

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

單晶片多處理器系統的通訊交換器設計

A Switch Design for Multi-Processor System on Chip

研 究 生：黃 保 瑞

指導教授：周 景 揚 博士

中 華 民 國 九 十 三 年 七 月

單晶片多處理器系統的通訊交換器設計

A Switch Design for Multi-Processor System on Chip

研 究 生：黃保瑞 Student：Pao-Jui Huang

指導教授：周景揚 博士 Advisor：Dr. Jing-Yang Jou

國 立 交 通 大 學
電子工程學系 電子研究所碩士班

碩士論文

A Thesis
Submitted to Department of Electronics Engineering

College of Electrical Engineering and Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE
in

Electronics Engineering

July 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年七月

i

單晶片多處理器系統的通訊交換器設計

研究生 : 黃 保 瑞 指導教授 : 周 景 揚 博士

國 立 交 通 大 學

電 子 工 程 學 系 電 子 研 究 所 碩 士 班

摘 要

隨著半導體製程的不斷進步，十年後，IC 工程師將有可能在單一個晶片上整合

上百個運算元件。此時，各個元件間的通訊將會成為影響系統效能的一大關鍵。IC

設計工程師將需要一個能考慮通訊效能的系統設計方法。在這篇論文中，我們提出

了一個適用於單晶片上多處理器的通訊架構。經由適當的設定，這個架構將可以提

供不同的資料交換機制。由於我們的通訊架構具有能預測通訊效能的特性。系統設

計者可以利用我們的架構在設計初期便分析系統效能以作出更好的決定。相關的實

驗也顯示我們的架構能夠有效的傳遞資料。

ii

A Switch Design for Multi-Processor
System-on-Chip

Student : Pao-Jui Huang Advisor : Dr. Jing-Yang Jou

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

ABSTRACT

Driven by the advance of semiconductor technology, it is possible to integrate

hundreds of processing elements on a single chip in the next decade. At the moment,

communication between the components will become the limiting factor for system

performance and a communication-driven system design methodology will be needed.

In this thesis, we propose an on-chip communication infrastructure for multi-processor

system-on-chip. By appropriate configuration, the network can work as circuit switching,

packet switching, and dedicated bus. System designers can also benefit from our

framework to analyze the system performance and make better decisions at higher level

iii

because our platform exhibits predictable performance. The experiments of performance

evaluation show that the communication fabrics can efficiently transfer data within

system.

iv

Acknowledgements
I would like to express my sincere gratitude to my advisors, Professor Jing-Yang Jou

for his suggestion and guidance throughout the course of this thesis. I am also indebted

to Cheng Yeh Wang and Lin Yu Ling for their great help on my research. Special thanks

to all members in the EDA lab and my friends in Mountain Club for their friendship.

Finally, I would like to show my appreciation to my family and Mei Hsuan Chen for

their love and encouragement.

v

Contents
摘要……………………………………………………………………………………i

Abstract………………………………………………………………………………..ii

Acknowledgements…………………………………………………………………...iv

Contents………………………………………………………………………………..v

Lists of Tables………………………………………………………………………..vii

Lists of Figures………………………………………………………………………viii

Chapter 1 Introduction ... 1

1.1 Technology trend ... 2

1.2 On-chip network.. 3

1.3 Communication-driven system design methodology 4

1.4 Related works .. 6

1.5 The focus of this thesis .. 7

Chapter 2 Preliminaries.. 9

2.1 Topology.. 9

2.2 Switching strategy ... 13

2.3 Routing algorithm.. 16

2.4 Transaction protocol .. 18

Chapter 3 Our Platform and Switch Design... 19

3.1 What network we need .. 20

3.2 Switch architecture .. 22

vi

3.3 Transaction .. 30

3.4 Transaction protocol .. 33

3.5 Round robin scheduling... 35

3.6 Performance... 37

3.7 Design overview.. 39

Chapter 4 Experimental Results... 42

4.1 Definition... 43

4.2 Experiment .. 43

4.3 Synthesis report ... 47

Chapter 5 Conclusions and Future Work ... 48

Vita…………………………………………………………………………………...53

vii

List of Tables
Table 1 : Histograms of normalized latency under different injection rate 44

Table 2 Histograms of normalized latency under different buffer size of virtual channel
... 46

Table 3 : Synthesis report .. 47

viii

List of Figures
Figure 1 : Protocol stack of inter-network... 4

Figure 2 : Communication-driven system design methodology [4] 5

Figure 3 : Orthogonal network topology ... 10

Figure 4 : Other direct network topology .. 11

Figure 5 : Indirect network topology... 12

Figure 6 : Deadlock situation .. 15

Figure 7 : Virtual channel .. 16

Figure 8 : A taxonomy for routing algorithms [7] ... 18

Figure 9 : A 2-D mesh switched network with 2x3 nodes... 22

Figure 10 : Switch architecture.. 23

Figure 11 : Basic transmission procedure.. 24

Figure 12 : Switch interface .. 24

Figure 13 : Input stage of switch port.. 25

Figure 14 : Output stage of switch port ... 26

Figure 15 : Memory duty diagram... 27

Figure 16 : Ack controller.. 28

Figure 17 : Organization of memory hierarchy ... 29

Figure 18 : Buffer naming rule .. 29

Figure 19 : Path transaction procedure .. 32

Figure 20 : Transaction protocol between switches .. 33

ix

Figure 21 : Output arbitration.. 35

Figure 22 : Round robin scheduling .. 36

Figure 23 : Bandwidth sharing example.. 37

Figure 24 : Bandwidth guaranteed transmission path ... 39

Figure 25 : Assigning different path to avoid traffic congestion 40

Figure 26 : Fault tolerance... 41

1

Chapter 1

Introduction

As the semiconductor technology advances, SoCs in the next decade are expected to

integrate hundreds of computing elements on a single chip to obtain more computing

power. However, designers encounter some new problems: wire delay becomes the

limiting factor for the signal delay, communications between computing components

become the bottleneck of system performance, and system design becomes more

difficult because of more and more components integrated together. Moreover, it is

observed that traditional design flow is incapable of solving these problems. Designers

need not only new system architectures but also a new design methodology to conquer

these problems and to reduce the time to market.

2

1.1 Technology trend

As predicted by International Technology Roadmap of Semiconductors (ITRS), it is

possible to integrate multi-billion transistors on a single chip within ten years [9]. The

chip fabricated by 50nm technology can work at around 10GHz or faster. At the moment,

wire delay will dominate the signal delays [16]. The gate delay of a transistor is scaled

down linearly, whereas wire delay remains constant with scaling. Although larger wire

delay can be managed with wire pipelining techniques, it is unavoidable for designers to

deal with the problem of timing uncertainty.

Clock synchronization in future system is another problem for the system designers.

Because the clock skew is not negligible any more, synchronizing all components on the

chip with single clock will become almost impossible. The fact that global wire which

spans the whole chip, like the clock signal, may conduct signals with latency that

exceeds the clock cycle will also make the system synchronization problem more serious.

The globally-asynchronous, locally synchronous (GALS) technique may be the most

possible solution [17].

Performance is still the most important issue. Traditional shared-medium network

architecture, like AMBA bus [13], is the most convenient architecture in current SoC

integration. Such kinds of architectures can support broadcast transmission, and cost low

implementation overhead. However, high contentions among masters caused by

simultaneous requests degrade the system performance and make extra power

3

consumptions. These problems make designers discard share-bus architecture and search

for some new communication architectures. Some studies propose different solutions

like routing packet without wire [2], or using different topologies for specific

applications [10]. There are still open problems in selecting a suitable architecture for

different application domain.

Another important issue is the time to market. It becomes more complex to design a

system due to integrating more components. Traditional design flow is not sufficient to

conquer this problem. The design trend is toward system level design. The impact that

communication becomes bottleneck of system performance also influences the system

design methodology. A communication-driven design methodology should be

considered.

1.2 On-chip network

It seems a feasible way to solve these new problems by applying similar concepts that

are maturely developed in other fields. Some researchers adapt the layer method from

traditional inter-network to manage the on-chip communication [4][8]. They view the

interconnections between on-chip components as micron-network and apply the layer

method to build the on-chip communication infrastructure. Figure 1is the protocol stacks

paradigm adapted from inter-network; with bottom up construction, the layers spans

increasing design abstraction level [4]. System designers and architecture designers can

work together to implement a system under different abstraction levels. Also, this

4

method maximizes the ability of reusing components.

Figure 1 : Protocol stack of inter-network

Although the researches of constructing inter-network are well-studied, there are

some differences between communication infrastructure of SoC and wide area network.

There are some unique features of SoC network: less non-determinism of

communication among applications, more strict constraints of power consumption, less

memory space for on-chip system and the physical issue of fabrication.

1.3 Communication-driven system design methodology

Driven by the advances of semiconductor technology, future SoCs will accelerate the

capacity and complexity of a system. It is possible for designers to integrate hundreds of

functional components within the same die size to obtain more computing power. At this

scale, it is believed that SoC will be implemented by using pre-designed components in

a plug-and-play fashion [11]. In such system integration approach, communications

among computing components becomes the most critical factor and make it more

5

complex to design the system and to predict the system performance. It is an urgent

issue to balance the communication and computation power over the whole system.

 Here, we introduce a communication-driven system design methodology, as shown

in Figure 2, as a new design flow.

Figure 2 : Communication-driven system design methodology [4]

In this flow, we first separate the system design into two parts: functional modeling

and architecture modeling. Functional modeling contains application modeling, task

partition and job scheduling. Designers can collect rough system information by

profiling the applications. The responsibility of architecture modeling is providing a

library that contains the simulation models of various computation, memory components

and communication fabrics as implementation choices. According to the profiling

information of applications, system designers will make decision to select appropriate

6

platform.

After function and architecture modeling, system designers will map and allocate the

tasks scheduled onto the platform which they chose in architecture modeling. By

performance evaluation of these implementation examples, designers can get more

detailed information of the whole system and make better design trade-off. With this

method, system designer can refine the implementation of design at higher level and

reduce the times of try and error.

Traditional design flows will follow after system designers decide the details of

implementation.

1.4 Related works

There have been various studies in this field. We present some of them which are

strongly related to our work.

1.4.1 Communication-based design flow

The design methodology for communication-based design is proposed in [3]. In this

paper, researchers propose a “network-on-chip” approach to partition the communication

into layers to maximize the reuse and provide programmers with an abstraction of the

underlying communication framework. The OSI Reference Model is adapted to the layer

approach and is demonstrated with a reconfigurable DSP example.

7

1.4.2 Network architecture

The analysis of why the shared bus, which dominates the system integration now, will

not meet the performance requirement of future system is proposed in [1]. They present

an alternative interconnection in the form of switching network. Such technique is well

used in parallel computing, but is also suitable for heterogeneous communication

between on-chip processors.

The technique of mapping applications onto targeted communication platform and

analyzing system performance are studied in [14] and [15]. In their experiments, they

discussed the relative strengths and weakness of the considered architectures for system

design.

Some studies address the network fabric design. A circuit switching architecture, the

SoCBUS, is proposed in [5]. SoCBUS has very good properties in providing guaranteed

bandwidth, and is suitable to build the real time system. However, it is not suitable for

general purpose computing that exhibits random traffic patterns. A hybrid router design

between packet-switching and circuit-switching was proposed in [6]. It exhibits the

property of both switching techniques but still suffers the lack of channel utilization.

1.5 The focus of this thesis

Based on the promise that communication will become the bottleneck of future

system performance and on-chip communication will be treated as micron-network. We

8

propose a novel network platform and related infrastructure for on-chip communication

in this thesis. System designers can also benefit from our framework to analyze the

system performance and make better decisions at higher level because our platform

exhibits predictable performance.

The rest of this thesis is organized as follows. In Chapter 2, we introduce basic

network concepts. In Chapter 3, we highlight the requirements of future network and

present details of our platform design and a novel switch design for on-chip

communication. We prove the correctness of our platform and study some design space

explorations in Chapter 4. Finally, we give the conclusion and future work in Chapter 5.

9

Chapter 2

Preliminaries

In this chapter, we introduce some basic concepts and related issues about

constructing network. This chapter provides background knowledge of our platform and

switch design in Chapter 3.

2.1 Topology

The word “topology” defines how the nodes are interconnected by channels and is

usually modeled by a graph [7]. The nodes include communication fabrics, bridges and

processors. Major network topologies can be categorized as direct network and indirect

10

network. In direct network, nodes are connected directly with each other by the network.

In indirect network, nodes are connected by one or more intermediate node switches.

The switching nodes perform the routing and arbitration operations. Because of different

performance requirements and cost trade-off, many different network topologies are

designed for specific applications [11]. We are going to give a brief description of some

of the popular network topologies.

2.1.1 Direct network topologies

1. Orthogonal

A network topology is orthogonal if and only if nodes can be arranged in an

orthogonal n-dimensional space. The most popular direct networks are k-ary

n-dimensional mesh, k-ary n-dimensional cube and the hypercube, as shown in Figure 3.

Such kinds of topologies exhibit the properties of regularity and symmetry.

4-ary 2-dim mesh 4-ary 2-dim torus 2-ary 4-cube (hyper cube)

Figure 3 : Orthogonal network topology

11

2. Other direct network topologies

In addition to these topologies defined above, there are many other topologies that

have been proposed with different properties, as shown in Figure 4. The

cube-connected-cycles topology is proposed as an alternative way to orthogonal

topologies to reduce the degree of each node. Tree topology provides the advantage of

low implementation cost, in which each of these nodes on the topology is in turn

connected to a disjoint set of descendants. A star graph is proposed to minimizing the

network diameter of cube-connected cycles. However, it need more complex routing

algorithm.

Figure 4 : Other direct network topology

2.1.2 Indirect network topologies

1. Crossbar networks

Crossbar networks allow any node in the system to communicate with any other node

directly, as shown in Figure 5. In such way, several processors or memories can

communicate simultaneously without contention. The disadvantage of crossbar networks

12

is the cost, and has been traditionally used in small-scale system [11].

2. Multi-stage interconnection network

Multi-stage interconnection networks (MIN) connect the input nodes to output nodes

through switch stages, which are crossbar network. The number of stages and

connections between switch stages determine the routing capability of the networks.

Depending on the interconnection scheme employed between two adjacent nodes,

various MINs have been proposed.

Fat-tree is one classical topology of MIN. A fat-tree network can provide multiple

data paths from source node to destination nodes depending on the path usage. As shown

in Figure 5, the latency is directly proportional to the depth of the tree.

Figure 5 : Indirect network topology

Among these topologies, 2-D mesh is considered as the most suitable topology for

on-chip network because the 2-D mesh has the advantages of an acceptable wire cost,

13

reasonably high bandwidth, and that it is easy to group components on plane.

2.2 Switching strategy

Switching strategy is defined as the method used to exchange data between network

components. Common switching strategies can be classified into two categories:

connection-oriented and connection-nless.

Connection-oriented switching technique is widely used in telecommunication. It is

also named circuit switching because the connection from source to destination is built

before data transmission. Once the connection established, data from source to

destination can be transmitted with guaranteed bandwidth and will be delivered without

any contention. With this advantage, we can employ it to build a real time system. This

strategy is advantageous when data transmission is long and few.

Alternative to connection-oriented switching strategy, connection-less switching

strategy partitioned data into several packets before transmission. The routing and

transmission of packets are handled by network fabrics individually. Without any

reservations of the channel bandwidth, it provides more efficient bandwidth utilization.

Common types of communication-less switching include store-and-forward,

virtual-cut-through and wormhole switching.

Store-and-forward switching technique is named because each packet transmitted in

network is completely buffered at each intermediate node before it is forwarded to the

14

next node. The header information of each packet is extracted by the intermediate switch

to determine the output destination over which the packet is to be forwarded. Different

from the circuit switching, store-and-forward switching is advantageous when the

messages are short and frequent. However, the implementation of store-and forward

switching is expensive because a switch should have enough buffer size to hold a whole

packet.

Unlike the store-and-forward switching, that switch should hold the whole packet

before it is forwarded to next switch, virtual-cut-through switching can start the

transmission as soon as the routing decision of packet is determined and the output

channel is free. Actually, the packet doesn’t even have to be stored at the output buffer

and can cut through to the input of the next switch before the complete packet is

received at current switch. In the absence of blocking, virtual-cut-through switching

performs better than store-and-forward switching because the packet is effectively

pipelined through successive switches. If the header of packet is blocked on a busy

output channel, virtual-cut-through switching will hold the complete message in the

switch and behaves like store-and-forward switching.

The requirement to buffer whole packet in the switches makes it difficult to construct

a faster and smaller switches. In wormhole switching, packets are pipelined through the

network like virtual-cut-through switching. However, the buffer requirements with

switches are reduced over that for virtual-cut-through switching. If the packet is blocked

in the network, the buffer in the switch doesn’t have the capability of buffering the

15

whole packet; the blocked packets will occupy buffers in several switches. This degrades

the network performance because the packet blocked by other packets will occupy

buffers in these switches on part of its transmission path, similarly blocking other

packets. Moreover, it often causes deadlock problem to happen. A deadlock situation is

the network state that some packets cannot advance toward their destination because the

buffers requested by them are full. As shown in Figure 6, all the packets involved in a

deadlocked configuration are blocked forever [7].

Figure 6 : Deadlock situation

Virtual channels are originally introduced to solve the problem of deadlock in

wormhole switching. The key idea is to multiplexing the physical channel to support

several virtual channels. Logically, each virtual channel is operating as if a distinct

physical channel operates at lower bandwidth. By providing two virtual channels at

output channel at each switch in Figure 7(virtual channels), all the packets blocked in

the switches continue to make progress with half the channel bandwidth as shown in

Figure 7(virtual channels solve the deadlock problem). This technique can not only solve

16

deadlock problem but also improve network throughput.

Figure 7 : Virtual channel

2.3 Routing algorithm

Routing algorithms determine the path followed by each packet. Figure 8 presents a

taxonomy of routing algorithms that are classified according to several criteria. Routing

algorithms can be first classified according to the number of destinations. Packets may

have only one destination or be broadcasted to multiple destinations. Routing algorithm

can also be classified according to the place where the routing decisions are made. The

decision can be made centralized at the source (centralized routing), be determined in a

distributed manner while across the network (distributed routing), or hybrid schemes.

Moreover, routing algorithms can be classified according to the way they are

implemented. The most popular ways consists of either looking at a routing table or

executing a routing algorithm in software and hardware based on finite state machine. In

17

both cases, they can be either deterministic or adaptive according to whether the packet

transmitted between a given source/destination pair is supplied with the same path.

Adaptive routing can also be classified according to their progressiveness as progressive

and backtracking. Progressive routing moves the header forward, reserving a new

channel at each routing operation. Backtracking allow the header to backtrack while it is

blocked. Backtracking routing algorithms are mainly used for fault tolerance. In the

scope of adaptive routing, routing algorithms can be classified according to the distance

of routing path as profitable or misrouting. Profitable routing algorithms always deliver

the packet closer to the destination across the network, while misrouting algorithms may

send packet away from the destination. The last taxonomy is according to the number of

paths as completely adaptive or partially adaptive.

18

Figure 8 : A taxonomy for routing algorithms [7]

2.4 Transaction protocol

In network or telecommunication field, protocol is an agree-upon format or a set of

rules for transmitting data between two devices. The protocols determine the type of

error detection or error correction to be used, the data compression methods, or

handshaking convention between sending device and receiving device. It not only

defines how senders and receivers execute the communication transactions, but also

determines how data flows across the network. For on-chip communication, different

protocol options greatly influence the reliability and power consumption issues.

19

Chapter 3

Our Platform and Switch Design

In this chapter, we will describe our platform and switch design in detail. First, we

will remark what future network infrastructure should provide for

communication-driven system design methodology. Following, we will present a

complete description of our platform and switch design. We will also present how to use

the switch to transmit messages between components through illustrations. After that,

we will review how our platform meets these requirements of constructing future

on-chip network.

20

3.1 What network we need

When it comes to constructing the network infrastructure for future system on chip,

the hardest problem is to meet the various communication requirements in different

application domains. Some applications, such as Software Defined Radio and MPEG

codec, can be thread paralleling processing and they just need local and fixed

communication bandwidth. For other applications, there may be irregular traffic load

among communication channels. Here we summarize some basic concepts what future

communication infrastructure should provide in communication-driven system design

flow.

1. Efficient communication

When we consider constructing a network infrastructure for system on chip,

the first task is to balance computing power and communication capability. If we

implement a system by integrating some powerful processing elements that

coordinate with other components, yet we only provide a poor communication

infrastructure. The first problem is that messages transmitted between these

components will waste unnecessary time on transmitting. Lots of jobs assigned

to processing elements will be postponed because the data needed is delayed.

This is a serious problem which not only makes processing elements idle to

degrade the whole system performance, but also make extra power consumption

21

while processing elements wait for data. Thus, we must provide a network

infrastructure that meets high network utilization criticism.

2. Guaranteed throughput

For some applications, real time requirement is the critical issue. Circuit

switching may be a good choice for such kinds of applications because it

provides the transmission with guaranteed throughput.

3. Fault tolerance capability

Even with the advance of semiconductor technology, it still cannot be

promised to fabricate a perfect chip without any error on the chip. This problem

becomes worse in deep-submicron era. When it comes to integrating several

processing elements on a chip, there is better chance that we will find some

manufacturing faults in it. There may be faulty fabrics in memory, wrong

connections between components, or breaking down processing elements. These

issues can be rare but unavoidable. Future network infrastructure should provide

some mechanisms such that the whole system still works smoothly with faulty

components on it.

 In this chapter, we propose a novel platform and switch design as a feasible solution

to these network requirements and as the network infrastructure for the future

communication-driven system design methodology.

22

3.2 Switch architecture

3.2.1 System Scheme

Figure 9 : A 2-D mesh switched network with 2x3 nodes

Our platform uses a 2-D mesh topology to organize on-chip components, as shown in

Figure 9. The main reason for selecting the two dimensional mesh is its acceptable wire

cost, and that it is easy to group components on plane [5][11]. In our platform, the

network is composed of 5-ports switches. Processors use network interface to

communicate within network.

The architecture of 5-ports switch is shown in Figure 10. The switch has four ports

connecting to neighboring switches and one port connecting to local processing element.

Each port is composed of input and output stage, which is shown in Figure 13 and

Figure 14.

23

Figure 10 : Switch architecture

The basic transmission procedure is illustrated in Figure 11. Suppose that a packet is

sent into current switch from the neighboring switch at west direction and will be

delivered forward the neighboring switch at east direction. In current switch, the packet

will be received by input stage of west port first and be stored in memory of output stage

of east port. Once the output channel of east port which is connecting to the neighboring

switch is available, the output stage of east port in current switch will send the packet to

the next switch soon.

24

Figure 11 : Basic transmission procedure

The interface of switch is composed of input and output channel. Each channel

contains Address-line, Data-line and Ack-line. We show that in Figure 12. The

Address-line delivers the input or output address of the packet. The Data-line delivers

data transmitted. And the Ack-line feeds acknowledgement back to source switch or

processing elements to report the result of transmission. Output channel and input

channel are complementary to each other.

Figure 12 : Switch interface

After basic introduction of switch architecture, we explain the architecture of input,

output stage and the organization of memory hierarchy in detail.

25

3.2.1.1 Input stage

Figure 13 : Input stage of switch port

The main duty of input stage of switch port is as follows:

(1) Address controller extracts packet address from input Address-line to decide

where to store input data.

(2) Dispatch input data on input Data-line to the buffer which stores the data.

(3) Collect output acknowledgement from ack-controller of other output stages and

deliver acknowledgement signal on input Ack-line.

26

3.2.1.2 Output stage

Figure 14 : Output stage of switch port

The output stage is composed of following elements:

(1)There are four memory modules in each direction, which are called RAM in Figure

14. They are all one-read/one-write memory architecture. These four memory modules

store input data which is received by other four input stages separately. Take Figure 15

as an example. The data of these packets, which comes from north direction and will

make east turn in current switch, will always be received by input stage of north port and

then be stored in RAM-N of output stage of east port.

27

Figure 15 : Memory duty diagram

 (2) Buffer controller records the size and status of the buffers in the switch, and

asks Arbiter to grant channel privilege.

(3)Ack controller checks status of the buffer which is indicated by input address, and

responses acknowledgement according to the status. For example, in Figure 16, a packet

from south direction is transmitted across current switch to east direction. The

neighboring switch at south direction will first notify the Ack-controller of east port of

current switch to check whether there are available buffer space to store the data or not.

The Ack-controller will response acknowledgement as a result. After receiving

acknowledgement, the neighboring switch at south direction will know whether the data

which is transmitted at this transmission is successfully received by the switch or not.

(4)Arbiter use weighted round robin scheduling to grant channel privilege.

28

Figure 16 : Ack controller

3.2.2 Organization of internal buffers

After brief description of our memory architecture in subsection 3.2.1.2(1), we

present the implementation details in this section. Each memory module, which is called

RAM in Figure 14, can be partitioned into several buffers to provide necessary virtual

channels. As illustrated in Figure 17, we partition each memory module into 4 buffers,

resulting total 16 data buffers in this port, which means a capacity of 16 virtual channels

to route packets. The size of memory will influence the flexibility of partition. For

example, a memory module which has 32 words can be partitioned to two buffers with

16-words, four buffers with 8-words, or even eight buffers with 4-words.

We must highlight that the partition of memory is reconfigurable independently not

only in each switch but also in each port even after fabrication. Memory partition can be

used to trade-off between flexibility of routing packets and communication performance.

29

Assume that there are applications that need lots of long-distance transmissions in our

platform. It will become difficult to route all the packets if we only provide few virtual

channels in each switch. On the contrary, smaller buffer size causes higher failing rate at

transmission and degrades communication performance.

Figure 17 : Organization of memory hierarchy

The organization of memory hierarchy is illustrated in Figure 17. In our platform, we

will give each buffer in the switch a buffer-id. Figure 18 illustrates the meaning of

expression.

Figure 18 : Buffer naming rule

30

For example, the buffer-id S3.E-S{3} is the identification of the buffer that is the third

buffer of the memory module, which stores data from south direction at east port of

switch 3.

In addition to the space for each buffer to store input data, there is another memory

space, called routing table, for each buffer to record a unique buffer-id as output address.

The data stored in current buffer will be sent to the buffer which is identified with this

buffer-id at next successful transaction. As you can figure, the buffer with this unique

buffer-id must be one of the buffers of the neighboring switch, which is connected to

current buffer. By configuring the routing tables of the switches in our platform, we can

provide the needed transmission paths for different applications.

3.3 Transaction

After a detail explanation of our switch architecture and organization of memory

hierarchy, we describe how to form a transmission path and explain transaction

procedure with a distinct illustration here.

3.3.1 Path configuration

In the system design flow that we introduced in section 1.3, after mapping the

applications onto associated processing elements, we have to provide all transmission

paths that the applications need. Assume that the system designers have decided all the

transmission paths of routing packets. The next thing we should do is to configure our

31

platform to form these paths. For each transmission path, we will look for one available

buffer in each switch along the path and reserve these buffers to form a dedicated virtual

channel. Among these buffers that form this dedicated virtual channel, we will

repeatedly assign the buffer-id of the succeeding buffer for current buffer as output

address. By configuring the routing table of the buffers, we can set up this the

transmission path.

Unlike the packet switching, which should decode the packet address, search space to

store the data, and compute the routing path of the packet. We simplify the duty of

switch by the routing table of each buffer.

In Figure 19, assume that each memory in the switch is partitioned into four buffers

with eight words. Supposing that one of the applications in our platform will deliver

messages from processor-1 to processor-2. There is a transmission path from network

interface of processor-1 through switch-1 and switch-2 to processor-2. The transmission

path is established by configuring routing table of buffers in these two switches. First,

we assign buffer-id: S1.S-P{2} for processor 1 as source buffer-id when it want to send

message to processor-2. Secondly, assign buffer-id: S2.L-N{1} for buffer: S1.S-P{2} as

output address and assign a memory address for buffer: S2.L-N{1} as output address.

This buffer chain which is composed of the network interface of processor-1, the buffer

S1.S-P{2}, the buffer S2.L-N{1} and the network interface of processors-2 will form a

dedicated transmission path for packets from processor-1 to processor-2.

32

Figure 19 : Path transaction procedure

3.3.2 Transaction procedure

After the description of setting up transmission path, we illustrate our transaction

procedure in Figure 19. Assume that processor-1 send a packet with 2 words to

processor-2. We mark the words as grey circle-{a} and grey circle-{b} in Figure 19.

First, processor-1 sends word-{a} to input stage of local port of switch-1 and switch-1

stores word-{a} in buffer: S1.S-L{2}, as shown in Figure 19(a). In Figure 19(b), the

output stage of south port of switch-1 send data-{a} to input stage of north port of

switch-2 and switch-2 stores data-{a} in buffer: S2.L-N{1}. At the same time,

processor-1 can send data-{b} to switch-1 and switch-1 stores data-{b} in buffer:

S1.S-L{2} as it did to word-{a}. This shows that we allow pipelined transactions. In the

last step, output stage of local port of switch-2 sends data-{a} to processor-2 and

finishes the transmission of word-{a}. Word-{b} will arrive at processor-2 with the

33

same procedures.

3.4 Transaction protocol

In this section, we explain the detail of transaction procedure between neighboring

switches. In Figure 20, we show the interface diagram between two neighboring

switches. Routing table is a mapping between buffers of east port of switch-1 and

buffers of switch-2. It records the buffer-id of switch-2 as output address of output

buffer in east port of switch-1. For example, the output address of S1.E-N{1} is

S2.E-W{1} in Figure 20.

Figure 20 : Transaction protocol between switches

Assume that at this moment, the buffer S-1.E-N{1} in switch-1 stores data that will be

delivered to buffer S-2.E-W{1} in switch-2. We will show the detailed transaction

34

procedure between these two switches. This is a simple example but shows clearly our

procedure. Our procedure is divided into four steps: channel privilege arbitration, output

address transmission, data transmission, and acknowledgement. Each step will be

finished in one clock cycle. And these transactions can be executed in pipelined manner

to increase throughput.

The detailed transaction is as follows:

Cycle 1: buffer S1.E-N{1} notes the controller that it wants to access the output

channel and urges controller to grant channel privilege to it.

Cycle 2: buffer S1.E-N{1} sends address ‘S2.E-W{1}’ on the Address-line. This

address indicates that this transaction tries to send data into buffer S2.E-W{1}.

Cycle 3: In switch-1, buffer S1.E-N{1} sends data on Data-line. In switch-2, the

Ack-controller sends the acknowledgement (false/true) according to the status

(full/available) of buffer S2.E-W{1} on Ack-line. At the same time, buffer S2.E-W{1}

stores data on input Data-line if it still has memory space, else discards the data.

Cycle 4: according the acknowledgement on Ack-line, buffer S1.E-N{1} in switch-1

will decide whether to keep the data or erase data it stores. If the acknowledgement is

true, it means that this is a successful transmission. Buffer S1.E-N{1} will erase the data

that has been transmitted successfully.

35

3.5 Round robin scheduling

At the output stage of switch port, we implement the arbiter with round robin

scheduling technique to decide which virtual channel can get the privilege to access

output channel and transmit data.[7] In this way, these transmission paths that deliver

data in the same port of switch will use equal bandwidth of output channel. This

technique will avoid the starvation for accessing channel. Note that only these virtual

channels that are really active to transmit data will be scheduled. We won’t guarantee

channel privilege to these buffers that don’t transmit data. This will increase the channel

utilization and prevent unnecessary power consumption.

Figure 21 : Output arbitration

36

Figure 22 : Round robin scheduling

In Figure 21, there are three messages delivered by three virtual channels separately

in output port. We identities these three messages as A, B, C. If we don’t use a round

robin scheduling to transmit data, a short message may be possibly postponed a very

long time before it is transmitted. We show this situation in Figure 22 (without

scheduling). With a round robin scheduling technique, each message can equally

share the channel bandwidth, as shown in Figure 22 (with round robin scheduling).

Moreover, there may be different communication requirements for different

applications. We sometimes need to provide larger bandwidth for some transmission

paths. By assigning different weight to each transmission path, we can provide

flexible bandwidth. We show this in Figure 22 (weighted round robin scheduling). In

this example, buffer A has twice bandwidth than buffer B and buffer C.

37

3.6 Performance

For each transmission between on-chip components, we will reserve buffers in those

switches which are on the transmission path to form a virtual channel connection. With

such dedicated channel and round robin scheduling, we can guarantee the minimum

bandwidth of each transmission. For example, consider that in east port of switch in

Figure 23, there are three paths sharing the bandwidth. We assign them with the same

weight. This means that for each transmission path, they are all guaranteed to use at least

one third bandwidth in this switch.

We make a simple expression:

channel this using paths of weightof sum
bandwidth channel bandwidth minimum guaranteed local =

 (3-1)

Figure 23 : Bandwidth sharing example

If the transmission intervals of these three paths are not overlapped, the switch will

38

provide higher bandwidth to these paths that are transmitting data.

The example in Figure 23 and equation (3-1) describes only local guaranteed

bandwidth expression in one switch. When it comes to the guaranteed bandwidth of

whole transmission path, we need to trace all the local guaranteed bandwidth in those

switches along this transmission path, and choose the smallest guaranteed bandwidth as

the minimum bandwidth of this transmission path. Equation (3-2) and (3-3) describe the

expression.

path ontransmissi on switchth-i of bandwidth guaranteed local LGBWi =

 (3-2)

)LGBW (
path ontransmissi of bandwidth Guaranteed

i
path ontransmissi the on switch i∈

= min

 (3-3)

Assume we provide all the channels of our platform with the same bandwidth, called

standard channel bandwidth (scb), in Figure 24. There is a transmission path from P1 to

P6 through switches S1, S2, S3 and S6. The related LBW of these switches are shown in

the figure. The guaranteed bandwidth of this path is equal to the smallest local

guaranteed bandwidth of these switches, which is LGBWS3.

39

Figure 24 : Bandwidth guaranteed transmission path

3.7 Design overview

In section 3.1, we summarized the requirements that a future communication

infrastructure should provide: efficient communication, guaranteed throughput and fault

tolerance capability. We explain how to use our platform to meet these requirements.

1. Efficient communication

By profiling the applications in the communication-driven system

methodology, we can get some statistics information about communication

traffic of our system. Moreover, we will know the constraints requirements that

different applications need. To avoid the traffic congestion between these

transmission paths that need larger bandwidth, we can alleviate the network load

40

by assign different paths for them. Figure 25 is an example. In (a), if both

transmission paths use the channel connection from S2 – S3 – S6, they will make

traffic contention to degrade the system performance. We can assign different

paths for them in (b) to avoid the overlapping of transmission paths and get

better performance. With proper setting of dedicated transmission paths, we can

provide a efficient communication environment.

Figure 25 : Assigning different path to avoid traffic congestion

2. Guaranteed throughput

With dedicated virtual channel and round robin scheduling, we can provide

guaranteed bandwidth. In section 3.6, we express the equations. In this way, we

can implement a hard real time system.

In addition, the advantage of providing a network infrastructure with

guaranteed throughput is on system modeling. The system designer can predict

41

the worst cast of transmission and estimate the system performance at higher

levels.

3. Fault tolerance capability

Figure 26 : Fault tolerance

With different path assignments, we can easily avoid to use the faulty

components. In Figure 26 (a), originally the transmission path from P1 to P6 will

use the faulty switch, S3. By assigning another transmission path, we can still

transmit data from P1 to P6 correctly and solve this problem. This example

shows that we provide a flexible environment to overcome fabrication faults.

42

Chapter 4

Experimental Results

To verify the functionality and evaluate the communication performance of our

platform, we use a 2-D mesh topology with 4-by-4 nodes as our platform. With routing

path configuration, we allow each processing element to communicate with other

processing elements. Because we only consider evaluating the communication

performance of our platform, individual processing element only provides the function

that generates random traffic here. We write a random pattern generating model to

replace the original processing element. This pattern generator can generate packets with

random length from random source to random destination between random intervals.

43

We implemented our switch design by both Verilog HDL and cycle accuracy C++

model. Verilog version is for traditional cell-based design flow implementation, and C++

model is for platform evaluation in system design flow.

4.1 Definition

We define some terminologies to be used in our experiments.

Latency: The time elapsed from when the packet transmission is initiated until the

packet is received at the destination node.

Maximum Latency: The predicted worst case latency under guaranteed bandwidth.

Normalized Latency: The transmission latency divided by the maximum latency.

Injection Rate: The actual bandwidth of communication traffic divided by the

guaranteed bandwidth of the transmission path.

4.2 Experiment

4.2.1 Functionality of our platform

We verify that our platform can guarantee the minimum bandwidth for each

transmission. In this experiment, we provide each buffer in the intermediate switch with

2 words and evaluate the performance of our platform under different injection rate.

Table 1 shows histogram of the results.

44

First, we observe that even under high injection rate (injection rate = 1), packets in the

network are still delivered to the destination within maximum latency (normalized

latency < 1). The result shows that our platform guarantees the performance even at

worst-case.

Table 1 : Histograms of normalized latency under different injection rate

Secondly, in this table, the histogram of the normalized latency shifts to low as

45

injection rate decreases. It indicates that the average latency decreases as injection rate

decreases. This trend implies that if we can well control the communication to decrease

the traffic load, we can transmit packets faster.

This histogram also shows the trend that the pattern proportion at high injection rate

and low injection rate are more centralized than these at medium injection rate. The

reason for very high injection rate is that almost all of the packets are transmitted with

guaranteed bandwidth and transmission path hardly use extra bandwidth. That makes the

normalized latency at high injection rate close to maximum latency. The reason for low

injection rate is similar. Almost all of the packets can be delivered without contention

and transmission paths can use almost full channel bandwidth. Only few packet

transmissions will overlap and share the same channel bandwidth. That makes the

average latency of transmissions at low injection rate close to minimum latency. On the

contrary, these transmissions at medium injection rate will sometimes come up against

contention and sometimes be transmitted without blockings. This property makes that

the actual bandwidths of these transmission paths vary from guaranteed bandwidth to

full channel bandwidth. It will cause the latency of transmissions become uncertainty.

That’s why the packet proportions at medium injection rate are widely distributed.

46

4.2.2 Different communication quality of our platform

Table 2 Histograms of normalized latency under different buffer size of virtual

channel

Because different applications may need different communication quality, we should

provide different transmission bandwidth. By deciding appropriate buffer size of virtual

channel in our switch, we can provide necessary bandwidth.

In Table 2, we show the histograms of normalized latency under different buffer size

of virtual channels. A trend is clear observed that the average normalized latency

decreases as the buffer size increases. This means that if the system on our platform

47

needs some transmission paths that need large channel bandwidth, we can simply

reconfigure the partition of memory in these switches on these transmission paths to

accomplish these demands.

4.3 Synthesis report

We have implemented a switch design in Verilog and have synthesized it. We

implement the queue in the switch with 32 words, and each word is four Bytes.

 We use TSMC 0.25um technology. The synthesis report shows that our switch design

can work at 185MHz (clock cycle=5.4ns). The area of our switch design is about 3.5

mm^2. The main area is used on memory modules, which is about 2.7mm^2.

Table 3 : Synthesis report

[Technology]

TSMC .25um 1p 4m

[Area] (unit: um^2)

Combinational area: 529199

Non-combinational area: 2986619 (RAM module ~270000)

Total cell area: 3515726

[Timing]

Clock cycle: 5.4ns (185MHz)

48

Chapter 5

Conclusions and Future Work

We introduce a communication-driven design methodology and related

communication infrastructure. By considering computing, communication, and memory

at the same time, we proposed a novel switch design for on-chip communication. This

infrastructure can be configured as circuit-switching, packet-switching or dedicated bus

for different applications. With dedicated virtual channels and round robin scheduling,

we can guarantee the minimum channel bandwidth for transmission paths. By using

pipeline bus as basic communication mechanism, the system can transfer data in

pipeline fashion to increase performance. The experimental results indicate that our

platform can guarantee the bandwidth and efficiently transmit data.

49

There are still some problems unsolved. Deciding the optimal buffer size in the

switches is the trade-off between flexibility and cost. It depends on application features

and needs the top down design flow to optimize it. The selection of transmission paths

will be another problem to balance the communication and computing power.

50

Reference
[1] Pierre Guerrier and Alain Greiner, “A generic architecture for on-chip

packet-switched interconnections,” Proceedings of the conference on Design,

Automation and Test in Europe, 2000.

[2] William J. Dally and Brian Towles, "Route packets, not wires: on-chip

interconnection networks," Proceedings of the Design Automation Conference,

2001.

[3] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S.Malik, J. Rabaey, and A.

Sangiovanni-Vincentelli, ”Addressing the system-on-chip interconnect woes

through communication-based design,” Proceedings of the Design Automation

Conference, 2001.

[4] Luca Benini and Giovanni De Micheli, “Networks on chips: a new SoC paradigm,”

IEEE Computer magazine, 2002.

[5] Daniel Wiklund and Dake Liu, “SoCBUS: switched network on chip for hard real

timing embedded systems,” International Parallel and Distributed Processing

Symposium, 2003.

[6] E. Rijpkema et al., “Trade offs in the design of a router with both guaranteed and

best-effort services for networks on chip,” Proceedings of the conference on Design,

Automation and Test in Europe, 2003.

51

[7] Jose Duato, Sudhakar Yalamanchili, and Lionel Ni, Interconnection Networks: an

engineering approach, Morgan Kaufmann, 2003.

[8] Axel Jantsch , Hannu Tenhunen , Network on Chip , KLUWER Academic

Publishers , 2003.

[9] http://public.itrs.net/

[10] Marco E. Kreutz, Luigi Carro, Cesar A. Zeferino, Altamiro A. Susin,

“Communication Architecture for System-on-Chip”, Proceedings of Integrated

Circuits and Systems Design, 2003.

[11] Terry Tao Ye, On-chip, Multiprocessor communication network design and

analysis, Stanford University, 2003.

[12] Halsall, Fred, Data communications, computer networks, and open systems ,

Addison-Wesley, 1992.

[13] www.arm.com

[14] Kanishka Lahiri, Anand Raghunathan, Sujit Dey, “Efficient Exploration of the SoC

Communication Architecture Design Space”, Proceedings of the IEEE/ACM

international conference on Computer-aided design , 2000.

[15] Kanishka Lahiri, Anand Raghunathan, Sujit Dey, “Evaluation of the

Traffic-Performance Characteristics of System-on-Chip Communication

52

Architectures”, Proceedings of the The 14th International Conference on VLSI

Design, 2001.

[16] S. Y. Kung, VLSI Array Processors, Prentice-Hall, 1988.

[17] W, Dally and J. Poulton, Digital Systems Engineering, Cambridge University Press,

1998.

53

Vita
Pao-Jui Huang was born in Changhu on May 30, 1980. He received the B.S degree in

Electronics Engineering from National Tsing Hua University in June 2002. From

September 2002 to July 2004, he was a graduate student of Professor Jing-Yang Jou in

the institute of Electronics, National Chiao Tung University. His research was related to

Electronic Design Automation (EDA). He received the M.S degree in Electronics

Engineering from National Chiao Tung University in July 2004.

