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Abstract

In this paper, an analytical solution of the Poisson equation for double-gate metal-semiconductor-oxide field effect transistor
(MOSFET) is presented, where explicit surface potential is derived so that the whole solution is fully analytical. Based on
approximations of potential distribution, our solution scheme successfully takes the effect of doping concentration in each region.
It provides an accurate description for partially and fully depleted MOSFET devices in different regions of operation. Comparison
with numerical data shows that the solution gives good approximations of potential for MOSFETs under different biases and
geometry configurations. The solution can be applied to estimate classical and quantum electron density of nanoscale double-gate
MOSFETs.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Advanced integrated circuit (IC) technology imposes new challenges for semiconductor devices [1–13]. Nowadays,
double-gate metal-oxide-semiconductor field effect transistors (DG-MOSFET) have attracted much attention due
to their improved physical properties compared with the single-gate MOSFETs [1–4,9,12]. One of the important
questions is how to analytically calculate the characteristics of a device in an efficient and accurate way, especially
for large scale IC simulation. Among the characteristics of a device, the potential dominates the main mechanism of
operation of a device. As the potential is obtained, carrier density and transport current can be derived accordingly.
Unfortunately, many solution approaches to the nonlinear Poisson equation were based on very strong assumptions
and simplifications; therefore, they cannot be applied to simulate DG-MOSFET circuits accurately [3–5].

Therefore, the purpose of this work is to introduce a new one-dimensional (1-D) closed-form analytical
approximation of potential distribution in the silicon film of a DG-MOSFET in different regions of operation, such as
the depletion, the weak inversion, and the strong inversion. The solution is derived based on the physical mechanism

∗ Corresponding address: P.O. BOX 25-178, Hsinchu 300, Taiwan.
E-mail address: ymli@faculty.nctu.edu.tw (Y. Li).

0895-7177/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mcm.2006.12.018

http://www.elsevier.com/locate/mcm
mailto:ymli@faculty.nctu.edu.tw
http://dx.doi.org/10.1016/j.mcm.2006.12.018


S.-C. Lo et al. / Mathematical and Computer Modelling 46 (2007) 180–188 181

Fig. 1. An illustration of the examined DG-MOSFET.

in each region. To make the solution be a fully analytical one, the explicit form of surface potential is also derived by
integrating the continuous condition. A comparison with numerical data shows that the solution gives an accurate
approximation of potential distribution for a nanoscale DG-MOSFET in all regions of operation. The analytical
potential can be incorporated into a quantum correction formula to account for the quantum mechanical effect on
the electron density.

The remaining content of this paper is as follows. In Section 2, the nonlinear Poisson equation is presented
firstly and an analytical solution is derived under several cases and approximations. Also, the explicit equation of
surface potential is derived in this section. Computational concerns are given in Section 3, where results of analytical
solution are compared with the numerical results. The analytical potential is further incorporated into a quantum
correction formula to explore the quantum mechanical effect on the electron density in Section 4. Section 5 draws the
conclusions.

2. The nonlinear Poisson equation and analytical solution

The investigated 1-D symmetric DG-MOSFET is illustrated in Fig. 1. The Poisson equation governs the operation
of semiconductor devices. It comes from Maxwell’s first equation, which in turn is based on Coulomb’s law for
electrostatic force of a charge distribution. The Poisson equation is given as

1φ = −q (p − n + Nd − Na) /εsi, (1)

where 1 is the Laplace operator, φ is potential, εsi is dielectric constant of silicon, q is electron charge, p (x) is
density of hole, n (x) is density of electron, Na is doping concentration of acceptor impurity and Nd is doping
concentration of donor impurity. In the silicon, p (x) = Na and n (x) =

(
n2

i /Na
)
, where ni is intrinsic concentration.

With the Boltzmann relationship, we have p (x) = Na exp (−qφ/Vt ) and n (x) =
(
n2

i /Na
)

exp (qφ/Vt ), where Vt is
thermal voltage, which is considered as a constant. Therefore, the Poisson equation and the boundary conditions can
be rewritten as
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where φs is surface potential. VG is gate voltage and VFB is flat-band voltage. tox is thickness of oxide, tsi is thickness
of silicon film and Cox is capacitance of oxide. Since the device is symmetric, the problem is rewritten as
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(3)

where ∂φ/∂x = 0 at x = 0 is obtained from the assumption of symmetric applied bias [4] and φb is potential
at the center of the silicon region, i.e., φ (x = 0) = φb. As Eq. (3) is solved, the solution of the remaining part(
x = 0 to tsi/2

)
is also obtained by the symmetric property.
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Fig. 2. Variation of total charge density in silicon as a function of surface potential φs for a MOS device.

2.1. Solution of Poisson equation

Multiplying (∂φ/∂x) dx on both sides of the Poisson equation of Eq. (3) and integrating from the surface toward
the center of the silicon film, i.e., x = −tsi/2 to 0, we have

∂φ

∂x
= ±

{
2q Na

εsi

{[
φ − φb + Vt exp

(
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. (4)

Eq. (4) is a nonlinear equation, which involves polynomial and exponential functions. It needs to be simplified so as
to derive its solution. According to the operating property of semiconductor devices, the solution can be discussed in
two regions: (a) depletion and weak inversion region and (b) strong inversion region, which are illustrated in Fig. 2.

Let φ f = Vt ln (Na/ni ). For the case of the depletion and weak inversion, we assume 0 < φ < 2φ f and φ � Vt ,
i.e., Vt exp (−φb/Vt ) − Vt exp (−φ/Vt ) ≈ 0 and exp

((
φ − 2φ f

)
/Vt

)
− exp

((
φb − 2φ f

)
/Vt

)
≈ 0. Eq. (2) can be

approximated and rewritten as follows
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The positive sign is for 0 < x < tsi/2 and the negative sign is for −tsi/2 < x < 0. Then, another integration of Eq. (5)
yields
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for 0 < x < tsi/2. Next, for the case of the strong inversion, we assume 0 < Vt � φ − 2φ f , i.e., Vt exp (−φb/Vt ) −

Vt exp (−φ/Vt ) ≈ 0, exp (φ/Vt )−exp (φb/Vt ) � φb−φ and exp
((

φ − 2φ f
)
/Vt

)
−exp

((
φb − 2φ f

)
/Vt

)
� φ−φb.

Eq. (4) can be approximated and rewritten as follows
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Also, the positive sign is for 0 < x < tsi/2 and the negative sign is for −tsi/2 < x < 0. Then, another integration of
Eq. (8) gives
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exp
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x

2
 , (9)

for −tsi/2 < x < tsi/2. Eqs. (6), (7) and (9) give the general solution of potential under weak inversion and strong
inversion, respectively. However, the surface potential is still unknown. To obtain a completely analytical solution of
the Poisson equation, the explicit function of surface potential is needed.

2.2. Explicit expression of surface potential

Derivation of surface potential (φs) is just the same as it is for the potential (φ). Firstly, multiplying (∂φ/∂x) dx on
both sides of the Poisson equation of Eq. (3) from the surface toward the center of the silicon film, i.e., x = −tsi/2 to
0, and substituting the boundary into it yields
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2
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where γ =
√

2qεsi Na/Cox and φ f = Vt ln (Na/ni ). To solve φs , another expression relating φs and φb is required.
The relation is obtained from the condition of full depletion for body charge and the simplification of discretization
of Eq. (3) [6–8]. According to the condition of full depletion for body charge Qb = Coxγ

√
φs − φb ≤ q Na tsi/2,

φb is given as φs − λtsiCox (VG − VFB − φs) /2εsi − Vxd, where λ is a fitting parameter and Vxd = q Na t2
si/8εsi. The

critical voltage VG = VC at which is changed from partially depleted (PD) to the fully depleted (FD) device needs to
be calculated before deriving the analytical solution. It will be derived from the condition that φb = 0 and φs ≈ Vxd.
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Also, the analytical solution of surface potential is discussed in the (a) depletion and weak inversion and (b) strong
inversion regions.

Firstly, surface potential of PD devices is discussed, i.e., φb = 0. For the case of the depletion and weak inversion,
Eq. (10) can be approximated and solved as

φ
p
sd = VG − VFB + γ 2/2 − γ

√
γ 2/4 + VG − VFB + A, (12)

where A = Vt
(
1 + exp

(
−2φ f /Vt

))
and φ

p
sd is the surface potential of a PD device in the depletion and weak

inversion region. According to the studies [7,8], surface potential of the strong inversion region is given by

φ
p
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]/
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}
, (13)

where φ
p
si is the surface potential of a PD device in the strong inversion region. fφ is empirically given as

fφ = (2φ f + φ
p
sd −

√
(φ

p
sd − 2φ f )2 + 4δ2)/2 and δ is a calibrating parameter. As mentioned above, the surface
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potential equation can be linked by the following smooth function [3,4], which is given as

φ
p
st = φ

p
si − Vt ln

{
1 + exp

[
(φ

p
si − φ

p
sd)/Vt

]}
, (14)

where φ
p
st is the surface potential of a partially depleted DG-MOSFET in all operating regions.

Next, surface potential of a fully depleted device is derived. For the case of the depletion and weak inversion,
Eq. (10) can be approximated and solved as

φ
f

sd = VG − VFB − γ
√

Vxd, (15)

where φ
f

sd is the surface potential of a FD device in the depletion and weak inversion region. For the case of the strong
inversion, the surface potential is given as

φ
f

si = 2φ f + Vt ln{[(VG − VFB − fφ)2/γ 2
− Vxd]/Vt [1 − exp(−Vxd/Vt )]}, (16)

where φ
f

si is the surface potential of a FD device in the strong inversion region. Also, the surface potential equation
can be linked by the following smooth function, which is given as

φ
f
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f
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{

1 + exp
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f
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, (17)

where φ
f

st is the surface potential of a fully depleted DG-MOSFET in all operating regions. If a device can change the
operation mode from PD device to FD device as VG is increased, then the smooth function is employed to link the
operation mode [4]:

φm
s =

φ
p
st

1 + l1 exp [(VG − VC ) /n1Vt ]
+

φ
f

st

1 + l1 exp [− (VG − VC ) /n1Vt ]
, (18)

where l1 and n1 are fitting parameters and φm
s is the unified surface potential.

3. Computational calibration and numerical results

3.1. Computational calibration

Since the solution is derived under the simplified assumption based on different operating regions, the error between
the exact solution and the analytical solution should be subject to further minimization. Therefore, an adjustment term
and fitting parameters are considered after deriving the solution of the Poisson equation and the explicit function of
surface potential. By comparing Eq. (4) with Eqs. (5) and (8), we know that the slope of Eq. (4) is larger than or
equal to the slope of Eqs. (5) and (8) for x > 0. The slope of Eq. (4) is smaller than or equal to the slope of Eqs.
(5) and (8) for x < 0. An adjustment function is introduced to reduce the solution error. According to our analyses,
the adjustment function, Ẽ (x) = ax8

+ bx2, shows a good approximation. a and b are fitting parameters. Then, the
modified analytical solution is

φ̃ (x) = φ (x) − Ẽ (x) . (19)

3.2. Results and discussion

In this study, double-gate NMOSFETs with different gate oxide thickness (tox = 2, 3 and 4 nm), silicon film
thickness (tsi = 20, 30 and 40 nm), and doping concentration (Na = 1016, 1017 and 1018 cm−3) are simulated for
different gate applied bias (VG = 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0 V). Under the given scenario, DG-MOSFETs will
be fully depleted and surface potential is estimated by Eq. (16). From the results, the analytical solution of surface
potential has an approximation with error, which is smaller than 0.005% in depletion and weak inversion region. In
the strong inversion region, a larger error, which is smaller than 0.01%, is obtained. The results, which are given
in Table 1, show that the explicit function gives good approximations of surface potential. Because the potential
distribution varies widely, the approximated error in the strong inversion region is larger than the approximated error



S.-C. Lo et al. / Mathematical and Computer Modelling 46 (2007) 180–188 185

Table 1
Numerical and analytical surface potentials of the simulated device

Numerical Analytical Difference Error (C)/(A)

(A) (B) (C) = |(B) − (A)| (%)

VG = 0.05 V 0.940459 0.9405 0.000041 0.00436
VG = 0.1 V 0.953597 0.953588 0.000009 0.00094
VG = 0.7 V 1.03872 1.03866 0.00006 0.00578
VG = 1.0 V 1.06509 1.06498 0.00011 0.010

Fig. 3. Comparison of the numerical (solid lines) and analytical (symbols) potentials for the DG-MOSFET with respect to different VG , where
tox = 2 nm, tsi = 20 nm and Na = 1017 cm−3.

Table 2
Relationship among the fitting parameters, Na , tox, tsi and VG

Parameter Na tox tsi VG

a ∝1/Na ∝1/tox ∝tsi ∝VG
b ∝Na ∝1/tox ∝1/tsi ∝VG

in the depletion and weak inversion region. The differentiation of the analytical solution of surface potential is smaller
than the actual distribution. With the explicit surface potential, potential distributions are simulated and compared
with numerical approximations, which are simulated by an iterative algorithm. The numerical program is calibrated
by the measured data and considered as exact. Figs. 3–6 illustrate the comparison of numerical and analytical results.
Different profiles of devices are compared to show the accuracy of the analytical solution presented in this work.

Fig. 3 examines the simulated results of DG-MOSFET (tox = 2 nm, tsi = 20 nm, and Na = 1017 cm−3) under
different gate applied bias (VG = 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0 V). It shows that the analytical results are in good
agreement with the numerical results. The maximal error is about 0.7% and the average error is about 0.4%. Thus, the
analytical solution is accurate enough to apply to circuit simulation. Fig. 4 illustrates the application of the analytical
solution to simulate devices with different oxide thickness for tsi = 20 nm and Na = 1017 cm−3. The error between
the analytical and numerical solution is within 2%. Potential of DG-MOSFETs with different silicon thickness is
simulated for tox = 2 nm and Na = 1017 cm−3 numerically and analytically in Fig. 5. We have found that the
error fluctuations are all less than 4%. Fig. 6 illustrates the simulated results of DG-MOSFET with different doping
concentration for tsi = 20 nm and tox = 2 nm. The error is within 2%. The relation between parameters and doping
concentration, oxide thickness, channel thickness and gate voltage are given in Table 2. From the figures, the error
increases at the top and bottom surface with the gate bias.

According to the results, the approximations of the analytical solution also present good agreement with the
numerical results. The maximal error is about 4% and the average error is about 1%. If we go a step further to examine
the simulated data, the maximal error always occurs near the surface of the channel in all cases. From Eq. (4), the first
derivative of potential varies largely near the surface of the channel. However, the approximation, which is determined
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Fig. 4. Comparison of the numerical and analytical potentials for the DG-MOSFET with respect to different tox, where tsi = 20 nm and
Na = 1017 cm−3. The left figure is with VG = 0.1 V and the right one is with VG = 1.0 V.

Fig. 5. Comparison of the numerical and analytical potentials for the DG-MOSFET with respect to different tsi, where tox = 2 nm and
Na = 1017 cm−3. The left figure is with VG = 0.1 V and the right one is with VG = 1.0 V.

Fig. 6. Comparison of the numerical and analytical potentials for the DG-MOSFET with respect to different Na , where tsi = 20 nm and tox = 2 nm.
The left figure is with VG = 0.1 V and the right one is with VG = 1.0 V.

by Eqs. (5) and (8), is smaller than that. Fortunately, the error is small enough to be neglected without influencing the
accuracy of circuit simulation and estimating electron density. In addition, the solution is accurate enough to describe
the potential distribution of nanoscale DG-MOSFETs. It can be a helpful equation while simulating the characteristics
of DG-MOSFETs so as to design advanced devices.
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Fig. 7. The classical (left figure) and quantum corrected (right figure) electron densities using the derived potential solution. Comparison of the
numerical and analytical results for the DG-MOSFET with respect to different VG , where Na = 1017 cm−3, tox = 2 nm and tsi = 20 nm.

Fig. 8. The classical (left figure) and quantum corrected (right figure) electron density using the derived potential solution. Comparison of the
numerical and analytical results for the DG-MOSFET with respect to different VG , where Na = 1017 cm−3, tox = 2 nm and tsi = 5 nm.

4. Application to quantum correction of electron density

As mentioned above, the analytical solution presents accurate results and time-efficient solving methods for the
potential of DG-MOSFETs. Since classical potential of a device is obtained, with Boltzmann statistics electron density
can be calculated by the following formula

nCL = ni exp (q (φ − φn) /kT ) . (20)

In Eq. (20), nCL is classical electron density, φn is quasi-Fermi potential of electron and k is Boltzmann’s constant.
Furthermore, the electron density with quantum effect is obtained by coupling the quantum correction model [9–13]
with the classical electron density. The unified quantum correction model is given as

nQM = a0nCL

[
1 − exp

(
−a1ξ

2

(
1 −

1
2

(
ξ

ξ0

)2
)

− a2ξ
3

)]
, (21)

where nQM is quantum electron density, a0, a1 and a2 are fitting parameters, ξ0 = Tsi/2λth, ξ = x/λth and
λth =

(
h̄/2 × 9.11 × 10−31kT

)
. h̄ is the reduced Planck constant. Classical and quantum electron density of a DG-

MOSFET with tox = 2 nm, tsi = 20 nm and Na = 1017 cm−3 are shown in Fig. 7. Examining the application
of the analytical solution to nanoscale devices, we simulate a tsi = 5 nm, tox = 2 nm, Na = 1017 cm−3 DG-
MOSFET. Fig. 8 shows the classical and quantum electron density. The analytical results show good agreement with
the numerical results [9–13]. Therefore, the analytical solution of the Poisson equation provides a way to simulate
nanoscale DG-MOSFET.
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5. Conclusions

In this study, a 1-D analytical solution of the Poisson equation for symmetric DG-MOSFET is derived successfully.
The solution works for PD and FD DG-MOSFET devices with different doping concentration. According to the
numerical comparison, the results are accurate under different applied gate bias and device parameters. The error
is within 4% in all simulated scenarios. We note that the analytical solution can be incorporated into a quantum
correction model for the numerical simulation of nanoscale DG-MOSFETs. We are currently deriving the solution for
the case of asymmetric DG-MOSFETs.
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