國立交通大學

電子工程學系 電子研究所碩士班

碩士論文

先導訊號輔助式之正交分頻多工通信系統 通道估測設計

Pilot-Aided Channel Estimations for OFDM Systems

研究生: 吳清泉

指導教授:陳紹基 博士

中華民國九十三年六月

先導訊號輔助式之正交分頻多工通信系統通道估測設計

Pilot-Aided Channel Estimations for OFDM Systems

研究生:吴清泉

Student : Chin-Chuan Wu

指導教授:陳紹基 博士

Advisor : Sau-Gee Chen

國立交通大學

電子工程學系 電子研究所碩士班

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical Engineering and Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Electronics Engineering

June 2004 Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

先導訊號輔助式之正交分頻多工通信系統

通道估測設計

學生:吳清泉 指導教授:陳紹基 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

在本篇論文中,我們研究了正交分頻多工通信系統的通道估測及 等化。在論文的第一部分,我們比較了不同通道內插估測方法在 IEEE 802.16a 和 DVB-T 通信系統中的表現效能包括線性、Lagrange、cubic spline、cubic Bspline、DFT-based 和 DCT-based 內插器;而發現線 性及 cubic Bspline 內插器有著較佳的位元錯誤比率。如果同時考量 運算複雜度的話,通道估測採用線性內插器是一個較佳的選擇。在論 文的第二部分,我們研究了由快速衰減通道和載波頻率偏差造成的頻 道之間相互干擾對正交分頻多工通信系統的影響。根據通道線性變化 的假設,參考現有的方法,我們提出一個能夠有效減低頻道之間相互 干擾的估測方法。

Pilot-Aided Channel Estimations for OFDM Systems

Student: Chin-Chuan Wu

Advisor: Sau-Gee Chen

Department of Electronics Engineering & Institute of Electronics National Chiao Tung University

Abstract

In this thesis, channel estimation and equalization for the Orthogonal Frequency Division Multiplexing (OFDM) system are investigated. In the first part of the thesis, we compare the performance of different channel interpolation schemes in IEEE 802.16a and DVB-T systems inclusive of linear, Lagrange, cubic spline, cubic Bspline, DFT-based, and DCT-based interpolators. As a result, linear and cubic Bspline interpolators show better bit error rate. Concerning the computational complexity as well as the performance, the linear interpolator is considered as a proper choice for channel estimation. In the second part of this thesis, we investigate the effect of inter-carrier interferences (ICI) caused by fast fading channels and carrier frequency offsets., According to the linear assumption of channel impulse response, we propose an estimation method that can reduce the ICI effect efficiently based on a current channel estimation method.

誌謝

對於能夠順利完成我的碩士學位,首先要感激的是我的指導教授 陳紹基博士,在這兩年中對於我的課業研究著實提供了許多幫助,在 我感到困惑時,適時的引導正確的方向,就像迷航的船隻驚見遠方明 亮的燈塔那般;另外在生活上也使得我成長不少,懂得該如何應對進 退、待人處事,在此獻上由衷的感激。

另外要感謝的就是 429 實驗室的夥伴們,伴我度過兩年的研究所 生涯,陪同我一起歡笑、一起玩樂、以及一起苦悶。我不能想像如果 這兩年沒有你們這群朋友,我的生活將會是怎麼樣?尤其是卓卓學 長、明秀、小紀、A 貓、以及昆蟲,兩年之中,我們大概有四分之三 的時間是在一起努力的,謝謝你們;雖然要畢業了,但是希望能夠在 未來多聚聚。

最後,要感謝這兩年默默支持我的家人,給我許多呵護跟包容, 使得我能夠順利的完成學業,謝謝。

Contents

Chapter 1	Introduction	1
1.1	Motivation of the Thesis	2
1.2	Organization of the Thesis	3
Chapter 2	Fundamentals of OFDM Systems	4
2.1	OFDM System Model	5
	2.1.1 Continuous-Time Model	5
	2.1.2 Discrete-Time Model	7
	2.1.3 Effect of Cyclic Prefix	8
2.2	Channel Characteristics in Wireless Environments	8
	2.2.1 Flat Fading and Frequency Selective Fading	11
	2.2.2 Slow Fading and Fast Fading	12
Chapter 3	Physical Layer of IEEE 802.16a and DVB-T Standard	14
3.1	IEEE 802.16a System	14
	3.1.1 OFDMA Frame Structure	16
	3.1.1.1 OFDMA Symbol Structure	16
	3.1.1.2 OFDMA Frame Structure	17
	3.1.2 OFDMA Carrier Allocations	18
	3.1.2.1 Downlink Carrier Allocations	19
	3.1.2.2 Uplink Carrier Allocations	21
	3.1.3 Carriers Modulation	23
	3.1.3.1 Data Modulation	23
	3.1.3.2 Pilot Modulation	24
3.2	DVB-T System	25

	3.2.1	DVB-T Sy	vstem Overview	26
	3.2.2	Frame Str	ucture	29
	3.2.3	Carrier Al	locations	30
		3.2.3.1	Continual Pilots	30
		3.2.3.2	Scattered Pilots	30
		3.2.3.3	Transmitted Parameter Signaling	31
Chapter 4	Channe	l Estimati	ions for 802.16a and DVB-T Systems	33
4.1	Fundamer	ntals of Cha	nnel Estimations for OFDM Systems	34
	4.1.1	Pilot Arra	ngement	34
	4.1.2	The LS Cl	nannel Estimation	36
	4.1.3	The LMM	SE Channel Interpolation	36
	4.1.4	Some Pop	ular Channel Interpolation Techniques	37
		4.1.4.1	Piecewise Linear Interpolation	38
		4.1.4.2	Lagrange Interpolation	38
		4.1.4.3	Spline Interpolation	39
		4.1.4.4	Bspline Interpolation	41
		4.1.4.5	DFT-Based Interpolation	42
		4.1.4.6	DCT-Based Interpolation	45
4.2	Channel E	Estimation f	or 802.16a and DVB-T Systems	49
	4.2.1	Channel E	stimations for 802.16a Uplink	49
	4.2.2	Channel E	stimations for 802.16a Downlink	50
		4.2.2.1	Pilot Arrangement and Guard Band Effect	50
		4.2.2.2	Simulations and Performance Evaluation	51
	4.2.3	Channel E	stimations for DVB-T System	59

		4.2.3.1	Pilot Arrangement and Guard Band Effec	t 59
		4.2.3.2	Simulations and Performance Evaluation	59
	4.2.4	Computati	onal Complexities	65
Chapter 5	Channel	Estimati	ons and Equalization with Fast Fa	ding
	Channel	s and Ca	rrier Frequency Offsets	67
5.1	Introducti	on of Syster	m Model	69
	5.1.1	Effect of I	nter Carrier Interferences in OFDM Syster	ns
				69
	5.1.2	System N	Model of Fast-Fading Channels with	Carrier
		Frequency	Offsets	69
5.2	The Propo	osed Estima	tion Method for Fast-Fading Channels	72
	5.2.1	Proposed 1	Estimation Scheme	72
	5.2.2	Proposed	Simplified Estimation Scheme	77
5.3	Simulation	n Results		79
Chapter 6	Conclus	ion		85
Bibliograp	Bibliography			87

List of Tables

Table 3.1	802.16a OFDMA DL carrier allocation	21
Table 3.2	802.16a OFDMA UL carrier allocation	22
Table 3.3	DVB-T OFDM parameters for 8K & 2K modes, with 8MHz channel	29
Table 3.4	TPS signaling and format of DVB-T system	32
Table 4.1	Characteristics of ETSI "Vehicle A" channel environment	53
Table 4.2	Relative power, phase and delay values for portable channel P_1	62
Table 4.3	Computational complexity of various key interpolation schemes	68
Table 5.1	Relative power and delay values for multipath channels	82

List of Figures

Figure 2.1	Cyclic prefix of an OFDM symbol5
Figure 2.2(a)	Continuous-time OFDM baseband modulator6
Figure 2.2(b)	Continuous-time OFDM baseband demodulator
Figure 2.3	Spectrum of OFDM signal
Figure 2.4	Discrete-Time OFDM system model7
Figure 2.5	The equivalent discrete impulse responses
Figure 2.6	The frequency responses for two channels
Figure 2.7	Fading type as a function of baseband signal bandwidth13
Figure 3.1	802.16a OFDMA symbol time structure17
Figure 3.2	802.16a OFDMA frequency description
Figure 3.3	802.16a OFDMA TDD time frame19
Figure 3.4	Carrier allocation of 802.16a OFDMA DL20
Figure 3.5	Carrier allocation of 802.16a OFDMA UL22
Figure 3.6	QPSK, 16-QAM, 64-QAM constellations of 802.16a23
Figure 3.7	PRBS for pilot modulation of 802.16a24
Figure 3.8	Function block diagram of DVB-T system
Figure 3.9	Hierarchical transmissions with non-uniform 64-QAM modulation of
	DVB-T system
Figure 3.10	Continual pilot locations of DVB-T system
Figure 3.11	Scattered pilot locations of DVB-T system
Figure 4.1	(a)Comb-type pilot arrangement (b) Block-type pilot arrangement of
	an OFDM system
Figure 4.2	Lagrange interpolation
Figure 4.3	Cubic spline interpolation

Figure 4.4	Construction of B-Splines42
Figure 4.5	Regular equal-spaced pilot placement43
Figure 4.6	Aliasing effect of channel impulse response due to down-sampling in
	frequency domain44
Figure 4.7	DFT-based channel estimator44
Figure 4.8	DCT/EIDCT-based channel estimator
Figure 4.9	Equivalent DCT-based and DFT-based channel estimators49
Figure 4.10	BER performance of various interpolation schemes with $f_d = 40Hz$,
	one-symbol pilot case
Figure 4.11	BER performance of various interpolation schemes with $f_d = 40Hz$,
	two-symbols pilot case
Figure 4.12	BER performance of various interpolation schemes with $f_d = 40Hz$,
	four-symbols pilot case
Figure 4.13	BER performance of linear interpolation versus pilot symbol number
	with $f_d = 40 Hz$
Figure 4.14	BER performance of various interpolation schemes with $f_d = 40Hz$,
	two-dimensional interpolation56
Figure 4.15	BER performance of various interpolation schemes with $f_d = 120Hz$,
	one-symbol pilot case
Figure 4.16	BER performance of various interpolation schemes with $f_d = 120Hz$,
	two-symbols pilot case
Figure 4.17	BER performance of various interpolation schemes with $f_d = 120Hz$,
	four-symbols pilot case
Figure 4.18	BER performance of linear interpolation versus pilot symbol number
	with $f_d = 120 Hz$
Figure 4.19	BER performance of various interpolation schemes with $f_d = 120Hz$,

	two-dimensional interpolation
Figure 4.20	BER performance of linear interpolation versus Doppler frequencies
Figure 4.21	BER performance of various interpolation schemes with $f_d = 40Hz$,
	one-symbol pilot case63
Figure 4.22	BER performance of various interpolation schemes with $f_d = 40Hz$,
	four-symbols pilot case63
Figure 4.23	BER performances of linear interpolation versus pilot symbol number
	with $f_d = 40Hz$ 64
Figure 4.24	BER performance of various interpolation schemes with $f_d = 40Hz$,
	two-dimensional interpolation64
Figure 4.25	BER performance of various interpolation schemes with $f_d = 120Hz$,
	one-symbol pilot case
Figure 4.26	BER performance of various interpolation schemes with $f_d = 120Hz$,
	four-symbols pilot case
Figure 4.27	BER performances of linear interpolation versus pilot symbol number
	with $f_d = 120Hz$
Figure 4.28	BER performance of various interpolation schemes with $f_d = 120Hz$,
	two-dimensional interpolation
Figure 4.29	BER performances versus Doppler frequencies of linear interpolation
Figure 5.1(a)	Time variation of the CIR for different relative Doppler frequency
	changes within a block symbol76
Figure 5.1(b)	Magnitude responses for CIR versus Doppler frequencies76
Figure 5.2	The shape of \mathbf{G}_1 (ICI effect for 1-th subcarrier)80
Figure 5.3	The shape of \mathbf{G}_3 (ICI effect for 3-th subcarrier)

- **Figure 5.4** BER comparison with $f_d T = 0.0384$ and $f_o = 0.5$ carrier spacing....84
- **Figure 5.5** BER comparison with $f_d T = 0.0576$ and $f_o = 0.5$ carrier spacing....84
- **Figure 5.6** BER comparison with $f_d T = 0.0786$ and $f_o = 0.5$ carrier spacing...85
- **Figure 5.7** BER comparison with $f_d T = 0.0384$ and $f_o = 0.5$ carrier spacing...85
- **Figure 5.8** BER comparison with $f_d T = 0.0576$ and $f_o = 0.5$ carrier spacing...86
- **Figure 5.9** BER comparison with $f_d T = 0.0768$ and $f_o = 0.5$ carrier spacing...86

