
I

國 立 交 通 大 學

資訊學院 資訊學程

碩 士 論 文

O2TC：利用二進制優點的高品質、低複雜度二進制材

質壓縮法

O2TC：Exploiting Binary Virtues with

High-Quality, Low Complexity Order-of-2 Texture

Compression

研 究 生：柯天人

指導教授：鍾崇斌 教授

中 華 民 國 九 十 八 年 十二 月

O2TC：利用二進制優點的高品質、低複雜度二進制材質壓縮法

O2TC：Exploiting Binary Virtues with High-Quality, Low

Complexity Order-of-2 Texture Compression

研 究 生：柯天人 Student：Tien-Jen Ke

指導教授：鍾崇斌 Advisor：Chung-Ping Chung

國 立 交 通 大 學

資訊學院 資訊學程
碩 士 論 文

A Thesis

Submitted to College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Computer Science

December 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年十二月

http://dpeecs.nctu.edu.tw/professor/p4.html�

I

O2TC：利用二進制優點的高品質、低複雜度二進制材質壓縮法

學生：柯天人 指導教授：鍾崇斌

國立交通大學 資訊學院 資訊學程碩士班

摘要

 對於儲存空間或是傳輸頻寬有限的裝置材質壓縮是需要的。雖然有損耗的壓縮是有效

的，但是解壓縮後的材質品質是一個問題。我們提出一個可以達成壓縮率高、解碼簡單

而且解碼後的品質高的二進制材質壓縮法—O2TC (Order of 2 Texture Compression)。

O2TC試著利用二進制系統的優點。他的特點包含:對用來表示的基本顏色做明智的選擇

與編碼、簡單而且可平行接收方塊材元。我們使用一對基本顏色或是一個基本色與一個

差值，加上簡單快速的二進制內插與外插計算出用來表示的顏色，使用平移運算而不需

要使用乘法或是除法。使用隱藏位元來最小化因截斷所造成的最大可能誤差。我們也進

一步減少壓縮/解壓縮的運算誤差。並且透明分量也可以使用一樣的方法。跟著名的 S3TC

的 DXT5方法比較，我們有更簡單的解壓縮方式與更好的解壓縮後影像品質，在有透明

分量的材質上，O2TC RGB888, 8-color, 與 Plain64-64 options 方法分別領先了 0.37,

2.80 and 0.15 dB。更簡單的解壓縮方法代表相同時間內可以產生更多的材元顏色。

II

O2TC：Exploiting Binary Virtues with High-Quality, Low Complexity

Order-of-2 Texture Compression

Student：Tien-Jen Ke Advisor：Chung-Ping Chung

Degree Program of Computer Science

Nation Chiao Tung University

ABSTRACT

Texture compression is necessary for limited storage and low bandwidth devices. While

lossy compressions are effective, quality of texture after recovery becomes an issue. We

propose an order-of-two texture compression method—O2TC (Order of 2 Texture

Compression) to achieve high compression rate, easy decompression, and high quality after

decompression. O2TC tries to exploit virtues in binary system. Its attributes include: judicious

selection and coding of representative base colors, and simple and parallelizable retrieval of

block of texels. We use either a pair of base colors or a base colors and a difference, and

simple and fast binary calculations—without *, ÷ or approximation—to inter/extrapolate them

into representative colors. Truncation error upper bound is also minimized with implicit color

bits. With 2’s complement arithmetic, we further reduce the compression/decompression error.

And alpha channel can be treated the same. Compared with renowned S3TC’s DXT5, our

method has much simplified decompression with better texture quality—0.37, 2.80 and 0.15

dB better on average with O2TC RGB888, 8-color, and Plain64-64 options, respectively, on

popular alpha maps.

III

誌謝

首先感謝我的指導老師 鍾崇斌教授，在這兩年來的辛勤教導讓我可以順利完成此

論文，並且可以順利通過口試。同時感謝我的口試委員洪士灝教授、單智君教授以及邱

日清教授，由於他們的指導與建議，讓這篇論文更加完整與確實。

另外，感謝指導我的楊惠親學姐，學姊在論文上給我許多寶貴的意見。同時也要感

謝實驗室的同學之傑、秀青、浤偉與東霖，大家在每次討論上都給予許多的建議，感謝

大家這兩年的相互鼓勵讓我研究生的生活非常順利與快樂

也要感謝我的老婆，淑鈴。在忙著做研究時可以體諒我並且支持我，讓我無後顧之

憂，也讓我可以安心順利的完成學業。最後也感謝公司的上司 Andrew 這兩年的支持與

工作上的安排讓我可以順利完成學業。

謹向所有支持我，勉勵我的師長與親友，獻上最誠摯的祝福，感謝你們。

 柯天人 2009. 11. 19

IV

Table of Contents

摘要……………………………………...……………………………………………...…….-I-

ABSTRACT…………………………………………..………………………..……………-II-

誌謝…………………………………………………………………………………...…….-III-

Table of Contents………………………………………………………………...…………-IV-

List of Figures………………...………………………………………………...………….-VII-

List of Tables…………………….……………………………………………...………….-IX-

Chapter 1 Introduction…………………………………….....................……………………-1-

1.1 GPU and Programmable Graphics Render Pipeline…………………………….......-1-

1.1.1 Vertex Processing…………………………………………….……………...-3-

1.1.2 Triangle Setup and Rasterization………………………….…………………-3-

1.1.3 Pixel Processing……………………………………………………………..-4-

1.1.4 Depth Processing…………………………………………….………………-4-

1.2 Texture Mapping and Texture Filtering…………………………………………..…-5-

1.2.1 Texture Mapping…………………………………………………………….-5-

1.2.2 Texture Filtering……………………………………………………………..-6-

1.2.3 Texture Compression………………………………………………….……..-8-

1.3 Motivation……………………………………………………………..……………-9-

1.4 Objective……………………………………………………………………….….-10-

1.5 Thesis Organization…..……………………………………………………..……..-11-

Chapter 2 Background…………………………………………………………...………….-12-

2.1 Block Truncation Coding……………………………………………….…………-12-

2.2 Color Cell Compression……………………………………………………..…….-13-

2.3 S3 Texture Compression…………………………………………………..……….-13-

2.4 iPACKMAN…………………………………………………………….………...-14-

2.5 Discussion…………………………………………………………………………-15-

V

Chapter 3 Design………………………………………………………………..………….-17-

3.1 Basic Ideas……………………….…………………………………….……….…-17-

3.2 Inter/Extrapolation Mode………………………………………………….………-18-

3.2.1 Bits Layout…………………………………………………………………-20-

3.2.2 Errors computation…………………………………………………....……-21-

3.2.3 Texture decompression………………………………………………..……-22-

3.2.4 Parallel Decompression…………………………………………….………-25-

3.2.5 Discussion of inter/extrapolation mode…………………………………….-26-

3.3 Advanced Differential mode……………………………………………………….-27-

3.3.1 Bits Layout…………………………………………………………………-28-

3.3.2 Encode and errors computation…………………………………………….-30-

3.3.3 Texture decompression……………………………………………….…….-31-

3.3.4 Parallel Decompression……………………………………….……………-33-

3.3.5 Discussion of advanced differential mode…………………………………-34-

3.4 Texture encode……………………………………………………………..………-35-

3.5 Texture with Alpha channel………………………………………………..………-36-

3.5.1 Bits layout……………………………………………………….………….-38-

3.6 Overall Design……………………………………………………………………..-39-

Chapter 4 Experiment Results…………………………………………………...………….-41-

4.1 Simulation Environment………………………………………………..………….-41-

4.2 Quality Measure…………………………………………………………..……….-41-

4.3 Software Simulation Results…………………………………………………..…..-42-

4.3.1 Various padding methods…………………………………………………..-42-

4.3.2 Various code words format………………………………………….……...-43-

4.3.3 Various 64 bits methods……………………………….……………………-44-

4.3.4 Various 128 bits methods with alpha channel……………………………...-45-

4.4 Timing and Circuit Complexity Analyses…………………………………..……..-46-

Chapter 5 Discussion and Conclusion…………………………………………..………….-48-

VI

5.1 Evaluations and Discussion…………………………………..……………………-48-

5.2 Conclusion and Future Work…………………………………………………..…..-49-

References…………………………………………………………………………………..-50-

Appendix……………………………………………………………………………...…….-51-

VII

List of Figures

Figure 1 Programmable graphics render pipeline…………………………………………….-2-

Figure 2 Triangle rasterization………………………………………………………………..-4-

Figure 3 A texture, its width and height are all eight…………………………………………-5-

Figure 4 Concept of texture mapping………………………………………………………...-6-

Figure 5 Left: when minification occurs the fragment footprint covers many texels, Right:

when magnification occurs, few or only one texel is covered by the footprint……………....-7-

Figure 6 Concept of trilinear and mip-map texture………………………………………..…-8-

Figure 7 The texture unit with texture compression technique………………………………-9-

Figure 8 The concept of BTC……………………………………………………………….-12-

Figure 9 The concept of CCC……………………………………………………………….-13-

Figure 10 The concept of S3TC……………………………………………………………..-14-

Figure 11 The decompressor design of iPACKMAN……………………………………….-15-

Figure 12 Stored color of S3TC…………………………………………………………….-19-

Figure 13 Stored colors of basic Inter/Extrapolation mode of O2TC………………………-19-

Figure 14 Bits layout of compression in Inter/Extrapolation mode of O2TC………….…..-20-

Figure 15 Bits stored of red, green and blue of one base color………………………….….-21-

Figure 16 The range that padding b100 presented……………………………………….…-22-

Figure 17 This diagram shows a possible decompressor of basic Inter/Extrapolation mode of

O2TC………………………………………………………………………………….…….-23-

Figure 18 O2TC option1 parallel texture retrieval circuit, with its 2-color generator show in

the lower part………………………………………………………………………………..-26-

Figure 19 Stored colors of advanced differential mode of O2TC…………………………..-27-

Figure 20 Bits stored of red, green and blue of Option2 of O2TC……………….…………-29-

Figure 21 Bits layout of compression in Option2 of O2TC………………………………...-29-

Figure 22 Bits stored of red, green and blue of Option2_EXT of O2TC………………..….-30-

VIII

Figure 23 The range that padding b10 presented………………….………………………...-31-

Figure 24 This diagram shows a possible decompressor of Option2 of O2TC………..……-32-

Figure 25 O2TC Option2 parallel texture retrieval circuit, with its 3-color generator show in

the lower part…………………………………………………………………….…………-34-

Figure 26 Base colors selection flowchart in texture block compression…………..………-36-

Figure 27 Alpha channel compression/decompression of DXT5…………………….…….-37-

Figure 28 Alpha channel compression/decompression of Option1 of O2TC………………-37-

Figure 29 Alpha channel compression/decompression of Option2 of O2TC………………-38-

Figure 30 Option1 of O2TC with alpha – a plain 64-64 format………………….…………-39-

Figure 31 O2TC Option1, the 8-color format with alpha…………………………………...-39-

Figure 32 O2TC Option2, the 8-color format with alpha…………………………….……..-39-

Figure 33 Overall design of O2TC………………………………………………………….-40-

Figure 34 PSNR results of various methods……………………………………..…………-44-

Figure 35 PSNR of various methods with alpha……………………………………………-45-

IX

List of Tables

Table 1 Input, output and operation of each stage……………………………………….......-2-

Table 2 The true table of control signals and results of computation in basic inter/extrapolation

mode of O2TC……………………………………………………………………………....-24-

Table 3 The true table of control signals and results of computation in advanced differential

mode of O2TC………………………………………………………………………………-32-

Table 4 Quality comparison of padding variations………………………………………….-42-

Table 5 Quality comparison of O2TC Option2 variations………………………………..…-43-

Table 6 Quality comparison of O2TC Option2 variations………………………………..…-44-

Table 7 Quality comparison of DXT5_Theo and various O2TC………………………..….-45-

Table 8 Timing and circuit complexity of various one-texel-at-a-time retrieval methods…- 46-

Table 9 Quality, hardware, timing comparison of Option1 and Option2 of O2TC and

S3TC…………………………………………………………………………………..…… -48-

1

Chapter 1 Introduction

1.1 GPU and Programmable Graphics Render

Pipeline

In the nowadays, Graphic processing unit (GPU) is an important of field of application specific

processor. It targets on graphics rendering, which display the two-dimensional (2D) viewing of

three-dimensional (3D) space. The modern GPU becomes more complex due to users’ increasing

demands for 3D scene realism improvement [1].

Programmable graphics pipeline is the most popular solution for the requirements of both

performance and flexibility in computer graphics nowadays. With the rapidly development of

computer graphics, such as 3D games, virtual realities and digital lives, the requirements of

computer graphics in effects and performance become higher [2]. To achieve all kinds of users’

requirements, the programmable graphics pipeline is the best solution builds into graphics

hardware and many complicated function units have been builds in. The programmable graphics

pipeline has new graphics processing units: vertex shader unit and pixel shader unit, which is

different to traditional GPU design. These two new processing units give graphics pipeline the

flexibility to deal with all kinds of computation requirements while retaining the capability of

complicated computation.

Figure 1 is the programmable graphics render pipeline, we discuss the render pipeline in several

parts, which are vertex processing, rasterization, pixel processing and depth processing.

2

Vertex Processing

Triangle setup &
rasterization

Texture unit

Pixel Processing

Depth Processing

Frame buffer

Vertex data

Vertex
program

Vertex
program

Figure 1 Programmable graphics render pipeline

Table 1 shows the input, output and operations of each stage to give a concept of the graphics

pipeline. Then we introduce the detail operations of each stage in the follow sub-sections.

Table 1 Input, output and operation of each stage

Stage Input Output Operation

Vertex

Processing

Vertices coordinates

of primitives

Vertices coordinates

of primitives in

eye’s viewing

Transform coordinates

ModelWorldeye

Triangle Setup

and

Rasterization

Vertices of

primitives

Fragments Interpolates each

information of

triangle into numbers

of fragments

3

Pixel Processing Fragments Fragments Colors each fragment

according to its

information

Depth

Processing

Fragment with final

color and depth

value

Image composed of

pixels

Stored color of pixel

which will showed in

screen into frame

buffer

1.1.1 Vertex Processing

 Vertex processing is supported by vertex shader in GPU [3]. Vertex shader performs mathematics

operations on the vertex data for objects by the vertex shader programs. Vertex data are the 3D

coordinate values (which are x, y and z) for the vertex and an object consists of three vertexes.

Vertex shader does several transformations and normalizations, which are model-view

transformation, projection transformation, Clipping, perspective division and viewport mapping.

After the transformations and normalizations, the 3D based objects will be transformed into

normalized 2D based objects on screen which all the coordinate values are in the interval 0 and 1.

Then vertex processing sends the normalized 2D coordinate values to rasterization which will be

introduced at next section.

1.1.2 Triangle Setup and Rasterization

 Rasterization receives the vertices data from vertex processing, then rasterize the fragments

which are in the primitive. It uses horizontal scan line onto the primitive to produce fragments,

which is showed below Figure 2.

4

Figure 2 Triangle rasterization

 In the rasterization process, it also interpolated the x, y, and z coordinates and the color

information like red, green, blue, alpha values.

1.1.3 Pixel Processing

 Pixel processing is supported by pixel shader. Pixel shader receives fragments from rasterization

stage and does computations for the fragments. Each fragment will be colored according to the pixel

shader code, including texture mapping which we will introduce in section 1.2. After pixel

processing, the fragments with final color and z value will be sent to depth processing.

1.1.4 Depth Processing

 Using frame buffer to store the pixel color which will be display on the screen. In this stage, z

value of every pixel is compared with z value which has the same screen address (means has the

same x, y values) of Z-Buffer. Z-Buffer is a buffer of screen-size using to store the nearest z value of

every pixel [4]. If z value of the pixel is smaller than the value of the Z-Buffer, Z-Buffer is updated

by the z value and frame buffer is updated by the new color. After depth processing, screen display

the colors which are stored in frame buffer.

5

1.2 Texture Mapping and Texture Filtering

 At this section, we will introduce an important technique in modern GPU which is called

texture mapping. We will introduce two techniques used in texture mapping in the subsections

which are called mip-map and texture compression.

1.2.1 Texture Mapping

 Before introducing texture mapping, we introduce texture first. Texture is a 2D bit-map image

and its width and height are powers of two. The maximum size of texture supported in modern

GPU is 4096×4096. Texel is the basic element of texture, it is consisting of four components

which are Red, Green, Blue, and Alpha (or RGBA in short). RGB are the value of color and A id

the value of transparency. Each component is one byte, which means that each texel is four bytes.

Figure 3 shows a texture, which width and height are all eight. It means the size of this texture is

4×8×8=256 bytes.

R G B A

Figure 3 A texture, its width and height are all eight

6

Texture mapping is a process, which make primitive realities and also reduce computations.

It applied a texture to a primitive instead of using many primitives to make the object realities.

 The number of required triangles is increased and thus the number computation is

increased du to realize realistic a very complex image. But reduced the number of triangles

means reduced the realistic quality of an object. Hence, to have more realistic object with less

triangles, texture mapping has been used commonly in 3D computer graphics. Figure 4 shows

the texture mapping operation between screen spaces and texture spaces.

X

Y

u

v

Screen spaces Texture spaces
Figure 4 Concept of texture mapping

1.2.2 Texture Filtering

 In order to render textured scenes with good quality, some kind of texture filtering is

needed. This is to avoid aliasing that can occur under minification, and avoid a block

appearance under magnification. Figure 5 shows when the minification and magnification

occurs, the footprint covered range of fragment.

7

X

Y

u

v

Screen spaces Texture spaces
Figure 5 Left: when minification occurs the fragment footprint covers many texels, Right:

when magnification occurs, few or only one texel is covered by the footprint

 Due to the absence of no one-to-one mapping between texels and pixels, an interpolation

calculation is necessary for high quality mapping. Higher quality requires computation intensive

interpolation to generate a final pixel value from many texel values.

 Commonly used texture filtering algorithms in current 3D games are bilinear filtering (Bi),

trilinear filtering (Tri), and anisotropic filtering (Ani). There is a tradeoff between operation

complexity and image quality among various texture filtering algorithms. Both trilinear and

anisotropic support the mip-map technique. Mip-map is a technique to reduce the artifacts which

arise from the use of a single bitmap image while the level of detail of an object decreases with an

increase in the distance. Figure 6 shows the trilinear technique using mip-map texture.

8

LOD 0 LOD 1 LOD 2 LOD 3

Mip map textureScreen spaces

Bilinear

Bilinear

Linear

Trilinear

Figure 6 Concept of trilinear and mip-map texture

1.2.3 Texture Compression

 In the section 1.2.2, we know texture is a very large bit-map image. Mip-map technique

makes the storage almost double larger than normal texture. In order to render textured scenes

with good quality, we needs more complex texture filtering technique and mip-map texture

support, which means we need more storage to stored the texture and wide bus to transfer the

textures data.

 Texture compression solves the problem, it can use smaller storage to store the same texture

and keep the quality after decompression good enough. With the texture compression

technique, we can store the compressed texture in the texture cache, and decompress the

texture block we need to use for texture filter dynamically. Because the texture always stored

in cache in compressed forms, which means we reduce the traffic between texture and texture

unit. This technique let we can use the same memory and cache but we can stored more

texture in memory and cache. Smaller storage and bandwidth required means smaller power

consumption. Figure 7 shows the texture unit with texture compression technique.

9

Address
Translation

Texture
Cache

(Compressed
Texture)

Texture
Filter

Texture
Decoder

Texel

Compressed
texture
block

Filter information

Texture Unit

(u,v)

Color of
fragment

Texture
Memory

Address

Figure 7 The texture unit with texture compression technique

 Texture unit supports texture mapping operation in GPU. Texture unit is composed of an address

translation, texture cache, texture decoder, and texture filter. Process of texture unit is that texture

unit receives texture coordinate (u, v). Then address translation translates the texture coordinate (u,

v) of texel into real address, then sends the address to texture cache to fetch texel. This action may

active several times. After all the requested compressed texture block are sent to texture decoder,

texture decoder will decompress the texture block and compute the colors that texture filter unit

needs. Then the texture filter unit will compute the final color value according to the filter type and

weight then sends the color value to pixel shader.

1.3 Motivation

 The texture compression needs to decompress the texels from the compressed texture block

dynamically. That means the decompress process should be easy in hardware and time. In

slim devices such as cell phones, this request must be satisfied with limited silicon and

10

computing power.

Issues to be tackled under texture compression technique:

1. Compression ratio should be high.

2. Decompression should be easy in hardware and time.

3. Quality of result should be high.

Compression ratio and quality after decompress is a tradeoff, that means high compression

ratio usually means the quality after decompress is bad. But we still want the decompression

should be easy. It is a hard work to target the issue above, but we want challenge to target all

the issues above.

S3TC is a renowned texture compression technique. In its RGB format, 64 bits are used to

represent a block of 16 texels with 8-bit RGB, resulting in 24*16/64=6 compression ratio.

However, some difficulties exist: its decompression requires division, whereas its

approximation hardware alternative loses precision. Other famous schemes include PVR-TC,

iPACKMAN, etc.

 Texture compression remains an important topic in computer graphics. Despite

compression techniques, textures are consuming ever large proportions of the memory

bandwidth. So to simplify the difficulties of S3TC is a good topic for us and in next section

we will introduce the goals we want to target.

1.4 Objective

 Design a texture compression technique, which can achieve the following goals:

1. Retain the same compression ratio since 64 bits are good figures, but record more color

information if possible.

2. Simplify decompression hardware, and make the process quick.

3. Texture quality must be maintained if not raised

4. In response to ever increasing silicon budget, design our method for easy parallel

11

processing during texels retrieval.

Characteristics of O2TC are list as bellow.

1. Compression ratio is six.

2. Exploiting binary virtues to improves the calculate equations.

3. Quality of result is -0.06 dB lower than theory of S3TC and the 0.25dB differences is

visible by human eyes.

4. Produces 16 texels on one time decompress in best case.

1.5 Thesis Organization

 The origination of follow sections in this thesis is: Chapter 2 introduces background of related

works. Chapter 3 introduces our O2TC design, including Option1 and Option2 design and texture

with alpha channel design. Experiment results are shown in chapter 4. Discussion and conclusion

are made in chapter 5.

12

Chapter 2 Background

 In this chapter, we will introduce the texture compression methods which our O2TC rest on.

The texture compressions which we will introduce are BTC, CCC, S3TC and iPACKMAN.

We will introduce how they compress the texture and decompress the texture.

2.1 Block Truncation Coding

 Delp and Mitchell [5] developed a simple scheme, called block truncation coding (BTC) for

image compression. Their scheme compressed gray scale images by a block of 4x4 pixels. The

method represents a block by two 8-bit gray scale value and index map. Everything is

contained in the codeword, no global data or color palette needs to be read. However, BTC

having only two base colors of gray gives rise to banding artifacts. This allowed for

compression of texture at 2 bpp. Although, the applications of BTC were not the texture

compression, many other proposed texture compression method are based on their ideas. Figure

8 shows the concept of BTC.

0 0 0 0

0 0 0 1

1 1 1 1

1 1 1 1

Base color 0

Base color 1

Bit mask Results

Figure 8 The concept of BTC

13

2.2 Color Cell Compression

 A simple extension of BTC to represent color images, called color cell compression (CCC)

was proposed by Campbell et al [6]. They use 8-bit value as an index into a color palette. The

method required storing a color palette for every texture and access memory twice for an

indirect data. This allowed for compression of texture at 2 bpp. Knittel et al. suggested that it

was implemented in the texturing hardware. Figure 9 shows the concept of CCC.

0 0 0 0

0 0 0 1

1 1 1 1

1 1 1 1

Base color 0

Base color 1

Bit mask Results

Figure 9 The concept of CCC

2.3 S3 Texture Compression

 The further extension of CCC, called S3 Texture Compression (S3TC) was proposed by

Iourcha et al [7]. The S3TC is probably the most popular standard today. It is used in DirectX

and OpenGL. The S3TC represents a 4x4 block by four 16 bits (RGB565) base color and each

pixel stores an index with 2 bits. Two base colors are stored in the compressed block and the

others are linearly interpolated from those two during the decompression process. Figure 10

shows the concept of S3TC. This means that all colors lie on a line in RGB space.

14

Color 00

Color 01

Color 10

Color 11

00 00 10 01

00 10 11 01

10 11 01 01

01 01 00 00

Original block Look-up Table Bit mask

Derived

Results

Figure 10 The concept of S3TC

The interpolate equations show bellow.

C10 = (2×C00 +1×C01)
3

 (1.a)

C11 = (1×C00 +2×C01)
3

 (1.b)

 The equation shows it must has divided by 3 operation, that means either implement the

divider unit or using approximation equations instead of divided operation. The S3 graphics

proposed the approximation equations show bellow.

C10 = 5×C00
8

+ 3×C01
8

= 1×C00
2

+ 1×C00
8

+ 1×C01
2

− 1×C01
8

 (2.a)

C11 = 3×C00
8

+ 5×C01
8

= 1×C00
2

− 1×C00
8

+ 1×C01
2

+ 1×C01
8

 (2.b)

 The equations implement in hardware is simpler than divided by 3 operations, but it also

lost many precision in interpolated the colors C10 and C11. S3TC allowed for compression of

texture at 4 bpp.

2.4 iPACKMAN

 PACKMAN has been improved under the name iPACKMAN (also call Ericsson Texture

Compression, ETC [8]) in two ways. First and most important, a differential mode is

introduced, allowing two neighboring 2x4 blocks to be coded together. The base color of the

one block can be encoded using RGB555 instead of RGB444. Another block also encoded in

RGB555 format, but coded using a differential value in dRdGdB333 format. The second

improvement is that blocks can be flipped. One block consists of either two 2x4 block or two

15

4x2 block. These change improved 2.5dB in terms of Peak Signal to Noise Ratio (PSNR).

Figure 11 shows a possible iPACKMAN decompressor.

Figure 11 The decompressor design of iPACKMAN

2.5 Discussion

 Base on the above listed texture compression methods; we can understand that loosely

compression order to pursue more rapid decompression is also a relative sacrifice the quality

of the images. We tried to find a faster method of decompression, but not sacrifice more

quality. The quality after decompression of S3TC is good enough, but the operations are

16

complicated. Follow the S3TC method, maybe we can exploit another faster decompression

method. With the faster decompression method, another important thing is how to found the

optimal base colors. Next chapter we introduce our ideas and implementation.

17

Chapter 3 Design

In this chapter, we will introduce our design of texture compression and decompression

system. We will introduce two kinds of design which are inter/extrapolation mode (Option1 in

short) and advanced differential mode (Option2 in short). Then, we will introduce how to

encode the texture and how to handle the texture with alpha channel using our design.

3.1 Basic Ideas

At this section, we introduce the differences between O2TC and other texture compression

method. The main goal of our proposed design is to both simplify texture decompression

operations and keep the same quality as S3TC.

To achieve the goal, we propose the Order-of-Two Texture Compression (O2TC) that takes

the full advantage of binary system to reduce complexity in run-time decompression while

acquiring the most quality. The most noticeable feature of our design is that we exploit as

much of the beauty of binary system as we can, include the following:

1. Devise as many of our operations into such as divide-by-two, and implement it with

skewed wiring—no shifter will ever needed

2. Order colors/alpha values in ascending or descending order, whichever gives better

maintained quality, since binary add of positive or negative numbers are identically

performed.

3. Choose larger valued colors to be our base colors, or even record different bit fields for

color difference if a medium color and difference pair is used, to maintain more color

information using the same bit count.

4. Use CSA-CLA (carry save adder-carry look-ahead adder) type structure to perform

18

3-operand add, or even use all 2-operand adds in our decompression

5. Retrieval of block texels can easily be parallelized, since all texels can individually be

computed from compressed information without much redundancy.

6. Assume an implicit 1 as the next data bit of compressed color components, to minimize

color truncation error bound and raise quality if retrieved texture.

Circuit and timing analyses show that O2TC is superior to S3TC in hardware requirement,

while experiment results show average PSNR (peak signal-to-noise ratios) of 35.84 and 35.83

for O2TC Option1 and Option2, and 35.39 for S3TC DXT1. With alpha values, the quality of

128-bit O2TC is far better: average PSNR of O2TC Option1 and Option2 and S3TC DXT5

are 40.42, 39.55, and 37.62 in our test cases, in addition to O2TC’s circuit and timing

advantages.

3.2 Inter/Extrapolation Mode

We start look at S3TC first, and see how S3TC needs complex operation in decompression

work. Figure 12 show the colors C0 and C3 are stored as base colors when off-line compression.

And dynamically computation the addition indexed colors C1 and C2 using interpolation. C0,

C1, C2, C3 are the base colors of the block, which are calculated by PCA or LGB algorithm.

The interpolation formulas are listed bellow.

C0 = C0 (3.a)

C1 = (2×C0+1×C3)
3

 (3.b)

C2 = (1×C0+2×C3)
3

 (3.c)

C3 = C3 (3.d)

We can see clearly a complex divided by 3 of operation in the formulas that will cause heavy

effort in the decompression process.

19

C0 C1 C2 C3

Figure 12 Stored color of S3TC

 We want to reduce the complexity of computation of S3TC. To replace the complex divided

by 3 of operation with other easy way is the most important work we need to do. Then we

found that the differential value computed from (C3.R-C0.R)/3 is equal to the value of

(C2.R-C0.R)/2. It is for this reason that we selected C2 as the base color instead of C3 and

stored in compression bits. Then we can use fast and low cost right shift operations instead of

complex and expansive division operation in the decompression process.

 The basic inter/extrapolation mode of O2TC has proposed. The color C0 and C2 are

selected as base colors and stored in compression. Thus, the additional indexed colors C1 and

C3 can be computed by only using simple add and shift operations. The equations are

changed to list as bellow.

C0 = C0 (4.a)

C1 = C0 + (C2−C0)
2

 (4.b)

C2 = C2 (4.c)

C3 = C2 + (C2−C0)
2

 (4.d)

Figure 13 shows the stored colors of basic inter/extrapolation mode of O2TC.

We can see a right shift operation in the formulas, which is easy use skewed wiring to

implement in the decompression process.

C3C0 C1 C2

Figure 13 Stored colors of basic Inter/Extrapolation mode of O2TC

20

3.2.1 Bits Layout

 The texture image is split into many blocks which have 4x4 texels, where each block is

represented by 64 bits, which is the same bit rate as S3TC. We have two base colors C0 and

C2 and two additional indexed colors C1 and C3, so we need to stored 2 bits index for

indexed the colors. There are 16 texels in one block, so we need 32 bits for stored the indices

of texels. Thus, 32 bits remains, and two base colors are needed to store for each block.

Since the eye is more sensitive to green than to red and blue, it make sense (from a

perceptual point of view) to let green come closer to its desired value, and worse

representation of blue and red. The common luminance formula is defined as

Y(c) = 0.299cr + 0.587cg + 0.114cb (5)

It is for this reason that we stored a single base color in 5+6+5 = 16 bits RGB (or RGB565

for short). Then we total used 2(5+6+5) + 32 = 64 bits for represented one block. This allowed

for compression of texture at 4 bpp. The Figure 14 shows the bits layout we used in basic

inter/extrapolation mode of O2TC.

R0(5) G0(6) B0(5) R2(5) G2(6) B2(5) Texel Indices (32)

Figure 14 Bits layout of compression in Inter/Extrapolation mode of O2TC

 There are 24 bits for represented one base color in original bitmap format. But we just have

16 bits for represented one base color in RGB565 format. Thus, we stored the five most

significant bits (MSB for short) of red, six MSB for green and five MSB for blue. Figure 15

shows the bits we stored for one base color.

21

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Figure 15 Bits stored of red, green and blue of one base color

3.2.2 Errors computation

 In this section, we introduce how to decode the base color that can obtain the minimum

error between original color and color after decompression process. First, we considered the

red component of one base color. In the above section, we save the 5 MSB of red, but in the

decompress process we need to do something to increase the quality during decompress

process instead of padding three zero bit. In the S3TC, they padding the 3 MSB of code word

of red component that seems good idea, but any other method will improve the process?

 One red component has 8 bits that has 256 kinds of permutation. We have two base colors

and two addition base colors, so if we want to calculate the error of all possible composes

then we need to calculate 65536 times. We try to calculate the error of padding the tree MSB

of code word and padding b100 for all kinds of composes, then we got the result shows that

the average error of padding the tree MSB of code word is 1.94 and the average error range of

padding b100 is 1.69. It clearly let we known padding b100 will got more advantage then the

tree MSB of code word. Figure 16 shows the range of three bits represents, and b100 and

b011 are the middle values of the range, so padding b100 is padding the average error.

22

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

4

3

Figure 16 The range that padding b100 presented

3.2.3 Texture decompression

 In this section, we start to design the decoder circuit for inter/extrapolation mode of O2TC.

Figure 17 illustrates a possible hardware design diagram for a decompressor of

inter/extrapolation mode of O2TC. Below we describe in more detail how a single texel is

decompressed using such hardware.

23

CWR
(10)

CWG
(12)

CWB
(10)

Texel
Indices

(32)

Z

R

Which texel
(4bits)

...

2
I0 and I1

Decoder

C
S
A

+
C
L
A

Y

1

0

U
X

6

0

0

6

6

5

5

0
0

8

G

C
S
A

+
C
L
A

Y

1

0

U
X

7

0

0

7

7

6

6

0 8

B

C
S
A

+
C
L
A

Y

1

0

U
X

6

0

0

6

6

5

5

0
0

8

R0

R2

G0

G2

B0

B2

Figure 17 This diagram shows a possible decompressor of basic Inter/Extrapolation mode of

O2TC

24

Table 2 The true table of control signals and results of computation in basic inter/extrapolation

mode of O2TC

I1 I0 X U Y Value

0 0 0 0 0 R0

0 1 1 1 0 R0+(R2-R0)/2

1 0 0 0 1 R2

1 1 1 1 1 R2+(R2-R0)/2

1. First, the code words need to be obtained. Four input bits from are used to select which

texel of the decompressed block to decompress using MUX (Multiplexer unit) Z. The

resulting 2 texel index bits are I1 and I0.

2. We should either use the five bit value R0 directly, in which case MUX X chooses zero,

MUX U chooses zero and MUX Y chooses R0, or we should use the sum R0+(R2-R0)/2,

in which case MUX X chooses R2, MUX U chooses R0 and MUX Y chooses R0, or we

should use R2 directly, in which case MUX X chooses zero, MUX U chooses zero and

MUX Y chooses R2, or we should the sum R2+(R2-R0)/2, in which case MUX X chooses

R2, MUX U chooses R0 and MUX Y chooses R2.

3. The final step computes the final decompressed color by adding the outputs of MUX Y,

MUX X and MUX U. Before add operation, the output of MUX Y should padded with a

one-bit to fit the six bit adder, the output of MUX X should padded with a zero-bit and the

output of MUX U should padded with a zero-bit. No clamping is necessary since the

encoded process can make sure these values never overflow.

According to the TRUE table list in Table 2 of control signal, we can summarizes the control

signal of MUX X, MUX U and MUX Y are show as below

X = U = I0 (6.a)

Y = I1 (6.b)

The control signal is very simple to implement, or we can say that just the wire routing and

25

don’t need any logical gates.

3.2.4 Parallel Decompression

 In this section, we introduce how to sending out all colors for the 16 texels of the

compressed texture block in parallel. Figure 18 shows the design of O2TC Option1

decompressor. Only 5-bit red component is shown for simplicity. Given C0 and C2, the

decompressor calculates C2 and C3 using a 2-Color Generator (whose detail are shown in the

lower part of Figure 18). Note that all shifts are implemented with skewed wiring, and

padding bits are either 1 or 0 to minimize error bounds. It also pads 5-bit and 6-bit color

components of C0 and C2 with 100b or 10b to generate 8-bit RGB C0 and C2 (not show in

Figure 18). Texel indices are then used to select among the 4 representative colors to generate

the 16 block texel colors in parallel, such a design has both major advantages in timing and

power. These are due to that colors need to be calculated only once, the arithmetic is

extremely simple, and the 16 texel colors are retrieved simultaneously. With CSA and CLA,

the 3-input adder should not become a serious speed bottleneck.

26

C0_RGB565 Texel_Indices(32)

2 - Color Generato
2

C2_RGB565

2 x 4 D
ecoder

C0

C1

C2

C3

T
15

… … …

… … … 2

2 x 4 D
ecoder

T
14

2

2 x 4 D
ecoder

T
13

2

2 x 4 D
ecoder

T
0

+

C0_R5 C2_R5

CSA
CLA

INV

C0_R5C2_R5C2_R5

C1_R8 C3_R8

6

8

00

5 1

Cin
1

6

8

10

5 0
6

15

Red Channel of
2-Color Generator

Figure 18 O2TC option1 parallel texture retrieval circuit, with its 2-color generator show in

the lower part

3.2.5 Discussion of inter/extrapolation mode

 In inter/extrapolation mode design, we can found that the hardware of the decoder is only

three adders and ten multiplexers. The adder of the design is the three inputs adder and it

could be implemented as the CSA and CLA combination, which means the design we propose,

are simpler than the hardware of S3TC. There are seven adders and some multiplexer required

in S3TC patent, and the patent of S3TC are reduced the computation of divided by 3

operation, which means the image quality after decompressor of S3TC patent is not equal to

the original S3TC presented.

 The time complexity of our design is only one adder and one multiplexer delay, and it also

27

shorter than the S3TC patent and shorter than iPACKMAN proposed, because the time

latency of iPACKMAN is two multiplexers, two adders and one clamper delays. It is quite

clear that our system is very low hardware and time complexity.

 The next section, we will introduce the other mode, is called advanced differential mode of

O2TC. It can reduced the hardware and time complexity than inter/extrapolation mode of

O2TC, but the quality is a little worst than inter/extrapolation mode.

3.3 Advanced Differential mode

 To further fast and simplify decompression work, advanced differential mode of O2TC is

proposed. With this method, only one base color C1 and the differential value dC which is

pre-computed by encoder are stored in off-line compression. Figure 19 shows colors stored in

advanced differential mode of O2TC, or called Option2 of O2TC in short. With this

pre-computed value dC, the additional indexed colors can be calculated faster by easier

hardware design. The interpolated equations are list as bellow.

dC = (C3 − C0)/3 (7.a)

C0 = C1 − dC (7.b)

C1 = C1 (7.c)

C2 = C1 + dC (7.d)

C3 = C1 + 2 × dC (7.e)

C0

dC

C1 C2 C3
Figure 19 Stored colors of advanced differential mode of O2TC

28

3.3.1 Bits Layout

The texture image is split into 4x4 blocks, where each block is represented by 64 bits, which

is the same bit rate as basic inter/extrapolation mode. We have one base color C1 and

differential value dC, that needed to stored in compression bits. In this mode we also need 32

bits for stored the indices of texels. Thus, 32 bits remains, and one base colors and one

differential value are needed to store for each block.

 We stored the only one base color in RGB565 is the same with basic inter/extrapolation

mode. But how we should stored the differential value. Let we consider the range of

differential value. We can found that it must larger than -255/3 and smaller than +255/3,

because the largest value case is that C3.R = 255 and C0.R = 0 and the smallest value case is

that C3.R = 0 and C0.R = 255. From the equation dC.R = (C3.R-C0.R)/3, then the value of

differential value dC.R is larger than -85 and smaller than +85.

 If we want keep the precision, we need eight bits for stored the dC.R, but we just have 16

bits for stored the value. In view of the difference of the colors in the block is very small in

the general textures or pictures. We can reduce the bits to 7 bits for represented dC.R, and can

also keep the quality almost equal to stored full 8 bits for represented dC.R.

 It is for this reason that we stored the 2 to 6 bit of dC.R in five bits, stored the 1 to 6 bit of

dC.G in six bits, and stored the 2 to 6 bit of dC.B in five bits. Figure 20 shows the bits we

choose for stored the only one base color and the differential value of advanced differential

mode of O2TC. Figure 21 shows the bits layout of compression in Option2 of O2TC.

29

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

C1

dC

Figure 20 Bits stored of red, green and blue of Option2 of O2TC

R1(5) G1(6) B1(5) dG(6) dB(5) Texel Indices (32)dR(5)

Figure 21 Bits layout of compression in Option2 of O2TC

 Another method for stored differential value has proposed and called Option2_EXT of

O2TC. We consider the dC must larger than -85 and smaller than +85 and 8 bits signed

integer can represent -128 to +127. One method that we can just addition +42 if dC >=0 and

subtract 42 if dC<0. Then, subtract 42 if dC >=0 and addition 42 if dC <0 in decompression

dynamically. This method can let we keep all value range that dC could occurs but we just

have 16 bits for stored dC. Thus, we stored dC.R[3..7], dC.G[2..7] and dC.B[3..7]. Figure 22

shows the bits stored of Option2_EXT of O2TC.

 This two method we proposed can used for many application depend on what kinds of

feature you want. Option2 of O2TC is adapted for the natural pictures or normal textures, and

Option2_EXT of O2TC is adapted for the pictures and textures with high contrast or high

dynamic range.

30

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

C1

dC

Figure 22 Bits stored of red, green and blue of Option2_EXT of O2TC

3.3.2 Encode and errors computation

 In this section, we introduce how to decode the differential value that can obtain the

minimum errors between original color and color after decompression process. In Option2 of

O2TC, we store dC.R[2..6]. Then, we could calculate the average errors when dC.R >-63 and

dC.R < 63. The average errors is 2.3125. Then we can also calculate the average errors range

when dC.R < - 63 && dC.R > - 85 and dC.R > 63 && dC.R < 85. The average errors range is

15. Figure 23 shows the range that padding 10b presented and from Figure 3-13 we can know

∆dR is between -1 to 2. The maximum errors is 27 that will occur when ∆R1 = 4 and

∆dR = 25.

 In Option2_EXT, we can also calculate the average errors range and maximum errors range

by modify the color’s errors equations. From calculation, we got the average errors range is

2.95 and maximum errors range is 6. It let we know that Option2_EXT can cover all the

possible value of dC but it also lost some precision. In Option2 of O2TC, it will bring very

large errors if dC.R > 63 or dC.R < -63, but it could not happen in Option2_EXT of O2TC. It

is just a tradeoff problem and choice the right method by your applications.

Then, we try to calculate the probability of dR is between -63 to +63 in Option2 and will let

31

the average errors range smaller than Option2_EXT. First, we assume the probability is x of

dR is between -63 to +63 and that’s average errors range is 2.3125. Then we got the equation

as bellow.

2.3125x + 15(1− x) < 2.95 (8)

From the equation 8, we can know when x > 0.95 that the average errors range of Option2

will smaller than of Option2_EXT.

1

2

0 0
0 1
1 0
1 1

Figure 23 The range that padding b10 presented

3.3.3 Texture decompression

 In this section, we start to design the decoder circuit for advanced differential mode of

O2TC. Figure 24 illustrates a hardware diagram for a decompressor of advanced differential

mode of O2TC. Below we describe in more detail how a single texel is decompressed using

such hardware.

32

Table 3 The true table of control signals and results of computation in advanced differential

mode of O2TC

I0 I1 Value X0 X1 Y

0 0 R0 0 0 X

0 1 R0-dR 0 1 1

1 0 R0+dR 0 1 0

1 1 R0+2*dR 1 0 0

CWR
(10)

CWG
(12)

CWB
(10)

Texel
Indices

(32)

Z

Which texel
(4bits)

...

2
I0 and I1

Decoder

X

1 65

0

0 6

65

C
L
A

R
0
0

8

Y

Sign
extension

X

1 76

0

0 7

76
C
L
A

G
0 8

Y

Sign
extension

X

1 65

0

0 6

65

C
L
A

B
0
0

8

Y

Sign
extension

R1

dR

G1

dG

B1

dB

Figure 24 This diagram shows a possible decompressor of Option2 of O2TC

33

1. First, the base color and the differential value needs to be obtained. Four input bits are

used to select which texel to decompress using MUX Z. The resulting 2 texel index bits

are I0 and I1. We should either use the five bit value R0 directly, in which case MUX X

chooses zero, or we should use the sum R0-dR, in which case MUX X chooses dR, or we

should use the sum R0+dR , in which case MUX X chooses dR, or we should the sum

R0+2dR, in which case MUX X chooses 2dR. In the case dR needs to do sign extension

before multiplexer operation for fit the six bits MUX X. In the case 2dR we can be done

inexpensively by padding with a zero-bit instead of left shift operation.

2. The final step computes the final decompressed color by adding the outputs of MUX X,

and the base color. The controls signal Y that controls the adder for doing add or sub

operation. No clamping is necessary since the encoder can make sure these values never

overflow.

According to the TRUE table list in Table 3 of control signal, we can summarizes the control

signal of MUX X and Control signal Y are show as below

X0 = I0 AND I1 (9.a)

X1 = I0 XOR I1 (9.b)

Y = NOT I0 (9.c)

The control signal is very simple to implement, just few logical gates can finish the job.

3.3.4 Parallel Decompression

 The Figure 25 shows the decompressor of Option2 of O2TC for parallel processing. Here

the differences lie in that only one base color is readily available in the code word, and three

other representative colors need to be calculated. No 3-input adder id need here. As discussed

earlier. We might choose to use more bits for base color and fewer for the difference. Design

changes to the corresponding decompressor are simple.

34

Red Channel of
3-Color Generator

C1_RGB565 Texel_Indices(32)

3 - Color Generator
2

dC_RGB565

2 x 4 D
ecoder

C0
C1
C2
C3

2 x 4 D
ecoder

2 x 4 D
ecoder

T
15

… … …

… … …
2 x 4 D

ecoder

-

C1_R5 dC_R5

C0_R8

00

5 1

2 2 2

T
14

T
13

T
10

5

6

8

+

C1_R5 dC_R5

C2_R8

00

5 1 5

6

8

+

C1_R5 dC_R5

C3_R8

00

5 1 5

6

8

0

Figure 25 O2TC Option2 parallel texture retrieval circuit, with its 3-color generator show in

the lower part

3.3.5 Discussion of advanced differential mode

In advanced differential mode design, we can find that the hardware of the decoder is only

three adders and four multiplexers. The adder of the design can be implemented as the CLA ,

which means the hardware is much simpler than the basic inter/extrapolation mode.

The time complexity of advanced differential mode is only one adder and one multiplexer

delay, and it can shorter than the basic inter/extrapolation mode, because in this mode we

using two inputs adder instead of three inputs adder in basic inter/extrapolation mode.

The advanced differential is the simplest design, it will suitable for using in embedded

35

design or mobile phone. The quality is just a little less than basic inter/extrapolation mode in

0.02 dB, but better than S3TC patent. This means that human should not notice the differences

between using basic inter/extrapolation mode and advanced differential mode. But human will

be notice the differences between using advanced differential mode and S3TC patent, because

the quality is better than S3TC in 0.4 dB. To put this in perspective, a common rule of thumb

used in the image compression community says that 0.25dB makes for a visible difference.

3.4 Texture encode

In this section, we introduced the process of off-line compression. The problem of

compression is to find the best pairs of base colors.

Iterating over all possible base colors which have 232 different combinations would have

to be tried for each block. It is not a good idea, so we need other algorithms to solve the

problem. S3TC using PCA method to find the base colors of block instead of exhaustive

search, and THUMB proposed LBG algorithm and Radius compression. The radius

compression is much slower than LBG compression, but will also give a better result.

Radius compression is based on LBG algorithm, initially, two base colors are found using

the LBG algorithm. Then for each quantized base color, all possible colors within a

(2k + 1) × (2k + 1) × (2k + 1) cube centered around the base color are tried. Usually using

k=1 and is 729 times slower than LBG compression.

We try the PCA and Radius compression for each block and choose the smaller errors pair

base colors. Following details the block compression of Option1 of O2TC:

1. Get a block and compression it into two 64-bit code words by recording two RGB565

base colors and setting the 16 texel indices using both increasing and decreasing color

orders.

2. Simulate decompressions of the two code words, and calaulate their RMSE (root mean

square errors):

36

RMSE = �
1

w × h�∆Rxy
2 + ∆Gxy

2 + ∆Bxy
2

xy

3. Save the code words with lower RMSE in compressed texture file. Figure 26 shows the

first three steps of the algorithm.

4. Exit if no more block to compress; else go to step 1.

Option2 of O2TC follows the same procedure, with the only difference in the recorded

color information: one base color and a color difference will record in the two code words

using both increasing and decreasing color orders.

Encode block with
(C0 , C2) if Option1
(C1 , dC) if Option2

 then decode the colors of block

Start

Calculate the RMSE of block (E0)

End

Find two extreme colors (C0 , C3) using PCA
Calculate another two colors (C1 , C2) using Interpolation

If (E0<E1)
 Store (C0 , C2) if Option1
 (C1 , dC) if Option2 as base colors
Else
 Store (C3 , C1) if Option1
 (C2 , dC) if Option2 as base colors

Encode block with
(C3 , C1) if Option1
(C2 , dC) if Option2

then decode the colors of block

Calculate the RMSE of block (E1)

Figure 26 Base colors selection flowchart in texture block compression

3.5 Texture with Alpha channel

 Not all texture should be having alpha channel, but now most of all support it. Our design

37

is also support texture with alpha channel. The same idea used in color

compression/decompression applies here. DXT5 stored A0 and A7 as two base colors. Figure

27 shows the stored colors. The decompression equations list as bellow. Note that DXT5 have

divided by 7 operations and it is not hardware friendly.

dA = (A7 − A0)/7 (10.a)

Ai = A0 + i × dA, i = 1. .6 (10.b)

A0 A2 A3 A4 A5 A6 A7A1

Figure 27 Alpha channel compression/decompression of DXT5

In contrast to DXT5 codeword, we choose to use A0 A4 or A0 A8 (where A8 is an

extrapolated alpha value) pair as base alpha values. We use A0 A4 in the following for

simplicity. Figure 28 shows the stored colors. The interpolation equations list as bellow.

A0 = A0 (11.a)

A1 = A0 + (A4−A0)
4

 (11.b)

A2 = A0 + (A4−A0)
2

 (11.c)

A3 = A0 − (A4−A0)
4

 (11.d)

A4 = A4 (11.e)

A5 = A4 + (A4−A0)
4

 (11.f)

A6 = A4 + (A4−A0)
2

 (11.g)

A7 = A4 + (A4−A0)
2

+ (A4−A0)
4

 (11.h)

A0 A2 A3 A4 A5 A6 A7A1

Figure 28 Alpha channel compression/decompression of Option1 of O2TC

With A0 and A4, A1, A2, A3, A5 and A6 can easily be obtained using again skewed wiring

38

and adders of 2 or 3 inputs. Note that A7 may use a 4-input adder, which requires one CSA,

adding come delay. This corresponds to Option1 for colors, and alpha values can again be

ordered in increasing or decreasing order. The Option2 stored a base alpha A3 or A4 and a

difference dA = (A7-A0)/7. Figure 29 shows the stored colors. The interpolation equations list

as bellow.

dA = (A7 − A0)/7 (12.a)

A0 = A4 − 3 × dA (12.b)

A1 = A4 − 2 × dA (12.c)

A2 = A4 − 2 × dA (12.d)

A3 = A4 − 1 × dA (12.e)

A4 = A4 (12.f)

A5 = A4 + 1 × dA (12.g)

A6 = A4 + 2 × dA (12.h)

A7 = A4 + 3 × dA (12.i)

dC

C0 C2 C3 C4 C5 C6 C7C1
Figure 29 Alpha channel compression/decompression of Option2 of O2TC

3.5.1 Bits layout

 In Option1 of O2TC with alpha channel, we choose to store two base colors A0 and A4. In

DXT5, the RGB format is the same as DXT1, and alpha channel format is 64 bits, where 16

bits are for two base alpha values and 3*16=48 bits for 16 texel alpha indices.

 In our Option1 of O2TC, we first plain use 64-64 method. Two base alpha values A0 and

A4 are stored instead of A0 and A7. Figure 30 shows the compression format with alpha.

39

C0_RGB565(16) C4_RGB565(16) Texel_RGB_Indices (32)

C0_A(8) C4_A(8) Texel_Alpha_Indices (48)

Figure 30 Option1 of O2TC with alpha – a plain 64-64 format

 Then, we consider tuning the 128 bits format for better texture quality. Several possible

Option1 type RGBA formats are designed and evaluated. Examples are: Letting RGB use

more bits (e.q., RGB each uses 8 bits—the RGB888 option) to retain higher color precision,

or inter/extrapolating more representative colors (e.q., use eight representative colors—the

8-color option) to offer more color choices. Figure 31 shows our best-effort RGBA tradeoff

format. Experiments show its PSNR is 2.8dB better than DXT5 using ideal division.

C0_RGB565(16) C4_RGB565(16)

Texel_Alpha_Indices (32)C0_A(8) C4_A(8)

Texel_RGB_Indices (48)

Figure 31 O2TC Option1, the 8-color format with alpha

 Option2 type 8-color format, an alternative with the best result in our effort, is represents in

Figure 32.

C0_RGB565(16) C7_RGB565(16) Texel_RGB_Indices (32)

C0_A(8) C7_A(8) Texel_Alpha_Indices (48)

Figure 32 O2TC Option2, the 8-color format with alpha

3.6 Overall Design

 In this section, we introduce the overall design block of O2TC. In the header of the

compressed image file, we store the information of what kind of O2TC that the image used

and support alpha or not. Figure 33 show the overall design of O2TC. Below we describe in

40

more detail how a block is decompressed.

1. First, obtain the 64 bits data from texture cache. The first 32 bits (0-31) are transfer to

both of option1 of O2TC and option2 of O2TC decompression modules and last 32 bits

(32-63) are transfer to alpha channel of O2TC.

2. MUX X select which color that will output, dependent on system defined

3. Output red, green, blue and alpha value to render the texel.

We have three basic block option1 of O2TC, option2 of O2TC, and alpha channel of

O2TC. The system will be defined what method used, option1 or option2. Then, the blocks of

texture will decompression one after another.

64 bits data (with alpha)

X

Option1 of O2TC Option2 of O2TC Alpha channel of O2TC

Latches of color or alpha

0-31 32-63

Figure 33 Overall design of O2TC

41

Chapter 4 Experiment Results

 In this chapter, we will introduce the quality after decompression, decompressor circuit and

timing complexities of different compression methods.

4.1 Simulation Environment

 In comparing texture quality, for 64-bit color-only code words, O2TC Option1, Option2,

S3TC DXT1, PACKMAN, iPACKMAN, and PVR-TC are tested on seven images: five

Kodak images, Lena, and Lorikeet. This seven images are also tested on others method before

and we list the quality results of they proposed. For 128-bit RGBA code words, both O2TC

options together with their alternatives and DXT5 are tested using 5 texture maps with alpha

channel. For circuit and timing complexities, we examine only circuits for colors using 64-bit

code words.

4.2 Quality Measure

 The quality measure that we use is Peak Signal to Noise Ratio (PSNR), which is defined as

PSNR = 10log10 �
3×255 2

RMSE 2 � (12)

Where the scale factor 3 in the numerator is due to the fact that 3×2552 is the peak energy

in a pixel, and RMSE is the Root Mean Square Error, defined as

RMSE = � 1
w×h

∑ �∆Rxy
2 + ∆Gxy

2 + ∆Bxy
2 �x,y (13)

 Where w and h are the width and the height of the image, and △Rxy, △Gxy, △Bxy are the

pixel differences in pixel (x,y) between the original and the decompressed image in the red,

42

green, blue component respectively.

4.3 Software Simulation Results

 In this section, we compare color qualities of various methods. Various padding methods

and various code words format, S3TC DXT1, PACKMAN, iPACKMAN, and PVR-TC are

tested on same images.

4.3.1 Various padding methods

 In comparing color qualities of various padding methods, we compare two methods,

padding several MSB like S3TC, or padding average errors. Table 4 shows the quality results

of Option1 of O2TC using various padding methods.

Table 4 Quality comparison of padding variations

 Kodak

img1

Kodak

img2

Kodak

img3

Kodak

img4

Kodak

img5

Lena Lorikee

t

Averag

e

Padding several

MSB

34.69 36.73 38.5 37.96 32.82 35.89 34.32 35.84

Padding average

errors

34.72 36.8 38.54 37.96 32.83 35.89 34.32 35.87

Padding average errors has better quality result, in comparison with padding several MSB like

S3TC. In section 3.2.2 we also compare two methods in mathematical analysis. Both of two

methods are simply to implements and hardware cost are just wiring issue.

43

4.3.2 Various code words format

 We compare several variations of O2TC Option2, and choose a better variation for

comparison with other methods. Table 5 shows the quality results of O2TC Option2 variations

Table 5 Quality comparison of O2TC Option2 variations

 Kodak

img1

Kodak

img2

Kodak

img3

Kodak

img4

Kodak

img5

Lena Lorikeet Average

C1(6,7,6) +

dC(4,5,4)

26.04 32.08 32.33 32.54 23.82 31.46 30.71 29.85

C1(6,6,6) +

dC(5,5,4)

26.98 33.14 33.46 33.49 24.62 32.13 31.19 30.72

C1(5,6,5) +

dC(5,6,5) V1

34.41 36.42 37.83 37.36 32.52 35.55 34 35.44

C1(5,6,5) +

dC(5,6,5) V2

34.71 36.88 38.39 37.86 32.74 35.92 34.28 35.83

C1(6,7,6) +

dC(4,5,4) V2

29.43 33.81 34.48 34.89 26.57 33.81 32.8 32.26

In C1(5,6,5)+dC(5,6,6) V2, dR[7..3], dG[7..2], dB[7..3] are stored in codeword, Some least

significant color difference bits are dropped, losing some precision. This method is an obvious

winner and will be used in later comparisons.

44

4.3.3 Various 64 bits methods

We then compare the color qualities of various methods. We mentioned that S3TC DXT1

calculates color difference using ÷ a very expansive operation, or approximation to simplify

circuit design. We call them S3TC_Theo and S3TC_Impl, respectively. Table 4-2 shows the

PSNR results of different methods. As a result, the PSNRs of O2TC Option1 and Option2 are

both better than S3TC_Impl, even with simpler hardware. iPACKMAN has the best PSNR in

Table 6, but according ETC2 reports the PSNR of iPACKMAN is the same with S3TC. Table

6 is the special case of iPACKMAN. Figure 34 shows the PSNR results of various methods.

Figure 34 PSNR results of various methods

Table 6 Quality comparison of O2TC Option2 variations

 Kodak

img1

Kodak

img2

Kodak

img3

Kodak

img4

Kodak

img5

Lena Lorikeet Average

PACKMAN 33.81 34 35.37 35.5 32.35 33.56 31.73 33.76

S3TC_Theo 34.78 36.82 38.53 37.79 32.8 35.97 34.37 35.86

45

S3TC_Impl 34.06 36.45 37.91 37.42 32.24 35.62 34.06 35.39

PVR-TC 33.8 37.1 37.9 37.7 32.4 35.9 34.8 35.66

iPACKMAN 36.29 38.08 38.62 38.59 34.12 35.17 33.25 36.30

O2TC Option1 34.68 36.75 38.52 37.93 32.81 35.87 34.34 35.84

O2TC Option2 34.71 36.88 38.39 37.86 32.74 35.92 34.28 35.82

4.3.4 Various 128 bits methods with alpha channel

Next we compare retrieved texture qualities of different methods with alpha included using

128-bit codewords. We use S3TC DXT5_Theo, giving it some advantage. Results are shown

in Table 7. All O2TC versions perform better than DXT5_theo, and the best O2TC is 2.8dB

better (shows in Figure 35).

Figure 35 PSNR of various methods with alpha

Table 7 Quality comparison of DXT5_Theo and various O2TC

 Bush_1 Bush_2 Chainlink Tree1 Tree2 Average

DXT5_Theo 35.82 38.27 42.46 35.82 35.73 37.62

46

O2TC_Plain64-64_Option1 36.08 38.58 42.49 35.9 35.82 37.774

O2TC_RGB888_Option1 36.32 38.83 42.57 36.17 36.06 37.99

O2TC_8-color_Option1 38.56 41.2 46.34 37.53 38.49 40.424

O2TC 8-color_Option2 37.64 39.89 44.94 37.12 38.17 39.552

4.4 Timing and Circuit Complexity Analyses

 Table 8 lists the hardware component counts, complexity, critical path latency, and timing

complexity, together with retrieved texel quality of various methods. Here we assume O2TC

circuits to decompress a texel at a time. From this table, one can see that O2TC has both

hardware and timing advantages, and its quality is only inferior to the more expansive

iPACKMAN.

 As the described before, O2TC is very well suited to parallel texel retrieval. Although its

parallel version data are not presented in above table, we argue that the time-space behavior

of its parallel versions will be very attractive.

Table 8 Timing and circuit complexity of various one-texel-at-a-time retrieval methods

 Ideal S3TC S3TC Patent iPACKMAN Option1 of

O2TC

Option2 of

O2TC

C
om

ponents

Divider 1 0 0 0 0

Adder 1 7 6 3 3

Multiplexer 2 3 8 10 4

Codebook 0 0 1 0 0

Clamp 0 0 3 0 0

Hardware Complexity High Medium Medium Low Very Low

Latency 1 MUX 3 adders 2 adders 1 adder 1 adder

47

1 adder

1 divider

2 MUX 2 MUXes

1 clamp

1 MUX 1 MUX

Time Complexity High Medium Low Low Very Low

Image quality High Medium High High High

48

Chapter 5 Discussion and Conclusion

5.1 Evaluations and Discussion

 O2TC intends to explore virtues of binary representations and arithmetic. In its

compression and decompression, we examine every detail, and devise our methods to achieve

better quality and cheaper process. Experimental results have shown that out efforts are well

rewarded. We compare the average quality, hardware component, time latency of Option1 and

Option2 of O2TC and S3TC patent list in Table 9

Table 9 Quality, hardware, timing comparison of Option1 and Option2 of O2TC and S3TC

 Average

quality

Hardware

components

Time latency parallelism

S3TC_Impl 35.39 7 adders + 3

Multiplexers

3 adders + 2

multiplexers

No

Option1 of

O2TC

35.84 3 adders + 10

Multiplexers

1 adder + 1

multiplexer

Yes

Option2 of

O2TC

35.83 3 adders + 4

Multiplexers

1 adder + 1

multiplexer

Yes

 In addition to above, we also studied the best uses of the limited compressed codeword

space. We suggested to eliminate storage of redundant bits such as duplicated sign bits in a

difference, and allocate more bits—borrowed from alpha channel—to the three colors. This

also has been proven useful. In response to this bits relocation and format variations, field

shifting and wire routing strategies are also discussed. In the next step, we will implement this

49

idea into silicon, and measure the real parameters.

5.2 Conclusion and Future Work

 Texture and image compression/decompression is an important enabler for many

applications. Design challenges lie in how to obtain high compression ratio while keep

run-time decompression easy and quality after it high. We describe our research work in this

thesis. Our efforts indicate that there are opportunities for improvements, based or the great

contributions of previous works. Complete solutions of the O2TC compression and

decompression, together with many variations, are presented.

We are trying to give O2TC more mode, e.g.,H-, T-, and Planar-modes as in ETC2 and

studying its relationship with memory hierarchies, and applying it to mip-mapping and

applying it to high dynamic range textures.

50

References

[1] Foley J, van Dam A, Feiner SK, Hughes JF, “Computer graphics: principles and

practice”, 2nd ed. Reading MA: Addison-Wesley, 1990.

[2] Wei-Ting Wang, " A Run-Time Reconfigurable Texture Unit”, Master’s Thesis,

National Chiao Tung University, 2006.

[3] Erik Lindholm, Mark J. Kligard, and Henry Moreton, "A user-programmable

vertex engine", Proceedings of the 28th annual conference on Computer graphics and

interactive techniques, 2001.

[4] Cheng-Hsien Chen and Chen-Yi Lee, "TWO-LEVEL HIERARCHICAL

Z-BUFFER FOR 3D GRAPHICS HARDWARE", IEEE International Symposium on

Circuits and Systems, 2002.

[5] Delp, E.J., Mitchell. O.R., “Image compression using block truncation coding,”

IEEE Transaction on Communications 27(9), 1979, pp. 1335-1342

[6] Graham Campbell, et al., “Two bit/pixel full color encoding,” ACM SIGGRAPH

Compuer Graphics, Volume 20, Issue 4 (August 1986), pp. 215-223

[7] Konstantine I. Iourcha, Krishna S. Nayak, Zhou Hong,” System and method for

fixed-rate block-based image compression with inferred pixel value”, S3

Incorporated, US Patent: 5956431, Sep 21, 1999

[8] Jacob Ström1 and Tomas Akenine-Möller2, “iPACKMAN: High-Quality,

Low-Complexity Texture Compression for Mobile Phones,” in 2005

SIGGRAPH/EUROGRAPHICS Conference On Graphics Hardware, pp. 63-70

51

Appendix

Original test images

Kodak image 1 Kodak image 2

Kodak image 3 Kodak image 4

52

Kodak image 5 Lena

Lorikeet

Reconstruction images of Option1 of O2TC

Kodak images1 result Kodak images2 result

53

Kodak images3 result Kodak images4 result

Kodak images5 result Lena result

Lorikeet result

54

Reconstruction images of S3TC_Impl

Kodak images1 result Kodak images2 result

Kodak images3 result Kodak images4 result

Kodak images5 result Lena result

55

Lorikeet result

	摘要
	ABSTRACT
	誌謝
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 GPU and Programmable Graphics Render Pipeline
	1.1.1 Vertex Processing
	1.1.2 Triangle Setup and Rasterization
	1.1.3 Pixel Processing
	1.1.4 Depth Processing
	1.2 Texture Mapping and Texture Filtering
	1.2.1 Texture Mapping
	1.2.2 Texture Filtering
	1.2.3 Texture Compression
	1.3 Motivation
	1.4 Objective
	1.5 Thesis Organization

	Chapter 2 Background
	2.1 Block Truncation Coding
	2.2 Color Cell Compression
	2.3 S3 Texture Compression
	2.4 iPACKMAN
	2.5 Discussion

	Chapter 3 Design
	3.1 Basic Ideas
	3.2 Inter/Extrapolation Mode
	3.2.1 Bits Layout
	3.2.2 Errors computation
	3.2.3 Texture decompression
	3.2.4 Parallel Decompression
	3.2.5 Discussion of inter/extrapolation mode
	3.3 Advanced Differential mode
	3.3.1 Bits Layout
	3.3.2 Encode and errors computation
	3.3.3 Texture decompression
	3.3.4 Parallel Decompression
	3.3.5 Discussion of advanced differential mode
	3.4 Texture encode
	3.5 Texture with Alpha channel
	3.5.1 Bits layout
	3.6 Overall Design

	Chapter 4 Experiment Results
	4.1 Simulation Environment
	4.2 Quality Measure
	4.3 Software Simulation Results
	4.3.1 Various padding methods
	4.3.2 Various code words format
	4.3.3 Various 64 bits methods
	4.3.4 Various 128 bits methods with alpha channel
	4.4 Timing and Circuit Complexity Analyses

	Chapter 5 Discussion and Conclusion
	5.1 Evaluations and Discussion
	5.2 Conclusion and Future Work
	References
	Appendix

