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1. INTRODUCTION 

Let T be a bounded linear operator and CE a class of operators on a 
fixed complex separable Hilbert space N. The problem of operator 
approximation is to determine how closely T can be approximated in the 
norm by operators in LI5, or more precisely, to determine the distance from 
T to GL: inf{ // T - SI/ : SE GL >. Interest in problems of this type was arouse 
by P. R. Halmos (cf. [S, 61). In the past decade, intensive investigations in 
this area have led to some deep results in operator theory (cf. [g, 1 ] ). 

The purpose of the present paper is more modest. We consider 
approximating T by operators with unequal kernel dimension, and we 
determine inf{ Ij T - SII : dim ker S # dim ker T}. In one direction (“ # ” 
replaced by “cl’), this problem is related to that of approximating T by 
invertible operators; in the other direction (“#” replaced by “>“), it is 
related to the approximation of T by noninvertible operators. These latter 
two approximations have been considered before: their distances were 
determined by Bouldin [Z] and Franck [4], respectively. Thus by 
exploiting these relationships and using the known results, we are able to 
determine inf( /I T - S/l : dim ker S # dim ker T 1 completely. 

In Section 2 below, we give the preliminary preparations and in 
Sections 3 and 4 we consider the approximations by invertible and non- 
invertible operators, respectively. 

2. PRELIMINARIES 

For an operator T on H, let Ij TI/ (resp. II Tlj .) denote its operator norm 
(resp. essential norm) and let a(T) (resp. ge(T)) be its spectrum (resp. 
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essential spectrum). Let m(T) = inf{ A: 2 E 0( ( T*T)‘j2)} (resp. m,(T) = 
inf{ll: A E o,(( T*T)“*)}) be its minimum modulus (resp. essential minimum 
modulus). The following proposition contains their basic properties and can 
be found in [2]. 

PROPOSITION 2.1. (1) m(T)=inf{I/Txl/: llxll = l}. 
(2) m,(T)=inf{~:dimE([&~+s))H=~Vs>O}, where E(.) is the 

spectral measure of (T * T) I/=. 
(3) m(T) > 0 (resp. m,(T) > 0) if and only if T is left invertible (resp. 

left Fredholm). 
(4) ifL is a left inverse of T (resp. L is such that LT- 1 is compact), 

then m(T) = l/IILjl (resp. m,(T) = l/llLll,). 
(5) T is invertible (resp. Fredholm) tf and only tf m(T), m(T*)>O 

(resp. m,(T), m,(T*) > 0). In this case, m(T) =m(T*) (resp. m,(T) = 
m,(T*)). 

Recall that for an operator T, ind T = dim ker T - dim ker T* if at least 
one of these numbers is finite and ind T= 0 otherwise. The next 
proposition will be used in establishing the lower bounds for the distances 
which we are interested in later. 

PROPOSITION 2.2. If T and S are operators on H and 11 T- S/l <m(T) 
(resp. II T- S/I e < m,(T)), then 

(1) T and S are both left invertible (resp. left Fredholm), 
(2) T is invertible (resp. Fredholm) tf and only zf S is, and 
(3) ind T=ind S. 

Proof We only prove 11 T- SII <m(T). The proof of /I T- SI/ e < m,(T) 
appeared in [lo, Theorem 1.11. 

Since m(T) > jl T- SII 2 0, T is left invertible by Proposition 2.1. Let L be 
a left inverse of T. Then 111 - LSll d IlLi II T- SII < 1 implies that LS is 
invertible whence S is left invertible. This proves (1). (2) follows 
immediately by noting that T is invertible if and only if L is. Since 
IIT-Slj,< IIT-S/I <m(T)<m,(T), (3) follows as in [lo, Theorem 1.11. 

Another related parameter of an operator T is the reduced minimum 
modulus: y(T) = inf{ II Txll: llxll = 1 and x I ker T). The proof of the next 
proposition is in [3, Proposition X1.3.161. 

PROPOSITION 2.3. (1) y(T) > 0 zj” and only if ran T is closed. 

(2) Y(T) =Y(T*). 
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The next result is also used in establishing the lower bounds for the 
distances. Its proof can be found in [3, Propositions XI.3.20 and XI.3.241. 

PROPOWION 2.4. If T and S are operators on I-I and /j T- S// <y(T), 
then dim ker S Q dim ker T and dim ker S* < dim ker T*. If, in addition, T 
or T* is injective, then dim ker S = dim ker T and dim ker S* = dim ker T”. 

3. INVERTIBILITY 

What is the distance from an arbitrary operator T to the class of inver- 
tible ones? It has been shown by Bouldin [2] that the distance is 
expressible in terms of m,(T) and m,( T* ). An elaboration of his arguments 
can yield the following sharpening form. From now on, n will denote an 
integer, positive, negative, or zero, or + 00. 

THEOREM 3.1. For any operator T on II and - CD 6 n < 0, 

inf( 11 T- S/I : S left invertible and ind S = n) 

max{m,(T), m,(T*)) zf ind Tfn 
0 otherwise. 

Corresponding assertions hold for 0 <n 6 wz when “S left invertible” 
is replaced by “S right invertible” and for n = 0 when it is replaced by ‘“S 
invertible”. 

This theorem was essentially proved in [l, Theorem 12.21. When T is 
not semi-Fredholm, the proof given there depends on the Apostol-Morrel 
simple models (cf. [X, Theorem 6.11). In the following, we give a sim 
proof for this case which is more in line with Bouldin’s arguments. 

Proof of Theorem 3.1. Let IX(T) be the distance above. We first show 
that a(T) = 0 for non-semi-Fredholm T. Let T = VR be the polar decom- 
position of T, where I/ is the partial isometry with ker V= ker T an 
R= (T*T)r12 (cf. [7, Problem 134]), and let E(.) denote t 
measure of R. For any m 2 1, let H,,, = E[O, l/m)H. Then dim 
Proposition 2.1(2). Next we show that dim( TN;)’ = co. 

Indeed, since T is not semi-Fredholm, either dim ker T= 
dim ker T* = CC or ran T is not closed. In the former case, THi c ran T 
yields that ker T* = (ran T)* C_ (THi)l. Therefore dim(TJYi)i = CD as 
asserted. Now assume that ran T is not closed. Let iu, = E(0, l/m 
dim K, < cc, then R I K,, being injective, is surjective. Hence RK,, = 
(ker R)l= (ker T)‘. Since V is isometric on (ker T)l, we infer that 
is invertible from K,,, onto TK,. It follows that dim ,,,=dimK,<oo. 
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Thus ran T = TK,,, + THA , being the sum of a finite-dimensional subspace 
and a closed one, is closed, contradicting our assumption. Hence we must 
have dim K,,, = co and so dim TK, = co. It follows from TK,,, c (TH;)’ 
that dim(TH$)’ = co. 

Now let S,=(l/m)W@(TIH~), where WH,+(THk)L is a 
unilateral shift with index -n and T 1 Hk: H,$ -+ TH:. Since T 1 Hi is 
invertible, S, is left invertible with index n. Moreover, 11 T- S,II = 
IITJH,-(l/m)WII~IITIH,II+Il(l/m)WIlQ2/m. This shows that a(T)=0 
as asserted. 

If Tis left Fredholm and ind T#n, then consider H, = E[O, m,( T) + l/m) H 
instead and show that dim H, = dim( THk)l= 00 whence c$ T) <m,(T) = 
max{m,(T), m,(T*)) as before. The reverse inequality follows by 
Proposition 2.2(3). The omitted details resemble the arguments in the 
preceding paragraphs (also cf. [l, pp. 14551461). If ind T= n < 0, then T 
can be decomposed as VR, where V is an isometry with ind V = ind T and 
R = ( T*T)‘12 as before. Let E( .) be the spectral measure of R. For any 
m 3 1, let H, = E[O, l/m)H, Q, = (l/m)l@ (R I Hi), where 1 denotes the 
identity operator on H,, and S, = VQ,. The invertibility of Q, implies 
that S, is left invertible and that ind S, = ind T. Moreover, 11 T- S,jl = 
II VR - VQ,II < II R - Q,ll d II R I Hmll + l/m d 2/m. This proves that a(T) = 0. 
Other cases can be handled in a similar fashion. 

The following corollaries follow easily from the preceding theorem (or its 
proof) and Proposition 2.2. 

COROLLARY 3.2. For any operator T and - co d n < co, 

inf(I/T-SII:indS=n}= maxim,(T), me( if ind T#n 
otherwise. 

COROLLARY 3.3. Inf{ I( T- SII: ind S # ind T} = max(m,( T), m,( T*)}. 

COROLLARY 3.4. 

Inf{ I/ T- SII : S left invertible} = m,V*) if ind T>O o 
otherwise. 

COROLLARY 3.5. 

Inf{ 11 T- SI/: S left invertible but not invertible] 

m,(T*) if ind T>O = 
0 otherwise. 
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From the last two corollaries and Proposition 2.2, we can further deduce 
the following. 

COROLLARY 3.6. 

Inf{ /I T- SI/: S injective) = %(T*) if ind T>O 
0 

otherwise. 

COROLLARY 3.7. 

Inf{ /I T - SI/ : S surjectiue > = m,(T) if ind T<hB 
0 

otherwise. 

ProoJ: Since an operator is surjective if and only if it is right invertible, 
the assertion follows by replacing T in Corollary 3.4 by T*. 

COROLLARY 3.8. Inf( I/ T - SII : S one-sided invertible] = 0. 

COROLLARY 3.9. 

Inf( T- S/I : S one-sided invertible but not both > 

m,(T) if ind T=O = 
0 otherwise. 

Note that Corollary 3.8 appears in [7, Problem 1403. In preparation for 
determining the distance inf( )I T- S/I: dim ker S # dim ker T} in Section 4, 
we first consider the distance from T to those operators with smaller kernel 
dimension. 

PROPOSITIQN 3.10. Let T be a noninjective operator. Then 

inf( 11 T- S/l: dim ker S < dim kerTS 

mAT*) if dim ker T< oc and 

dim ker T* = 0 or 
= dim ker T= cc aizd 

dim ker T* < cc 
0 otherwise. 

Proof. Let /3(T) be the distance above. If dim ker T < x an 
dimkerT*=O or dimkerT=co and dimkerT*<oo, then indT= 
dimker T>O. Hence b(T)<inf(T-SI/: S injective)=m,(T*) by 
Corollary 3.6. For the reverse inequality, let S be any operator with 

640;56/3-3 
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dim ker S<dim ker T. If IIT-S/I <mJT*), then, since IIT-SI(,< IIT-SI(, 
we infer from Proposition 2.2 that ind T= ind S. Thus dim ker T= dim 
ker S - dim ker S* < dim ker S, a contradiction. We conclude that in this 
case p(T) 3 m,( T’). Therefore fl( T) = m,( T*). 

For the remaining case, we have ind T < dim ker T. If ind T< 0, then, 
again, a(T) d inf{ /I T- SII : S injective} = 0 by Corollary 3.6. If ind T> 0, 
Theorem 3.1 implies that inf{ 11 T-S/I: S right invertible and ind S= 
ind T} = 0. For any right invertible S with ind S = ind T, we have dim ker 
S = ind S = ind T< dim ker T. It follows that p(T) = 0 in this case. 

As a side result, we also have the following. 

PROPOSITION 3.11. Let T be an operator such that both T and T* are 
noninjective. Then 

inf{ 11 T - SII : dim ker S < dim ker T and dim ker S* < dim ker T* } 

= maxim,(T), m,(T*)) 
i 

if indT=)co 
0 otherwise. 

ProoJ Let 6(T) be the distance above. If ind T= f co, then 
@T)<inf(IIT-SII: S . invertible} = max{m,(T), m,(T*)} by Theorem 3.1. 
On the other hand, Proposition 3.10 implies that 6(T) 2/?(T) = m,( T*) = 
max{m,(T), m,(T*)} if ind T= co. Thus d(T)=max{m,(T), m,(T*)} for 
ind T = co. If ind T = - co, the same conclusion follows by considering T * 
instead. 

For ind T finite, the assertion is a consequence of Theorem 3.1. If 
ind T= 0, then 6(T) <inf{ (I T- SII: S invertible} = 0. If ind T<O, then 
6(T) < inf ( )/ T - SJ/ : S left invertible and ind S = ind T} = 0 since for such 
an S, dimkerS=O<dimkerT and dimkerS*=-indS=-indT< 
dim ker T*. Similar arguments apply in the case ind T> 0. 

Part of the approximation in the preceding proposition appears in [3, 
p. 374, Ex. 11. Note that there is an error there:, 6(T) may be strictly 
greater than 0 for semi-Fredholm T. As an example, let T = T1 0 0, 
where T1 is a unilateral shift with dim ker Tf = co and 0 denotes the zero 
operator on a finite-dimensional space. Then T is left Fredholm but 
6(T)=m,(T)>O. 

4. NONINVERTIBILITY 

We start by first determining the distance from an operator to the class 
of non-left-invertible operators using the polar decomposition of operators. 
The next proposition appeared in [9, Proposition 21; its proof made use of 
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the HahnBanach theorem and is thus applicable to operators on any 
Banach space. Our approach, though valid only in the context of Hilbert 
space, is useful in other approximation problems later. 

PROPOS:TION 4.1. For any operator TY inf( /I T- S/I : S ~o~-~~~-~~v~r- 
tible) = m(T). 

Proof: The distance above is not less than m(T) by Proposition 2.2( I )~ 
For the other direction, we may assume that Tis left invertible. Let T= 
be the polar decomposition of T, where V is a partial isometry WI 
ker V=kerR and R=(T*T)l’* (cf. [7, Problem 1341) and let 
S = T-m(T) V. If S is left invertible, then, since S = V(R -m(T)), we 
deduce that R - nz( T) is left invertible. For Hermitian operators, this is the 
same as invertibility, which contradicts the fact that m(T) E: g(R). Thus 
S is non-left-invertible and I/ T- S/I = llm(T) VII = m( T). Therefore t 
distance in question is equal to m(T) as asserted. 

COROLLARY 4.2. For any invertible operator T, inf( I/ T- S/l : S non- 
invertible) = m( T). 

Prooj This foliows easily from the preceding proposition and 
Proposition 2.2(2). 

Corollary 4.2 is first proved by Franck [4] using the Hahn- 
theorem. Next we consider approximation by operators whit 
left invertible nor right invertible. 

THEOREM 4.3. For any operator T, inf{ jl T- S/I: S God-lest-invertible and 
non-right-invertible} = max { m( T), m( T*) >. 

Proof. Let p(T) be the distance above. From Proposition 4.1, we 
deduce easily that p(T) 2 max{ m( T), m( T *)}. For the reverse ~~eq~alit~, 
assume that T is left invertible. Let T = VR and S = T - m(T) V as in t 
proof of Proposition 4.1. As before, S is not left invertible an 
/I T - Slj = m(T). Now we show that S is not right invertible. Indeed, if it is, 
let W, say, be a right inverse of S. Since SW= V(R-m(T)) W= 1, V is 
right invertible. However, the left invertibility of T implies that V is an 
isometry. Thus, it is in fact a unitary operator. From V(R - m(T)) W= 1, 
we infer that (R-m(T)) WV = 1, that is, R-m(T) is right invertible. This 
leads to the invertibility of R-m(T), a contradiction. We conclude that 
p(T)=m(T)=max(m(T),m(T*)} as asserted. If T is right invertible, the 
assertion follows by symmetry. 

Analogous assertions can be made with non-F~edholm operators 
replacing noninvertible operators in the preceding propositions. The next 
resuh appears in [ 111. 
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PROPOSITION 4.4. For any operator T, inf{ /IT- S/J : S non-left- 
Fredholm} = m,(T). 

COROLLARY 4.5. For any Fredholm operator T, inf( /I T- SII: S non- 
Fredholm} = m,( T). 

THEOREM 4.6. For any operator T, inf( 11 T- SII: S non-left-Fre&olm and 
non-right-Fredholm} =max{m,(T), m,(T*)}. 

Prooj Let v(T) denote the distance above. We only prove that 
v(T) = m,(T) for left Fredholm T. The arguments are parallel to those in 
the proof of Theorem 4.3. Let T= VR be as before and let E( .) denote the 
spectral measure of R. For any n 3 1, let P, = E[m,( T), m,(T) + l/n), 
H,=P,H, and S,=T(l-P,). Since S,H,=T(l-P,)P,H=(O} and 
dim H, = cc by Proposition 2.1(2), we have dim ker S, = co. Thus S, is not 
left Fredholm. Next we show that S, is not right Fredholm. If it is, let W 
be such that S, W- 1 is compact. It is easily seen that V is also right 
Fredholm. On the other hand, since T is left Fredholm, dim ker I’= 
dim ker T< co. Thus I’ is Fredholm, and therefore R(l -P,) WV- 1, 
together with VR(1 - P,) W- 1, is compact. This shows that R(l -P,) is 
right Fredholm. For a normal operator, this is equivalent to R(l -P,) 
being Fredholm. However, H, E ker R( 1 - P,) implies that dim ker R 
(1 -P,) = co, a contradiction. We conclude that S, is not right Fredholm. 
Moreover, /I T- S,/I = I/ TP, I/ 6 11 RP, II d m,( T) + l/n. Therefore, v(T) = m,( T) 
as asserted. 

The last problem we address is the determination of the distance from an 
operator to the class of those with unequal kernel dimension. We start with 
the following proposition. 

PROPOSITION 4.7. Let T be an operator on H with dim ker T< co. Then 
inf(j(T-SI(: dim ker S>dim ker Tj =7(T). 

ProoJ The distance above is not less than y(T) by Proposition 2.4. For 
the other direction, let (x,} be a sequence of unit vectors in (ker T)l such 
that /I Tx,I/ + y(T) as n + co. Let P, denote the orthogonal projection from 
H onto the one-dimensional subspace H, generated by x,, and let 
S,, = T(l -P,). It is easily seen that ker S, = ker T@ H,, and so 
dim ker S, = dim ker T + 1. For any vector y, if P, y = ax, where a is some 
scalar, then 

IITf’,yll = I4 IITx,Il = llax,ll /ITx,II = IlP,yll I/Tx,lI d llvll IITxAl. 

This shows that I/T- S,j/ = ((TP,(J = 1(Tx,l( -+ y(T) as n + co whence our 
assertation. 
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In the proof above, we actually showed that inf( /IT- SII : 
dim ker S = dim ker T + 1 > = y(T) if dim ker T < 00 ~ Hence, in particular, if 
T is injective, then inf( I/T- S// : dim ker S = 1 > = m(T). This latter result 
generalizes Proposition 4.1. 

THEOREM 4.8. For any operator T, 

inf{ 11 T- S// : dim ker S # dim ker T} 

if dim ker T=O Or 

dimker T<CC aad 
dim ker T* = 0 

if dim ker T= co and 
dim ker T” < CC 

otherwise. 

Proof. Let o(T) be the distance above. If dim ker T= 
dim ker T-C co and dim ker T* = 0, then o(T) < y(T) by Propositi 
The reverse inequality follows from Proposition 2.4.. Hence o(T) = y(T) in 
this case. 

If dimkerT=co and dimkerT*<co, then ~(T)drn,(T*) by 
Proposition 3.10. On the other hand, if 11 T- S/l < m,(T*) for some S with 
dim ker Sf dim ker T, then T* and S* are both left Fredholm an 
ind T* = ind S* by Proposition 2.2. It follows that dim ker T= ind T= 
ind S = dim ker S, a contradiction. Thus w(T) = m,(T*). The remaining 
case follows by Proposition 3.10. 

We conclude this paper with a corollary. It is of a similar nature as 
[7, Problem 1301. The verification of this corollary, and that of the next 
lemma, are left to the reader. 

hMMA 4.9. If T is a partial isometry, then 

m(T)= E, 
i 

if dim ker T=O if dimker T<xz 
otherwise, otherwise, 

and y(T) = 1. 

COROLLARY 4.10. Let T be a partial isometry with ind T= co, an 
isometry, or a coisometry. If Ij T - SJI < 1, then dim ker T= dim ker S. 
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considered here. 
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