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摘要 

 
 在本篇論文中，我們設計並實現一個在個人電腦上的視訊影像切割系統。此

系統未來將被用來組成一個在個人電腦上的多點視訊會議系統。 
    此系統的基本概念是將畫面與其相對應的背景相減以得到移動的物件。首

先，我們使用一個兩級的雜訊估計方法來估計攝影機的雜訊，並且把此結果拿來

當做往後參數調整的參考。為了取得一個最佳的背景，我們結合了兩個方法來消

除因為物體內部的平坦區域所造成的錯誤背景。首先，我們觀察六張連續畫面的

變化情形來取得一個初步的背景。接著，我們利用影像變化加上填補及收縮的技

巧來取的一個粗略的物件輪廓，並利用此資訊來修正初步的背景。當攝影機被移

動時，我們會先估計出相對應的移動向量，並且由全景的儲存器中快速的找到相

應的背景。最後的模擬結果顯示當我們得到足夠的背景後，所切割出來的物體邊

界是相當精確的，且在攝影機被移動後，我們也能快速的重建背景。 
    在整體圖形應用及控制介面的實現上，我們採用了 Microsoft Windows SDK
來建構整個介面。在攝影機的控制上，我們引用了 VfW 的模組來達成。在 2.4-GHz 
CPU 及 256-MB RAM 的個人電腦上且攝影機不移動時，目前的執行速度是每秒

約五張。若攝影機有移動，則是每秒約 1.7 張。  
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Abstract 

We consider the design and implementation of video segmentation system on a 

personal computer (PC). The intended application is PC-based multipoint videoconfe- 

renceing system. 

The basic idea of the system is a background subtraction technique. First, we use 

a two-stage noise estimation to estimate the camera noise and the result is used to 

decide the thresholds in the following steps. Due to the problem of flat inner regions, 

we combine two methods to obtain the final stationary background. First, the 

short-term background is used to obtain an initial background which usually includes 

many flat inner regions. Second, a temporary foreground mask is obtained using 

change detection, fill-in, and shrink techniques to remove the flat inner regions in the 

short-term background. 

In order to deal with camera motion, we employ scene change detection, global 

motion estimation, and panorama background buffer. When camera motion occurs, 

the scene change detection starts the global motion estimation and then the stationary 

background buffer is recovered from panorama background buffer by the estimated 

global motion. 



The simulation results show that when we gather enough information of the 

background, the obtained object mask is accurate and the accuracy of object mask can 

be quite consistent throughout the remainder of the sequence. The results also show 

that global motion estimation and background recovery can effectively improve the 

accuracy during rebuilding of new background. 

In real-time PC-based software implementation of the segmentation algorithm, 

we employ a graphical user interface established using the Windows SDK. The 

capturing process is aided by the VfW (Video for Windows package). With a P-4 

2.4-GHz CPU and 512-MB RAM, the current un-optimized implementation yields a 

speed of about 5 frames per second and for CIF (352x288) video when the camera is 

still. In the presence of camera motion, the processing time is about 1.7 frames per 

second. 
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Chapter 1

Introduction

We consider the design and implementation of video segmentation system on a personal

computer. The intended application is PC-based multipoint videoconferencing system.

The main objective in segmentation is to partition the data into meaningful and in-

dependent regions. According to the type of data, we can classify the processes into

image segmentation and video segmentation. Here, we focus on the video segmenta-

tion. The general schemes for video segmentation can be seen as the following steps:

pre-processing, feature extracting, decision, and post-processing. According to extracted

features, many familiar techniques can be used to obtain the object mask, such as optical

flow-based technique, change detection-based technique, edge detection-based technique

and background subtraction-based technique.

The basic idea of the system is a background subtraction technique. The moving ob-

jects of current frame can be easily obtained by extracting the different region between

current frame and background. To begin with, we need to build a background relative to

current frame. The information of background can be obtained by many methods. The

simplest way is to remove every moving objects and then obtain the background, but in

many situations it is inconvenient to remove every moving objects. In this thesis, the

background is obtained by gathering the stationary regions during the process of segmen-

tation.

During the process of gathering information of background, flat inner regions in mov-

ing objects usually lead us to make wrong decisions since such regions usually look like

1



stationary regions even though they move. In this system, a temporary object mask is

used to reduce the influence of flat inner regions.

In general, the basic assumption of background subtraction technique is that the back-

ground should be stationary during whole process. When the background is changed due

to camera moving, we should reset the background buffer and find a new background.

In order to reduce the rebuilding time, we use the idea of sprite to recover most of the

background buffer.

In many steps of our algorithm, we need a threshold to make decisions. In many

situations, the threshold is adjusted to against the influence of noise and therefore we

estimate the camera noise at first and the adjustment of threshold is based on camera

noise.

This thesis is organized as follows. Chapter 2 is an overview of popular video seg-

mentation techniques. Chapter 3 discusses the idea of image mosaicing. Chapter 4 gives

a detailed description of proposed segmentation method. Chapter 5 describes the over-

all system architecture. Chapter 6 shows the simulation results of our system. Finally,

chapter 7 contains the conclusion.
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Chapter 2

Overview of Video Segmentation

2.1 Meaning of Segmentation

The main objective in segmentation is to partition the data into meaningful and indepen-

dent regions. According to the type of data, we can classify the segmentation processes

into image segmentation and video segmentation. In the case of image segmentation, the

problem is two-dimensional in nature. While in case of video segmentation, in addition to

the two-dimensional information we can also handle the problem with the aid of motion

information.

The algorithm of segmentation depends to a large extent on the application and the

data in which it is used. In one application, the ten partitions may be ideal but for other

applications the two partitions may be desired. In the ideal case, we may develop a best

algorithm for each application but it usually follows with large complexity. In practice,

we often develop an algorithm best suitable to specific application not to general situation.

2.2 Basic Procedure of Segmentation

A general scheme for segmentation can be seen as the following steps: pre-processing,

feature extracting, decision, and post-processing as show in Figure 2.1.

1. Pre-processing:

3



Figure 2.1: A basic segmentation system.

The original data may include lots of information but most of it is irrelevant to our

application and sometimes influences our decision. In the stage, we remove the

irrelevant information and keep the desired data.

2. Feature extraction:

Depending on various segmentation algorithms, we need some specific features to

achieve our goals. In this stage, we extract the desired features from original data.

3. Decision:

The values of extracted features are usually more than two values and therefore

we need to find a threshold to classify those data. In the stage, we can use many

strategies to make a desired threshold set to find out the regions which meet our

goal.

4. Post-processing:

Although we can use many decision strategies to make a best threshold set, we may

still make wrong decisions in some special regions. In the stage, we will try to

correct those improper regions.

In the following sections, we introduce some popular segmentation techniques.

2.3 Optical Flow-Based Technique

The optical flow of a pixel is a motion vector represented by the motion between a pixel

in current frame and its corresponding pixel in the following frame. In this method, we
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need to analyze the optical flow of every pixel and then partition a frame into different

regions according to the different optical flows.

In the following we will show a system proposed in [1] in which the optical flow

technique is used. The main assumption underlying this paper is the existence of a domi-

nant global motion that can be assigned to the background. Areas that do not follow this

background motion indicate the presence of independently moving objects. Therefore,

the basic idea of the algorithm as shown in Figure 2.2 is to identify components that are

moving differently from the background.

To be precise, the main block of the algorithm is the morphological motion filtering.

It removes components that do not follow the dominant global motion, while perfectly

preserving other parts of the image. The filter works on so-called flat zones in the image.

A flat zone is the largest connected component where the gray-level is constant, possibly

consisting of one pixel only, and the set of all flat zones is obviously a partition of the

image. The morphological filter merges these flat zones according to a specified criterion,

and so it does not introduce any new contours. The merging process is controlled by a

filtering criterion that measures how well a flat zone conforms with the global motion.

The first step in this approach is to compute a dense optical flow field. The estimated

dense motion field is then the starting point for calculating the global motion parameters.

The global motion used in this approach is a six-parameter affine transformation:

u′(x, y) = a1x + a2y + a3,

v′(x, y) = a4x + a5y + a6,

where (u′(x, y), v′(x, y)) denotes the estimated optical flow vector at pixel (x, y). The

parameters ai (1 ≤ 6) are found by a robust least median of squares method, where

by each independent flow vector (u(x, y), v(x, y)) of the estimated dense motion field

provides one observation.

After calculating the global motion parameters, the transformation allows them to de-

termine for each pixel (x, y) the motion vector (u′(x, y), v′(x, y)) according to the global

motion. If the point belongs to the background, then (u(x, y), v(x, y)) and (u ′(x, y), v′(x, y))

are expected to be very similar. Conversely, the more different (u(x, y), v(x, y)) and
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Figure 2.2: Optical flow-based segmentation system (from [1]).
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(u′(x, y), v′(x, y)) are, the more likely (x, y) belongs to an independently moving ob-

ject. Therefore, the filter criterion M(x, y) measures for each pixel (x, y) the differ-

ence between the synthesized global flow (u′(x, y), v′(x, y)) and the estimated local flow

(u(x, y), v(x, y)), i.e.,

M(x, y) = (u′(x, y), v′(x, y))2 + (u(x, y), v(x, y))2,

where M(x, y) is low for background pixels that conform with the global motion and high

for pixels belonging to independently moving objects. The morphological filter requires

a criterion for flat zones and not for individual pixels. This is now defined as the average

of M(x, y) over all pixels (x, y) belonging to a flat zone. Last, the residue or difference

between original and filtered image indicates independently moving objects.

This technique has to estimate the motion of every pixel and find the dominant global

motion. Usually, the related processes are very time-consuming. In many applications,

the camera is always fixed and therefore the dominant global motion should be zero. For

these reasons, another method called change detection-based technique is usually adopted

to reduce the processing time of motion estimation when camera is fixed.

2.4 Change Detection-Based Technique

In the above method, optical flow is usually computed at every image point in the frame.

Since the percentage of points in one frame having zero motion is usually large, it is

possible to extract the independently moving objects from background by calculating

frame difference between continuous frames. This technique is usually named change

detection-based method. The main advantage of change detection is that it can avoid the

computation in the estimation of optical flow.

Change detection algorithms usually start with the gray value difference map between

the two frames considered. The local sum (or mean) of absolute difference is computed

inside a small measurement window which slides over the difference map. At each lo-

cation, this local sum of absolute differences is compared against a threshold. Whenever

this threshold is exceeded, the center pixel of the current window location is marked as

changed. The key issue of this technique is how to decide the threshold.
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The algorithm in [2] provides some statistical methods to decide the threshold. It

starts by computing the gray level difference image D = dk, with dk = y1(k) − y2(k),

between two considered pictures Y1 = y1(k) and Y2 = y2(k). The index k denotes the

pixel location on the image grid. Under the hypothesis that no change occurs at location

k, the corresponding difference dk obeys a zero mean Gaussian distribution N(0, σ) with

variance σ2, that is,

p(dk|H0) =
1√

2πσ2
exp{− d2

k

2σ2
}.

Since the camera noise is uncorrelated between different frames, the variance σ2 is

equal to twice the variance of the assumed Gaussian camera noise distribution. H0 denotes

the null hypothesis, i.e., the hypothesis that there is no change at pixel k. The unknown

parameter σ can be estimated offline for the used camera system, or recursively online.

In order to make the detection more reliable, they may use a region to evaluate the

difference di instead of only a single pixel. They thus compute the local sum �2
i of (dk

σ
)2

inside a small sliding window wi, with i denoting the center pixel of the window.

The local sum �2
i is proportional to the sample mean of ( dk

σ
)2 as computed inside the

window. Under the assumption that no change occurs inside the window when centered

at location i, the normalized difference ( dk

σ
) obeys a zero-mean Gaussian distribution

N(0, 1) with variance 1. Thus, the sum �2
i obeys a χ2-distribution with as many degrees

of freedom as there are pixels inside the window. With the distribution p(�2|H0) known,

the decision between “changed” and “unchanged” can be arrived at by a significance test.

For this purpose, they usually specify a significance level α and compute a corresponding

threshold tα according to

α = Prob(�2
i > tα|H0).

The statistic �2
i is now evaluated at each location i on the image grid, and whenever it

exceeds tα, the corresponding pixel is marked as changed, otherwise as unchanged.

The method given above exhibits some shortcomings. First, there are inevitably deci-

sion errors. Typically, these errors appear as small isolated spots inside correctly labeled

regions. Another drawback is that in some critical image areas the boundaries between

differently classified regions tend to be somewhat irregular. To avoid these shortcomings,
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the MAP criterion can be used to get a better change mask. That is to say, they try to

find the change mask Q = qk which maximizes the a posteriori density p(Q|D), where

D is the given difference image. The label qk at location k can take either the value u

for “unchanged” or c for “changed”. After a series of deduction, we can get the finally

decision rule

d2
k

u
>
<
c 2

σ2
cσ

2

σ2
c − σ2

(ln
σc

σ
+ (vB(c) − vB(u))B + (vC(c) − vC(u))C)

where B is a positive cost term of each horizontally or vertically oriented border pixel pair

and C is that of diagonally pair. vB(qk) and vC(qk) denote the number of inhomogeneous

cliques to which pixel k belongs when its label is qk.

2.5 Edge Detection-Based Technique

Change detection for edges is another useful technique of segmentation. In the following,

we explain how to employ the technique by the system in [4] and the block diagram is

shown in Figure 2.3.

There are two major steps in this system.

1. Extraction of moving edge (ME) map:

The automatic VO segmentation algorithm starts with edge detection which plays

a key role in extracting the physical change of the corresponding surface in a real

scene. However, such simple edge information usually suffers from a great deal

of noise. Thus it results in slight changes of the edge locations in the successive

frames. The difference of edges is defined as

|Φ(In−1) − Φ(In)| = |θ(�G ∗ In−1) − θ(�G ∗ In)|,

where the edge maps Φ(I) are obtained by the Canny edge detector [10], which is

accomplished by performing a gradient operation on the Gaussian convoluted im-

age, followed by applying the nonmaximum suppression to the gradient magnitude
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Figure 2.3: Edge detection-based algorithm (from [4]).
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to thin the edge and the thresholding operation with hysteresis to detect and link

edges.

On the other hand, edge extraction from the difference image in successive frames

results in a noise-robust difference edge map DEn because Gaussian convolution

included in the Canny operator suppresses the noise in the luminance difference

DEn = |Φ(|In−1 − In|) = θ(�G ∗ |In−1 − In|).

After calculating the edge map difference of images using the Canny edge detector,

they extract the moving edge MEn of the current frame In based on the edge map

DEn of difference |In−1 − In|, the current frame’s edge map En = Φ(In), and the

background edge map Eb. Note that Eb contains absolute background edges in case

of a still camera and can be extracted from the first frame or by counting the number

of edge occurrence for each pixel through the first several frames. They define the

edge model En = {e1, ..., ek} as a set of all edge points detected by the Canny

operator in the current frame n. Similarly, they denote MEn = {m1, ..., ml} the set

of l moving edge points, where l ≤ k and MEn ⊆ En. The edge points in MEn

are not restricted to the moving object’s boundary, and can be in the interior of the

object boundary. If DEn denotes the set of all pixels belonging to the edge map

from the difference image, then the moving edge map generated by edge change is

given by selecting all edge pixels within a small distance Tchangeof DEn, i.e.,

MEchange
n = {e ∈ Eb| min

x∈DEn

||e − x|| ≤ Tchange}.

Some MEn might have scattered noise which needs to be removed before proceed-

ing to the next steps. In addition, a previous frame’s moving edges can be referenced

to detect temporarily still moving edges, i.e.,

MEstill
n = {e ∈ En|e �∈ Eb, min

x∈MEn−1

||e − x|| ≤ Tstill}.

The final moving edge map for current frame In is expressed by combining the two

maps

11



MEn = MEchange
n

⋃
MEstill

n .

2. Extraction of VOP:

With a moving edge map MEn detected from DEn, the VOPs are ready to be

extracted. To obtain the foreground of image, they perform two steps. In the first

step, they find the region which is between the first and the last edge points in each

row. They may obtain some background region in the result. This is due to the

fact that more than one object may exist in the sequence. Hence, in the second step,

they obtain the region between the first and the last edge points in each column. The

result of this step will also contain the background regions between the foreground

objects. The final foreground region is obtain by applying logical AND operation

on the horizontal and vertical candidate regions.

In the case when the object boundary touches image boundary, they may obtain

jagged moving edge in that location. This is because the actual moving edge points

near the object boundary may lie outside the image boundary. The nearest edge

points close to image boundary may be at various distances from the image bound-

ary at various points. Hence they add the image points to moving edge points if

either horizontal or vertical candidates touch image boundary points.

2.6 Background Subtraction-Based Technique

Thresholding the difference between two consecutive input frames is the basic concept

of change detection-based segmentation. However, since the behavior and characteris-

tics of the moving objects differ significantly, the quality of segmentation result depends

strongly on background noise, object motion, and the contrast between the object and the

background. Reliable and consistent object information is very difficult to obtain. Hence,

instead of trying to get more information from the changing part of the scene, we con-

centrate on the stationary background where the characteristics are well known and more

reliable.
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The idea of background subtraction is to subtract the current image from the still

background, which is acquired before the objects move in. After subtraction, only non-

stationary or new object are left. The most straightforward way to separate background is

to apply a simple difference and threshold method.

An example of background subtraction-based technique can be seen in [3]. This seg-

mentation system consists of five major steps as shown in Figure 2.4.

1. Frame difference:

The frame difference mask is generated simply by thresholding the frame differ-

ence. This data is sent to the background registration step where the reliable back-

ground is constructed from the accumulated information of several frame difference

masks. Since the accumulated frame difference mask are used in the final decision

for a reliable background, no filtering or boundary relaxation is applied on the frame

difference.

A significance test technique is used to obtain the threshold value. The test statis-

tic is the absolute value of frame difference. Under the assumption that there is

no change in the current pixel, the frame difference obeys a zero-mean Gaussian

distribution and its probability density function is as follows:

p(FD|H0) =
1√

2πσ2
exp{−FD2

2σ2
},

where FD is the frame difference and σ2 is the variance of the frame difference.

Note that σ2 is equal to twice the camera noise variance σ2
c . H0 denotes the null

hypothesis, i.e., the hypothesis that there is no change at the current pixel. The

threshold value is decided by required significance level. Their relation is as fol-

lows:

α = Prob(|FD| > TH|H0),

where α is the significance level and TH is the threshold value.

2. Background registration:
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Figure 2.4: Background substraction-based segmentation system (from [3]).
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The goal of background registration is to construct a reliable background informa-

tion from the video sequence. In this application, it needs a reliable background

information for change detection. An approximate background information is not

helpful for object detection, and even worse, it will cause error in the later segmen-

tation result until the background information is corrected. Therefore, for informa-

tion that they are not very sure to be background, they tend to reject and leave the

corresponding area in the background buffer empty.

In the background registration step, the history of frame difference mask is con-

sidered in constructing and updating the background buffer. A stationary map is

maintained for this purpose. If a pixel is marked as changing in the frame difference

mask, the corresponding value in the stationary map is cleared to zero; otherwise, if

the pixel is stationary, the corresponding value is incremented by one. The values in

the stationary map indicate that the corresponding pixel has not been changing for

how many consecutive frames. If a pixel is stationary for the past several frames,

then the probability is high that it belongs to the background region. Therefore, if

the value in the stationary map exceeds a predefined value, then the pixel value in

the current frame is copied to the corresponding pixel in the background buffer.

A background registration mask is also changed in this process. The value in the

background registration mask indicates that whether the background information

of the corresponding pixel exists or not. If a new pixel value is added into the

background buffer, the corresponding value in the background registration mask is

changed from nonexisting to existing.

3. Background difference:

This step generates a background difference mask by thresholding the difference

between the current frame and the background information stored in the background

buffer. This step is very similar to the generation of frame difference mask.

4. Object detection:

The object detection step generates the initial object mask from the frame differ-

ence mask and the background difference mask. The background registration mask,
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Figure 2.5: Initial object mask generation (from [3]).

frame difference mask, and background difference mask of each pixel are required

information. Figure 2.5 lists the criteria for object detection, where BD means the

absolute value of difference between the current frame and the background informa-

tion stored in the background buffer, FD is the absolute value of frame difference,

and the OM field indicates that whether or not the pixel is included in the object

mask. THBD and THFD are the threshold values for generating the background

difference mask and frame difference mask, respectively.

5. Post-processing:

After the object detection step, an initial object mask is generated. However, due

to the camera noise and irregular object motion, there exist some noise regions in

the initial object mask. The approach to eliminate the noise region relies on an

observation that the area of noise regions tend to be smaller than the area of the

object. Regions with area smaller than a threshold value are removed from the

object mask. In this way, the object shape information is preserved while smaller

noise regions are removed. After removing noise regions, a close and an open

operation with a 3 × 3 structuring element are applied on the object mask.

2.7 Summary

All techniques described above can obtain a desired object mask. Here, we explain the

reason why we choose the background subtraction-based technique. In our application,

the camera is usually fixed and therefore the optical flow-based technique is not under
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consideration.

The idea of change detection-based and edge detection-based techniques are very sim-

ilar. In our experience, the object masks obtained by these two techniques are hard to resist

the camera noise and some noise-removing filters are necessary. Besides, the accuracy of

object mask is hard to keep for entire sequence.

The major disadvantage of the background subtraction-based technique is that it needs

some time to gather enough information of background. The reason why we still choose

this technique is that the accuracy of object mask is easier to keep when we collect enough

information of background. Besides, the module for gathering background can be stopped

to improve processing time when the whole background is obtained.
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Chapter 3

Overview of Image Mosaicing

3.1 Introduction of Mosaic

The mosaic or sprite is an image constructed by all frames in a video sequence. The

mosaic image can provide a panoramic view of scenes in the video sequence and there

are many application based on this techniques. Since the successive images within a video

sequence usually overlap by a large amount, image mosaicing technique can reduce the

total amount of data needed to represent the scene. The sprite coding, for example, is one

of the important components in MPEG-4 video coding and many related algorithms have

been included in MPEG-4 video Verification Model [5].

In this thesis, we use this technique to deal with the camera motion. At first We

estimate the camera motion and generate a panorama background buffer and then we can

fast recover the stationary background buffer from panorama background buffer.

A mosaic generation system proposed in [9] is shown in Figure 3.1. There are three

major steps in this system. First, choose some reliable region for alignment. Second, align

all images in the sequence. Third, integrate aligned images to generate a mosaic image.

The details are described in the following sections.
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Figure 3.1: A sprite generation system (from [9]).

3.2 Reliable Region Selection

As we can see in [9], the main module of image alignment is the global motion estimation.

In general, the accuracy of global motion estimation is usually influenced by local motion.

Usually, the influence can be eliminated in a well designed global motion estimation

algorithm. Besides, a simple way to deal with the problem is excluding those regions

belonging to local motion before global motion estimation. Usually, the reliable regions

can be obtained by the aid of initial segmentation mask as shown in Figure 3.2. The black

region represents the reliable region, the gray region represents the unreliable region, and

the white region represents moving objects.

3.3 Image Alignment

Image alignment depends on the chosen motion model and usually starts in global mo-

tion estimation (GME). The GME technique is designed to minimize the sum of squared

difference E between the current frame I and the motion compensated previous frame I ′:

E =
N∑

i=1

e2
i ,

where ei = I ′(x′
i, y

′
i)−I(xi, yi), (xi, yi) denotes coordinates of ith pixel in current frame,

and (x′
i, y

′
i) denotes coordinates of corresponding pixel in previous frame.

19



Figure 3.2: A reliability mask (from [9]).

There are many motion models that can be used to model camera motion. For exam-

ple, in [6] the perspective motion model is defined as follows:

x′
i =

a0 + a2xi + a3yi

a6xi + a7yi + 1

y′
i =

a1 + a4xi + a5yi

a6xi + a7yi + 1

where (a0, ..., a7) are motion parameters. An example of perspective transform is shown

in Figure 3.3.

The perspective model is suitable when the scene can be approximated by a planar

surface, or when the scene is static and the camera motion is pure rotation around its

optical center. According to the perspective model, we can use other simpler models in

some special situations. For instance, there are the affine model (a6 = a7 = 0), the

translation-zoom-rotation model (a2 = a5, a3 = −a4, a6 = a7 = 0), the translation-zoom

model (a2 = a5, a3 = a4 = a6 = a7 = 0), and the translation model (a2 = a5 = 1, a3 =

a4 = a6 = a7 = 0). An example of affine transform is shown in Figure 3.4.

There are many ways to solve the motion parameters a = (a0, ..., a7). The gradient de-

scent algorithm described in [6] and [7] is a popular method to solve for those parameters

by the following iterative procedure:

at+1 = at + H−1b.
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Figure 3.3: Perspective transform.

Figure 3.4: Affine transform.
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Or equivalently

δa = at+1 − at = H−1b

where at+1 and at denote a at iterations t and t + 1, respectively, H is 8 × 8 matrix equal

to one-half times the Hessian matrix of E:

Hkl =
N∑

i=1

∂ei

∂ak

∂ei

∂al
,

and b is 8-element vector equal to minus one-half times the gradient of E:

bk = −
N∑

i=1

ei
∂ei

∂ak
.

Each iteration of the gradient descent consists of the following steps:

1. Compute the corresponding position (x′
i, y

′
i) of (xi, yi) by adopted motion model.

2. Compute the error between corresponding pixels ei = I ′(x′
i, y

′
i) − I(xi, yi).

3. Compute the intensity gradient ∂I′
∂x′ and ∂I′

∂y′ .

4. Compute the partial derivative of ei w.r.t. the ak using

∂ei

∂ak
=

∂I ′

∂x′
∂x′

∂ak
+

∂I ′

∂y′
∂y′

∂ak
.

5. Repeat previous steps for all pixels within image boundaries and add its contribution

to matrix H and vector b.

6. Solve the equation δa = at+1 − at = H−1b.

7. Update a by at+1 = at + δa.

8. Continue iterating until the stopping criterion is met.

3.4 Image Integration

Once the frames are aligned, they can be integrated to build a mosaic image. If two frames

are mapped to different regions in the mosaic image it is easy to integrate by just putting
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them on proper locations, while it will need more consideration when the positions in

mosaic image is mapped to by many frames. Several popular schemes can be used to deal

with those positions that are mapped to by many frames:

1. Take the average value among those frames.

2. Take the median value among those frames.

3. Take the weighted median value or weighted average value among those frames.

4. Take the most recent value among those frames.

Another important issue is that an integer position in current frame may map into

non-integer point in reference frame and therefore we have to deal with those non-integer

points. Many popular interpolation techniques can be used to solve the problem:

1. The nearest neighborhood interpolation:

This is a simplest and speediest interpolation algorithm in view of computational

complexity. The value of non-integer point is replaced by the value of nearest inte-

ger point.

2. Bilinear interpolation:

It uses a linear combination of four nearest integer points to produce a new value.

I(xi, yi) = a0 + a1xi + a2yi + a3xiyi

where a0, a1, a2, a3 can be solved by four nearest integer points.

3. Alternative techniques, such as using a larger resolution mosaic image proposed in

[8].

3.5 Some Result of Mosaic Generation

In this section, we show a mosaic image using the algorithm described in previous section.

Here, we use the 80th to 96th frames of Stefan sequence to generate mosaic image as
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Figure 3.5: 80th frame.

shown in Figures 3.5 and 3.6, where we assume that we have an object mask already.

The affine model is adopted to model camera motion and we use the bilinear interpolation

to deal with non-integer point. The values of overlapped pixels are replaced by most

recent values. The final result is shown in Figure 3.7.

With more parameters, the motion model can describe more camera motion while the

complexity of finding parameters is also rising. The perspective model is the most accu-

rate model, but it also has highest computational complexity. Besides, in our observation

the a6 and a7 of perspective model are usually smaller than other parameters and there-

fore the values of a6 and a7 are usually less accurate. According to this observation, we

tend to use the affine model in the procedure of global motion estimation. The translation

model which only need two parameters is also under consideration, but according our

experiment the accuracy of result is not acceptable.
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Figure 3.6: 96th frame.

Figure 3.7: Mosaic image.
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Chapter 4

The Proposed Segmentation Method

4.1 System Overview

Our segmentation system is a background subtraction-based scheme. The block digram

is shown in Figure 4.1. To start, we estimate the camera noise and the following thresh-

olds are decided according to estimated camera noise. We use the temporary foreground

mask and short-term background to generate the stationary background buffer. The ob-

ject mask can be obtained by finding the difference between current frame and stationary

background buffer. If the scene change occurs, we have to apply global motion estima-

tion to generate the panorama background buffer and recover the stationary background

buffer.

In this system, most of these modules are used for processing each frame except global

motion estimation. The global motion estimation works only when scene change occurs

since the global motion estimation is a time-consuming process and it is useless when

camera is fixed. The details of this system are discussed in the following sections.
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Figure 4.1: The block diagram of proposed method.

27



Figure 4.2: A thresholded frame difference map of the Mother-and-Daughter sequence.

4.2 Two-Stage Noise Estimation

4.2.1 Influence of Noise

In this system, the image is captured by camera and then we get the initial image from the

output of camera. In the process of capturing, the image may suffer from camera noise

and therefore the stationary background usually has some difference between successive

capturing. In general, the larger camera noise makes the segmentation more difficult

to achieve. For example, when change detection-based technique is applied, the frame

difference map of larger noise sequence (Figure 4.2) includes more background pixels

than smaller noise sequence (Figure 4.3). It is apparent that the larger noise sequence

needs more processing to obtain a finer object mask.

4.2.2 Motive of Noise Estimation

In the following steps of the system, we need many thresholds or parameters to make

decisions and those thresholds are usually adjusted to against the influence of noise. We

can adjust those parameter empirically but it is inconvenient since we have to tune them

for different situations and it usually needs some experiences. In order to reduce the

complexity of threshold decision, those parameters in the following steps are adjusted

based on estimated camera noise.
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Figure 4.3: A thresholded frame difference map of the Akiyo sequence.

4.2.3 Camera Noise Model

In the thesis, we assume the difference dk of stationary pixels between successive frames

obeys a zero mean Gaussian distribution N(0, σ) with variance σ2, that is,

p(dk|H0) =
1√

2πσ2
exp{− d2

k

2σ2
}

where H0 denotes the null hypothesis. As in [2], since the camera noise is uncorrelated

between different frames, the variance σ2 is equal to twice the variance of the assumed

Gaussian camera noise distribution.

4.2.4 Procedure for Noise Estimation

In order to estimate the variance σ2, the sample space should include those pixels belong-

ing to stationary background and exclude pixels belonging to moving objects. Our idea

to discriminate the two kind of pixels is based on the observation which can be seen in

Figure 4.4. The lighter pixels which represent larger difference are usually lumped to-

gether or are distributed like a strip when they are introduced by moving objects. On the

other hand, the larger frame differences caused by camera noise are usually randomly dis-

tributed. Hence, we reject the pixels whose neighbors have larger frame difference from

the sample space during noise estimation.

We use the similar mask of [11] to find out those pixels that belong to moving objects.

For each pixel, we consider the four directional sums in frame difference map as shown
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Figure 4.4: A frame difference map of Mother-and-Daughter sequence.

Figure 4.5: Four masks of directional sums.

in Figure 4.5. If one of the four directional sums is larger than certain threshold, we can

assume that the pixel belongs to a moving object.

The following problem is how we choose the threshold. Up to the present, we can only

calculate variance σ2
G of frame difference of entire frame, and therefore it is natural that

we initially adjust the threshold based on σ2
G. If one of the four directional sums of a pixel

is larger than ασ2
G, the pixel is classified to pixels influenced by moving objects. After we

remove those pixels influenced by objects, those remaining pixels are used to estimate σ2.

In order to verify the result of our method, we first manually choose the pixels belonging

to stationary background to estimate the variance σ2. In Figures 4.6 and 4.7, the white

areas are chosen to estimate σ2 and the estimation result is regarded as exact. As we can
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Figure 4.6: Mother-and-Daughter sequence.

Figure 4.7: Claire sequence.

see in Figures 4.8 and 4.9, this method can effectively remove most pixels influenced by

moving objects.

It is obvious that the results in Figures 4.8 and 4.9 are still influenced by moving

objects, because we adjust the threshold based on variance σ2
G of entire frame which has

high relationship with moving objects. In order to reduce this problem, we use a two-stage

noise estimation in this system. In the first stage, we use the ασ2
G to be the threshold and

get the variance σ2
1 of stage one. In the second stage, we use the βσ2

1 as the threshold and

then we can obtain the final result σ2
2 of stage two. The final result is shown in Figures 4.10

and 4.11. It can be seen that the result of two stage method is closer to exact value.
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Figure 4.8: Noise estimation of Mother-and-Daughter sequence.

Figure 4.9: Noise estimation of Claire sequence.
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Figure 4.10: Noise estimation of Mother-and-Daughter sequence for the two-stage

method.

Figure 4.11: Noise estimation of Claire sequence for the two-stage method.
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4.3 Temporary Foreground Mask

In this section, we will generate a temporary foreground mask and then the mask is used

in the stationary background buffer, scene change, and global motion estimation. In this

stage, we use change detection-based technique to obtain a rough mask. The major ad-

vantage of this technique is that the frame difference can be easily and fast gotten but

many time-consuming methods for a more accurate object boundary usually make the

whole system more complex and slower as shown in [1] and [2]. In this thesis, we only

need to get a rough mask in this stage, and therefore those time-consuming methods can

be neglected to keep the speed of whole system.

4.3.1 Get Initial Object Mask

At first, we use the 3 × 3 window to calculate the mean of squared frame difference for

each pixel. If the result is larger than threshold, the pixel is classifed as in a moving

object. On the other hand, a pixel is classified as background when the result is smaller

than threshold. The threshold here is adjusted based on the camera noise, that is, γσ2.

An example of thresholded frame difference map is shown in Figure 4.12. In the second

step, we use the fill-in technique proposed in [1] to get a rough mask. At first they assign

the pixels between the first and last white points of Figure 4.12 to white points for each

row. This procedure is then repeatted for each column and once more for each row. The

step-by-step results are shown in Figures 4.13, 4.14, and 4.15, respectively.

4.3.2 Refine Initial Object Mask

Frequently, a rough mask in previous section is enough for following stages while it may

need more improvement in some cases. In Figure 4.16, for instance, there are two persons

sitting side by side. Since the fill-in technique always marks the region between left and

right boundaries, the background between the two persons is always regarded as objects.

Although this problem can be mitigated in the following stages, it will be very helpful if

the mask here is more accurate.

In this stage, we use the edge information to correct the initial mask and the Canny
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Figure 4.12: Threshold frame difference map of Claire sequence.

Figure 4.13: Fill-in for each row.

Figure 4.14: Fill-in for each column.
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Figure 4.15: Second fill-in for each row.

Figure 4.16: Initial object mask of Mother-and-Daughter sequence.
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Figure 4.17: Edge map of Mother-and-Daughter sequence.

operator proposed in [10] is adopted to get edge information. The operator performs a

gradient operation on the image which convoluted by gaussian filter and then nonmaxi-

mum suppression is applied to thin the edge. In the last step, the thresholding operation

with hysteresis is used to find and link edges. The thresholding operation including two

thresholds: high-threshold and low-threshold. Pixels whose gradient is larger than high-

threshold are regarded as edges and pixels whose gradient is smaller than low-threshold

are regarded as non-edges. Pixels whose gradient is between high-threshold and low-

threshold need to check their neighbors. If one of its neighbors is regarded as edge, these

pixels are classified to edge. The edge map after applying Canny operator is shown in

Figure 4.17. The related code of canny operator is obtained from [12].

The way to refine the initial object mask is shrinking the initial mask to fit the edge

map. The initial mask, edge map and shrunk mask are shown in Figures 4.16, 4.17

and 4.18, respectively, for Mother-and-Daughter sequence. In these figures, we can see

that the edge map includes many background edges and those background edges usually

interfere with the final result. To reduce the influence of background edge, we use a buffer

to store those background edges. When a position of edge map always has edge, we as-

sume that there is a background edge in the position. The result after removing the back-

ground edge can be seen in Figure 4.19 and the final object mask is shown in Figure 4.20.

According to the Figures 4.16 and 4.16, we can see that the remaining background due to

background edge can be effectively removed.
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Figure 4.18: Refined mask of Mother-and-Daughter sequence.

Figure 4.19: Edge map after removing background edges in Mother-and-Daughter se-

quence.

Figure 4.20: Final object mask of Mother-and-Daughter sequence.
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Figure 4.21: Result of short-term background estimation.

4.4 Short-Term Background Estimation

The simplest way to judge whether the value of a pixel is background is to check the frame

difference at this location. Since the moving objects will cause larger frame difference, we

can assume that the value of pixel belongs to background at this location when the frame

difference at this location is very small from start to finish. For real-time application, it

is impossible to make a decision after whole data is collected from beginning to end. In

the system, we regard the value of pixel as background when its frame difference is samll

for some consecutive frames. The major disadvantage of this method is that it is easier to

make a wrong decision when the time of observation is not long enough and therefore the

obtained background here is not reliable at some pixels.

We consider six consecutive frames fk(i)(1 ≤ k ≤ 6) as time of observation and a

3 × 3 windows is used to calculate frame difference dm(i) = f6(i) − fm(1 ≤ m ≤ 5)

for each location i in a frame. For every location i, we caluculate the mean and variance

of dm(i)(1 ≤ m ≤ 5). If the variance is smaller than threshold, it means the changes

between the six frames are small and we can regard the value of pixel at location i of sixth

frame as background. The threshold here is also based on camera noise, that is, λσ2. The

result is shown in Figure 4.21 for the earlier example.
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Figure 4.22: The influence of flat inner region.

4.5 Construct Stationary Background Buffer

In this stage, the information from short-term background estimation and temporary fore-

ground is considered to generate the statioanry background buffer.

Most of wrong decisions in short-term are due to flat inner regions as shown in Fig-

ure 4.22. If an object has a large flat inner region, the overlap between successive moving

objects is still stationary and is easily regarded as background. In order to reduce the in-

fluence of flat inner regions, we use the temporary foreground mask to weight every pixel

before we put the short-term background into final background buffer.

A weighting mask is shown in Figure 4.23, where the black region represents reli-

able background and has higher weighting while the white region represents objects and

has zero weighting. If a pixel is inside gray region which means the pixel is regarded as

background in short-term background and its location is inside the temporary foreground

mask, it is easier to suffer from flat inner region problem and we will give it a lower

weighting. We accumulate the weighting for every position and the short-term back-

ground is put into stationary background buffer when the accumulated weighting meets

threshold. The lower-weighting points can still become a real background when the these

points are always regarded as short-term background for longer time to reduce wrong de-

cisions due to flat inner region. The final background buffer after we have observed 280

frames is shown in Figure 4.24.
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Figure 4.23: The weighting mask of Mother-and-Daughter sequence.

Figure 4.24: Final background buffer after observing 280 frames.
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4.6 Deal with Camera Motion

In the background subtraction-based techniques, the background should be stationary. If

the camera changes its position, the background buffer should be reset and information

of new background should be gathered. In general, there are large overlapping regions

between old and new backgrounds. In the thesis, we will use the overlapping regions by

image mosaic technique to speed up background reconstruction.

4.6.1 Scene Change Detection

In the first step, we have to know whether camera motion occurs. Here, a scene change

detection is used to detect the camera motion. When the frame difference between back-

ground at different times is large, we assume that the camera motion has occured. The

background here is obtained by excluding objects with temporary foreground mask. Since

a flat region usually has no frame difference when small camera motion occurs, we only

consider the regions near edges.

4.6.2 Global Motion Estimation

After scene change occurs, we have to find the camera motion. The way to find the camera

motion is using global motion estimation and the block diagram is shown in Figure 4.25.

The hierarchical architecture of motion estimation of [6] and [9] is used in this system.

The advantage of hierarchical architecture is that it can overcome large displacement and

reduce computational complexity.

The goal of global motion estimation is to minimize the sum of squared differences E

between current frame I and reference frame I ′:

E =
N∑

i=1

e2
i

where ei = I ′(x′
i, y

′
i) − I(xi, yi). Below, we explain the method in detail.

1. Motion model
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In this thesis, the affine model is adopted for camera moving, that is,

x′
i = a0 + a2xi + a3yi,

y′
i = a1 + a4xi + a5yi,

where (a0, ..., a5) are motion parameters, and (xi, yi) and (x′
i, y

′
i) are positions of

current frame I and reference frame I ′, respectively.

2. Initial matching

The gradient descent method needs an initial value of ak(0 ≤ k ≤ 5). If the initial

value is far from final converged value, it is easy to get a local minimum solution.

For that reason, the initial matching is needed to find a better initial value than

arbitrary guess.

In the thesis, we use the step search to fastly obtain the motion vector. The search

range is ±15 in both coordinates and therefore the range of full size is ±60. After

finding motion vector, we can obtain initial value of a0 and a1. The others are set

as a2 = a5 = 1 and a3 = a4 = 0.

3. Gradient descent

The detail of gradient descent is described in chapter 3. Besides, in the first iter-

ation of each level, the histogram of |ei| is computed and find a threshold T such

that the number of |ei| bigger than T are about 15% of considered pixels. In the

following iterations, those pixels whose |ei| larger than T are excluded in gradient

descent. In this thesis, we use the stopping criterion for gradient descent: at most

34 iterations are carried out at each level. The number of iterations is set by observ-

ing the speed of convergence in Stefan sequence and the related results from [6].

The transform between (xi, yi) and (x′
i, y

′
i) is usually non-integer and therefore the

bilinear interpolation is used here.

4. Projection

The projection of motion parameters from one level to the next one is multiplying

a0 and a1 by two, and others are keeping the same.
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Figure 4.25: Global motion estimation.
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Figure 4.26: Image before camera moving.

Figure 4.27: Image after camera moving.

4.6.3 Panorama Background and Background Recovery

After we have obtained the camera motion, the background can be stored in panorama

background buffer by corresponding motion parameters. When camera motion occurs,

the stationary background buffer can be rebuilt from panorama background quickly. Here

the non-integer transform still exists and the bilinear interpolation is adopted to deal with

this problem.

For example, Figures 4.26 and 4.26 represents images before and after camera motion

occurs, respectively. The camera is horizontally rotated to left side of origin position.

The panorama background buffer before camera moving is shown in Figure 4.28 and the

recovered stationary background buffer after camera moving is shown in Figure 4.29. The

stationary background buffer and panorama background buffer in the seventh frame since

camera moved are shown in Figures 4.30 and 4.31, respectively.
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Figure 4.28: Panorama background buffer before camera moving.

Figure 4.29: Recovered stationary background buffer after camera moving.

Figure 4.30: Stationary background buffer in the seventh frame since camera moving.
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Figure 4.31: Panorama background buffer in seventh frame since camera moving.

4.6.4 Background Subtraction

The final object mask is obtained by finding difference between current frame and station-

ary background buffer. For a better result, both difference in luminance and difference in

chromanace between the two frames are considered. In general, the background of cur-

rent frame may suffer from light change and shadow and the stationary background may

contain some wrongly identified background pixels. Therefore, using subtraction between

current frame and background may still leave some background. For this reason, we have

to remove the small region after subtraction. There are two steps to remove small regions.

First, remove the small regions outside object mask. Second, remove the small regions

inside object mask. In the first step, we check the connected length of object mask for

each row and remove pixels whose connected length is less than threshold. Then, the

processing in used for each column. After we remove the regions outside object mask,

we have to fill the wrongly identified object pixels which usually looks like a hole inside

object mask and the method is similar to first step.

An example of the current frame and background is shown in Figures 4.32 and 4.33.

The result after subtraction and thresholding is shown in Figure 4.34. The final result with

small region removing is shown in Figure 4.35.
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Figure 4.32: Frame 255 of mother and daughter sequence.

Figure 4.33: Stationary background buffer.

Figure 4.34: Mask after subtraction and thresholding.
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Figure 4.35: Final object mask.

4.6.5 Conclusion

In this section, we make a summary of proposed method described above. In the first

step, the two-stage noise estimation is used to estimate the camera noise and as shown

in chapter 4.2 this method can effectively remove the influence of moving objects. In

the second step, we obtain a short-term background which usually suffers from flat inner

region problem and therefore a temporary foreground mask is introduced to overcome

this problem. For a better result, we use the edge information to refine the temporary

foreground mask. After we obtain the short-term background and temporary foreground

mask, we can use both of them to establish the stationary background buffer and then the

object mask is obtained by subtraction between current frame and stationary background

buffer.

If the camera is fixed, the procedure described above is enough to obtain a object mask.

When camera motion occurs, we estimate the global motion and recover the stationary

background from panorama background buffer by the estimated global motion.
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Chapter 5

Overall System Architecture

The overall architecture of our segmentation system is shown in Figure 5.1. Here, we

need a digital camera to capture images, a personal computer to control the system and to

segment the image, and a displayer to show the final result.

There are two modes of application programming in Windows OS: Console mode

which uses the file I/O and GUI (Graphical User Interface) mode. The GUI mode is

suitable for our application and it is implemented by Windows SDK (Software develop-

ment Kit) which is develope by Microsoft for high-level computer languages to easily

implementation GUI mode.

The system block diagram is shown in Figure 5.2. The detail of segmentation is

described in previous chapter and therefore we focus on video capturing, result displaying,

and control in this chapter.

Figure 5.1: circumstance of implementation.
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Figure 5.2: system block diagram.

5.1 Video Capturing

5.1.1 Video for Windows

In this system, the input image is captured by digital camera. To control the operation

of capturing, a standard video capturing method, named VfW (abbreviation of Video for

Windows), in the Microsoft OS is adopted. Video for Windows version 1.0 was released

in November 1992 for the Windows 3.1 operating system and was optimized for capturing

movies to disk [14] This SDK provides applications with a simple, message-based inter-

face to access video and waveform-audio acquisition hardware and to control the process

of streaming video capture to disk. Besides, VfW helps with connectivity to device driver

and retrieve the capability and information of it.

5.1.2 AVI Format

In VfW, AVI is the mostly used format. The captured raw frame is embedded in an AVI

file which can be extracted for segmentation input.

AVI stands for Audio-Video Interleaved. Figure 5.3 shows the hierarchical structure.

Refer to header file (vfw.h in Visual C++) for complete information about parsing AVI

file. To extract video data, we use a file parser that simply locate ��db and copy suitable

length of data following that.

5.1.3 Implementation of Capture

The implementation of capture is aided by a free application called AVICap from [15]. It

contains three steps:
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Figure 5.3: AVI header.

Figure 5.4: Related code for creating a capture window.

1. Create capture handle:

An AVICap capture window handles the details of streaming audio and video cap-

ture to AVI files and it provides a flexible interface for applications. The video

capture can be add to application by the code shown in Figure 5.4.

2. Parameter modification:

After initializing driver window handler, some fundamental parameters should be

confirmed to ensure captured data fit system requirement, such as the code shown

in Figure 5.5.

3. Capture operation:

In this step, we start to capture image from digital camera and related code is shown

Figure 5.5: Related code for parameter modification.

52



Figure 5.6: Related code for capture operation.

Figure 5.7: Related code for displaying.

in Figure 5.6. Here, the captured image which is AVI format is stored in a buffer

and then the required video data is extracted from the buffer. Finally, the extracted

data is sent to the module of video segmentation.

5.2 Result Displaying

After we finish the video segmentation, we need to display the result on the displayer.

The procedure to create a diaplay window is simliar to previous section. After creating a

window, we can show the result on displayer according to the related code in Figure 5.7.
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Figure 5.8: The entire application program interface.

5.3 Control System

There are two major control unit: capture-control unit and threshold-adjustment unit.

The capture-control unit controls every option needed for digital camera, such as start,

stop, image size, and luminance. The threshold-adjustment unit is used to adjust the

related threshold in temporary foreground mask, short-term background, and background

subtraction.

The entire application program interface is shown in Figure 5.8.

5.4 Conclusion

In the section, we show the required processing time in this system. First, we consider the

situation of zero camera motion. For quickly obtaining an apparent improvement, we stop

some special modules which only useful in special situation, such as shrink initial object

mask to edge map. Besides, we reduce the excuting frequence of some time-consuming

modules. According the discussion in chapter 4, the module for noise estimation need not

to work for every frame since the camera noise is usually keep the same. Here, we only

estimate the noise of first frame and then the camera noise of following four frames is

equal to that of the first frame. Besides, the module for displaying the final result is also
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Figure 5.9: Relative computing time of every module when camera is fixed.

a time-consuming process, and therefore the stationary background buffer is displayed

every ten frames and the object mask is displayed every two frames.

The image size in this system is CIF (352 × 288) and the PC is P-4 2.4-GHz with

512-MB RAM. The Relative computing time of every module is shown in Figure 5.9 and

the current implementation yields a speed of about 5 frames per second. The higher time-

consuming modules are stationary background buffer and remove small region. When we

obtain the background, we may stop many modules to improve the efficiency, such as sta-

tionary background buffer, temporary foreground mask, fill-in technique, and short-term

background. After we stop those modules, we can save about 44% of entire processing

time. The module for remove small region is used to refine the final object mask and in

the future it will be the major target for optimization.

Now, we discuss the efficiency when camera motion occurs. The relative computating

time is shown in Figure 5.10 and the frame rate is about 1.7 frames per second. Since

our system will be combined with MPEG-4 encoder, many identical modules can joint

toghther, such global motion estimation which is about 21in our system.

The most time-consuming module is bilinear interpolation. The interpolation is used

in gradient descent and warp the current background to panorama background buffer.
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Figure 5.10: Relative computing time of every module when camera motion occurs.

Here, the nearest neighborhood algorithm which is less accurate but fast is under consid-

eration. In our experiment, the accuracy of mosaic image is too low to accept when we

use the nearest neighborhood algorithm. The required accuracy of interpolation in gra-

dient descent is very high and therefore we should keep the use of bilinear interpolation

in gradient descent. The required accuracy of interpolation for warping background to

panorama buffer depend on the camera motion. When the image is enlarged, the block

effect is very apparent. Here, we prefer to keep the overall accuracy and therefore the

nearest neighbor algorithm is not adopted in our system.
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Chapter 6

Simulation Results

6.1 Segmented Image Masks

In this section, we show some simulation result of Mother-and-Daughter, Claire, and

Akiyo sequences. The Claire and Akiyo sequences are common cases in videoconferenc-

ing and Mother-and-Daughter is the case which include two major objects. The back-

ground subtraction needs some time to gather information of background and therefore

the object masks of initial frames are less accurate. It can be seen that we can get more

accurate image masks with the more information in the stationary background buffer.

Some results of Mother-and-Daughter sequence, Claire sequence, and Akiyo sequence

are shown in Figures 6.1, 6.2, and 6.3, respectively. According to our observation the

required time to obtain enough background for Mother-and-Daughter sequence, Claire

sequence, and Akiyo sequence is about 260 frames, 150 frames, and 10 frames, respec-

tively.

As we can see, the boundary of mask is very accurate when the related background is

obtained and therefore the accuracy of our method is highly dependent on the amount of

obtained background. There are two major factors to influence the required time for gath-

ering enough background. First, if the background is always covered by moving objects,

the related background is difficult to obtain and therefore the required time depends on the

time which the covered background become uncovered. When these covered background

become uncovered, the related boundary is usually incorrect, such as Figures 6.1(b). Sec-
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Figure 6.1: (a) Stationary background buffer in 140th frame. (b) Image mask in 140th

frame. (c) Stationary background buffer in 260th frame. (c) Image mask in 260th frame.

ond, the required time to gather enough background also depends on the camera noise. In

the case of low camera noise sequence, we can set more critical thresholds in short-term

background and temporary foreground. The more critical thresholds can lead the shorter

gathering time in stationary background buffer. The camera noises of the three sequences

from high to low are Mother-and-Daughter, Claire, and Akiyo. According to the figures

given above, the required time to obtained enough background from long to short is also

in this order.
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Figure 6.2: (a) Stationary background buffer in 60th frame. (b) Image mask in 60th frame.

(c) Stationary background buffer in 150th frame. (c) Image mask in 150th frame.
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Figure 6.3: (a) Stationary background buffer in 10th frame. (b) Image mask in 10th frame.

(c) Stationary background buffer in 165th frame. (c) Image mask in 165th frame.
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Figure 6.4: Mosaic result from initial to 13th frames.

6.2 Global Motion Estimation and Mosaic

In order to deal with camera motion, we use the global motion estimation to align the

image with panorama background buffer and recover the stationary background buffer. In

this section, we first use the Stefan sequence to show the result of panorama background

buffer. The temporary mask here has obtained by others from http://cwww.ee.nctu.edu.tw.

The result from initial frame to 13th frame is shown in Figure 6.4. The result from 40th

frame to 73th frame is shown in Figure 6.5. The result from 130th frame to 161th frame

is shown in Figure 6.6.

As shown in [9] and [6], the more accurate mosaic of Stefan sequence results require a

perspective model. The advantage of perspective model is that it can handle the transform

as shown in Figure 6.7. If the displacement of camera is small, those transform can be

approximated by affine transform. A example is shown in Figure 6.8 The results given

above meet small displacement requirement and therefore the affine model is enough to

obtian an acceptable mosaic. In the case of larger displacements, such as 246th to 247th

frames, the affine model fails as shown in Figure 6.9.

Now, we show the benefit of background recovery using a sequence captured in our
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Figure 6.5: Mosaic result from 40th to 73th frames.

Figure 6.6: Mosaic result from 130th to 161th frames.
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Figure 6.7: Perspective tramsform.

Figure 6.8: (a) Perspective tramsform. (b) Approximated by affine transform.

Figure 6.9: Mosaic result from 246th to 247th frames.
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Figure 6.10: Image mask without background recovery. (a) The 145th frame which cam-

era motion is detected. (b) 146th frame. (c) 147th frame. (d) 148th frame. (e) 149th

frame. (f) 150th frame. (g) 151th frame.

lab.. If we remove the function of background recovery and just reset the background

when camera motion occurs, the image masks at consecutive time step safter camera

moving are shown in Figure 6.10. If we use background recovery instead of reseting

background, the image masks at the same time steps are shown in Figure 6.11. It is

obvious that the result with background recovery can get more accurate mask during

rebuilding of new background.
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Figure 6.11: Image mask with background recovery. (a) The 145th frame which camera

motion is detected. (b) 146th frame. (c) 147th frame. (d) 148th frame. (e) 149th frame.

(f) 150th frame. (g) 151th frame.
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Chapter 7

Conclusion and Future Work

We developed and implemented of an video segmentation system on personal computer.

TThe intended application is PC-based multipoint videoconferencing system.

The core of our system is the background subtraction technique. We use a temporary

foreground mask to reduce the influence of inner flat region in background construction

and use a panorama background buffer to improve the accuracy of image mask during

camera moving. For easier obtaining the relative thresholds of each module a two staged

method for camera noise estimation is introduced to reduce the effect of moving objects

and those thresholds are adjusted based on the estimated camera noise.

The relative simulations in previous chapters show the system can get an accurate

image mask and deal with the camera moving. Besides, the two staged noise estimation

also effectively reduces the effect of moving objects.

For quality improvement we can do some improvements for the main projects, in the

future.

1. Adding the module to deal with shadow and light change.

The position of shadow is controled by the position of light and therefore the

shadow effect greatly depends on the position of light. If the great shadows appear

in background, the shadows are also regarded as moving objects in the module of

background subtraction. Hence, a module to recude the shadow effect can improve

the accuracy of final image mask when the shadow is great.
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2. Using a more robust motion model.

In this system, a affine model is used and it still can not handle every camera mov-

ing. In the module of background recovery, the more accurate recovery can obtain

a more accurate image mask when camera moving occurs and therefore a more

robust model, such as perspective model may effectively improve the auuracy of

background recovery by handling more camera moving.

3. Combine the segmentation system with MPEG-4 encoder.

The image mask will be used as alpha plane in MPEG-4 encoder and therefore some

modules, such as global motion estimation and initial matching which are also used

in MPEG-4 encoder can be combined to improve the speed.

4. More optimization.

The current processing time is not fast enough and a better optimization is need to

improve the efficiency. The optimization may focus on interpolation and removing

small regions.
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