
- 1 -

Chapter 1

Introduction

Design techniques of low power devices, circuits, architectures, and algorithms in the

complex system-on-chip (SoC) design are becoming important [1.1]. As technology

move into deep submicron and nano-scaled feature size, leakage power will become

comparable to dynamic powering in the future years [1.2]. Dynamic power is also

increasing and is still the major source. The most effective way of low power is to reduce

the supply voltage. The supply voltage which has been scaled aggressively is necessary to

reduce the dynamic power and the leakage power in both the active and standby modes of

operation.

In the increasing demand of portable devices such as cellular phone, laptops, and

PDAs, battery-life is the major concern. Generally, the DSP processor is the key

component of portable system, and thus consumes large amount of energy or power from

battery. The Multiplier-Accumulator (MAC) unit is the major component of DSP

processors, and it consumes nearly one half powers [2.10] of DSP core. Thus, the power

minimization technique for datapath, the MAC unit, is our focus throughput this thesis.

In the area of fast VLSI arithmetic design, there is a significant disconnect between

the algorithms and physical design. How do we estimate speed and efficiency of our

algorithm? What criteria should we use when we develop a new algorithm? How does

power enter into these criteria? We want to estimate as close as possible to the physical

design results. Therefore, a simple tool which can evaluate speed and power of different

design trade-off for a given technology is needed. Logic effort, a method for designing

fast CMOS circuits, is a simple model can be used to estimate delay efficiently.

Energy-delay sensitivity, a metric for trading power for speed, indicates that how much

energy it would cost to increase speed. These two simple tools provide good estimation of

speed and fine tradeoffs for low-power.

The overview of MACs will be presented in the beginning of chapter 2. The high-

speed circuit design techniques and low-power methods will be discussed in the

remainder of chapter 2. Logic effort design techniques will be discussed which including

hand calculation estimation and calibrating method of the model for dedicated fabrication

process. Then, the low power techniques focus on datapath structure will be introduced, it

categorized which low power design technique is suitable for either design time or run

time. The analytical formula of energy-delay sensitivity will be discussed for knowing the

trend of power-speed curve on the power delay design space. In order to achieve

- 2 -

optimum point of power and delay, circuit level optimization based on this trend to adjust

tuning variables to move the design point from normal to optimum.

High-speed multiplier-accumulator micro-architecture design will be implemented in

chapter 3. Cell based IC design flow is taken as a platform to synthesize the efficient

algorithm for comparison. Four recoding schemes, two partial product matrix topologies,

as well as three high speed parallel adders will be described in Verilog-HDL gate level.

These Verilog-HDL designs are optimized and mapped into TSMC 0.13µm standard cell

library using Synopsys Design Compiler. The area, delay, and power consumption will be

compared based on the report of the design compiler.

In chapter 4, the low power circuit level implementations of MACs are implemented.

Low power Booth recoder design via transistor sizing is presented. Various XOR gate

designs are characterized by logical effort and their power consumption are compared.

Efficient computation kernels of column compression tree topology, the 5-2 compressors,

are designed ranging from the circuit topology to the circuit style. The proposed

power-speed tradeoffs method will be used in column compression stage and final

addition stage to increase speed while save power.

In chapter 5, micro-architectural optimization techniques are discussed. A MAC

functional unit for general DSP processors is described. Pipelining and parallelism are

two major techniques for micro-architectural optimization. In the pipelining technique,

the relation between pipeline stage number and supply voltage is very important. More

pipeline stages results lower supply voltage and power saving under the same delay

constrain. On the other hand, parallelism exploitation of MAC in DSP processors is a

usual way to increases performance. VLIW architecture based DSP processors embeds

SIMD feature instructions is a trend for state of the art DSP processors. Variable precision

and variable pipelined reconfigurable MAC are discussed in this chapter.

- 3 -

Chapter2

Power-Speed Tradeoffs in Datapath Structures

In this chapter, we explored the tradeoffs between power and speed with a fixed

architecture of the datapath. To effectively optimize the power consumption of a datapath

while maintaining speed is crucial to first identify the critical path on it. Based on a

simple delay model, named logical effort, which is suitable for designing fast CMOS

circuits, the critical path of the datapath will be obtained. Under a fixed delay constrain,

power consumption can be minimized through the choice of the supply voltage, transistor

threshold, and device size.

 At first, Sec. 2.1 is the overview of MAC. In Sec. 2.2, the method of designing fast

CMOS circuits will be described. Next, the components of power consumption and the

low-power technique of implementing datapath are discussed in Sec. 2.3. Finally, Sec. 2.4

presents theoretical studies of true power minimization for designing a datapath. For Sec.

2.5, we make some conclusions of this chapter.

2.1 Overview of Multiplier-Accumulator Unit

Within either DSP processors or RISC processors, there is a MAC unit that function

as computation kernel to perform multiplications and accumulations within given

latencies. For portable applications, the primary design challenge of MAC in the DSP

processors is the limited power consumption while maintaining acceptable latencies.

There have been reported a number of works on low latency and low power MAC design

and implementation, we categorized it into two abstractions levels, the architectural level

and the circuit level:

In the architecture level, [2.1], [2.2], and [2.3] presented high speed MAC design.

Reducing transition activities [2.4], programmable hardware to deactivate the unused cell

of MAC [2.5], and redundant binary representation of MAC [2.6], are ways to minimize

active power consumption of a MAC unit.

In the circuit level, [2.7], [2.8], and [2.9] use proposed XOR-XNOR gates to design

high speed and low power MAC. [2.3], [2.10], and [2.11], proposed high speed and low

power compressors as the kernels of MAC. New logic style, named SRPL [2.12], is used

to design pass transistor logic to enhance its speed, to restore the voltage level and to

- 4 -

reduce the power consumption of MAC.

In this work, we attempt to develop a high speed micro-architecture MAC based on

[2.3], and minimize its power consumption. According to this high speed MAC

architecture, how to minimize the power consumption in this datapath structure is our

ultimate objective. For high speed MAC unit design, logical effort [2.13], a method for

designing fast CMOS circuits, will be used to achieve minimum delay under fixed

micro-architecture. For designing low power, an effective methodology, named

true-power minimization [2.14] [2.21], which is a sensitivity-based power-speed tradeoff

methodology will be exploited to minimize the power consumption of high speed MAC

unit.

2.2 Logical Effort

Typical datapath designs are either latency or throughput constrained. A

latency-constrained design has to finish computation by a given deadline while

throughput-constrained designs must maintain a required data throughput. The

architectural optimization techniques, such as pipelining or parallelization, are works

effectively for the throughput-constrained designs. However, with a fixed architecture,

the circuit level optimization techniques, such as logical effort, are applicable to the

latency-constrained designs.

2.2.1 Model of Logic Gate

Logical Effort is founded on a simple model of the delay through CMOS inverter. It

describes delays caused by the capacitive load from which the logic gate drives and by

the topology of the logic gate. This section derived an electrical model that approximated

the behavior of a CMOS logic gate is shown in Figure 2.1. The logic gate is modeled by

four quantities: Cin, Rui, Rdi, and Cpi, which are determined by the particular logic gate

function, the performance of transistors in that particular CMOS process, and so on. In

order to obtain the information of a particular logic gate, we scale the widths of all

transistors in the template circuit by a factor a and leaving the transistor lengths

unchanged. Figure 2.1 shows the expressions which are used to represent the relationship

between the quantities of model and the properties of template circuit. Scaling a

transistor’s width of template circuit increases its gate capacitance by the scale factor a,

but decreases its resistances by the scaled factor.

 The delay in a logic gate modeled by logic effort is a RC delay which charging and

discharging the capacitance to the output capacitance can be derived following.

)(piouti CCRd += κ (2.1)

- 5 -

))(()()(pt
t

in

out
in

t C
R

C

C
C

R α
α

κ
α

κ +=

ptt

in

out
tt CR

C

C
CR κκ +=)(

)(
invinv

ptt

in

out

invinv

tt
invinv

CR

CR

C

C

CR

CR
CR += κ

where ? is a constant characteristic of the fabrication process

(2.3)

(2.4)

(2.2)

- 6 -

We can rewrite Equation 2.4 to obtain the key equations of logical effort:

)()(pfpghd +=+= ττ

invinvCRκτ = ,
invinv

tt

CR

CR
g = ,

in

out

C

C
h = ,

invinv

ptt

CR

CR
p =

where Cinv is the input capacitance of the inverter template circuit, and Rinv is the

resistance of the pullup or pulldown transistor in the inverter template circuit.

Equation 2.5 shows the delay of a logic gate is composed of three components, the

first is called the parasitic delay p, the second is called the effort delay or stage effort f,

the third is a unit delay t . The parasitic delay p represents the intrinsic delay of the gate

due to its internal capacitance which is almost independent of the size of the transistors.

The effort delay f dependents on the output load and on the input driving properties of the

gate which introduce two related terms for these effects: the electrical effort h

characterized the output load, while the logical g captures input driving properties of the

logic gate. The effort delay of the logic gates is the product of these two factors. The

process parameter t represents the speed of the basic transistors. Equation 2.6 presents

these delay components of logic gate in terms of the delay quantity of CMOS inverter.

According to this equation, if an inverter is served as template circuit for evaluating this

delay model, the logical effort will be 1. Therefore, an inverter driving a copy of itself,

the effort delay will also be 1.

The delay model of a logic gate, as presented in Equation 2.5, is linear model. Figure

2.2 shows this linear relationship graphically: the delay is plotted as a function of the

electrical effort for an inverter and for a two input NAND gate. The slope of the line is

the logical effort of gate; its intercept is the intrinsic delay. This graph shows that we can

adjust the delay by adjust the logical effort (by transistor sizing) or by choosing a logic

gate with different logical effort. Once a gate type is fixed, the parasitic delay is then

fixed, and later optimization procedure will not change this delay component.

2.2.2 Multistage Logic Networks

The total delay of a path through a combinatorial logic block can be expressed as

()∑∑
==

+==
N

j

jjjp

N

j

jpp phgttt
1

0

1

,

By findingN-1 partial derivatives and setting them to zero, we find that each stage should

bear the same gate effort:

(2.7)

(2.6)

(2.5)

- 7 -

NN gfgfgf === K2211

The logical effort along a path in the network was obtained by multiplying the logical

efforts of all the gates along the path. We use the uppercase G to denote the logical effort

of dedicated path.

igG ∏=

The electrical effort along a path through a network is the ratio of the load capacitance of

the last gate and the input capacitance of the first stage:

in

out

C

C
H =

When there is a loading on the arbitrary node (except output node) off the path we are

analyzing, we define the branching effort b of a logic gate on a path to take into account

this off-path loading:

pathon

pathoffpathon

C

CC
b

−

−− +
=

(2.9)

(2.10)

(2.11)

(2.8)

- 8 -

where Con-path is the load capacitance along the path we are analyzing and Coff-path

is the capacitance off the path we are analyzing.

The branching effort along an entire path B is then defined as the product as the product

of the branching effort at each stages along the path.

ibB Π=

The total path effort H can be defined as follow:

GBHF =

According to the result of total path H, the best number of stages N can be determined by

look up Table 2.1. The path delay will be minimum when each stage in the path bears the

same stage effort. This minimum delay is achieved when the stage effort as follow:

N

ii Fhgf /1==
∧

where the hat over the symbol indicate that achieve minimum delay.

∧
D

(2.12)

(2.13)

(2.14)

- 9 -

The delay D is the sum of the delays of each stage in the path can be represents as

follow:

PDphgdD Fiiii +=+== ∑∑∑

Combining these equations, from Equations 2.9 to Equations 2.15, we obtain a method of

logical effort for designing fast combinational CMOS circuits, which is an expression for

the minimum delay along a path:

PNFD N +=
∧

/1

From a simple computation of Equation 2.16, calculate its logical, branching, and

electrical efforts, we can obtain an estimate of the minimum delay of a logic network.

Equation 2.14 shows the best number of stages of a logic network, in order to achieve

minimum delay along a path we must equalize the effort delay kept by each stage on a

path, and choose appropriate transistor sizes for each stage of logic gate along the path.

Equation 2.14 shows that each stage should be designed with electrical effort:

i

N

i
g

F
h

/1

=
∧

From Equation 2.7 we can determine the transistor sizes of gate along a path. Start at the

last stage and evaluate backward by applying the capacitance transformation:

∧=
f

Cg
C outii

ini

Therefore, the input capacitance of each gate can be determined and achieve the goal by

transistor sizing to optimize the speed of a logic network.

2.2.3 Calculating Logical Effort and Calibrating the Model

Logical Effort Calculation

Logical effort describes the driving capability of a gate relative to a reference CMOS

inverter; it is defined as the ratio of its input capacitance to that of a CMOS inverter

which delivers the same output current. This definition provides a convenient method for

calculating the logical effort of a logic gate.

inv

ib

inv

b
b

C

C

C

C
g

∑==

where b represents an input group of a gate, Cb is the combined input capacitance of

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

- 10 -

every signal in the input group b, Cinv is the input capacitance of a CMOS inverter.

Figure 2.3 shows an example to calculate logical effort of logic gates. Each gate has

the same driving characteristics as an inverter with a pulldown of width 1 and pullup

width 2. We calculate the logical effort of the NAND gate in Figure 2.3 by counting gate

capacitance from the circuit schematic. The input capacitance of one input signal, input a

or input b, is the sum of the width of the pulldone transistors and pullup transistors, 2 + 2

= 4. The input capacitance of the inverter is Cinv = 1 + 2 = 3. According to Equation 2.19,

the logical effort for each input of two-input NAND gate is g = 4/3. Therefore, we

applying this method to calculate the logical effort for each input of two-input NOR gate

is g = 5/3.

Parasitic Delay Estimation

The major contribution to the parasitic capacitance is the capacitance of the diffusion

region of transistors connected to the output signal. We defined the parasitic delay as the

ratio of the parasitic capacitance to the input capacitance of the inverter:

g

d
inv

C

C
p =

where Cd is a diffused capacitance per unit length of contact diffusion, Cg is a gate

capacitance per unit length of minimum length gate.

In general, we adopt a nominal value of parasitic delay of inverter pinv = 1.0 (Cd/Cg =

3/3). Then we can estimate the parasitic delay of other logic gates from following

equation:

inv

d
p

w
p ⋅⎟⎟⎠

⎞
⎜⎜⎝

⎛
+

= ∑
γ1

where wd is the width of transistors connected to the logic gate’s output, ? is the ratio of

PMOS to NMOS width in an inverter.

This approximation can be used to estimate arbitrary logic gate. For example, a

two-input NAND gate has one pulldown transistor of width 2 and two pullup transistors

of width ? connected to output signal, assume that ? = 2, so we can get p=(2+2+2/1+2)=2.

Likewise, we can estimate the parasitic delay of a two-input NOR p=2. This quantity of

parasitic delay can also be measured from calibration method, will be discussed later.

(2.20)

(2.21)

- 11 -

Calibration Technique

Previously, we have discussed the method of calculating the logical effort and the

parasitic delay of a logic gate. Now, we use more accurate method to measure these

quantities by calibrating the model and show how to design a suitable test circuit to

obtain these two quantities.

We calibrate by measuring the delay of a CMOS inverter as a function of its electrical

effort. For different value of electrical effort, we simulate the average propagation delay

of this inverter (tp = (tplh + tphl)/2). Figure 2.4 shows these simulation data, plots these

data, and connect them as line segments. Because the logical effort of inverter is defined

as 1, from Equation 2.5 the delay will be d = t (h + pinv). As Figure 2.4 shows, line

segments which connect the points will have slightly different slope t . When h = 0, one

of the line segments will intercept the y axis at d = t pinv = 12.78 ps. When h = 2, d =

t(2+ pinv) = 2t + t pinv , thus t = 11.34 ps. Figure 2.4 also shows the evaluation of t at

other electrical effort, the result of average t , and the result of parasitic delay.

Several suitable test circuits for measuring the logical effort and parasitic delay of an

inverter are shown in Figure 2.5-1 ~ Figure 2.5-3. The test circuit has four stages. The

first two stages are designed for considering the input slop. The third stage is the gate we

want to characterize. The final stage serves as a load on the third stage.

- 12 -

- 13 -

- 14 -

2.3 Low Power Techniques in Datapath Structures

Energy and power are related. Power is the time rate of consumption of energy, while

energy is consumes by a circuit to perform a designated computation. Both of them are

useful to different applications. If we are concerned about battery life, energy is the more

suitable metric to think about. However, if we are concerned with heat and reliability issue,

power is the appropriate metric to consider. Throughout this thesis, evaluating a circuit by

its power dissipation is equivalent to evaluate by its energy consumption. Because in here

our focus of power or energy consumption is on a datapath structure, the achievable

minimum delay time is fixed as a baseline of optimization.

In [2.15], a classification of low power techniques in datapath was presented to

summarize adequate and effective power minimization methods for different operation

mode of datapath. In this section at first, the power source of CMOS circuits will be

discussed briefly and subsequently discuss the low power techniques in datapath

structure.

2.3.1 Power Dissipation in CMOS Circuits

There are four main sources of power dissipation: dynamic switching power due to

charging and discharging circuit capacitances, short circuit current power due to finite

signal rise time and fall time, leakage current power from reverse biased diode and

sub-threshold conduction, and static biasing power found in some types of logic style

(For example, pseudo-NMOS).

CMOS has become the dominant process technology for digital circuits. And it is

convenient and accurate to estimate the power consumption of CMOS circuits using

simple equations. These equations which are used to model the power source of CMOS

circuits can be found in many references [2.15].

2.3.2 Power Minimization Techniques

With a fixed datapath structure, speed, area, and power can be trade off through the

choice of the supply voltage(s), threshold voltage(s), and transistor sizes. Table 2.2

categorized these optimization method. They are classified as follows:

Enable Time

Supply voltage and threshold voltage can be either assigned statically during the design

time or changed dynamically at run time, while the transistor size are fixed at design phase.

Other techniques address the time that a datapath enter into idle mode (sleep mode).

- 15 -

Dissipation Source

From the point of view of power dissipation source of CMOS circuits, the power

consumption of a datapath can be classified as active power (dynamic) or leakage power

(static).

In the Enable time classifications, the design complexity and power saving capability

as well as power saving flexibility are emphasized. When we fixed the supply voltage and

the threshold voltage, the power saving capability and flexibility are also fixed without

hardware overhead. If the supply voltage and the threshold voltage are changed

dynamically, the power saving capability and flexibility will have great improvement but

result in complicated hardware design and may need software support. In designing a

datapath, therefore, the design time techniques are more applicable for power reduction.

When we are considering a microprocessor design, for example, the run time techniques

can significantly improve processor energy-efficiency, but result in challenging dynamic

voltage-scaled system design.

In this thesis, we would like to focus attention on the design time and sleep mode

power reduction technique exploration, which are more effective methods for datapath

structure.

2.3.3 Design Time Power Reduction Techniques

There are three major knobs can be fine tuned to trade off power-speed at design

phase: the supply voltage, the threshold voltage, and transistor sizing. We demonstrate

these techniques as follow:

- 16 -

Reducing Supply voltage

The optimization of supply voltage is the most effective way for power reduction,

because it results in quadratic power saving. There are two major approaches for

optimizing supply voltage, one is lowering the supply voltage directly, and the other is

using multiple supply voltages. When we reduce the supply voltage, the delay of CMOS

circuits will increase inversely with supply voltage. When designing a datapath, this loss

of speed can be compensated by replacing the underlying algorithm or by arranging the

micro-architecture. For example, a ripple-carry adder can be replaced by a faster, more

advanced algorithm to increase its speed, although it also translates into a larger physical

and switching capacitance, we can lower the supply voltage under a constrain of the same

speed to reduce power consumption. From the point of view of micro-architecture,

parallelism and pipelining are also the effective ways to compensate for the loss in speed.

These approaches presented tradeoff area for power. When the design is not area

constrained, we should optimize carefully, because parallelism and pipelining introduces

extra routing overhead which might cause additional power dissipation.

Multiple Supply Voltages

The alternative approach for optimizing supply voltage is to selectively decrease the

supply voltage on some of the gates based on the path delay distributions: a fast paths but

not a critical path which finish the computation early. There are two gradations of

multiple supply voltage optimizations, one is gate-level voltage selection the other is

module-level voltage selection. In gate-level voltage selection, employing only two

supply voltages is a more practical implementation [2.16]. While in module-level voltage

selection, a system architecture and chip implementation methodologies which is called

“Voltage Island” is proposed by [2.17] . When combining multiple supply voltages on

each gradation, level converters are required for a module (gate) at the lower supply

voltage to drive a module (gate) at higher voltage. Without level converter, a module

(gate) supplied by lower supply voltage drives a gate at higher supply voltage, the PMOS

transistor never turns off. Figure 2.6 demonstrates this static current problem.

- 17 -

Multiple Threshold Voltages

As technology scaling lower the supply voltage, the threshold voltages have been

scaled down to maintain speed. Sub-threshold leakage currents increase exponentially as

threshold voltage is reduced. In order to reduce leakage current without compromising

speed, multiple threshold voltages are used. The use of multiple threshold voltages has

been discussed in various ways, such as the use of low-Vt devices only on critical paths.

Transistor Sizing

Transistor sizing is an effective power-reduction method for datapaths, because the

major power dissipation is consumed inside the block rather than in driving the external

load capacitance. Using logical effort, the minimum delay of a datapath can be achieved,

and the transistor size for minimum delay can be determined in Equation 2.18. Sizing was

than used to bring each path to its maximum speed to achieve high performance. Under

this circumstance, the main objective of transistor sizing is to downsize the gate off the

critical path to save power.

2.3.4 Run Time Power Management

Dynamic voltage scaling (DVS) and Dynamic threshold scaling (DTS), techniques to

dynamically vary microprocessor’s performance and power consumption during the

processor’s run time. There are three major components for implementing DVS in a

general-purpose microprocessor system: an operating system that can dynamically vary

the processor’s speed, a regulation loop that can generate the minimum voltage required

for the desired speed, and a microprocessor that can operate over a wide voltage range.

- 18 -

One possible implementation is shown in Figure 2.7. The core of DVS system is a

ring oscillator, its oscillating frequency matches the processor’s critical path. This ring

oscillator provides the translation between the supply voltage and the clock frequency.

The operating system digitally sets the desired frequency (FDES). The current value of

ring oscillator frequency (FMEAS) is measured and compared with the desired frequency.

The difference between FMEAS and FDES is used as a feedback error. By adjusting the

supply voltage, the supply voltage loop changes the ring oscillator frequency to set the

error frequency (FERR) to zero.

2.3.5 Reducing the power in sleep mode

When a macro or a system enter into sleep mode, no active switching occurs, all of

the power dissipation is due to leakage. Figure 2.8 (a) shows a simple power down

scheme utilized large sleep transistors to cut off the supply voltage when the macro or

system is in the sleep mode. Generally, a MT-CMOS (multi-threshold CMOS) scheme

will be adopted to suppress leakage in advance. Figure 2.8 (b) also illustrates the basic

circuit scheme of MTCMOS. The fundamental logic gates are implemented by using low

Vt transistors that are powerd by the VDD rail and a virtual ground VGND rail. A VGND

is connected to the real ground GND rail through a high Vt transistors, Q1. When in

active mode, the sleep control (SC) signal will be asserted, and the Q1 is turn on.

Consequently, the low Vt logic gates operate normally at high speed. When in sleep mode,

SC goes to low, Q1 turned off. In this state, the leakage current flows to GND through Q1

transistor. Due to high Vt of Q1, its low leakage characteristics, the leakage problem can

be suppressed almost completely.

- 19 -

2.4 Theoretical Studies

In [2.18], a notion of hardware intensity was first proposed which allows a

mathematical approach to the analysis of power-speed tradeoffs in a pipelined processor.

Circuit Sensitivities of energy to delay and the method of balancing power consumption

and performance in a combinational logic circuit are well explored [2.19]. Methods of true

power minimization [2.14] established the joint-optimization mechanism for truly power

reduction at circuit and micro architecture level. In this section, we reviewed these

sensitivity-based optimization methods as a foundation for designing energy-speed efficient

circuits.

2.4.1 Concepts of Methods for True Power Minimization

Figure 2.9 (a) shows the energy-delay plane of the design. Every possible design

implementation is a point in this plane. Emax represents the energy constrain and Dmax

the lowest acceptable delay. Therefore, designs that satisfy the energy and delay

constrains are colored in gray.

In general, optimizing some variables is not effective enough to bring the design

into desired region, like Var1 as shown in Figure 2.9 (b). Figure 2.9 (c) shows, by using

other variable, Var2, we can let the unoptimized design get into the desired region but

with medium speed.

- 20 -

By combing these two variables, Var1+Var2, we can get the better result of lower

energy consumption and higher speed, as Figure 2.9 (d) shows. But the question is how

far are we from the most energy efficient solutions, Figure 2.9 (d) also demonstrates this

problem.

Design points on the doted line are the most energy efficient. Our goal is to achieve

the highest speed while minimize the energy consumption as possible. When energy is

constrained, we must use the most energy efficient solution to achieve highest speed, the

best performance point, as indicated in Figure 2.9 (e).

Overall, as Figure 2.9 (f) shows, starting from an unoptimized design point, we either

want to design the circuit in highest speed while brining the circuit under the energy

constrain, or vice versa. The true power minimization is achieved when the power

reduction potentials of all tuning variables are balanced [2.14]. We will demonstrate the

circuit sensitivity for each of tuning variables to explore its power saving potentials

individually. This is helpful in designing a energy-speed efficient datapath.

2.4.2 Energy-Delay Sensitivities

In energy-speed optimization, the objective is to utilize surplus time for maximum

energy reduction. There are three major tuning variables, the supply voltage, the

threshold voltage, and the transistor size, which can be trade off power and surplus time

of a datapath at circuit level. We want to know how much energy it would cost to increase

the speed by some amount, using each tuning variable named x [2.14]:

Xxx
D

x
E

XS

=∂
∂

∂
∂

=)(

We call this quantity the energy-delay sensitivity for tuning variable x = X. As pointed

out by [2.18], the energy-efficient design is achieved when the marginal cost of all the

tuning variables are balanced. In [2.14], the key idea is that: At optimal point, all

sensitivities should be the same. Equation 2.23 shows this property.

DBSDASE ∆⋅+∆−⋅=∆)()()(

where A, B represent the tuning variables.

(2.22)

(2.23)

- 21 -

- 22 -

Power and Delay Model

In order to formulate the sensitivities of the supply voltage, the threshold voltage, and

transistor sizing, we need to have models for power and delay. The alpha-power law

model [2.20] is expressed as the logical effort formulation [2.13] for modeling delay:

() d
g

p
hg

W

W

W

W

VVV

VK
t refref

in

par

in

out

thondd

ddd
p

d
⋅=⎟⎟⎠

⎞
⎜⎜⎝
⎛ +⋅⋅=⎟⎟⎠

⎞
⎜⎜⎝

⎛
+⋅

∆−−
= ττα

where Von and ad are intrinsically related to, but not necessarily equal to the transistor

threshold voltage and velocity saturation index, ? Vth is the change from the standard

threshold voltage given by technology, Kd is a fitting parameter, h is the electrical

effort of a gate; p is the parasitic delay of that gate.

For energy model, there are two components should be take into account. The

switching power model, which consists of power consuming transition probability, supply

voltage, parasitic and output load capacitancesL:

() 2

ddparoutesw VWWKe ⋅+⋅⋅= α

where Ke Wout is the load capacitance, Ke Wpar is the parasitic capacitance of the gate,

a is the probability of an power-consuming transition at the output of the gate.

The leakage energy model is using the standard input state-dependent exponential

leakage current model with DIBL effect:

()
dd

V
VVV

ininsw VeSIWDe
ddth

ref
th

⋅⋅⋅⋅=
⋅−∆+−

0)(0

γ

where refpathcriticaldD τ⋅= − is the cycle time, I0(Sin) is the normalized leakage current

of the gate with inputs in state Sin, ref

thV is the standard threshold voltage provided by

technology,
q

kTnV ⋅=0 and ? account for the sub-threshold slope and DIBL factor,

respectively.

Sensitivity to Gate Sizing

The sensitivity of energy to delay due to a change in size of a gate in stage i is given

by Equation 2.27 and 2.28:

)(1,,

,

−−⋅
−=

∂
∂

∂
∂

ieffieffref

iC

i

i

sw

hh

e

W
D

W
E

τ

(2.24)

(2.25)

(2.26)

(2.27)

- 23 -

)(1,,

,

−−⋅
−=

∂
∂

∂
∂

ieffieffref

iLKLK

i

i

LK

hh

e

D

E

W
D

W
E

τ

where () 2

,,, ddipariineiC VWWKe ⋅+⋅⋅= α represents the switching energy due to

capacitances of stage i, iLKe , is the leakage energy of stage i as given by Equation 2.26.

iiieff hgh ⋅=, is the effective fanout (stage effort) of stage i.

Observe that, the minimum achievable delay is designed initially which is the starting

unoptimized point. The design is sized for minimum delay with equal effective fanout heff,

resulting in infinite sensitivity. Therefore, the largest potential for energy saving occurs at

this point. This makes sense because at minimum delay no mount of energy added

through sizing can be further improving the delay.

Sensitivity to Supply Voltage

The sensitivity of total energy to delay, due to global supply reduction is given by

Equation 2.29 and Equation 2.30:

)1(

)1(2

dd

on
d

dd

on
sw

dd

dd

sw

V
V

D

V
V

E

V
D

V
E

+−⋅

−⋅
−=

∂
∂

∂
∂

α

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

+−

⋅+⋅−
⋅−=

∂
∂

∂
∂

1

1

)1()1(
0

dd

on
d

dd

dd

on

LK

dd

dd

LK

V
V

V
V

V
V

D

E

V
D

V
E

α

γ

Analogous with the gate sizing approach, the design sized for minimum delay at highest

supply voltage offers the greatest potential for energy saving. This potential diminishes

with the reduction in supply voltage. The sensitivity of supply voltage is finite at normal

point but decrease to zero when supply voltage approaches threshold voltage, because the

delay becomes infinity, Figure 2.10 shows this property.

(2.28)

(2.29)

(2.30)

- 24 -

Sensitivity to Threshold Voltage

The sensitivity of total energy to delay, due to the change in threshold voltage is given

by Equation 2.31:

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−

⋅
∆−−⋅−=

∆∂
∂

∆∂
∂

1

)(

)(

0V

VVV

D

E

V
D

V
E

d

thonddLK

th

th

α

As Figure 2.11 shows, the sensitivity to threshold voltage is opposite to that of supply

voltage. As the threshold voltage is decreased, the circuit speed will be improved but

resulting more leakage energy consumption.

Because the exponential dependence of the leakage energy on ? Vth. To decrease the

threshold voltage becomes very expensive in terms of speed improvement.

(2.31)

- 25 -

010

110

210

310

410

510

The analytical plots of energy-delay sensitivity of each tuning variable are shown in

Figure 2.12. In the initial phase of tuning transistor size, the sensitivity of gate sizing is

quite high which represents that it has great energy saving potential. As delay penalty

growing to 10%, the sensitivities of supply voltage becomes the highest one, thus the

energy saving potential goes beyond the gate sizing. The sensitivity of threshold voltage

turned out far worse than gate sizing and supply voltage. Tuning these circuit level knobs

to achieve balanced energy-delay sensitivity and turns out energy saving and speed

improvement are the ultimate goal of circuit level optimization.

2.4.3 Circuit-Level Optimization

Assume that at initial phase of designing a circuit, all sensitivities were not the same

(at unoptimized design point). Using the low sensitivity tuning variable to decrease the

delay by delta, the energy increase is proportional to the low sensitivity. On the other

hand, using the high sensitivity tuning variable to increase the delay by delta, the energy

decrease is proportional to the high sensitivity resulting in net power saving with no delay

penalty. Thus, the method of joint optimization of tuning variables affects the

energy-speed efficiency profoundly.

Figure 2.13 shows a sketch map of joint optimization to transistor sizing and supply

voltage scaling. The normal design point is optimized for minimum delay at normal

supply voltage. Three curves f (Vdd), and f (W , Vdd,new) represent optimization of

different tuning variable, respectively. The first step is to increase supply voltage to make

- 26 -

the design a little faster, and than resize it bring it back to original minimum delay and

save some energy.

2.4.4 Micro-Architectural Optimization

In the circuit level, individual optimization results may be deceptive due to the

analysis of different abstraction level. For example, if the energy of a MAC is a much

smaller fraction of the total DSP processor energy than that of memory, than it might be

more beneficial to lower the power of memory (make the memory slower) and increase

the power of the MAC(make the MAC faster). To, this problem, a block diagram which

illustrates various abstraction layers in the optimization is shown in Figure 2.14. The

optimal energy-delay curves from the circuit level are used to hierarchically extend to

larger blocks. These tradeoff curves conjoin with optimal W, Vdd, and Vth are

strategically combined to obtain the optimal energy-performance tradeoff for circuit

macros. Energy-speed tradeoff is the objective at the circuit and micro-architectural

layers. While for the macro-architectural layer, the objective is to achieve proper

energy-area tradeoff. Each abstraction layer provides more degrees of freedom of knobs

to optimize energy, performance, and area.

- 27 -

2.5 Conclusions

In this chapter we present basic concepts of low power circuit design techniques

focus on datapath circuit block. It supports a guide for designing low power MAC. But

we must take care of a point, MAC circuit design, which is one kind of VLSI computer

arithmetic implementations, composed of various heterogeneous algorithms, these are

Booth recoding schemes, partial product reduction topologies, and final adders. These

algorithms determine the inherent speed of a MAC operation. Therefore, in designing

MAC, first we must determine the underlying efficient algorithms.

- 28 -

Chapter3

High-Speed Multiplier-accumulator

Micro-Architecture Design

3.1 Background

High speed multiplier-accumulator units have become one of the essential building

block in digital signal processor as well as in the general purpose processors [2.1] [2.10]. In

order to increase the MAC speed, there are two stages design that need to be considered.

The first one is from micro-architecture level optimization and subsequent is to complete

MAC design in fast and low-power circuit style. This chapter is intended as an

investigation of high speed MAC micro-architecture, implement and synthesize it in gate

level in order to offers the key to an high performance MAC design.

3.1.1 Basic Concepts

Figure 3.1 shows the general structure of parallel MAC for multiplying two numbers A

and B and adding the number Z to accumulator. The general form of MAC operation can

be presented by the equation (1) :

X = A B + Z

where A and B are two binary number of length N-bits, Z of 2N bit merged in to partial

production matrix (PPM) while X has a length of at least 2N bits.

Figure 3.2 shows a conventional dot diagram, can provide information which usually be

used as a guide for examining various multiplication algorithms. The micro-architecture

development here will base on such kind of representation throughout this thesis. Each dot

represents a binary number in specific order, if there is something wrong with the dot

position, the final result may be incorrect. In fact , the number of dots in the partial product

matrix is proportional to the amount of hardware cost to sum the partial products and form

the final result. Thus fewer dots can be faster and require less hardware cost.

(3.1)

- 29 -

- 30 -

The essence of the merged MAC operation is a parallel multiplication process.

Therefore, designing the MAC almost the same as multipliers. From Wallace’s suggestions

[3.1], acceleration of the multiplication process base on following strategies: (1.) Fast

partial product generation. (2.) Fast partial product reduction. and (3.) High speed final

carry-propagate addition. To reduce the number of partial produces, several Booth’s

recoding scheme have been used extensively [3.2] [3.3] [3.4]. In the partial product

reduction step, the multi-operand addition is usually accomplished using carry save adder

array and tree topology to reduce partial product matrix into two rows. Eventually, the

speed of multiplier is improved via optimization of the final-propagation adder, to add the

non-uniform sum and carry in fastest fashion.

In thesis, Our focus is to develop a high speed micro-architecture in gate level. Thus,

we examine several high speed Booth’s recoding scheme, two efficient partial product

reduction topologies, and several high performance parallel adders. We will implement

these three major part of parallel MAC hard macro by using verilog HDL gate-level

modeling and synthesize them in TSMC 0.13µm generic cell library. After evaluate these

micro architecture, the later circuit level implementation will base on this high speed

micro-architecture to do power and delay optimization.

3.1.2 Booth Algorithm

A common method for reducing dots is to use Booth’s algorithm [3.5] . From hardware

implementation aspect, typically, multipliers are implemented using the modified Booth’s

algorithm (radix-4) [3.6] [3.7] [3.8]. As Figure 3.3 shows, the multiplier is partitioned into

three – bit groups that overlap by one bit. According to Table 3.1, each group of three is

recoded and forms one partial product. The number of dots has decreased after Booth

recoding, but this reduction can be done further more using higher radix recoding scheme,

such as radix-8. However, with radix-8 recoding all partial product term may be

implemented with simple shifts and negation with the exception of ±3 multiple. This

multiple require an additional high speed adder. The delay and hardware overhead of this

additional adder stage is a major disadvantage of higher radix recoding. Therefore, we will

only focus on the radix-4 recoding scheme.

- 31 -

3.1.3 Partial Product Matrix Topologies

We reviews several partial product topologies and categorize them into two part [3.7]:

an array topology, or a tree topology.

In an array topology, a (3,2) counter which is a basic component adds the sum from

identical weighted bit position and the carry from previous bit position are connected in an

identical manner for all bit slices of partial product matrix. Figure 3.4 shows several array

topologies how they are connected in single array , double array as well as higher-order

array. The major difference between these array topologies is that the number of partial

product they add at a time. As Figure 3.4 shows, the single array add three partial product

- 32 -

at a time, the double array add ten partial product at a time as well as the higher-order array

add eighteen partial product at a time. In the double array array, when all the partial product

are accumulated the two partial sum are combined using [4:2] compressor. The idea

behinds the higher order array is to partition the array into more sub-arrays and again

combined them using [4:2] compressor.

The basic elements used in reducing partial product matrix are counters or compressors.

The (3,2) counter is essentially a full adder, also referred to as a carry save adder. It’s

simply a binary full adder that takes three bits of the same weighted as input and produces a

sum bit and a carry bit. Specifically, counters adds up the 1’s in a K-bit column outputting

a log K wide count. While Compressors adds up the 1’s in K-bit column plus j carry in

outputting j carry out and two wide count. As Figure 3.5 shows a [4:2] compressor

implemented with (3,2) counters, all of the inputs (4 external plus one internal) have the

same weight and the internal output is carried to the next higher weight position.

In tree topology, a very fast structures for summing partial product, the counters and

compressors are connected mostly in parallel along the vertical direction, the difference is

in the interconnections between counters or compressors. In such a parallel connection, the

placement of counter or compressor create a three dimensional structure. However,

integrated circuits are planner; these trees must be

flattened to fit the two dimensional layout plane. As Figure 3.6 shows, the output of

these counters which be flattened is therefore have to pass on top of the intermediate

counters that lie between the input and output counters. Consequently, Flatten counter or

compressor results the more complicated and irregular wire connection. It’s difficult to

design and layout [3.9].

- 33 -

- 34 -

- 35 -

Two well known strategies of the tree topologies are Wallace’s and Dadda’s strategies

[3.10]. From Wallace’s strategy, using (3,2) counters to building tree topology is to

combine the partial product bits at the earliest stages, while the Dadda’s strategy is to

combine the bits as late as possible, as the critical path length of this tree topology does not

change. Thus Wallace’s strategy results fastest design compared with Dadda’s one because

of it’s wider carry propagation adder, however Dadda’s strategy usually leads to cheaper

(3,2) counter tree topology. Figure 3.7 depicts a simple example, we derive Wallace and

Dadda tree multipliers for 4 X 4 multiplication. The number in each row represents the

partial product in various column depth, the half adder is circled. The Wallace tree design

required four full adders and six half adders, and a five bit carry propagate adder at the end.

With the Dadda tree design, fewer full adders (two) and half adders(four) than Wallace’s

design but resulting in longer final propagate adder (six bit). In large multiplier design, the

intermediate approaches between these two strategy yield various design that offer proper

speed and cost trade-off. Another example of Wallace and Dadda’s strategy are represented

in dot graph which derive 6 X 7 multiplication, as depicts in Figure 3.8.

- 36 -

- 37 -

3.1.4 Final Addition

 When the number of partial products is reduced to two rows, which are sum and carry,

a final adder is required to generate the multiplication result. The number of bits of the final

adder is the sum of the number of bits of the multiplier and multiplicand. Thus, the adder

width is usually doubled and the delay of this stage is more critical.

 Typically, an adder is built under the assumption that all of the input signals arrive at

the same time. In some cases, this is not true and a delay exists between input signals. The

two rows, sum and carry, of partial products is such a case, that a non-uniform delay profile

exists between different bit position. Therefore Some proposed strategies [3.11] [3.12]

[3.13] will be introduced into our implementation to optimize the overall delay.

 The high performance parallel adder is essential to a fast MAC. For several decades,

carry lookahead adders have been the popular choice for high performance requirement. In

this thesis, therefore, we would like to focus attention on these fast carry propagation

adders. There are several variations of lookahead adders, such as the prefix adder [3.14]

and the conditional-sum adder [3.15]. The difference between the prefix adder and the

conditional-sum adder is that conditional-sum adder produce the sum bits directly with a

minimum logarithmic gate depth whereas the prefix adder produce only the carry signals

with equal depth and less logic [3.16] . Conditional-sum adders are thus potentially faster

than prefix one, however it suffers from fan-out limitations since the number of

multiplexers that need to be driven increases exponentially. Therefore, the prefix adder is

preferable to our applications.

3.2 Booth Recoding Schemes

There has been extensive work on radix-4 Booth recoding scheme with the objectives

of high speed, small area and low power. In [3.17] , a comprehensive discussion and gate

level comparisons are reported. In this thesis, our objective is to achieve high performance

demand in micro-architecture level. Thus a parallel recoding scheme is only considered

here. In parallel scheme, [3.18] categorized it into three classes: three-signal schemes, four

signal schemes and five signal schemes. Table 3.2 lists some selected high speed recoding

scheme from. In this sub-section, we implemented these schemes using Verilog-HDL in a

16X16+40 MAC which was implemented as a sub-module to compare fairly. These

Verilog-HDL designs are optimized and mapped into TSMC 0.13µm standard cell library

using Synopsys Design Compiler. The area, delay and power consumption will be

compared based on the report of the design compiler.

- 38 -

Table 3.2 Selected high speed recoding scheme

Name Feature

Sign-select [3.3] 3 signal neg / pos / two

PR3 [3.17] 3 signal neg / two / one

Race free II [3.19] [3.2] 4 signal neg / one / two / z

Standard [3.18] 5 signal P1 / P2 / M1 / M2 / Z

3.2.1 Standard Scheme – Five signals

The most common Implementation of Booth encoder and PP generation, this recoding

scheme is to generate five separate controls signals, P1, P2, Z, M1, and M2, corresponding

to recoding digits +1, +2, 0, -1, and -2. The recoding table is shown in Table 3.3 and the

logic diagram after logical operation are shown in Figure 3.9.

3.2.2 Race Free II Scheme – Four Signals

The second high-speed recoding schemes is a four signal schemes, which was named

according to [3.2]. This Race-Free II [3.19] is an improved version from [3.2], to prevent

the power consumption due to the race condition between the X and Y operands. The

recoding scheme is presented in Table 3.4. The corresponding recoding and PP generator

are shown in Figure 3.10.

3.2.3 PR3 Scheme – Three Signals

The third choice of recoding scheme is a three signal schemes [3.17]. This encoding

scheme is an improved version from [3.18]. The recoding scheme is presented in Table 3.5.

The corresponding recoding and PP generator are shown in Figure 3.11.

3.2.4 Sign-select Scheme – Three Signals

The last scheme was presented in [3.3], it use fewer transistors making it attractive in

small area. However, it suffers the latency problem as the output PPj are obtained from two

cascaded multiplexers. The recoding scheme is presented in Table 3.6. The corresponding

recoding and PP generator are shown in Figure 3.12.

- 39 -

- 40 -

- 41 -

- 42 -

3.2.5 Experimental Evaluations

- 43 -

The power / area / delay comparison results of the Booth recoding macro for 16 x 16

multipliers are reported in this final section. We have implemented and simulated four

existing parallel recoding schemes, all these schemes are described with Verilog HDL in

gate level. Each encoding scheme will be served as independent sub-module, as depict in

Figure 3.13, to optimized and mapped imto TSMC 0.13µm generic cell library using

Synopsys Design Compiler.

The synthesized results without given any design constrain are listed in Table 3.7, while

the synthesized results with minimum (tight) input/output delay constrain are listed in

Table 3.8.

The results which without any design constrained reflects that more nature and original

circuit structure, in terms of such circuit structure one can know that whether it is more

suitable for circuit – level implementation. From this point of view, the standard encoding

scheme are suitable for circuit level implementation because of the small delay in it’s

original circuit structure. The results with timing constrains reflects which recoding scheme

is superior to others. As Table 3.9 shows, the Race-free recoding scheme is the fastest one

but it consumes largest power. While the speed and power consumption of standard

recoding scheme presents a moderate level of power consumption and delay .

Overall, from cell based implementation, standard recoding scheme is a good choice for

16X16 multiplier in terms of power and delay. Note that this conclusion is valid when a

similar standard cell library is used.

- 44 -

Table 3.7 Comparison of Booth Recoder without any synthesized

constrains

Schemes Area (2mµ) Power (mW) Delay (ps)

Standard 4725 2.70 630

Race-free 3612 4.06 930

PR3 3313 3.55 720

Sign-select 4087 4.12 1260

Table 3.8 Comparison of Booth Recoder with 100ps timing constrains

Schemes Area (2mµ) Power (mW) Delay (ps)

Standard 10050 8.92 260

Race-free 11464 16.9 230

PR3 9929 12.15 280

Sign-select 10145 10.24 320

3.3 Partial Product Matrix Topologies

The partial product matrix topologies, have been discussed in section 3.1.3, were

classified as either array topology or tree topology. The tree topology have the smallest

logic delay proportional to log(n). However, they have irregular layout with complicated

interconnects. On the other hand, array topology have large delay but offer regular layout

and simpler interconnect.

In this section we will implement several 2’s complement 16X16+32, 16X16+40

multiplier-accumulator with the regular array topology as well as irregular tree topology

[2.2] [2.3]. The detailed architecture of each topology will be discussed briefly. To further

speed up, Three-Dimensional reduction Method (TDM) [3.11] was employed in tree

topology. The TDM algorithm finds optimal interconnection of partial product reduction

tree by carefully connecting the delay paths of compressors. As a result of the effectiveness

of column compressor [2.3], the tree topology of partial product matrix constructed by

using TDM algorithm outperforms the conventional designs.

3.3.1 Carry Save Adder (CSA) Array Topology

Figure 3.14 shows the architecture of 16X16+32 carry save adder array MAC operation.

Eight rows, the 1
st
 row ~ the 8

th
 row, representing the summands PP0~PP7, are generated

by the Booth recoders. These summands, which connected in carry save form are added

using 1 bit full adder as shown by the empty circles. In order to prevent overflow, sign

- 45 -

extension have to be provided as shown by the black circles. In traditional topology, the

sign extension have to be provided in full width of datapath, the 2
nd

 row has to be extended

by two bits, the 3
rd

 row by 4 bits and the 4
th

 row by 6 bits and so on. Evidently, this is

extremely wasteful and does not result in regular topology. In this technique, only one sign

extension bit needs to be provided in each row will lead to very regular topology. The

dashed arrows on the rightmost column represents add one at the LSB for the two’s

complement operation of Booth recoder, and the dashed arrows on the leftmost represents

sign extension process. The diamonds at the rightmost row and the bottom row represent

the final stage fast adder that are required to produce the final result of MAC operation.

Generally, the long accumulator is a major bottleneck of MAC operation. Since add

operation is commutative, we can introduce the accumulated value in to partial product

reduction array results in a design which multiply and accumulate operations are merged.

In Figure 3.14 shows, the accumulated value are introduced to partial product reduction

array in two place. Z0~Z15 are introduced at the 1
st
 row , while Z16~Z31 are introduced

the 9
th

row. Notice that Z16 can not be introduced into 1
st
 row, since the MSB of partial

product which generated by Booth recoder is a sign extension.

The carry save adder array of 16X16+32 MAC will be served as independent module

without fast final adder, to optimized and mapped into TSMC 0.13µm generic cell library

using Synopsys Design Compiler. Table 3.9 shows the synthesized results with no timing

constrain as well as with 0.5ns timing constrain.

Table 3.9 Synthesized result of CSA array with and without timing constrains

Timing constrain Area (2mµ) Power (mW) Delay (ns)

No 5500 7 3.2

1ns 18396 29 1.7

3.3.2 Column Compression Tree (CCT) Topology

Previously, 1-bit full adder is the primitive cell for whole CSA array, while in the

column compression tree topology the primitive cell is the compressors. The 1-bit full

adder can be a [3:2] compressor or (3,2) counter to build tree topology, results in Wallace’s

or Dadda’s tree multiplier. However, the multipliers using [3:2] compressor or (3,2)

counter needs more stages and inefficiently. In order to further improver the speed of

partial product reduction step, higher order compressor or counter needs to be provided

[3.20].

In this thesis, [2:2] compressor (half adder), [3:2] compressor or counter(full adder),

[4:2] compressor and [5:2] compressor have been the basic elements of CCT topology of

16X16+32 MAC. Figure 3.15 depicts logical decomposition of [4:2] and [5:2] compressor

[29]. The [4:2] compressor has 5 input bits including a carry-in from the neighboring cell

- 46 -

and the [5:2] compressor has 7 input bits including two carry-in. They have 3XOR and

4XOR gate delay, respectively. In full custom design, XORs and multiplexers (MUX) can

be designed efficiently via aggressive transistor sizing or other circuit families (will be

discussed in chapter4).

- 47 -

- 48 -

 Figure 3.16 shows the structure of merged 16X16+32 MAC operation. In the figure, the

sign bit of partial products are shown as empty circle with label “S”, the grey circle

“Add_1” represents add one at the LSB for the two’s complement operation of Booth

recoder and the black circle represents the accumulated number Z. A bar above a circle

means the logical inverse of that circle. The mathematical proof of the sign extension

derivation is given by [3.21].

The architecture of Figure 3.16 has a little irregular structure because of the additional

partial product term at the LSB of each partial product. To compensate this irregular

topology for doing CCT reduction smoothly, the LSB of each partial product and “Add_1”

are combined and further simplified using logic operation. The resulting equations for the

new LSB and new Add_1 can be written as (2) (3), respectively. Figure 3.17 shows the

modified partial product array. The additional partial term is now moved to next higher

order bit position, and LSB-part array become more regular.

 NEW_PPLSB = Original_PPLSB ?(B[0] B[1]) (2)

 NEW_Add_1 = (Original_PPLSB’?B[2]?B[0]’) +

 (Original_PPLSB’?B[2]?B[1]’) +

(B[2]?B[1]’?B[0]’) (3)

where B is the multiplier of MAC operation.

The maximum height of bit slice is 10, consists of 8 partial products, 1 Add_1, and 1

accumulated number. Figure 3.18 shows the [10:2] reduction bit slice obtained by using

two [5:2] compressors and one [4:2] compressor. In the first stage, two [5:2] compressors

will act concurrently then in second stage one [4:2] compressor adds sums from first stage.

Therefore, the critical path only takes 7 XOR gate delay, which results a high speed partial

product reduction step. The overall reduction process of a 16X16+40 MAC operation is

depicted in Figure 3.19.

- 49 -

Finally, The column compression tree topology of 16X16+32 MAC will be served as

independent module without fast final adder, to optimized and mapped into TSMC 0.13µm

generic cell library using Synopsys Design Compiler. Table 3.11 shows the synthesized

results with no timing constrain as well as with 0.5ns timing constrain.

Table 3.10 Synthesized result of CCT topology with and without timing constrains

Timing constrain Area (2mµ) Power (mW) Delay (ns)

No 5945 7.3 1.04

1ns 19017 27 0.81

- 50 -

- 51 -

- 52 -

- 53 -

3.4 High-Performance Parallel Adder

The overall MAC speed can be further improved via the high-performance parallel

adder to add the sum and carry, which produced by partial production step. For the

economize the use of high performance adder, which represents high power consumption

and high complexity of hardware, without affect overall MAC speed, we should estimate

the arrival profile of the two rows of partial product reduction accurately.

For achieving high speed MAC operation. The use of high performance parallel adder

is unenviable. Therefore, there are some types of high performance parallel adder will be

discussed, implemented, and compared in this thesis.

3.4.1 Design Strategies

In order to obtain the arrival profile of each topology (CSA and CCT) accurately, we

use a static timing analyzer (Synopsys Primetime) linked with TSMC 0.13µm generic cell

library to analyze the signal arrival time of two rows of partial product matrix topologies

(CSA and CCT), without final adder.

Figure 3.20 shows the arrival time profile of CSA array topology at each bit position.

As Figure 2.20 shows, the arrival time of bit-position 0 ~ bit-position 15 increased

gradually while the arrival time of bit-position 16 ~ bit-position 31 kept constant. Hence,

we optimize the 32-bit final addition in two part. The first part, bit-position 0 ~ bit-position

15, we use a 16-bit linear-time carry lookahead adder [2.15] to fit the signal which arrival

linearly. The second part, bit-position 16 ~ bit-position 31, a 16-bit high performance adder

(such as prefix adder or conditional carry adder) will be employed.

Figure 3.21 shows the arrival time profile of CCT topology at each bit position.

According to this profile, we optimize the 32-bit addition into short 8-bit addition and

24-bit addition. For the short 8-bit adder, the ripple carry adder (RCA) or two cascaded

4-bit carry lookahead adder is a suitable choice. On the other hand, a high performance

adder would be a desired choice for remainder addition.

3.4.2 Several High Performance Adders

 Conditional carry adders and prefix adders, both have logarithmic gate depth, are high

performance parallel adders. Hence, there are two types of parallel prefix adder and one

conditional carry adder will be implemented in this thesis for high speed MAC operation.

In prefix adder, one is 32-bit radix-2 Kogge-Stone adder [3.24] , the other is 32bit

Han-Carlson adder [3.26]. The interconnection structure of K-S adder is regular, which

ease to implement. Moreover, as Figure 3.22 shows the fan-out of the dot operator is

uniformly distributed, especially on the critical path. However, the dense wire connection

between each dot operator results in large area overhead and power consumption.

- 54 -

Therefore, we trade-off some delay for area and power by choosing sparse tree adder, the

Han-Carlson adder [3.26]. For Han-Carlson, a hybrid of Ladner-Fischer [3.25] and

Kogge-Stone, which computes the carry every two bits, as illustrated in Figure 3.23. The

high speed conditional carry adder [3.27] which is also implemented in gate level is a

competitive design, Figure 3.24-1 and Figure 3.24-2 shows its architecture.

Table 3-12 and Table 3-13 shows the comparisons of synthesized results. As Table 3.21

shows, if the performance is a major concern the K-S adder is a preferable one. On the

other hand, however, if we considered the power or area, the H-C adder is an appropriate

choice.

Table 3.11 Synthesized results of 32-bit adder without timing constrain

Without timing

constrain

Area (2mµ) Power (mW) Delay (ns)

K-S adder 2963 2.1 1.21

H-C adder 2113 1.7 1.3

C-C adder 2946 2.7 1.51

Table 3.12 Synthesized results of 32-bit adder with 0.5ns timing constrain

0.5 ns timing

constrain

Area (2mµ) Power (mW) Delay (ns)

K-S adder 9547 10.8 0.58

H-C adder 6570 7.54 0.7

C-C adder 6886 6.9 0.86

- 55 -

- 56 -

- 57 -

- 58 -

- 59 -

- 60 -

3.5 Synthesized Results

We have implemented all the necessitated module of MAC previously. Accordingly,

we have to combine them to form a high speed MAC macro. We will use the fastest Booth

encoder, race free II, at the first stage of MAC operation. In the second stage, both the CSA

array topology and CCT topology will be included. In the final stage, several different

length and types of adders will be involved to trade-off delay for area and power

consumption.

In order to evaluate previously implemented MAC micro-architecture, the Booth

recoder, partial product topologies as well as final propagation adder, we have introduced a

optimized 16X16+40 MAC from Synopsys Design Ware libraries to compare with our

design. Figure 3.25 depicts the sketch of it’s framework. In the first step, a 16x16 multiplier

will generate multiplication result in redundant form 40-bits sum and 40-bits carry. In the

second step, a 40-bit carry save adder will add these 40-bit sum, 40-bit carry as well as the

accumulated number Z. Finally, a 40 bit optimized Brent-Kung [3.22] prefix adder will

complete the MAC operation.

Table 3-14 and 3-15 shows several synthesized 16X16+32 MAC macros, the CCT

topology always outperform CAS array topology whatever in the area, power consumption,

and delay. In CCT topologies, if we use the H-C adder as the final carry propagation adder,

resulting in 12% lower area and 12.7% reduction in power consumption compared with

using K-S adder. However, about 7.8% speed will be sacrificed.

Furthermore, the longer accumulator’s MAC macro (16X16+40) will be implemented

and synthesized to compare with the MAC macro which was developed by Synopsis

Design Ware Foundation R&D team. Table 3-16 and 3-17 shows the synthesized results.

As Table 3-17 shows, after optimization with tight timing constrain, the power

consumption of each macro is quite close. If we use two 4-bit carry lookahead adder at the

first 8-bit addition, the performance will be the best. Although the performance is

outperform Design Ware in 13%, the area will larger than Design Ware in 32%.

- 61 -

Table 3.13 Synthesized result of 16X16+32 MAC macro without timing

constrain

16X16+32 Area (2mµ) Power (mW) Delay (ns)

CSA array

H-C adder

12820 15.9 5.37

CSA array

K-S adder

13611 16.4 5.29

CCT

H-C adder

11635 14.3 3.42

CCT

K-S adder

12486 14.8 3.24

Table 3.14 Synthesized result of 16X16+32 MAC macro with 2ns timing

constrain

16X16+32 Area (2mµ) Power (mW) Delay (ns)

CSA array

H-C adder

46424 74 2.76

CSA array

K-S adder

49450 78.5 2.71

CCT

H-C adder

35504 55.41 1.92

CCT

K-S adder

40041 62.17 1.77

- 62 -

Table 3.15 Synthesized result of 16X16+40 MAC macro without timing

constrain

16X16+40 Area (2mµ) Power (mW) Delay (ns)

CCT

32 K-S adder + 8 RCA

12813 14.9 4

CCT

32 K-S adder + 4CLA*2

12922 14.9 3.41

CCT

32 K-S adder + 8 K-S

13061 15 3.5

Design Ware

Libraries

109389 16.7 10.7

Table 3.16 Synthesized result of 16X16+40 MAC macro with 1ns timing

constrain

16X16+40 Area (2mµ) Power (mW) Delay (ns)

CCT

32 K-S adder + 8 RCA

45794 70 1.71

CCT

32 K-S adder + 4CLA*2

44621 69.5 1.69

CCT

32 K-S adder + 8 K-S

43567 67 1.81

Design Ware

Libraries

29596 68.9 1.92

- 63 -

3.6 Conclusions

This chapter has implemented various MAC micro-architecture for achieving high

performance. The parallel adder were compared, as Figure 3.26 shows, the H-C adder is

preferable in terms of power and area without sacrificing speed too much. As Figure 3.27

shows, the use of CCT topology which would be more difficult in wiring complexity,

however, it provides the best performance in our simulation. For long accumulator MAC

design, as shown in Figure 3.28,our CCT topology is faster than Design Ware, but the

area is need to be improved aggressively.

Area Power Delay

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o

rm
a

liz
e

d
 D

a
ta

KS

HC

CC

Area Power Delay

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o

rm
a

liz
e

d
 D

a
ta

CSA H-C

CSA K-S

CCT H-C

CCT K-S

Figure 3.26 Normalized result from Table 3.12

Figure 3.27 Normalized result from Table 3.14

- 64 -

Area Power Delay

0

N
o

rm
a

liz
e

d
 D

a
ta

CCT (32K-S + RCA 8)

CCT (32 K-S + 2*CLA4)

CCT (32 K-S + K-S 8)

DW (40 B-K)

Figure 3.28 Normalized result from Table 3.16

