國立交通大學

理學院應用科技學程

碩士論文

and there,

整合型溝渠式功率接面場效電晶體與蕭特基阻障 二極體

Power Trench Junction Field Effect Transistor Integrated with Schottky Barrier Diode

human

研究生:劉莒光

指導教授:羅正忠 教授

龔 正 教授

中華民國 九十八 年六月

整合型溝渠式功率接面場效電晶體與蕭特基阻障二極體

Power Trench Junction Field Effect Transistor Integrated with Schottky Barrier Diode

研究生:劉莒光

指導教授:羅正忠

龔 正

Student : Chu-Kuang Liu

Advisor: J. C. Lou

Advisor : J. Gong

國 立 交 通 大 學 理學院應用科技學程

文

碵 士 論

Degree Program of Applied Science and Technology

June 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年六月

整合型溝渠式功率接面場效電晶體與蕭特基阻障二極體

學生:劉莒光

指導教授:羅正忠

龔 正

國立交通大學理學院應用科技學程

現今在電源供應之開闢應用方面,以功率式金氧半導體場效電晶體為主 要產品。為了追求更高的轉換效率與操作頻率,採用同步壓降轉換器設計可 以達到此要求。然而,對同步壓降轉換器之下橋開闢元件而言,仍然有一些 缺點仍需要克服,譬如物理限制的元件通道導通電阻、以及來自於本身具有 的 PN 二極體在遲滯期間的造成的高功率損失。

本篇研究首先提出一個新穎的元件結構,以整合型的溝渠式接面場效電 晶體與蕭特基二極體來改善上述之缺點。本設計可提供另一個吸引人的方法 來實現同步壓降轉換器之下橋開關元件。

從模擬的結果得知,較大的接面場效電晶體間距與蕭特基二極體之主動區 平台寬度會得到較高的通道截止電壓,以及在不變動通道截止電下的條件 下,會得到較低的汲極與源極之間崩潰電壓。另一方面,較大的通道寬度會 得到較小的通道導通電阻。而蕭特基二極體的平台寬度與二極體的反向回復 特性無顯著相關性。至於磊晶層方面,低掺雜的磊晶層濃度會造成低的通道 截止電壓;磊晶層的電阻率與汲極與源極之間崩潰電壓成反比,與通道導通 電阻成正比。

此新穎之結構可做成超高主動區元件密度、可具競爭的導通電阻、期 望的崩潰電壓、極好的低反向漏電流、以及低的順偏電位壓降。從整體的特 性比較中可得知,對直流轉直流轉換器之應用,本元件結構可做為好的元件 開關取代方案。

Power Trench Junction Field Effect Transistor Integrated with Schottky Barrier Diode

Student : Chu-Kuang Liu

Advisors : Dr. J. C. Lou

Dr. J. Gong

Degree Program of Applied Science and Technology National Chiao Tung University

Nowadays, Power MOSFETs are dominant products of switching converters in the application field of power supply. For high power conversion efficiency and high frequency operating consideration, adopting synchronous buck converter (SBC) design would meet this requirement. However, for the low-side switch device of SBC, there are still some drawback characteristics such as physical limit of on-state resistance of channel, high power loss during the dead time due to the inherent PN body diode etc.

In this study, a novel structure of power trench junction field effect transistor (JFET) integrated with Schottky barrier diode (SBD) is the first time being proposed. This design provides a new alternative solution for the low side switch of synchronous buck converter.

From the simulation result, we find the larger pitch size of JFET and mesa width of SBD causing higher pinch-off voltage, lower breakdown voltage of drain to source if it was under the same pinch-off voltage. On the other hand, it would result in lower specific on-resistance due to the larger channel width. There is no significant correlation between different mesa widths of Schottky diode and reverse recovery characteristics of diode. The lighter epitaxial doping concentration would get the lower pinch-off voltage. The lower resistively of epitaxial layer is in inverse proportional to breakdown voltage, but is in proportional to on-state resistance of drain to source.

This novel structure is achievable for ultra high cell density, competitive on-state resistance, desirable breakdown voltage, excellent low reverse leakage level and lower forward voltage drop. The overall characteristic comparison shows it is a good candidate for switch device of DC-DC convertor application.

Acknowledge

感謝清大電子所龔正教授這兩年的研究指導與交大電子所羅正忠教授的共 同指導。感謝交大電物所碩士在職專班班主任陳永富教授在碩士專題研究的 建解,受益匪淺。感謝清大電子所雜訊實驗室的同學智閩、阿祐、如意、文 山、克濤、彦宏、長鑫、范姜、祐霖、建豪、冠宇、士豪、麗珍、阿鴻、仲 璘、竫渝。感謝漢磊科技與杰力科技的長官們,於我在職唸書間的包容與體 諒,由衷感謝。

ر معاللات

Thanks for the friendships of those who I met in NTHU & NCTU. Without yours friendly welcome and company, my master degree program can not be memorable.

1896

100

Finally, thank my sister and her daughter & sons.

Table of Contents

Abstract	(In Chinese)	i
Abstract	(In English)	ii
Acknowl	edge	iii
Table of	Contents	iv
Figure ca	ptions	V
Table cap	tions	vi
Chapter ⁻	1 Introduction	1
1.1	Markets and Application of Low Voltage Power Device	1
1.2	Motivation	2
1.3	Application Guideline	4
Chapter 2 Schottky	2 Review of Junction Field Effect Transistor and Diode	9
2.1	Introduction	9
2.2	Vertical Channel Metal-Oxide-Semiconductor Transistors	10
2.2.1	Basic MOSFET	11
2.2.2	2 VMOS	11
2.2.3	B DMOS	12
2.2.4	UMOS	12
2.3	Junction Field Effect Transistor	13
2.3.1	Lateral Channel Junction Field Effect Transistor	13
2.3.2	? Vertical Channel Junction Field Effect Transistor	14
2.3.3	3 Trench Junction Field Effect Transistor	14
2.4	Schottky Diode	15
2.4.1	Conventional Schottky Diode	15
2.4.2	2 Junction Barrier Schottky Diode	15
2.4.3	3 Trench MOS Schottky Diode	16

2.5	Conclusion	17
Chapter 3	Fabrication of Power Trench JFET Integrated with	0.4
SBD		24
3.1	Device Structure	24
3.2	Process Flow	25
Chapter 4 SBD	Simulation of Power Trench JFET Integrated with	40
4.1	Introduction	40
4.2	Two Dimension Simulation	41
4.2.1	Two-Dimension Process Simulation	41
4.2.2	Two-Dimension Electric Characteristic Simulation	43
4.2.2.1	Two-Dimension Area Factor (α)	43
4.2.2.2	2 Breakdown Voltage of Drain to Source (BV _{DSX})	44
4.2.2.3	Breakdown Voltage of Gate to Source (BV _{GSO})	44
4.2.2.4	Gate Threshold Voltage (V _{GS(TH)})	45
4.2.2.5	5 Specific On-Resistance (Ron,sp) and Drain to Source On Resistance	
	(R _{ds,on})	46
4.2.2.6	8 Reverse Leakage Current (I _R)	47
4.2.2.7	7 Forward Voltage Drop (V _F)	48
4.2.2.8	3 Turn-on I _D -V _D Curve	49
4.3	Three Dimension Simulation	49
4.3.1	Three-Dimension Process Simulation	49
4.3.2	Three-Dimension Electric Characteristic Simulation	50
4.3.2.1	Three-Dimension Area Factor (β)	50
4.3.2.2	2 Breakdown Voltage of Drain to Source (BV _{DSX})	50
4.3.2.3	B Gate Threshold Voltage (V _{GS(TH)})	51
4.3.2.4	Specific On-Resistance (Ron,sp) and Drain to Source On Resistance	
	(R _{ds.on})	51

5 Reverse Leakage Current (I _R)	52
6 Forward Voltage Drop (V _F)	53
Study of Key Process Parameters	53
Definition of Key Process Parameters	53
JFET Pitch Size	54
P+ Gate Implant Energy	54
Schottky Mesa Width	54
Resistivity of Epitaxial Layer	55
Conclusion	55
Conclusion Conclusion	81 81
Future work	82
esESXA	83
	5 Reverse Leakage Current (I _R) 5 Forward Voltage Drop (V _F)

Figure Captions

Chapter 1		
Figure1.1	Discrete component markets	6
Figure1.2	Major types of power devices and its markets	6
Figure1.3	Application for power devices in relation to their voltage and current	
	rating	7
Figure1.4	Synchronous buck converter implemented by MOSFET	7
Figure1.5	Synchronous buck converter implemented by JFET integrated with	
	JBS	8
Chapter 2	NI STATISTICS	
Figure2.1	A basic MOSFET structure	18
Figure2.2	A VMOSFET structure	18
Figure2.3	A DMOSFET structure	19
Figure2.4	A UMOSFET structure	19
Figure2.5	A junction field effect transistor (JFET)	20
Figure2.6	A modern version of lateral channel junction field effect transistor	
		20

Figure 2.7 A vertical channel JFET structure using silicon planar technology

	21
Figure2.8 A trench-type JFET structure	21
Figure2.9 An Al-Si Schottky structure	22
Figure2.10 Junction barrier Schottky diode structure	22
Figure2.11 A Trench MOS barrier Schottky diode (TMBS) structure	23
Figure2.11 An Integration structure between trench MOSFET and trench M	10S
barrier Schottky diode (TMBS)	23

Chapter 3

Figure3.1	Proposed power trench JFET integrated with SBD structure	24
Figure3.2	Prepare N+ substrate and N-Epi	26
Figure3.3	Grow field oxide	26
Figure3.4	AA patterning	27
Figure3.5	AA wet etching	27
Figure3.6	AA cleaning	28
Figure3.7	Source patterning	28
Figure3.8	Source implant	29
Figure3.9	Source cleaning	29
Figure3.10	Deposit hard mask oxide	30
Figure3.11	Trench patterning	30
Figure3.12	Hard mask oxide etching	31
Figure3.13	Trench cleaning	31
Figure3.14	Trench etching	32
Figure3.15	Source patterning.	32
Figure3.16	P+ gate implant	33
Figure3.17	Source cleaning	33
Figure3.18	Remove hard mask oxide	34
Figure3.19	Deposit ILD-CVD oxide	34
Figure3.20	Contact patterning	35
Figure3.21	Contact etching	35
Figure3.22	Contact cleaning	36
Figure3.23	Deposit front side metal	36
Figure3.24	Metal patterning	37
Figure3.25	Metal etching	37
Figure3.26	Metal cleaning	38
Figure3.27	Alloy	38
Figure3.28	Backside grinding and backside metal deposition	39

Chapter 4

Figure4.1	Trench etching with hard mask oxide	57
Figure4.2	P^{*} gate implant that with self-align hard mask oxide and source	
	pattern	57
Figure4.3	Remove hard mask oxide	58
Figure4.4	Deposit the LPCVD oxide as ILD	58
Figure4.5	Contact dry etching	59
Figure4.6	Define 2 nd source pattern and source implant	59
Figure4.7	Strip source pattern	60
Figure4.8	Sputter front-side metal as source electrode and alloy	60
Figure4.9	The schematic of two-dimension unit cell	61
Figure4.10	The breakdown voltage of drain to source	61
Figure4.11	The electric potential profile of BV _{DSX} (V _G =-4.0V)	62
Figure4.12	The electric field magnitude at BV _{DSX} (V _G =-4.0V)	62
Figure4.13	The breakdown voltage of gate to source	63
Figure4.14	The gate threshold voltage	63
Figure4.15	The turn-on I _D -V _D curve for R _{on,sp}	64
Figure4.16	The reverse leakage current magnitude when V_{G} =-0.4V and	
	V _D =20V	64
Figure4.17	The forward voltage drop when I _S =10A	65
Figure4.18	The forward voltage drop when I_S =20A	65
Figure4.19	The turn-on I_D - V_D curve	66
Figure4.20	The turn-on electron current magnitude	66
Figure4.21	Trench pattern	67
Figure4.22	Trench hard mask oxide etching	67
Figure4.23	Trench etching	68
Figure4.24	Source pattern & P+ gate implant	68
Figure4.25	ILD CVD oxide deposition	69
Figure4.26	Contact etching	69

Figure4.27	Source pattern & source implant	70
Figure4.28	Sputter front-side metal	70
Figure4.29	The unit cell size of three dimension simulation	71
Figure4.30	The BV _{DSX} curve of three dimension simulation	71
Figure4.31	The electric potential profile at BV _{DSX}	72
Figure4.32	The electric field magnitude profile at BV _{DSX}	72
Figure4.33	The BV _{GS(TH)} curve	73
Figure4.34	The on-state I_D - V_D curve for $Rd_{s,on}$	73
Figure4.35	The V _F (10A) curve	74
Figure4.36	The V _F (20A) curve	74
Figure4.37	The schematic diagram of JFET pitch size and SBD mesa	
	width	75
Figure4.38	The chart diagram of JFET pitch size vs. BV_{DSX} & $V_{GS(TH)}$	75
Figure4.39	The chart diagram of JFET pitch size vs. BV _{DSX} & R _{on,sp}	76
Figure4.40	The chart diagram of P^* gate implant energy vs. BV_{DSX} &	
	V _{GS(TH)}	76
Figure4.41	The chart diagram of P ⁺ gate implant energy vs. BV _{DSX} &	
	R _{on,sp.}	77
Figure4.42	The net doping profile at different P ⁺ gate implant energy	77
Figure4.43	The chart diagram of Schottky mesa width vs. $BV_{DSX}\&$	
	V _{GS(TH)}	78
Figure4.44	The chart diagram of Schottky mesa width vs. $BV_{DSX}\&$	
	R _{on,sp.}	78
Figure4.45	The reverse recovery waveforms at different Schottky mesa	
	width	79
Figure4.46	The chart diagram of Epitaxy resistivity vs. BV_{DSX} & $V_{GS(TH)}$	79
Figure4.47	The chart diagram of Epitaxy resistivity vs. BV _{DSX} & R _{on,sp}	80

Table Captions

Chapter 3

Table 3.1	able 3.1 Process flow of power trench JFET integrated with SBD str	
		25
Chapter 4	!	
Table 4.1	Summary table of electrical characteristics of this proposal	
	structure compared with prior structures	80

