

國 立 交 通 大 學

資訊學院 資訊學程

碩 士 論 文

以內容觸發降低嵌入式行動裝置上

虛擬機器垂直性能分析之負擔

Low Overhead Context-sensitive Vertical Profiling for

Virtual Machine Based Mobile Embedded Devices

研 究 生：蘇資翔

指導教授：陳添福 教授

2011 年 9 月

以內容觸發降低嵌入式行動裝置上虛擬機器垂直性能分析之負擔

Low Overhead Context-sensitive Vertical Profiling for

Virtual Machine Based Mobile Embedded Devices

研 究 生：蘇資翔 Student：Tzu-Hsiang Su

指導教授：陳添福博士 Advisor：Dr. Tien-Fu Chen

國 立 交 通 大 學

資訊學院 資訊學程

碩 士 論 文

A Thesis

Submitted to Degree Program

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

In

Computer Science

September 2011

Hsinchu, Taiwan

2011 年 9 月

i

以內容觸發降低嵌入式行動裝置上虛擬

機器垂直性能分析之負擔

 研究生：蘇資翔 指導教授：陳添福博士

國 立 交 通 大 學 資 訊 學 院 資 訊 學 程 碩 士 班

摘 要

Android 系統採用了 Dalvik 應用層虛擬機器以便支援各種處理器硬體架構。但是

使用 Dalvik 虛擬機器卻在應用虛擬機器層與 Linux 核心層間產生了 Android 上現有效

能分析工具無法跨越的障礙。這道障礙使得現有效能分析工具無法有效判斷應用程式

的執行瓶頸究竟來自於應用層的程式碼演算法、Linux 使用者空間函式庫、或是更底

層的 Linux 核心與驅動。本論文提出利用 Dalvik 虛擬機器的架構特色與虛擬記憶體替

換通道技術達成不導入大量負擔即可克服訊息傳遞障礙的可調鎖定觸發機制垂直性能

分析平台。這個性能分析平台可以簡化 Android 系統上的軟硬體協同設計過程。

ii

Low Overhead Context-sensitive Vertical Profiling for

Virtual Machine Based Mobile Embedded Devices

Student: Tzu-Hsiang Su Advisor: Dr. Tien-Fu Chen

Degree Program of Computer Science

National Chiao Tung University

ABSTRACT

Dalvik virtual machine in the Android system creates a profiling barrier between virtual

machine applications and Linux user-space libraries. This barrier makes it difficult for

existing profiling tools on the Android system to definitively identify whether a bottleneck

occurred in application level, Linux user-space level, or Linux kernel level. The proposed

the reconfigurable vertical profiling framework leverages the unique features of Dalvik

runtime virtual machine to bridges the gap without introducing large overhead. This

profiling framework streamlines the hardware-software co-design process for the Android

runtime system.

iii

Table of Contents

Chinese Abstract .. i

English Abstract .. ii

Table of Contents ... iii

List of Tables ... vi

List of Figures .. vii

I. Introduction .. 1

II. Background and Related Work .. 6

2.1 Background ... 6

2.1.1 Android Platform ... 6

2.1.2 Oprofile .. 8

2.2 Opcode Instrumentation .. 11

2.2.1 JVMTI .. 11

2.3 Native-code Instrumentation ... 12

2.3.1 VIProf ... 12

2.4 Binary Instrumentation .. 13

2.4.1 Javana ... 13

2.4.2 ProbeNOP .. 14

2.5 Comparison of Vertical Profilers ... 15

III. Memory Tunnel Vertical Profiling .. 16

iv

3.1 Design Challenge .. 16

3.1.1 How to Instrument Dalvik Virtual Machine .. 16

3.1.2 How to Reduce Profiling Overhead ... 16

3.1.3 Porting Profiling Tools to Android .. 17

3.2 Memory Tunnel ... 17

3.3 VARI profiler Architecture and Profiling Flow ... 19

IV. Dalvik Instrumentation Module ... 22

4.1 Retrieving Application Information .. 22

4.1.1 Handling Method VMA ... 22

4.1.2 Generating Substitute Symbol File .. 23

4.2 Method Invoke Instrumentation .. 25

4.3 Load Method from dex Instrumentation ... 27

4.4 Profiling Flow with Load Method Instrumentation .. 29

4.5 Memory Allocation and Correlation.. 30

4.5.1 Without Hash Replacement Address ... 32

4.5.2 With Hash Replacement Address .. 32

V. Reduce Overhead with Reconfigurable Profiling ... 34

5.1 Reconfigurable Vertical Profiling .. 34

5.1.1 Configurability ... 34

5.2 Profiling Granularity ... 35

5.2.1 Method-level Profiling ... 35

5.2.2 Application-level specific .. 35

v

5.2.3 Service specific-level profiling .. 36

5.3 Extend Reconfigurability to Context-sensitive Profiling .. 36

VI. Experimental Results ... 37

6.1 DIM Mapping Results ... 37

6.2 VARI Profiling Results .. 39

6.3 DIM Overhead ... 41

VII. Conclusion .. 44

References .. 45

vi

List of Tables

Table 1. Visible layers of performance analysis tools on Android. 10

Table 2. Comparison of vertical profiling instrumentation methods. 15

Table 3. Testing platform. ... 37

Table 4. Experimental environment. ... 37

Table 5. DIM instrumented results of Newton‟s cradle. ... 38

Table 6. Portions of Newton‟s cradle‟s proc memory map. .. 38

Table 7. Opreport call-graph result for 0xBench Math. .. 39

vii

List of Figures

Figure 1. Android architecture. ... 7

Figure 2. Android processes. ... 8

Figure 3. Profiling flow of Oprofile provided by the Android source code. 9

Figure 4. Javana system architecture... 13

Figure 5. ProbeNOP format using POWER6‟s vector permute instruction. 14

Figure 6. Vertical profiling flow on Android runtime. .. 18

Figure 7. VARI profiler architecture. .. 20

Figure 8. Generating hash replacement address symbol file. .. 24

Figure 9. Instrumenting „method invoke‟ creates more runtime overhead. 26

Figure 10. Instrumenting when DVM loads the every method of a dex file. 28

Figure 11. Hash replacement and load method instrumentation flow. 29

Figure 12. Memory allocation and correlation. ... 31

Figure 13. BallsView.java source code for Newton‟s cradle. .. 39

Figure 14. Method-level reconfigurable profiling call-graph for 0xBench Math. 40

Figure 15. Application-level reconfigurable profiling call-graph. .. 40

Figure 16. Total profiling time of different DIM instrument methodologies. 41

Figure 17 Overhead of different DIM instrumentation methodologies. 42

1

I. Introduction

As smart mobile embedded devices become more prevalent, the demand for their

performance also rises. Limited computing resources and energy restraints have always

been major design factors for these embedded mobile devices. In order to maximize

performance, optimizing application and system software is often the most effective and

economical approach. Since how to optimize the software is not always obvious, profiling

is an essential methodology for pinpointing performance bottlenecks without introducing

excessive overhead which could skew measured results. In addition to optimizing

software, profiling can also be used to determine the hardware requirements when a target

system software has been chosen, and assist the hardware-software co-design process.

Modern Central Processing Units today provide hardware based performance monitors

[1, 2, 3]. These hardware counters are registers that gets updated by specific CPU events.

Although different CPU architecture offers their own specific combination of hardware

performance monitors, generally they all provide clock cycle based and cache performance

related functionalities. Profiling tools, such as Oprofile [4], Gprof [5], and Google

Performance Tools [6], make use of these hardware performance monitors, in order to

further reduce profiling overhead.

The majority of popular mobile operation systems today are fine tuned and tied to a few

2

selected hardware platforms in order to optimize performance. These types of specific

hardware are often locked to prevent users from altering the mobile operation system,

fearing it would diminish performance. However, there are still a variety of mobile

operation systems that aims to support multiple architectures, such as Meamo [7] and

Meego [8]. Currently the most widespread is Android [9].

Android is a fast evolving mobile platform that differentiates itself from the rest by

delivering frequent version upgrades, supporting a variety of hardware devices and running

applications on top of a runtime virtual machine. This Dalvik Virtual Machine is based on

the traditional JAVA Virtual Machine [10], but modified to accommodate low memory

requirements and allow multiple VM instances concurrently [11]. It relies on the

underlying operating system for process isolation, memory management and threading

support. DVM eliminates the need to recompile Android applications for different

architecture that Android supports and it is an integral part of Android achieving

architecture-neutrality. However, these features make optimizing Android hardware and

software a more challenging task, as it becomes difficult to determine whether performance

bottlenecks occurred in the virtual machine application level, the user-space libraries or

deeper in the Linux kernel level.

The need for a system-wide performance analysis to accelerate the Android hardware-

software co-design process has already produced many Java level trace tools, such as

Android‟s own Dalvik Debug Monitor Server [12], logcat [13] and Traceview [14]. Most

of the tools focus on tracing information on the DVM-level. However some of these tools

approximate the time spent on Linux user-space libraries by adding instrumentations to the

beginning and end of each function of a test application. By doing so, they create large

operational and runtime overheads which introduce inaccuracies to the profiling results.

3

In order to make up for the lack of Linux user-space and kernel space information,

Linux systems‟ profiling and tracing tools are used by Android developers along with those

DVM-level specific tools. These traditional Linux profiling and tracing tools, such as

LTTng [15], strace [16], ltrace [17] and Oprofile are unable to determine the relationship

between Linux libraries and Java applications running inside Dalvik virtual machines, since

runtime interpreted Dalvik opcode [18] segments for a DVM application are first loaded

into its Dalvik virtual machine heap, then executed as the heap itself. Traditional Linux

profiling and tracing tools can only see the heap being executed and can not distinguish

which method is currently running. Furthermore, Android applications running inside

Dalvik virtual machines are forked and controlled by the Zygote parent process. These

issues create an information barrier, making it difficult for Linux user-space tools to retrieve

useful information past the Dalvik virtual machine layer.

The information gap between host machine and guest virtual machine exists on most

Java Virtual Machines. Various vertical profiling methods have been proposed to bridge

this gap. Many of the methods are only implemented on Jikes RVM [19], which is a Java

implementation of JVM, and by doing so eliminates some physical limitations of those JVM

implementations on physical hosts. Others vertical profiling collects appropriate

information and saves them to the file system, then modify the post-profiling analysis tool to

combine collected virtual machine information and profiling samples. This creates

temporal and spatial overheads on top of those already created by native Linux profiling.

To enable vertical profiling on a mobile platform with limited space and computing

power, such as Android, overhead must be minimized to reduce interference to the system

during execution for the sampled data to remain valuable. To achieve this goal, the

following issues must be addressed.

4

 Bridging the information barrier. The bridge over the DVM to Kernel space

information gap should integrate into existing profiling flow. It should also be

modular and avoids being overly intrusive to the host system or DVM. Since the

profiler samples frequently, the information should be available in kernel space

promptly after a method has been invoked by the virtual machine.

 Sending useful DVM application runtime information to the profiler. Vertical

profiling on the Android system requires an architecture-neutral method for

retrieving and sending the least amount of relevant application information from

the virtual machine to the kernel and profiler with the least amount of runtime

overhead. The method must also avoid modifying each target Dalvik application

for the purpose of profiling.

 Correlating Dalvik application methods to profiled samples. Currently the

profiler can only map a DVM application sample to the thread‟s Dalvik runtime

interpreter heap. There needs to be a mapping mechanism and an algorithm to

correlate addresses for the existing profiling flow to correlate samples to the

application method-level.

This work proposes the Vertical Virtual Address Remapping Integrated (VARI) profiler

for the Android runtime system, in which a low-overhead direct memory map address

replacement tunnel, linking virtual machine to kernel, is devised to bridge the information

barrier. This thesis focuses on providing techniques to send virtual memory address of

Java application methods and relevant information from the Dalvik Instrumentation Module

to the Memory Tunnel Virtual device. Additionally, this thesis proposes the mechanism

and algorithm allowing the profiler to correlate samples to actual Java application methods,

thus provides a way for performance analysis tools to tie the usage of Linux native libraries

5

with those Android applications that utilizes them. It is also this thesis‟ goal to minimize

probe effect related inaccuracies. To that end, this thesis adopts a modified virtual machine

event-based instrumentation approach that suits the unique process execution and stack

management of Android DVM.

Furthermore, this profiler enables reconfigurable profiling by configuring the Dalvik

Instrumentation Module to only send information related to the events of interest. The

granularity can be classified as three levels: DVM Application method-level, DVM

application level and Android service specific profiling. The proposed reconfigurable

vertical profiling framework streamlines the difficult task of identifying system bottlenecks

and accelerates the Android hardware-software co-design process [20].

This thesis is organized as follows. Chapter 2 surveys background and related works.

Chapter 3 presents the VARI profiler architecture and the reconfigurable vertical profiling

flow. Chapter 4 contains an overview of the memory map tunnel from the virtual machine to

Linux kernel-space and how to instrument the Dalvik virtual machine with the Dalvik

Instrumentation Module. In addition, methodologies to ensure accurate correlation

between user-space samples and virtual machine applications are introduced. Chapter 5

focuses the technique to lower profiling overhead with different granularity levels. The

experiment result and overhead analysis are presented in Chapter 6. Chapter 7 concludes

this thesis.

6

II. Background and Related Work

In this chapter, the first section will review the system and the tool that this thesis is

based on. The rest of the sections are devoted to related works on integrating Linux

system profiling abilities with Java Virtual Machines.

2.1 Background

In order to enable vertical profiling on the Android platform, this thesis made

modifications to Dalvik Virtual Machine and Oprofile‟s driver inside Android‟s Linux

kernel. Sub-section 1 will go over the unique features of Android and DVM. Sub-section

2 will introduce Oprofile.

2.1.1 Android Platform

Android is primarily a mobile platform. It presently runs on several iterations of ARM

and Intel architectures, including single-core and multi-core architectures with varies

memory hierarchies. Android platform is built on top of a Linux kernel. In the pursuit of

making the system more suitable for mobile devices, many modifications are made to the

system, including changes to the basic Linux system libraries, such as libc and ptrace.

The basic Android framework is shown in Figure 1. Linux kernel and drivers are the

foundation of Android framework and directly interact with the hardware. Android

runtime is built as a part of the Linux system libraries which consists of the Dalvik Virtual

Machine and other libraries that manages DVM thread creation and Inter-Process

Communication [21, 22].

7

Although Dalvik Virtual Machine is a modified Java Virtual Machine, unlike most JVM

stack machines, DVM implements a register-based design. A register-based machine uses

fewer instructions, but since each instruction is longer, it also has larger code size compared

to the stack machines. Aiming to reduce code size, Android redesigned the packaging

format to share common code and constants between class files. The resulted dex format

typically produces files less than half the size of the same code in the uncompressed JAR

format [23].

Application framework is a special Dalvik application which contains android system

services, such as telephony manager, activity manager and windows manager. The rest of

the applications interact with the basic systems through this application framework.

Android user interfaces such as the home screen, telephone dialer and browser are all Dalvik

applications.

Android

Linux Kernel

Libraries Android Runtime

Dalvik VM

Core Libraries

Application Framework

Application

libc opengl

drivers

Figure 1. Android architecture.

During the initiation of new Android applications, a new Dalvik virtual machine is

8

created for each instance, as shown in Figure 2 [24]. A process called Zygote monitors the

application initiation and forks it into a new thread when it is ready. Thus, modifications

for the virtual machine event-based instrumentation should focus on Zygote and the Dalvik

virtual machine. Traditionally, the more important events would be Zygote forking a new

thread, Dalvik virtual machine undergoing method creation or garbage collection, new

frames being pushed or popped on the thread stack, and other memory related events.

DAEMON

PROCESSES
RUNTIME ZYGOTE SYSTEM

SERVER

HOME TEST APP

libc libc libc libc libc libc

daemonsdaemonsdaemons runtime zygote

home Test app

Dalvik

VM

Dalvik

VM

Dalvik

VM

Audio

Finger

Surface

Finger

Activity

Manager

Package

Manager

Windows

Manager

Figure 2. Android processes.

2.1.2 Oprofile

Oprofile is a system-wide profiler for Linux systems, capable of profiling Linux

programs in execution at low overhead. It consists of a kernel driver and a daemon for

collecting sample data, and several post-profiling tools for turning data into information.

Oprofile utilizes hardware performance counters of different architectures to sample both

user-space and kernel-space usage data. Using Oprofile, developers can avoid dramatically

9

affecting accuracy by adjusting sampling frequency to minimize overhead. At the same

time using hardware counters further reduces overhead [25].

Android Platform

Kernel Space

PC

execute

IRQ handler

Oprofile_PMU_interrupt

User Space

Oprofiled Log

Control Computer

O
p
im

p
o
rt

Opreport

Host

VMA

Check if instruction in

user/kernel space

Opimport

Legend

Data

Control

Oprofilefs

CPU Buffer

Event BufferControl

Fetch

VMA

Control

Init/get buffer

1

CPU

Cycle

0
1
.
.
.

15000

Host &

DVM

Symbol

ELF Files

Host &

DVM

Symbol

ELF Files

Host &

DVM

Symbol

ELF Files

Opcontrol

2

3

4

5

Figure 3. Profiling flow of Oprofile provided by the Android source code.

The most recent official Oprofile release includes a JIT extension which provides

several tools to relay information of JIT‟s dynamic compiled code from a compatible Java

virtual machine to the kernel. However, due to the design differences between Java virtual

10

machines and Dalvik virtual machine, the implementation is not functional on Android. It

is also not included in the version of Oprofile that comes with Android source code.

Figure 3 illustrates the profiling flow of the Oprofile version included in Android source

code. To initiate profiling, Opcontrol first setups sampling frequency and assigns hardware

performance counters of interest ○1 . Opcontrol then initiates the Oprofile daemon and

sampling begins. Oprofile daemon will halt the system for a short period to empty and

process sampled data in the event buffer when the buffer is almost full ○2 .

After retrieving sample data, Oprofile daemon looks up symbol information using the

sample VMA, if a symbol is not found at this time, there will be another symbol look-up

during post-processing ○3 .

Oprofiled then saves the found symbols into the log files in ○4 . Once the profiling

session is complete, logs are retrieved by the control computer. Post-processing tools such

as Opreport will interpret the data and output results ○5 .

Table 1. Visible layers of performance analysis tools on Android.

Visible Layer Dalvik and application Native code and libraries Kernel and drivers

Traceview [14] Application and DVM logs

DDSM [25] DVM profiling and trace

Logcat [13]
Application logs through

activity manager

If Java application logs

native functions or libraries

calls, then there will be

limited information

Gprof [5]
Native code and library

profiling

LTTng [15] User space tracing tool Kernel space tracing tool

Ltrace [17] Trace for library calls Traces system calls

Strace [16]
System call tracing tool

that uses ptrace

Oprofile [4] Profiling with PMU Profiling with PMU

This Work Profiling with PMU Profiling with PMU Profiling with PMU

Presently, Oprofile can not correlate native code, Linux libraries or kernel space events

with Dalvik application events. Moreover, the JIT extension tools have not been integrated

11

into DVM, nor does Android source code include the JIT extension tools. There are other

performance analysis tools that Android provides in its source code, as shown in Table 1.

They all specialize in providing information for one or two layers in the Android

architecture, but none of them can bridge the information gap created by the virtual

machine.

2.2 Opcode Instrumentation

Native code instrumentation, opcode instrumentation and binary instrumentation are the

three common approaches to alter a virtual machine for the purpose of providing further

debugging information.

Opcodes are known as bytecode for Java Virtual Machines because most JVM opcodes

are one byte in length due to the fact that most JVMs are stack machines. Bytecode

instrumentation monitors runtime generated Java bytecodes. As the result of DVM not

employing standard Java bytecodes, standard Java debugging or profiling tools do not work

on Android, at least not without significant modification [26, 27]. In addition, most

bytecode instrumentation methodology examines every bytecode generated at runtime, thus

introduces greater overhead.

2.2.1 JVMTI

JVMTI stands for Java Virtual Machine Tool Interface [28]. It was developed by Sun

Microsystems, now owned by Oracle. It offers dynamic bytecode instrumentation

functionality which allows users to profile for information, add breakpoints and even make

changes to the opcodes of Java methods. These JVMTI functions are made possible by

adding events to the code of a method, for example, adding a call to methodEntered() at the

12

beginning of a method. The inserted code is standard bytecodes, which JVM treats as a

part of the application [29]. Although these additions do not modify application state or

behavior, they introduce additional overhead to the original application. To sum up,

JVMTI is a great Java debugging tool but perturbs the original application when utilized as

the backend of a profiler.

2.3 Native-code Instrumentation

Native-code instrumentation entails instrumenting virtual machine‟s native source code.

Usually native-code instrumentation is event-based and delivers application information to

the performance analysis tool when specific virtual machine events take place [31, 32, 33,

34].

2.3.1 VIProf

VIProf extends Oprofile to enable integrated profiling across the virtual layers of a

system [34]. The VIProf architecture modifies Oprofile to re-label samples that belongs to

the Java heap as a substitute file. The application‟s method information is collected by

instrumenting Jikes RVM‟s method compile, recompile and flags GC move method.

VIProf is implemented on Jikes, which produces a static image in a Jikes internal format

and an associated map. VIProf is able to modify Oprofile post processing tool to associate

samples with static image produced by Jikes.

Most native-code instrumentation methodologies and Javana mentioned below are

implemented on Jikes RVM. Jikes is a Research Virtual Machine, which is a JVM

implemented as a Java runtime application. The issue with employing Jikes is that it is

designed to be flexible. There is a MAGIC class defined in Jikes‟ compiler which allows

13

users to implement machine code and interact with system memory [35]. Barriers imposed

by regular virtual machines are easier to circumvent on Jikes if functionalities like MAGIC

are utilized.

2.4 Binary Instrumentation

Binary instrumentation modifies the interpreter of a virtual machine to monitor for

codes of interest. When an interested native instruction occurs, the modified code utilizes

special native instructions to deliver stack information relevant to the monitored instruction.

These special native instructions can also be dynamically inserted to trigger profiling [36].

2.4.1 Javana

Javana is a binary instrumentation methodology that comes with its own profiling

language. It is implemented on Jikes RVM and utilizes DIOTA as its underlying profiler.

Figure 4 shows that a dynamic binary instrumentation tool resides beneath the virtual

machine and tracks all native instructions executed by the virtual machine [37].

Figure 4. Javana system architecture.

14

The binary instrumentation needs to keep track of events, such as thread creation,

thread switching, thread termination, class loading, object allocation, object relocation,

method compilation, garbage collection and etc. Similar to other binary instrumentation

methods, tracking all native instructions introduces considerable overheads.

2.4.2 ProbeNOP

Inoue, et al. [38] utilized an unused instruction in the POWER6 architecture, seen in

Figure 5, as their special instruction to trigger Oprofile. The ProbeNOP instruction

employs a POWER6 architecture instruction unused by JVM to increment hardware

performance counters and at the same time deliver context-dependent information to the

hardware performance counter interrupt handler. An interrupt handler to trigger ProbeNOP

is inserted into every method entry to trigger profiling.

Figure 5. ProbeNOP format using POWER6‟s vector permute instruction.

The draw back of native code instrumentation is that duplication of efforts is required

when applying to different architectures. Some architecture might not have an unutilized

instruction to act as the special NOP function. These factors make binary instrumentation

15

less ideal for the Android platform.

2.5 Comparison of Vertical Profilers

Table 2 compares the instrumentation methods of the works introduced above. Each

work provides distinctive benefits to profiling integration on JVM. However, they all have

design aspects that are incompatible with the unique designs of DVM.

Table 2. Comparison of vertical profiling instrumentation methods.

Profiler Instrument method JVM platform Profiler

JVMTI [26]

Opcode

VM agent inserts additional opcode into

the original application methods

Sun/Oracle

JVM
Adaptive

VIProf [34]

Native-code

VM agent saves method information to

disk at JVM events. Oprofile kernel

driver replaces heap execution with

substitute file. Post-processing modified to

read Jikes generated static image

Jikes RVM Oprofile

Javana [37]

Binary

VM agent monitors JVM events and

instruments opcode to send information to

profiler

Jikes RVM DIOTA

ProbeNOP [38]

Binary

An interrupt handler that issues probeNOP

to initiate profiling is inserted at the start of

every method. probeNOP is a special

instruction not used by the system

J2SE Oprofile

16

III. Memory Tunnel Vertical Profiling

This chapter will go over design challenges faced by this thesis, and then explore the

purpose and benefits of the proposed memory tunnel between the Dalvik virtual machine

and Linux kernel-space. It will be followed by descriptions of this work‟s general

architecture and adaptation of the memory tunnel into oprofile‟s existing profiling flow.

3.1 Design Challenge

This work picked Oprofile as the profiling tool because it utilizes hardware

performance counters to achieve low overhead sampling. However, to make use of this

advantage brought by Oprofile, the experiment environment has to run on a CPU with

hardware performance counters. Implementing vertical profiling on a physical Android

platform means there is no bypassing of issue created by hardware restrictions.

3.1.1 How to Instrument Dalvik Virtual Machine

Investigating how and where to instrument Dalvik virtual machine is crucial, because

the accuracy and validity of the profiling results depend on instrumenting DVM

appropriately. This work investigates the traditional JVM instrumentation methodology

and how DVM behaves differently in order to find a strategy that introduces the least

overhead.

3.1.2 How to Reduce Profiling Overhead

This thesis aims to provide vertical profiling for mobile devices, which make use of

17

many time-sensitive real-time applications under hardware limitations such as computing

power, energy, memory, and data storage. Therefore, minimizing overhead introduced by

vertical integration is critical. This thesis explores the effects of both temporal and spatial

overhead and steps to reduce them.

3.1.3 Porting Profiling Tools to Android

The Oprofile source code included with Android is modified to adapt to the differences

between Android‟s Linux kernel and regular Linux systems. As a result, Oprofile provided

by Android is older in version and stripped of newer features that are needed for the

proposed communication flow. To accomplish the proposed profiling framework, this

work ported the official Oprofile, version 0.9.6, and a few other Linux components that are

required to run with this version of Oprofile, such as Sed and Awk, to the test system.

3.2 Memory Tunnel

Android and other traditional Java virtual machine behaves as illustrated in Figure 6 (a).

Opcodes are first interpreted into assembly code at runtime. They are then loaded into the

heap memory section of the DVM Linux process map and directly executed from there.

As a result, the actions inside the DVM process, such as which application method is

currently being executed, will be hidden from profilers in Linux user-space or kernel-space.

Consequently, currently Java-based and Linux-based Profilers have to be run separately.

Developers have to rely on trace correlation to see how virtual machine applications interact

with the Linux system.

18

Barrier

Android Apps

Android runtime lib

DVM

Linux user space and lib

oprofile

Kernel space

Hardware

V
ertical P

rofiling

S
end V

irtual M
achine pc

S
end E

vent info

Apps

Android runtime lib

Linux user space and lib

Kernel space

Hardware

V
isible to V

M

profiler

V
isible to L

inux native profiler

Barrier

(a) current profiling process with an information barrier

(b) bridging the barrier with even-based instrumentation

Android

Converter

memoryfile systemHPC

dum
p

G
en.

E
L

F

DIM

M
em

.

tunnel

Memory Tunnel

Virtual Device

oprofile

memoryfile systemHPC

Drivers

DVM V
M

profiler

Figure 6. Vertical profiling flow on Android runtime.

In the proposed vertical profiling flow in Figure 6 (b), a debugfs virtual device module

is first loaded in the kernel-space before profiling begins. When application initiates, each

19

DVM process opens a virtual file in their memory map so that each virtual file corresponds

to the PID of respective DVM.

Dalvik Instrumentation Module, which will be discussed in further detail in chapter 4,

looks up a method‟s Virtual Memory Address during virtual machine events, such as method

invocation, subsequently forwards the VMA of this method to the kernel-space debugfs‟

virtual device file. This is the main implementation of the memory tunnel. The modified

Oprofile driver device will monitor the pmnc (Performance Monitor Control) interrupt and

replace current sample‟s VMA when memory tunnel changes the virtual device file‟s value

from 0 to a VMA. After the replacement, the rest of the flow inside kernel-space remains

unchanged from original Oprofile.

3.3 VARI profiler Architecture and Profiling Flow

Figure 7 describes the architecture of the proposed Virtual Address Remapping

Integrated profiler. Dotted line represents control signal. Solid line represents data flow.

To distinguish from Oprofile‟s architecture, the proposed changes and new components of

VARI profiler are highlighted in white. VARI profiler employed some components from

Oprofile‟s JIT extension, namely opagent and opjitconv. Oprofile‟s JIT extension is

comprised of a set of tools for users to implement into compatible JVMs.

The major differences between VARI profiler and the original Oprofile flow are derived

from DIM instrumentations, the memory map tunnel virtual device, and the memory

replacement algorithm in oprofile‟s kernel driver. The VARI profiling flow is as follows.

After Opcontrol initiates profiling in ○1 and ○2 , the target application initiates and

creates a DVM process. When the DVM process begins invoking methods after initiation,

DIM looks up the method‟s VMA, which is the VMA of the dex file in the process map plus

20

an offset, then gathers relevant information ○3 .

Android Platform

Kernel Space

PC execute

User Space

Oprofiled

Opcontrol

Log

Control Computer

Opimport

Dalvik VM

Guest

VMA

DVM

→ Events
DVM

→ Events

Opreport

Fetch VMA

yesy
es

memory map

tunnel

Host

VMA

Legend

Data

Control

O
pim
port

Host &

DVM

Symbol

ELF Files

Host &

DVM

Symbol

ELF Files

Host &

DVM

Symbol

ELF Files

Oprofilefs

CPU Buffer

Event BufferControl
CPU

Cycle

0
1
.
.
.

15000

Host &

DVM

Symbol

ELF Files

Host &

DVM

Symbol

ELF Files

Dalvik

Symbol

Dump

(.dump)

Guest

VMA

DIM

→ method invoke

opjitconv

OPagent

Memory Tunnel

Virtual Device

DIM

configuration

→

Target methods/

Target Apps/

Target System
method

part of the

target?

DIM

→ send method info

Dalvik

heap

VMA?

DIM

→ send pc

1

2

3

4

5

6

7

8

Figure 7. VARI profiler architecture.

DIM sends the retrieved method VMA through the proposed memory map tunnel to a

designated kernel space virtual device ○4 . The virtual device file only contains a valid

VMA when a DVM application method is invoked. Once Oprofile‟s kernel driver receives

a pmnc (Performance Monitor Control) interrupt, and the modified driver determines this

21

sample belongs to a Dalvik method, the sample VMA is replaced with the VMA in the

virtual device file.

DIM then saves the current method name, method VMA and size into a dump file

through opagent. Since each individual Android application has its own PID, each

application‟s PID is used as a unique identifier for the dump file, e.g. 1234.dump ○5 .

Once the profiling is complete, Oprofile daemon calls opjitconv which converts the saved

dump files into ELF symbol files. These ELF files contain only the relevant symbol

information for Oprofile to correlate samples to Android applications ○6 .

The original Oprofile JIT extension expects that Oprofile will be unable to find symbols

of Java applications samples and resort to labeling them as anonymous. Due to Dalvik‟s

process management, Oprofile actually identifies these samples as Dalvik heap or Dalvik

JIT code cache execution, part of the Android shared memory process (ashmem). In step 4,

DIM and Oprofile kernel driver modifications replaced Dalvik method samples with a new

VMA to avoid this issue.

At this point, the ideal behavior is for Oprofile daemon to process these ELF files as it

would do with regular Linux processes and saves the logs in the file system. However,

these replacement VMAs actually point to application dex files on the DVM process

memory map, and not the ELF symbol files.

Oprofile daemon saves samples to logs in ○7 , which are retrieved along with the ELF

information file in ○8 . Oprofile‟s post processing tools are used to analyze results. The

method used to resolve replacement VMAs not pointing to the actual substitute ELF symbol

file will be addressed in the next chapter.

22

IV. Dalvik Instrumentation Module

The Dalvik Instrumentation Module is an agent added to DVM for the purpose of

retrieving application information within the virtual machine. The DIM is aimed to be

architecture-neutral; Therefore this work avoids instrumenting the assembly portion of the

DVM‟s opcode interpreter. The applied instrumentation methodology determines accuracy

of the final profiling result. This chapter examines instrumenting DVM with the

traditional Java instrumentation methodology and how to lower overhead based on DVM‟s

distinctive features.

4.1 Retrieving Application Information

This work uses Oprofile as the backend profiler, therefore DIM needs to gather

application information which Oprofile can use to correlate the hardware performance

counter samples. DIM needs to provide two separate sets of information through two

different channels.

4.1.1 Handling Method VMA

To gather sample data, Oprofile retrieves a VMA, PMU sample pair in kernel-space.

Without the memory tunnel address replacement methodology, any Dalvik application

sample‟s VMA will fall within the range of Dalvik heap, or JIT code cache in Android‟s

Anonymous shared memory (ashmem). To enable vertical profiling, DIM needs to send

the VMA of the upcoming to be executed method through the Memory Map Tunnel into the

debugfs virtual device file. This work modified Oprofile‟s kernel driver, so before logging

a sample into oprofilefs‟ CPU buffer, the driver checks with the virtual device file to see

23

whether this is a DVM sample. The value of the debugfs virtual file is 0 for non-DVM

samples, otherwise it contains the Dalvik method‟s VMA. In the later case, the VMA of

the Dalvik-heap or JIT-code-cache will be replaced by the VMA stored in the virtual file.

Now, when Oprofile daemon retrieves the VMA sample pair from oprofilefs, it will map to

the dex file which the method came from. Even though the samples are now able to link

back to their own dex file, they cannot be traced back to a method because dex file contains

Dalvik opcodes, and currently Oprofile only processes ELF format symbol files. To

correlate samples to the correct Dalvik application methods, a technique is required for

Oprofile to link samples to a substitute symbol file.

4.1.2 Generating Substitute Symbol File

To resolve this issue, DIM needs to provide method name, method VMA, and method

code size to an ELF format skeleton symbol file. This work utilizes opagent and opjitconv

from Oprofile‟s JIT extension to write the dump file. When target application initiates, it

creates an empty substitute symbol file with jo as its extension, named by the application

process PID, for instance 1234.jo, and allocates it in the DVM‟s memory map.

This file‟s mapped address is different from the dex files, hence before DIM sends a

method‟s VMA through the memory map tunnel, it will need to recalculate the method‟s

new location on the jo file location. The simplest way to do so is to shift all the address by

the offset between substitute symbol file‟s address and the address where the dex file is

mapped to. If there are more than one dex file in an application‟s memory map, they will

also be mapped to the same substitute file with an updated offset to last entry of the file.

The issue with the previous methodology is that since the substitute ELF file contains

only the method name and the address, most of the space allocated is wasted. Larger

24

applications could cause allocated section to overflow. Figure 8 shows the remapping

algorithm used to reduce memory necessary for mapping the substitution ELF file. A hash

table is generated to reduce overhead of looking up the method‟s substituted address during

runtime before sending the method VMA through the memory map tunnel.

0x415bf000 0x419bf000

jo file

Class #6

0x0000a000 0x0000a009

DIM hash remapping algorithm

0 400000

Process Virtual

MemoryAddress
dex file JNI

h
as

h

0xa000

+009
...

0xa000

+002

0xa000

+001

0xa000

+000

000 009

opagent save to dump file

method 9...method #2method #1
method #0

onCreate
method 9...method #2method #1

method #0

onCreate

method 9...method #2method #1
method #0

onCreate

method 9...method #2method #1
method #0

onCreate

0xa000

+002

M
em

o
ry

 m
ap

tu
n

n
el

L
o

g
ic

al
ly

 l
in

k
ed

Figure 8. Generating hash replacement address symbol file.

Ideally, this substitution ELF file is generated by utilizing functionalities provided by

opjitconv during runtime from the dump file provided by DIM. However, since symbol

searching is carry out again during post-processing by Oprofile analysis tools such as

opreport and opannotate; It is not necessary to create this extra overhead. Instead, the

dump file will be converted into the ELF format and saved as PID.jo when profiling

25

concludes. Given that there is no longer a need for mapping the actual ELF substitution

file to the process‟ virtual memory during runtime, the size of the dump file on the file

system is relatively trivial. Therefore by not using the previously mentioned runtime hash

remapping methodology actually reduces overhead. However, the hash remapping

methodology can still be used to keep track of dynamically compiled methods generated by

Android‟s new Just-in-time compilation capabilities. Aside from Android‟s JIT

functionalities, the hash remapping method can also be used to adopt VARI profiler to stack

machine JVMs.

4.2 Method Invoke Instrumentation

Traditionally, JVM instrumentation for vertical profiling takes place whenever an

address has changed. Since typical JVM machines are stack machines, the allocation of a

Java method‟s VMA is not known until the interpreter invokes the method. When the

stack frame is full, garbage collection and other memory relocation functions also modifies

the method‟s address. Therefore, implementing vertical profiling requires instrumenting

every JVM function that would alter the memory allocation, such as method compilation,

method recompilation, method relocation, garbage collection and etc.

In case of the register based DVM, stack frames also undergoes garbage collection,

however, since the dex files are mapped onto the process memory map, the addresses are

fixed as long as the process remains running. As a result, method VMA retrieved by DIM

remains the valid method address for the duration of profiling. When DVM invokes a

method, it loads a section of the mapped dex file starting from the VMA where the method‟s

beginning opcode is located.

26

DIM instrumentation captures this action and sends the starting VMA of the invoked

method through the memory map tunnel. To ensure DIM instruments all method

invocation‟s final entries points, this work examined DVM opcode interpreter‟s assembly

file. There are four types of method invocations, this work traced the interpreter back to

where these invocations instructions are issued in the DVM native code, and then inserted

the DIM instrumentation. The flow of DIM retrieving VMA for methods being invoked is

show in Figure 9. The DIM component responsible for delivering VMA through the

memory map tunnel is not shown in the figure.

Dalvik Instrumentation Module

Process Virtual Memory Address

0x00008000

0x0000a000

0x00214000

0x415bf000

0x419e7000

0xacb4e000

0xaca00000

dex file:

jo file:

JNI libc.so:

app_process:

heap:

DVM loads entire

dex file from the

memory map

OPagent

1

3

2

I/O access required during runtime

for each method invoked

DVM

→ Events
DVM

→ EventsInvoke Method

DVM interprets

dex opcode into

assembly code

Load method from

dex

virtual

methods

1

2

3

4

5

...

n

direct

methods

1

2

3

4

5

...

n

Figure 9. Instrumenting „method invoke‟ creates more runtime overhead.

27

1. DVM will maintain an array of every method and each method‟s dex file process

map VMA.

2. When a method is invoked, the interpreter retrieves opcodes of the method from

the VMA and loads the interpreted code into the heap. For each method invoked,

DIM sends method name and VMA to a dump file through opagent. When a JNI

method is invoked, DIM only sends the init method through opagent. When

Dalvik-heap executes the JNI call, they are processed by Oprofile as regular Linux

user-space execution.

3. By instrumenting method invocation, every method invocation requires additional

I/O operations to write the dump file.

The benefit of instrumenting method invocation is that only the information of those

method used will be saved, thus reducing the spatial overhead for dump file and the

generated substitute ELF file. For mobile devices, sample log files can use up limited

storage space quickly. However, I/O operations in step 3 are costly, even if the dump file

does not need to be converted into ELF format during runtime. Furthermore, the benefit of

reducing spatial overhead is eliminated if most of the methods are invoked during profiling.

4.3 Load Method from dex Instrumentation

Due to DVM‟s design to load dex files into its process virtual memory map, except for

the new JIT functionality, VMA of a pre-interpreted method is known before it is invoked.

At a Dalvik application‟s initiation, DVM will store the VMA of every method from a dex

file into an array. Instead of instrumenting actual method invocation, DIM can write the

name and VMA of every method in the dex files into the dump file before the application is

executed. This methodology combines previous technique‟s multiple I/O operations

28

during runtime into one single writes operation to the dump file at the initiation of the

application. Aside from a slightly slower application start time, which does not affect the

profiling results, this methodology reduces overhead introduced by vertical profiling.

Dalvik Instrumentation Module

Process Virtual Memory Address

0x00008000

0x0000a000

0x00214000

0x415bf000

0x419e7000

0xacb4e000

0xaca00000

dex file:

jo file:

JNI:

app_process:

heap:

DVM loads entire

dex file from the

memory map

Send symbol information

DVM

→ Events
DVM

→ EventsInvoke Method

DVM interprets

dex opcode into

assembly code

only once per dex file

OPagent

1

2

3

Load method from

dex

virtual

methods

1

2

3

4

5

...

n

direct

methods

1

2

3

4

5

...

n

Figure 10. Instrumenting when DVM loads every method of a dex file.

Figure 10 shows the change in DIM flow. While step one remains the same, before

methods are invoked, in step 2 DIM sends information for every method to opagent when an

application initiates. DVM doesn‟t begin invoking methods until it has completed loading

methods into the array in step 3, therefore this instrumentation does not impact the profiling

result during runtime.

29

4.4 Profiling Flow with Load Method Instrumentation

Figure 11 shows the modified VARI profiling flow after switching to instrument DVM

loading every method from dex files at application initiation and adding hash address

replacement. The highlighted portion shows component changes. New components are

in bold.

Android Platform

Kernel Space

PC execute

User Space

Oprofiled

Opcontrol

Log

Control Computer

Opimport

Dalvik VM

DVM

→ Events
DVM

→ Events

Opreport

Oprofilefs

CPU Buffer

Event Buffer

Fetch VMA

Memory Tunnel

Virtual Device
Dalvik

heap

VMA?

memory map

tunnel

Host

VMA

Guest

VMA
Control

Host &

DVM

Symbol

ELF Files

Host &

DVM

Symbol

ELF Files

Host

Symbol

Files

Legend

Data

Control

O
pim
port

CPU

Cycle

0
1
.
.
.

15000

DIM →
Method Invoke

DIM

configuration

→

Target methods/

Target Apps/

Target System

Method

part of the

target?

yes

Guest

VMA

e

Get current VMA

DIM →
JIT Method Invoke

DIM→
send pcOPagent

DIM →

Load method

from dex

A

opjitconv
Host &

DVM

Symbol

ELF Files

Host &

DVM

Symbol

ELF Files

Dalvik

Symbol

Dump

(.dump)

Host &

DVM

Symbol

ELF Files

Host &

DVM

Symbol

ELF Files

Guest

Symbol

Files

DIM→

hash lookupC

D

DIM→

generate hash addr.

B

Figure 11. Hash replacement and load method instrumentation flow.

30

A. DVM loads every method from application dex files during application initiation.

DIM gathers information for all methods and saves it to a dump file via opagent.

B. Hash address replacement is only generated to keep track of methods dynamically

compiled by JIT compiler. The generated address is stored in DIM as a hash table

for faster lookup. Maximum hash lookups take O(n) time. The generated

replacement VMA is sent through the memory tunnel and to the dump file along

with method name.

C. For profiling flow that incorporates the hash remapping methodology, reused

methods only needs to look up the hash table for their original translated address.

In that case all methods will be mapped to the substitute ELF format jo files.

Regardless of whether the current method VMA is replaced by the hash lookup,

DIM sends it to the kernel space virtual device through the memory tunnel.

D. The dump file created in step A is converted into the substitute ELF file with a jo

extension. This substitute ELF file is the guest symbol file. To reduce overhead,

this ELF file is generated post profiling. It is only logically mapped to the dex

files on the process virtual memory map. However, to enable JIT compiled

methods, process needs to logically memory map the jo file, because there is no jo

file already allocated on the process virtual memory map like the dex files.

4.5 Memory Allocation and Correlation

The goal of this thesis is to associating DVM methods and Oprofile samples. After

executing a profiling flow, post processing needs to correlate the dump files and the

Oprofile profiling results. The dump file containing information of DVM methods is not

31

converted to ELF format during runtime in order to minimize overhead. Therefore, at the

end of profiling, substitute ELF format symbol file is generated using opjitconv of

Oprofile‟s JIT extension. The result is an ELF format skeleton file named by process PID

with jo as its extension. This work accomplishes post-processing correlation without

making changes to Oprofile‟s post processing tools, such as opreport and opannotate.

VMA of a DVM source code

0x00008000

0x0000a000

0x00214000

0x415bf000

0x419e7000

0xacb4e000

0xaca00000

/system/bin/app_process

/data/oprofile/jitdump/pid.jo

/data/dalvik-cache/

system@framework@core.jar@classes.dex

/system/lib/libdvm.so

CallMethodV()

{

 if(method.status)

 interpreter();

 else

 CALL_JNI();

}

Public class GetX()

{

 private int x;

 provate int y;

 public return_x();

 ...

}

Init();

hitTestBall();

hitTestBallOverRange();

onTouch();

setApp();

int main(int argc, const char*

const argv[])

{

 …
}

Figure 12. Memory allocation and correlation.

32

Figure 12 shows the virtual memory map of a DVM process as well as how jo and dex

files are allocated. On the left is a process‟s sample virtual memory allocation map. On

the right is the type of information a profiler can retrieve if the sampled data can be linked to

the contents of that segment. The second segment is the jo file, which consist of the

content of the DIM dump file. It is capable of method level correlation. By spending

additional time and saving extra information to the dump file during runtime, DIM can

provide the line number where the method is called within the Java file. The third segment

is a dex file and it is capable of source line level correlation, but Oprofile does not have the

capability to analyze dex files.

4.5.1 Without Hash Replacement Address

Without the presence of JIT compiler, it is not necessary to replace a method‟s address

allocated with its dex file of origin. Consequently, the jo allocation in the process map is

not required. While the actual dex files are not ELF format symbol files, once the Oprofile

samples and the jo file are pulled to the control computer, the jo files can be renamed as the

dex files. Oprofile post processing tools will treat these duplicated and renamed jo files as

the original dex files containing ELF symbols. This is the profiling methodology that

introduces the least amount of overhead during application runtime.

4.5.2 With Hash Replacement Address

The hash replacement address mechanism is useful for keeping track of dynamically

compiled methods from JIT. In this case, the process virtual memory map has to allocate a

section of virtual memory for the jo file, to ensure address generated by the replacement

33

algorithm will not create a conflict with other allocations. By remapping both the JIT

compiled and interpreted methods into the address range of the jo file, no renaming is

required during post processing. Oprofile‟s post process analysis tools will search for the

symbols for DVM related symbols within the jo file. But in comparison, renaming the jo

file post profiling process is still the methodology that introduces the lowest runtime

overhead.

34

V. Reduce Overhead with

Reconfigurable Profiling

The proposed Dalvik instrument module modifies the DVM to gather information for

every method invoked. Due to the fact that Android platform‟s system services and user

interface are all essentially special Dalvik applications, modifications made by DIM will

also gather information from these Android system services unless specified not to. The

mechanism implemented to profile only desired components can also be utilized to achieve

reconfigurable profiling and reduce undesired profiling overhead.

5.1 Reconfigurable Vertical Profiling

DIM employs two techniques to achieve reconfigurable profiling. For finer granularity,

DIM can be set to only write information for specified methods from the profiling target

method list to the dump file. For larger granularity, DIM can be configured to only profile

DVM process of an application by checking the process command line, which is the

equivalent of Java package name.

5.1.1 Configurability

Hard-coding the desired application to profile will require recompilation of the entire

Dalvik virtual machine every time a new application needs to be profiled. A configuration

file informing DIM which application or methods to profile avoids having to recompile

DVM. This configurability can be provided by modifying a simple text file. Tool with

35

user interface helps users quickly select a set of targets, such as the system services which

consist of a group of methods.

5.2 Profiling Granularity

By utilizing the two granularity configurations and combining a set of targets, DIM can

further reduce instrumentation overhead by triggering vertical profiling flow only for user‟s

profiling target. Such measures reduce the overhead of writing unnecessary information to

the file system when the developer only wants to track down bottlenecks in a specific

application or a section of code.

5.2.1 Method-level Profiling

If the user knows the bottleneck exists within a specific method, DIM can be set to send

information only for the specific method and its children. Line information can also be

attached to the method name with extra lookup time. This works best with large methods

with a heavy workload. It will avoid I/O interference from instrumenting other unwanted

methods.

5.2.2 Application-level specific

This allows DIM to trigger profiling flow only for specified applications. Users can

first use this granularity to identify which method is the bottleneck before switching to finer

method-level granularity for more accurate profiling results. It avoids measurement

perturbation by I/O operations from instruments of other applications.

36

5.2.3 Service specific-level profiling

By combining several method-level or application-level configurations, DIM can

provide a better picture of specific events, for example, combining methods from the system

server DVM process to evaluate video performance. By only writing the dump files of

Android‟s System Service process to the file system, Oprofile daemon can organize samples

by system services. Services specific profiling can identify power hotspots and point to

possible causes.

5.3 Extend Reconfigurability to Context-sensitive

Profiling

This thesis originally intended to bring context-sensitive profiling to the Android

platform. Due to time constraints, the framework for achieving context-sensitive profiling

is put in place, but context-sensitive profiling has yet to be implemented.

Reconfigurability is only the first step to enabling context-sensitive profiling. Further

work on opcode instrumentation is required for true context-sensitivity. Dalvik

Instrumentation Module will need to intercept an instruction fetch from the DVM interpreter,

and call a predefined macro to send information through the Memory Tunnel after verifying

the instruction is a target of interest. Users can target a specific instruction such as

OP_IF_LT to monitor the performance of for loops.

37

VI. Experimental Results

Testing is conducted on Beagleboard Rev. C development board running Android 2.3

Gingerbread. Android 2.3 is the newest available version on this development board and

incorporate a JIT compiler. Beagleboard development board only differs from commercial

mobile devices in that the root file system is not loaded into the ROM, but instead resides

on a special SD card partition.

Table 3. Testing platform.

Development Board

Beagleboard Rev. C4

CPU OMAP3530DCBB72 720MHz

CPU Arch. CPU: ARM V7

POP Memory
Micron

2Gb NAND (256MB) 2Gb MDDR SDRAM (256MB)

Table 4. Experimental environment.

Experimental Environment

Android 2.3 Gingerbread

Kernel 2.6.29-00261

Compiler gcc version 4.4.0

Oprofile 0.9.6

Benchmarks

Newton‟s Cradle [39]

0xBench Math [40]
Linpack [41]

Scimark2 [42]

0xBench VM [40]

6.1 DIM Mapping Results

The next two tables illustrate how results from the Dalvik Instrumentation Module can

be correlated to symbol files mapped to the process virtual memory map. Table 5

38

demonstrates the capability of DIM. DIM is able to retrieve information for a method‟s

virtual machine program counter, VMA, method name, Java class description, the name of

its source Java file and the line number of the method in source file. Table 6 is the process

memory map for the test application.

Table 5. DIM instrumented results of Newton‟s cradle.

VMA can trace back to the line number of source Java file.

PC VMA Method Name Class Description
Source File

Name
Line#

6 0x42729240 run Ljava/lang/Runnable; ViewRoot.java 2044

636 0x43966df0 atan Ljava/lang/Math; BallsView.java 616

725 0x254608 native_drawBitmap Landroid/graphics/Canvas; Canvas.java -2

The first method, named run, has VMA value of 0x42729240, which falls into the range

of process map address belonging to the Android framework dex file. The VMA of the

second method atan falls into the test application‟s dex address range, and this function can

be found in the BallsView.java application source file as show in Figure 13.

Table 6. Portions of Newton‟s cradle‟s proc memory map.

VARI profiler and VMA replacement flow, correlates heap executions to respective dex

files.

Start Addr. End Addr. Mod Nod. Mapped File Name

0000a000 002bd000
rwxp

0
[heap]

4245b000 42b01000
r-xp

293
/data/dalvik-cache/system@framework@framework.jar@classes.dex

43964000 4396b000
r-xp

723
/data/dalvik-cache/data@app@com.geekyouup.android.newton-1.apk@classes.dex

The third method native_drawBitmap is a graphics library function of the Android

system. Its VMA was not replaced by memory map tunnel, therefore falls into the heap

section of the process map. Consequently, Oprofile will be unable to correlate the samples

39

of this function back to its Java method and source location.

603 for(int p=0;p<numPointers;p++)

604 {

605 if(mObjectTouched && mObjectsTouchedIds[p]!=-1)

606 {

607 mBallVelocity[mObjectsTouchedIds[p]]=0;

608

609 //translate the roational origin

610 float transX = reflectGetXForPointer(event, p)-mCenterOfRotationX[mObjectsTouchedIds[p]];

611 float transY = reflectGetYForPointer(event, p)-mCenterOfRotationY;

612

613 if(!isOrientNormal) {transX=-transX; transY=-transY;}

614

615 //figure out the angle the ball is now at

616 if(transY>0) mBallAngle[mObjectsTouchedIds[p]] = ((float) (-Math.atan(transX/transY))+PI_F);

617 else mBallAngle[mObjectsTouchedIds[p]] = (float) -Math.atan((transX/transY));

618 }

619 }

Figure 13. BallsView.java source code for Newton‟s cradle.

6.2 VARI Profiling Results

Table 7 is a sample of call graph information generated by opreport after a profiling

session. This particular call graph shows that after Kubench benchmark finishes one round

of testing, it tries to use another Linux system library.

Table 7. Opreport call-graph result for 0xBench Math.

$ opreport –m tgid –cgl ../samples/

CPU: ARM V7 PMU, speed 0 MHz (estimated)

Counted CPU_CYCLES events (clock cycles counter) with a unit mask of 0x00 (No unit mask) count 15000

samples % image name symbol name Code

1 33.3333 libandroid_runtime.so app_process android::register_android_content_res_

Configuration(_JNIEnv*)

1 33.3333 libdvm.so app_process dvmCallMethodV

1 33.3333 system@framework@services

.jar@classes.dex

app_process sleepBetweenRound:Kubench.java:47

0 0 libandroid_runtime.so app_process __on_dlclose

0 0 libandroid_runtime.so app_process __on_dlclose [self]

Before it could do so, it first calls __on_dlcose of libandroid_runtime.so to conclude the

40

using the last shared library. The graphical representation of this call graph is show in

Figure 14. The call graph diagram is generated by dot [43] using Gprof2Dot [44].

Figure 14. Method-level reconfigurable profiling call-graph for 0xBench Math.

System framework triggered by Kubench.java.

A method level reconfigurable profiling call-graph is shown in Figure 15. For this

example it shows methods from four dex files calling private methods within the same dex

file.

Figure 15. Application-level reconfigurable profiling call-graph.

41

6.3 DIM Overhead

Sending VMA through the memory tunnel and writing method information to the dump

file are the two most significant DIM events. It is essential to implement these two

functions appropriately as they greatly affect profiling performance and accuracy. This

section examines whether the proposed methodology is efficient.

Figure 16. Total profiling time of different DIM instrument methodologies.

The Y-axis is the total profiling time of different DIM instrument methodologies running 3

benchmarks. The units are in seconds.

Figure 16 shows the total profiling time utilizing different Dalvik virtual machine

instrumentation methodologies. Figure 17 shows the overhead analysis. The analysis is

done by running these methodologies through three benchmarks. Newton‟s cradle [39] is a

two dimensional simulation of the conservation of momentum and energy. User controls

42

the application through drag and release motions. 0xBenchmark‟s [40] math test consists of

Linpack [41] and Scimark2 [42]. 0xBenchmark‟s VM test consists of a garbage collection

test that creates a large binary tree and a large array of doubles to test GC performance.

Figure 17 Overhead of different DIM instrumentation methodologies.

The DIM overhead statistics are measured with performance counter cycle count. The

original executing time for the application is used as control statistics. The x-axis shows

DIM instrumentation methodology overhead with each benchmark for both figures.

Instrumenting at each „method invoke‟ involves writing method information to a log

file when the method is called during runtime. It is the traditional vertical profiling

approach to instrument JVM. Since it writes to file frequently during runtime, the

overhead is large in comparison to instrumenting „load method from dex‟, which only writes

to file once when the test application initiates. An addition of at least 8 seconds is added to

43

the original profiling time for the „method invoke‟ tactic, which introduces an overhead of at

least 35%. Where as „load method from dex‟ instrumentation only asserts at most an

additional 0.08 seconds, an overhead of 0.32%. Figure 17 is in logarithmic scale due to the

huge difference in overhead created.

The memory map tunnel is the foundation of this thesis, and it generates less than 0.02

seconds of additional overhead during the entire profiling process when compared to the

traditional Oprofile flow. Vertical profilers that do not utilize a memory map tunnel have

to records the same information to a file. Given that VMA information is sent through the

memory map tunnel at every method invoke, the overhead of writing them to a file would be

the same as overhead for the „method invoke‟ tactic. This demonstrates the efficiency of

the memory map tunnel. It greatly reduces overhead by avoiding context switches during

runtime.

44

VII. Conclusion

The goal of this thesis is to establish a bridge to communicate application information

from Dalvik virtual machine to a Linux user-space profiler. Moreover, methodologies

mentioned in this thesis are not limited to Oprofile. The communication tunnel established

by proposed modifications can also be used by other Linux user-space trace tools, such as

strace or LTTng.

Furthermore, the techniques used in the Dalvik Instrumentation module, such as the

hash replacement address, can be applied on other Java virtual machines to achieve register

based machine styled profiling on stack machines.

Currently even though VARI profiler provides some source line level information, but

this functionality is not integrated with those found in Oprofile. There are several ways to

approach this issue, such as converting dex file‟s DWARF3 inspired debug_info_item [45]

into an ELF symbol file, or modifying oprofile‟s post processing tools to utilize dex

disassembler to treat dex files as a symbol file.

As it is, VARI profiler provides vertical profiling capability on Android mobile systems,

by bridging the profiling gap between the Dalvik virtual machine and Linux user and kernel

space. This ability enables users to identify Java level bottlenecks and trace back to the

point of origin in the Linux system library while introducing little overhead.

45

References

[1] G. Contreras and M. Martonosi, “Power prediction for Intel XScale® processors using

performance monitoring unit events,” 2005, 221, ACM Press.

[2] “ARM - PMU management registers,” http://infocenter.arm.com/help/index.jsp?

topic=/com.arm.doc.ddi0388f/Bcgddibf.html.

[3] “Intel® Microarchitecture Codename Nehalem Performance Monitoring Unit

Programming Guide (Nehalem Core PMU),” http://software.intel.com/en-us/articles/

intel-microarchitecture-codename-nehalem-performance-monitoring-unit-

programming-guide/.

[4] “OProfile - A System Profiler for Linux (News),” http://oprofile.sourceforge.net/

news/.

[5] S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof,” ACM SIGPLAN Notices

39, 49 (2004).

[6] Google, “Google Performance Tools,” 2005, http://goog-perftools.sourceforge.net/.

[7] “maemo.org - maemo.org: Home of the Maemo community,” http://maemo.org/.

[8] “MeeGo,” https://meego.com/.

[9] “Android Developers,” http://developer.android.com/index.html.

[10] K. Paul and T. K. Kundu, “Android on Mobile Devices: An Energy Perspective,” in

Computer and Information Technology, 2010 IEEE 10th International Conference on,

pp. 2421–2426.

[11] “DalvikVM.com - Dalvik Virtual Machine insights,” http://www.dalvikvm.com/.

46

[12] Goole, “Using DDMS | Android Developers,” 2010, http://developer.android.com/

guide/developing/debugging/ddms.html.

[13] “logcat | Android Developers,” http://developer.android.com/guide/developing/tools/

logcat.html.

[14] “Traceview | Android Developers,” http://developer.android.com/guide/developing/

tools/traceview.html.

[15] “LTTng Project,” http://lttng.org/.

[16] “strace | Download strace software for free at SourceForge.net,” http://sourceforge.net/

projects/strace/.

[17] “ltrace,” http://ltrace.org/.

[18] “Opcodes | Android Developers,” http://developer.android.com/reference/dalvik/

bytecode/Opcodes.html.

[19] “Jikes RVM - Home,” http://jikesrvm.org/.

[20] L. Shannon and P. Chow, “Using reconfigurability to achieve real-time profiling for

hardware/software codesign,” in Proceedings of the 2004 ACM/SIGDA 12th

international symposium on Field programmable gate arrays, pp. 190–199, ACM,

New York, NY, USA (2004).

[21] L. Batyuk, A.-D. Schmidt, H.-G. Schmidt, A. Camtepe, and S. Albayrak, “Developing

and Benchmarking Native Linux Applications on Android,” in MobileWireless

Middleware, Operating Systems, and Applications 7, J.-M. Bonnin, C. Giannelli, and

T. Magedanz, Eds., pp. 381–392, Springer Berlin Heidelberg, Berlin, Heidelberg

(2009).

[22] W. Binder, J. Hulaas, and P. Moret, “A Quantitative Evaluation of the Contribution of

Native Code to Java Workloads,” in Workload Characterization, 2006 IEEE

47

International Symposium on, pp. 201–209 (2006).

[23] Sohail Khan, Shahryar Khan, Syed Hammad Khalid Banuri, Mohammad Nauman,

and Masoom Alam, “Analysis of Dalvik Virtual Machine and Class Path Library,”

Technical Report, Institute of Management SciencesPeshawar, Pakistan (2009).

[24] Goolge, “Anatomy & Physiology of an Android - 2008 Google I/O Session Videos

and Slides,” 2008, http://sites.google.com/site/io/anatomy--physiology-of-an-android.

[25] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan, D. Grove, and M.

Hind, “Using hardware performance monitors to understand the behavior of java

applications,” in Proceedings of the 3rd conference on Virtual Machine Research And

Technology Symposium - Volume 3, pp. 5–5, USENIX Association, Berkeley, CA,

USA (2004).

[26] Chien-Wei Chang, Chun-Yu Lin, Chung-Ta King, Yi-Fan Chung, and Shau-Yin

Tseng, “Implementation of JVM tool interface on Dalvik virtual machine,” in 2010

International Symposium on VLSI Design Automation and Test, pp. 143–146, IEEE.

[27] D. Nicolaescu and A. Veidenbaum, “Understanding and comparing the performance

of optimized JVMs,” in Innovative Architecture for Future Generation High-

Performance Processors and Systems, 2005, IEEE.

[28] Oracle, “JVM(TM) Tool Interface 1.0.38,” JVM Tool Interface, 2002, http://download.

oracle.com/javase/1.5.0/docs/guide/jvmti/jvmti.html.

[29] Oracle, “Java SE - Java Platform Debugger Architecture Home,” 2010, http://java.sun.

com/javase/technologies/core/toolsapis/jpda/.

[30] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind, “Vertical profiling:

understanding the behavior of object-priented applications,” SIGPLAN Not. 39,

251–269 (2004).

48

[31] H. Mousa and C. Krintz, “HPS: hybrid profiling support,” in 14th International

Conference on Parallel Architectures and Compilation Techniques, 2005. pp. 38–47,

IEEE.

[32] M. Hauswirth, A. Diwan, P. F. Sweeney, and M. C. Mozer, “Automating vertical

profiling,” 2005, 281, ACM Press.

[33] H. Mousa, K. Doshi, T. Sherwood, and E. Ould-Ahmed-Vall, “VrtProf: Vertical

Profiling for System Virtualization,” in 2010 43rd Hawaii International Conference

on System Sciences, pp. 1–10, IEEE (2010).

[34] H. Mousa, C. Krintz, L. Youseff, and R. Wolski, “VIProf: Vertically Integrated Full-

System Performance Profiler,” in Parallel and Distributed Processing Symposium,

2007. IEEE International, pp. 1–6.

[35] B. Alpern, M. Mergen, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo, J. J.

Barton, S. F. Hummel, et al., “Implementing jalapeño in Java,” 1999, 314–324, ACM

Press.

[36] F. T. Schneider, M. Payer, and T. R. Gross, “Online optimizations driven by hardware

performance monitoring,” in ACM SIGPLAN Notices 42, pp. 373–382, ACM, New

York, NY, USA (2007).

[37] J. Maebe, D. Buytaert, L. Eeckhout, and K. De Bosschere, “Javana: a system for

building customized Java program analysis tools,” Proceedings of the 21st annual

ACM SIGPLAN conference on Object-oriented programming systems, languages, and

applications, 153–168 (2006).

[38] H. Inoue and T. Nakatani, “How a Java VM can get more from a hardware

performance monitor,” SIGPLAN Not. 44, 137–154 (2009).

[39] R. Hyndman, “newtonscradle - Android app to model the physics of Newton‟s Cradle

49

- Google Project Hosting,” 2011, http://code.google.com/p/newtonscradle/.

[40] jserv, “0xbench - Comprehensive Benchmark Suite for Android - Google Project

Hosting,” 2010, http://code.google.com/p/0xbench/.

[41] J. Dongarra, R. Wade, and P. McMahan, “Linpack Benchmark -- Java Version,”

http://www.netlib.org/benchmark/linpackjava/.

[42] R. Pozo and B. Miller, “Java SciMark 2.0,” http://math.nist.gov/scimark2/.

[43] “Dot- Graph Visualization Software,” http://www.graphviz.org/.

[44] “Gprof2Dot - jrfonseca - Convert profiling output to a dot graph. - José Fonseca‟s

utilitities - Google Project Hosting,” http://code.google.com/p/jrfonseca/wiki/

Gprof2Dot.

[45] Google, “dalvik - Code and documentation from Android‟s VM team - Google Project

Hosting,” 2011, http://code.google.com/p/dalvik/.

