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用於物體追蹤的加速度計星群 

學生：蔡文添 

 

指導教授：黃俊龍 

易志偉 

 

國立交通大學資訊學院產業研發碩士班 

    摘 要       

在多數的慣性追蹤系統中，物體旋轉角度通常都是由陀螺儀或是磁力計所測量得

來，在這篇論文中，我們提出一個新的物體移動軌跡追蹤系統，稱作加速度計星群，主要

是純用多顆加速度計來做物體的追蹤，並不需要使用陀螺儀或是磁力計來做角度的測量。

我們所提出的加速度星群技術除了可以用在導航的輔助外、車禍的分析或是新的人機介面

也都是我們可以應用的範圍。 
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ABSTRACT 

In most inertial tracking systems, motion directions are measured by gyroscopes and/or 

magnetometers. In this work, we propose a new tracking system, called g-sensor 

constellations, that is composed of only accelerometers. Gyroscopes and magnetometers 

are not necessary to detect the change of motion directions. The proposed technique can be 

used to improve the accuracy of dead reckoning systems, help the analyzing of traffic 

accidents, and develop new human-computer interfaces. A g-sensor constellation that is 

composed of three accelerometers is built to verify the proposed technique. 
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Chapter 1

Introduction

The Micro-Electro-Mechanical System (MEMS) is a popular technique which allows both

electronic circuits and mechanical devices to be manufactured on a silicon chip. MEMS

promises to revolutionize nearly every product category by bringing together silicon-based

microelectronics and makes possible the realization of complete systems-on-a-chip. Due

to MEMS technique is not only more and more practice but also it has advantages of low

cost and small size. New applications are emerging as the existing technology is applied

to the miniaturization and integration of conventional devices. Examples of MEMS de-

vice applications include gyroscopes, accelerometers, press sensors, DLP and wireless RF

sensors. In recently years it is even applied on bioengineering, technique of memory and

game platforms.

MEMS-based inertial measurement units (IMUs) sensors are now becoming pervasive.

Inertial measurement units are usually composed of an accelerometer, a gyroscope, and

a magnetometer. The accelerometer can measure the acceleration, the gyroscope can

measure the rotation speed, and the magnetometer can give the orientation. Through

accelerometers the distance of motion can be got by integrating acceleration, the rotation

and orientation of motion also can get through gyroscopes or magnetometers.

Inertial measurement units (IMUs) are widely used in various applications. In [1], a

triaxial accelerometer was used to monitor human movements and postures. The tech-

nique can be used for tracking patients in hospitals or detecting the falls of elders. In [2],

IMUs were used for detecting personal activity, and then small-scale location information

was revealed by comparing with a pre-built knowledge database. That is useful to improve

the accuracy of GPSs. In [3], accelerometer-based estimators for pedestrian step lengths
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were developed. However, positions and motion trajectory were not studied. In [4], [5],

and [6], authors used IMUs to implement pedometers to calculate step lengths, walking

distances and velocities, but there was a gyroscope in their IMUs to detect motion di-

rections. In [7], a position tracing system for human movements are developed. In the

system, accelerometers and magnetometers were used, but the accuracy was dropping as

metals or electronic devices around. Besides these, IMUs or inertial sensors still have a

lot of other applications, including

• Electronic products: On game controllers it can get the player’s movement or motion

of hand for controlling operation of games. It also can apply for pedometers by

gathering information from IMUs.

• Vehicular applications: Car alarms can use it to detect open of a car door and

turn on an alarm when a door is opened. Besides on rollover protection or airbag

activation it can be detected by IMUs and adopt some protections when a car occurs

an accident.

• Geographic applications: On motion tracking the accelerometer can be used to

calculate the distance of an object and the gyroscope or magnetometer can be used

to calculate the rotation or orientation of an object. On earthquake monitoring is

also useful for using IMUs.

• Others: some notebooks will integrate 3D g-sensor for HDD protection, it can au-

tomatic lock the HDD for protecting the data loss when g-sensor detects the fall of

notebooks.

Although IMUs can be used on a lot scopes, most and popular applications are used

on navigation system, called Inertial Navigation Systems. These INSs compose of ac-

celerometers and gyroscopes and/or magnetometers. Inertial Navigation Systems com-

bine with GPS for position and attitude determination are widely. They provide many

complimentary characteristics that overcome the limitations experienced when using them

individually. The integration of GPS and INS is always achieved using a Kalman filter

for example [8] [9] [10]. An inertial navigation system includes at least a computer and

a platform or module containing accelerometers, gyroscopes, or other motion-sensing de-

vices. They are in general very expensive because they demand precision requirements,
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high computational efforts, and last but not least sufficient reliability under harsh envi-

ronmental conditions.

Most IMUs are composed of accelerometers, gyroscopes, and magnetometers. In the

past, IMU-based object tracking techniques need gyroscopes and/or magnetometers to

detect the change in motion directions or simply the motion directions. However, the

price of IMUs is relatively high for some daily applications. In addition, magnetometers

are interfered by other electronic devices.

In this work, we propose a pure accelerometer-based solution, called g-sensor constella-

tions. A g-sensor constellation is a collection of accelerometers that has a rigid geometric

topology and can be used for object tracking in the 3D space. Due to no need for the

help of magnetometers, the interference caused by electronic devices is avoided and gyro-

free which is cheaper than gyro-based IMUs. We apply extrapolation methods and least

square methods (LSM) to track the locations of sensors. First, we apply the extrapolation

method to get an estimation of sensor positions, and then the topology information of the

constellation is utilized to calibrate positions by the LSM. Later, the LSM outcomes are

applied to correct accumulation error of velocities and used in the next iteration. Besides

the displacement, the rotation information is also obtained.

Whether accelerometers have high accuracy, the acceleration value of three axes still

has slight vibration even sensors at static state. This small and slight value will increase

error of displacement or velocity and become bigger over the time when we use integra-

tion to get this information. In this work a method can reduce the error by using the

characteristic of fixed graph and LSM. The g-sensor constellation system can use the rigid

geometric topology to calculate the distance and the rotation of an object with extrapo-

lation, LSM and transformation matrix based on coordination and vector methods. The

error can be corrected when an object is static or moving dynamic. The motion of straight

line or curved line even 3D also can be tracked.

The rest of this thesis is organized as follows. Chapter 2 will describe the related work

in recently years including how they to do, what differences with our work. In chapter

3 some preliminary proofs will also describe here. Chapter 4 the main approach will

be described including the g-sensor constellation architecture, sensors alignment and the

object tracking algorithm. The extrapolation and LSM will be described in this chapter.

The experimental condition and devices will be introduced in chapter 5. The result of
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experiment also will be described. Chapter 6 is our conclusion for g-sensor constellations

system and what performance we achieve what problems we observe.
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Chapter 2

Preliminaries-Rotation Matrix

In this chapter three rotation matrixes will be described after we use them. In first section

we will show how a unit quaternion is used to represent a rotation of a vector in 3D space.

In second section rotation in 3 dimensional space by a unit vector will be introduced.

Finally we will describe a matrix expression for any frame given its Euler angles. Using

the Z − Y −X convention, a matrix can be constructed that transforms every vector of

the given reference frame in the corresponding vector of the referred frame. Before we

start to introduce those rotation methods, some rules will be describes. The lowercase

letters (ex. u) are marked bold to represent a vector and the uppercase letters (ex. M ,

T ) are marked italic to represent the matrix. Other lowercase letters represent a variable

or an element.

2.1 Unit Quaternion Representation of Rotation

Quaternions were first defined by W.R. Hamilton in the 1800’s. Quaternions can be used

in describing rotations in 3 dimensional real vector space. First we will define properties

and operations of quaternions, and then show the relationships with the rotation matrix.

Using complex number notation, a quaternion q can be represented by the following :

q̂ = q0 + qx + qy + qz

where q, qx, qy and qz are real numbers. The basic of the imaginary components i, j and
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k have the following properties :

i2 = −1, j2 = −1, k2 = −1

ij = k, jk = i, ki = j

ji = −k, kj = −i, ik = −j.

If r̂ = r0 + irx + jry + krz, quaternion multiplication becomes

r̂q̂ = (r0q0 − rxqx − ryqy − rzqz) + i(r0qx + rxq0 + ryqz − rzqy)

+ j(r0qy − rxqz + ryq0 + rzqx) + k(r0qz + rxqy − ryqx + rzq0).

It can be easily verified that the multiplication operation is not commutative.

The conjugate of q has the same real part with negated imaginary part , q̂∗ = q0 −
iqx − jqy − kqz. The conjugate of a product of two quaternions (q̂r̂)∗ is r̂∗q̂∗. The dot

product of two quaternions is the sum of products of corresponding components.

p̂ · q̂ = p̂0q̂0 + p̂xq̂x + p̂y q̂y + p̂z q̂z =
(p̂q̂∗ + q̂p̂∗)

2

It is obvious that the dot product is a real number. The square of magnitude of a

quaternion is the dot product of the quaternion with itself.

|q̂|2 = q̂ · q̂ = q̂q̂∗ = q̂∗q̂

A multiplicative inverse of a nonzero quaternion is

q̂−1 = (
1

q̂ · q̂ )q̂∗

A vector in 3D space t = (tx ty tz)
T can be represented by a purely imaginary quater-

nion

t̂ = 0 + itx + jty + ktz.

We will denote t = t̂, if the corresponding components are the same between a 3D

vector and a pure imaginary quaternion. Let s be vector in 3D space, and ŝ be its pure

imaginary representation; then we can verify the following properties, which will be used

in the following proofs.

s · t = ŝ · t̂ =
(ŝt̂∗ + t̂ŝ∗)

2

s× t =
(ŝt̂− t̂ŝ)

2
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We will the claim that t̂′ = r̂t̂r̂∗ is a rotation operation when t̂ is a pure imaginary

quaternion equivalent to a 3D vector t, and r̂ is a unit quaternion. The inverse mapping

is r̂∗t̂′r̂ and the mapping is bijective. First it will be shown that t̂′ is pure imaginary by

checking if t̂′ + t̂′
∗

= 0.

t̂′ + t̂′
∗

= r̂t̂r̂∗ + (r̂t̂r̂∗)∗ = r̂t̂r̂∗ + r̂t̂∗r̂∗

= r̂(t̂ + t̂∗)r̂∗ = 0

from the fact that t is pure imaginary.

The rotation operation must preserve the dot product.

s′ · t′ = (ŝ′t̂′
∗
+ t̂′ŝ′

∗
)

2

=

[
r̂ŝr̂∗(r̂t̂r̂∗)∗ + r̂t̂r̂∗(r̂ŝr̂∗)∗

]

2

=

[
r̂ŝ(r̂∗r̂)t̂r̂∗ + r̂t̂(r̂∗r̂)ŝr̂∗

]

2

= (
r̂ŝt̂∗r̂∗ + r̂t̂ŝ∗r̂∗

2
) = r̂(

ŝt̂∗ + t̂ŝ∗

2
)r̂∗

= r̂(ŝ · t̂)r̂∗ = (ŝ · t̂)(r̂r̂∗) = (ŝ · t̂) = s · t

Here we use the fact the dot product ŝ · t̂ is a real number, and the product of a real

number with quaternion is commutative. It is a special case of the above that t̂ · t̂ is the

same as t · t, which means the length of a vector is invariant after the rotation.

If t is taken from t rotated by an angle θ around the u = (ux, uy, uz) axis is a unit

vector, then we represent a unit quaternion r̂ = r0 + irx + jry + krz in the following form

cos(
θ

2
) + sin(

θ

2
)u

,where r0 = cos( θ
2
),

[
rx ry rz

]T

= sin( θ
2
)
[

ux uy uz

]T

then r̂t̂r̂∗ reduce to follow-

ing equation. A component by component equation for t̂′ = r̂t̂r̂∗ with matrix notation

becomes



t′x

t′y

t′z


 =




(r2
0 + r2

x − r2
y − r2

z) (−2r0rz + 2rxry) (2r0ry + 2rxrz)

(2r0rx + 2rxry) (r2
0 − r2

x + r2
y − r2

z) (−2r0rx + 2ryrz)

(−2r0ry + 2rxrz) (2r0rx + 2ryrz) (r2
0 − r2

x − r2
y + r2

z)







tx

ty

tz


 (2.1)

The more detail description can obtain from [11].
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θ

u

Figure 2.1: Rotation about an arbitrary unit vector u(ux, uy, uz) by an angle θ.

2.2 Rotation Matrix by a Unit Vector

Let a unit vector u = (ux, uy, uz), where u2
x + u2

y + u2
z = 1, the transformation matrix M

for a counterclockwise rotation by an angle of θ about an axis the direction of u showed

as Figure 2.1. We can get r0 = cos( θ
2
),

[
rx ry rz

]T

= sin( θ
2
)
[

ux uy uz

]T

and

substitute to Eq. 2.1, which will use following proof :

sin2 θ

2
=

1− cos θ

2
, cos2 θ

2
=

1 + cos θ

2

sin θ = 2 sin
θ

2
cos

θ

2




(r2
0 + r2

x − r2
y − r2

z) (−2r0rz + 2rxry) (2r0ry + 2rxrz)

(2r0rx + 2rxry) (r2
0 − r2

x + r2
y − r2

z) (−2r0rx + 2ryrz)

(−2r0ry + 2rxrz) (2r0rx + 2ryrz) (r2
0 − r2

x − r2
y + r2

z)




=




1+cos θ
2

+ (1−cos θ
2

)(2u2
x − 1) (− sin θ)uz + 2(1−cos θ

2
)uxuy sin θuy + 2(1−cos θ

2
)uxuz

sin θux + 2(1−cos θ
2

)uxuy
1+cos θ

2
+ (1−cos θ

2
)(2u2

y − 1) (− sin θ)ux + 2(1−cos θ
2

)uyuz

(− sin θ)uy + 2(1−cos θ
2

)uxuz sin θux + 2(1−cos θ
2

)uyuz
1+cos θ

2
+ (1−cos θ

2
)(2u2

z − 1)




=




cos θ + (1− cos θ)u2
x (− sin θ)uz + (1− cos θ)uxuy sin θuy + (1− cos θ)uxuz

sin θux + (1− cos θ)uxuy cos θ + (1− cos θ)u2
y (− sin θ)ux + (1− cos θ)uyuz

(− sin θ)uy + (1− cos θ)uxuz sin θux + (1− cos θ)uyuz cos θ + (1− cos θ)u2
z




It can also be proofed from [12].

Theorem 1 Rotation about an arbitrary unit vector u (ux, uy, uz) by an angle θ is given

by a matrix

8



M(u, θ) =




c + (1− c)u2
x (1− c)uxuy − (s)uz (1− c)uxuz + (s)uy

(1− c)uyyx + (s)uz c + (1− c)u2
y (1− c)uyuz − (s)ux

(1− c)uzux − (s)uy (1− c)uzuy + (s)ux c + (1− c)u2
z


 (2.2)

,where c = cos θ, s = sin θ

2.3 Rotation Matrix by Yaw Pitch Roll(ZYX)

Roll  (α)

Yaw (γ)

Pitch  (β)

X

Z

Y

Figure 2.2: Yaw-Pitch-Roll.

As Figure 2.2 we define the Euler angles for our system. Yaw, pitch and roll are

counterclockwise by Z, Y and X axis.

Considering three basic rotation matrices are in three dimensions. These matrices

represent counterclockwise rotations of an object relative to fixed coordinate axes, by an

angle of α, β, γ around the X, Y and Z axes, respectively. The direction of the rotation

is determined by the right-hand rule: Rx rotates the Y -axis towards the Z-axis, Ry

rotates the Z-axis towards the X-axis, and Rz rotates the X-axis towards the Y -axis.

The transpose of the above matrices represents positive (right-hand sense) rotation of

the coordinate axes relative to a fixed object. As Figure 2.3 (a) (b) (c) we can get the

Yaw-Pitch-Roll (Z − Y − Z) transform matrix. From Eq. 2.2, the matrix of Rx(α)

describes rotation about an arbitrary unit vector (1, 0, 0) by an angle α. The matrix of

Ry(β) describes rotation about an arbitrary unit vector (0, 1, 0) by an angle β and Rz(γ)

describes rotation about an arbitrary unit vector (0, 0, 1) by an angle γ. Then we can get
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( c )  ( b )  ( a )  

γ 
X  

Y  β 
X  

Z  α 
Y  

Z  

V V V

VRz(γ)‧ VRy(β)‧ VRx(α)‧
Figure 2.3: Rotation by X, Y, Z axis.

the following equations (those equations can also be proofed in [13]):

Rx(α) =




1 0 0

0 cos α − sin α

0 sin α cos α


 , Ry(β) =




cos β 0 sin β

0 1 0

− sin β 0 cos β


 ,

Rz(γ) =




cos γ − sin γ 0

sin γ cos γ 0

0 0 1




The product T = Rx(α) · Ry(β) · Rz(γ) represents a rotation matrix whose Yaw, Pitch,

and Roll are γ, β, and α (using the Z − Y −X convention for Euler angles).

Theorem 2 Rotation by Yaw-Pitch-Roll(Z − Y −X axes)

T =




c1c2 −c2s1 s2

c3s1 + c1s2s3 c1c3 − s1s2s3 −c2s3

s1s3 − c1c3s2 c3s1s2 + c1s3 c2c3




,where c1 = cos γ, c2 = cos β, c3 = cos α and s1 = sin γ, s2 = sin β, s3 = sin α
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Chapter 3

Related Works

In this chapter, we will introduce some tracking systems with IMUs. Related works are

about tracking or motion by accelerometers, gyroscopes and magnetometer. Finally the

six linear accelerometer system will be introduced. It describes a tracking system which

composes of six linear accelerometers without any gyroscope or magnetometer. It designs

one accelerometer at the center of face of a cube and the sensing axis of each accelerometer

is along the respective cube face diagonal.

The research for tracking, motion and navigation system is currently carried out in

many laboratories with using of accelerometers, gyroscopes and magnetometers. This is

the basic idea for tracking and navigation by using accelerometers, gyroscopes and mag-

netometers. They usually use accelerometers to get acceleration of objects and integrate

the acceleration to calculate the moving distance. Gyroscopes and magnetometers are

usually used to calculate the rotation or change of orientation.

3.1 Accelerometer + Gyroscope

In [14], it represented a simplified strapped down system for navigation. A strapped down

navigation system comprised of gyroscopes and accelerometers without magnetometers.

They could be mounted on body or vehicle. Gyroscopes provided attitude angle and an-

gular rate signals along three axes. Accelerometers meant provide signals representative

of the acceleration along three independent axes. First transformation matrix connected

to the attitude angle output of the gyroscopes to accelerometers transforms the gyroscope

and the accelerometer signals from body coordinates to gyroscope coordinates. Second
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transformation matrix connected to the output of the gyros, transforms the gyro coor-

dinates into navigation coordinates. The algorithm flow is shown as Figure 3.1. It is a

simplified and basic system for tracking or motion. Because of gyroscopes had expensive

price and error increased with double integration by the time. Attitude determination

systems that used inexpensive sensors had been discussed.

Gyroscopes
(Captured)

Accelerometers

Transformation 
to gyro coor.

Transformation 
to inertial coor.

Torquing Rates(ω)

Gravitational
acceleration Inertial velocity

Inertial position

Figure 3.1: A simplified strapped down system [From ”Simplified strapped down inertial

navigation utilizing bang-bang gyro torquing”].

3.2 Accelerometer + Magnetometer

In [15], it replaced expensive gyroscopes with magnetometers. This IMU composed of

accelerometers and magnetometer. It used the earth’s magnetic field and gravity as

the two measured quantities, a low-cost attitude determination system is proposed. It

used the magnetic field vector and the acceleration, a unique plane containing the two

vectors can be defined, and if the components of those two vectors can be measured in

two non-aligned coordinate frames, then the rotation needed to align the two coordinate

frames can be determined. In [16], the author also used a tri-accelerometer and a tri-

magnetometer to determine the orientation of a static or slow-moving rigid body. It

presented a geometrically intuitive 3-degree-of-freedom (3-DOF) orientation estimation

algorithm with physical meaning which is called the factored quaternion algorithm (FQA).

It is defined orientation by rotating it about its z-axis by an angle ψ (azimuth or yaw

rotation), then about its y-axis by angle θ (elevation or pitch rotation), and finally about
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its x-axis by angle ϕ (bank or roll rotation). The elevation and roll rotation are determined

from accelerometers. The azimuth rotation is determined from magnetometers. The value

of ax, ay, az is from a tri-accelerometer. And the value of bmx,
bmy,

bmz is from a tri-

magnetometer in body coordinate system. The emx,
emy,

emz are magnetic vector in

Earth coordinate system. The initial magnetic vector is
[

nx ny nz

]T

.

Elevation Quaternion :

qe = cos
θ

2
(1 0 0 0) + sin

θ

2
(0 0 1 0)

sin θ =
ax

g
, cos θ =

√
1− sin2 θ

Roll Quaternion :

qr = cos
ϕ

2
(1 0 0 0) + sin

ϕ

2
(0 1 0 0)

sin ϕ =
−ay

g cos θ
, cos ϕ =

−az

g cos θ

Azimuth Quaternion :

qa = cos
ψ

2
(1 0 0 0) + sin

ψ

2
(0 0 0 1)

em = qe qr
bm q−1

r q−1
e ,


 nx

ny


 =


 cos ψ − sin ψ

sin ψ cos ψ







emx

emy




Having obtained all three rotation quaternion, the quaternion estimates representing the

orientation of rigid body is finally given by

q̂ = qa qe qr

Although they are cheaper than the gyroscope, the magnetometer is easily interfered by

other electronic device. When a ferrous object is close to those systems, they will get

bigger noise and lost their accuracy.

3.3 Accelerometer + Gyroscope + Magnetometer

In order to improve the accuracy or reduce the error of orientation, much research had

focused on using IMUs system that composed of accelerometers, gyroscopes and magne-

tometer. They not only used gyroscopes to calculate orientation but also magnetometers

had been used to enhance accuracy and reduce error. In [7], it described a self-contained
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method for relative position tracking of a human engaged in various types of motion in-

volving discrete steps. This method is based on the use of the inertial and magnetometer

sensor module attached to the foot. This modules contained three orthogonally mounted

angular rate sensors, three orthogonal linear accelerometers and three orthogonal magne-

tometers. In generally, the output of an accelerometer will be integrated twice to obtain

displacement information. However it is susceptible to drift errors. A drift correction can

be applied to the accelerometer with double integration method so that the final estimated

velocity should be zero when a foot instant contacts with the ground. These inertial and

magnetic sensor modules are primarily designed for tracking orientation. Although this

system is high accuracy, it is not cheap and also is easily interfered by electronic devices.

3.4 IMU + Kalman filter

Not only using multi kinds of sensors but also applying Kalman filter to improve accuracy

or reduce drift error on IMUs system. The Kalman filter is the most widely used state

estimator for tracking applications. The filter is the general solution to the recursive linear

minimum mean square estimation problem. In [17], it used two different adaptive Kalman

filter. Each individual process noise covariance value will provide optimum estimates of

the target’s states only when underlying model, which is represented by that specific

process noise covariance, is correct. For example a low level process noise covariance will

match the target dynamics during an almost straight line motion period but fail to track

when the target moves into a turn manoeuvre. The first filter is adjusted at each time

step according to the estimated turn rate. The turning rate is estimated from acceleration

divided by the estimated speed of target. Second uses a scale filter which is estimated

from the available data of sensors reading. The first algorithm exploits the idea ”the

choice of the process covariance level must be made according to the expected turn rate”

and utilizes an empirical turn rate-process noise covariance level curve. And the second

algorithm introduces a scale factor which represents the current magnitude of process

noise, i.e., target unpredictability, at time t as estimated from the available data. But a

proper Kalman filter is complex and hard to design.
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2ρ

zb
yb

xbOb
(a)

OI
P ωωωω

ObR

r

ρ

->

->

->

(b)

Figure 3.2: Six linear accelerometer system [From ”Gyroscope free Strapdown inertial

measurement unit by six linear accelerometers”].

3.5 Six Linear Accelerometers

Gyroscopes are not inexpensive and magnetometers are easily interfered by other elec-

tronic devices. In 1994 Jeng-Heng [18] presented a method to determine the kinematics of

a rigid body by using only linear accelerometers. In their work, six linear accelerometers

are used for a complete description of a rigid body motion. They design one accelerometer

at the center of each face of a cube and the sensing axis of each accelerometer is along

the diagonal of respective cube face, shows as Figure 3.2 (a). The line of cube side is 2ρ

and xb, yb, zb are body frame of cube. Ob is the center of this cube. Figure 3.2 (b) shows

relation of the inertial frame(OI) and a rotating moving frame (Ob). The
−→
R = −→r + −→ρ

then the accelerometer of point P can be calculated by double integration
−→
R . S and T

are 3× 6 matrices After calculating, the formula will be produced :


 ∂−→ω

∂−→v


 =

1

2


 S/ρ

T


 A + ρ




0

0

0

ωyωz

ωxωz

ωxωy



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,where A is the acceleration from accelerometers, ∂−→ω is the angular acceleration, the ω

is the angular velocity by integrating ∂−→ω , ∂−→v is inertial acceleration.

S =
1√
2




1 −1 0 0 1 −1

−1 0 1 −1 0 −1

0 1 −1 −1 1 0


 , T =

1√
2




1 1 0 0 −1 −1

1 0 1 −1 0 1

0 1 1 1 1 0




Although this system only uses accelerometer, it needs six accelerometer, fixed graph

and fixed direction when installs the accelerometer. Because of the high accurate at the

installing position is difficult, it needs to lathe to reach this request If the direction of

accelerometer does not aligned, it will cause error. The major request is high accuracy

for those accelerometers.

Some related works usually use gyroscopes or magnetometers to calculate change of

orientation and accelerometer to get distance information. But they have the problem of

expensive price and easily are influenced by electric/ferrous devices. Although the system

of six linear accelerometers can also use pure accelerometers to tracking objects, it is hard

to design and lathe is needed. In this work the g-sensor constellation system not only

considers the price and is influenced by other device but also considers the sensor error

itself. The pure accelerometers can reduce the cost and does not be influence by electric

devices. And the LSM is a method to correct the error itself in this rigid graph system.
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Chapter 4

Sensor Calibration

After each sensor leaves the factory, although the hardware specification is the same, the

hardware itself has the trifle error to cause the reading to have the offset. In this chapter

we will introduce some calibrated methods to correct offset of the sensor, including, single

sensor calibration and multiple sensors calibration.

4.1 Single Sensor Calibration

Before using the inertial sensor to implement on all kinds of applications, it is basic and

the most important first step to calibrate the sensor itself. In this section two single

calibration methods will be introduced.

4.1.1 Linear Calibration

The linear calibration uses the linear function y = a(x− b) to correct offset of the sensor.

It means the reading of the sensor maybe have translation or scaling. Using linear function

can efficient reduce this offset. The major steps are to measure the maximal and minimal

reading of a sensor with X, Y, Z axes, respectively. Here we define the fy(i) to present

the reading of the sensor which it should be. The fx(i) presents the measured reading

of the sensor from the axis, where i presents the X, Y or Z axis. In order to measure

the maximal and minimal reading of a sensor, each axis (X, Y, Z) must put toward to

down and up, respectively which the reading should only be effect from gravity. When

the axis puts toward to down, it means we can obtain the maximal reading (fx−max(i))

and the fy−max(i) should be 1g. On the other hand, the axis puts toward to up to get the
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minimal reading (fx−min(i)) and the fy−min(i) should be −1g. The simultaneous equation

is following :

fy−max(i) = 1 = a(fx−max(i)− b) (4.1)

fy−min(i) = −1 = a(fx−min(i)− b) (4.2)

from Eq. 4.1 and Eq. 4.2, we can solve variables a and b.

4.1.2 Least Square Calibration

Assuming the sensor has an offset at each X, Y and Z axis which are c1, c2 and c3. The

measured reading of a sensor at three axes is define to xi, yi, zi, where i is the i-th sample.

It can be presented to least square methods to find the minimum of (xi − c1)
2 + (yi −

c2)
2 + (zi − c3)

2. Assuming the minimum is r2, the formula can be written as :

(xi − c1)
2 + (yi − c2)

2 + (zi − c3)
2 = r2. (4.3)

This problem is similar to determine how close those points (you can think that xi, yi,

zi is a point in 3D space) are to being circular, we can fit a least squares circle to the

data and check to see how close the measured points are to the circle. To fit a circle to n

sample pairs of measured readings (x1, y1, z1), (x2, y2, z2), ..., (xn, yn, zn) in a static state,

we must determine the center (c1, c2, c3) and the radius r. Rewriting Eq. 4.3, we get

2xic1 + 2yic2 + 2zic3 + r2 − c2
1 − c2

2 − c2
3 = x2

i + y2
i + z2

i .

If we set c4 = r2 − c2
1 − c2

2 − c2
3, then the equation takes the form

2xic1 + 2yic2 + 2zic3 + c4 = x2
i + y2

i + z2
i .

Substituting each of the measured reading with n sample into this equation, we obtain

the overdetermined system




2x1 2x1 2x1 1

2x2 2x2 2x2 1
...

...
...

...

2xn 2xn 2xn 1







c1

c2

c3

c4




=




x2
1 + y2

1 + z2
1

x2
2 + y2

2 + z2
2

...

x2
n + y2

n + z2
n




. (4.4)

The Eq. 4.4 can be solve by using matrix system Ax = b (see [13]) to find minimum.
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4.2 Multiple Sensors Calibration

In our work we use multiple sensors to implement our system, so the multiple sensors

calibration is need. As Figure 4.1, three axes of each sensor has deviation with other

sensor. That means the X/Y/Z axis of sensor 1 maybe be not aim at the X/Y/Z axis of

sensor 2 or sensor 3. So we must do the alignment between every sensor. The multiple

sensors calibration (this also is called the sensors alignment method) is a method to correct

this deviation. In our work the 1st sensor is denoted by S1, is called as the body frame,

and the 2nd and 3rd sensors, respectively denoted by S2 and S3, are aligned to the body

frame. The transformation matrix T Si→S1 from the i-th sensor to the body frame, we need

to sample the reading (in a static state) in three independent orientations. If Gi,j, a 3× 1

vector, is the j-th reading of the i-th sensor, we have G1,j = T Si→S1Gi,j for i, j = 1, 2, 3.

The transformation matrices T Si→S1 can be obtained by solving linear systems. Note that

T S1→S1 = I.

Sensor 1

Sensor 2 Sensor 3

Y

Y

Y

X

X

X

Z

Z
Z

Figure 4.1: Alignment between sensors.
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Chapter 5

G-Sensor Constellations

In this chapter we will introduce our g-sensor constellations architecture. In the beginning

aligning between g-sensors is the first task in our work. The transformation matrix will

also be described from initial coordinate to present coordinate. Finally the object tracking

algorithm will be described, including extrapolation, LSM, adjust velocity and the object

rotation.

5.1 Framework

A g-sensor constellation (abbreviated as constellation) is composed of at least three g-

sensors with fixed topology. In a general case, a constellation may be composed of more

than three sensors and the topology may not be a regular polygon. For example it can

also compose of four/five or more g-sensors, as Figure 5.1, 5.2.

S1 S2
S3S4

S1

S2
S3

S4

Figure 5.1: Constellations with four g-sensors.

In this work, a g-sensor constellation consisting of three Witilt V3 sensors are built to

verify our tracking technique. The three sensors are stuck at the vertices of an equilateral

triangle of 0.3m edge lengths. So, the constellation is depicted as in Figure 5.3. The
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S1
S2 S3

S4S5

S1 S2
S3

S4
S5

Figure 5.2: Constellations with five g-sensors.

constellation is output via Bluetooth interface. The receiver maybe is a computer or

a phone which receive the data from the constellation. After receiving the data, the

object tracing algorithm will be executed then the outcome will be input to the draw

programming. The system framework is depicted as in Figure 5.4.

S1 (x1 , y1 , z1 )

l1,3

l1,2

l2,3

S3 (x3 , y3 , z3 )

S2 (x2 , y2 , z2 )

Figure 5.3: A g-sensor constellation.

Since the coordinates of three sensors may be not perfectly aligned, linear transforma-

tions are needed to align the coordinate systems of three sensors. The coordinate system

of the 1st sensor, denoted by S1, is called as the body frame, and the coordinate systems

of the 2nd and 3rd sensors, respectively denoted by S2 and S3, are aligned to the body

frame. To compute the transformation matrix T Si→S1 (or sometimes written as T Si→B)

from the i-th sensor to the body frame, we need to sample the reading (in a static state)

in three independent orientations. If Gi,j, a 3 × 1 vector, is the j-th reading of the i-th

sensor, we have G1,j = T Si→S1Gi,j for i, j = 1, 2, 3. The transformation matrices T Si→S1

can be obtained by solving linear systems. Note that T S1→B = T S1→S1 = I. Let G̃i,j

denote the raw reading of the i-th sensor, i.e., measured in the coordinate system of Si,

and GB
i,j denote the reading of the i-th sensor measured in the body frame at time tj.
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Communicate 
by Bluetooth

G-Sensor Constellations 

Receiver 
Data from G-Sensor 

Constellations 

The Object Tracking 
Algorithm

Draw trajectory from 
outcome

Figure 5.4: System framework of the g-sensor constellation.

Then,

GB
i,j = T S1→BG̃i,j.

Besides displacement, the constellation may rotate during the movement. A reference

coordinate system is needed to record the movement of the constellation. We choose the

body frame at time t0 as the reference coordinate system and call it the earth frame. Let

TB→E
j be the linear transformation from the body frame to the earth frame at time tj,

and GE
i,j denote the reading of the i-th sensor measured in the earth frame at time tj.

Then,

GE
i,j = TB→E

j GB
i,j.

Let Si,j denote the position of the i-th sensor at time tj mea-

sured in the earth frame. Then, the linear transformation matrix from

the body frame to the earth frame at time tj can be determined by

the mapping from {S2,j − S1,j, S3,j − S1,j, (S2,j − S1,j)× (S3,j − S1,j)} to

{S2,0 − S1,0, S3,0 − S1,0, (S2,0 − S1,0)× (S3,0 − S1,0)}. Let Nj = (S2,j − S1,j)×(S3,j − S1,j).

Then, the transformation matrix TB→E
j can be obtained by solving the following linear

equation

(
S2,0 − S1,0 S3,0 − S1,0 N0

)

= TB→E
j

(
S2,j − S1,j S3,j − S1,j Nj

)
. (5.1)

Let Ai,j be the acceleration of the i-th sensor at time tj measured in the earth frame.

Since GE
i,j is a composition of the gravity and the acceleration of the sensor, to obtain
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Ai,j, the gravity must be deducted from GE
i,j. If the constellation is in a static state at

time t0, then the gravity can be given by GE
1,0, GE

2,0, and GE
3,0. So, for i = 1, 2, 3, we have

Ai,j = GE
i,j −GE

i,0

= TB→E
j T Si→BG̃i,j − TB→E

0 T Si→BG̃i,0

= TB→E
j T Si→BG̃i,j − T Si→BG̃i,0. (5.2)

5.2 The Object Tracking Algorithm

We iteratively keep tracking the positions and velocities of sensors by extrapolation based

on the accelerations reported by g-sensors. However, accumulated error is a major con-

cern and rotations of sensors can’t be detected by sensors themselves. So, we develop a

heuristic by utilizing the relative positions between sensors to adjust the displacements

and velocities of sensors by least square methods (abbreviated as LSM). In the mean

while, rotations can also be revealed.

In addition to position Si,j and acceleration Ai,j, let Vi,j denote the velocity of the i-th

sensor at time tj measured in the earth frame, and S̃i,j+1 denote the estimated position

of the i-th sensor at time tj+1 obtained from Si,j and Vi,j by extrapolation. Based on the

topology information of the constellation, Si,j+1 is obtained and Vi,j+1 is also calculated.

The process of object tracking from time tj to time tj+1 is depicted in Figure 5.5. The

S1,j S

S

S
2,j

3,j

~
S
~S

~
S2,j+1

S1,j+1

S3,j+1

LSMextrapolation 3,j+1

2,j+1

1,j +1

Figure 5.5: Object tracking by extrapolation and least square method.

process will repeat again and again.
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5.2.1 Extrapolation

Let 4tj = tj+1 − tj, i.e., the time span between the j-th and (j + 1)-th samples. Assume

the motion from tj to tj+1 has a constant acceleration. Then, S̃i,j+1 can be obtained by

applying the constant acceleration motion formula

S̃i,j+1 = Si,j + Vi,j4tj +
1

2
Ai,j (4tj)

2 . (5.3)

This also is called the extrapolation method.

5.2.2 Least Square Method

Since the constellation is rigid, the topology metrics between sensors is fixed, especially

the distance. However, these geometric properties may be broken by the extrapolation

process. Therefore, the predicted positions can be adjusted based on topology information.

We apply the least square method (abbrev. as LSM) given in Alg. 1 to do adjustment. For

convenience, if it is not necessary to emphasize the time index j, we frequently suppress

the index j and simply use Si to denote the position of the i-th sensor.

Let Si = (xi, yi, zi) for i = 1, 2, 3 be the position of the i-th sensor; and S̃i = (x̃i, ỹi, z̃i)

for i = 1, 2, 3 be the predicted position of the i-th sensor that is obtained by the extrapo-

lation method. Due to the measurement error of acceleration and the accumulation error

of velocity, the predicted position may not precise. Since the system is rigid, the topology

metrics between S1, S2, S3 is fixed, especially the distance. We have ‖S2 − S1‖ = l1,2,

‖S3 − S2‖ = l2,3, and ‖S1 − S3‖ = l1,3. So, we can calibrate the predicted position under

the topology constraints by the least square method.

Algorithm 1 [Least Square Problem (LSP)]

for all S̃i, i = 1, 2, 3, and li,k, 1 ≤ i < k ≤ 3 such that ‖Si − Sk‖ = li,k do

Measurement: Minimize
∑3

i=1

∥∥∥Si − S̃i

∥∥∥
2

end for

To solve the LSM, we apply Lagrange multipliers λi,j for 1 ≤ i < j ≤ 3. Let

f (S1, S2, S3) =
3∑

i=1

∥∥∥Si − S̃i

∥∥∥
2

=
3∑

i=1

(xi − x̃i)
2 + (yi − ỹi)

2 + (zi − z̃i)
2 ,

24



, for 1 ≤ i < k ≤ 3

gi,k (S1, S2, S3)

= ‖Si − Sk‖2 − (li,k)
2

= (xi − xk)
2 + (yi − yk)

2 + (zi − zk)
2 − (li,k)

2 ,

and

Λ (P1, P2, P3, λ1, λ2, λ3)

= f (S1, S2, S3)−
∑

1≤i<k≤3

λi,kgi,k (S1, S2, S3) .

To obtain S1, S2, S3, we solve the system




∇xi,yi,zi

Λ = 0 for i = 1, 2, 3;

∇λ1,2,λ1,3,λ2,3Λ = 0.

For i = 1, 2, 3, from ∂
∂xi

Λ = 0, ∂
∂yi

Λ = 0, and ∂
∂zi

Λ = 0, we have Si − S̃i =
∑

k 6=i λi,k (Sk − Si), or, more explicitly,




xi − x̃i

yi − ỹi

zi − z̃i


 =




xj − xi xk − xi

yj − yi yk − yi

zj − zi zk − zi





 λj,i

λk,i


 .

For 1 ≤ i < j ≤ 3, from ∂
∂λi,j

Λ = 0, we have ‖Si − Sj‖ = li,j, or, more explicitly,

(xi − xj)
2 + (yi − yj)

2 + (yi − yj)
2 = (li,j)

2 .

Put all together and then we have

x1 + x2 + x3 = x′1 + x′2 + x′3,

y1 + y2 + y3 = y′1 + y′2 + y′3,

z1 + z2 + z3 = z′1 + z′2 + z′3.

Therefore, the barycenter of S1, S2, S3 and S̃1, S̃2, S̃3 are overlapping, and we have the

following theorem.

Theorem 3 For the LSP, the barycenters of S1S2S3 and S̃1S̃2S̃3 are overlapping.
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Put a constellation at the barycenter of S̃1S̃2S̃3, then based on Theorem 3, the LSP

can be solved by finding a best rotation. In this work, we further assume that S1S2S3 and

S̃1S̃2S̃3 are in the same plane, and therefore, the solution can be found by a 2D rotation.

A numerical method is used to find the best rotation. The numerical method is used to

solve the LSM which described by following :

In the beginning, whose vertices are S1, S2 and S3 and G is the center of mass of the

triangle. Let ∠S1GS2 = θ3, ∠S2GS3 = θ1 and ∠S3GS1 = θ2, then we can use law of

cosines to get θ1, θ2 and θ3. After time 4t, the vertices of triangle become S̃1, S̃2 and

S̃3, which are derived using the extrapolation method. So we can get G̃ the center of

mass whose vertices are S̃1, S̃2 and S̃3, which equals G by theorem 3. We also can decide

the initial position of S1. Assume the unit normal vector becomes u = (ux, uy, uz) whose

vertices are S̃1, S̃2 and S̃3. Now, we need to find the coordinates of S2 and S3. Then find

the best possible coordinates of S1, S2 and S3. Then rotation about an arbitrary unit

vector (ux, uy, uz) by an angle θ is given by a matrix by Theorem 1

M(u, θ) =




c + (1− c)u2
x (1− c)uxuy − (s)uz (1− c)uxuz + (s)uy

(1− c)uyux + (s)uz c + (1− c)u2
y (1− c)uyuz − (s)ux

(1− c)uzux − (s)uy (1− c)uzuy + (s)ux c + (1− c)u2
z




,where c = cos θ, s = sin θ

Using the theorem above, we have
−→
GS2 = M(u, θ3)

−→
GS1

‖−→GS2‖
‖−→GS1‖ and

−→
GS3 =

M(u, θ2)
−→
GS1

‖−→GS3‖
‖−→GS1‖ . Now, to find the best possible coordinates of S1, S2 and S3, cal-

culate
−−→
GS

′
i = M(u, θ)

−−→
GSi for i = 1, 2, 3 and −π ≤ θ ≤ π. So, our goal is to find θ̂ such

that
∑

i

∥∥∥∥
−−→
GS̃i −

−−→
GS

′
i

∥∥∥∥
2

has the minimum. This means that

θ̂ = arg min

(∑
i

∥∥∥∥
−−→
GS̃i −

−−→
GS

′
i

∥∥∥∥
2

, θ

)
.

Having θ̂, the best possible coordinates can be found.

5.2.3 Adjust Velocity

After applying the LSM, we get the positions Si,j+1. We can further to adjust the velocities

of sensors according to the displacement. Let Di,j = Si,j+1 − Si,j be the displacement of

the i-th sensor in the period from the j-th sampling time to the (j + 1)-the sampling time.
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In addition, we also have

Di,j = Vi,j∆tj +
1

2
Ai,j (∆tj)

2

=
1

2
∆tj (Vi,j + Vi,j+1) .

So, the velocity Vi,j+1 can be given by

Vi,j+1 =
2 (Si,j+1 − Si,j)

∆tj
− Vi,j. (5.4)

5.2.4 Object Rotation

From Eq. 5.1 we can get the transformation matrix TB→E
j and by Theorem 2 the Z−Y −X

rotation matrix is known.

TB→E
j =




T00 T01 T02

T10 T11 T12

T20 T21 T22


 =




c1c2 −c2s1 s2

c3s1 + c1s2s3 c1c3 − s1s2s3 −c2s3

s1s3 − c1c3s2 c3s1s2 + c1s3 c2c3




,where c1 = cos γ, c2 = cos β, c3 = cos α and s1 = sin γ, s2 = sin β, s3 = sin α.

Then s2 = sin β = T02, β can be obtained, α, γ can also be obtained from β and

T01, T12.

Finally the Figure 5.6 shows the procedure of this algorithm. In the beginning the

coordinate, velocity and transformation matrix will be initiated. The alignment between

g sensors will also be calculated in this section. After initial and alignment have done,

the new coordinates of g sensors will be calculated by extrapolation. Then the corrected

coordinates will be calculated from new coordinates by LSM. Finally the velocity and

transformation matrix can be determined by initial coordinates and corrected coordinates.

Rotation information can also be got from the transformation matrix.
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 Initiate 
j = 0, Vi,0 = 0, 

Si,0, T           , G

Calculate T          and Ai,j        
by Eq. (1), (2)

Extrapolate Si,j+1 

by Eq. (3)

Use LSM to obtain Si,j+1 
from Si,j+1

Calculate velocity Vi,j+1 
by Eq. (4)

j = j + 1

Si -> S1 B
i,0

j
B -> E

~

~

(5.1), (5.2)

(5.3)

(5.4)

Figure 5.6: Flowchart of the object tracking algorithm.
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Chapter 6

Experiments

In our experiments, the constellation is composed of three Witilt V3 sensors which has

a triaxial accelerometer and a single axis gyroscope. But only the accelerometer is used.

The sampling rate is set up 90Hz. The sampling range is around ±6g. Three sensors

are fixed on a plastic board at the vertices of an equilateral triangle. The edge of the

equilateral triangle is 0.3m. The data of Witilt V3 sensors is output via a Bluetooth

interface.

6.1 Static Experiment

The g-sensor is also with a certain level of inaccuracy after signal calibration (here, we

use the linear calibration method). Even sensors are in a static state, the reading of

sensors slightly vibrate. Figure 6.1, Figure 6.2 and Figure 6.3 show the vibratility of

three sensors. The inaccuracy will accumulate and cause significant error on velocities

and displacements. In the first experiment, the constellation keeps static for 30s, and

the drifting that caused by accumulation error is calculated for three individual sensors

and the constellation. The constellation is represented by its barycenter. The field with

LSM by average in Table 6.1 describes a method for determining the output value of the

sensor when the sensor is static. It is meaning a sensor is static for 30 seconds, we gather

all output values in this interval and calculate the average of those values. When we do

calculation by our object tracking algorithm, every reading value from sensors will be

subtract this average value. For example if the average value is x when the objects keeps

for an interval. When we get the reading value from a sensor is y. The really output value
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Figure 6.1: The vibratility of sensor 1 in a static state.

Figure 6.2: The vibratility of sensor 2 in a static state.
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Figure 6.3: The vibratility of sensor 3 in a static state.

is y − x. This goal is to reduce the vibratility in sensor itself. The field with LSM by

threshold. In Table 6.1 is another method to do this. This method is to set a threshold

to reduce the vibratility in sensor itself. For example, if threshold sets as a value, the

reading value from a sensor is b and the average is x. The really output value is |b− x|
if |b− x| = a else 0 if |b− x| < a. Figure 6.4 shows the displacement and angle what

threshold is better. The threshold is set from between 0.01 and 0.1. Finally, the threshold

is set to 0.03 in our experiments. Table 6.1 records the displacement of each sensors and

the constellation with LSM by average and LSM by threshold methods.We can see the

Table 6.1: The drifting distance of a static constellation after 30 seconds.

S1 S2 S3 LSM by average LSM by threshold

X 12.3 m 3.6 m 3.9 m 6.8 m 3.2 m

Y 5.2 m 3.1 m -0.8 m 2.6 m 2.5 m

Z 0.9 m 3.0 m 4.4 m 2.7 m 1.6 m

constellation is the stablest with different methods.
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Figure 6.4: Displacement and angle with different thresholds.

6.2 Static Rotation Experiment

We also do the rotation tests. In a rotation test, rotate the constellation counterclockwise

about the Z-axis by 30◦, 60◦ and 90◦ at static state. Thus the z-component of each Ai,j

should be zero. Figure 6.6, Figure 6.8 and Figure 6.10 show the result of the rotation

test with LSM by average We also do same tests with LSM by threshold Figure 6.7,

Figure 6.9 and Figure 6.11 show the this result. Table 6.2 shows the rotational angle by

Z − Y − X axis (yaw,pitch,roll) for all methods. Figure 6.5 shows the relation between

time and angle. We can see that, after being calibrated by the LSM, the angle between

the orientation of the initial and the final constellation is better than without LSM.

Table 6.2: The Yaw-Pitch-Roll angle by rotating 30
◦
, 60

◦
and 90

◦
.

Yaw Pitch Roll

30
◦

with average 22.2 0 0.09

60
◦

with average 50.6 0 0.09

90
◦
with average 79.6 0 0.09

30
◦

with threshold 22.3 0 0.08

60
◦

with threshold 51.7 0 0.08

90
◦
with threshold 79.8 0 0.08
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Figure 6.5: Rotation along time.
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Figure 6.6: Rotate 30
◦
by Z-axis with average

method.
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Figure 6.7: Rotate 30
◦
by Z-axis with thresh-

old method.
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Figure 6.8: Rotate 60
◦
by Z-axis with average

method.
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Figure 6.9: Rotate 60
◦
by Z-axis with thresh-

old method.
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Figure 6.10: Rotate 90
◦

by Z-axis with aver-

age method.
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by Z-axis with

threshold method.
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6.3 Dynamic Experiment in a Straight Line

Besides the static experiment, we also do some dynamic experiments. For example, the

constellation moves about 45m in a straight line. The outcome of the straight line test

is depicted in Figure 6.12 and Figure 6.13. Figure 6.12 shows the result of straight line

with LSM by average method. Figure 6.13 shows the result of straight line with LSM by

threshold method. From the reconstructed tracks, the constellation marked by the red

curve moves almost in a straight line. However, the tracks of three individual sensors are

far from a straight line. We also calculate how far sensors move. The moving distances

of the sensors and the constellation are is calculated by
√

x2 + y2 + z2, and the outcomes

are listed in Table 6.3.
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Figure 6.12: The track of a striaght line

movement by average method.
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Figure 6.13: The track of a striaght line

movement by threshold method.

Table 6.3: The distance measured after the constellation moves 45m in a straigt line.

S1 S2 S3 LSM

Distance by average 150m 57m 74m 49.5m

Distance by threshold 148m 56m 72m 43.3m
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6.4 Dynamic Experiment in a S-curve

Finally we do a dynamic moving and rotation test. For example, the constellation moves

about a S-curve. The outcome of the S-curve test is depicted in Figure 6.14 and Figure

6.15. Figure 6.14 shows the result of S-curve with LSM by average method. Figure 6.15

shows the result of S-curve with LSM by threshold method. From the reconstructed

tracks, the constellation marked by the red curve moves almost in a S-curve. Senor1,

senor 2 and sensor 3 are far from a S-curve. The constellation is smooth better than three

individual sensors.
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Figure 6.14: The track of a S-curve move-

ment by average method.
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Figure 6.15: The track of a S-curve move-

ment by threshold method.
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Chapter 7

Conclusions

In this work, we proposed an inexpensive IMU solution called g-sensor constellations in

which only accelerometers are used. It does not need gyroscopes and magnetometers

to detect motion directions and the rotations of objects. The proposed technique can

be applied to many applications, e.g. vehicle accident reconstruction, dead reckoning

for PNSs, or human-computer interfaces. In the future, we will extend this work for

constellations composed of more than three sensors and give analysis of accuracy. From

our experiments, we also found that inaccurate calibration of sensors may cause significant

accumulation error. Therefore, it is important to integrate calibration algorithm into the

system.
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