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Abstract. In this paper, we characterize complex square matrices which are

expressible as products of partial isometries and orthogonal projections. More

precisely, we show that a matrix T is the product of k partial isometries

(k > 1) if and only if T is a contraction (||r|| < 1) and rank (1 - T*T) <

k • nullity T . It follows, as a corollary, that any n x n singular contraction is

the product of n partial isometries and n is the smallest such number. On the

other hand, T is the product of finitely many orthogonal projections if and only

if T is unitarily equivalent to 1 © 5 , where 5 is a singular strict contraction

(||5|| < 1) . As contrasted to the previous case, the number of factors can be

arbitrarily large.

1. Introduction

An n x n complex matrix T is a partial isometry if ||7x|| = ||x|| for any

vector x in kerx T, the orthogonal complement of the kernel of T in Cn ,

where ||x|| denotes the 2-norm \\x\\ = (J2"=\\x¡\ )'/2 of x = [xl---xn]' in

C" . Examples of partial isometries are (orthogonal) projections (T2 = T - T*)

and unitary matrices (T* — T~ ). In this paper, we will characterize matrices

which are expressible as products of partial isometries and projections.

As we will show below, the situations for these two types of products are

quite different. For the former, we obtain that T is the product of k partial

isometries (A: > 1) if and only if T is a contraction {\\T\\ < 1) and rank

(\ — T*T) < A:-nullity T (Theorem 2.2). This latter condition links our problem

to that of factorization into idempotent matrices (cf. [1]). In particular, it

follows that any nxn singular contraction is the product of n partial isometries

and n is the smallest such number (Corollary 2.4). (Recall that a matrix is

singular if it does not have an inverse.)

Products of partial isometries have also been considered before by Erdelyi

[3]. However his concern is different from ours. He was interested in conditions

under which a product of partial isometries is itself a partial isometry.
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264 K..-H. KUO AND P. Y. WU

As for products of projections, very few seem to be known in the literature.

One exception is the characterization of products of two projections due to

Crimmins (cf. [5, Theorem 8]) which is true even for bounded linear opera-

tors on infinite-dimensional Hubert spaces: T is such a product if and only

if TT*T = T2. In this paper, we characterize products of finitely many pro-

jections. More precisely, we will show that a matrix T is such a product if

and only if T is unitarily equivalent to 1 © S, where 5 is a singular strict

contraction (||5|| < 1) (Theorem 3.1). Note the similarity of this result to that

for partial isometries: T is the product of finitely many partial isometries if

and only if T is unitarily equivalent to U ® S, where U is unitary and S

is a singular contraction (Corollary 2.3). However, there is one big difference

between these two types of products: unlike the partial isometry products, the

number of projections in a product can be arbitrarily large.

2. Partial isometry

We start with the following simple observation.

Lemma 2.1. If T is a partial isometry and U is unitary, then UT and TU are

also partial isometries.

Proof. This follows from the fact that a matrix S is a partial isometry if and

only if SS*S = S (cf. [4, Corollary 3 to Problem 127]). It is also a consequence

of [3, Theorem 1].   ü

The preceding lemma reduces, via the singular-value decomposition, the par-

tial isometry factorization of arbitrary matrices to that of positive semidefinite

ones. In the following, nullity T denotes the dimension of ker T. A matrix

T is idempotent if T = T.

Theorem 2.2. Let T be an n x n matrix and k > 1. Then the following

statements are equivalent:

( 1 ) T is the product of k partial isometries;

(2) || T\\ < 1 and rank( 1 - T" T) < k ■ nullity T ;

(3) j| y || < 1 and (T*T)      is the product of k idempotent matrices.

Proof. (1) => (2). Let T = AXA1 ■ ■ ■ Ak be the product of k partial isometries.

Since the norm of any nonzero partial isometry is one, we have ||r|| < 1. Next

let K = {xeC":T*Tx = x}.We claim that

K - ker   Akr~)Ak~ (ker   Ak_x)

(*) n-.-nV^-it"-^'^^!))---)).

Indeed, if x e K, then T*Tx = x whence ||7jc||2 = (T*Tx,x) = (x,x) =

\\x\\2. For each /' = 1,2,... , k, let Aj+t ■ ■ ■ Akx = yx + y2, where yx e ker^.
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and y2 e ker"1 Aj. Since

= ||rx||2 = M^2---^x||2

= \\Ar--Ajy2\\2<\\y2\\2,

we infer that yx = 0 or, equivalently, x e ^'(^^_i(- • • (A~+i(ker  AyÙ •••))•

This shows that x belongs to the right hand side of (*).   Conversely, if x

belongs to this subspace, then Aj+l ■ ■ ■ Akx € ker  A¡ for each j = 1,2.k .

Hence

WAjAj+\ ■ ■ ■ AkxW = WAj+i ■ ■ ■ AkxW   for each J-

Therefore,   ||rx|| = ||x||.   This implies that  (T*Tx,x) = (x,x)  or ((1 -

T* T)x ,x) = 0.   Since 0 < T*T < 1, we may consider the positive square

root of 1 - T* T and obtain

H(i - r*r)1/2x||2 = ((i - t*t)x,x) = o.

Thus (1 - T*T)i/2x = 0 which implies that (1 - T*T)x = 0 or T*Tx = x.

This proves (*).

To conclude the proof of (1) => (2), let m = nullity 7\ Then rank A, >

n- m for each ;'. It is easily seen that

AkK = ranAk nker   Ak_lnAk_1(keT  Ak_2)

n---nAk-^l(---(A2-l(ker±Al))---).

Hence

dim AT > dim Ak K

> rankAk + dim(ker   Ak_lr\Ak~_l(ker  Ak_2)r\---

nAk-^(---(A2-l(ker±Al))---))-n

> ...

A:

> ^ rankAj-(k- l)n

> k(n - m) - (k - l)n = n - km.

On the other hand, we also have

dimi: = nullity(l -T*T) = n- rank(l - T*T).

Hence rank( 1 - T* T) < km as asserted.

(2) => (1). Let T = UPV be the singular-value decomposition of T, where

U and V are unitary and P = diag(flj , ... ,an) is the diagonal matrix with

the singular values 1 > a{ > ■ ■ ■ > an > 0 of T on its diagonal. By Lemma 2.1,

it suffices to factor P into k partial isometries. Let / = rank( 1 - T* T) and
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266 K.-H. KUO AND P. Y. WU

m = nullity T. In terms of the singular values, this says that a, = • ■ • = an_l =

1> 0 < an_l+i < 1 and a„_m+1 — • • • — an = 0. We only need factor

the Ixl matrix P' = diag(an_/+1 , ... ,an_m ,0, ... ,0). Let l-m = 2ms +1,

where 0 < t < 2m and let r = s or s + 1 depending on whether t = 0 or

t > 0. Then we have P' = PxP2...Pr, where P., j = 1,2, ... ,r, is the

diagonal matrix obtained from P' by retaining aB_/+2,,_ 1)w+1, ... ,an_l+2Jm

and replacing the remaining nonzero diagonal entries by l's. Note that, other

than P., each P, can be written as

A.

i

oy

whose second summand is the product of three partial isometries

/      *■

o/

Xm

y\ (i-yf)1/2

(l-^)'/2
ym (1-^)1/2

V (i-^)'/2 o       )
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I

1

1

oJ
Hence the same is true for each P-,, j = 1, ... , r - 1 , say, P, — JQ-J, where

Qj is a partial isometry and / denotes the matrix

diag(l, ... ,1 , 0, ... ,0).

l—m m

Similar arguments applied to Pr yields that Pr - JQrJ or JQr depending on

whether t > m or < m . In the former case, we have

P' = {JQXJ) ■ ■ ■ (JQr_{J){JQrJ) = JQXJQ2 ■   JQrJ

with 2r + 1 factors. Since / < km, we have (/ - m)/2m < l/2(k - 1). If

k is odd, say, k = 2q + 1, then 5 + t/2m < q whence r — s + I < q and

we have 2r + 1 < 2q + 1 = k as required. If k is even, say k = 2q, then

s + t/2m < q - 1/2 and, since t > m , we have s + 2 < q which implies that

2r + 1 = 2s + 3 < 2<7 - 1 < k - 1 as required. Analogously, for t < m we can

prove that P' is the product of 2r partial isometries and 2r < k .

The equivalence of (2) and (3) follows from the main theorem in [1]. This

completes the proof.   □

Here are some immediate corollaries.

Corollary 2.3. A complex square matrix is the product of finitely many partial

isometries if and only if it is either unitary or a singular contraction.

Corollary 2.4. Any nxn singular contraction is the product of n partial isome-

tries and there are such matrices which are not the product of n - 1 partial

isometries.

Proof. The assertions follow from Theorem 2.2 and from considering matrices

of the form diag(a. ., ,0), where |a(.| < 1 for i = 1, ... ,n - 1. D

We remark in passing that on an infinite-dimensional Hubert space, every

contraction is the product of two partial isometries. More precisely, a contrac-

tion T can be factored as S*52, where S, and S2 are unilateral shifts with

infinite multiplicity (cf. [2]).

3. Projection

The main result of this section is the following characterization of products

of projections.
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268 K..-H. KUO AND P. Y. WU

Theorem 3.1. An nxn matrix T is the product of finitely many projections if

and only if T is unitarily equivalent to 1©S, where S is singular with \\S\\ < 1.

Moreover, for each n>2, the number of projections in such a factorization can

be arbitrarily large.

Proof of necessity. Assume that T = PxP2...Pm, where P 's are projections.

Then T is a contraction and the subspace K = {x: Tx = x} reduces T (cf.

[6, p. 8]). Let T = 1 © S with respect to the decomposition K © K . Note

that if x is any vector satisfying \\Tx\\ = ||x||, then x must be in K. Indeed,

from

M-v-M — II7VII — || P p ... p  y\\ < IIP • • • P  x\\ < - - ■ < IIP  rll < llrllIIa II       ll-*All       II M-"2 m    H — Il   2 mx" — — H   m    H — H    H

we infer that

IIP P • • ■ P xll = IIP ■■■ P x\\ = ■ ■ ■ = IIP xll = llxll11*1*2       rmxW       Wr2       rmxn Wrmx»      \\XW-

The last equality \\Pmx\\ = ||x|| implies that Pmx = x . Then from ||Pm_i-Pm-*||

= ||x|| we have ||Pm_1x|| = ||x|| which implies that Pm_lx = x. Arguing

successively, we obtain that P,x = x for all j whence Tx = PXP2- ■■ Pmx = x

as asserted.  Note that if ||5|| = 1, then there exists a unit vector x in K

such that 11 Sx 11 = ||7x|| = 1. From above we have x e K. This together with

x e K    implies that x = 0, a contradiction. Thus we must have ||S|| < 1.

That S is singular is trivial.   D

To prove the sufficiency, we start with the following two elementary lemmas

whose proofs we omit.

Lemma 3.2. ( 1 ) For any real 6 and a,

pin    \- (       cos 0 sinö cos öe'Q\
^•a>~ Unöcosöe-'* sin20      )

is the projection onto the subspace of C   generated by

( coséte"*\
V   sin 6   ) '

(2) Any 2x2 projection with rank 1 is of the form P(6 , a) for some 6 and

a.

Lemma 3.3. (1) For any 0 < 6 < \n, (cos(d/n))n is strictly increasing with

limit 1 as n approaches infinity.

(2) n"=i Icos 0j\ ^ (cos(7r/2n))'1 for any real 0, , ... , 8n satisfying Z)/ i ®¡

= \n.

Our next lemma is an easy observation. It holds even for operators on infinite-

dimensional spaces.
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Lemma 3.4. If T - PlP2...Pm is the product of m (> 2) projections, then

T — QP2-PmlR, where Q and R are the projections onto the subspaces

ran T and kerx T, respectively.

Proof. Since T - PlP2...Pm implies that ranT C ranP, and ker T C

ranPm , we have QPX = Q and PmR = R. Thus T = QTR = QPXP2 ■■ PmR =
QP2 ■ ■ ■ Pm_1R as asserted.   D

The next result is, in nature, a two-dimensional one. It is the main step

toward our sufficiency proof and may have some independent interest.

Lemma 3.5. Let x and y be vectors in C". Then a necessary and sufficient

condition that x = Pl---Pmy for some projections P{, ... ,Pm is that either

x — y or \\x\\ < ||y ||. Moreover, in this case, the P 's may be chosen to fix all

the vectors which are orthogonal to a fixed two-dimensional subspace containing

x and y .

Proof. If x — Px-Pmy and ||x|| = ||y||, then, as proved in the necessity part

of Theorem 3.1, x = y. To prove the converse, let x and y be such that

||x|| < ||y||. By restricting to a fixed two-dimensional subspace containing x

and y, changing the scale and rotating this subspace appropriately, we may

assume that x = (ab) with 0<|a|2 + |e|2<l and y = (°). We consider the

following four cases successively:
1 1

(1) |a|  + \b\   = b . In this case, x = Py , where

(2) |a|2 + |¿>|2 < b. Let P be the projection from C onto the subspace

generated by x, let s and t be a pair of positive solutions of the equations

s2 + t2 = t and (s - \a\)\a\ + (t - b)b = 0, and let c = sa/\a\ if a ¿ 0

and í if a = 0, and d = t. Then it is easily seen that x = P (cd). Since

|c|2 + \d\2 = d, (1) yields that (cd) = P'y for some projection P'. Hence

x = PP'y as required.

(3) |a|2 + |¿|2 > b > 0.   Let r = (\a\2 + \b\2){/2 and 6 = tan-1 j|.   By

Lemma 3.3(1), there exists an integer /V such that r(sec(l/Ar)(j7r - 8))   < 1 .

Let r\ = {\IN)(\n-0) and 6j = 8 + {j-\)n for / = 1,2.N. Let a0 = a,

b0- b , and, for j = 1,2,... , N, let

/-i a-,
ai = r(secn)     cosf?.:--*—:

J J\Cj-\\

and

bj - r(secn)J~ sino..

Note that a, = a and ¿?, = b. Let P = P(6 , arga._,) be the projection

onto the subspace generated by (cos 0y r^jj sin 0.)', j = 1,2 , ... ,N — 1, or,
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270 K..-H. KUO AND P. Y. WU

equivalently, by (%) . It is easily seen that (a¿) = Pj(abJ+\) for ; = 1,2 , ... , N-

1 . Hence we have x = P,P2 • • • PN_l(abNN) . Since

(\aN\2 + \bN\2)1'2 = r(sec *)*"' < cos n = sin 6N = bN/(\aN\2 + \bN\2f2,

that is, \aN\  +\bN\   < bN , it follows from (2) that there exist projections P

and P' such that
' a -PPy
b.
')
N /

whence x = P,... PN  XPP y .

(4)  b  is not a nonnegative real number.   As in (3), let N be such that

r{sec(6/N))N

< 1, where r = (|a|2 + |6|2)1/2 and 0 = tan-1||. Let n = 6/N and

0 = 0 - (j - l)r¡ for j = I ,2, ... ,N + I. Let a0 = a, bQ = b, and, for

j = 1 ,2, ... , TV + 1, let

a. — r(secrç)     cos0;
a.-

-«/-ml

and

bj - r(secn)J~ sindj ,J~   .

As before, let P = P(0., arg a_, - argè _,) be the projection onto the sub-

space generated by (cosfl.ft"'^"''  sin0,Y,   /' = 1,2,... ,JV, or, equiva-
J \aj- 1 I   8>— 1 J

lently, by (£7). It is easily seen that ax= a, bx = b, aN+x = r(secn)   rfjjj,

¿JV+1 = 0 and  $) = P,(^+,J  for / = 1 ,2, ... ,N.   Hence we have x =

PA>-*AZ+:)- Since O2+l^+1l2 = '-2(sec^>0, (%:\) = Qr--Qmy
for some projections g, , ... , gm by (3). We conclude that x = P, • • • PNQX

■ ■ ■ Qmy as asserted,   o

The next lemma says that in the factorization of 2 x 2 matrices, the number

of projection factors may be arbitrarily large.

Lemma 3.6. For any m > 2, let

S   „(O   (cos&n

Then Sm is the product of at least m + 1 projections.

Proof. For ;' = 1,2.m + 1, let 0. = (; - \)n/2m , and P} = P(6j , 0).

Since P, = (¿ °) and Pm+1 = (g °), a little computation yields that

pp      p      .(0   n;=1cos(0;+1-0;)\_/O    (cos^r\_

To prove the minimality of m + 1 , assume that Sm = QXQ2- ■ Qk+X, where

k < m  and the  ß 's are projections  /  1.   By Lemma 3.4, we may take
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Qx = (¿ °) and Qk+X = (o i) • Since each Q}, j = 2 , ... , k , is of the form

P(0 -, aß for some —\n<6,<\n and a , carrying out the multiplications in

Sm = g,g2 • • • Qk+X and taking the absolute values of the resulting quantities

we obtain [cos(7i/2m))m < Y\kJ=x | cos rç .|, where ». = 0 +1 - 0. if 0. and 0 +1

are in the same quadrant and 0.+ 1 + 0; otherwise, and 0, = 0, 0fc+1 = \it.

Since cosx is an even function of x, we may suitably add a "+" or " - " sign

in front of each ». such that their algebraic sum equals f . Thus Lemma 3.3(2)

is applicable and we infer that the right hand side of the above inequality is no

greater than [cos{n/2k))k . It follows that (cos{n/2m))m < (cos(n/2k))k . This

contradicts Lemma 3.3(1) since k< m . The proof is complete.   D

Proof of Sufficiency in Theorem 3.1. Assume that S is a singular strict contrac-

tion. Let S = AB be its polar decomposition, where A is a partial isometry

and B — (S*S)l/2 is positive semidefinite with tsltulA - rankP = rankS (cf.

[4, Problem 134]), and let a be a positive number satisfying ||S|| < a < 1.

Since S = (aA)(^B) and both aA and ¿P are singular strict contractions, to

complete the proof we need only decompose these two factors into projections.

We first consider aA. Let A = (j'J) with respect to the decomposition

ran A* ©ker A . We may assume that Ax is lower triangular. Next express a A

in column vectors as aA - (ax ■ ■ ■ ak 0• • • 0), where k = rank/4*. Since A is

a partial isometry, a. 's are mutually orthogonal with norms less than 1. For

;' = 1,2,..., k, let

e, = (0-010 -0)'.
1 y'th

Since ex and ax are both orthogonal to a2, ... ,ak and ||a, || < 1 = \\ex ||, by

Lemma 3.5 we may transform ex to ax by a sequence of projections P, , ... ,Pn

while preserving a2, ... ,ak, that is, aA = Px-Pn(ex a2- ■ ak 0 • • ■ 0). Re-

peating the argument, since e2 and a2 are orthogonal to ex , a3, ... , ak , there

are projections Pn+1, ... ,P„2 such that (<?, a2-ak 0---0) = P„1 + 1--P„2

(ex e2 a3 ■ ■ ■ ak 0 • • • 0). In k steps, we obtain that aA = P, • • • P {ex ■ ■ ■ ek 0 • ■ • 0)

as a product of nk + 1 projections.

The factorization of (\/a)B is even easier. Assuming that ¿P is diago-

nal, we may proceed as before since the column vectors of ¿P are mutually

orthogonal. This proves the factorization of S .

To prove the assertion for the number of factors, let Tm = In2 © Sm , where

In_2 denotes the identity matrix of size n - 2 and Sm (m > 2) is the 2 x

2 matrix as in Lemma 3.6. If Tm = P1P2---^+i is the product of k + 1

projections, then, by Lemma 3.4, we may assume that Pk+X = In_2 © (J,).

Let e¡ = (0-0 1 0 •0)' be the ith column of Tm and also of Pk+X, i =

1,2.n - 2.   From Tm = PXP2 ■■■ Pk+X , we have ei = PXP2     Pke¡.  An

argument as in the proof of the necessity part yields that Pjei = e¡ for all i

and j.  Hence P = In_2 © P' for some 2x2 projection P', and we have
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Sm = P[P2 ■ ■ -Pk+X ■  It follows from Lemma 3.6 that k > m completing the

proof.   D
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