advancements in modern computers have brought about a revolution in the 

solutions to many physical and engineering problems, including optimal control problems. 

However, most real-world problems are becoming too complex to allow analytical solution; 

thus, computational methods must inevitably be used in solving them. As a result, 

computational methodology has attracted the interest of many engineers and mathematicians, 

and over the last two decades, many state-of-the-art computational methods for optimal 

control theory – including collocation transcription and the AOCP method – have been 

developed (see, e.g., Betts, 1998 and 2001; Hu et al., 2002; Jaddu and Shimemura, 1999; Lin, 

1992; Pytlak, 1999). 

Some earlier computational methods for solving optimal control problems were based on 

the indirect approach that assumes the direct solution of a set of necessary optimality 

conditions resulting from Pontryagin’s maximum principle. The adjoint (co-state) equations 

are combined with the original state equations to form a TPBVP. This problem may be 

efficiently solved using the shooting method discussed earlier, which guesses the unknown 

initial values of the adjoint variables, integrates both system and adjoint equations forward, 

and then reestimates the initial guesses from residuals at the end point (Bulirsch, 1971; 

Lastman, 1978). Nevertheless, because of difficulties arising from the sensitivity and 

instability of the solutions to the initial guesses, Bulirsch and his coworkers (1971, 1980) 

introduced multiple shooting algorithms to improve convergence and stability. Multiple 

shooting refers to the breaking up of a trajectory into subintervals, on each of which an 

initial-value problem is defined. The solutions are then adjusted in successive iterations until 

the boundary conditions and continuity properties at the ends of the subintervals are satisfied. 
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Multiple shooting is much more successful than its ancestor, the simple shooting method, in 

which a single initial-value problem is defined. However, even though especially good 

convergence properties are attributed to multiple-shooting algorithms, the necessity to define 

the proper control structure and initialize the adjoint variables within a sufficient vicinity of 

the optimal values still remains a serious limitation. 

To avoid the drawbacks of shooting techniques, the direct methods have been studied 

extensively during the last two decades (Betts, 1993; Barclay, 1997; Gill et al., 2002). One of 

the most widely used methods for solving optimal control problems is the direct method 

whose basis is the transformation of the optimal control problem into a NLP problem using 

either the discretization or parameterization technique (see, e.g., Goh and Teo, 1988; Xu and 

Antsaklis, 2004; Jaddu, 2002; Lee et al., 1999).  

When the discretization technique is applied, the optimal control problem is converted 

into a nonlinear programming problem with a large number of unknown parameters and 

constraints (Betts, 1998). On the other hand, parameterizing the control variables (Goh and 

Teo, 1988; Teo et al., 1991) requires integration of the system equations. Moreover, the 

simultaneous parameterization of both the state variables and the control variables also results 

in a nonlinear programming problem with a large number of parameters and equality 

constraints. 

As a prelude to discussing computational methods for solving optimal control problems, 

the following sections introduce some fundamental NLP concepts.  Also introduced is one of 

the best and most frequently applied NLP methods for solving optimal control problems, 

sequential quadratic programming (see Barclay, et al., 1998; Betts, 2000; Gill et al., 2002; 

Kraft, 1994; Stryk, 1993). Subsequently, the AOCP method, which uses the discretization 

technique to convert an OCP into a NLP problem, is proposed, and then a standard SQP 

algorithm is applied to solve it. Also discussed are the dynamic constraint treatments and 
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design sensitivity analysis used in AOCP. 

3.2 Nonlinear Programming Problem 

Mathematically, the general form of a constrained NLP problem can be expressed as 

follows: 

minimize  

             f(x) 

subject to  

g(x) ≤ 0 ,  xT = (x1, …, xn) 

h(x) = 0 

(3.1)

where f(x) is the objective function, and h(x) and g(x) are the equality and inequality 

constraint functions, respectively. It should be noted that in the inequality constraint functions 

g(x), the simple bounds of the design variables (xL ≤ x ≤ xU) are considered and classified. 

Because maximization problems can be converted to minimization ones by negating their 

objectives, only minimization problems are considered here, without loss of generality. 

A general continuous constrained NLP problem is defined in Eq. (3.1) in which x is a 

vector of continuous variables. Over the past three decades, a variety of methods has been 

produced in a wide body of research to solve the general constrained continuous optimization 

problem (Betts, 2001; Michalewicz et al., 1996; Horst and Tuy, 1993; Floudas and Pardalos, 

1992; Hansen, 1992). Based on different problem formulations, existing methods can be 

classified into three categories: penalty formulations, direct solutions, and Lagrangian 

methods. Figure 3.1 classifies these methods according to their formulations, and the details 

of these methods and their comparisons can be found in Wu (2000). Here, the SQP method 

based on the Lagrangian method and adopted as an NLP solver in the AOCP algorithm is 

introduced briefly. 

In general, because Lagrangian methods work on equality constraints, inequality 
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constraints are first transformed into their equal equivalents before Lagrangian methods are 

applied. For example, an inequality constraint can be transformed into an equality constraint 

by adding a slack variable (Luenberger, 1984). Thus, a general continuous equality 

constrained optimization problem can be formulated as follows: 

minimize         

             f(x) 

subject to  

h(x) = [h1(x), …, hm] T = 0 

(3.2)

where xT = (x1, …, xn) is a vector of the continuous variables. Both f(x) and h(x) are assumed 

to be continuous functions that are at least first-order differentiable. The augmented 

Lagrangian function in continuous space in Eq. (3.2) is then defined as  

( ) ( ) ( ) ( ) 21
2

L , T
c x xf≡ ∇ + ∇ +x λ x λ h x h x  (3.3)

where λ is a vector of the Lagrange multipliers. Compared to the conventional Lagrangian 

function in continuous space defined as ( ) ( ) (T
c f≡ +x λ x λ h xL , ) , the augmented 

Lagrangian function reduces the possibility of ill conditioning and is, therefore, more stable. 

Various continuous Lagrangian methods have been developed to find the (local) optimum, 

all based on first-order necessary conditions. To state these conditions, the concept of regular 

points must first be introduced. 

Definition 3.1. A point x, which satisfies constraints h(x) = 0, is said to be a regular point 

(Luenberger, 1984) if the gradient vectors ( ) ( )1 2x , x , , xmh h h∇ ∇ ∇… ( )  at point x are 

linearly independent. 

First-order necessary conditions for continuous constrained NLP problems.  

Letting x be a (local) optimal solution of f(x) subject to constraints h(x) = 0, and assuming 

that x is a regular point, then there exists such that  m∈λ
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( ) ( ) 0T
x xf∇ + ∇ =x λ h x  (3.4)

Based on the definition of a Lagrangian function, the necessary conditions for x to be a 

constrained (local) optimal solution can be written as follows: 

( )
( )

0

0

L ,

L ,
c

c

∇ =

∇ =
x

λ

x λ

x λ
 (3.5)

To ensure that the equilibrium point is an optimal solution, second-order sufficient 

conditions are used to check that the solution is a strictly relative minimum subject to 

constraints (Luenberger, 1984). These second-order sufficient conditions require second-order 

derivatives, and the Hessian matrix of the Lagrangian function is needed to satisfy certain 

conditions (Luenberger, 1984) if the solution to Eq. (3.5) is to be a strictly (local) optimal 

solution. Here, The Hessian matrix of the Lagrangian can be defined as 

  ( ) ( )L x x xxH L x, λ L x, λ
T

c c⎡ ⎤≡ ∇ ∇ = ∇⎣ ⎦

. Many searching methods based on first-order necessary conditions in continuous space have 

been developed for solving constrained optimization problems (Bertsekas, 1982; Luenberger, 

1984), including the first-order method, Newton’s method, modified Newton’s methods, 

quasi-Newtonian methods, and sequential quadratic programming (Hribar, 1996; Boggs and 

Tolle, 1995). A major advantage of these methods is that solving the first-order conditions 

exactly matches the goal of locating a (local) optimal solution. Therefore, these algorithms are 

usually efficient for solving continuous constrained NLPs. One of most popular methods for 

solving constrained optimization is sequential quadratic programming, discussed briefly in the 

next section. 

3.3 Sequential Quadratic Programming Method 

SQP, one of most popular Lagrangian methods for solving constrained NLPs, is also 

widely applied to develop computational methods for solving optimal control problems (Betts, 

2000; Buskens and Maurer, 2000; Volkwein, 2000; Barclay et al., 1997). SQP methods have 
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proven reliable and efficient for many practical constrained optimization problems. The 

method described here is implemented in MOST (Tseng et al., 1993) and is similar to the 

algorithm employed by SNOPT (Gill et al., 2002) software. 

The SQP method is actually a generalization of Newton’s method (Luenberger, 1984) for 

unconstrained optimization in the sense that it obtains search directions from a sequence of 

quadratic programming (QP) subproblems. Each QP subproblem minimizes a quadratic model 

of a certain Lagrangian function subject to linearized constraints. In its simplest form, an SQP 

algorithm replaces f(x) in the Lagrangian function with a quadratic approximation and the 

weighted constraint functions λTh(x) with their linear approximations: 

( ) ( ) ( )

( )

21
2
1
2

T T
xx c

T T

Q f

f

= ∇ + ∇

          = ∇ + L

d x d d x λ d

x d d H d

L ,
 (3.6)

where d refers to the descent direction (or search direction) and HL to the Hessian matrix of 

the Lagrangian function. The descent direction d(k) of the kth iteration of SQP can be found by 

solving the following quadratic problem, assuming equality constraints only: 

minimize         

             Q(d(k)) 

subject to  

( ) ( )( ) ( ) ( )h x h x d 0
Tk k k+ ∇ =  

(3.7)

where xk is used to represented the values of the design variables of the kth iteration of SQP. 

 The local convergence property of SQP is well defined when (x, λ) satisfies the 

second-order sufficient conditions (Luenberger, 1984). That is, if point (x, λ) is sufficiently 

close to an optimal solution (x*, λ*), then the sequence generated using the descent direction d 

and the appropriate step size α will converge to x* at a second-order rate. The search step size 

α can be obtained by applying a line search method.  
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The SQP method described here requires a more precise computation of the Hessian 

matrix, ( )2 L ,k k
xx c∇ x λ , at each step. However, it is usually replaced with a BFGS 

approximation (Arora, 1989) BB

)

k updated at each iteration.  Using a BFGS formula allows the 

following simple update strategy to be defined: 

( ) (
1

1

1

L , L ,
k k k

k x c k k x c k k

T T
k k k k k k

k k T T
k k k k k

+

+

+

= −

= ∇ − ∇

= − +

η x x
β x λ x λ

B η η B β βB B
η B η β η

 
(3.8)

Once the descent direction has been determined, the step size must be calculated based on 

simultaneously decreasing the objective, as well as improving constraint satisfaction. To 

accomplish this goal, a suitable unconstrained function must be developed upon which to base 

the step size determination. Many unconstrained optimization methods, such as the golden 

section search method, can be found in the literature (see Arora, 1989) and applied to 

calculate the search step size, α. 

Nevertheless, although SQP methods are generally efficient, they often require that 

functions be differentiable and therefore cannot be applied directly to solving NLPs 

containing discrete variables. Thus, a modified SQP algorithm in cooperation with an 

enhanced branch-and-bound method is proposed here to solve discrete-valued NLP problems. 

The details of this modified algorithm are introduced in Chapter 5 of this dissertation. The 

details of SQP method implementation can be found in the literature (e.g., Arora, 1989; Boggs 

and Tolle, 1995; Gill et al., 2002).  Figure 3.2 presents a conceptual flowchart of the SQP 

method, whose algorithm is briefly described below. 

Algorithm: Sequential Quadratic Programming 

Step 1. Choose x0, Ns (maximum number of iteration) 

εi (for convergence and stopping), k = 1 (iteration counter). 

Step 2. Find the descent direction d by solving the QP subproblem defined in Eqs. (3.6) 
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and Eq. (3.7). 

Step 3. Check feasible and convergence criteria. 

(a) Convergence for SQP: 

IF (hj = 0, j = 1, …, m) THEN 

IF (KT condition is satisfied) THEN 

Algorithm converged, Stop. 

(b) Stopping criteria: 

Δx = xk+1 – xk

IF (ΔxTΔx ≤ εi ) THEN Stop. (design variable not changing) 

IF (k = Ns) THEN Stop. (maximum iteration reached) 

Continue 

Step 4. Calculate the step size α. 

Step 5. Update Hessian matrix HL by applying BFGS approximation BBk (Eq. 3.8). 

Step 6. k = k +1; Go to Step 2. 

3.4 Admissible Optimal Control Problem Method 

The admissible optimal control problem method is a direct method that transcribes an 

optimal control problem into a NLP problem, a process shown in Figure 3.3. Whereas an NLP 

problem consists of a finite set of variables and constraints, an optimal control problem can 

involve continuous functions and be treated as an infinite-dimensional extension of an NLP 

problem. However, most practical methods for solving optimal control problems require 

Newton-based iterations with a finite set of variables and constraints. Therefore, a 

discretization technique is needed to convert the infinite-dimensional problem into a 

finite-dimensional approximation. On the other hand, a general optimal control problem may 

include some dynamic constraints that make the problem complex and difficult to solve. Thus, 

an efficient dynamic constraint treatment becomes more important for developing a general 
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optimal control solver. Presented below are two common design sensitivity analysis (DSA) 

methods used to determine the effect of a change in the current design on the cost functional 

and the constraint functions. 

3.4.1 Discretization and Parameterization Techniques 

Various discretization and parameterization techniques for state and control variables 

allow for an optimal solution for the OCP via nonlinear programming. Jaddu and Shimemura 

(1999) used quasi-linearization and state parameterization using Chebyshev polynomials to 

solve constrained nonlinear optimal control problems. Hu et al. (2002) applied an enhanced 

scheme based on the direct collocation and nonlinear programming problem (DCNLP) to 

transform the system dynamics into constraints for nonlinear programming. Nevertheless, 

although these simultaneous discretization methods are applied to many numerical examples 

and solve them successfully, using a full discretization strategy sharply increases the number 

of design variables. Therefore, a different discretization technique, in conjunction with SQP, is 

implemented here, one used to solve various types of optimal control problems (Betts, 2000; 

Barclay et al., 1997).  This technique is based on the sequential method in which only the 

control variables u are approximated by some interpolation function in each time interval. The 

approximate trajectories x are generated by solving the initial-value problem defined in Eqs. 

(2.1) and (2.2). This method, first proposed by Sage and White (1977), is termed the AOCP 

method. 

Control function parameterization. Parameterization of the control functions can be carried 

out using the following process. First, the entire time interval 0 , ft t t⎡ ⎤∈ ⎣ ⎦  is subdivided into 

N general unequal time intervals and the time grids are designated as 

t0 = 0, t1, t2,…, tN-1, tN = tf (3.9)

The time intervals between the grid points are defined in a vector form as  
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T = [ T1, T2,…, TN ]T (3.10)

where and 1l l lT t t −= − 0
1

N

l f
l

T t t
=

= −∑ . 

If at each time grid, control u(l) is treated as a set of m unknown parameters, then interval 

0 , ft t⎡⎣ ⎤⎦  will have an Nm unknown parameter and can be represented as 

SD =[ u(1), u(2),…, u(N) ]T 

=  [ u1(t0),…, um(t0), u1(t1),…, um(t1),…, u1(tN-1),…, um(tN-1)]T

=  [ S1,…, Sm, Sm+1,…, S2m, S2m+1,…,S(N-1)m+1,…, SmN]T

(3.11)

where ( )l m∈u is the vector of the control variables for the lth time interval [tl, tl+1]. This 

formulation can be treated as a subset of the design variable vector, resulting in a total number 

of k+N+Nm design variables: 

P = [ b1,…, bπ, T1,…, TN,…,S1,…, SN+1, SN+2,…,SmN]T (3.12)

Finding an accurate solution for any practical application requires one set of fine time grid 

intervals. However, discretizing control functions with a fine time interval increases the 

number of design variables considerably, especially for a practical optimal control problem 

with a large number of control variables. Hence, certain parameterization techniques have 

been developed to overcome this problem. If parameterization techniques are applied, control 

function u(t) may be represented by an interpolation function, and the coefficients of the 

interpolation function may be considered design variables instead of Ti and Si in Eq. (3.12). 

For example, if the time grid is not considered a design variable, the interpolation function 

based on a third-order polynomial u (1) = ( )
1

lζ + ( )
2

lζ × t + ( )
3

lζ × t2 + ( )
4

lζ × t3 can be used to 

represent the first component of the control forces in u(t) and ( )
1

lζ , ( )
2

lζ , ( )
3

lζ , and ( )
4

lζ can 

be treated as a subset of the design variables. Therefore, the control functions can be 

approximated by interpolation functions I(t), where . The continuous time 0( ) : , m
ft t t⎡ ⎤ ∈⎣ ⎦I
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optimal control problem with interpolation functions I(t) is thus reformulated as an NLP 

problem without using approximate discretization. As noted earlier, the control functions, u(t), 

are treated as a subset of the design variable vector P. Similarly, the terminal time tf can be 

treated as one of the design variables in time interval vector T, e.g., . The 

admissible control functions are represented in the form u(t) = I(S, T, t), and the state 

variables are written in the form x(b, S, T, t) to emphasize that they are functions of the design 

variable vector P. Here, S represents the parameter vector of interpolation function. As a 

result, the admissible optimal control problem in an NLP formulation can be rewritten as 

follows. 

01

N
f i

t T
=

= ∑ i t+

dt

N

A design variable vector P = [bT, TT, ST ]T must be found that minimizes the cost functional 

( )
( )1

0 0

1
( )
0

1

, ( , , , ),

, ( , , ), ( , , , ),l

l

f f

N t l

t
l

J t t

t t t+
−

=

= Φ

⎡ ⎤      + ⎢ ⎥⎣ ⎦∑ ∫

b x b S T

b I S T x b S TL
 (3.13)

subject to 

( )

( )1

( )

( )

, ( , , , ),

0; 1,.........,
, ( , , ), ( , , , ),

0; 1,....,
l

l

l
i i f f

t el
it

e T

J t t

i
t t t dt

i N N
+

= Φ

= =⎧
        + ⎨≤ = +⎩

∫

b x b S T

b I S T x b S TL
 (3.14)

( )( ) , ( , , ), ( , , , ), 0l
j t t tψ ≤b I S T x b S T

; [ ]11,........., ; ,l lj q t t t +=   ∀ ∈ . (3.15)

and the system equation is represented as 

( )( ) , , ( , , , ), ( , , ) ,l t t t=x f b x b S T I S T� [ ]1,l lt t t +∈  (3.16)

with the initial condition 

( ) (0)
0 0( ) ; ( )l

l lt t=   =x x x x  (3.17)

where l is used to indicate the index of the time grid, and the original optimal control problem 

is divided into N subproblems. These NLP subproblems are solved sequentially from time 
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grid t0 to terminal time tf, and the solutions of the state variables obtained in each time interval 

are then applied as initial values in the next time interval. 

With AOCP, the system equation in Eq. (3.16), together with the initial conditions in Eq. 

(3.17), forms an initial-value problem (IVP), and the corresponding values for the state 

variables can be calculated by solving the problem using the design variable values in each 

iteration. For integrating the state equations in Eqs. (3.16) and (3.17), some good first-order 

differential equation methods are available that have a variable step size and error control, e.g., 

Adam’s method, the Runge-Kutta-Fehlberg method, and the backward difference formulae 

(BDF) (Press et al., 1992). Those solvers can give accurate results with user-defined error 

control. The state trajectories are internally approximated using interpolation functions in the 

differential equation solvers. Values of the state and control variables between the grid points 

can be also obtained with different types of interpolation schemes. 

3.4.2 Dynamic Constraint Treatments 

The continuum dynamic constraints in Eq. (2.5) must be satisfied over the entire time 

interval at the optimum solution. Some procedures to eliminate time from these constraints 

are employed to convert an admissible optimal control problem into an NLP problem. The 

many treatments proposed to deal with the dynamic constraint problem – e.g., the equivalent 

functional formulation (Haug and Arora, 1979) and worst-case design formulation (Hsieh and 

Arora, 1984) – are introduced below. 

(a) Conventional Formulation 

With conventional formulation, discretization of the entire time interval [t0, tf] in equation 

(3.9) into N subintervals can be carried out by fixing a time grid at the current design 

iteration. Conceptually, the simplest way of replacing the continuum dynamic constraints 

of equation (3.15) is to impose the constraint at all grid points. This approach is hereafter 

referred to as the conventional formulation. 
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(b) Worst Case Design Formulation 

Here, the dynamic constraints are treated as a worst-case design formulation (Hsieh and 

Arora, 1984). Each continuum constraint of equation (3.15) is replaced by constraints at 

the worst-response time points: 

[ , ( , , ), ( , , , ), ] 0; 1, 2,..., ( )
jt tt t t jβ mφ β= ≤   =b I S T x b S T  (3.18)

where tj is a point of local maximum for the function φβ , and m(β) is the total number of 

max points for the β th constraint. A numerical procedure is then used to locate all points tj 

for the constraint in a given design and impose the constraint thereon. 

(c) Subdomain Functional Formulation 

For this formulation, the dynamic constraints are transformed into several equivalent 

functional constraints by dividing the entire time domain into several subdomains, each 

containing one local maximum point (Hsieh and Arora, 1984). Thus, the dynamic 

constraints are replaced by the following constraints: 

[ ]2

1

0 1 2 βb, I( S ,T , ), x( b,S ,T , ), , , , ..., ( )j

j

t

t
t t t dt jβφ  ≤   =∫ m  (3.19)

where [t1j, t2j] is a small subdomain around a local maximum point tj for the constraint 

function φβ. 

(d) Equivalent Functional Formulation 

Here, the dynamic constraints can be transformed into an equivalent functional form by 

integrating them over the time interval (Haug and Arora, 1979) as  

[ ]
0

0b, I( S ,T , ), x( b,S ,T , ),ft

t
t t tβφ dt ≤∫  (3.20)

where 

[ ]
0

0,
b, I( S ,T , ), x( b,S ,T , ),

,
ft

t

if
t t t dt

if
β

β
β β

φ
φ

φ φ
=    < 0;⎧

 ⎨=    ≥ 0; ⎩
∫  (3.21)

at any time. 
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In this dissertation, the conventional formulation, the worst-case design formulation, and 

the hybrid treatment for conventional and worst-case approach (shown in Figure 3.4) are 

applied to deal with the dynamic constraint problem. 

3.4.3 Design Sensitivity Analysis 

It is important that a numerical method of optimization determine the effect of a change in 

the current design on the performance index and constraint functions. In other words, the 

gradients of the performance index and constraint functions with respect to design variables 

must be evaluated using what is generally referred to as design sensitivity analysis (DSA). 

The design sensitivity coefficients may be used directly in gradient-based iterative 

optimization algorithms. Two methods for computing these gradients are the direct 

differentiation method (DDM) and the adjoint variable method (AVM). 

In the DDM, the first variation of the state equation is performed and then the forward 

numerical integration scheme is used to solve the initial-value problem. The result is 

substituted directly into the variation of the functional constraint or dynamic constraints with 

respect to the design variables. The AVM transposes an adjoint vector and then solves the 

terminal value problem using a backward numerical integration scheme. The result is then 

used to solve the sensitivity coefficients.  The details and implementation of these two 

sensitivity analysis methods are discussed in Tseng (1987). 

3.4.4 ODE Solvers for Solving Initial Value Problem 

The dynamic behaviors for most optimal control problems are determined by a system of 

ordinary differential equations with a given initial state. Because this system forms an IVP, 

the numerical solution of the IVP for ordinary differential equations (ODEs) is fundamental to 

most optimal control methods. 

Finding accurate and efficient solution procedures for solving ODEs has long been a 
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problem of importance. However, in many practical situations, an analytical solution is either 

impossible to find or extremely difficult to evaluate. Therefore, numerical solution procedures 

for approximating solutions have become increasingly popular. Most numerical schemes for 

solving ODEs can be classified as either one-step or multistep methods; however, one-step 

methods like Euler’s are seldom used in practical situations because of their poor accuracy. 

Rather, multistep methods – the most popular being the fourth-order Runge-Kutta method, the 

backward differentiation method, and the Adams-Bashforth method – are most commonly 

used to solve ODEs because of their high efficiency and accuracy. 

Many well-developed packages or subroutines exist for solving differential equations, 

incuding IMSL, Maple, Mathematica, and MATLAB. Most of these are based on the 

Runge-Kutta method, the Adams formula, or the backward-differentiation formula. For this 

dissertation, DDERKF, DDEABM, and DDEBDF, all developed by Sandia Laboratory, were 

selected for the integration of state or design sensitivity equations. DDEBDF is based on the 

variable-order (1–5) backward-differentiation formula, DDERKF is a fifth-order Runge-Kutta 

code, and DDEABM is a variable-order (1–12) Adams-Bashforth code. These equation 

solvers use variable-step-size algorithms and have good error control. The DDERKF and 

DDEABM can be used to solve nonstiff and mildly stiff differential equations, while 

DDEBDF is suitable for stiff equations. If the differential equation is very stiff, DDEBDF is 

more efficient than DDERKF and DDEABM. In contrast, DDEBDF is far less efficient than 

DDERKF and DDEABM for nonstiff equations. Since it is not known a priori whether the 

differential equations are stiff, DDERKF and DDEABM may not be converged. Therefore, 

DDEBDF must be used. To handle this situation, a subroutine has been developed that 

controls the use of differential equations solvers. This subroutine first uses DDEABM and 

then, if the intermediate output shows the problem to be stiff, a switch is made to DDEDBF. 

With this implementation, the differential equation solvers can be used more reliably and 
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efficiently. 

For most optimal control problems, their dynamical behaviors are determined by a system 

of ordinary differential equations with a given initial state. It forms an IVP and hence the 

numerical solution of the IVP for ODEs is fundamental to most optimal control methods. 

3.4.5 Numerical Integration Methods 

Two common integration schemes, Simpson’s rule and Gaussian quadrature, are adopted 

in this dissertation to integrate the sensitivity coefficients and integral part of the functional 

constraints into the adjoint variable method (AVM). 

3.4.6 Interpolation Functions 

For the admissible optimal control formulation, interpolation schemes are needed at 

several places. First, to integrate the performance index and functional constraints, 

information between the grid points is needed for a variable-step-size integration rule, e.g., a 

Gaussian quadrature formula. Secondly, since variable-step-size differential equation solvers 

are used in this dissertation, values for the state and control variables between the grid points 

are needed to calculate the right-hand side of the sensitivity equations. Hence, an interpolation 

scheme is required to obtain the information between grid points. Finally, in the treatment of 

dynamic constraints, an interpolation scheme is necessary for locating the maximum points 

for the worst-case formulation or for evaluating the integral for the functional formulation. In 

the OCP solver developed in this dissertation, zero-order, first-order, and piecewise 

cubic-spline interpolation functions are adopted. 

3.4.7 Computational Algorithm of AOCP 

For solving the optimal control problem, the essential idea of AOCP is to treat optimal 

control problems as initial-value problems by using iterative methods of nonlinear 

programming. The SQP method is selected to solve the nonlinear programming problems 
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transcribed from the discretization model of the original optimal control problem. Because 

SQP is a generalized gradient-descent optimization method and subsequently converges to a 

local rather than a global optimum, it solves the subproblem by providing both the direction 

of design improvement and the step size along the search direction. In this dissertation, the 

algorithms of AOCP and SQP are combined to form a general purpose solver, the OCP solver. 

The architectural framework of the OCP solver, as illustrated in Figure 3.5, is composed 

of two computational blocks: the SQP algorithm and the OCP solver. Because the SQP 

algorithm is a well-known algorithm for optimization (Arora, 1989; Chong and Zak, 1996; 

Rao, 1996), its implementation details can be found in a wide body of research and are 

therefore skipped in this dissertation. Basically, in each iteration of SQP, the values of the 

design variables are handed over to the OCP solver, which then uses them to calculate the 

values of the cost functional and the constraints. As shown in Figure 3.5, the OCP solver 

contains three major computational modules: discretization, calculation of current values of 

the state variables by applying the ODE solver, and estimation of the values of the cost 

functional and the constraints. Hence, the AOCP algorithm based on the SQP method can be 

described as following: 

AOCP Algorithm: 

Step 1. Choose b0, u0, Ns (maximum number of iteration) 

N (number of time intervals) 

εi (for convergence and stopping), k = 0 (iteration counter). 

Step 2. Execute the discretization and parameterization process and calculate values for 

the following variables: 

Time intervals T = [ T1, T2,…, TN ]T defined in Eq. (3.10). 

Interpolation parameters S(k) by applying . ( )( ) ( , , )u T I S Tk
k t=

Design variable vector ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1, , , , , , ,P

Tk k k k k k k
N mb b T T S Sπ N⎡ ⎤= ⎣ ⎦" " "  . 
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Step 3. Determinate the state variables x(k) by solving the initial-value problem defined in 

Eqs. (3.16) and (3.17) with PP

(k). 

Step 4. Calculate the values of the cost functional Eq. (3.13) and the constraints Eqs.(3.14) 

and (3.15). 

Step 5. Calculate the gradients of the cost functional and the constraints. 

Step 6. Find the descent direction d by solving the QP subproblem defined in Eqs. (3.6) 

and (3.7). 

Step 7. Check feasible and convergence criteria. 

   (a) Convergence for SQP: 

 IF (KT condition is satisfied) THEN 

  Algorithm converged, Stop. 

   (b) Stopping criteria: 

 ΔP = PP

(k+1) –P(k)
P

 IF (ΔPP

TΔP ≤ ε ) THEN Stop. (design variable not changing) i 

 IF (k = Ns) THEN Stop. (maximum iteration reached) 

 Continue 

Step 8. Calculate the step size α(k). 

Step 9. Update the Hessian matrix H (k) by applying a BFGS approximation defined in Eq. 

(3.8). 

Step 10. k = k +1; Go to Step 2. 

3.5 Summary 

This chapter has introduced the numerical preliminaries – including NLP formulation, 

the SQP method, the control parameterization technique, and dynamic constraint treatments – 

for developing the OCP solver. Also discussed were methods for solving the NLP and the 
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first-order necessary condition for continuous constrained NLP problems. The text also 

introduced the SQP method that serves as the kernel of proposed method, and provided its 

algorithm. In addition, because this dissertation uses control parameterization with an 

interpolation function to decrease the numbers of design variables and so make the solver 

more efficient, discretization and parameterization techniques that transcribe the optimal 

control problems into NLP problems were developed. Also introduced were several numerical 

schemes involved in the proposed solver – including ODE solvers and integration and 

interpolation schemes – and finally, the computational algorithm of the ACOP method that 

will help implement the OCP solver. 



 

Figure 3.1 Methods for continuous constrained NLPs (Wu, 2000).
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Figure 3.2 Conceptual flowchart of the SQP method.
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Figure 3.3 Problem-transcribing Process.
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Figure 3.4 Dynamic constraint treatments. 
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Figure 3.5 Conceptual flowchart of the AOCP method. 
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CHAPTER 4  
 A CONVENIENT SOLVER FOR SOLVING OPTIMAL CONTROL 

PROBLEMS 

4.1 Introduction 

Even though, over the last two decades, theoretical and numerical methods for solving 

optimal control problems have been extensively studied and many well-designed algorithms 

have been proposed, engineers must still expend much effort to reformulate the nonlinear 

programming problems for different control problems. On the other hand, reworking the 

corresponding programs for the nonlinear programming problem is a waste of time and even 

more tedious. Therefore, developing a general OCP solver that offers a systematic process for 

solving various optimal control problems has become imperative for engineers, particularly 

for those who are inexperienced in optimal control theory or numerical techniques. 

As mentioned in the previous chapter, many well-developed subroutines or program units 

for numerical analysis are involved in developing a general OCP solver, e.g., integration 

routines, ODE solvers, interpolation schemes, and general constrained optimization solvers. A 

general OCP solver, named the OCP solver, was designed that consists of the subsystems or 

components for such numerical subroutines. Its modular programming features enable the 

OCP solver to choose different numerical schemes flexibly and be easily upgraded by 

replacing subroutines with new versions. The implementation details of the kernel module and 

user interface of the OCP solver are presented in following sections. 

4.2 Multifunctional Optimization System Tool - MOST 

In the AOCP method, the optimal control problem is converted into an NLP program so 

that any reliable nonlinear constrained optimization solver can be applied to solve it 

numerically. A great deal of attention has been paid to using the SQP method to solve NLP 

problems (Tseng, 1987; Jaddu and Shimemura, 1999). For this dissertation, the 
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multifunctional optimization system tool MOST (Tseng, 1993), based on the SQP method, has 

been chosen to solve the NLP problem. This powerful optimization software was developed to 

solve multi-objective optimization problems with both continuous and discrete design 

variables (Tseng et. al., 1993).  The MOST software contains three main modules for dealing 

with continuous variables, discrete variables, and multi-objective optimization, respectively. 

In the primary module, a SQP method (Arora, 2004) is employed to perform the 

single-objective optimization for problems with continuous design variables.  The SQP is 

selected because of its accuracy, efficiency, and robustness.  MOST’s accuracy and stability 

has been tested in the research using 115 test problems with 2 to 96 design variables given by 

Hock and Schittkowski (1980) The results were satisfactory and also indicated that MOST 

can handle large-scale engineering optimization with excellent convergence (Tseng et. al., 

1988a; 1988b). To cope with the discrete-valued optimal control problems arising from 

discrete design variables, an enhanced branch-and-bound method (Tseng et. al., 1995) was 

integrated into the program.  In this module, the original design space of discrete variables is 

converted into one with continuous variables by dropping the noncontinuous restrictions 

sequentially.  In each of the converted continuous design spaces, the SQP module described 

above is then utilized to find the optimal values. 

Nevertheless, in many engineering applications there frequently exist several mutually 

conflicting or competing objectives and requirements. Therefore, multi-objective (vector) 

optimization offers a very promising way to handle such problems.  For multi-objective 

optimization, MOST provides decision makers, goal programming, compromise programming, 

and the surrogate worth trade-off method (Evans, 1984; Tseng and Lu, 1990) to help users 

determine the best compromised solutions to nonlinear problems. 

It is known that a rigorous formulation of the design problem helps the designer better 

understand the problem and a proper mathematical formulation leads to a good solution.  
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MOST provides an input data file that includes the initial design, and it transcribes the design 

problem by coding subroutines that include evaluation of the cost, in routine cusermf, and 

constraint functions, in routine cusercf (see Figure 4.1).  Because of its user-defined 

subroutines, MOST can be extended to flexibly integrate other analysis packages, e.g., 

ANSYS (Yang et al. 1992; Lin et al., 1992), EUCLIS-IS (Wang, 1993), and MATHEMATICA 

(Su, 1994). Moreover, with the assistance of an interface coupler, MOST can deal with the 

complexity and large size of engineering systems that have no explicit relationships between 

inputs and system outputs (Huang, 1994). The architecture of the MOST interface coupler is 

shown in Figure 4.2.  The IAOS, a new distributed version of the interface coupler, was 

developed to deal with analysis packages installed on different machines (Huang, 1994). In 

IAOS, MOST and the interface coupler are merged into a powerful new optimizer (see Figure 

4.3). 

4.3 Structure of the Proposed OCP Solver 

The kernel of the OCP solver is written in FORTRAN and has been tested on a UNIX 

platform. Because of the increased popularity and technical developments in the calculation 

ability of the personal computer (PC), for this dissertation, the OCP solver has been 

transplanted onto a PC platform. The structured chart for the entire OCP solver is given in 

Figure 4.4, and the connections between the OCP solver and MOST are shown in Figure 4.9. 

Four primary independent modules of the OCP solver are introduced below.  

CTRLMF module: The structure of this module, given in Figure 4.5, links with MOST’s 

user-defined subroutine cusermf and contains six subroutines. The control routine CTRLMF is 

used to calculate the value of the performance index, to partition the array, and to check 

available memory. The pseudocode for the CTRLMF module of the AOCP algorithm is shown 

in Table 4.1. 

CTRLCF module: This module, whose structure is shown in Figure 4.6, calculates the 
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constraint function values. First, the information on the state trajectory is passed from the 

CTRLMF module and then the values of the functional constraints and dynamic constraints 

are calculated in routine CTRLCF. In this module, subroutine PTCST is used to calculate the 

number and values of dynamic constraints for the alternative treatments described in Section 

3.4.2. 

CTRLMG module: This module, illustrated in Figure 4.7, calculates the design derivatives of 

the performance index by using the direct differentiation or adjoint variable method. In the 

DDMMG routine, the design derivatives are calculated using direct differentiation (DDM); in 

the AVMMG routine, by the adjoint variable method (AVM). The ANSAVM routine determines 

the terminal conditions and integrates the adjoint differential equation using a backward 

numerical integration scheme. 

CTRLCG module: This module, outlined in Figure 4.8, is in charge of design sensitivity 

analysis, which determines the effect of a change in the current design on the performance 

index and constraint functions. Two common methods, DDM and AVM, described in Section 

3.4.3, are implemented in this module. The control routine DDMCG is evaluated to obtain the 

design derivatives using DDM. The information for state variable derivatives with respect to 

the design variables is then passed from the CTRLMG module. If the AVM is needed to 

calculate the design derivatives, the AVMCG routine is executed. 

 In addition to these four modules, many useful routines are shared by a variety of 

modules, e.g., DIFSOL, INGSOL, DDERKF, DDEABM, DDEBDF, SIMPSN, GAUSS, TBFIT, 

TGVAL, and CTRLF. The routine DIFSOL contains three differential equation solvers (RKF, 

ABM and DBF), and the routine INGSOL is used to calculate the value of an integral. In 

INGSOL, the SIMPSN (bases on Simpson’s rule) and GAUSS (following the Gaussian 

quadrature formula) are called on to evaluate the integral.  Both the DDERKF and the 

DDEABM can integrate a system of first-order differential equations, the first using the 

50 



Runge-Kutta-Fehlberg method and the second using the Adams-Bashforth-Moulton 

predicator-corrector formulas for orders one through.  The latter implements a backward 

differentiation formula in the routine. The TBFIT is used to calculate the coefficients of the 

interpolation function and the TGVAL, to calculate the value of functions and their derivatives. 

4.4 The OCP Solver in Cooperation with MOST 

Because of the extension flexibility of MOST, the OCP solver is herein treated as a MOST 

module. The linkage of MOST to the OCP solver is composed of four user-defined MOST 

subroutines: cusermf, cusermg, cusercf and cusercg. The OCP solver also has four 

user-defined subroutines for defining an optimal control problem: USERMF, USERMG, 

USERCF and USERCG. The architecture for MOST and the OCP solver is illustrated in 

Figure 4.9.  

In the OCP solver, the subroutine USERMF provides the cost functional value 

(performance index value); subroutine USERCF provides the constraint function values; and 

subroutines USERMG and USERCG provide the cost function gradient and the gradients of 

the active constraints, respectively. A fifth subroutine, USEROU, can be developed by the user 

to perform a subsequent optimality analysis for the optimal solution and obtain more output. 

If the analytic expressions for the gradients in USERMG and USERCG are not available, 

MOST provides the option of calculating gradients using a finite difference method that can 

be specified as forward, backward, or central. More details are provided in the MOST 1.1 

User’s Manual (Tseng et al., 1993). As the architecture given in Figure 4.9 shows, 

connections exist between the optimizer MOST, the five user subroutines, and the four 

independent modules, CTRLMF, CTRLMG, CTRLCF and CTRLCG, for the OCP solver. The 

four modules contain the performance index, the functional and dynamic constraints, the 

gradient of the performance index, and the constraint function gradients for the optimal 

control problems, respectively. They can be connected to each other to form a general 
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constrained optimization solver. 

4.5 User Interface for the OCP Solver 

The user interface for the OCP solver consists of two parameter files and four subroutines. 

Users can specify the optimization parameters and numerical schemes in the parameter files 

of both MOST and the OCP solver, such as acceptable violation of constraints for feasible 

designs, the differential equation solver, the integration rules, and the interpolation scheme. 

The user interfaces for the OCP solver and MOST are shown in Figure 4.10. 

The MOST optimal parameter file, shown in Table 4.2, is used to configure the optimizer 

parameters (details can again be found in the MOST user manual [Tseng et. al., 1993]). 

Details of the OCP parameter file fort.11 – which contains information on the number of 

equations, grid points, equality and inequality functional constraints, and the parameters for 

numerical schemes – can be found in Tseng (1987). Table 3 gives the OCP parameter file for 

the van der Pol oscillator problem to be introduced in Section 4.7.1. Once all four necessary 

user-defined subroutines, FFN, GFN, HFN, and Z0FN, are ready, they should be linked to the 

OCP through the MOST kernel. Figure 4.10 shows the relationship between the user-defined 

routines and the MOST modules. FFN evaluates the integral terms of the performance index 

or functional constraints, while GFN calculates the values of the first term of the performance 

index or functional constraints and the dynamic constraints. HFN is used to evaluates the 

system state equation f(b, u(t), x(t),t), and finally, Z0FN is responsible for calculating the 

initial values of the state variables, x(t0). Figure 4.11 gives a flowchart for the OCP solver. 

4.6 Systematic Procedure for Solving the OCP 

In this dissertation, the OCP is converted into an NLP problem using an admissible 

optimal control problem formulation then the optimizer based on the SQP method is used to 

solve the NLP problem numerically. These procedures can now be directly implemented, and 
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the complicated details of transformation and programming automatically completed, in the 

proposed OCP solver. Because the optimal control and state trajectories are obtained and 

recorded in the output files, engineers can follow an efficient and systematic procedure to 

solve various optimal control problems. The procedure for solving the OCP with the OCP 

solver is as follows: 

1) Defining the OCP problem following the formulation defined in Section 2.2. 

2) Preparing the parameter files and user-defined subroutines according to the 

formulation. 

3) Compiling the user’s subroutines and linking with the OCP solver. 

4) Executing the OCP solver and obtaining the optimal results. 

4.7 Illustrative Examples 

Two types of optimal control problems mentioned in the literature have been used as test 

problems to evaluate the performance of the proposed method. In the AOCP method, both the 

acceptable violation of constraints for feasible designs and the acceptable tolerance for the 

convergence parameter are 10-3. The numerical results for all example problems were 

obtained on a Pentium 4 Celeron 1.2 GHz computer with 384 MB of RAM. 

4.7.1 The van der Pol Oscillator Problem 

The van der Pol oscillator problem was given and solved by Bullock and Franklin (1967) 

using a second variation method. The problem was also used by Jaddu and Shimemura (1999) 

to verify their computational method. In this dissertation, it is further used to evaluate the 

performance and capabilities of the proposed method and the OCP solver.  The van der Pol 

oscillator problem can be formulated by the following minimization 

dtuxxJ )(
2
1 22

2
2

1

5

00 ++= ∫  (4.1)
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with initial states xT(0) = [1, 0]T.  

Based on this problem, Jaddu and Shimemura considered three cases that can also be 

solved by the OCP solver: the unconstrained problem, the terminal state constrained problem, 

and the terminal states and control constrained problem. 

Case I: Free end point and no control constraints 

The optimal solution for this problem found by Bullock and Franklin (1967) using a 

second variation method was J0
* = 1.433508, while that found by Jaddu and Shimemura 

(1999) using a ninth-order Chebyshev series to approximate x1(t) was J0
* = 1.4334872. 

Using the OCP solver, in which the control variable u is discretized into 21 grid points, 

the optimal value is J0
* = 1.4334723, smaller than both earlier reported results. The 

numerical parameters for MOST are listed in Table 4.2, and the optimal control and state 

trajectories are shown in Figure 4.12. 

 

Case II: Terminal state constraint 

( )( ) ( ) ( )2 11x f f ft x t x tϕ = − + = 0  (4.3) 

For this problem, Bullock and Franklin (1967), again using the second variation method, 

found an optimal value of J0
* = 1.6905756, while Jaddu and Shimemura (1999), also 

using a ninth-order Chebyshev series to approximate x1(t), found an optimal value of J0
* = 

1.6857113. In this study, the terminal state constraint is treated as an equality constraint 

and the other number parameters, the same as in case I. With the OCP package, the value 

obtained is J0
* = 1.6856957. Figure 4.13 shows the optimal control and state trajectories 

for the proposed OCP solver. 
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Case III: Terminal state constraints and saturation constraints on control 

The terminal state constraints and the saturation constraints on control are described in 

the following equation: 
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 (4.4) 

When Bashein and Enns (1972) solved the problem, they obtained J0
* = 2.1439039, 

while Jaddu and Shimemura (1999), this time using a twelfth-order Chebyshev series to 

approximate x1(τ), found an optimal value of J0
* = 2.1443893. The solution produced by 

the OCP solver is an optimal value of J0
* = 2.1375360. The optimal control and state 

trajectories for the OCP solver are shown in Figure 4.14. 

4.7.2 Time-optimal Control Problem: Overhead Crane System 

Overhead cranes are widely used in factories and workplaces to transport objects. An 

overhead crane system, like that sketched in Figure 4.15, is a high-order nonlinear system that 

consists of a cart with a point load suspended by cables. The control problem is to transfer the 

load from an arbitrary point A to point B in minimal time subject to the requirement of zero 

residual vibration at point B. The control inputs are the horizontal acceleration of the cart and 

the hoisting acceleration of the cable. Hu et al. (2002) proposed this problem and solved it 

using an enhanced DCNLP method. In this dissertation, this problem will be used to 

demonstrate the ability of the proposed method to solve a high-order time-optimal control 

problem. 

 Given ,1 zx = ,2 zx �= ,3 θ=x ,4 ωθ == �x ,5 lx = lx �=6  as the state variables, and ,1 zu ��=  

 as the control inputs, the OCP formulation of the overhead crane system can be 

minimized as follows 

lu ��=2
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 J0 = tf (4.5)
subject to 
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with initial conditions xT(t0) = [0, 0, 0, 0, 4, 0]T and terminal conditions xT(tf) = [10, 0, 0, 0, 

4, 0]T where g is the gravitational acceleration. 

The state and control constraints are as follows: 

ftttfortxtx ≤≤≤≤≤ 062 ,1)(,1)(0  (4.7)

fi tttforitu ≤≤=≤ 02,1,5.0)(  (4.8)

Using the admissible control formulation delineated in the previous chapter, the control 

variables are converted into design variables that can then be treated as design variable 

boundaries. Furthermore, the state constraints are transferred into standard constraint form as 

follows: 
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 (4.9)

In this problem, both the state and the control variables are divided into 101 grid points. 

The minimum time J* = tf = 12.0004 is solved in the OCP solver by applying a cubic 

piecewise interpolation scheme to the control function. Two local optimal solutions are 

obtained by the OCP solver with different initial points. The trajectories of the rope angle and 

angular velocity are shown in Figure 4.16, in which the solid line represents the results 

obtained by the DCNLP method (Hu. et al., 2002) and the dashed line represents a second 
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optimal solution obtained by the OCP solver. As the figure illustrates, the solid line totally 

matches the results obtained by Hu et al. (2002), meaning that one of the optimal solutions 

found by the OCP solver tallies exactly with the trajectories obtained by the DCNLP method 

(Hu. et al., 2002). In addition, the performance index (terminal time, tf) obtained by the OCP 

solver (tf ≅ 12.00) is very close to the result using the DCNLP method (tf ≅ 12.00). Moreover, 

according to the trajectories shown in Figure 4.16, the amplitudes of rope angle and angular 

velocity for the second optimal solution obtained by the OCP solver, as represented by the 

dashed line, are smaller than the others. Figures 4.17 and Figure 4.18 depict the corresponding 

inputs and states with local optimal solutions, respectively. In Figure 4.17, the trajectories of 

the control inputs conform to the dynamic control constraints given in Eq. (4.8). According to 

the state trajectories in Figure 4.18, the initial conditions, xT(t0) = [0, 0, 0, 0, 4, 0]T ,and the 

terminal conditions, xT(tf) = [10, 0, 0, 0, 4, 0]T are satisfied. Obviously, all constraints are 

fulfilled, thereby proving the correctness of the solutions. In other word, both solutions solved 

by the OCP solver are local optimal solutions. In practice, small amplitudes of rope angle and 

angular velocity for an overhead crane will be adopted because they benefit operational 

safety. 

As the numerical results show, both examples convert successfully into NLP problems 

using the admissible control formulation and can then be solved using the AOCP method. 

Moreover, the results of the numerical schemes of the proposed method are quite accurate. 

With the OCP solver, users need not spend a vast amount of effort on programming to obtain 

solutions. Rather, once the problems are formulated, the solver can be implemented and the 

problems solved easily. In addition, rapidly advancing computer capabilities will ensure that 

computing time for the OCP solver will decrease. Thus, users will be able to obtain optimal 

results more quickly than before. 

57 



4.8 Numerical Study 

To investigate how the numerical schemes affect the validity of the solution and 

computational efficiency, both the van der Pol oscillator problem and the overhead crane 

control problem are solved again using different numerical schemes and time intervals that 

introduced in the previous chapter. Here, the finite-difference method (DSA=FDM) and the 

DDM for sensitivity analysis are selected to evaluate their performance. Simpson’s rule 

(INTG=SIMPSN) and the Gaussian quadrature formula (INTG=GAUSS) are used to carry 

out the numerical integration over the time interval. DDERKF and DDEABM with the option 

to switch to DDEBDF are selected for solving first-order differential equations with a relative 

scalar error of 1.0E-8 and a scalar error of 1.0E-10. Three common interpolation schemes – 

zero-order (INTP=Zero), first-order (INTP=First), and piecewise cubic-spline 

(INTP=Cubic) – are chosen to estimate their effects upon the performances.  

Table 4.4, which gives data types collected for the 24 cases of the case I van der Pol 

oscillator problem, shows the total number of iterations (NIT) of the AOCP method, the 

optimal value of the performance index (J0
*), and the convergence parameter (Conv. Par.) and 

CPU time for the entire iterative process. The lower part of the table includes the mean values 

for different conditions. In contrast, in the case III van der Pol oscillator problem, a dynamic 

constraint is imposed that can be used to compare the dynamic treatments. The conventional 

design (DTC=ALL), worst-case design (DTC=MAX), and hybrid design (DTC=HYB) for 

dynamic constraints are selected to evaluate their performance. In this case, two different time 

grid points are chosen to compare the effects on performance of either a coarse or fine mesh. 

The comparison among these dynamic treatments with different mesh points is list in Table 

4.5. These results indicate that the worst-case design needs more iterations and CPU time to 

converge. In addition, the optimum performance index with a fine mesh is more accurate than 

that with a coarse mesh. Similarly, the overhead crane control problem can be solved using 
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different numerical schemes (the results are shown in Table 4.6). 

Overall, the results in Table 4.4 and Table 4.6 show the performance of all numerical 

schemes to be quite accurate. However, the design sensitivity analysis using the 

finite-difference method (FDM), the differential equation solver with integration using a 

fifth-order Runge-Kutta algorithm (DDERKF), the Gaussian quadrature formula (GAUSS), 

and the interpolation scheme with a first-order interpolation function give better performance 

with respect to efficiency. From the Table 4.5 data, it is obvious that the fine mesh increases 

computational cost, while dynamic constraint treatment using the conventional design 

treatment (ALL) gives more efficient performance than the worst-case design treatment 

(MAX). 

4.9 Summary 

This chapter has presented the major modules for the general optimal control problem 

solver being developed, namely, the OCP solver. Discussed first was the multifunctional 

optimization solver, MOST, which is used as the kernel of the proposed solver. To develop the 

OCP solver, use of the interface coupler that integrates the MOST optimizer with other 

analyzers via standard input/output files has been extended. In addition, the AOCP algorithm 

has been implemented as an external analyzer module and involved in the OCP solver. The 

discussion also presented the implementation details of the interface between MOST and the 

AOCP module, as well as the user interface for the OCP solver. 

The primary purpose of this dissertation is to present a systematic procedure for solving 

optimal control problems with the OCP solver provided. To this end, the van der Pol oscillator 

problem with various terminal states and control constraints and the overhead crane control 

problem, a high-order nonlinear time-optimal control problem, were used to evaluate the 

capability and accuracy of the OCP solver. A performance comparison among different 

numerical schemes involved in the OCP solver was also carried out. The results indicate that 
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the proposed OCP solver can truly facilitate the solving of engineering control problems in a 

systematic and efficient way.
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Table 4.1 Pseudo-code for the CTRLMF module of the AOCP algorithm. 

 

Calculate the values of the performance indexes J0 and return those values. 

END 

Calculate the state of the control variables at any time in [t0, tf] by applying 

interpolation schemes. 

Calculate the values of the state variables by solving the IVP with the backward 

differentiation formulas (BDF) method. 

ENDIF 

ELSE (the IVP is stiff) 

Calculate the values of the state variables by solving the IVP with the 

Rung-Kutta-Fehlberg (RKF) method. 

IF the IVP is non-stiff THEN 

Substitute the values of control variables into the system equations Eq. (3.16) so the 

system equations with the initial conditions in Eq. (3.17) form an initial value 

problem (IVP). 

Calculate the values of control variables at any time in [t0, tf] by applying 

interpolation schemes. 

BEGIN 

Assign the values of the discretized control variables from design variable vector P. 

CTRLMF(P, J0, nv, nobj, itr_k, ierr) 
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Table 4.2 MOST input file for the van der Pol oscillator problem. 

   

  tit   = van der Pol oscillator problem, case I 
  nv    = 21 
  nobj  = 1 
  neql  = 0 
  niql  = 0 
  ntrs  = 100 
  ipr   = 3 
  iact  = 5 
  igrad  = 1 
  del   = 1.0000e-05 
  acs   = 1.0000e-03 
  acv   = 1.0000e-03 
  act   = 1.0000e-12 
  X[ 1]= 1.0  -10.0  10.0 
  X[ 2]= 1.0  -10.0  10.0 
  X[ 3]= 1.0  -10.0  10.0 
  X[ 4]= 1.0  -10.0  10.0 
  X[ 5]= 1.0  -10.0  10.0 
  X[ 6]= 1.0  -10.0  10.0 
  X[ 7]= 1.0  -10.0  10.0 
  X[ 8]= 1.0  -10.0  10.0 
  X[ 9]= 1.0  -10.0  10.0 
  X[10]= 1.0  -10.0  10.0 
  X[11]= 1.0  -10.0  10.0 
  X[12]= 1.0  -10.0  10.0 
  X[13]= 1.0  -10.0  10.0 
  X[14]= 1.0  -10.0  10.0 
  X[15]= 1.0  -10.0  10.0 
  X[16]= 1.0  -10.0  10.0 
  X[17]= 1.0  -10.0  10.0 
  X[18]= 1.0  -10.0  10.0 
  X[19]= 1.0  -10.0  10.0 
  X[20]= 1.0  -10.0  10.0 
  X[21]= 1.0  -10.0  10.0 
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Table 4.3 Parameter file for the van der Pol oscillator problem. 

2  0  0  0  0 
0.  2.0 
3  0  2  2  64  1  0  1  3 
2  1  2  101  3 
0 1 1 0 0 0 
1 1 0 0 1 0 
2 1 0 0 1 0 
0 0 0 0 0 0 
1 0 0 0 0 0 
2 0 0 0 0 0 
1 1 0 0 1 0 
2 1 0 1 1 0 
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Table 4.4 Performance comparison of various numerical schemes for the oscillator problem, 
case I. 

DSA INTG DIFF INTP NIT J0* Conv. Par. CPU 
Zero 11 1.4530 4.9577e-4 19.639 
First 21 1.4333 7.6480e-4 6.069 

DDERKF 
 

Cubic 20 1.4334 5.4521e-4 18.146 
Zero 11 1.4530 4.9577e-4 18.455 
First 21 1.4333 7.6480e-4 19.147 

SIMPSN 

DDEABM 
 

Cubic 20 1.4334 5.4521e-4 15.202 
Zero 12 1.4422 9.7245e-4 20.499 
First 21 1.4328 8.4954e-4 4.665 

DDERKF 

Cubic 20 1.4334 5.4616e-4 14.392 
Zero 12 1.4422 9.7245e-4 19.078 
First 21 1.4328 8.4954e-4 17.686 

DDM  

GAUSS 

DDEABM 

Cubic 20 1.4334 5.4616e-4 11.776 
Zero 13 1.4530 3.6313e-4 3.615 
First 21 1.4333 7.6261e-4 1.382 

DDERKF 

Cubic 20 1.4334 5.4124e-4 1.542 
Zero 13 1.4530 3.6306e-4 3.615 
First 21 1.4333 7.5959e-4 3.244 

SIMPSN

DDEABM 

Cubic 20 1.4334 5.4139e-4 2.333 
Zero 14 1.4422 5.3821e-4 3.445 
First 21 1.4328 8.4715e-4 0.752 

DDERKF 

Cubic 20 1.4334 5.4218e-4 0.871 
Zero 14 1.4422 5.3905e-4 3.555 
First 21 1.4328 8.3944e-4 2.754 

FDM 

GAUSS 

DDEABM 

Cubic 20 1.4334 5.4269e-4 1.603 
Averages 

DDM — — — 17.5 1.4380 6.957E-04 15.396 
FDM — — — 18.2 1.4380 5.983E-04 2.393 

— SIMPSN — — 17.3 1.4407 5.922E-04 12.707 
— GAUSS — — 18.0 1.4361 7.154E-04 8.423 
— — DDERKF — 17.8 1.4380 6.474E-04 7.918 
— — DDEABM — 17.8 1.4380 6.466E-04 9.871 
— — — Zero 12.5 1.4476 5.925E-04 11.488 
— — — First 21.0 1.4331 8.047E-04 6.962 
— — — Cubic 20.0 1.4334 5.438E-04 8.233 

Bullock and Franklin (1967) J* = 1.433508 
Jaddu and Shimemura (1999) J* = 1.433487 
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Table 4.5 Various dynamic constraint treatments for the oscillator problem, case III. 

NGP DCT NIT Max. Vio. Conv. Para. J0* NMF NCF NTG CPU 
ALL 27 5.01403e-9 8.79668e-5 2.13771 594 594 340 2.273
MAX 100 6.38948e-6 6.42630e-3 2.13758 2200 2200 243 8.34121 
HYB 30 9.76433e-9 7.59396e-5 2.13772 660 660 388 2.594
ALL 41 8.03759e-8 6.72651e-5 2.13657 4183 4183 1764 34.710
MAX 100 1.91428e-5 1.23887e-4 2.13658 10205 10205 1110 79.635101 
HYB 50 2.60229e-6 7.37412e-5 2.13658 5107 5107 2193 43.564

Averages 
 ALL 34 4.26950E-8 7.76160E-5 2.13714 2388.5 2388.5 1052 18.4915
 MAX 100 1.27661E-5 3.27509E-3 2.13708 6202.5 6202.5 676.5 43.988
 HYB 40 1.30603E-6 7.48404E-5 2.13715 2883.5 2883.5 1290.5 23.079
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Table 4.6 Comparison of various numerical schemes for the overhead crane system. 

INTG DIFF INTP NIT Max. vio. Conv. Para. J0* CPU 
Zero 101 6.73320E-06 8.42785E-04 12.17290 1590.31 
First 95 5.31769E-09 9.40788E-04 12.04890 116.29 

DDERKF

Cubic 92 2.16952E-09 7.97492E-04 12.04730 165.252 
Zero 102 1.46089E-05 9.37978E-04 12.17290 1668.69 
First 93 4.02915E-06 9.99191E-04 12.04880 800.555 

SIMPSN 

DDEABM

Cubic 60 3.72381E-06 6.89197E-04 12.00040 280.323 
Zero 101 6.73320E-06 8.42785E-04 12.17290 1584.946 
First 95 5.31769E-09 9.40788E-04 12.04890 114.797 

DDERKF

Cubic 92 2.16952E-09 7.97492E-04 12.04730 162.769 
Zero 102 1.46089E-05 9.37978E-04 12.17290 1599.916 
First 93 4.02915E-06 9.99191E-04 12.04880 799.932 

GAUSS 

DDEABM

Cubic 60 3.72381E-06 6.89197E-04 12.00040 280.25 
Average 

SIMPSN — — 90.5 4.85042E-06 8.67905E-04 12.08187 770.2 

GAUSS — — 90.5 4.85042E-06 8.67905E-04 12.08187 757.1 

— DDERKF — 96.0 2.24690E-06 8.60355E-04 12.08970 622.4 

— DDEABM — 85.0 7.45395E-06 8.75455E-04 12.07403 904.9 

— — Zero 101.5 1.06711E-05 8.90382E-04 12.17290 1611.0 

— — First 94.0 2.01723E-06 9.69990E-04 12.04885 457.9 

— — Cubic 76.0 1.86299E-06 7.43345E-04 12.02385 222.1 
Hu et al. (2002) ≅ 12  
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Figure 4.1 The architecture of MOST. 
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Figure 4.2 Architecture of the interface coupler. 
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Figure 4.3 Architecture of the new interface coupler – IAOS. 
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Figure 4.4 Structure chart of the OCP Solver. 
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Figure 4.5 CTRLMF module. 

71 



 

 

 
Figure 4.6 CTRLCF module. 

72 



 
Figure 4.7 CTRMG module. 
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Figure 4.8 CTRCG module. 
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Figure 4.9 Connection architecture of MOST and OCP solver. 
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Figure 4.10 User interfaces for MOST and the OCP solver. 
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Figure 4.11 Flowchart for the OCP solver. 
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Figure 4.12 Control and state trajectories for van de Pol oscillator problem, case I. 

78 



0.0 1.0 2.0 3.0 4.0 5.0
Time(sec.)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

x1

x2

 
 

Figure 4.13 Control and state trajectories for van de Pol oscillator problem, case II. 
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Figure 4.14 Control and state trajectories of van de Pol oscillator problem, case III. 
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Figure 4.15 Schematic of the overhead crane system (Hu et al., 2002). 
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(a) Rope angle trajectory. 

 

 
 (b) Angular velocity trajectory. 

 
 Figure 4.16 State trajectories of the overhead crane system.
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(a) Input trajectories of optimal solution 1. 
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(b) Input trajectories of optimal solution 2. 

 
Figure 4.17 Control trajectories for overhead crane system. 
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(a) State trajectories of optimal solution 1. 
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(b) State trajectories of optimal solution 2. 

 
Figure 4.18 State trajectories with different initial guess for overhead crane system. 
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CHAPTER 5  
 A COMPUTATIONAL SCHEME FOR SOLVING THE 

DISCRETE-VALUED OPTIMAL CONTROL PROBLEM 

5.1 Introduction 

Time-optimal control problems have attracted the interest of researchers in the area of 

optimal control because they often occur in practical applications. Thus a series of essential 

results has been published concerning applications of Pontryagin’s maximum principle to the 

time-optimal control of finite dimensional linear systems and low-order nonlinear systems. 

However, in the case of state- and/or control-constrained high-order nonlinear systems, 

solving the two-point boundary value problem that results from Pontryagin’s maximum 

principle is difficult. Moreover, analytic solutions are impractical if the dimension of a system 

exceeds three (Kirk, 1970). Therefore, in recent research, many numerical techniques have 

been developed and adopted to solve time-optimal control problems. 

For a time-optimal control problem, one of the most common types of control function is 

the piecewise-constant function by which a sequence of constant inputs is used to control a 

given system with suitable switching times. Additionally, when the control is bounded, a very 

commonly encountered type of piecewise-constant control is bang-bang, which switches 

between the upper and lower bounds of the control input. When the controls are assumed to 

be of the bang-bang type, the time-optimal control problem becomes one of determining the 

switching times. Several methods for determining TOCP switching times have been 

extensively studied in the literature (see, e.g., Kaya and Noakes, 1996; Bertrand and Epenoy, 

2002; Simakov, 2002). However, in these methods, the number of switching times must be 

known before their algorithms can be applied. In most practical cases, however, as pointed out 

earlier, the number of switching times is unknown before the control problems are solved. To 

overcome the numerical difficulties that arise during the process of finding the exact 

switching points, Lee et al. (1997) propose the control parameterization enhancing transform 
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(CPET), which is also extended to deal with optimal discrete-valued control problems (Lee et 

al., 1999) and applied to solve the sensor-scheduling problem (Lee et al., 2001). 

In like manner, this dissertation focuses on developing a computational method to solve 

discrete-valued optimal control problems. This method consists of two computational phases: 

first, switching times are calculated using existing optimal control methods and second, the 

resulting information is used to compute the discrete-valued control strategy. The proposed 

algorithm, which integrates the existing optimal control solver with an enhanced 

branch-and-bound method (Tseng et al., 1995), is implemented and applied to some example 

systems, including that of the F-8 fighter aircraft. 

5.2 Problem Formulations 

5.2.1 Optimal Discrete-valued Control Problems 

In many practical engineering applications, the control action is restricted to a set of 

discrete values that forms a discrete-valued control problem. An optimal discrete-valued 

control problem can be viewed as exactly determining the switching points of the optimal 

discrete-valued control. The major difference between continuous and discrete-valued control 

problems is the control function. For a piecewise-constant function ud: )0, f dt⎡⎣ U6  where 

Ud is a finite set in , if um
d has a finite number of discontinuous or switching points, it is 

referred to as an admissible control. Letting Ud be the class of all such admissible controls, in 

like manner to problem (PU), the optimal discrete-valued control problem may be stated 

formally as follows: Given the dynamic system (2.1, 2.2), ud ∈Ud must be found such that the 

cost functional (performance index) 

( ) ( )0 0 00
, ( ), , ( ), ( ),ft

f f dJ t t t t= Φ + ∫b x b u xL t dt  (5.1)
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is minimized subject to the constraint 

( )

( )
0

, ( ),

0 ; 1,.........,
, ( ), ( ),

0 ; 1,....,
f

i i f f

t e
i

e T

J t t

i N
t t t dt

i N N

= Φ

=  =⎧
        + ⎨≤  = +⎩

∫ d

b x

b u xL
 (5.2)

and the following continuous inequality constraint on the function of the state and control: 

( ), ( ), ( ), 0 ; 1,.........,j d t t t j qψ ≤    =b u x  , 0, ft t⎡ ⎤∀ ∈ ⎣ ⎦ . (5.3)

It should be noted that, for a given ud ∈ Ud, the right hand side of Eq. (2.1) may be 

discontinuous at the switching points of ud. Denoting these switching points as t1, t2,…,tN and 

also defining t0 and tN+1 such that 0 = t0< t1< t2<…< tN< tN+1 = tf, the solution x(t) is then 

obtained in a piecewise manner by successive integration over each time interval [ti, ti+1], i = 

0, 1, 2, …,N. The resulting x(t) is continuous and piecewise differentiable on (0, tf). 

5.2.2 Mixed-Discrete Optimal Control Problems 

Mixed-discrete control problems that control functions are mixed with continuous and 

discrete functions is considered to meet the generality. For a continuous control variable, any 

piecewise continuous function uc from [0, tf] into  may be taken as an admissible control. 

For optimal discrete-valued control problems, a piecewise-constant function u

m

d, 

, may be taken as an admissible control, where U( d: 0,du ft ⎤⎦ 6 U d is a finite set in . 

Letting U be the class of all such admissible controls, then a mixed-discrete optimal control 

problem may be stated formally as follows: Given the dynamical system (2.1, 2.2), u = [ u

m

c
T, 

ud
T ]T∈ U must be found such that the cost functional (performance index) 

( ) ( )0 0 00
, ( ), , ( ), ( ),ft

f fJ t t t t= Φ + ∫b x b u xL t dt  (5.4)

is minimized subject to the constraint 
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( )

( )
0

, ( ),

0; 1,.........,
, ( ), ( ),

0; 1,....,
f

i i f f

t e
i

e T

J t t

i N
t t t dt

i N N

= Φ

= =⎧
+ ⎨≤ = +⎩
∫

b x

b u xL     
 (5.5)

and the following continuous inequality constraint on the function of the state and control: 

( ), ( ), ( ), 0; 1,.........,j t t t j qψ ≤ =b u x  0, ft t⎡ ⎤∀ ∈ ⎣ ⎦ . (5.6)

5.2.3 Time-Optimal Control Problems 

For a time-optimal control problem, the terminal time, tf, is not fixed and is treated as a 

design variable in b. The system govern equations described by Eq. (2.1) are expressed in 

general first-order form. Equation (5.5) represents the mixed state and control constraints, and 

the terminal conditions are treated as equality constraints in its first term. Then the class of 

time optimal control problems can be stated formally in the following manner.  

Subject to the system (2.1, 2.2) together with the final condition, 

( )f ft =x x , (5.7)

control u ∈ U must be found such that tf is minimized, where xf is a given vector in . For 

convenience, this time-optimal control problem will be referred to as problem (TP) whose 

cost functional is then t

n

f . Clearly, the problem (TP) can be written as follows: Given the 

dynamical system (2.1, 2.2), u ∈ U must be found such that the cost functional 

0 0

ft

fJ dt= =∫ t , (5.8)

is minimized subject to the constraint Eq.(5.5) and continuous inequality constraint Eq.(5.6). 
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5.3 Mixed-Integer NLP Algorithm for Solving TOCP 

Most discrete programming methods are based on the assumption that discontinuous 

optimization problems are transformed into multiple continuous optimization subproblems to 

take advantage of well-established continuous optimization algorithms. These continuous 

optimization problems are solved by imposing constraints on the discreteness of the design 

variables. The optimal discrete solution is taken from among the continuous solutions 

obtained in the optimization sub-problems. However, the large number of discontinuous 

design variables greatly increases the number of the continuous optimization subproblems. 

Tseng et al. (1995) presented an enhanced branch-and-bound method for reducing the number 

of executions of the continuous-optimization scheme by intelligently selecting the bounding 

route. Because such an enhanced branch-and-bound method dramatically reduces the total 

number of continuous optimization runs executed and speeds up its convergence (Tseng et al., 

1995), it is adopted herein and integrated with the AOCP to develop a mixed integer NLP 

algorithm for solving time-optimal control problems. 

5.3.1 Integrating the AOCP and Enhanced Branch-and-Bound Method 

The algorithm developed in this dissertation consists of three major processes: 

branching, the AOCP, and bounding. Initially, all discrete-valued restrictions are relaxed and 

the resulting continuous NLP problem is solved using the AOCP. If the solution of continuous 

optimum design problem occurs when all discrete-valued variable values are in the discrete 

set Ud, which is preset by the user to meet practical requirements, then an optimal solution is 

determined and the procedure ends. Otherwise, the algorithm selects one of the 

discrete-valued variables whose value is not in the discrete set Ud – for example, the j-th 

design variable, Pj, with value  – and branches on it. ˆ
jP

Branching process: In the branching process, the original design domain is divided into 
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three subdomains by two allowable discrete values, ūi and ūi+1, that are nearest to the 

continuous optimum, as shown in Figure 5.1.  Among the three subdomains, subdomain II, 

included in the continuous solution but not in the feasible discontinuous solution, is dropped.  

In the other two subdomains, called nodes, two new NLP problems are formed by adding 

simple bounds, ˆ
jP ui≤  and 1

ˆ
j iP u +≥ , respectively, to the continuous NLP problems. One of 

the two new NLP problems is selected and solved next. Many search methods based on tree 

searching – including depth-first search, breadth-first search and best-first search – can be 

applied to choose the next branching node. The branching process is repeated in each of the 

subdomains until the feasible optimal solution is found in which all the discrete variables have 

allowable discrete values. Obviously, the number of subdomains may grow exponentially so 

that a great deal of computing time is required. Thus in the enhanced branch-and-bound 

method (Tseng et al., 1995), multiple branching and unbalanced branching strategies have 

been developed to improve the efficiency of the method. 

Bounding process: In discrete optimization, the minimum cost is always greater than or 

equal to the cost of the original regular optimal design that was originally branched. This fact 

provides a guideline for when branching should be stopped. If the branching process yields a 

feasible discontinuous solution, then the corresponding cost value can be considered a bound. 

Any other subdomain that imposes a continuous minimum cost larger than this bound need 

not be branched further. This bounding strategy can be used to select the branching route 

intelligently and avoid the need for a complete search over all the branches. 

5.3.2 Algorithm for Solving Discrete-valued Optimal Control Problems 

In this dissertation, the AOCP algorithm proposed in Section 3.4.7 is used as the core 

iterative routine of the enhanced branch-and-bound method. All candidates will be evaluated 

and finally an optimal solution can be found. Here, symbol S defined in Eq. (3.11) is used to 

represent the discretized control variable set and the P defined in Eq. (3.12) is the design 
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variable vector. Assuming that the problem at least has one feasible solution, it can then be 

proven that an optimal solution exists and can be found by the proposed method. The details 

of the two-phase scheme algorithm are as follows and Figure 5.2 presents a schematic flow 

chart of the algorithm for solving discrete-valued optimal control problems. 

Algorithm: Combines AOCP and enhanced branch-and-bound methods 

Initialization: Relax all discrete-valued restrictions and then place the resulting continuous 

NLP problem on the branching tree.  

Set the cost bound Jmax = ∞. 

while (there are pending nodes in the branching tree) do 

1. Select an unexplored node from the branching tree. 

2. Control discretization. 

3. Repeat (for k-th AOCP iteration ) 

(1). Solve the initial value problem for state variable x(k) of AOCP. 

(2). Calculate the values of the cost function, J0, and the constraints. 

(3). Solve the QPP

(k) problem by applying the BFGS method to obtain the descent 

direction d(k). 

(4). if (QPP

(k) is feasible and convergent) then exit AOCP. 

(5). Find the step size α(k) of the SQP method by using the line search method. 

(6). Update the design variable vector: PP

(k+1) = P(k)
P + α(k) d(k). 

4. if (NLP is optimal) and (J0<Jmax) then 

if ( is feasible ) then ( 1)k +S

Update the current best point by setting the cost bound Jmax = J0. 

Add this node to the feasible node matrix. 

else 

Evaluate the values of criteria for selecting the branch node. 
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Choose a discrete-valued variable 
( 1)k

l

+

S ∉ U and branch it. 

Add two new NLP problems into the branching tree. 

Drop this node. 

endif 

else 

Stop branching on this node. 

endif 

end while. 

5.4 Two-Phase Scheme for Solving TOCP 

The mixed integer NLP algorithm developed in this dissertation is one type of switching 

time computation (STC) method. Most switching time computation methods (see, e.g., Kaya 

and Noakes, 1996; Lucas and Kaya, 2001; Simakov et al., 2002) assume that the structure of 

the control is bang-bang and the number of switching times is known. Unfortunately, the 

information on the switchings of several practical time-optimal control problems is unknown 

and hard to compute using analytical methods. Hence, to overcome this difficulty, this 

dissertation proposes a two-phase Scheme that consists of the AOCP plus the mixed integer 

NLP method. In Phase I, the AOCP is used to calculate the information on switchings with 

rough time grids so that the information can be used in Phase II as the feasible initial design 

of the mixed integer NLP method. This scheme is described briefly below. 

Phase I: Find the information about the switching times and terminal time. 

1. Solve the time-optimal control problem using continuous controls by following the 

steps of the AOCP method proposed in Section 3.4. 

2. Based on the numerical results, extract information about the switching times and 

terminal time, tf. 
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Phase II: Calculate the exact solutions 

3. Based on the information about switching times obtained in Phase I, treat the 

switchings as design variables and add them into the time grid vector T defined in Eq. 

(3.10). It should be noted that each interval between the upper and lower bounds on 

each of those design variables must include one switching. 

4. Insert the terminal time, tf, into the design variable vector P (see Eq. 3.12). 

5. Discretize each control variable into the number of switchings plus one. Then the 

discrete control vector, S, defined in Eq. (3.11) can be added to the design variable 

vector P and the corresponding upper and lower bounds be limited by the original 

bounds of the controls. 

6. Solve the problem by applying the mixed integer NLP method, and then find the 

optimal discrete-type control trajectories. 

A third-order system shown in Section 5.5.1 is used to demonstrate the processes of this 

numerical scheme. 

5.5 Illustrative Examples 

The numerical results for the following examples are obtained on an Intel Celeron 1.2 

GHz computer with 512 MB of RAM memory. The AOCP is coded in FORTRAN, and C 

language is used to implement the enhanced branch-and-bound method. The Visual C++ 5.0 

and Visual FORTRAN 5.0 installed in a Windows 2000 operating system are adopted to 

compile the corresponding programs. The total CPU times for solving the F-8 fighter craft 

problem in Phase I and Phase II are 3.605 and 1.782 seconds, respectively. 

5.5.1 Third-Order System 

The following system of differential equations is a model of the third-order system 

dynamics taken from Wu (1999).  
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21 xx =� , (5.9)

32 xx =� , (5.10)

3 310 10x x u= − +� . (5.11)

The problem here is to find the control |u| ≤ 10 in order to bring the system from the initial 

state [-10, 0, 0]T to the final state [0, 0, 0]T in minimum time. 

First, this problem is solved directly by the mixed integer NLP method. Assuming four 

switching times (T1, T2, T3, T4) and five control arcs have values in the discrete set, Ud: {-10, 

10}, the terminal time, tf, is treated as a design variable, so the design variable vector P can be 

expressed as [T1, T2, T3, T4, tf, Ud1, Ud2, Ud3, Ud4, Ud5]T. Most notably, the final conditions of 

the state variables are transferred to the equality constraints. Thus, the TOCP problem 

becomes one of determining the switching times. Figure 5.3(a) presents the continuous 

solution obtained by using the AOCP and the discrete solution determined by applying the 

mixed integer NLP method proposed herein. The results indicate that the control trajectory 

determined by the mixed integer NLP method is of the bang-bang type and the solution 

consistent with the results obtained by Wu (1999). 

As stated in Section 5.4, several assumptions must be made when the mixed integer NLP 

method is applied to solving TOCP directly. Unfortunately, these assumptions cannot be 

guaranteed to hold in practical cases. Consequently, the two-phase scheme proposed in this 

dissertation is needed. For illustration, the third-order system is again solved using this 

two-phase scheme. In Phase I, the two switching times are found to be [0.330, 0.725]T and the 

terminal time tf is 0.7864. In the first phase, these switching data need not be accurate because 

they are only used to help users decide on the number of switching times, the control arcs and 

their corresponding boundaries. Thus, in Phase II, the design variable vector P is re-formed as 

[T1, T2, tf, Ud1, Ud2, Ud3]T; the numerical result obtained by applying the mixed integer NLP 

method is as presented in Figure 5.3(b). In Phase II, the switching times of the discrete control 
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input are [0.323, 0.713]T, and the terminal time tf is 0.7813 seconds. The control trajectory 

also agrees with that obtained by Wu (1999). 

5.5.2 Fourth-Order Systems: A Flexible Mechanism 

A flexible mechanism was proposed and solved by Wu (1999). The OCP 

formulation of this problem is to minimize 

0 fJ t=  (5.12)

subject to  

1 2

2 1 3
1 1

3 4

4 1 3
2

( ) ,

( )

,

( ).

x t x
k ux x x
m m

x x
kx x x

m

=  

= − − +  

=  

= −

�

�

�

�

,

 (5.13)

control constraints 

1 ( )u t Mφ = ≤  (5.14)

with boundary conditions xT(0) = [0,  0,  0,  0]T and xT(tf) = [1,  0,  1,  0]T.  

With admissible control formulation, the control variables are converted into design 

variables and the control constraints are treated as the dynamic constraint. In this dissertation, 

the system is solved by the OCP solver with the following parameters: k = 1.0 N-m-rad-1, m1 = 

m2 = 1.0 kg-m2, and M = 1.0 N-m. The numbers of time-grid points for the control function 

(NGP) are selected as 5, 11 and 51 to study the effect of coarser or finer mesh. Two initial 

guesses, u (0) = 0.0 and u(0) = 1.0, for the control function with three piecewise interpolation 

schemes – zero order, first order, and cubic spline – are used in this problem. The hybrid 

method that combines the DDM and AVM for design sensitivity analysis is used to calculate 

the design sensitivity coefficients. 

The optimal solution for this problem is given in Table 5.2 and the trajectories of state 
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variables are shown in Figure 5.4 and Figure 5.5 shows the comparison of control trajectories 

between Phase I and Phase II. All 18 test runs are successfully solved with the proposed 

method, but the runs with a small number of control grid points (NGP) give higher optimum 

values and less CPU time. The terminal time, tf, and the trajectories obtained in this work 

agree with the results, tf ≅ 4.3, obtained by Wu (1999). The numerical results also show that 

the proposed method has the capability to deal with the high-order time-optimal control 

problem. 

5.5.3 F-8 Fighter Aircraft 

The F-8 fighter aircraft has been considered in several pioneering studies (e.g., Kaya and 

Noakes, 1996; Banks and Mhana, 1992; Simakov et al., 2002) and has become a standard for 

testing various optimal control strategies. A nonlinear dynamic model of the F-8 fighter 

aircraft is considered below. The model is represented in state space by the following 

differential equations: 

2 2 2
1 1 3 1 3 1 2 1 30.877 0.088 0.47 0.019 3.846 3

1x x x x x x x x x x= − + − + − − +�  

2 2
1 10.215 0.28 0.47 0.63u x u x u− + − + 3u , 

(5.15)

2 3x x=� , (5.16)

2 3
3 1 3 1 14.208 0.396 0.47 3.564 20.967x x x x x= − − − − −� u

3

 

    2 2
1 16.265 46 61.4x u x u u+ + + , 

(5.17)

where x1 is the angle of attack in radians, x2 is the pitch angle, x3 is the pitch rate and the 

control input u represents the tail deflection angle. For convenience of comparison, the 

standard settings (Kaya and Noakes, 1996; Lee et al., 1997) are used. A control |u| ≤ 0.05236 

must be found that brings the system from its initial state [ ]26.7 180 , 0, 0 Tπ  to the final 

state [ ]0, 0, 0 T  in minimum time. 
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When the two-phase scheme is applied, as described in Section 5.4, the switching times 

computed in Phase I are 0.115, 2.067, 2.239, 4.995, and 5.282, and the terminal time is tf = 

5.7417. These switching data are used to set the design variables and their corresponding 

bounds, and then the problem is solved by the mixed integer NLP method. Finally, the 

switching times for the discrete control input are 0.098, 2.027, 2.199, 4.944, and 5.265, and 

the terminal time tf is 5.74216. Figure 5.6 shows the comparison of the controls between 

Phase I and Phase II, while Figure 5.7 shows the trajectories of the states and the control of 

Phase I and Phase II. This example is also solved by Kaya and Noakes (1996) using the 

switching time computation method and by Lee et al. (1997) using the Control 

Parameterization Enhancing Transform (CPET) method. Table 5.1 shows the terminal time tf, 

switching times and the accuracy of terminal constraints computed by various methods for 

this problem. According to the numerical results, the two-phase scheme provides a better 

solution, and the accuracy of the terminal constraints is acceptable. 

5.6 Summary 

This chapter has proposed a novel numerical method for solving time-optimal control 

problems with discrete-type control inputs that include the bang-bang type most commonly 

encountered when the control is bounded. This two-phase computational scheme for finding a 

discrete optimal control for time-optimal control problems is novel because its discrete 

control can be more easily implemented than continuous control in practical applications. A 

simple example, a third-order system, was presented to demonstrate the usage of the proposed 

scheme. A flexible mechanism control problem and an F-8 fighter aircraft control problem 

were also considered and solved by application of the proposed scheme. Numerical results 

were obtained efficiently and accurately and provide evidence that the two-phase scheme 

constitutes a viable method for solving time-optimal control problems with discrete-valued 

controls.
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Table 5.1 Results of various methods for the F-8 fight aircraft problem. 

Method tf Switching Times 

Accuracy of 

Terminal 

Constraints 

STC 

(Kaya and Noakes, 1996) 
6.3867 0.0761, 5.4672, 5.8241, 6.3867 ≤ 10-5

CPET 

(Lee et al., 1997) 
6.0350 2.188, 2.352, 5.233, 5.563 ≤ 10-10

Two-phase scheme 5.7422 0.098, 2.027, 2.199, 4.944, 5.265 ≤ 10-10
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Table 5.2 Optimal results for the fourth-order system. 

u(t0) NGP INTP NIT J0
* Conv.Par. CPU 

Zero 5 4.33196 1.04E-05 0.131
First 5 4.86764 5.69E-06 0.07

5 

Cubic 5 4.90565 4.67E-07 0.06
Zero 15 4.30699 5.71E-09 1.382
First 7 4.28066 5.65E-06 0.35

11 

Cubic 10 4.30041 1.52E-08 0.34
Zero 50 4.26239 1.38E-07 43.803
First 44 4.22087 3.50E-07 18.596

0.0 

51 

Cubic 40 4.22187 1.10E-08 12.659
Zero 6 4.33197 6.16E-07 0.12
First 7 4.86765 2.25E-07 0.091

5 

Cubic 9 4.90560 3.72E-05 0.12
Zero 7 4.36249 3.51E-08 0.651
First 8 4.28064 1.09E-05 0.43

11 

Cubic 10 4.30041 3.50E-07 0.39
Zero 49 4.26229 7.21E-08 42.872
First 42 4.22087 2.20E-06 17.315

1.0 

51 

Cubic 38 4.22187 2.88E-06 11.847
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Figure 5.1 Conceptual layout of the branching process. 
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Initialization
1. Relax all discrete-valued restrictions
2. Place the resulting continuous NLP 

problem on the branching tree.
3. Set the cost bound Jmax = 

Is  the branching tree 
empty?

A

Select an unexplored node from 
branching tree

Solve subproblem by applying 
the OCP Solver (AOCP)

(NLP is optimal) && 
(J0<Jmax)

B
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Yes
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branch object

Decide the branch of design variable
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Two new nodes 
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                Bounding process
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Set new cost bound 
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Show results  

Figure 5.2 Flow chart of the algorithm for solving discrete-valued optimal control problems. 
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(a) AOCP vs. a mixed-integer NLP method. 
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(b) Phase I vs. Phase II. 

Figure 5.3 Control trajectories for the third-order system. 
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Figure 5.4 State trajectories for the fourth-order system (Phase II). 
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Figure 5.5 Control trajectories for the fourth-order system. 
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Figure 5.6 Control trajectories for the F-8 fighter aircraft. 
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(a) Phase I. 
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(b) Phase II. 

Figure 5.7 Trajectories of the states and control input for the F-8 fighter aircraft. 
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CHAPTER 6  
 ENGINEERING APPLICATIONS 

6.1 Flight Level Control Problem 

The flight level tracking that plays an important role in autopilot systems has received 

considerable attentions from many researchers (Lygeros, 2003; Lygeros et al., 1999; Cook, 

1997; Tomlin et al., 1996; Etkin and Redi, 1996). A commercial aircraft‘s cruising altitude is 

typically assigned a flight level by air traffic control (ATC). To ensure aircraft separation, 

each aircraft has its own flight level separated by a few hundred feet; however, changes in 

flight level do happen occasionally and must be cleared by ATC. At all other times, the 

aircraft crew must ensure that they remain within the allowed bounds of their assigned level. 

At the same time, they must also maintain limits on factors such as speed, flight path angle, 

and acceleration imposed by limitations of airframe and engine and passenger comfort 

requirements or to avoid dangerous situations such as aerodynamic stall. In this paper, the 

flight level tracking problem is formulated into an optimal control problem. For safety reasons, 

the speed of the aircraft and the flight path angle must be kept within a safe “aerodynamic 

envelope” (Tomlin et al., 1996) that can be translated into the dynamic constraints of the 

optimal control problem. A flight level tracking problem and a minimum time problem are 

outlined in the following sections and then solved using the proposed solver. 

6.1.1 Aircraft Model 

Much ATC research (e.g., Cook, 1997; Etkin and Redi, 1996) has applied a point mass 

model to describe aircraft motion, considering only aircraft movement in a lateral direction. In 

Figure 6.1, three coordinate frames are used to describe aircraft motion: Xg-Yg denotes the 

ground frame; Xb-Yb, the body frame; and Xw-Yw, the wind frame. In addition, θ, γ, and α 

denote the rotation angle between the frames; V ∈  represents the speed of the aircraft, 

which is aligned with the positive Xw direction; and h is the aircraft’s altitude.  
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The equations of the motion can be derived from the force balance relationships: 

cos sin
sin cos

mV T D mg
and mV L T mg

α γ
γ α γ

= − −  ,
  = + −  ,

�

�
 (6.1)

where T is the thrust exerted by the engine, D is the aerodynamic drag, and L is the 

aerodynamic lift. By applying basic aerodynamics, the lift (L) and drag (D) can be 

approximated by  

2
2

2
2

(1 ) (1 ) ,
2
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= + = +

   = =  ,

 
 (6.2)

where CL, CD, and c are dimension-less lift and drag coefficients, s is the wing surface area 

and ρ is the air density. 

According to the admissible optimal control formulation described in Section 3.4, the air 

model can be formulated by a three-state model with a state variable vector x(t) = [x1, x2, x3]T 

= [V, γ, h]T and a control input vector u(t) = [u1, u2]T = [T, θ ]T. By approximating α with a 

small angle, the equations of the motion (system equations) can be written as  
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 (6.3)

This model, proposed by Lygeros et al. (1999) and adopted here, extends the three dimensions 

of an aerodynamic envelope protection problem. Taking into the consideration of safety 

conditions, the aircraft speed and flight path angle are bounded in a rectangular limitation 

called a “safe aerodynamic envelop.” Following Tomlin et al. (1996), Lygeros (2003) 

proposed a simplified aerodynamic envelope that is adopted in this paper and translated into 

the following dynamic constraints: 
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min 1 max

min 2 max

min 3 max

V x V
x

h x h
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,

0
0
0

 (6.4)

Based on the NLP formulation described in Section 2.2, these constraints can be treated as 

dynamic constraints and rewritten as follows: 

1 1 min 2 1 max

3 2 min 4 2 max

5 3 min 6 3 max

: 0 , :
: 0 :
: 0 :

x V x V
x x
x h x h

φ φ
φ γ φ γ
φ φ

− + ≤       − ≤  ,
− + ≤  ,     − ≤  ,
− + ≤  ,     − ≤  ,

 (6.5)

To illustrate the capabilities of the proposed method, the flight level tracking problem and the 

minimum time problem have been chosen. 

Case I: Flight level tracking problem 

This tracking problem is to find the controls that will maintain the system state x(t) as 

close as possible to the desired state r(t) in the interval [t0, tf]. The performance index for the 

tracking problem can be written as  

0

2
0 ( )

( ) ( )ft

tt
J t t= −∫ Q

x r dt  (6.6)

where Q(t) is a real symmetric n × n matrix that is positive semi-definite for all 0 , ft t t⎡ ⎤∈⎣ ⎦ . 

The flight level tracking problem involves keeping the aircraft as near as possible to the 

desired level and aircraft speed. Therefore, the performance index can be represented as  

( ) ( ) ( )
0

2 2
0 1 1 2 2 3 3

1
2

ft

d d dt
J x x x x x x⎡ ⎤= − + − + −⎣ ⎦∫

2 dt  (6.7)

where x1d is the desired aircraft speed, x2d is desired flight path angle and x3d is the assigned 

altitude. 

Case II: Minimum time problem 

The minimum time problem is to transfer a system from an arbitrary initial state x(t0) = x0 

to a specified target set St in minimum time. The performance index for the minimum time 
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problem can be written as 

0
0 0

ft

f t
J t t d= − = ∫ t  (6.8)

where tf is the first instant of time when x(t) and St intersect. In some emergencies, the aircraft 

crew is asked to change their level as soon as possible.  

6.1.2 Numerical examples 

The following parameters, outlined here for case I, are used in both cases:  

aL = 65.3 Kg/m, aD = 3.18 Kg/m, m = 160×103 Kg, 

g = 9.81 m/s2, θmin = -20°, γmin = -20, 

c = 6, θmax = 25°, γmax = 25, 

Tmin = 60×103 N, Tmin = 120×103 N, Vmin = 92 m/s, 

Vmax = 170 m/s, hmin = -150 m, hmax = 150 m 

The initial values of the state variables are  

x0 = [100, 20, -120]T (6.9)

and the purpose of this problem is to find a suitable control for maintaining the flight level 

and keeping the aircraft altitude at the assigned level. Thus the desired states are set with 

following values 

r(t) = [150, 0, 0]T. (6.10)

In addition to the dynamic constraints proposed in Eq. (6.5), the control inputs are also limited 

within the following bounds: 

min 1 max

min 2 max

T u T
and uθ θ

≤ ≤  ,
   ≤ ≤  .

 (6.11)

Substituting these parameters into Eqs. (6.3) and (6.7), the flight tracking problem is 

solved by the OCP solver. The numerical results are shown in Figure 6.2. As shown in Figure 

6.2(a), all states meet the constraints, and the flight level and aircraft speed return to the 
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desired states. Table 6.1 shows the user subroutines for this case. Obviously, the OCP solver 

provides an easily usable tool for solving dynamic optimization problems. 

Case II: Minimum time problem 

In this problem, the aircraft crew is asked to increase their altitude in minimum time. The 

initial and final altitude are h0 = 0 m and hf = 500 m, respectively. All constraints imposed on 

case I are also imposed on this case. The initial state x0 = [100, 0, 0]T, the final time, tf, 

obtained by using the AOCP, is 73.98 seconds, and the final altitude is 499.928 m. The control 

histories shown in Figure 6.3(a) and (b) give the state trajectories, which, as the figure 

illustrates, all fall within the safe “aerodynamic envelope” (i.e., meet the dynamic 

constraints). 

6.2 Vehicle Suspension Design Problem 

Many studies have treated the vehicle as a dynamic system, starting with the basic 

properties of vehicle suspension, the stiffness and damping coefficients (Gillespie, 1992). 

Thus the design of vehicle suspension systems has received much attention in the automotive 

industry. Numerous researchers have examined semi-active and active vibration isolation for 

suspension systems. Yet, despite recent advances in active and semi-active suspension 

technology, vehicles with passive suspension systems still dominate current car production. 

Tools must therefore be made available to vehicle designers for optimizing passive suspension 

systems. 

The model described here is a half-car model that allows independent vertical inputs to the 

front and rear wheels and can thus simulate pitching and bouncing motions due to road inputs. 

Two longitudinal forces, which can be positive to represent traction or negative to represent 

braking, are applied to the front and rear axles to simulate the effects of vehicle acceleration 

or deceleration. Cases of braking and accelerating while moving straight ahead are used to 

validate the longitudinal vehicle dynamics. 
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An optimal design problem in relation to vehicle suspension is considered to maximize 

vehicle ride performance, which may be evaluated according to passenger discomfort. The 

response to driver’s seat to acceleration is commonly used as the objective of suspension 

design. Three road profiles that excite pitch and bounce motions at a constant vehicle speed 

are used to calculate the optimal suspension parameters. In this optimal design problem, the 

objective is to minimize the extreme acceleration of the driver’s seat under a number of 

constraints on the dynamic response and the design parameters. The optimal design of a 

vehicle suspension system can be applied in diverse fields of research, including traction force 

control, speed control, braking system design, to name a few. In this dissertation, an 

emergency stop – a special case of vehicle speed control problem – is treated as a 

time-optimal control problem and solved by the proposed AOCP method. 

6.2.1 Derivation of the Vehicle Model 

Half-car model 

Although the quarter-car model has been commonly used in assessing vehicle ride 

performance, it does not fully represent the rigid body motions that a motor vehicle may 

exhibit. For example, the quarter-car model disregards pitching motions, which may be 

important, particularly when the car travels over obstructions like road bumps and potholes. 

Moreover, the quarter-car model is a multi-input system that responds with both pitch motions 

and vertical bounce because of the longitudinal distance between the axles. These pitch and 

bounce motions must be understood because they provide useful information on vertical and 

longitudinal vibrations. As a result of these quarter-car limitations, half-car and full-car 

models are used in several studies on suspension. Figure 6.4 depicts a nonlinear half-car 

model with six degrees of freedom, modified from the model of Haug and Arora (1979). Two 

additional longitudinal forces, traction or braking forces, are applied to the axles, allowing the 

vehicle to be accelerated or decelerated. Shock absorbers are assumed to be rigidly joined to 
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the chassis without displacement or deflection in the longitudinal direction. Based on this 

assumption, the longitudinal forces only change the speed and pitch angle of vehicle. The 

governing equations for the vehicle can be derived from Lagrange’s equations 

T T V 0i
i i i

d Q
dt

⎡ ⎤∂ ∂ ∂
− + − =⎢ ⎥∂ ∂ ∂⎣ ⎦z z z�

, i = 1,…,6 (6.12)

where T and V represent the system’s kinetic and potential energy, and Qi represent 

nonconservative generalized forces.  In Figure 6.4, the kinetic energy of the system can be 

expressed as 

2 2 2 2 2
1 1 2 2 3 3 4 4 5 5 6 6

1 1 1 1 1 1
2 2 2 2 2 2

T m z m z m z m z m z m= + + + + +� � � � � 2z�  (6.13)

The potential energy V of the conservative forces is 

2 2
1 2 3 1 2 4 2 3

1 1( ) (
2 12 2 3

L LV k z z z k z z z= + − + − − )  

   2 2
3 5 2 3 4 4 1 6

1 2 1( ) (
2 3 2

Lk z z z k z R z+ − + + − ( ))  

   2
5 5 2 6

1 ( (
2

k z R z+ − ))  

(6.14)

and the virtual work done by the nonconservative forces is  

1 2 3 1 2 3 1( )(
12 12
L Lw c z z z z z z )δ δ δ δ= − + − + −� � �  

     2 4 2 3 4 2 3( )(
3 3
L Lc z z z z z z )δ δ δ− − − − −� � �  

     3 5 2 3 5 2 3
2 2( )(
3 3
L Lc z z z z z z )δ δ δ− − + − +� � �  

     4 4 1 4 5 5 2 5( ) ( )c z R z c z R zδ δ− − − −� �� � 6 3t tF z F H zδ δ+ +  

   
6

1
i i

i
Q zδ

=

≡ ∑  

(6.15)

where Ft = Ff + Fr is the total traction/braking force imposed on the vehicle. From Eq. (6.12), 

the system equations describing the motion of half-vehicle model can be derived as follows 

1 1 1 1 1 2 1 3 1 1 1 2 1 3 0
12 12
L Lm z c z c z c z k z k z k z+ − − + − − =�� � � � , (6.16)

2 2 1 1 2 1 2 3 3 1 2 3
2( ) (

12 3 3
L L Lm z c z z c c c z c c c+ + + + + + −�� � � � )  

  2 4 3 5 1 1 2 1 2 3 3 1 2 3
2( ) (

12 3 3
L L Lc z c z k z z k k k z k k k− − − + + + + + −� � )  

(6.17)
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  , 2 4 3 5 0k z k z− − =

2 2 2

3 1 1 2 1 2 3 3 1 2
2 4( ) (

12 12 3 3 144 9 9
L L L L L L L

3)I z c z z c c c z c c c− + + − + + −�� � � �  

  2 4 3 5 1 1 2 1 2 3
2 2(

3 3 12 12 3 3
L L L L L Lc z c z k z z k k k− + − + + −� � )  

 
2 2 2

3 1 2 3 2 4 2 5
4 2( )

144 9 9 3 3 t
L L L L Lz k k k k z k z F H+ + + − + = , 

(6.18)

4 4 2 2 2 3 4 2 4 2 2 2 3 4 2 4

4 1 6 4 1 6

( ) (
3 3

( ) ( )

L Lm z c z c z z c c k z k z z k k

k R z c R z

+ − + + − − + +

= +  ,

�� � � �

�        

)
 (6.19)

5 5 3 2 3 3 5 3 5 3 2 3 3 5 3 5

5 2 6 5 2 6

2 2( ) (
3 3

( ) ( )

L Lm z c z c z z c c k z k z z k k

k R z c R z

− + + + − + + +

= +  ,

�� � � �

�       

)
 (6.20)

and . 1 2 4 5 6( ) tm m m m z F+ + + =�� (6.21)

where mi represents the masses of the seat and driver, the main body, and the wheel and axles, 

respectively. The parameters ki and ci represent the known stiffness and damping coefficients 

of the suspension system. The moment of main body inertia about its center of mass is 

denoted as I, while H is the vertical distance from the center of gravity (C.G.) to the ground, 

and L is the total length of the wheel base. The functions R1(y) and R2(y) represent 

displacements of the front and rear wheels, caused by undulations of the road surface on 

which the vehicle is traveling. Once 6 , 1,...,6i iz z i+ = =�   is defined, the vehicle system can be 

transformed into a state-space equation of the form 

= + +x Ax Bu W�  (6.22)

where x(t) = [z1, z2, z3, …, z12]T represents the vector of state variables and the nonzero 

elements of matrices A, B and W are given as follows: 
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For safety and comfort, six dynamic constraints are imposed on the system, whose 

constraint equations may be written as 

1 1( ) , 0 fz t t tθ≤ ≤ ≤��      (6.23)

2 3 1 2( ) ( ) ( ) , 0
12 f
Lz t z t z t t tθ+ − ≤ ≤   ≤  (6.24)

4 2 3 3( ) ( ) ( ) , 0
3 f
Lz t z t z t t tθ− − ≤ ≤ ≤    (6.25)
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5 2 3 4
2( ) ( ) ( ) , 0
3 f
Lz t z t z t t tθ− + ≤ ≤ ≤    (6.26)

4 1 5( ) ( ) , 0 fz t R t t tθ− ≤ ≤ ≤    (6.27)

5 2 6( ) ( ) , 0 fz t R t t tθ− ≤ ≤ ≤    (6.28)

12 ( ) , 0allow fz t v t t≤ ≤   ≤  (6.29)

where θ2 to θ6 are the maximum allowable displacements and vallow is the maximum allowable 

speed. 

Road surface displacement function 

Because the dynamic response depends strongly on the vertical displacement history of 

the wheels on the road surface, the input road conditions are very important. Most data used 

in establishing the ride comfort criteria were obtained using sinusoidal inputs. Thus the road 

surface displacement function plotted in Figure 6.5 is defined as a sinusoidal undulation with 

amplitude x0 and variable half-wavelength li (Haug and Arora, 1979). The front tire 

displacement v( y )  at position y is thus defined as 

1
1

0

1
1

0

1

1

i
i i

i

i
i i

i

( y y )x cos , y y y , i is odd
l

v( y )
( y y )x cos , y y y , i is even

l

π

π

−
−

−
−

⎧ ⎡ ⎤−
− ≤ ≤⎪ ⎢ ⎥

⎪ ⎣ ⎦= ⎨
⎡ ⎤−⎪ + ≤ ≤⎢ ⎥⎪ ⎣ ⎦⎩

          

          

 (6.30)

where y is a coordinate measured along the road and 
1

ii
jj

y l
=

= ∑ . The vertical displacement 

function for the front wheel can therefore be defined as  

1

0
0

tv( y ), y y
R ( y )

, otherwise
≤ ≤⎧

= ⎨
⎩

   

   
 (6.31)

where yt is the final position of the road undulation. The vertical displacement of the rear 

wheel has the same value as that of the front wheel but with a wheelbase lag. Therefore,  

2 1( ) ( )R y R y L= −  (6.32)
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where R1(y) is defined in Eq. (6.31).  

6.2.2 Numerical Examples 

This paper uses the numerical data from Haug and Arora (1979) to validate the model 

specified in Section 6.2.1. The following parameters in the vehicle system equations are fixed 

during the calculations; m1g = 290 lb, m2g = 4500 lb, m4g = m5g = 96.6 lb, I = 41,000 

lb-in-sec2, H = 20 in, L = 120 in, k4 = k5 = 1500 lb / in, vallow = 1056 in / sec (60 mph), and c4 

= c5 = 5 lb-sec / in. The coefficients of the suspension system are selected as design variables, 

b = [k1, k2, k3, c1, c2, c3]T. The lower and upper bounds on b are [50, 200, 200, 2, 5, 5]T and 

[500, 1000, 1000, 50, 80, 80]T, respectively. The maximum allowable values for the state 

variable constraints in Eqs. (6.23) – (6.29) are selected to be [400, 2, 5, 5, 2, 2, 1056]T. The 

units of z1, z2, z4, z5 and z6 are inches and those of z3 are radians. 

Model validation 

The physical phenomenon of rigid body motion can be used to confirm the correctness of 

the vehicle model. Therefore, cases of braking and accelerating while traveling straight ahead 

are considered here to validate the longitudinal vehicle dynamics. For convenience of 

observation, the vehicle is assumed to travel along a straight path such that R1(y) = R2(y) = 0. 

In cases of acceleration, the control problem is to determine a feasible acceleration trajectory 

along which a vehicle with various initial speeds can arrive at a destination in minimal time. 

Hence, one additional terminal constraint is imposed: 

6 ( )f tz t y=  (6.33)

where yt is the destination. Similarly, one additional terminal constraint is included in cases of 

braking 

12 ( ) 0fz t =  (6.34)

All the acceleration and braking test cases are transformed into time-optimal control 
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problems and solved by applying the proposed NLP method. Figure 6.6 and Figure 6.7 show 

the velocity trajectories of the vehicle with various starting speeds. As Figure 6.6 illustrates, 

the vehicle accelerates at the maximum allowable acceleration until the speed constraint 

defined in Eq. (6.29) becomes pertinent, from which point the speed is maintained. In contrast 

to the cases of acceleration, the vehicle decelerates with maximal allowable deceleration until 

it stops. Figure 6.8 shows the driver’s seat acceleration trajectory for the case of 

straight-ahead braking. According to these results, the vehicle motion is consistent with the 

motion of a rigid body, meaning that the longitudinal vehicle dynamics of the proposed model 

are validated. 

Optimal design of the vehicle suspension system 

The vertical displacement functions and system equations specified in Section 3 can be 

used to define an optimal suspension design problem. The driver is to be made as comfortable 

as possible over a range of road conditions and traveling speeds. Thus, the design objective is 

to minimize the maximum absolute acceleration of the driver’s seat by adjusting the vehicular 

suspension properties subject to the constraints that certain relative displacements do not 

exceed imposed limits. The objective function is therefore 

0 1[0, ]
max ( )

ft t
J z

∈
= �� t  (6.35)

where  is the acceleration of the driver’s seat under the road conditions R1( )z t�� 1(y) and R2(y) 

as defined by Eqs. (6.31) and (6.32). 

Two design cases considered by Haug and Arora (1979) are used here to examine the 

correctness of the proposed method. Figure 6.9 represents the road displacement profiles in 

the test cases. In case 1, the road surface profile includes a cavity. Case 2 involves two road 

displacement profiles, presented in Figure 6.9(b) and (c). The speed of the vehicle in case 1 is 

450 in/sec and that in case 2 is 960 in/sec. Table 6.2 gives the optimal solutions. A comparison 

with the results present in the research sources (Hsieh and Arora, 1984; Haug and Arora, 1979) 
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shows that the results obtained by the proposed method are quite accurate. 

Vehicle speed control problem 

In most emergency situations, drivers must stop the vehicle quickly and safely. Changing 

the speed of the vehicle according to the conditions of the road and the distance from the 

current position to the site of accident is a vehicle speed control problem that the vehicle 

model and system equations derived in Section 3 can be used to solve. In this case, the initial 

speed of the vehicle is 880 in / sec (50 mph) and the road surface profile is as plotted in 

Figure 6.10. According to the definition in Section 2.2, the emergency braking problem is 

transformed into a time-optimal control problem that is then solved using the proposed NLP 

method. The minimum time, tf = 3.4 seconds, and the terminal displacement, z6 = 1585.7 

inches, are obtained using the OCP solver. Figure 6.11 shows the trajectories of the vehicle 

speed and acceleration. Figure 6.12 plots the trajectories of the acceleration and pitch angle of 

the passenger seat, which are of interest to vehicle designers. The solid bold curves at the 

bottom of Figure 6.11 and Figure 6.12 represent the corresponding road profile. The 

numerical results indicate that all the constraints are satisfied and the optimal control law that 

solves the emergency braking problem is determined. 

6.3 Summary 

In this chapter, two practical applications, the flight level control problem and the vehicle 

suspension design problem – both highly nonlinear optimal control problems – have been 

formulated following the procedure suggested in this dissertation and solved by the proposed 

OCP solver. In the case of the flight level control problem, two common types of optimal 

control problem, the tracking problem and the minimum time problem, were derived to 

simulate practical situations. The vehicle suspension design problem provided a useful 

example of dynamic system design. After the problem has been formulated and the proper 

constraints imposed, users can solve their dynamic optimization problems by applying the 
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proposed method. 

Because the proposed solver provides a convenient tool for solving dynamic optimization 

problems, proper modeling and formulating the physical problem become the major decisive 

factors in whether the solution is meaningful or not. Moreover, the constraints must meet 

actual environmental conditions or the solution will make no sense. Overconstraining the 

problem will considerably increase the computational efforts and make obtaining the solution 

harder. In contrast, loosely constraining the problem will provide no practically applicable 

solution.
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Table 6.1 User subroutines for the flight level tracking problem.

//-------Program parameters ---------------------------------------------- 
//B: Discrete design parameters of design variable vector. (INPUT) 
// U: Admissible control function vector. (INPUT)  
// Z: State variable vector. (INPUT)  
// T: Given time grid point. (INPUT)   
// G: First term of performance index or functional constraint or   
//      dynamic constraint. (OUTPUT)  
// NV: Number of design variables for optimizer (INPUT)  
// NU: Number of control functions. (INPUT)     
// NEQ: Number of state equations (INPUT)  
// N: Index of current number of function evaluation. (INPUT)  
// 
// --------------------------------FFN()--------------------------------------- 
// Routine to calculate the integral term of the performance index 
// or functional constraint 
void ffn(double *B, double *U, double *Z, double *T, double *F,  

int NV, int NU, int NEQ, int N, int NBJ) 
{ 
   if (N==0)  

*F = 0.5*((Z[0]-150.0)*(Z[0]-150.0)) + (Z[1]*PI/180.0)  
    * ( Z[1] * PI/180.0 ) + (Z[2]*Z[2]); 

   else 
 *F = 0.0; 

} 
//----------------------- GFN() ------------------------------------------------- 
// Routine to calculate the first term of the performance index or  
// functional constraint or dynamic constraint 
void gfn(double *B, double *U, double *Z, double *T, double *G,  

int NV, int NU, int NEQ, int N, int NBJ) 
{ 
   switch (N) 
   { 
      case 0: 

*G = 0.0;   break; 
    case 1: 
        *G = -1 * Z[0] + 92.0; break; 

 case 2: 
        *G = Z[0] – 170.0; break; 

  case 3: 
        *G = -1 * Z[1] -20.0; break; 

  case 4: 
        *G = Z[1] – 25.0; break; 

  case 5: 
        *G = -1 * Z[2] -150.0; break; 

  case 6: 
        *G = Z[2] – 150.0;  break; 
   };   
} 
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Table 6.1 (cont.) User subroutines for the flight level tracking problem. 
//---------------------- HFN() -------------------------------------------------- 
//Routine to calculate the state trajectory. 
void hfn(double *B, double *U, double *Z, double *DZ, double *T,  

int NV, int NU, int NEQ )  
{      

 DZ[0] = -1*((aD*Z[0]*Z[0]/m) + (g*sin(Z[1]*PI/180.0))) + U[0]  
  *10000 / m; 

 DZ[1] = (aL*Z[0]*(1-c*Z[1])/m) - (g*cos(Z[1]*PI/180.0)/Z[0]) + 
aL*c*Z[0]*U[1]/m; 

 DZ[2] = Z[0]*sin(Z[1]*PI/180.0); 
} 
//--------------------- Z0FN() --------------------------------------------------- 
// Routine to calculate the initial state vector. 
void z0fn(double *B, double *ZINT, int NV, int NEQ )  
{ 
  ZINT[0] = 100.0; 

ZINT[1] = 20.0; 
ZINT[2] = -120.0; 

} 
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Table 6.2 Optimal solutions for vehicle suspension. 
(a) Case 1 

 Haug and Arora (1979) Hsieh and Arora (1984) Proposed Method 

k1 50.00 50.00 50.00 

k2 200.00 204.10 200.00 

k3 241.90 293.90 200.00 

c1 12.89 30.87 39.96 

c2 77.52 76.94 77.35 

c3 80.00 80.00 80.00 

Cost 257.40 255.80 254.00 

 

(b) Case 2 

 Haug and Arora (1979) Proposed Method 

k1 50.00 191.90 

k2 200.00 200.00 

k3 200.00 200.00 

c1 8.93 8.52 

c2 45.92 25.24 

c3 37.81 29.16 

Cost 125.50 125.60 

123 



 

 

 

Figure 6.1 Aircraft model (Lygeros, 2003). 

124 



0 2 4 6 8
Ti

10
me(Sec.)

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

X1: Aircraft Speed (m/s)
X2: Flight Path Angle (deg.)
X3: Altitude distance(m)

x2

x1

x3

 
(a) State trajectories. 
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(b) The thrust trajectory. 

Figure 6.2 Numerical results for the tracking problem. 
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(a) Control input trajectories. 
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(b) State trajectories. 

Figure 6.3 Trajectories for the minimum time problem.
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Figure 6.4 Six-degrees-of-freedom vehicle model 

127 



 
Figure 6.5 Sinusoidal displacement functions.
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Figure 6.6 Vehicle speed histories for straight-ahead accelerating. 
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Figure 6.7 Vehicle speed histories for straight-ahead braking. 
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Figure 6.8 Driver’s seat acceleration for straight-ahead braking. 

131 



 
(a) Case I  

 
(b) Case II – road profile 1. 

 
(c)  Case II – road profile 2. 

 
Figure 6.9 Road displacement profiles for model validation (Haug and Arora 1979). 
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Figure 6.10 Road displacement profiles for emergency braking. 
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Figure 6.11 Vehicle speed and acceleration histories for emergency braking. 
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Figure 6.12 Seat acceleration and pitch angle histories for emergency braking. 
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CHAPTER 7  
 CONCLUSIONS AND FUTURE STUDY 

7.1 Concluding Remarks 

This study has introduced and compared two typical methods – the indirect and direct 

approaches – usually used to solve optimal control problems. Because most of practical 

control problems are described by strongly nonlinear differential equations that are difficult to 

solve by indirect methods, direct methods have been widely studied in the recent literature 

and are also adopted in this dissertation. In spite of extensive use of direct and indirect 

methods to solve optimal control problems, engineers still expend much effort on 

reformulating problems and implementing corresponding programs for different control 

problems. Therefore, the first objective of this dissertation was to develop a convenient solver 

and provide a systematic computational procedure capable of assisting engineers and students 

easily solve their dynamic system design problems.  

To this end, a computational AOCP method, one kind of sequential direct method, has 

been developed and presented herein. Subsequently, it was implemented and coupled with 

many robust numerical schemes to develop a general OCP solver. Besides outlining the 

theoretical and numerical foundations involved in the proposed solver, the discussion detailed 

the OCP solver implementation, including the dynamic constraint treatments, ODE solver, 

sensitivity analysis, and so forth. The van der Pol oscillator problem with three different 

terminal conditions and a highly nonlinear time-optimal control problem were used to 

illustrate and verify the stability and capability of the proposed solver. In these examples, 

different numerical schemes and different time intervals were applied to investigate the 

numerical schemes’ effect on the validity of the solution and computational efficiency. The 

results indicate that the OCP solver coupled with the systematic procedure suggested in this 

study can truly facilitate the solving of engineering control problems in a systematic and 
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efficient way. 

The other objective of this dissertation was to develop a novel method for solving 

discrete-valued optimal control problems. Most traditional methods focus on the continuous 

optimal control problems and fail when applied to a discrete-valued optimal control problem. 

One common type of such problems is the bang-bang type control problem arising from 

time-optimal control problems. When the controls are assumed to be of the bang-bang type, 

the time-optimal control problem becomes one of determining the TOCP switching times. 

Several methods for such determination have been studied extensively in the literature; 

however, these methods require that the number of switching times be known before their 

algorithms can be applied. As a result, they cannot meet practical situations in which the 

number of switching times is usually unknown before the control problem is solved. 

Therefore, to solve discrete-valued optimal control problems, this dissertation has focused on 

developing a computational method consisting of two phases: (a) the calculation of switching 

times using existing optimal control methods and (b) the use of the information obtained in 

the first phase to compute the discrete-valued control strategy. The proposed algorithm 

combines the proposed OCP solver with an enhanced branch-and-bound method.  To 

demonstrate the proposed computational scheme, the study applied third-order and 

fourth-order systems and an F-8 fighter aircraft control problem considered in several 

pioneering studies. Comparing the results of this study with the results from the literature 

indicates that the proposed method provides a better solution and the accuracy of the terminal 

constraints is acceptable. Finally, the proposed solver and procedure were applied to two 

engineering applications: the flight level control problem and the vehicle suspension design 

problems. 

7.2 Future Study 

Future study will focus on two topics: one is to develop a web-based dynamic 
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optimization solver and another one is to improve the global convergence of proposed method. 

In terms of the former, although a convenient solver for dynamic optimization has been 

developed in this dissertation, constructing a turnkey system for solving dynamic system 

design problems is still a major problem for inexperienced engineers and students. In addition, 

because of the resource limitation including finances and laboratory facilities, it is difficult to 

provide each engineer with a turnkey system to solve his/her dynamic system design problem. 

The advent of the Internet and distributed computing technologies suggest that a Web-based 

optimization tool may provide a potential partial solution to this problem (Chu, 1999).  A 

Web-based dynamic optimization solver would also be useful to engineering curriculums 

because students could share limited resource via the Internet. Many Internet techniques such 

as Web service, Simple Object Access Protocol (SOAP), DataSocket, and XML, could be 

applied to the development of such a solver, for which a conceptual flowchart is given in 

Figure 7.1. For this suggested model, the proposed OCP solver would serve as a numerical 

engine. 

As regards improving global convergence, the convergency of the OCP solver depends 

on good initial guesses that speed up optimization problem convergence and produce 

high-precision solutions. However, it is difficult for the inexperienced to provide good initial 

guesses that lie within the convergence domain. Therefore, a module that assists with 

estimation of the optimal solution will be developed to help the novice making the proper 

initial guess. 

It is expected that the contents of Chapters 2 through 5 will be the basis for addressing 

these two topics, which, because of modular programming techniques, can be effected by 

adding external modules into the proposed solver or replacing the original modules with new 

ones. This feature allows the proposed solver to be easily updated by state-of-the-art 

algorithms.
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Figure 7.1 Conceptual flow chart of a web-based dynamic optimization solver. 
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