Approximation by Invertible and Noninvertible Operators

PEI YUAN WU*

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, Republic of China

Communicated by J. Peetre

Received April 11, 1986

1. INTRODUCTION

Let T be a bounded linear operator and \mathcal{A} a class of operators on a fixed complex separable Hilbert space H. The problem of operator approximation is to determine how closely T can be approximated in the norm by operators in \mathcal{A} , or more precisely, to determine the distance from T to \mathcal{A} : inf{||T - S||: $S \in \mathcal{A}$ }. Interest in problems of this type was aroused by P. R. Halmos (cf. [5, 6]). In the past decade, intensive investigations in this area have led to some deep results in operator theory (cf. [8, 1]).

The purpose of the present paper is more modest. We consider approximating T by operators with unequal kernel dimension, and we determine $\inf\{||T-S||: \dim \ker S \neq \dim \ker T\}$. In one direction (" \neq " replaced by "<"), this problem is related to that of approximating T by invertible operators; in the other direction (" \neq " replaced by ">"), it is related to the approximation of T by noninvertible operators. These latter two approximations have been considered before: their distances were determined by Bouldin [2] and Franck [4], respectively. Thus by exploiting these relationships and using the known results, we are able to determine inf $\{||T-S||: \dim \ker S \neq \dim \ker T\}$ completely.

In Section 2 below, we give the preliminary preparations and in Sections 3 and 4 we consider the approximations by invertible and non-invertible operators, respectively.

2. PRELIMINARIES

For an operator T on H, let ||T|| (resp. $||T||_e$) denote its operator norm (resp. essential norm) and let $\sigma(T)$ (resp. $\sigma_e(T)$) be its spectrum (resp.

* This research was partially supported by the National Science Council of the Republic of China.

essential spectrum). Let $m(T) = \inf\{\lambda: \lambda \in \sigma((T^*T)^{1/2})\}$ (resp. $m_e(T) = \inf\{\lambda: \lambda \in \sigma_e((T^*T)^{1/2})\}$) be its minimum modulus (resp. essential minimum modulus). The following proposition contains their basic properties and can be found in [2].

PROPOSITION 2.1. (1) $m(T) = \inf\{||Tx||: ||x|| = 1\}.$

(2) $m_e(T) = \inf\{\lambda: \dim E([\lambda, \lambda + \varepsilon))H = \infty \forall \varepsilon > 0\}, \text{ where } E(\cdot) \text{ is the spectral measure of } (T^*T)^{1/2}.$

(3) m(T) > 0 (resp. $m_e(T) > 0$) if and only if T is left invertible (resp. left Fredholm).

(4) If L is a left inverse of T (resp. L is such that LT-1 is compact), then m(T) = 1/||L|| (resp. $m_e(T) = 1/||L||_e$).

(5) T is invertible (resp. Fredholm) if and only if m(T), $m(T^*) > 0$ (resp. $m_e(T)$, $m_e(T^*) > 0$). In this case, $m(T) = m(T^*)$ (resp. $m_e(T) = m_e(T^*)$).

Recall that for an operator T, ind $T = \dim \ker T - \dim \ker T^*$ if at least one of these numbers is finite and ind T=0 otherwise. The next proposition will be used in establishing the lower bounds for the distances which we are interested in later.

PROPOSITION 2.2. If T and S are operators on H and ||T-S|| < m(T)(resp. $||T-S||_e < m_e(T)$), then

- (1) T and S are both left invertible (resp. left Fredholm),
- (2) T is invertible (resp. Fredholm) if and only if S is, and
- (3) ind T = ind S.

Proof. We only prove ||T - S|| < m(T). The proof of $||T - S||_e < m_e(T)$ appeared in [10, Theorem 1.1].

Since $m(T) > ||T - S|| \ge 0$, T is left invertible by Proposition 2.1. Let L be a left inverse of T. Then $||1 - LS|| \le ||L|| ||T - S|| < 1$ implies that LS is invertible whence S is left invertible. This proves (1). (2) follows immediately by noting that T is invertible if and only if L is. Since $||T - S||_e \le ||T - S|| < m(T) \le m_e(T)$, (3) follows as in [10, Theorem 1.1].

Another related parameter of an operator T is the reduced minimum modulus: $\gamma(T) = \inf\{||Tx||: ||x|| = 1 \text{ and } x \perp \ker T\}$. The proof of the next proposition is in [3, Proposition XI.3.16].

PROPOSITION 2.3. (1) $\gamma(T) > 0$ if and only if ran T is closed. (2) $\gamma(T) = \gamma(T^*)$.

268

The next result is also used in establishing the lower bounds for the distances. Its proof can be found in [3, Propositions XI.3.20 and XI.3.24].

PROPOSITION 2.4. If T and S are operators on H and $||T-S|| < \gamma(T)$, then dim ker $S \leq \dim$ ker T and dim ker $S^* \leq \dim$ ker T^* . If, in addition, T or T^* is injective, then dim ker $S = \dim$ ker T and dim ker $S^* = \dim$ ker T^* .

3. INVERTIBILITY

What is the distance from an arbitrary operator T to the class of invertible ones? It has been shown by Bouldin [2] that the distance is expressible in terms of $m_e(T)$ and $m_e(T^*)$. An elaboration of his arguments can yield the following sharpening form. From now on, n will denote an integer, positive, negative, or zero, or $\pm \infty$.

THEOREM 3.1. For any operator T on H and $-\infty \leq n < 0$,

 $\inf\{\|T - S\|: S \text{ left invertible and ind } S = n\}$ $= \begin{cases} \max\{m_e(T), m_e(T^*)\} & \text{if ind } T \neq n \\ 0 & \text{otherwise.} \end{cases}$

Corresponding assertions hold for $0 < n \le \infty$ when "S left invertible" is replaced by "S right invertible" and for n = 0 when it is replaced by "S invertible".

This theorem was essentially proved in [1, Theorem 12.2]. When T is not semi-Fredholm, the proof given there depends on the Apostol-Morrel simple models (cf. [8, Theorem 6.1]). In the following, we give a simpler proof for this case which is more in line with Bouldin's arguments.

Proof of Theorem 3.1. Let $\alpha(T)$ be the distance above. We first show that $\alpha(T) = 0$ for non-semi-Fredholm T. Let T = VR be the polar decomposition of T, where V is the partial isometry with ker $V = \ker T$ and $R = (T^*T)^{1/2}$ (cf. [7, Problem 134]), and let $E(\cdot)$ denote the spectral measure of R. For any $m \ge 1$, let $H_m = E[0, 1/m)H$. Then dim $H_m = \infty$ by Proposition 2.1(2). Next we show that dim $(TH_m^{\perp})^{\perp} = \infty$.

Indeed, since T is not semi-Fredholm, either dim ker $T = \dim \ker T^* = \infty$ or ran T is not closed. In the former case, $TH_m^{\perp} \subseteq \operatorname{ran} T$ yields that ker $T^* = (\operatorname{ran} T)^{\perp} \subseteq (TH_m^{\perp})^{\perp}$. Therefore $\dim(TH_m^{\perp})^{\perp} = \infty$ as asserted. Now assume that ran T is not closed. Let $K_m = E(0, 1/m)H$. If dim $K_m < \infty$, then $R \mid K_m$, being injective, is surjective. Hence $RK_m = K_m \subseteq (\ker R)^{\perp} = (\ker T)^{\perp}$. Since V is isometric on $(\ker T)^{\perp}$, we infer that $T \mid K_m$ is invertible from K_m onto TK_m . It follows that dim $TK_m = \dim K_m < \infty$.

Thus ran $T = TK_m + TH_m^{\perp}$, being the sum of a finite-dimensional subspace and a closed one, is closed, contradicting our assumption. Hence we must have dim $K_m = \infty$ and so dim $TK_m = \infty$. It follows from $TK_m \subseteq (TH_m^{\perp})^{\perp}$ that dim $(TH_m^{\perp})^{\perp} = \infty$.

Now let $S_m = (1/m) W \oplus (T \mid H_m^{\perp})$, where $W: H_m \to (TH_m^{\perp})^{\perp}$ is a unilateral shift with index *-n* and $T \mid H_m^{\perp}: H_m^{\perp} \to TH_m^{\perp}$. Since $T \mid H_m^{\perp}$ is invertible, S_m is left invertible with index *n*. Moreover, $||T - S_m|| = ||T|H_m - (1/m)W|| \le ||T|H_m|| + ||(1/m)W|| \le 2/m$. This shows that $\alpha(T) = 0$ as asserted.

If T is left Fredholm and ind $T \neq n$, then consider $H_m = E[0, m_e(T) + 1/m)H$ instead and show that dim $H_m = \dim(TH_m^{\perp})^{\perp} = \infty$ whence $\alpha(T) \leq m_e(T) = \max\{m_e(T), m_e(T^*)\}$ as before. The reverse inequality follows by Proposition 2.2(3). The omitted details resemble the arguments in the preceding paragraphs (also cf. [1, pp. 145–146]). If ind T = n < 0, then T can be decomposed as VR, where V is an isometry with ind $V = \operatorname{ind} T$ and $R = (T^*T)^{1/2}$ as before. Let $E(\cdot)$ be the spectral measure of R. For any $m \ge 1$, let $H_m = E[0, 1/m)H$, $Q_m = (1/m)I \oplus (R \mid H_m^{\perp})$, where I denotes the identity operator on H_m , and $S_m = VQ_m$. The invertibility of Q_m implies that S_m is left invertible and that ind $S_m = \operatorname{ind} T$. Moreover, $||T - S_m|| =$ $||VR - VQ_m|| \le ||R - Q_m|| \le ||R|H_m|| + 1/m \le 2/m$. This proves that $\alpha(T) = 0$. Other cases can be handled in a similar fashion.

The following corollaries follow easily from the preceding theorem (or its proof) and Proposition 2.2.

COROLLARY 3.2. For any operator T and $-\infty \leq n \leq \infty$,

$$\inf\{\|T-S\|: \text{ ind } S=n\} = \begin{cases} \max\{m_e(T), m_e(T^*)\} & \text{ if } \inf T \neq n \\ 0 & \text{ otherwise.} \end{cases}$$

COROLLARY 3.3. $\inf\{||T-S||: \text{ ind } S \neq \text{ ind } T\} = \max\{m_e(T), m_e(T^*)\}.$

COROLLARY 3.4.

$$Inf\{||T-S||: S \ left \ invertible\} = \begin{cases} m_e(T^*) & if \ ind \ T>0 \\ 0 & otherwise. \end{cases}$$

COROLLARY 3.5.

$$Inf\{ ||T - S||: S left invertible but not invertible \} \\
= \begin{cases} m_e(T^*) & \text{if ind } T \ge 0 \\ 0 & \text{otherwise.} \end{cases}$$

From the last two corollaries and Proposition 2.2, we can further deduce the following.

COROLLARY 3.6.

$$Inf\{\|T-S\|: S \text{ injective}\} = \begin{cases} m_e(T^*) & \text{if } \text{ind } T > 0\\ 0 & \text{otherwise.} \end{cases}$$

COROLLARY 3.7.

$$Inf\{||T-S||: S \text{ surjective}\} = \begin{cases} m_e(T) & \text{if } \text{ind } T < 0\\ 0 & \text{otherwise.} \end{cases}$$

Proof. Since an operator is surjective if and only if it is right invertible, the assertion follows by replacing T in Corollary 3.4 by T^* .

COROLLARY 3.8. $\inf\{||T-S||: S \text{ one-sided invertible}\} = 0.$

COROLLARY 3.9.

$$\inf\{T - S \| : S \text{ one-sided invertible but not both} \} \\
= \begin{cases} m_e(T) & \text{if ind } T = 0 \\ 0 & \text{otherwise.} \end{cases}$$

Note that Corollary 3.8 appears in [7, Problem 140]. In preparation for determining the distance $\inf\{||T-S||: \dim \ker S \neq \dim \ker T\}$ in Section 4, we first consider the distance from T to those operators with smaller kernel dimension.

PROPOSITION 3.10. Let T be a noninjective operator. Then

 $\inf\{\|T-S\|: \dim \ker S < \dim \ker T\}$ $= \begin{cases} m_e(T^*) & \text{if } \dim \ker T < \infty & \text{and} \\ & \dim \ker T^* = 0 & \text{or} \\ & \dim \ker T = \infty & \text{and} \\ & \dim \ker T^* < \infty \\ 0 & \text{otherwise.} \end{cases}$

Proof. Let $\beta(T)$ be the distance above. If dim ker $T < \infty$ and dim ker $T^* = 0$ or dim ker $T = \infty$ and dim ker $T^* < \infty$, then ind T = dim ker T > 0. Hence $\beta(T) \leq \inf\{T - S \| : S \text{ injective}\} = m_e(T^*)$ by Corollary 3.6. For the reverse inequality, let S be any operator with

dim ker $S < \dim$ ker T. If $||T-S|| < m_e(T^*)$, then, since $||T-S||_e \le ||T-S||$, we infer from Proposition 2.2 that ind $T = \operatorname{ind} S$. Thus dim ker $T = \dim$ ker $S - \dim$ ker $S^* \le \dim$ ker S, a contradiction. We conclude that in this case $\beta(T) \ge m_e(T^*)$. Therefore $\beta(T) = m_e(T^*)$.

For the remaining case, we have ind $T < \dim \ker T$. If $\inf T \le 0$, then, again, $\beta(T) \le \inf\{\|T - S\|: S \text{ injective}\} = 0$ by Corollary 3.6. If $\inf T > 0$, Theorem 3.1 implies that $\inf\{\|T - S\|: S \text{ right invertible and } \inf S = \inf T\} = 0$. For any right invertible S with $\inf S = \inf T$, we have dim ker $S = \inf S = \inf T < \dim \ker T$. It follows that $\beta(T) = 0$ in this case.

As a side result, we also have the following.

PROPOSITION 3.11. Let T be an operator such that both T and T^* are noninjective. Then

 $\inf\{\|T - S\|: \dim \ker S < \dim \ker T \text{ and } \dim \ker S^* < \dim \ker T^*\}$ $(\max\{m(T), m(T^*)\} \quad \text{if } \inf T = +\infty$

 $=\begin{cases} \max\{m_e(T), m_e(T^*)\} & \text{ if } \inf T = \pm \infty\\ 0 & \text{ otherwise.} \end{cases}$

Proof. Let $\delta(T)$ be the distance above. If $\inf T = \pm \infty$, then $\delta(T) \leq \inf\{\|T - S\|: S \text{ invertible}\} = \max\{m_e(T), m_e(T^*)\}\$ by Theorem 3.1. On the other hand, Proposition 3.10 implies that $\delta(T) \geq \beta(T) = m_e(T^*) = \max\{m_e(T), m_e(T^*)\}\$ if $\inf T = \infty$. Thus $\delta(T) = \max\{m_e(T), m_e(T^*)\}\$ for $\inf T = \infty$. If $\inf T = -\infty$, the same conclusion follows by considering T^* instead.

For ind T finite, the assertion is a consequence of Theorem 3.1. If ind T=0, then $\delta(T) \leq \inf\{||T-S||: S \text{ invertible}\}=0$. If ind T<0, then $\delta(T) \leq \inf\{||T-S||: S \text{ left invertible and ind } S = \text{ind } T\}=0$ since for such an S, dim ker $S=0 < \dim \ker T$ and dim ker $S^* = -\operatorname{ind} S = -\operatorname{ind} T < \dim \ker T^*$. Similar arguments apply in the case ind T>0.

Part of the approximation in the preceding proposition appears in [3, p. 374, Ex. 1]. Note that there is an error there: $\delta(T)$ may be strictly greater than 0 for semi-Fredholm T. As an example, let $T = T_1 \oplus 0$, where T_1 is a unilateral shift with dim ker $T_1^* = \infty$ and 0 denotes the zero operator on a finite-dimensional space. Then T is left Fredholm but $\delta(T) = m_e(T) > 0$.

4. NONINVERTIBILITY

We start by first determining the distance from an operator to the class of non-left-invertible operators using the polar decomposition of operators. The next proposition appeared in [9, Proposition 2]; its proof made use of

272

the Hahn-Banach theorem and is thus applicable to operators on any Banach space. Our approach, though valid only in the context of Hilbert space, is useful in other approximation problems later.

PROPOSITION 4.1. For any operator T, $\inf\{||T - S||: S \text{ non-left-invertible}\} = m(T)$.

Proof. The distance above is not less than m(T) by Proposition 2.2(1). For the other direction, we may assume that T is left invertible. Let T = VR be the polar decomposition of T, where V is a partial isometry with ker $V = \ker R$ and $R = (T^*T)^{1/2}$ (cf. [7, Problem 134]), and let S = T - m(T)V. If S is left invertible, then, since S = V(R - m(T)), we deduce that R - m(T) is left invertible. For Hermitian operators, this is the same as invertibility, which contradicts the fact that $m(T) \in \sigma(R)$. Thus S is non-left-invertible and ||T - S|| = ||m(T)V|| = m(T). Therefore the distance in question is equal to m(T) as asserted.

COROLLARY 4.2. For any invertible operator T, $\inf\{||T-S||: S \text{ non-invertible}\} = m(T)$.

Proof. This follows easily from the preceding proposition and Proposition 2.2(2).

Corollary 4.2 is first proved by Franck [4] using the Hahn-Banach theorem. Next we consider approximation by operators which are neither left invertible nor right invertible.

THEOREM 4.3. For any operator T, $\inf\{||T-S||: S \text{ non-left-invertible and non-right-invertible}\} = \max\{m(T), m(T^*)\}.$

Proof. Let $\mu(T)$ be the distance above. From Proposition 4.1, we deduce easily that $\mu(T) \ge \max\{m(T), m(T^*)\}$. For the reverse inequality, assume that T is left invertible. Let T = VR and S = T - m(T)V as in the proof of Proposition 4.1. As before, S is not left invertible and ||T - S|| = m(T). Now we show that S is not right invertible. Indeed, if it is, let W, say, be a right inverse of S. Since SW = V(R - m(T))W = 1, V is right invertible. However, the left invertibility of T implies that V is an isometry. Thus, it is in fact a unitary operator. From V(R - m(T))W = 1, we infer that (R - m(T))WV = 1, that is, R - m(T) is right invertible. This leads to the invertibility of R - m(T), a contradiction. We conclude that $\mu(T) = m(T) = \max\{m(T), m(T^*)\}$ as asserted. If T is right invertible, the assertion follows by symmetry.

Analogous assertions can be made with non-Fredholm operators replacing noninvertible operators in the preceding propositions. The next result appears in [11].

PEI YUAN WU

PROPOSITION 4.4. For any operator T, $\inf\{||T-S||: S \text{ non-left-fredholm}\} = m_e(T)$.

COROLLARY 4.5. For any Fredholm operator T, $\inf\{||T-S||: S \text{ non-Fredholm}\} = m_e(T)$.

THEOREM 4.6. For any operator T, $\inf\{||T-S||: S \text{ non-left-Fredholm and non-right-Fredholm}\} = \max\{m_e(T), m_e(T^*)\}.$

Proof. Let v(T) denote the distance above. We only prove that $v(T) = m_e(T)$ for left Fredholm T. The arguments are parallel to those in the proof of Theorem 4.3. Let T = VR be as before and let $E(\cdot)$ denote the spectral measure of R. For any $n \ge 1$, let $P_n = E[m_e(T), m_e(T) + 1/n]$, $H_n = P_n H$, and $S_n = T(1 - P_n)$. Since $S_n H_n = T(1 - P_n) P_n H = \{0\}$ and dim $H_n = \infty$ by Proposition 2.1(2), we have dim ker $S_n = \infty$. Thus S_n is not left Fredholm. Next we show that S_n is not right Fredholm. If it is, let W be such that $S_n W - 1$ is compact. It is easily seen that V is also right Fredholm. On the other hand, since T is left Fredholm, dim ker V =dim ker $T < \infty$. Thus V is Fredholm, and therefore $R(1 - P_n)WV - 1$, together with $VR(1-P_n)W-1$, is compact. This shows that $R(1-P_n)$ is right Fredholm. For a normal operator, this is equivalent to $R(1-P_n)$ being Fredholm. However, $H_n \subseteq \ker R(1-P_n)$ implies that dim ker R $(1 - P_n) = \infty$, a contradiction. We conclude that S_n is not right Fredholm. Moreover, $||T-S_n|| = ||TP_n|| \leq ||RP_n|| \leq m_e(T) + 1/n$. Therefore, $v(T) = m_e(T)$ as asserted.

The last problem we address is the determination of the distance from an operator to the class of those with unequal kernel dimension. We start with the following proposition.

PROPOSITION 4.7. Let T be an operator on H with dim ker $T < \infty$. Then $\inf\{||T - S||: \dim \ker S > \dim \ker T\} = \gamma(T)$.

Proof. The distance above is not less than $\gamma(T)$ by Proposition 2.4. For the other direction, let $\{x_n\}$ be a sequence of unit vectors in $(\ker T)^{\perp}$ such that $||Tx_n|| \rightarrow \gamma(T)$ as $n \rightarrow \infty$. Let P_n denote the orthogonal projection from H onto the one-dimensional subspace H_n generated by x_n , and let $S_n = T(1 - P_n)$. It is easily seen that ker $S_n = \ker T \oplus H_n$, and so dim ker $S_n = \dim \ker T + 1$. For any vector y, if $P_n y = ax_n$ where a is some scalar, then

$$||TP_n y|| = |a| ||Tx_n|| = ||ax_n|| ||Tx_n|| = ||P_n y|| ||Tx_n|| \le ||y|| ||Tx_n||.$$

This shows that $||T - S_n|| = ||TP_n|| = ||Tx_n|| \to \gamma(T)$ as $n \to \infty$ whence our assertation.

In the proof above, we actually showed that $\inf\{||T-S||$: dim ker $S = \dim \ker T + 1\} = \gamma(T)$ if dim ker $T < \infty$. Hence, in particular, if T is injective, then $\inf\{||T-S||$: dim ker $S = 1\} = m(T)$. This latter result generalizes Proposition 4.1.

THEOREM 4.8. For any operator T,

$$\inf\{\|T-S\|: \dim \ker S \neq \dim \ker T\}$$

$$= \begin{cases} \gamma(T) & \text{if } \dim \ker T = 0 & \text{or} \\ & \dim \ker T < \infty & \text{and} \\ & \dim \ker T^* = 0 \\ m_e(T^*) & \text{if } \dim \ker T = \infty & \text{and} \\ & \dim \ker T^* < \infty \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Let $\omega(T)$ be the distance above. If dim ker T=0 or dim ker $T < \infty$ and dim ker $T^* = 0$, then $\omega(T) \leq \gamma(T)$ by Proposition 4.7. The reverse inequality follows from Proposition 2.4. Hence $\omega(T) = \gamma(T)$ in this case.

If dim ker $T = \infty$ and dim ker $T^* < \infty$, then $\omega(T) \le m_e(T^*)$ by Proposition 3.10. On the other hand, if $||T - S|| < m_e(T^*)$ for some S with dim ker $S \ne \dim$ ker T, then T^* and S^* are both left Fredholm and ind $T^* = \operatorname{ind} S^*$ by Proposition 2.2. It follows that dim ker $T = \operatorname{ind} T =$ ind $S = \dim$ ker S, a contradiction. Thus $\omega(T) = m_e(T^*)$. The remaining case follows by Proposition 3.10.

We conclude this paper with a corollary. It is of a similar nature as [7, Problem 130]. The verification of this corollary, and that of the next lemma, are left to the reader.

LEMMA 4.9. If T is a partial isometry, then

 $m(T) = \begin{cases} 1 & \text{if dim ker } T = 0 \\ 0 & \text{otherwise,} \end{cases} \qquad m_e(T) = \begin{cases} 1 & \text{if dim ker } T < \infty \\ 0 & \text{otherwise,} \end{cases}$

and $\gamma(T) = 1$.

COROLLARY 4.10. Let T be a partial isometry with ind $T = \infty$, an isometry, or a coisometry. If ||T - S|| < 1, then dim ker $T = \dim \ker S$.

PEI YUAN WU

ACKNOWLEDGMENTS

The author thanks Daniel Lee for stimulating discussions which led to this work. Thanks are also due to G. Corach for pointing out Refs. [12, 13] which contain some related work.

Note added in proof. Recently, R. Bouldin [14] determined the distance $\inf\{||T-S||$: dim ker $S=n\}$ for any nonnegative integer *n*. This is more refined than the distances considered here.

References

- 1. C. APOSTOL, L. A. FIALKOW, D. A. HERRERO, AND D. VOICULESCU, "Approximation of Hilbert Space Operators," Vol. II, Pitman, Boston, 1984.
- 2. R. BOULDIN, The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), 513-517.
- 3. J. B. CONWAY, "A Course in Functional Analysis," Springer-Verlag, New York, 1985.
- P. FRANCK, Généralisation à un espace de Banach d'une propriété sur la plus courte distance d'une matrice aux matrices singulières de même ordre, C. R. Acad. Sci. Paris Sér. I Math. 262 (1966), 1379–1380.
- 5. P. R. HALMOS, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933.
- 6. P. R. HALMOS, Positive approximants of operators, Indiana Univ. Math. J. 21 (1972), 951-960.
- 7. P. R. HALMOS, "A Hilbert Space Problem Book," 2nd ed., Springer-Verlag, New York, 1982.
- 8. D. A. HERRERO, "Approximation of Hilbert Space Operators," Vol. I, Pitman, Boston, 1982.
- 9. E. MAKAI, JR., AND J. ZEMÁNEK, The surjectivity radius, packing numbers and boundedness below of linear operators, *Integral Equations Operators Theory* 6 (1983), 372–384.
- D. D. ROGERS, Approximation by unitary and essentially unitary operators, Acta Sci. Math. (Szeged) 39 (1977), 141-151.
- 11. J. ZEMÁNEK, Geometric interpretation of the essential minimum modulus, in "Invariant Subspaces and Other Topics," pp. 225–227, Birkhäuser Verlag, Basel, 1982.
- 12. L. A. COBURN AND A. LEBOW, Algebraic theory of Fredholm operators, J. Math. Mech. 15 (1966), 577-584.
- S. IZUMINO AND Y. KATO, The closure of invertible operators on a Hilbert space, Acta Sci. Math. (Szeged) 49 (1985), 321–327.
- 14. R. BOULDIN, Approximation by operators with fixed nullity, Proc. Amer. Math. Soc. 103 (1988), 141-144.