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Real-Time Video Segmentation Based on

Background Modelling for Videoconferencing

Student: Yueh-Hsien Lin Advisor: Dr. David W. Lin

Institute of Electronics
National Chiao Tung University

Abstract

We consider the design and«implementation of video segmentation system on a
personal computer (PC). The intended application is PC-based multipoint videoconfe-
renceing system.

The basic idea of the system 15:a background subtraction technique. First, we use
a two-stage noise estimation to estimate the camera noise and the result is used to
decide the thresholds in the following steps. Due to the problem of flat inner regions,
we combine two methods to obtain the final stationary background. First, the
short-term background is used to obtain an initial background which usually includes
many flat inner regions. Second, a temporary foreground mask is obtained using
change detection, fill-in, and shrink techniques to remove the flat inner regions in the
short-term background.

In order to deal with camera motion, we employ scene change detection, global
motion estimation, and panorama background buffer. When camera motion occurs,
the scene change detection starts the global motion estimation and then the stationary
background buffer is recovered from panorama background buffer by the estimated

global motion.



The simulation results show that when we gather enough information of the
background, the obtained object mask is accurate and the accuracy of object mask can
be quite consistent throughout the remainder of the sequence. The results also show
that global motion estimation and background recovery can effectively improve the
accuracy during rebuilding of new background.

In real-time PC-based software implementation of the segmentation algorithm,
we employ a graphical user interface established using the Windows SDK. The
capturing process is aided by the VW (Video for Windows package). With a P-4
2.4-GHz CPU and 512-MB RAM, the current un-optimized implementation yields a
speed of about 5 frames per second and for CIF (352x288) video when the camera is
still. In the presence of camera motion, the processing time is about 1.7 frames per

second.
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Chapter 1

| ntroduction

We consider the design and implementation of video segmentation system on a personal
computer. The intended application is PC-based multipoint videoconferencing system.

The main objective in segmentation is to partition the data into meaningful and in-
dependent regions. According te the type of ‘data, we can classify the processes into
image segmentation and video segmentation. Here, we focus on the video segmenta-
tion. The general schemes for video segmentation can be seen as the following steps:
pre-processing, feature extracting, decision, and post-processing. According to extracted
features, many familiar techniques can be used to obtain the object mask, such as optical
flow-based technique, change detection-based technique, edge detection-based technique
and background subtraction-based technique.

The basic idea of the system is a background subtraction technique. The moving ob-
jects of current frame can be easily obtained by extracting the different region between
current frame and background. To begin with, we need to build a background relative to
current frame. The information of background can be obtained by many methods. The
simplest way is to remove every moving objects and then obtain the background, but in
many situations it is inconvenient to remove every moving objects. In this thesis, the
background is obtained by gathering the stationary regions during the process of segmen-
tation.

During the process of gathering information of background, flat inner regionsin mov-

ing objects usually lead us to make wrong decisions since such regions usually look like



stationary regions even though they move. In this system, a temporary object mask is
used to reduce the influence of flat inner regions.

In general, the basic assumption of background subtraction techniqueisthat the back-
ground should be stationary during whole process. When the background is changed due
to camera moving, we should reset the background buffer and find a new background.
In order to reduce the rebuilding time, we use the idea of sprite to recover most of the
background buffer.

In many steps of our algorithm, we need a threshold to make decisions. In many
situations, the threshold is adjusted to against the influence of noise and therefore we
estimate the camera noise at first and the adjustment of threshold is based on camera
Noi se.

This thesis is organized as follows. Chapter 2 is an overview of popular video seg-
mentation techniques. Chapter 3 discussestheidea of image mosaicing. Chapter 4 gives
a detailed description of proposed: segmentation:method. Chapter 5 describes the over-
all system architecture. Chapter-6 shows the'ssimulation results of our system. Finadly,

chapter 7 contains the conclusion;



Chapter 2

Overview of Video Segmentation

2.1 Meaning of Segmentation

The main objective in segmentation.isto partitionthe data into meaningful and indepen-
dent regions. According to the type of data, we can classify the segmentation processes
into image segmentation and video segmentation. In the case of image segmentation, the
problem istwo-dimensional in nature. Whilein case of video segmentation, in addition to
the two-dimensional information we can-also-handle the problem with the aid of motion
information.

The algorithm of segmentation depends to a large extent on the application and the
data in which it is used. In one application, the ten partitions may be ideal but for other
applications the two partitions may be desired. In the ideal case, we may develop a best
algorithm for each application but it usually follows with large complexity. In practice,

we often devel op an algorithm best suitable to specific application not to general situation.

2.2 Basic Procedure of Segmentation

A general scheme for segmentation can be seen as the following steps: pre-processing,

feature extracting, decision, and post-processing as show in Figure 2.1.

1. Pre-processing:



Feature
Extraction

Y

Decision

Y

—— Pre-processing Post-processing ———»

Figure 2.1: A basic segmentation system.

The original data may include lots of information but most of it isirrelevant to our
application and sometimes influences our decision. In the stage, we remove the
irrelevant information and keep the desired data.
2. Feature extraction:
Depending on various segmentation algorithms, we need some specific features to
achieve our goals. In this stage; we extract'the desired features from original data.
3. Decision:

The values of extracted features’are usually more than two values and therefore
we need to find a threshold to classify those data. In the stage, we can use many
strategies to make a desired threshold set to find out the regions which meet our
goal.

4. Post-processing:

Although we can use many decision strategies to make a best threshold set, we may
still make wrong decisions in some special regions. In the stage, we will try to

correct those improper regions.

In the following sections, we introduce some popular segmentation techniques.

2.3 Optical Flow-Based Technique

The optical flow of a pixel is a motion vector represented by the motion between a pixel

in current frame and its corresponding pixel in the following frame. In this method, we



need to analyze the optical flow of every pixel and then partition a frame into different
regions according to the different optical flows.

In the following we will show a system proposed in [1] in which the optica flow
technique is used. The main assumption underlying this paper is the existence of a domi-
nant global motion that can be assigned to the background. Areas that do not follow this
background motion indicate the presence of independently moving objects. Therefore,
the basic idea of the algorithm as shown in Figure 2.2 is to identify components that are
moving differently from the background.

To be precise, the main block of the algorithm is the morphological motion filtering.
It removes components that do not follow the dominant global motion, while perfectly
preserving other parts of the image. The filter works on so-called flat zones in the image.
A flat zone is the largest connected component where the gray-level is constant, possibly
consisting of one pixel only, and the set of @l flat zones is obviously a partition of the
image. The morphological filter merges these flat.zones according to a specified criterion,
and so it does not introduce any-new contours.” The merging process is controlled by a
filtering criterion that measures how well a-flat-zone conforms with the global motion.

Thefirst step in this approach isto compute adense optical flow field. The estimated
dense motion field is then the starting point for calculating the global motion parameters.

The global motion used in this approach is a six-parameter affine transformation:
/
u'(v,y) = a17 + agy + as,

V'(z,y) = asx + asy + ag,

where (u/(z,y),v'(x,y)) denotes the estimated optical flow vector at pixel (z,y). The
parameters a; (1 < 6) are found by a robust least median of squares method, where
by each independent flow vector (u(x,y),v(z,y)) of the estimated dense motion field
provides one observation.

After calculating the global motion parameters, the transformation alows them to de-
termine for each pixel (x, y) the motion vector (u'(z,y), v'(x, y)) according to the global
motion. If the point belongsto the background, then (u(zx, y), v(z,y)) and (u'(x, y), v'(z,y))

are expected to be very similar. Conversely, the more different (u(z,y),v(z,y)) and
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(u'(z,y),v'(z,y)) are, the more likely (x,y) belongs to an independently moving ob-
ject. Therefore, the filter criterion M (x,y) measures for each pixel (z,y) the differ-

ence between the synthesized global flow (v/(z,y), v'(z, y)) and the estimated local flow
(u(z,y), v(z,y)).ie,

M(z,y) = (/(2,y),v'(2,9))* + (u(z,), v(z,9))*,

where M (x, y) islow for background pixelsthat conform with the global motion and high
for pixels belonging to independently moving objects. The morphological filter requires
acriterion for flat zones and not for individual pixels. Thisis now defined as the average
of M(x,y) over all pixels (z,y) belonging to aflat zone. Last, the residue or difference
between origina and filtered image indicates independently moving objects.

This technique has to estimate the motion of every pixel and find the dominant global
motion. Usually, the related processes are very time-consuming. In many applications,
the camerais aways fixed and therefore the dominant global motion should be zero. For
these reasons, another method called change detection-based techniqueis usually adopted

to reduce the processing time of motion estimation when camera s fixed.

2.4 Change Detection-Based Technique

In the above method, optical flow is usually computed at every image point in the frame.
Since the percentage of points in one frame having zero motion is usualy large, it is
possible to extract the independently moving objects from background by calculating
frame difference between continuous frames. This technique is usualy named change
detection-based method. The main advantage of change detection isthat it can avoid the
computation in the estimation of optical flow.

Change detection algorithms usually start with the gray value difference map between
the two frames considered. The local sum (or mean) of absolute difference is computed
inside a small measurement window which dlides over the difference map. At each lo-
cation, thislocal sum of absolute differences is compared against a threshold. Whenever
this threshold is exceeded, the center pixel of the current window location is marked as

changed. The key issue of thistechnique is how to decide the threshold.

7



The agorithm in [2] provides some statistical methods to decide the threshold. It
starts by computing the gray level difference image D = dy, with di, = 31 (k) — ya(k),
between two considered pictures Y; = y(k) and Yo = y»(k). The index k& denotes the
pixel location on the image grid. Under the hypothesis that no change occurs at location
k, the corresponding difference d;, obeys a zero mean Gaussian distribution N (0, o) with
variance o2, that is,

_di
202

p(dp|Ho) = }-

exp

1
V2ro?

Since the camera noise is uncorrelated between different frames, the variance o is
equal to twicethe variance of the assumed Gaussian cameranoise distribution. H, denotes
the null hypothesis, i.e., the hypothesis that there is no change at pixel k. The unknown
parameter o can be estimated offline for the used camera system, or recursively online.

In order to make the detection more reliable; they may use a region to evaluate the
difference d; instead of only asingle pixel. They thuscompute the local sum A? of ()2
inside asmall sliding window w ; With 2 deneting the center pixel of the window.

The local sum A? is proportional to'thesample mean of (%’“)2 as computed inside the
window. Under the assumption that 'no,ehange occurs inside the window when centered
at location ¢, the normalized difference (%) obeys a zero-mean Gaussian distribution
N(0, 1) with variance 1. Thus, the sum A? obeys a y?-distribution with as many degrees
of freedom as there are pixelsinside the window. With the distribution p(A?| Hy) known,
the decision between “changed” and * unchanged” can be arrived at by a significance test.
For this purpose, they usually specify a significance level o and compute a corresponding
threshold ¢, according to

a = Prob(A? > t,|Hy).

The statistic A? is now evaluated at each location i on the image grid, and whenever it
exceeds t,,, the corresponding pixel is marked as changed, otherwise as unchanged.

The method given above exhibits some shortcomings. First, there are inevitably deci-
sion errors. Typically, these errors appear as small isolated spots inside correctly labeled
regions. Another drawback is that in some critical image areas the boundaries between

differently classified regionstend to be somewhat irregular. To avoid these shortcomings,

8



the MAP criterion can be used to get a better change mask. That is to say, they try to
find the change mask (Q = ¢, which maximizes the a posteriori density p(Q|D), where
D is the given difference image. The label ¢, at location &k can take either the value u
for “unchanged” or ¢ for “changed”. After a series of deduction, we can get the finally

decisionrule

u

z 2CJ'2 a,
&2 ¢ 20;76 —(In ;c + (vg(e) — vE(w)B + (velc) — ve(u))C)

c_

where B isapositive cost term of each horizontally or vertically oriented border pixel pair
and C isthat of diagonally pair. v (qx) and ve(gx) denote the number of inhomogeneous

cliquesto which pixel & belongswhen itslabel is gy.

2.5 Edge Detection-Based:Technique

Change detection for edges is another useful techniqueof segmentation. In the following,
we explain how to employ the technique by the system in [4] and the block diagram is
shown in Figure 2.3.

There are two major stepsin this system:

1. Extraction of moving edge (ME) map:

The automatic VO segmentation algorithm starts with edge detection which plays
a key role in extracting the physical change of the corresponding surface in a rea
scene. However, such simple edge information usually suffers from a great deal
of noise. Thus it results in slight changes of the edge locations in the successive

frames. The difference of edgesis defined as
| O(Ln—1) = ®(Ln)| = [0(V G * Ino1) = O(V G * L),

where the edge maps ® (/) are obtained by the Canny edge detector [10], which is
accomplished by performing a gradient operation on the Gaussian convoluted im-

age, followed by applying the nonmaximum suppression to the gradient magnitude
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Figure 2.3: Edge detection-based algorithm (from [4]).
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to thin the edge and the thresholding operation with hysteresis to detect and link
edges.

On the other hand, edge extraction from the difference image in successive frames
results in a noise-robust difference edge map D E,, because Gaussian convolution

included in the Canny operator suppresses the noise in the luminance difference

DE, = |®(|In—1 - In|) = G(VG * |In—1 - In|)

After calculating the edge map difference of images using the Canny edge detector,
they extract the moving edge M E,, of the current frame I,, based on the edge map
DE, of difference |1,_; — 1,,|, the current frame’'s edge map E,, = ®(1,,), and the
background edge map E;,. Notethat £}, contains absol ute background edgesin case
of adtill cameraand can be extracted from thefirst frame or by counting the number
of edge occurrence for each pixel through the first several frames. They define the
edge model E,, = {ey,...€.} as aseti of al edge points detected by the Canny
operator in the current frame . Similarly, they denote M E,, = {m,, ..., m;} the set
of [ moving edge points, where? < k-and M E, C FE,. The edge pointsin M E,,
are not restricted to the moving object’s boundary, and can be in the interior of the
object boundary. If DE, denotes the set of all pixels belonging to the edge map
from the difference image, then the moving edge map generated by edge changeis
given by selecting all edge pixelswithin asmall distance T'c4,,4.0f DE,,, i.€.,

) |
ME™ = {e € Byl jmin lle = ol < Tononge )

Some M E,, might have scattered noise which needs to be removed before proceed-
ing to the next steps. In addition, apreviousframe’ s moving edges can be referenced

to detect temporarily still moving edges, i.e.,

ME™ = {c € Byle ¢ By, min |le x| < T}

The final moving edge map for current frame I,, is expressed by combining the two
maps
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2. Extraction of VOP:

With a moving edge map M E,, detected from DE,,, the VOPs are ready to be
extracted. To obtain the foreground of image, they perform two steps. In the first
step, they find the region which is between the first and the last edge pointsin each
row. They may obtain some background region in the result. Thisis due to the
fact that more than one object may exist in the sequence. Hence, in the second step,
they obtain the region between thefirst and the last edge pointsin each column. The
result of this step will also contain the background regions between the foreground
objects. The final foreground region is obtain by applying logical AND operation

on the horizontal and vertical .candidate regions.

In the case when the object boundary touches image boundary, they may obtain
jagged moving edge in thatlocation: Thisis because the actual moving edge points
near the object boundary may lie'outside the image boundary. The nearest edge
points close to image boundary may be at'various distances from the image bound-
ary at various points. Hence they add the image points to moving edge points if

either horizontal or vertical candidates touch image boundary points.

2.6 Background Subtraction-Based Technique

Thresholding the difference between two consecutive input frames is the basic concept
of change detection-based segmentation. However, since the behavior and characteris-
tics of the moving objects differ significantly, the quality of segmentation result depends
strongly on background noise, object motion, and the contrast between the object and the
background. Reliable and consistent object information is very difficult to obtain. Hence,
instead of trying to get more information from the changing part of the scene, we con-
centrate on the stationary background where the characteristics are well known and more
reliable.

12



The idea of background subtraction is to subtract the current image from the still
background, which is acquired before the objects move in. After subtraction, only non-
stationary or new object are left. The most straightforward way to separate background is
to apply a simple difference and threshold method.

An example of background subtraction-based technique can be seenin [3]. This seg-

mentation system consists of five major steps as shown in Figure 2.4.

1. Framedifference:

The frame difference mask is generated simply by thresholding the frame differ-
ence. Thisdatais sent to the background registration step where the reliable back-
ground is constructed from the accumulated information of several frame difference
masks. Since the accumulated frame difference mask are used in the final decision
for areliable background, no filtering or boundary relaxation isapplied on the frame

difference.

A significance test technique is used to obtain the threshold value. The test statis-
tic is the absolute value of_ frame difference. ‘Under the assumption that there is
no change in the current pixél, the frame difference obeys a zero-mean Gaussian

distribution and its probability density function is as follows:

1 FD?
W eXp{_ﬁ}u

p(F'D[Hy) =

where F'D is the frame difference and o2 is the variance of the frame difference.
Note that o2 is equal to twice the camera noise variance o2. H, denotes the null
hypothesis, i.e., the hypothesis that there is no change at the current pixel. The
threshold value is decided by required significance level. Their relation is as fol-
lows:

a = Prob(|FD| > TH|H,),

where « isthe significance level and T'H isthe threshold value.

2. Background registration:

13
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Figure 2.4: Background substraction-based segmentation system (from [3]).
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The goal of background registration is to construct a reliable background informa-
tion from the video sequence. In this application, it needs a reliable background
information for change detection. An approximate background information is not
helpful for object detection, and even worse, it will cause error in the later segmen-
tation result until the background information is corrected. Therefore, for informa-
tion that they are not very sure to be background, they tend to reject and leave the

corresponding area in the background buffer empty.

In the background registration step, the history of frame difference mask is con-
sidered in constructing and updating the background buffer. A stationary map is
maintained for thispurpose. If apixel ismarked as changing in the frame difference
mask, the corresponding valuein the stationary map is cleared to zero; otherwise, if
the pixel is stationary, the corresponding valueisincremented by one. Thevaluesin
the stationary map indicate that the corresponding pixel has not been changing for
how many consecutive frames. [If @ pixel is stationary for the past several frames,
then the probability is high that it belongs to the-background region. Therefore, if
the value in the stationary map exceeds a predefined value, then the pixel valuein

the current frame is copied to the corresponding pixel in the background buffer.

A background registration mask is also changed in this process. The value in the
background registration mask indicates that whether the background information
of the corresponding pixel exists or not. If a new pixel value is added into the
background buffer, the corresponding value in the background registration mask is

changed from nonexisting to existing.

. Background difference:

This step generates a background difference mask by thresholding the difference
between the current frame and the background information stored in the background
buffer. This step is very similar to the generation of frame difference mask.

. Object detection:

The object detection step generates the initial object mask from the frame differ-
ence mask and the background difference mask. The background registration mask,

15



Index Background Difference Frame Difference Regiom Deseription O

| INFA {FI3| = THpm Moving Yied
2 NYA FD| < THpn Seationary No
3 |BD} = THgn FDY > THgp Mowing Object Yes
4 |BD| < THpp [FY < THim Background Mo
1 |BD| > THaD IFD| = THep Srll Object Yes
4] IBD| < THgp |FD¥| == THyp Uncovered Background No

Figure 2.5: Initial object mask generation (from [3]).

frame difference mask, and background difference mask of each pixel are required
information. Figure 2.5 lists the criteria for object detection, where B D means the
absolute value of difference between the current frame and the background informa-
tion stored in the background buffer, F'D isthe absolute value of frame difference,
and the O M field indicates that whether or not the pixel is included in the object
mask. T'Hpp and T Hrp are the threshold values for generating the background

difference mask and frame.difference mask;, respectively.

5. Post-processing:
After the object detection step; anvinitial-gbject mask is generated. However, due
to the camera noise and irregular object motion, there exist some noise regionsin
the initial object mask. The approach to eliminate the noise region relies on an
observation that the area of noise regions tend to be smaller than the area of the
object. Regions with area smaller than a threshold value are removed from the
object mask. In this way, the object shape information is preserved while smaller
noise regions are removed. After removing noise regions, a close and an open

operation with a3 x 3 structuring element are applied on the object mask.

2.7 Summary

All technigques described above can obtain a desired object mask. Here, we explain the
reason why we choose the background subtraction-based technique. In our application,

the camera is usually fixed and therefore the optical flow-based technique is not under
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consideration.

Theideaof change detection-based and edge detection-based techniques are very ssim-
ilar. In our experience, the object masks obtained by these two techniquesare hard to resist
the camera noise and some noise-removing filters are necessary. Besides, the accuracy of
object mask is hard to keep for entire sequence.

The mgjor disadvantage of the background subtraction-based techniqueisthat it needs
some time to gather enough information of background. The reason why we still choose
thistechniqueisthat the accuracy of object mask iseasier to keep when we collect enough
information of background. Besides, the modulefor gathering background can be stopped

to improve processing time when the whole background is obtained.
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Chapter 3

Overview of Image Mosaicing

3.1 Introduction of Mosaic

The mosaic or sprite is an image constructed by‘all frames in a video sequence. The
mosaiC image can provide a panoramic view. of scenes in the video sequence and there
are many application based on thistechnigues. Since the successiveimages within avideo
sequence usually overlap by a large amount, image mosaicing technique can reduce the
total amount of data needed to represent the scene: The sprite coding, for example, isone
of the important componentsin MPEG-4 video coding and many related algorithms have
been included in MPEG-4 video Verification Model [5].

In this thesis, we use this technique to deal with the camera motion. At first We
estimate the camera motion and generate a panorama background buffer and then we can
fast recover the stationary background buffer from panorama background buffer.

A mosaic generation system proposed in [9] is shown in Figure 3.1. There are three
major stepsin thissystem. First, choose somereliableregion for alignment. Second, align
al images in the sequence. Third, integrate aligned images to generate a mosaic image.

The details are described in the following sections.
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Figure 3.1: A sprite generation system (from [9]).
3.2 Rediable Region Selection

Aswe can seein[9], the main module of image alighment isthe global motion estimation.
In general, the accuracy of global:motion estimation isusually influenced by local motion.
Usually, the influence can be eliminated-in a well designed global motion estimation
algorithm. Besides, a smple way-to deal with the problem is excluding those regions
belonging to local motion before global ‘motion estimation. Usually, the reliable regions
can be obtained by the aid of initial segmentation mask as shown in Figure 3.2. The black
region represents the reliable region, the gray region represents the unreliable region, and

the white region represents moving objects.

3.3 ImageAlignment

Image alignment depends on the chosen motion model and usually starts in global mo-
tion estimation (GME). The GME technique is designed to minimize the sum of squared

difference £ between the current frame I and the motion compensated previous frame I':

N
E = Z e?,
i=1

wheree; = I'(z}, y.) — I(x;, y;), (x;, y;) denotes coordinates of ith pixel in current frame,

and («, y;) denotes coordinates of corresponding pixel in previous frame.

19



Figure 3.2: A reliability mask (from [9]).

There are many motion models that can be used to model camera motion. For exam-

ple, in [6] the perspective motion model is defi nedas follows:

) et J0Es Ao, + a3y,
agd; —|— ary; + 1‘

Gt Gy + asy;
v aer; + azy;+ 1

where (ay, ..., a7) are motion parameters An example of perspective transform is shown
in Figure 3.3.

The perspective model is suitable when the scene can be approximated by a planar
surface, or when the scene is static and the camera motion is pure rotation around its
optical center. According to the perspective model, we can use other simpler models in
some special situations. For instance, there are the affine model (ag = a7 = 0), the
translation-zoom-rotation model (as = as, a3 = —ay, ag = a7 = 0), the translation-zoom
model (as = a5, a3 = a4 = ag = a7y = 0), and the trandation model (a; = a5 = 1,a3 =
as = ag = a7 = 0). An example of affine transform is shown in Figure 3.4.

There are many ways to solve the motion parametersa = (ao, ..., a7). Thegradient de-
scent algorithm described in [6] and [7] isapopular method to solve for those parameters

by the following iterative procedure:

att =a +H'h.

20



Original image

Images after perspective transform

Figure:3.3; Perfiective transform.
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Figure 3.4: Affine transform.
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Or equivalently

sa=at —a'=H"'b

where a’ ™! and a’ denote a at iterations¢ and ¢ + 1, respectively, H is8 x 8 matrix equal

to one-half times the Hessian matrix of E:

and b is 8-element vector equal to minus one-half times the gradient of F:

N 861‘

by =—Y ei—.
K ;eﬁak

Each iteration of the gradient descent consists of the following steps:

1. Compute the corresponding position (z7, y;) of (x;, y;) by adopted motion model.
2. Compute the error between carresponding pixelse; = I'(z}, y.) — 1(x;, yi)-

3. Compute the intensity gradient 2% and 25

4. Compute the partial derivative of e; W.r.t:‘the a; using

de; " oI'ox' N or oy’
dar,  Ox' da, Oy’ Oay,’

5. Repeat previousstepsfor al pixelswithinimage boundariesand add its contribution

to matrix H and vector b.
6. Solvethe equation da = a't! — a’ = H'b.
7. Updatea by a'*! = a’ + da.

8. Continue iterating until the stopping criterion is met.

3.4 Imagelntegration

Oncetheframesare aligned, they can be integrated to build amosaicimage. If two frames

are mapped to different regionsin the mosaic image it is easy to integrate by just putting
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them on proper locations, while it will need more consideration when the positions in
mosaic image is mapped to by many frames. Several popular schemes can be used to dedl

with those positions that are mapped to by many frames:
1. Takethe average value among those frames.
2. Take the median value among those frames.
3. Take the weighted median value or weighted average value among those frames.
4. Take the most recent value among those frames.

Another important issue is that an integer position in current frame may map into
non-integer point in reference frame and therefore we have to deal with those non-integer

points. Many popular interpolation techniques can be used to solve the problem:

1. The nearest neighborhood interpol ation:

This is a smplest and speediest interpolation algorithm in view of computational
complexity. The value of non-integer-pointis replaced by the value of nearest inte-

ger point.

2. Bilinear interpolation:

It uses a linear combination of four nearest integer pointsto produce a new value.
I(xi,y:) = aop + a1x; + azy; + as;y;
where ay, a1, as, as can be solved by four nearest integer points.

3. Alternative techniques, such as using alarger resolution mosaic image proposed in

[8].

3.5 Some Result of Mosaic Generation

In this section, we show amosaic image using the algorithm described in previous section.

Here, we use the 80th to 96th frames of Stefan sequence to generate mosaic image as
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Fi gure 3.5:. 8ch frame.

shown in Figures 3.5 and 3.6, Where We|d§ume that we have an object mask already.
The affine model is adopted to model camera motl on and we use the bilinear interpolation
to deal with non-integer point. TJ:rre ya!;m:overlapped pixels are replaced by most
recent values. The final result is showniin Figure 3.7,

With more parameters, the motion medei can describe more camera motion while the
complexity of finding parametersis also rising. The perspective model is the most accu-
rate model, but it also has highest computational complexity. Besides, in our observation
the ag and a, of perspective model are usually smaller than other parameters and there-
fore the values of ag and a, are usually less accurate. According to this observation, we
tend to use the affine model in the procedure of global motion estimation. The translation
model which only need two parameters is also under consideration, but according our

experiment the accuracy of result is not acceptable.
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Figure 3.7: Mosaic image.
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Chapter 4

The Proposed Segmentation M ethod

4.1 System Overview

Our segmentation system is a background subtraction-based scheme. The block digram
isshown in Figure 4.1. To start, we estimate.the camera noise and the following thresh-
olds are decided according to estimated camera noise. We use the temporary foreground
mask and short-term background-to generate the stationary background buffer. The ob-
ject mask can be obtained by finding the difference between current frame and stationary
background buffer. If the scene change occurs, we have to apply global motion estima-
tion to generate the panorama background buffer and recover the stationary background
buffer.

In thissystem, most of these modulesare used for processing each frame except global
motion estimation. The global motion estimation works only when scene change occurs
since the global motion estimation is a time-consuming process and it is useless when

cameraisfixed. The details of this system are discussed in the following sections.
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Figure 4.1: The block diagram of proposed method.
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Figure 4.2: A thresholded frame difference map of the Mother-and-Daughter sequence.

4.2 Two-Stage Noise Estimation

4.2.1 Influence of Noise

In this system, theimage is captured by cameraand then we get theinitial image from the
output of camera. In the process of capturing, the image may suffer from camera noise
and therefore the stationary background usually-has.some difference between successive
capturing. In general, the larger camera noise makes the segmentation more difficult
to achieve. For example, when change detection-based technique is applied, the frame
difference map of larger noise sequence (Figure 4.2) includes more background pixels
than smaller noise sequence (Figure 4.3). It is apparent that the larger noise sequence

needs more processing to obtain afiner object mask.

4.2.2 Motiveof Noise Estimation

In the following steps of the system, we need many thresholds or parameters to make
decisions and those thresholds are usually adjusted to against the influence of noise. We
can adjust those parameter empirically but it is inconvenient since we have to tune them
for different situations and it usually needs some experiences. In order to reduce the
complexity of threshold decision, those parameters in the following steps are adjusted

based on estimated camera noise.
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Figure 4.3: A thresholded frame difference map of the Akiyo sequence.

4.2.3 Camera Noise Modéel

In the thesis, we assume the difference d,, of stationary pixels between successive frames

obeys a zero mean Gaussian distribution N (0, o) Wwith variance o2, that is,

1
p(difHg) = \/77637;0{—@}

where H,, denotes the null hypothesis. /Asin|2]; since the camera noise is uncorrelated
between different frames, the variance ¢ is equal to twice the variance of the assumed

Gaussian camera noise distribution.

4.2.4 Procedure for Noise Estimation

In order to estimate the variance o2, the sample space should include those pixels belong-
ing to stationary background and exclude pixels belonging to moving objects. Our idea
to discriminate the two kind of pixelsis based on the observation which can be seenin
Figure 4.4. The lighter pixels which represent larger difference are usually lumped to-
gether or are distributed like a strip when they are introduced by moving objects. On the
other hand, the larger frame differences caused by cameranoise are usually randomly dis-
tributed. Hence, we reject the pixels whose neighbors have larger frame difference from
the sampl e space during noise estimation.

We use the similar mask of [11] to find out those pixelsthat belong to moving objects.

For each pixel, we consider the four directional sums in frame difference map as shown
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Figure 4.5: Four masks of directional sums.

in Figure 4.5. If one of the four directional sumsis larger than certain threshold, we can
assume that the pixel belongs to a moving object.

Thefollowing problem ishow we choose the threshold. Up to the present, we can only
calculate variance o, of frame difference of entire frame, and therefore it is natural that
weinitially adjust the threshold based on ¢2.. If one of the four directional sums of a pixel
islarger than ac?, the pixel is classified to pixelsinfluenced by moving objects. After we
remove those pixelsinfluenced by objects, those remaining pixels are used to estimate o 2.
In order to verify the result of our method, we first manually choose the pixels belonging
to stationary background to estimate the variance . In Figures 4.6 and 4.7, the white

areas are chosen to estimate o2 and the estimation result is regarded as exact. Aswe can
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Figure 4.6: Mother-and-Daughter sequence.

Figure 4.7: Claire sequence.

see in Figures 4.8 and 4.9, this method can effectively remove most pixels influenced by
moving objects.

It is obvious that the results in Figures 4.8 and 4.9 are still influenced by moving
objects, because we adjust the threshold based on variance o2 of entire frame which has
high relationship with moving objects. In order to reduce this problem, we use atwo-stage
noise estimation in this system. In the first stage, we use the ao 2 to be the threshold and
get the variance o2 of stage one. In the second stage, we use the 307 as the threshold and
then we can obtain thefinal result o2 of stagetwo. Thefinal resultisshownin Figures4.10

and 4.11. It can be seen that the result of two stage method is closer to exact value.
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Figure 4.9: Noise estimation of Claire sequence.
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Figure 4.11: Noise estimation of Claire sequence for the two-stage method.
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4.3 Temporary Foreground Mask

In this section, we will generate a temporary foreground mask and then the mask is used
in the stationary background buffer, scene change, and global motion estimation. In this
stage, we use change detection-based technique to obtain a rough mask. The major ad-
vantage of this technique is that the frame difference can be easily and fast gotten but
many time-consuming methods for a more accurate object boundary usualy make the
whole system more complex and slower as shown in [1] and [2]. In this thesis, we only
need to get arough mask in this stage, and therefore those time-consuming methods can

be neglected to keep the speed of whole system.

4.3.1 Get Initial Object Mask

At first, we use the 3 x 3 window to calculate the mean of squared frame difference for
each pixel. If the result is larger-than threshold, the pixel is classifed as in a moving
object. On the other hand, a pixel 1S classified as background when the result is smaller
than threshold. The threshold here is'adjusted-based on the camera noise, that is, yo 2.
An example of thresholded frame difference mapiis shown in Figure 4.12. In the second
step, we use the fill-in technique proposed in [1] to get arough mask. At first they assign
the pixels between the first and last white points of Figure 4.12 to white points for each
row. This procedure is then repeatted for each column and once more for each row. The

step-by-step results are shown in Figures 4.13, 4.14, and 4.15, respectively.

4.3.2 RefineInitial Object Mask

Frequently, a rough mask in previous section is enough for following stages while it may
need more improvement in some cases. In Figure 4.16, for instance, there are two persons
sitting side by side. Since the fill-in technique always marks the region between left and
right boundaries, the background between the two persons is always regarded as objects.
Although this problem can be mitigated in the following stages, it will be very helpful if
the mask here is more accurate.

In this stage, we use the edge information to correct the initial mask and the Canny
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Figure 4.12: Threshold frame difference map of Claire sequence.

Figure 4.13: Fill-in for each row.

Figure 4.14: Fill-in for each column.
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Figure 4.15: Second fill-in for each row.

Figure 4.16: Initial object mask of Mother-and-Daughter sequence.
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Figure 4.17: Edge map of Mother-and-Daughter sequence.

operator proposed in [10] is adopted to get edge information. The operator performs a
gradient operation on the image which convoluted by gaussian filter and then nonmaxi-
mum suppression is applied to thin theiedge. In'the last step, the thresholding operation
with hysteresisis used to find and-link edges. The thresholding operation including two
thresholds: high-threshold and |ow-threshold. Pixel's whose gradient is larger than high-
threshold are regarded as edges and pixels-whese gradient is smaller than low-threshold
are regarded as non-edges. Pixels'whose gradientis between high-threshold and low-
threshold need to check their neighbors. If one of its neighborsis regarded as edge, these
pixels are classified to edge. The edge map after applying Canny operator is shown in
Figure 4.17. The related code of canny operator is obtained from [12].

The way to refine the initial object mask is shrinking the initial mask to fit the edge
map. The initial mask, edge map and shrunk mask are shown in Figures 4.16, 4.17
and 4.18, respectively, for Mother-and-Daughter sequence. In these figures, we can see
that the edge map includes many background edges and those background edges usually
interfere with the final result. To reduce the influence of background edge, we use a buffer
to store those background edges. When a position of edge map always has edge, we as-
sume that there is a background edge in the position. The result after removing the back-
ground edge can be seen in Figure 4.19 and the final object mask is shown in Figure 4.20.
According to the Figures 4.16 and 4.16, we can see that the remaining background due to

background edge can be effectively removed.
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Figure 4.19: Edge map after removing background edges in Mother-and-Daughter se-

quence.

Figure 4.20: Final object mask of Mother-and-Daughter sequence.
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Figure 4.21: Result of short-term background estimation.
4.4 Short-Term Background Estimation

The simplest way to judge whether the val ueofa pi xel isbackground isto check theframe
difference at thislocation. Si ncethe mOVI ng ij ectSW| Il cause larger frame difference, we
can assume that the value of plxel bel ongs tb background at this location when the frame
difference at this location is very small from start to f|n|sh For real-time application, it
isimpossible to make a decision after Whole data |s collected from beginning to end. In
the system, we regard the value of plxel as background when itsframe difference is saml|
for some consecutive frames. The major disadvantage of this method isthat it is easier to
make awrong decision when the time of observation is not long enough and therefore the
obtained background hereis not reliable at some pixels.

We consider six consecutive frames f(i)(1 < k < 6) astime of observation and a
3 x 3 windows is used to calculate frame difference d,, (i) = fo(i) — fr(1 < m < 5)
for each location i in aframe. For every location i, we calucul ate the mean and variance
of d,,,(i)(1 < m < 5). If the variance is smaller than threshold, it means the changes
between the six frames are small and we can regard the value of pixel at location i of sixth
frame as background. The threshold here is also based on camera noise, that is, A\o2. The

result is shown in Figure 4.21 for the earlier example.
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Figure 4.22: The influence of flat inner region.
4.5 Construct Stationary Background Buffer

In this stage, the information from short-term background estimation and temporary fore-
ground is considered to generate the statioanry background buffer.

Most of wrong decisions in short-term-are due-to flat inner regions as shown in Fig-
ure 4.22. If an object has alarge flat inner.region, the overlap between successive moving
objectsis still stationary and is easily regarded as background. In order to reduce the in-
fluence of flat inner regions, we use the'temporary foreground mask to weight every pixel
before we put the short-term background into final background buffer.

A weighting mask is shown in Figure 4.23, where the black region represents reli-
able background and has higher weighting while the white region represents objects and
has zero weighting. If apixel isinside gray region which means the pixel is regarded as
background in short-term background and its location is inside the temporary foreground
mask, it is easier to suffer from flat inner region problem and we will give it a lower
weighting. We accumulate the weighting for every position and the short-term back-
ground is put into stationary background buffer when the accumulated weighting meets
threshold. The lower-weighting points can still become areal background when the these
points are always regarded as short-term background for longer time to reduce wrong de-
cisions due to flat inner region. The final background buffer after we have observed 280

framesis shownin Figure 4.24.
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Figure 4.23: The weighting mask of Mother-and-Daughter sequence.

Figure 4.24: Final background buffer after observing 280 frames.
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4.6 Deal with Camera Motion

In the background subtraction-based techniques, the background should be stationary. If
the camera changes its position, the background buffer should be reset and information
of new background should be gathered. In genera, there are large overlapping regions
between old and new backgrounds. In the thesis, we will use the overlapping regions by

image mosaic technique to speed up background reconstruction.

4.6.1 Scene Change Detection

In the first step, we have to know whether camera motion occurs. Here, a scene change
detection is used to detect the camera motion. When the frame difference between back-
ground at different times is large, we assume that the camera motion has occured. The
background hereis obtained by excluding objectswith temporary foreground mask. Since
aflat region usually has no framedifference when small camera motion occurs, we only

consider the regions near edges.

4.6.2 Global Motion Estimation

After scene change occurs, we have to find the cameramotion. Theway to find the camera
motion is using global motion estimation and the block diagram is shown in Figure 4.25.
The hierarchical architecture of motion estimation of [6] and [9] is used in this system.
The advantage of hierarchical architectureisthat it can overcome large displacement and
reduce computational complexity.

The goal of global motion estimation isto minimize the sum of squared differences £

between current frame I and reference frame I':

wheree; = I'(2}, y) — I(x;, y;). Below, we explain the method in detail.

1. Motion modedl
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In thisthesis, the affine model is adopted for camera moving, that is,
Tp = ag + axx; + asy;,

/
Y, = a1 + aux; + asy;,

where (ay, ..., as) are motion parameters, and (z;,y;) and (x}, y;) are positions of

current frame [ and reference frame I, respectively.

. Initial matching

The gradient descent method needs an initial value of a;(0 < k& < 5). If theinitial
valueisfar from final converged value, it is easy to get alocal minimum solution.
For that reason, the initial matching is needed to find a better initial value than

arbitrary guess.

In the thesis, we use the step search tofastly obtain the motion vector. The search
range is =15 in both coordinates and-therefore the range of full sizeis +-60. After
finding motion vector, we gan-ebtain initial value of a, and a,. The others are set

aSa2:a5:1anda3:a4:0.

. Gradient descent

The detail of gradient descent is described in chapter 3. Besides, in the first iter-
ation of each level, the histogram of |e;| is computed and find a threshold T such
that the number of |e;| bigger than T are about 15% of considered pixels. In the
following iterations, those pixels whose |e;| larger than T are excluded in gradient
descent. In thisthesis, we use the stopping criterion for gradient descent: at most
34 iterationsare carried out at each level. The number of iterationsis set by observ-
ing the speed of convergence in Stefan sequence and the related results from [6].
The transform between (x;, y;) and (x}, y!) isusually non-integer and therefore the

bilinear interpolation is used here.

. Projection

The projection of motion parameters from one level to the next one is multiplying

ag and a; by two, and others are keeping the same.
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Figure 4.25: Global motion estimation.
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ter camera moving.

4.6.3 Panorama Background and Background Recovery

Figure 4.27:. mageaf

After we have obtained the camera motion, the background can be stored in panorama
background buffer by corresponding motion parameters. When camera motion occurs,
the stationary background buffer can be rebuilt from panorama background quickly. Here
the non-integer transform still exists and the bilinear interpolation is adopted to deal with
this problem.

For example, Figures 4.26 and 4.26 represents images before and after camera motion
occurs, respectively. The camera is horizontally rotated to left side of origin position.
The panorama background buffer before camera moving is shown in Figure 4.28 and the
recovered stationary background buffer after cameramoving isshownin Figure4.29. The
stationary background buffer and panorama background buffer in the seventh frame since

camera moved are shown in Figures 4.30 and 4.31, respectively.
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Figure 4.28: Panorama background buffer before camera moving.

Figure 4.29: Recovered stationary background buffer after camera moving.

Figure 4.30: Stationary background buffer in the seventh frame since camera moving.
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Figure 4.31: Panorama background buffer in seventh frame since camera moving.

4.6.4 Background Subtraction

Thefinal object mask is obtained by: findi ng diffgif&t;,e between current frame and station-
ary background buffer. For a bett_géf“'feﬂjlt} Boih drfference in luminance and differencein

chromanace between the two frames are considered. /I general, the background of cur-

rent frame may suffer from light changeandshadow and the stationary background may
contain somewrongly identified baclllkl"'g'r'c'iund‘ pi.xel':‘s'.:'Therefore, using subtraction between
current frame and background may still leave some background. For this reason, we have
to remove the small region after subtraction. There are two stepsto remove small regions.
First, remove the small regions outside object mask. Second, remove the small regions
inside object mask. In the first step, we check the connected length of object mask for
each row and remove pixels whose connected length is less than threshold. Then, the
processing in used for each column. After we remove the regions outside object mask,
we have to fill the wrongly identified object pixels which usually looks like a hole inside
object mask and the method is similar to first step.

An example of the current frame and background is shown in Figures 4.32 and 4.33.
Theresult after subtraction and thresholding isshownin Figure 4.34. Thefinal result with

small region removing is shown in Figure 4.35.
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Figure 4.32: Frame 255 of mother and daughter sequence.

Figure 4.33: Stationary background buffer.

Figure 4.34: Mask after subtraction and thresholding.
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Figure 4.35: Final object mask.

4.6.5 Conclusion

In this section, we make a summary of proposed method described above. In the first
step, the two-stage noise estimation:is useq to stl mate the camera noise and as shown
in chapter 4.2 this method can e_ffe‘ctivel‘)l“llkém_o\‘/e tH(—:; influence of moving objects. In
the second step, we obtain a short-ﬂterm; bag;kg}ound whc ch usually suffers from flat inner
region problem and therefore a te_mpora&@gbdnd masK is introduced to overcome
this problem. For a better result, wé‘use the“‘edgé information to refine the temporary
foreground mask. After we obtain the short-term background and temporary foreground
mask, we can use both of them to establish the stationary background buffer and then the
object mask is obtained by subtraction between current frame and stationary background
buffer.

If the cameraisfixed, the procedure described aboveisenough to obtain a object mask.
When camera motion occurs, we estimate the global motion and recover the stationary

background from panorama background buffer by the estimated global motion.
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Chapter 5

Overall System Architecture

The overal architecture of our segmentation system is shown in Figure 5.1. Here, we
need a digital camerato capture images, a personal computer to control the system and to
segment the image, and a displayer to.show the final result.

There are two modes of application programming in Windows OS: Console mode
which uses the file I/0 and GUI (Graphical”User Interface) mode. The GUI mode is
suitable for our application and itis implemented by Windows SDK (Software develop-
ment Kit) which is develope by Microsoft for-high-level computer languages to easily
implementation GUI mode.

The system block diagram is shown in Figure 5.2. The detail of segmentation is
described in previous chapter and therefore we focus on video capturing, result displaying,

and control in this chapter.

displayer
digital
camera
]
AR ! ==
L| =]
PC

Figure 5.1: circumstance of implementation.
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PC
Capturin Displaying
D! 4 * * playing

Segmenting

Figure 5.2: system block diagram.

5.1 Video Capturing

5.1.1 Video for Windows

In this system, the input image is captured by digital camera. To control the operation
of capturing, a standard video capturing method, named VW (abbreviation of Video for
Windows), in the Microsoft OS is adopted. Video for Windows version 1.0 was released
in November 1992 for the Windows 3.1 operating system and was optimized for capturing
moviesto disk [14] This SDK provides applications with a simple, message-based inter-
face to access video and waveform-audio acquisition hardware and to control the process
of streaming video capture to disk: Besides, VW helps with connectivity to device driver

and retrieve the capability and information-ofit.

512 AVI Format

In VIW, AVI is the mostly used format. The captured raw frame is embedded in an AVI
file which can be extracted for segmentation inpuit.

AV stands for Audio-Video Interleaved. Figure 5.3 shows the hierarchical structure.
Refer to header file (vfw.h in Visual C++) for complete information about parsing AVI
file. To extract video data, we use afile parser that simply locate fifdb and copy suitable

length of datafollowing that.

5.1.3 Implementation of Capture

The implementation of capture is aided by a free application called AVICap from [15]. It

contains three steps:
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RIFF | RIFF universal file header

ANV AV file header

Hdrl | Header list

Avih | AVI header

Strl List of stream header for each stream in the AVT file
Strh Video or audio stream header

Stef Wideo or audio stream format
JUME | Tzed to align data

#Hhwh | Audio frame data

#tdb | Video frame data

Figure 5.3: AVI header.

//Create the capture window

hwndC = capCreateCaptureWindow("' Video Capture
Windew" ,WS_CHILD | WS_VISIBLE,0,0,352,288, hwnd, 0);
/I Connect the captire window to the driver
capDriverComnect(hwndcC, 0);

/I Get the capabilities of the capture driver
capDriverGetCaps(hwndC, &caps, sizeof(caps)):

Figure 5.4: Related code for cregting a capture window.

1. Create capture handle:

An AVICap capture window handles-thedetailsof streaming audio and video cap-
ture to AVI files and it provides a flexible interface for applications. The video

capture can be add to application by the code shown in Figure 5.4.

2. Parameter modification:

After initializing driver window handler, some fundamental parameters should be
confirmed to ensure captured data fit system requirement, such as the code shown
in Figure 5.5.

3. Capture operation:

In thisstep, we start to capture image from digital camera and related code is shown

/ Set the preview rate in milliseconds
capPreviewRate(hwndC,30);

/I Start previewing the iimage from the camera
capPreview(hwndC, TRUE);

Figure 5.5: Related code for parameter modification.
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char filename[] = "c:\'buffer.avi' ;
unsigned char Y Component[352*288*3/2];
capFileSetCaptureFile (hwndC. filename);
FpirIn = fopen(filename,''1vh'");
capCaptureSingleFrame Open(hwndC);
capCaptureSingleFrame (hwndC);
capCaptureSingleFrameClose(hwndC);
fseek(FpirIn,0xa08,SEEK SET);

fread(Y Component,1,352*288*3/2 FpaIn);

Figure 5.6: Related code for capture operation.

hDC = GetDC(hwnd_5);
for(i2=0;i2<288;i2++)

1
for(i3=0:13=352:i3++)

i
int index = i2*352 +i3 ;
int tmpY = iimage regy[index) g
int tmpU = image regufindex] - 128 ;
int mpV = iinage regv[index] - 128 ;
SetPixel(hDC.i3.i2 RGB(mpR,tnpG,tanpB) ):
H

3
ReleaseDC(hwidd S hDC):

Figure 5:7: Related'codefor displaying.

in Figure 5.6. Here, the captured image which is AVI format is stored in a buffer
and then the required video data is extracted from the buffer. Finally, the extracted

datais sent to the module of video segmentation.

5.2 Result Displaying

After we finish the video segmentation, we need to display the result on the displayer.
The procedure to create a diaplay window is simliar to previous section. After creating a

window, we can show the result on displayer according to the related codein Figure 5.7.
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Figure 5.8: The entire application program interface.
5.3 Control System

There are two major control unit: *capture-control unit and threshold-adjustment unit.
The capture-control unit controls every option needed‘lfor digital camera, such as start,
stop, image size, and luminance:: The threshold-adjustment unit is used to adjust the
related threshold in temporary foreground-mask; short-term background, and background
subtraction.

The entire application program interface is shown in Figure 5.8.

5.4 Conclusion

In the section, we show the required processing timein this system. First, we consider the
situation of zero cameramotion. For quickly obtaining an apparent improvement, we stop
some special modules which only useful in special situation, such as shrink initial object
mask to edge map. Besides, we reduce the excuting frequence of some time-consuming
modules. According the discussion in chapter 4, the module for noise estimation need not
to work for every frame since the camera noise is usually keep the same. Here, we only
estimate the noise of first frame and then the camera noise of following four frames is

equal to that of the first frame. Besides, the module for displaying the final result is also
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Others background subtraction
2% 2%

Windews
12%

Remove small region
20%
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buffer
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Fill-in technique
9%

% Noise estimation
%

LShort-term backgronnd
6%

Tmporary foregronnd

6%

Figure 5.9: Relative computing time of every module when camera s fixed.

a time-consuming process, and therefore the stationary background buffer is displayed
every ten frames and the object mask.is displayed every two frames.

The image size in this system is CIE(352 x 288)-and the PC is P-4 2.4-GHz with
512-MB RAM. The Relative computingtime of every moduleis shown in Figure 5.9 and
the current implementation yields a speed of about 5 frames per second. The higher time-
consuming modul es are stationary background buffer and remove small region. When we
obtain the background, we may stop many modules to improve the efficiency, such as sta-
tionary background buffer, temporary foreground mask, fill-in technique, and short-term
background. After we stop those modules, we can save about 44% of entire processing
time. The module for remove small region is used to refine the final object mask and in
the future it will be the mgjor target for optimization.

Now, we discuss the efficiency when camera motion occurs. The relative computating
time is shown in Figure 5.10 and the frame rate is about 1.7 frames per second. Since
our system will be combined with MPEG-4 encoder, many identical modules can joint
toghther, such global motion estimation which is about 21in our system.

The most time-consuming module is bilinear interpolation. The interpolation is used

in gradient descent and warp the current background to panorama background buffer.
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Figure 5.10: Relative computing time of every module when camera motion occurs.

Here, the nearest neighborhood algorithm which isless accurate but fast is under consid-
eration. In our experiment, the accuracy of mosaic.image is too low to accept when we
use the nearest neighborhood algorithm. -The required accuracy of interpolation in gra-
dient descent is very high and therefore'we shouldkeep the use of bilinear interpolation
in gradient descent. The required accuracy of ‘interpolation for warping background to
panorama buffer depend on the camera motion. When the image is enlarged, the block
effect is very apparent. Here, we prefer to keep the overall accuracy and therefore the
nearest neighbor algorithm is not adopted in our system.
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Chapter 6

Simulation Results

6.1 Segmented Image Masks

In this section, we show some simulation result'of Mother-and-Daughter, Claire, and
Akiyo sequences. The Claire and:Akiyo sequences are.common cases in videoconferenc-
ing and Mother-and-Daughter is:the case which include two major objects. The back-
ground subtraction needs some time to gather information of background and therefore
the object masks of initial frames are less.accurate. It can be seen that we can get more
accurate image masks with the more information in the stationary background buffer.

Some resultsof Mother-and-Daughter sequence, Claire sequence, and Akiyo sequence
are shown in Figures 6.1, 6.2, and 6.3, respectively. According to our observation the
required time to obtain enough background for Mother-and-Daughter sequence, Claire
sequence, and Akiyo sequence is about 260 frames, 150 frames, and 10 frames, respec-
tively.

Aswe can see, the boundary of mask is very accurate when the related background is
obtained and therefore the accuracy of our method is highly dependent on the amount of
obtained background. There are two major factors to influence the required time for gath-
ering enough background. Firgt, if the background is always covered by moving objects,
therelated background is difficult to obtain and therefore the required time depends on the
time which the covered background become uncovered. When these covered background

become uncovered, the related boundary is usually incorrect, such as Figures 6.1(b). Sec-
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(c)

Figure 6.1: (a) Stationary background buffer in 140th frame. (b) Image mask in 140th
frame. (c) Stationary background buffer in 260th frame. (c) Image mask in 260th frame.

ond, the required time to gather enough background also depends on the cameranoise. In
the case of low camera noise sequence, we can set more critical thresholds in short-term
background and temporary foreground. The more critical thresholds can lead the shorter
gathering timein stationary background buffer. The camera noises of the three sequences
from high to low are Mother-and-Daughter, Claire, and Akiyo. According to the figures
given above, the required time to obtained enough background from long to short is also

in this order.
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(b}

(c) (d)

Figure 6.2: (a) Stationary background buffer in 60th frame. (b) Image mask in 60th frame.
(c) Stationary background buffer in 150th frame. (c) Image mask in 150th frame.
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Figure 6.3: (a) Stationary background buffer in 10th frame. (b) Image mask in 10th frame.
(c) Stationary background buffer in 165th frame. (c) Image mask in 165th frame.
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In order to deal with camera mq:i\on,m\&'é*ﬂ?e—the gI@baI motion estimation to align the
- ! -L:b: ‘ ";-

image with panorama background Eﬂaﬁfel") and recowt ~the stationary background buffer. In

- s

show the result of panorama background

this section, we first use the Stefan sequéﬁté 1o
buffer. The temporary mask here has obtained by othersfrom http://cwww.ee.nctu.edu.tw.
The result from initial frame to 13th frame is shown in Figure 6.4. The result from 40th
frame to 73th frame is shown in Figure 6.5. The result from 130th frame to 161th frame
isshown in Figure 6.6.

Asshownin [9] and [6], the more accurate mosai ¢ of Stefan sequence resultsrequire a
perspective model. The advantage of perspective model isthat it can handle the transform
as shown in Figure 6.7. If the displacement of camera is small, those transform can be
approximated by affine transform. A example is shown in Figure 6.8 The results given
above meet small displacement requirement and therefore the affine model is enough to
obtian an acceptable mosaic. In the case of larger displacements, such as 246th to 247th
frames, the affine model fails as shown in Figure 6.9.

Now, we show the benefit of background recovery using a sequence captured in our
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Figure 6.6: Mosaic result from 130th to 161th frames.
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Figure 6.7: Perspective tramsform.

(a) (b)

Figure 6.9: Mosaic result from 246th to 247th frames.
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(a)

“aggEE~

Figure 6.10: Image mask without background recovery. (a) The 145th frame which cam-
era motion is detected. (b) 146th frame. (c) 147th frame. (d) 148th frame. (e) 149th
frame. (f) 150th frame. (g) 151th frame.

lab.. If we remove the function of background recovery and just reset the background
when camera motion occurs, the image masks at consecutive time step safter camera
moving are shown in Figure 6.10. If we use background recovery instead of reseting
background, the image masks at the same time steps are shown in Figure 6.11. It is
obvious that the result with background recovery can get more accurate mask during

rebuilding of new background.



(c)

(d) {e) ()

(g}

Figure 6.11: Image mask with background recovery. (a) The 145th frame which camera
motion is detected. (b) 146th frame. (c) 147th frame. (d) 148th frame. (€) 149th frame.
(f) 150th frame. (g) 151th frame.
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Chapter 7

Conclusion and Future Work

We developed and implemented of an video segmentation system on personal computer.
TThe intended application is PC-based multipoint videoconferencing system.

The core of our system is the background subtraction technique. We use a temporary
foreground mask to reduce the influence of inner-flat region in background construction
and use a panorama background buffer to improve the accuracy of image mask during
camera moving. For easier obtaining the relative thresholds of each module a two staged
method for camera noise estimation‘is introduced to reduce the effect of moving objects
and those thresholds are adjusted based on the estimated camera noise.

The relative ssimulations in previous chapters show the system can get an accurate
image mask and deal with the camera moving. Besides, the two staged noise estimation
also effectively reduces the effect of moving objects.

For quality improvement we can do some improvements for the main projects, in the

future.

1. Adding the module to deal with shadow and light change.

The position of shadow is controled by the position of light and therefore the
shadow effect greatly depends on the position of light. If the great shadows appear
in background, the shadows are also regarded as moving objects in the module of
background subtraction. Hence, a module to recude the shadow effect can improve

the accuracy of final image mask when the shadow is great.
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2. Using a more robust motion mode!.

In this system, a affine model is used and it still can not handle every camera mov-
ing. In the module of background recovery, the more accurate recovery can obtain
a more accurate image mask when camera moving occurs and therefore a more
robust model, such as perspective model may effectively improve the auuracy of

background recovery by handling more camera moving.

3. Combine the segmentation system with MPEG-4 encoder.

Theimage mask will be used as alpha planein MPEG-4 encoder and therefore some
modules, such as global motion estimation and initial matching which are also used

in MPEG-4 encoder can be combined to improve the speed.

4. More optimization.

The current processing time is not fast enough.and a better optimization is need to
improve the efficiency. The optimization may_ focus on interpolation and removing

small regions.
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