MPEG-4 L& 3§ i %G
7. DSP/FPGA T 5 } ch§ IR 2

%
b
e
-:_:

MPEG-4 AAC Tmplementation
and Optimization on DSP/FPGA

I B B

eSS R S

o
i
4

kol

-

.
I
"

|

‘3\
i
W
\\ tﬁ"
i
e
e

MPEG-4 AAC Implementation
and Optimization on DSP/FPGA

Student : Chien-Tung Tseng

Advisor : Dr. Hsueh-Ming Hang

B4l EEn
SR B S L
B o aral « oF
T3 A8k WFEF Y TR AL
AL

A Thesis
Submitted to Institute of Electronics
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of Requirements
for the Degree of
Master of Science
in
Electronics Engineering
June 2004
Hsinchu, Taiwan, Republic of China

PR R4 L=

j\%;ﬁ’\? g ¢ 5 3\]FB

MPEG-4 L& 3 5fs &
DSP/FPGA & = F & BB &
PR RERE S B
2+ 8 R3I14EF (7 FF7 AL
%
MPEG-4 £:&3F 3 %5 (AAC)E_d [SO/IEC MPEG #r#]37eh— & 224 3 »x 5 e
B RS A AR o
H % 53 MPEG-4 &3 3 4h#s & DSP F chdd 17 i »
S 44 % 6 4 (IMDCT) #4 3 & ehps

e
FIWE A & f245 (Huffman decoding) ok i it
LR 3 AR e A DSP F g T AR 0
APILR-E AR AR

FHAEE RS FE
| # FPGA % s.PR* DSP #, {7 g3 28 A >

L

I

=N L
F i3 I Mracabss 4 ch— IR0 K i 8 2 483 ([FFT)
DSP 7. & » 3¢ i &+ 44 DSP e% 4 ¢ *

i % TI DSP #sxdp £ ki h

ot FPGA 7

DSP /&JE chF 44 f
< 1503 1k A

- /]

=&

Fooap I
§ fRAE R K peig B 2 e
RS EES EF S

i B o FREEFARR
2= F e+ Gfii DSP A s

56 B B 0 K Pid
f¢ 7 4 J& DSP 4w FPGA 3% 3+ 2. B e 30 R° 48

| FPGA 5 R -

K
G RSN

| 7 5%

Ao gk g
MG NP E 2

e 7
SR X A R R R € 2
F245 % 50 DSP iR & 3§ 4o

SR AR e T 4 R B oo B

MPEG-4 AAC Implementation
and Optimization on DSP/FPGA

Student: Chien-Tung Tseng Advisor:Dr. Hsueh-Ming Hang

Department of Electronics Engineering
Institute of Electronics
National Chiao Tung University

Abstract

MPEG-4 AAC (Advanced Audio Coding) is an efficient audio coding standard. It
is defined by the MPEG (Moving Pictures Experts Groups) committee, which is one
of 1SO (International Standard Organization) working groups. In this thesis, we first
analyze the computational complexity of MPEG-4 AAC decoder program. We found
that the Huffman decoding and the IMDCT (inverse modified discrete cosine
transform) require the most clock cycles to execute on DSP. Hence, we optimize the
IMDCT codes on DSP. In addition, we use FPGA to remove the bottleneck in DSP
execution. Thus, we implement the Huffman decoding and the inverse fast Fourier
transform), which is a part of IMDCT, on FPGA.

In order to speed up the AAC decoder on DSP, we need to choose appropriate
algorithms for DSP implementation. Thus, appropriate data types are chosen to
present the data. Furthermore, we use the TI (Texas Instruments) DSP intrinsic
functions to increase the DSP execution efficiency. The modified version of IMDCT
is about 503 times faster than the original version. For the FPGA implementation, we
adopt and modify the existing architectures for Huffman decoding and 512-point IFFT.
In addition, we use VLSI design techniques to improve the performance and reduce
the chip area in FPGA implementation. The FPGA implementation of Huffman
decoding and 512-point IFFT is about 56 and 4 times faster than the corresponding
DSP implementations, respectively. Also, in this project, we design and implement the

communication interface between DSP and FPGA.

Rt R DR PR A FoaR s g R S PO e BT Y A
SR Y PR WASRE L ES % aP L RR A
btk o bt PR L ot g L L
S BT AT FRRASRAREOSR fHE R R
EW eS8 d4kip > Foliifrah Mt S 0¥ BERPEELT AT
WAL g SRS BRHARIEE PP I S e R
P73 B FEOFFEL AT EHm AR T FFRETAPL Fhg 5

FERNZR-2AF IR BRIRZDIPERDF 50 BFL G TR EH

-

£

R S

3y
\

EAR s S WE 31 ANt v—»%giz@v c A AFIFR AT T EART 0 AL
(S S PN P B £

WA TS E SRR AR B A PG F LG G R A

-

EF SRR R o

-—*&

—
ﬁ\ﬂ

BRFOA S 0 EiE - - S TR R 2IGEA AT Y AT

BB A A

Contents

Chapter 1 INTrOUUCTIONccvveiece et re e aneenreas 1
Chapter 2 MPEG-2/4 Advanced Audio CodiNg.........cccevvereeieiieesieeeseese e 3
2. L MPEG-=2 AAC ...ttt e ne s 3
2.1.1.GaIN CONLIOL..c.viiiiiiieiieec et 4

2.1.2 FIIErDANKcviiiiiiiiiceee s 5

2.1.3 Temporal Noise Shaping (TNS)......cccovviieriieiece e 7

2.1.4 INtenSity COUPIING....coveiiiiieiiee e 8

2. 1.5 PrediCliONocuviuiiiiieiee e 8

2.1.6 Middle/Side (M/S) TOOI......cooviiiieeiee s 9

2.1.7 SCAIETACTONS ... 10

2.1.8 QUANTIZALIONccuvi ittt s saee e erees 10

2.1.9 NOISEIESS COUING ...vveveeieeiiecieesie e e eas 10

2.2 MPEG-4 AAC VEISION L....ociiiiiieiiiieiieisiesie ettt 11
2.2.1 Long Term Prediction (LTP)c.ccovviieiieie e 12

2.2.2 Perceptual Noise Substitution (PNS)........cccceeiveieviierinie e 13

2.2.3 TWINVQ .ottt enes 14

2.3 MPEG-4 AAC VEISION 2.ttt 15
2.3. 1 ErrOr RODUSINESSccuieiiiieie st 15

2.3.2 Bit Slice Arithmetic Coding (BSAC)......cccccceviveiveieieese e 16

2.3.3 Low-Delay Audio COdING.....c.cccvevueiieiieie e 17

2.4 MPEG-4 AAC VEISION 3.ttt sttt 17
Chapter 3 INtroduction t0 DSP/FPGAcov et 19
3.1 DSP BASEDOAITccuveiiiiiiiiie et 19

3.2 DSP ChlPiiiiieiesie ettt 20
3.2.1 Central Processing Unit (CPU)........cccccevvevieieiiere e 21

3.2.2 DA PAN ..ot 23

3.2.3 Pipeling OPerationcccccevveieiiereeie e e se e 25

3.2.4 Internal IMEMOIYcoveieeie et 26

3.2.5 External Memory and Peripheral Optionsc.ccccoevvivevviicieenenn, 26

B3 FPGA ChIP ettt 27

3.4 Data TransmiSSioN MECRANISIMeveeeeee e 28

3.4.1 MesSage INTErfaCEc.ccveviiieeiice e 29

3.4.2 Streaming INterface.........ccevveieiiese e 29

Chapter 4 MPEG-4 AAC Decoder Implementation and Optimization on DSP......... 31
A1 Profile 0N DSP ..o 31

4.2 Optimizing C/C++ COUB.....ccveieeieeie et 32
4.2.1 Fixed-point COINGccovevierieeieieeie e 32

4.2.2 Using INtrinSiC FUNCHIONS........ccoviiieicie e 33

4.2.3 Packet Data ProCESSINGcccuviieiierieiieieesiesiesee e see e eseessaesseeneens 33

4.2.4 Loop Unrolling and Software Pipelining..........ccccocovvveviveieiieseennns 34

4.2.5 Linear Assembly and AssembBly..........ccccooveviiiiiieii i 34

4.3 HUTFMaN DECOUING......eeiveeieiie ettt 35

A4 TIMDCT oottt sttt sttt sttt neene e 36
4.4.1 N/4-point FFT Algorithm for MDCTcccccooiiiiieiice e 37

4.8.2 RAAIX-22 FFT ooooiioriiesiieseisessses s 39

4.4.3 Implementation of IMDCT with Radix-2 IFFTcccccooevvvvveiecienne. 41

4.4.4 \mplementation of IMDCT with RadiX-2% IFFTcoovvvvrereeeen. 41

4.4.5 Modifying of the Data Calculation Order...........cccccvevvviiviiviieiiennns 42

4.4.6 Using INtrinSiC FUNCHIONS........ccoviiieiicie e 43

4.4.7 IMDCT Implementation ReSUILS..........cccovueveiiiiiieeir e 44

4.5 Implementation 0N DSPc.coiiiiiiiieciee e 45
Chapter 5 MPEG-4 AAC Implementation and Optimization on DSP/FPGA 47
5.1 HUFFMaN DECOUING......ccveieiieiieie et 47
5.1.1 Integration ConSIAEration...........cccueveevesieeresiieseese e e see e 47

5.1.2 Fixed-output-rate ArChiteCture.........ccoccvvverveie s 49

5.1.3 Fixed-output-rate Architecture Implementatiopn Result 51

5.1.4 Variable-output-rate ArchiteCture..........cccevveverieseeie e, 52

5.1.5 Variable-output-rate Architecture Implementation Result................ 54

ST | OSSPSR 55
5.2. 1 IFFT ArChItECIUIe....ccuiieiciieeee e 55

5.2.2 Quantization NOISE ANAIYSIS........cciveiierieerieie e 57

5.2.3 Radix-2> SDF SDF IFFT ArchiteCture...........cocovvvrverreesvernesninsenees 59

5.2.4 IFFT Implementation ReSUIL...........ccccoeiieieiie e 62

5.3 Implementation on DSP/FPGAL.........coooiiieceece e 65
Chapter 6 Conclusions and FUture WOIKcccecviieiieiiecie e 67
71 0] [0 o] =] Y2 OSSR 69
Appendix A N/4-point FFT Algorithm for MDCT ..o 71
Appendix B Radix-2% and RadiX-22 FFTovoveeeeeeeeeeeeeeeeeseeeeeeeeseese e e esees 75

List of Tables

Table 4.1 Profile of AAC decoding on CHBAX DSP.........cccevevieveeieiiene e 32
Table 4.2 Processing time on the C64x DSP with different datatypes...................... 33
Table 4.3 Comparison of computational load of FFTcccoovevviiiiiinice e, 40
Table 4.4 DSP implementation result of different datatypesc.ccccvevevvriieieennnnn. 41
Table 4.5 SNR of IMDCT of different datatypes..........cccceeverveereeresiieneere e 41
Table 4.6 DSP implementation result of different datatypesccccevvvevviieieennnnn 42
Table 4.7 SNR of IMDCT of different datatypes..........ccccveverieereeresiieneere e 42
Table 4.8 DSP implementation results of the modified data calculation order.......... 42
Table 4.9 DSP implementation results of using intrinsic functions..............c.c.coe...... 44
Table 4.10 DSP implementation results of IMDCTccccvieiiiieiciecececeee e, 45
Table 4.11 Comparison of modification IMDCT and IMDCT with TI IFFT library 45
Table 4.12 Comparison of original and the optimized performancec..ccc....... 46
Table 4.13 The ODG oOf test SeqUENCE “QUITAI™c.cccvereeieerieriesieseese e seesie e 46
Table 4.14 The ODG of test sequence “eddie_rabbitt”..........cccccoovviiiiiiiniiciciiee 46
Table 5.1 The performance Comparison of DSP and FPGA implementation 52
Table 5.2 Comparison of hardware reqUIremMeNtsS..........cccoevvevieereeresieeseere e e 56
Table 5.3 The performance comparison of DSP and FPGA implementation............. 64
Table 5.4 Implementation 0N DSP/FPGA ..o 65

Vi

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

List of Figures

2.1 Block diagram for MPEG-2 AAC ENCOUET........c.cccueiveieriienieeieseesieseeseeneens 4
2.2 Block diagram of gain control tool for encoderc.ccccevvvveiiericieieenen, 5
2.3 Window shape adaptation ProCESS.........ceiverreerverieerieeieseesieeieseesseseesreeseeans 6
2.4 Block switching during transient signal conditions............ccccccevvveviviicieenenn, 7
2.5 Pre-echo diStOrtIONcccooeiiiiiiiiieieie e 7
2.6 Prediction tool for one scalefactor band.............cccoovviiiiiiieienc e, 9
2.7 Block diagram of MPEG-4 GA €NCOET........c.cccveveiieireie e 12
2.8 LTP in the MPEG-4 General Audio enCOderccoovvveienenenenenineeenns 13
2.9 TWIinVQ quantization SChEMEccocveieiie e 15
3.1 Block Diagram of QUIXOTEccueiieiieiicieieese e se e 20
3.2 Block diagram of TMS320C6X DSPccccceeieiieri e 21
3.3 TMS320C64x CPU Data Path..........ccooviiiniiiiiieieece e 23
3.4 Functional Units and Operations Performedcccoovevvrieiv e seccee, 24
3.5 Functional Units and Operations Performed (Cont.).......c.ccccevvvevvicinvvenenne. 25
3.6 General SIICE DIagram.........cccveieiieeiecie et 28
4.1 Intrinsic functions of the TI C6000 series DSP (Part.)c.cccccvevvvverieennene 33
4.2 Sequential model of Huffman decoder...........ccocvvviievecieiicce e, 35
4.3 Parallel model of Huffman decoder..........ccocovvviiiiininiiciec e, 36
4.4 Fast MDCT algorithmccoeoviiiiieceee e 38
4.5 Fast IMDCT algorithmccveiveiiie e 39
4.6 Butterflies for 8-point radixX-2 FFT........ccoceiviii i 40
4.7 Butterflies for a radiX-2> FFT PEc..cooovviveiirsriinsesiesseessssseessessesssesneons 40
4.8 Simplified data flow graph for 8-point radiX-2% FFTcoccoevevevevereeereenn. 40
4.9 Comparison of the data calculation order...........c.ccovvviveiviieiieece e, 42
4.10 INtrinSic fUNCLIONS WE USEAocueiviriiiiieiieierie e 44
ALL THIFFT HDRAIY oo 45
5.1 Flow diagram of MPEG-4 AAC Huffman decoding.......c.cccceecvvvevveiesinenne. 48
5.2 Block diagram of DSP/FPGA integrated Huffman decoding.........c............. 49
5.3 Block diagram of fixed-output-rate architecturecccceevevvevveiescieseennenn, 50
5.4 Output Buffer of code index tableccovvvieiieie i 50

Vi

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

5.5 Waveform of the fixed-output-rate architectureccccceveveveieivereceene. 51
5.6 Synthesis report of the fixed-output-rate architecturecccocevveviernenee. 51
5.7 P&R report of the fixed-output-rate architecturecccocvevvevevceevrenee, 52
5.8 Block diagram of the variable-output-rate architecture...........cc.cccccvevvennnne. 53
5.9 Comparison of the waveform of the two architectures............ccccceevervenenne. 53
5.10 Synthesis report for the variable-output-rate architecturec.cccocveee.. 54
5.11 P&R report for the variable-output-rate architecture.............ccoccevevervennne. 55
5.12 Block diagram of shifter-adder multiplier..........ccccccoovvveiiiieiie i, 57
5.13 Quantization noise analysis of twiddle multiplier is 256c.c.ccccvevennee. 58
5.14 Quantization noise analysis of twiddle multiplier is 4096ccccveneee. 58
5.15 Block diagram of radix2® SDF 512-point IFFT pipelined architecture...... 59
5.16 Simplified data flow graph for each PE..........ccccccoveiiiviiieieee e 59
5.17 Block diagram of the PEL........cccccoiiiieiice e 60
5.18 Block diagram of the PE2.........c.ccoeiieiiiieeeesere e 61
5.19 Block diagram of the PE3..........c.oooeiieie e 61
5.20 Block diagram of the twiddle factor multiplierccccoeveveiiieivcceceeee, 62
5.21 Waveform of the radix-23 512-pOint IFF Toooeveveeeeeeeseeeeeeeeeeeeeeesnenn. 62
5.22 Synthesis report of radix-2°512-point IFFTcovveveeeeeeeeeeeeeeeseernees 63
5.23 P&R report of radixX-2% 512-point IFFTvveeeeeeeeeeeeeeeeeeeeeeeeeeeseeennees 64

viii

Chapter 1

Introduction

MPEG stands for ISO “Moving Pictures Experts Groups.” It is a group working under the
directives of the International Standard Organization (ISO) and the International
Electro-technical Commission (IEC). This group work concentrates on defining the standards
for coding moving pictures, audio and related data.

The MPEG-4 AAC (Advanced Audio Coding) standard is a very efficient audio coding
standard at the moment. Similar to manysether audio coding schemes, MPEG-4 AAC
compresses audio data by removing the redundancy*among samples. In addition, it includes
several tools to enhance the coding performance, temporal noise shaping (TNS), perceptual
noise substitution (PNS), spectral band-teplication (SBR) and others. Hence, the MPEG-4
AAC standard can compress audio.dataat high quality with high compression efficiency.

We implement the MPEG-4 AAC encoder and decoder on a DSP processor. Some of the
MPEG-4 AAC tools’ efficiencies are limited by the data processing mechanism of the DSP
processors. In this project, we try to use VLSI (very large scale integration) design concept to
improve the implementation. The idea is based on the SoC (System on a Chip) methodology.

We thus adopt the DSP/FPGA (Digital Signal Processor/Field Programmable Gate Array)
platform to implement MPEG-4 AAC encoder and decoder. The DSP baseboard is made by
Innovative Integration's Quixote. It houses a Texas Instruments' TMS320C6416 DSP and a
Xilinx Virtex-II FPGA. We also need the communication interface provided by the DSP
baseboard manufacture. This thesis will describe the implementation and optimization of an
AAC decoder on the DSP and on the FPGA.

The organization of the thesis is as follows. In chapter 2, we describe the operations of
MPEG-2 AAC and MPEG-4 AAC. Then, in chapter 3, we describe the DSP/FPGA

environment. In chapter 4, we speed up the decoder process on DSP. In chapter 5, we include

FPGA for implementing Huffman decoding and IFFT to improve the overload performance.

At the end, we give a conclusion and future work of our system.

Chapter 2
MPEG-2/4

Advanced Audio Coding

In this chapter, we will briefly describe the MPEG-2/4 AAC (Advanced Audio Coding)

operating mechanism. Details can be found in [1] and [2] respectively.

2.1 MPEG-2 AAC

In 1994, a MPEG-2 audio standardization committee defined a high quality multi-channel
standard without MPEG-1 backward compatiblility. It was the beginning of the development
of “MPEG-2 AAC.” The aim of MPEG-2 AAC was to reach “indistinguishable” audio quality
at data rate of 384 kbps or lower for five full-bandwidth channel audio signals as specified by
the ITU-R (International Telecommunication Union, Radio-communication Bureau). Testing
result showed that MPEG-2 AAC needed 320 kbps to achieve the ITU-R quality requirements.
This result showed that MPEG-2 AAC satisfied the ITU-R standard, and then MPEG-2 AAC
was finalized in 1997.

Like most digital audio coding schemes, MPEG-2 AAC algorithm compresses audio
signals by removing the redundancy between samples and the irrelevant audio signals. We can
use time-frequency analysis for removing the redundancy between samples, and make use of
the signal masking properties of human hearing system to remove irrelevant audio signals. In

order to allow tradeoff between compression the audio quality, the memory requirement and

the processing power requirement, the MPEG-2 AAC system offers three profiles: main
profile, low-complexity (LC) profile, and scalable sampling rate (SSR) profile. Fig 2.1 gives
an overview of a MPEG-2 AAC encoder block diagram. We will describe each tool briefly in

this section.

Input time signal

[,

Pre-
Processing
Perceptual
Model ‘ Leeend
|| Filter Data
Bank Control —
I TNS
Intensity/
Couplng
Quantized
Spectrum
0? Bitstream |- 13818-7
Previou Formatter Coded Audio
Stream
Frame
—

Iteration Loops

. '
|] 1
. Scale .
1 Factors 1
n 1
: I ;
|] 1
[} . X]
N Rate/Distortion Quantizer 1
] Control Process 1
[] 1
|] 1
. '
: Noseless 1
1
. Coding —
|] L]
.

Fig. 2.1 Block diagram for MPEG-2 AAC encoder [1]

2.1.1 Gain Control

The gain control tool receives the time-domain signals, and outputs gain control data and
signal whose length is equal of the modified discrete cosine transform (MDCT) window. Fig
2.2 shows the block diagram for the tool. This tool consists of a polyphase quadrature
filterbank (PQF), gain detectors and gain modifiers. The PQF divided input signals into four
equal bandwidth frequency bands. The gain detectors produce the gain control data which

satisfies the bitstream syntax. The gain modifiers control the gain of each signal band. The

gain control tool can be applied to each of four bands independently.

The tool is only available for the SSR profile because of the features of SSR profile. If we
need lower bandwidth for output signals, lower sampling rate signals can be obtained by
draping the signal from the upper bands of the PQF. The advantage of this scalability is that

the decoder complexity can be reduced as the output bandwidth is reduced.

window_ f\ _gain_
sequence } »control_
P data
256 0or 32
MDCT
Gain 256 or 32 Spectral
e . —
Modifier MDCT reverse
¥ Gain J
PQF LI Detector
Gain 256 0r 32
- Modifier MDCT
™ Gain J
LI Detector
Gain 256 or 32 Spectral
Modifier MDCT reverse
—» Gain J
L— Detector oain
controlled

time

gain control tool .
signal

Fig. 2.2 Block diagram of gain confrol tool for encoder [2]

2.1.2 Filterbank

The filterbank tool converts the time-domain signals into a time-frequency representation.
This conversion is done by a MDCT (modified discrete cosine transform), which employs
TDAC (time-domain aliasing cancellation) technique.

In the encoder, this filterbank takes in a block of time samples, modulates them by an
appropriate window function, and performs the MDCT to ensure good frequency selectivity.
Each block of input samples is overlapped by 50% with the immediately preceding block and
the following block in order to reduce the boundary effect. Hence in the decoder, adjacent
blocks of samples are overlapped and added after inverse MDCT (IMDCT).

The mathematical expression for the MDCT is

N-1
Xy = 22 Xin COS|:2§ (” +n,)(k + %j} k= 0,1,...,E -1

n=0

2.1

The mathematical expression of the IMDCT is

2 NI 1
X, :N ZX cos[(n+n0)(k+5ﬂ, n=01,.,N—-1 2.2)
where
n = sample index

N = transform block length
i = block index

k = coefficient index

ng = (N/2+1)/2

Since the window function has a significant effect on the filterbank frequency response,
the filterbank has been designed to allow a change in window length and shape to adapt to
input signal condition. There are two different lengths and two different shapes for window
selection. Relatively short windows suit, to, signals in transient, and the relatively long ones
suit to signals in steady-state. The ‘sine windows are*narrow passband selective, and the other

choices Kaiser-Bessel Derived (KBD) windows,are strong stopband attenuated.

Kaiser-Bessel Derived Window s for Overlap-Add Sequence
A B C
1 - - .

1 D E F

0 512 1024 153 2048 280 3072 3584 A6
Time (samples)

Fig. 2.3 Window shape adaptation process [2]

windows during steady state conditions
& B &

windows during transient conditions
1 23458789 10

T T T T T T T T TN T T T T T T T YT T T T T T T T T T T
) 512 1024 1536 2048 2560 3072 3584 4096

Time (samples)

Fig. 2.4 Block switching during transient signal conditions [2]

2.1.3 Temporal Noise Shaping (TNS)

The temporal noise shape (TNS) is used:to.control the temporal shape of the quantization
noise within each window of the, transform. This is done by applying a filtering process to
parts of the spectral data of each'chanpel:

To handle the transient and pitched signals is:a major challenge in audio coding. This is
due to the problem of maintaining the “masking effect in the reproduced audio signals.
Because of the temporal mismatch between masking threshold and quantization noise, the
phenomenon is called by “pre-echo” problem. Fig 2.5 illustrates this phenomenon, the left
figure shows the original temporal signals in a window, and the right figure shows the

quantized spectral coefficients transform to the time domain.

1

Pre-echo distortion

Amplitude

))))) 08 : . . N . ! : L)
02T w0 eop @00 Tom 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
Sample (n) Sﬁmp]ﬁ (n)

Fig. 2.5 Pre-echo distortion [3]

The duality between time domain and frequency domain is used in predictive coding
techniques. The signals with an “unflat” spectrum can be coded efficiently either by directly
coding the spectral coefficients or predictive coding the time domain signals. According to the
duality property, the signals with an “unfla” time structure, like transient signals, can be coded
efficiently either by directly coding time-domain samples or applying predictive coding to the
spectral coefficients. The TNS tool uses prediction mechanism over frequency-domain to
enhance its temporal resolution.

In addition, if predictive coding is applied to spectral coefficients, the temporal noise will
adapt to the temporal signal when decoded. Hence the quantization noise is put into the
original signal, and in this way, the problem of temporal noise in transient or pitched signals

can be avoided.

2.1.4 Intensity Coupling

The human hearing system is sensitive.to amplitude: and phase of low frequency signals. It
also sensitive to amplitude of high frequency:signals, but insensitive to phase. The intensity
coupling tool is used to exploit irrelevance-between high frequency signals of each pair of
channels. It adds high frequency signals from left and right channel and multiplies to a factor
to rescale the result. The intensity signals are used to replace the corresponding left channel

high frequency signals, and corresponding signals of the right channel are set to zero.

2.1.5 Prediction Tool

Prediction tool is used for improved redundancy reduction in spectral coefficients. If the
spectral coefficients are stationary between adjacent frames, the prediction tool will estimate
the possible coefficients in the later blocks by coefficients in the prior ones. Then encode the
difference part of these spectral coefficients, the require bits to code this coefficients will be
less. If the signals are nonstationary, the short window in the filterbank will be selected, hence

prediction tool is only used for long windows.

For each channel, there is one predictor corresponding to the spectral component from the
spectral decomposition of the filterbank. The predictor exploits the autocorrelation between
the spectral component values of consecutive frames. The predictor coefficients are calculated
from preceding quantized spectral components in the encoder. In this case, the spectral
component can be recovered in the decoder without other predictor coefficients. A
second-order backward-adaptive lattice structure predictor is working on the spectral
component values of the two preceding frames. The predictor parameters are adapted to the
current signal statistics on a frame-by-frame base, using an LMS-based adaptation algorithm.
If prediction is activated, the quantizer is fed with a prediction error instead of the original

spectral component, resulting in a higher coding efficiency.

Xiree (0-1) 3

Predictor
- Side Info

Xy (n)

P . PREDICTOR CONTROI
' . (P_ON/P_OFF)
Xy est (1) > Qi . —a

Vi (nj Vig (i)

PO
_ -
Xiree (-1) 1 yifu) = x4n)
Xg(n)
‘ —I_.

Py
| X exi (1) . Qx
- vifn) Vig (1)

Fig. 2.6 Prediction tool for one scalefactor band [2]

2.1.6 Middle/Side Tool

There are two different choices to code each pair of the multi-channel signals, the original
left/right (L/R) signals or the transformed middle/side (M/S) signals. If the high correlated left
and right signals could be summed, the require bits to code this signals will be less. Hence in
the encoder, the M/S tool will operate when the left and right signals’ correlation is higher
than a threshold. The M/S tool transform the L/R signals to M/S signals, where the middle
signal equals to the sum of left and right signals, and the side signal equals to the difference of

left and right ones.

2.1.7 Scalefactors

The human hearing system can be modeled as several over-lapped bandpass filters. With
higher central frequency, each filter has larger bandwidth. These bandpass filters are called
critical bands. The scalefactors tool divides the spectral coefficients into groups, called
scalefactor bands, to imitate critical bands. Each scalefactor band has a scalefactor, and all the
spectral coefficients in the scalefactor band are divided by this corresponding scalefactor. By
adjusting the scalefactors, quantization noise can be modified to meet the bit-rate and

distortion constraints.

2.1.8 Quantization

While all previous tools perform some kind of preprocessing of audio data, the real
bit-rate reduction is achieved by the quantization:tool. On the one hand, we want to quantize
the spectral coefficients in such a:sway that quantization noise under the masking threshold; on
the other hand, we want to limit the number. of bits requested to code this quantized spectral
coefficients.

There is no standardized strategy for gaining-Optimum quantization. One important issue
is the tuning between the psychoacoustic model and the quantization process. The main
advantage of nonuniform quantizer is the built-in noise shaping depending on the spectral
coefficient amplitude. The increase of the signal-to-noise ratio with rising signal energy is

much lower values than in a linear quantizer.

2.1.9 Noiseless Coding

The noiseless coding is done via clipping spectral coefficients, using maximum number of
sections in preliminary Huffman coding, and then merging section to achieve lowest bit count.
The input to the noiseless coding tool is a set of 1024 quantized spectral coefficients. Up to
four spectral coefficients can be coded separately as magnitude in excess of one, with value of
+1 left in the quantized coefficients array to carry the sign. The clipped spectral coefficients

are coded as integer magnitude and an offset from the base of the coefficient array to mark

10

their location. Since the side information for carrying the clipped spectral coefficients costs
some bits, this compression is applied only if it results in a net saving of bits.

The Huffman coding is used to represent n-tuples of quantized spectral coefficients, with
12 codebooks can be used. The spectral coefficients within n-tuples are ordered from low
frequency to high frequency and the n-tuple size can be two or four spectral coefficients. Each
codebook specifies the maximum absolute value that it can represent and the n-tuple size.
Two codebooks are available for each maximum absolute value, and represent two distinct
probability distributions. Most codebooks represent unsigned values in order to save

codebook storage. Sign bits of nonzero coefficients are appended to the codeword.

2.2 MPEG-4 AAC Version 1

MPEG-4 AAC Version 1 was approved in 1998-and published in 1999. It has all the tools
of MPEG-2 AAC. It includes additional'tools ‘'such: as the long term predictor (LTP) tool,
perceptual noise substitution (PNS) tool‘and transform-domain weighted interlaced vector
quantization (TwinVQ) tool. The. TwinVQ tool is:an’ alternative tool for the MPEG-4 AAC
quantization tool and noiseless coding:tool; {This new scheme which combined AAC with
TwinVQ is officially called "General Audio (GA)." We will introduce these new tools in this

section.

11

tnput time signal

AAC »
Gain Control
Tool

Dt —
(Control

Window
Length Filterbank
Dexision

l\ _Spectral Processing

TKRS

|

Lonz Term
Prediction

l

Intensity
Coupling

Bitstragm el
Pradiction Formatter coded audio
stream

Bark Scaleto
Scalefactor

SR ._._._.._._._._.__.___'%

AAC
Scalefactor coding Spectrum
Quantization normalization and e
HNoiss ii; Interleaved Vi

Quantization and Coding

Fig. 2.7 Block diagram of MPEG-4 GA encoder [2]

2.2.1 Long Term Prediction

The long term prediction (LTP) tool uses to exploit the redundancy in the speech signal
which is related to the signal periodicity as expressed by the speech pitch. In speech coding,
the sounds are produced in a periodical way so that the pitch phenomenon is obvious. Such

phenomenon may exist in audio signals as well.

12

| Lonz-Term| |
T/F Prediction BT
[
o | Long Term
" | Synthesiz
A
J
-;DEE_ Term Quantizer Bitstream
—| T/F »- -_I-'Edlill'}u = and Encoder’ |——=
Ener & Coding Multiplexsr
Gains
A "
L g Fsychoacoustic Medsl side Information

Fig. 2.8 LTP in the MPEG-4 General Audio encoder [2]

The LTP tool performs prediction to, adjacent frames while MPEG-2 AAC prediction tool
perform prediction on neighboring’frequency.components. The spectral coefficients transform
back to the time-domain representation by inverse filterbank and the associated inverse TNS
tool operations. Comparing thelocally| decoded signal.to the input signal, the optimum pitch
lag and gain factor can be determined: The difference between the predicted signal and the
original signal then is calculated and ‘compared with the original signal. One of them is
selected to be coded on a scalefactor band basis depending on which alternative is more
favorable.

The LTP tool provides considerable coding gain for stationary harmonic signals as well as
some non-harmonic tonal signals. Besides, the LTP tool is much less computational

complexity than original prediction tool.

2.2.2 Perceptual Noise Substitution

The perceptual noise substitution (PNS) tool gives a very compact representation of
noise-like signals. In this way, the PNS tool provides that increasing of the compression

efficiency for some type of input signals.

13

In the encoder, the noise-like component of the input signal is detected on a scalefactor
band basis. If spectral coefficients in a scalefactor band are detected as noise-like signals, they
will not be quantized and entropy coded as usual. The noise-like signals omit from the
quantization and entropy coding process, but coded and transmitted a noise substitution flag
and the total power of them.

In the decoder, a pseudo noise signal with desired total power is inserted for the
substituted spectral coefficients. This technique results in high compression efficiency since
only a flag and the power information is coded and transmitted rather than whole spectral

coefficients in the scalefactor band

2.2.3 TwinVQ

The TwinVQ tool is an alternative quantization/coding kernel. It is designed to provide
good coding efficiency at very low bit-rate_(16kbps, or even lower to 6kbps). The TwinVQ
kernel first normalizes the spectral coefficients'to a“specified range, and then the spectral
coefficients are quantized by means of a weighted vectOr quantization process.

The normalization process iS;carriéd out by several schemes such as linear predictive
coding (LPC) spectral estimation,” periodi¢c:'component extraction, Bark-scale spectral
estimation, and power estimation. As a result, the spectral coefficients are "flattened" and
normalized across the frequency axis.

The weighted vector quantization process is carried out by interleaving the normalized
spectral coefficients and dividing them into sub-vectors for vector quantization. For each
sub-vector, a weighted distortion measure is applied to the conjugate structure VQ which uses
a pair of code books. Perceptual control of quantization noise is achieved in this way. The

process is shown in Fig 2.9.

14

Input signal vector
[]

“3

Inter-

Y 4 X \ leave
[I]
Divided
subvectors
Y Y Yy Yy v
Weighted | Weighted | Weighted || Weighted
Vi {e] Va WVQ
index index index index

Fig. 2.9 TwinVQ quantization scheme [2]

2.3 MPEG-4 AAC Version 2

MPEG-4 AAC Version 2 was findlized-ins1999. Compared to MPEG-4 Version 1, Version
2 adds several new tools in the stafdard. They are Error Robustness tool, Bit Slice Arithmetic
Coding (BSAC) tool, Low Delay AAC (LD-AAC). The BSAC tool is for fine-grain bitrate
scalability, and the LD-AAC for coding of general audio signals with low delay. We will

introduce these new tools in this section.

2.3.1 Error Robustness

The Error Robustness tools provide improved performance on error-prone transmission
channels. The two classes of tools are the Error Resilience (ER) tool and Error Protection (EP)
tool.

The ER tool reduces the perceived distortion of the decoded audio signal that is caused by
corrupted bits in the bitstream. The following tools are provided to improve the error
robustness for several parts of an AAC bitstream frame: Virtual CodeBook (VCB), Reversible

Variable Length Coding (RVLC), and Huffman Codeword Reordering (HCR). These tools

15

allow the application of advanced channel coding techniques, which are adapted to the special
needs of the different coding tools.

The EP tool provides Unequal Error Protection (UEP) for MPEG-4 Audio. UEP is an
efficient method to improve the error robustness of source coding schemes. It is used by
various speech and audio coding systems operating over error-prone channels such as mobile
telephone networks or Digital Audio Broadcasting (DAB). The bits of the coded signal
representation are first grouped into different classes according to their error sensitivity. Then
error protection is individually applied to the different classes, giving better protection to

more sensitive bits.

2.3.2 Bit Slice Arithmetic Coding Tool

The Bit-Sliced Arithmetic Coding (BSAC) tool provides efficient small step scalability for
the GA coder. This tool is used inscombination with the AAC coding tools and replaces the
noiseless coding of the quantized spectral data and the. scalefactors. The BSAC tool provides
scalability in steps of 1 kbps pet audio channel, which:means 2 kbps steps for a stereo signal.
One base layer bitstream and many small €énhancement layer bitstreams are used. The base
layer contains the general side information, specific side information for the first layer and the
audio data of the first layer. The enhancement streams contain only the specific side
information and audio data for the corresponding layer.

To obtain fine step scalability, a bit-slicing scheme is applied to the quantized spectral data.
First the quantized spectral coefficients are grouped into frequency bands. Each of group
contains the quantized spectral coefficients in their binary representation. Then the bits of a
group are processed in slices according to their significance. Thus all of the most significant
bits (MSB) of the quantized spectral coefficients in each group are processed. Then these
bit-slices are encoded by using an arithmetic coding scheme to obtain entropy coding with
minimal redundancy. Various arithmetic coding models are provided to cover the different
statistics of the bit-slices.

The scheme assigns the bit-slices of the different frequency bands to the enhancement

layers. Thus if the decoder processes more enhancement layers, quantized spectral

16

coefficients are refined by providing more less significant bits (LSB), and the bandwidth is

increased by providing bit-slices of the spectral coefficients in higher frequency bands.

2.3.3 Low-Delay Audio Coding

The MPEG-4 General Audio Coder provides very efficient coding of general audio signals
at low bitrates. However it has an algorithmic delay of up to several 100ms and is thus not
well suited for applications requiring low coding delay, such as real-time bi-directional
communication. To enable coding of general audio signals with an algorithmic delay not
exceeding 20 ms, MPEG-4 Version 2 specifies a Low-Delay Audio Coder which is derived
from MPEG-2/4 Advanced Audio Coding (AAC). It operates at up to 48 kHz sampling rate
and uses a frame length of 512 or 480 samples, compared to the 1024 or 960 samples used in
standard MPEG-2/4 AAC. Also the size ,of the window used in the analysis and synthesis
filterbank is reduced by a factor of 2."No_block switching is used to avoid the “look-ahead”
delay due to the block switching decision.' To reduce pre-echo phenomenon in case of
transient signals, window shape switching’i$ providediinstead. For non-transient parts of the
signal a sine window is used, while"a"so-called.low overlap window is used in case of
transient signals. Use of the bit resefvoir| is| minimized in the encoder in order to reach the

desired target delay. As one extreme case, no bit reservoir is used at all.

2.4 MPEG-4 AAC Version 3

MPEG-4 AAC Version 3 was finalized in 2003. Like MPEG-4 Version2, Version 3 adds
some new tools to increase the coding efficiency. The main tool is SBR (spectral band
replication) tool for a bandwidth extension at low bitrates encodings. This result scheme is
called High-Efficiency AAC (HE AAC).

The SBR (spectral band replication) tool improves the performance of low bitrate audio
by either increasing the audio bandwidth at a given bitrate or by improving coding efficiency

at a given quality level. When the MPEG-4 AAC attaches to SBR tool, the encoders encode

17

lower frequency bands only, and then the decoders reconstruct the higher frequency bands
based on an analysis of the lower frequency bands. Some guidance information may be
encoded in the bitstream at a very low bitrate to ensure the reconstructed signal accurate. The
reconstruction is efficient for harmonic as well as for noise-like components and allows for
proper shaping in the time domain as well as in the frequency domain. As a result, SBR tool

allows a very large bandwidth audio coding at low bitrates.

18

Chapter 3
Introduction to

DSP/FPGA

In our system, we will use Digital Signal Processor/Field Programmable Gate Array
(DSP/FPGA) to implement MPEG-4 AAC encoder and decoder. The DSP baseboard is made
by Innovative Integration's Quixote, which houses Texas Instruments' TMS320C6416 DSP
and Xilinx Virtex-1I FPGA. In this chapter, we, will describe DSP baseboard, DSP chip and
FPGA chip. At the end, we will introducesthe:data transmission between the Host PC and the

DSP/FPGA

3.1 DSP Baseboard

Quixote combines one TMS320C6416 600MHz 32-bit fixed-point DSP with a Xilinx
Virtex-II XC2V2000/6000 FPGA on the DSP baseboard. Utilizing the signal processing
technology to provide processing flexibility, efficiency and deliver high performance. Quixote
has 32MB SDRAM for use by DSP and 4 or 8Mbytes zero bus turnaround (ZBT) SBSRAM
for use by FPGA. Developers can build complex signal processing systems by integrating

these reusable logic designs with their specific application logic.

19

ELL Clock {ou) ZBT SB5RAM || ZBT SBSRAM SDRAM

-t Clock [} 4 MDY et | | 4 WD et 32MB
g E:d'riEEer
s o I FIFD 32Kchannel TMS320C6416 DSP
og @=={0" Analog 11O mmm each direction s00 MHz
Gornecrs Qe 1 105 M5/ Virtex Il FPGA
(s R
it £ pale fiters — T
(D Analog C &4-bit/100MHz
wDR-50 — Diiial_ i} 2Mpate or 6Mgate = b 1cBSPs (2)
100Maps
CMC site guERIERIRRIEn w o EMIFB
future PME suzport peI
=
PICMG 2.17 — 33MHz
Switched Fabric
FPGA XC2V1000 (or 6000)
AD dea from ot i Das Pacingy || 25664 b = e Quixote Block Diagram
CORNEnErS R D'ﬁ'g Mods Gantrel FIFD PCI64/66 PXI Triggers
= TofFrom G416
[Pragrammabe | EVIFA Inizoce
el M) I
it 16tap FIR 1 iy .
VA data b0 Dt Unpacking 258564 bit
COnVErEns cllll?!%i‘;l;e \?;:Ia"mlm T‘IFD !
iy 'ri;%=(i'|; I*—1
Analog rgger ‘™% | Gonirol/Sies | . e
o5 e Enlarged view of Xilinx Virtex Il FPGA
T4z
TeyFrom
PLL Sigral

Fig. 3.1 Bloek Diagram of Quixote [5]

3.2 DSP Chip

The TMS320C64x fixed-point DSP is using the VelociTI architecture. The VelociTI
architecture of the C6000 platform of devices use advanced VLIW (very long instruction
word) to achieve high performance through increased instruction-level parallelism,
performing multiple instructions during a single cycle. Parallelism is the key to extremely
high performance, taking the DSP well beyond the performance capabilities of traditional
superscalar designs. VelociTI is a highly deterministic architecture, having few restrictions on
how or when instructions are fetched, executed, or stored. It is this architectural flexibility that

is the key to the breakthrough efficiency levels of the TMS320C6000 Optimizing C compiler.

VelociTI advanced features include.
[] Instruction packing: reduced code size
[] All instructions can operate conditionally: flexibility of code
[] Variable-width instructions: flexibility of data types
[] Fully pipelined branches: zero-overhead branching

20

CEZ/CECETx device

Program cact
32-
F5E-b

FEETE FTIESITRE Y

CE2n/Cadn/CETx SPU

Powees Program Tek:h
e Irestnicion dispatch {See Mohs) Contral
l
Instruction decods el et
Dt palh A Data path B
i Dk, EMIF Cier_luI
| FRegister file A | | FRegister file B I O
s I Tasl
bnbesrrupls

Dala cacheldata memary

Fig 3.2 Block diagram of TMS320C6x DSP [6]

TMS320C6416 has internal memory includes a two-level cache architecture with 16 KB
of L1 data cache, 16 KB of L1 program-cache, 'and 1 MB L2 cache for data/program
allocation. On-chip peripheralszinclude two multi-channel buffered serial ports (McBSPs),
two timers, a 16-bit host port interface (HPD;:and 32-bit external memory interface (EMIF).
Internal buses include a 32-bit program-—address bus, a 256-bit program data bus to
accommodate eight 32-bit instructions, two 32-bit data address buses, two 64-bit data buses,
and two 64-bit store data buses. With 32-bit address bus, the total memory space is 4 GB,
including four external memory spaces: CEO, CE1, CE2, and CE3. We will introduce several

important parts in this section.

3.2.1 Central Processing Unit (CPU)

Fig. 3.2 shows the CPU, and it contains

[] Program fetch unit

[] Instruction dispatch unit, advanced instruction packing
[] Instruction decode unit

[] Two data path, each with four functional units

[] 64 32-bit registers

21

] Control registers
] Control logic
[] Test, emulation, and interrupt logic

The program fetch, instruction dispatch, and instruction decode units can deliver up to
eight 32-bit instructions to the functional units every CPU clock cycle. The processing of
instructions occurs in each of the two data paths (A and B), each of which contains four
functional units (.L, .S, .M, and .D) and 32 32-bit general-purpose registers. Fig. 3.3 shows
the comparison of C62x/C67x with C64x CPU.

22

3.2.2 Data Path

L1 sred|
st
long ds|
T g S|
amb
aTIa 4228
g S|
long ds| Repister
ds e A
Data path & -+ e (AD-A31]

See MNote 1
] See Note 2

;[f?.u' WT—' '—Tm[i%ﬁs

o as]
as|

32IMIE

32L8B

D1k
LDia

r

T

m

5

DI srcd

T

¥ See Mote 2
P See Mot 1

Re=pisier
Mie B
(BO-B31]

Dats path B

AR

w
P

32 MBE

32 L38

g
TH:| |

w

4
i RE
+

18

Cantrol Reglsser

Motes for M unit:
1. long dst is 32 MSB
2 dsfis 32158

Fig 3.3 TMS320C64x CPU Data Path [6]

There are two general-purpose register files (A and B) in the C6000 data paths. The C64x
DSP register is double the number of general-purpose registers that are in the C62x/C67x
cores, with 32 32-bit registers (A0-A31 for file A and BO-B31 for file B).

There are eight independent functional units divided into two data paths. Each path has a
unit for multiplication operations (.M), for logical and arithmetic operations (.L), for branch,

bit manipulation, and arithmetic operations (.S), and for loading/storing and arithmetic

23

operations (.D). The .S and .L units are for arithmetic, logical, and branch instructions. All
data transfers make use of the .D units. Two cross-paths (1x and 2x) allow functional units
from one data path to access a 32-bit operand from the register file on the opposite side. It can
be a maximum of two cross-path source reads per cycle. Fig. 3.4 and 3.5 show the functional

unit and its operations.

Functional Unit Fixed-Point Operations Floating-Point Operations
L unit (L1, L2) 32/40-bit arithmetic and compare Arithmetic operations
operations _ DP — SP, INT — DP, INT — SP
32-bit logical operations conversion operations

Leftmost 1 or 0 counting for 32 bits
MNormalization count for 32 and 40 bits
Byte shifts

Data packing/unpacking

5-bit constant generation

Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations
Dual 16-bit min/max operations
Quad 8-bit min/max operations

Sunit (.51, .52) 32-bit arithmetic operations Compare
32/40-bit shifts and 32-bit bit-field Reciprocal and reciprocal square-root
operations operations
32-bit logical operations

Absolute value operations

Branches) .
) SF — DP conversion operations
Constant generation

Register transfers to/from control register
file (.52 only)

Byte shifts

Data packing/unpacking

Dual 16-bit compare operations
Quad 8-bit compare operations
Dual 16-bit shift operations

Dual 16-bit saturated arithmetic
operations

Quad 8-bit saturated arithmetic
operations

Fig. 3.4 Functional Units and Operations Performed [7]

24

Functional Unit

Fixed-Point Operations

Floating-Point Operations

M unit (M1, M2)

16 % 16 multiply operations

32 X 32-bit fixed-point multiply operations

Floating-point multiply operations
16 x 32 multiply operations
Quad 8 x 8 multiply operations
Dual 16 x 16 multiply operations

Dual 16 x 16 multiply with
add/subtract operations

Quad 8 x 8 multiply with add operation
Bit expansion

Bit interleaving/de-interleaving
Variable shift operations

Rotation

Galois Field Multiply

D unit (.D1, .D2) 32-bit add, subtract, linear and circular Load doubleword with 5-bit constant offset

address calculation
Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant
offset (D2 only)

Load and store double words with 5-bit
constant

Load and store non-aligned words and
double words

5-bit constant generation
32-bit logical operations

Fig. 3.5 Functional Units and‘Operations Performed (Cont.) [7]

3.2.3 Pipeline Operation

Pipelining is the key feature to get parallel instructions working properly, requiring careful
timing. There are three stages of pipelining: program fetch, decode, and execute, and each
stage contains several phases. We will describe the function of the three stages and their
associated multiple phases in the section.

The fetch stage is composed of four phases

[] PG: Program address generate

[] PS: Program address send

[] PW: Program address ready wait

[] PR: Program fetch packet receive

During the PG phase, the program address is generated in the CPU. In the PS phase, the
program address is sent to memory. In the PW phase, a memory read occurs. Finally, in the

PR phase, the fetch packet is received at the CPU.

25

The decode stage is composed of two phases.

[] DP: Instruction dispatch

[] DC: Instruction decode

During the DP phase, the instructions in execute packet are assigned to the appropriate
functional units. In the DC phase, the source registers, destination registers, and associated

paths are decoded for the execution of the instructions in the functional units.

The execute stage is composed of five phases.

[] El: Single cycle instruction complete.

[] E2: Multiply instruction complete.

[] E3: Store instruction complete.

[] E4: Multiply extensions instruction complete.

[] ES: Load instruction complete!

Different types of instructions requiré different numbers of these phases to complete their
execution. These phases of the pipeline play an important role in your understanding the

device state at CPU cycle boundaries.

3.2.4 Internal Memory

The C64x has a 32-bit, byte-addressable address space. Internal (on-chip) memory is
organized in separate data and program spaces. When in external (off-chip) memory is used,
these spaces are unified on most devices to a single memory space via the external memory
interface (EMIF). The C64x has two 64-bit internal ports to access internal data memory, and

a single port to access internal program memory, with an instruction-fetch width of 256 bits.

3.2.5 External Memory and Peripheral Options

The external memory and peripheral options of C6416 contain

[] 16 KB data L1 cache

26

[] 16 KB program L1 cache
[] IM L2 cache

[] 64 EDMA channels

[] 3 32-bit timers

3.3 FPGA

The Xilinx Virtex-II FPGA is made by 0.15u, 8-layer metal process; it offers logic
performance in excess of 300MHz. We will introduce the FPGA logic in this section.

Virtex-1I XC2V2000 FPGA contains

[| 2M system gates

[] 56 x 48 CLB array (row x column)

[] 10752 slices

[] 24192 logic cells

[] 21504 CLB flip-flops

[] 336K maximum distributed RAM bits

Virtex-II XC2V6000 FPGA contains

[] 6M system gates

[] 96 x 88 CLB array (row x column)

[] 33792 slices

[] 76032 logic cells

[] 675844 CLB flip-flops

[] 1056K maximum distributed RAM bits

Configurable Logic Blocks (CLB) is a block of logic surrounded by routing resources.
The functional elements are need to logic circuits. One CLB contains four slices; each slice
contains two Logic Cells (LC); each LC includes a 4-input function generator, carry logic,

and a storage element.

27

— FX
FXINA > MUXFX
FXINE

=Y

<_1 DY
LUT [I— D QF—-_I—vYaQ
] FF/LAT
. Gl>— 2 CE
inputs | —>———
[— CLK
SR REV
|
BY —
—>F5
MUXF5
— X
LuUT
o
Fl>— D <1DX
inputs] —>—
— D Q [XQ
FF/LAT
CE
— CLK
SR REV
|
BX —
CE=>
CLK=
SR

UG002_C3_017_113000

Fig 3.6 General Slice Diagram [10]

The synthesizer of the Xilinx FPGA is the Xilinx ISE 6.1. The simulation result was

reference by the synthesizer report and the P&R report in the ISE.

3.4 Data Transmission Mechanism

In this section, we will describe the transmission mechanism between the Host PC and the
DSP/FPGA. There are two data transmission mechanism for the DSP baseboard. That is

message interface and the streaming interface.

28

3.4.1 Message Interface

The DSP and Host PC have a lower bandwidth communications link for sending
commands or side information between host PC and target DSP. Software is provided to build
a packet-based message system between the target DSP and the Host PC. A set of sixteen
mailboxes in each direction to and from Host PC are shared with DSP to allow for an efficient
message mechanism that complements the streaming interface. The maximum data rate is 56

kbps, and the higher data rate requirements should use the streaming interface.

3.4.2 Streaming Interface

The primary streaming interface is based on a streaming model where logically data is an
infinite stream between the source and destination. This model is more efficient because the
signaling between the two parties in the transfér.can be kept to a minimum and transfers can
be buffered for maximum throughput. On the‘other hand, the streaming model has relatively
high latency for a particular pieee of data.-This-is because a data item may remain in internal

buffering until subsequence data accumulates to allow for an efficient transfer.

29

30

Chapter 4
MPEG-4 AAC Decoder
Implementation and

Optimization on DSP

In this chapter, we will describe the MPEG-4 AAC implementation and optimization on
DSP. We will first describe how to,optimize the €/C++ code for DSP architecture, and then

discuss how to optimize the functions for DSP execution.

4.1 Profile of AAC on DSP

We do the essential modification on the MPEG-4 AAC source C code, and then
implement this modified code on DSP. We first optimize the most computational complexity
parts of these modified codes. We profile this code by TI CCS profiler. The length of the test
sequence is about 0.95 second, and the C64x DSP takes 0.18 second to decode this test
sequence. Table 4.1 shows the profile result. We find that the IMDCT and the Huffman
decoding require 66% and 21% of total clock cycle respectively. Hence, we optimize these

two functions first.

31

Clock Cycle Percent (%)
Function
Total 107506166 100
IMDCT 70848599 66
Huffman Decoding 22431737 21
M/S stereo 1224011
PNS 168978
Intensity 81388 0
Others 12751453 12

Table 4.1 Profile of AAC decoding on C64x DSP

4.2 Optimizing C/C++ Code

In this section, we will describe several schemes that we can optimize our C/C++ code
and reduce DSP execution time on the C64x DSP. These techniques include the use of
fixed-point coding, instrinsic fufictions, packet data processing, loop unrolling and software

pipelining, using linear assembly and the assembly.

4.2.1 Fixed-point Coding

The C64x DSP is a fixed-point processor, so it can do fixed-point processing only.
Although the C64x DSP can simulate floating-point processing, it takes a lot of extra clock
cycle to do the same job. Table 4.2 is the test results of C64x DSP processing time of
assembly instructions “add” and “mul” for different datatypes. It is the processing time
without data transfer between external memory and register. The “char”, “short”, “int” and
“long” are the fixed-point datatypes, and the “float” and “double” are the floating-point
datatypes. We can see clearly that floating-point datatypes need more than 10 times longer
time than fixed-point datatypes in computation time. To optimize our code on the C64x DSP,
we need to convert the datatypes from floating-point to fixed-point first. But this modification
has to quantize the input data, so it may lose some accuracy. We need to do the quantization

noise analysis when we want to do the datatype conversion.

32

Assembly Char short int long float double

Instruction 8-bit 16-bit 32-bit 40-bit 32-bit 64-bit
add 1 1 1 2 77 146
mul 2 2 6 8 54 69

Table 4.2 Processing time on the C64x DSP with different datatypes

4.2.2 Using Intrinsic Functions

TI provides many intrinsic functions to increase the efficiency of code on the C6000 series

in the specific DSP.

DSP. The intrinsic functions are optimized code by the knowledge and technique of DSP
architecture, and it can be recognize by TI CCS compiler only. So if the C/C++ instructions or
functions have corresponding intrinsic functions, we can replace them by intrinsic functions
directly. The modification can make our code more efficient substantially. Fig 4.1 shows a

part of the intrinsic functions for the C6000 series DSP, and some intrinsic functions are only

Assembly
C Compiler Intrinsic Instruction Description Device
int _abs(int src2); ABS Returns the saturated absolute value of
int_labs(long src2); src2.
int _abs2 (int src2); ABS2 Calculates the absolute value for each 'CE4x
16-hit value.
int _add2(int src?, int src2); ADD2 Adds the upper and lower halves of src1 fo
the upper and lower halves of src2 and re-
turns the result. Any overflow from the low-
er half add will not affect the upper half
add.
int _addd4 (int src1, int src2); ADD4 Performs 2s—complement additionto pairs 'Co4x
of packed 8-bit numbers.

Fig 4.1 Intrinsic functions of the TT C6000 series DSP (Part.) [6]

4.2.3 Packet Data Processing

The C64x DSP is a 32-bit fixed-point processor, which suit to 32-bit data operation.

33

Although it can do 8-bit, or 16-bit data operations, it will waste some processor resource. So

if we can place four 8-bit data or two 16-bit data in a 32-bit space, we can do four or two

operations in one clock cycle. It can improve the code efficiency substantially. One another
thing should be mentioned that some of the intrinsic functions have similar way to enhance

the efficiency.

4.2.4 Loop Unrolling and Software pipelining

Software pipelining is a scheme to generate efficient assembly code by the compiler so
that most of the functional units are utilized within one cycle. For the TI CCS compiler, we
can enable the software pipelining function operate or not. If our codes have conditional
instructions, sometimes the compiler may not be sure that the branch will be happen or not. It
may waste some clock cycles to wait for the decision of branch operation. So if we can unroll
the loop, it will avoid some of the overhead for branching. Then the software pipelining will
have more efficient result. Besides, we_can add some compiler constrains, which tell the

compiler that the branch will taken*or not, or the loop, will run a number of times at least.

4.2.5 Linear Assembly and’/Assembly

When we are not satisfied with the efficiency of assembly codes which generated by the
TI CCS compiler, we can convert some function into linear assembly or optimize the
assembly directly. The linear assembly is the input of TI CCS assembly optimizer, and it does
not need to specify the parallel instructions, pipeline latency, register usage, and which
functional units is being used.

Generally speaking, this scheme is too detail and too time consumption in practice. If we
consider project development time, we may skip this scheme. Unless we have strict constrains
in processor performance and we have no other algorithm selection, we will do this scheme at

last.

34

4.3 Huffman Decoding

Generally speaking, the architecture of Huffman decoder can be classified into the
sequential model and the parallel model [12]. The sequential model reads in one bit in one
clock cycle, so it has a fixed input rate. The parallel model outputs one codeword in one clock
cycle, so it has a fixed output rate. Fig. 4.2 and 4.3 show the block diagrams of these two

models.

Input

|

Input Buffer

K bit/cycle
y

Logic Register

Next State

Symbol Indicator
¥ A

Output Buffer

l

Symbol

Fig 4.2 Sequential model of Huffman decoder [12]

35

Input

|

Shift Buffer

Length

M bit/cycle

» Symbol Decoder

A

Length Decoder Output Buffer

Symbol

Fig 4.3 Parallel model of Huffman decoder [12]

Because the Huffman code a is yariable length code, it means that the codeword is not
fixed length for each symbol. Hence the DSP can noet know the number of bits in the each
codeword in advance. The DSP-has to fetch one bit in/one clock cycle and compare it with the
stored patterns. If there is no matched pattern,-the DSP has to fetch the next bit in the next
clock cycle and compare with the patterns again. It will take many clock cycles to do the job.
The Huffman decoder is restricted by the DSP processing structure, so it belongs to sequential
model. We do not find an efficient algorithm for the DSP Huffman decoding scheme, so we
plan to implementation the Huffman decoding in the FPGA to enhance the performance of

total system.

4.4 IMDCT

IMDCT takes the most part of the DSP processing time in an AAC decoder, so we want to
optimize this part to improve total system performance. At first, we will describe the efficient
way to use N/4-point IFFT to replace the IMDCT. And then we will discuss the architecture of

IFFT. At last, we will describe the implementation and optimization of IMDCT on DSP.

36

4.4.1 N/4-point FFT Algorithm for MDCT

We will discuss N/4-point FFT algorithm for MDCT. Since the processing of Y;xand Xin
requires a very heavy computational load, we want to find the faster algorithm to replace the
original equation. For the fast MDCT algorithm, P. Duhamel had suggested a fast algorithm
which uses N/4-point complex FFT (Fast Fourier Transform) to replace MDCT [14]. The key
point is that Duhamel found the relationship between N-point MDCT and N/4-point complex
FFT. We can thus use the efficient FFT algorithm to enhance the performance of IMDCT. The
relationship is valid for N-point IMDCT and N/4-point IFFT.

We will describe the forward operation steps here, and the derivation of this algorithm

can be found in Appendix A.

1. Compute z, = (X;,, =X y/24-2,) T j(xi,N—l—Zn + X, yi2von)

2. Multiply the pre-twiddle: 2!, = z, W, Y, n=01---,N/4-1

Where W,, =cos(27x /4N)~ jsin(27/4N)
3. Do N/4-point complex FFT: Z'=FFT{z' }

4. Multiply the post-twiddlé: ' Z, = (D) W,'W,™)Z', , k=01---,N/4-1

5. The coefficients Yjyx are found in the imaginary part of Zy, and the coefficients

Yiknp are found in the real part of Zy. The odd part coefficients can be obtained
from Y, ==Y,

We summarize the fast MDCT algorithm by the flow diagram shown in Fig 4.4.

37

(x(2n)-x(N/2-1-2n))
x(n) /L/ HOX(N-1-2m)+x(N/2+2n))

¥

Pre-twiddle

¥

N/4-point
Complex FFT

¥

Post-twiddle

¥

Interleaving —E

Fig 4.4 Fast MDCT algorithm

The inverse operation steps are in a similar way.

1. Compute Z, =-Y,,, + jY, \ suins

2. Multiply the pre-twiddle: Z' = =LE e Wg_IWNk)Z,, k=0,1,---,N/4-1

3. Do N/4-point complex IFFT:y 2, = IFFT(Z' }

(4rit1)

4. Multiply the post-twiddle: 2!, =2, W,y , n=01,---,N/4-1

5. In the range of n form 1 to N/4, the coefficients X; 3n/4-1-2n are found in the imaginary
part of z,, and the coefficients X;n/+2n are found in the real part of z,. In the range of
n from 1 to N/8, the coefficients X;3nu+20 are found in the imaginary part of z,, and
the coefficients x;ny4.1.2n are found in the negative of real part of z,. At last, in the
range of n from N/8 to N/4, the coefficients x;s,.nu4 are found in the negative of
imaginary part of z,, and the coefficients X; sn/-12n are found in the real part of z,.

We summarize the fast IMDCT algorithm by the flow diagram shown in Fig 4.5.

38

Y(k) /L/ -Y(2k)+Y(N/2-2k-1)
i

Pre-twiddle

¥

N/4-point
Complex IFFT

¥

Post-twiddle

¥

De-interleaving —E

Fig 4.5 Fast IMDCT algorithm

4.4.2 Radix-2° FFT

There are many FFT algorithms! which have been derived in recent years [18]. The
radix-2 FFT has the best accuraey, but-requirés:most computations, and the split-radix FFT
has fewer computations, but requires irregular butterfly architecture [15]. S. He suggested an
FFT algorithm called radix-2* ‘in 1996, It combined radix-2/4 FFT and radix-2 FFT in a
processing element (PE), so it has/a:more regular:butterfly architecture than the split-radix
FFT and needs fewer computations than radix-2 FFT. But the radix-2> FFT is suit to the
4N-point only, and our requirement for IFFT is 512-point for long window and 64-point for
short window. So we can use radix-2> FFT which derived form radix-2* FFT is suit to
8N-point only.

Fig. 4.6 shows the butterfly of 8-point radix-2 FFT and Fig. 4.7 shows the butterflies of a
radix-2° PE. We can see the number of twiddle factor multiplication is decreased in the data
flow graphs. Fig. 4.8 shows the combined split-radix FFT in a radix-2° PE. We can see the
regular architecture of butterflies than split-radix. Table 4.3 shows the computational

complexity of radix-2 and radix-2° FFT algorithms.

39

a L NS,

x2 / >©<_:1W0 > A2

X3 W \1W2 ><_:1 > A6

x4 WIWO » AL
XX

x5 Xl
W2 WO .
VAR ANy
W3 W2 .
X7 =) =) » A7

-1

Fig. 4.6 Butterflies for 8-point radix-2 FFT

N N <"
XY T

RN CEANED=

X3 oY A A

/Y A=

C /AT XX o

X6 Xl_j Wi > A3
3 w3:>x<i ,

X7 !) 2> A7

Fig. 4:7 Butterflies fora radix-2° FFT PE

=

Radix-2

Radix-2/4

Radix-2/8

Fig. 4.8 Simplified data flow graph for 8-point radix-2° FFT

Radix-2 Radix-23
Complex Complex Complex Complex
multiplication addition multiplication Addition
8 8 24 2 24
64 160 384 96 384
512 2048 4608 1408 4608
4096 22528 49152 16384 49152

Table 4.3 Comparison of computational load of FFT

40

4.4.3 Implementation of IMDCT with Radix-2 IFFT

We first code the 512-point IMDCT with radix-2 IFFT architecture in double datatype to
ensure the function is correct for the reasonable input data range. After the function is verified,
we modified the datatype from floating-point to fixed-point and calculate the data precision
loss in SNR (signal-to-noise ratio). In the fixed-point edition, we multiply a factor of 4096 to

all twiddle factors.

Code Size Clock Cycle
Double 9972 6344125
Int 4848 2070390
Short 4248 2078066
Table 4.4 DSP implementation result of different datatypes
SNR
Double 278.49dB
Int 101:42dB
Short 100.31dB

Table 4.5 SNR*of IMDET of different datatypes

4.4.4 Implementation of IMDCT with Radix-2° IFFT

Then we code the 512-point IMDCT with the radix-2®> IFFT architecture in double
datatype to ensure the function is correct in the reasonable input data range. Then we
modified the register datatype from floating-point to fixed-point. The data precision loss is the

same with the radix-2 FFT. In the fixed-point edition, we multiply a factor of 4096 to all
twiddle factors, and multiply a factor of 256 to the V2 / 2 in the radix-2° PE. The original

floating-point datatype edition is slower than radix-2 IFFT might influenced by the coding

style of the two architectures.

41

Code Size Clock Cycle
Double 8616 12889084
Int 7716 243074
Short 7120 225485
Table 4.6 DSP implementation result of different datatypes
SNR
Double 278.44dB
Int 83.55dB
Short 83.45dB

Table 4.7 SNR of IMDCT of different datatypes

4.4.5 Modifying the Data Calculation Order

We want to the data in the register can be used twice after they are fetch from memory.
So we modified the C/C++ code for the data caleulation order in each stage. The original
calculation order is from the top to the down in the data flow graph. We calculate the first
butterfly’s two output data, and then calculate the next butterfly’s two output data. Fig. 4.9
shows the calculation order of the modified-edition. The number in the parentheses is the
calculation order. In this way, the compiler-generates the assembly code which can use the

data more efficiency.

Fig. 4.9 Comparison of the old (left) and new (right) data calculation order

x0 AO (1) x0 A0 (1)
x1 A2 (2) x1 A2 (3)
x2 L Al (3) x2 L Al (2)
x3 A A3(4) x3 > A3

Code Size Clock Cycle
Original 7120 225485
Optimized 7852 77547

Table 4.8 DSP implementation results of the modified data calculation order

4.4.6 Using Intrinsic Functions

Since we use the “short” datatype to represent the data in the IMDCT, we may put two
16-bit data in a 32-bit register to improve the performance as packet data processing. At first,
we try to use shift the first 16-bit data than add the second 16-bit data into a 32-bit data space.
Use one intrinsic function to process these data, and then put the result into two 16-bit data.
But the result of this modification is slower than the original version because the data transfer
takes too many clock cycles.

So we modify the total IFFT architecture. Put the real part into the 16-bit MSB
(maximum significant bit) of 32-bit space, and the imaginary part into the 16-bit LSB (least
significant bit). Then use intrinsic functions to do all data process in the IFFT. Fig. 4.10 shows
the intrinsic functions we use. At first, we use _pack2 to put two 16-bit data into a 32-bit
space. Then we use _add2 and _sub?2 to do,the 16-bit addition or subtraction. When the data
needs to multiply a twiddle factor, we use_the dotp2 or _doptn2 to calculate the sum of
product or difference of product. At'each stage; we'use the _shr2 to divide the data by the
factor of 2. At last, we use _bitr 'to do the'bit reverse and put the output data in sequence.

Table 4.9 shows the modification'result:

43

Assembly
C Compiler Intrinsic Instruction Description Devic
int _add2(int srct, int src2); ADD2 Adds the upper and lower halves of src1 to
the upper and lower halves of src2 and re-
turns the result. Any overflow from the low-
er half add will not affect the upper half
add.
int _sub2(int srct, int sre2); SUB2 Subtracts the upper and lower halves of
src2 from the upper and lower halves of
srcl, and returns the result. Any borrowing
from the lower half subtract does not affect
the upper half subtract.
int _dotp2 (int srct, int sre2); DOTP2 The product of signed lower 16-bit values "'CB4x
double _ldotp2 (int src, int sre2); LDOTP2 of sre1 and src2 is added to the product of
signed upper 16-bit values of src1 and
sre2.
int _dotpn2 (int src, int sre2); DOTPN2 The product of signed lower 16—bit values "'CG4x
of srel1 and src2 is subtracted from the
product of signed upper 16-hit values of
src1 and src2.
unsigned _pack2 (uint sre 1, uint src2); PACK2 The lower/upper half—words of src1 and 'C64x
unsigned _packh2 (uint src?, uint sreZ); PACKHZ src2 are placed in the return value.
int _shr2 (int sreZ, uint sre’); SHR2 For each 16-bit quantity in src2, the quanti- "'CB4x
unsigned _shru2 (uint sre2, uint src); SHRU2 ty is arithmetically or logically shifted right
by sre1 number of bits. sre2 can contain
signed or unsigned values.
unsigned _bitr (uint src2); BITR Reverses the order of the bits. ‘CB4x

Fig. 4.10 Intrinsic functions we used [6]

Code Size Clock Cycle
Original 7852 77547
Optimized 8480 24307

Table 4.9 DSP implementation results of using intrinsic functions

4.4.7 IMDCT Implementation Results

We has implemented and optimized the MPEG-AAC IMDCT on DSP. Table 4.10 shows

44

the final optimized results. If the sampling rate is 44.1 kHz, it has to process 43 frames in one

second for real time decoding. The final optimized IMDCT can process about 24684 frames

in one second on C64x DSP. It is about 530 times faster than the original version.

Code Size Clock Cycle
Original 8616 12889084
Optimized 8480 24307
Table 4.10 DSP implementation results of IMDCT
Function void DSP_ifft32x32(const int * restrict w, int nx, int * restrict x, int * restrict y)
Arguments w[2*nx] Pointer to complex 32-bit FFT coefficients.
nx Length of FFT in complex samples. Must be power of 2 or 4, and
16 < nx = 32768.
®[2%nx] Painter to complex 32-bit data input.
y[2*nx] Pointer to complex 32-bit data output.

Fig. 4.11 TI IFFT library [7]

Then we compare the modification IMDCT to the. IMDCT with TI IFFT library as shown
in Fig. 4.11. Table 4.11 shows the comparison of the modification IMDCT and the IMDCT
using TT IFFT library. The performance has teached about 81% of the IMDCT with TI IFFT
library.

Code Size Clock Cycle
WithTI IFFT 1492 19897
Optimized 8480 24307

Table 4.11 Comparison of modification IMDCT and IMDCT with TI IFFT library

4.5 Implementation on DSP

We has implemented and optimized MPEG-4 AAC on TI C64x DSP. The optimized
result has been shown in Table 4.12. Using the ITU-R BS.1387 PEAQ (perceptual evaluation
of audio quality) defined ODG (objective difference grade), we test some sequences on the
modified MPEG-4 AAC decoder. The first test sequence is “guitar”; it has sounds variations
and is more complex. The second test sequence is “eddie_rabbitt”; it is a pop music with

human voice. The test result is shown in Table 4.13 and 4.14. The notation (a) is the original

45

floating point version, and (b) is the modified integer version. It seems acceptable in the data
rate from 32 kbps to 96 kbps. Finally, the overall speed is 2.73 times faster than the original
architecture. Note that the IMDCT part is 1/14 of the original in computation, and the result in

shown in table 4.14.

IMDCT Total Performance

Ratio
Original 70848599 107506166 1
Optimized 5631239 39365730 2.7310

Table 4.12 Comparison of original and the optimized performance

ODG 16 32 64 96 128 160 196 256
kbps kbps kbps kbps kbps kbps kbps kbps

(a) -3.53| -3.37| -099,:'-0.38| -0.26 | -0.05| -0.01| -0.01

(b) -3.67 | -3.36| »~1.07 ...-0.527% -0.38| -0.36| -0.39| -0.44

Table 4.13 The ODG-of test sequence “guitar”

ODG 16 32 64 96 128 160 196 256
kbps kbps kbps kbps kbps kbps kbps kbps

(a) -3.78| -3.40| -0.87| -0.27| -0.11, -0.17| -0.00| -0.00

(b) -3.77| -3.33| -0.95| -0.41| -0.34| -0.30| -0.29| -0.30

Table 4.14 The ODG of test sequence “eddie_rabbitt”

46

Chapter 5
MPEG-4 AAC Decoder
Implementation and

Optimization on DSP/FPGA

In the last chapter, we describe the implementation and optimization of the MPEG-AAC
decoder on DSP. Also, in this chapter, we will move some of MPEG-4 AAC tools to FPGA to
enhance the performance. Fromsthe statistic-profile, the Huffman decoding and the IMDCT
are the heaviest work tools for DSPprocessing; so we try to implementation these tools on the

FPGA.

5.1 Huffman Decoding

In this section, we describe the implementation and optimization of the Huffman decoding
on FPGA. We will implement two different architectures of Huffman decoder and compare

the results.

5.1.1 Integration Consideration

In the MPEG-4 AAC decoder, the Huffman decoder receives a series of bits ranging from
1 bit to 19 bits from the input bitstream. It uses these bits to search for the matched pattern in

the code index table. Then it returns a code index and length. The code index is ranging from

47

0 to 120, and we will take this value to find the codeword from the codeword table. Fig. 5.1
shows the flow diagram of the MPEG-4 AAC Huffman decoding process.

Code Index
Table

Code
Index
12 Codeword
Tables

Fig. 5.1 Flow diagtam of MPEG-4 AAC Huffman decoding

As we can see, the length of a symbol in the bitstream varies from 1 bit to 19 bits. The
range of the code index in the table is 0 to 120, and its length is fixed to 7 bits. DSP is not
suitable to do the variable length data processing, because it needs many extra clock cycles to
find the correct length. Hence, we map out the MPEG-4 AAC Huffman decoder on
DSP/FPGA. The patterns in the code index table are variable length, so we put it on FPGA,;
and the patterns in the codeword table are fixed length, so we put it on DSP. Fig. 5.2 shows

the scheme of the DSP/FPGA integrated Huffman decoding.

48

FPGA DSP

— Buffer S Input Buffer
Controller —» Barrel Shifter Output Buffer
Code Index 12 Codeword

Table Tables

|

L Buffer - Buffer

Fig. 5.2 Block diagram of DSP/FPGA integrated Huffman decoding

5.1.2 Fixed-output-rate Architecture

We put the code index table on FPGA. Alsoiwe want to implement the fixed-output-rate
Huffman decoder architecture zon FPGA. Ifwe want to enhance the Huffman decoding
performance substantially, we“havé. to-implement the parallel model on FPGA. This
architecture outputs one code indeX:in-one clock cycle continuously.

We designed the code index table with the necessary control signals, Fig. 5.3 shows the
block diagram. Because the code index range is from 0 to 120, we use 7-bit to represent the
data. Allowing DSP fetch the code index easily, we put one bit “0” between two adjacent code
indices in the output buffer. Fig 5.4 shows the output buffer diagram. In this way, the DSP can

fetch the code index in “char” datatype easily.

49

Barrel Shifter

!

Code Index Table Controller +——

A

|
¥

Output

Fig. 5.3 Block diagram of fixed-output-rate architecture

0| Code Index 0 |0| Code Index 1 |0| Code Index 2 |0| Code Index 3

Fig. 5.4 Output Buffer of code index table

The architecture needs some control signals between DSP and FPGA. When the DSP
sends the “input_valid” signal to FPGA, it means the “input_data” is valid now. When the
FPGA receives the “input_valid” signal and the FPGA is not busy, it would send a response of
“input_res” signal to DSP, means the FPGA has received the input data successfully. But
when the FPGA is busy, it would not send the “input_res” signal, meaning the FPGA has not
received the input data successfully, and the DSP has to send the same data again. When the
FPGA finishes the code index processing, it sends the “output_valid” signal to DSP, meaning
the “output_data” is ready. Fig.5.5 shows the waveform of these signals, and each
“output_data” contains ten code indeces. The architecture needs a clock cycle latency for the

input register.

50

rst u_|

= LR R R i iy g i gty Ny Rphply

Inputvalid

TrputReg(189:0] T2 _J5be_30e87] 3BF1_67d7_BIhE_o7of_ahfh_00D0_0000_D0A0_0000_0000_0000_0000

InputRes f§i —\

outputvalid

DutputIdz[79:0] fi T Fc3b_3d3a_32ed0_3E38_4037 T

4147_3643_3544_3445_3040

outputLen[9:0] §f T 2c T

Er

Fig 5.5 Waveform of the fixed-output-rate architecture

5.1.3 Fixed-output-rate Architecture

Implementation Result

Fig. 5.6 and Fig. 5.7 show the Xilinx ISE 6.1 synthesis and the P&R (place & route)

reports. The P&R report shows that the clock cycle can reach 5.800 ns (172.4 MHz). It needs

one clock cycle latency for the input register,»meaning that we can retrieve about 156.7 M
code indeces in one second. We use a testrsequence of 38 frames and it contains 13188 code

indeces. The comparison of DSP implementation and the FPGA implementation is shown in

the Table 5.1.

Timing Summary:
Speed Grade: -6

Minimum input arrival time before clock: 4.812ns
Maximum output required time after clock: 4.795ns

Maximum combinational path delay: No path found

Device utilization summary:
Selected Device : 2v2000{f896-6

Number of Slices: 820 out of
Number of Slice Flip Flops: 379 out of
Number of 4 input LUTs: 1558 out of
Number of bonded IOBs: 284 out of
Number of GCLKs: 1 out of

Minimum period: 9.181ns (Maximum Frequency: 108.918MHz)

10752
21504
21504
624
16

7%
1%
7%
45%
6%

Fig 5.6 Synthesis report of the fixed-output-rate architecture

51

Timing Summary:

Speed Grade: -6

Clock to Setup on destination clock clk

--------------- R T e s
| Src:Risel Src:Falll Src:Risel Src:Falll

Source Clock IDest:RiselDest:RiselDest:FalllDest:Falll

Device utilization summary:

Number of External IOBs 285 outof 624 45%
Number of LOCed External IOBs 0 outof 285 0%
Number of SLICEs 830 outof 10752 7%
Number of BUFGMUXs 1 outof 16 6%

Fig 5.7 P&R report of the fixed-output-rate architecture

Time Performance Ratio
DSP Implementation 4:7414/x 107 1
FPGA Implementation 8.4161'x 107° 56.33

Table 5.1 The performance Comparison of DSP and FPGA implementation

5.1.4 Variable-output-rate Architecture

The fixed output rate Huffman decoder is limited by the speed of searching for the
matched pattern [12]. We can further split the code index table into several small tables to
reduce the comparison operations in one clock cycle. In this way, we can use shorten the time
of processing short symbol, and it needs more than one clock cycle time to process the long
symbols, which occurs is less frequently than the short symbol. But the cost is the more

complex control signals. Fig. 5.8 shows the block diagram of the modified architecture.

52

Barrel Shifter — Controller —

HEER [

Code Index Table 1

A 4

[T 1T ¥
Code Index Table 2 »
L1 ¥
Code Index Table 3 » MUX —
[¥
Code Index Table 4 >
v

Code Index Table 5

4

¥

Output

Fig. 5.8 Block diagram of the variable-output-rate architecture

Fig. 5.9 shows that the waveformrand the external control signals between DSP/FPGA are

the same for the fixed output rate architecture. The difference between the fixed-output-rate

and the variable-output-rate architectures is the internal control signal of the

variable-output-rate architecture is more complex, and the variable output rate architecture

may need more clock cycle to produce the result.

clk
rst

InputValid

InputReg[189:0]
InputRes
Dutput¥alid
outputIdz[79:0]
OutputLen[9:0]

clk

Input¥alad ||

Inputheg[189:0]
InputRes
OutputValid
OutputIds[79:0]
OutputLen[d:0]

i

nhh iR h R iy gy By Ay

fZaf_Johe 30807

JEF1_e7d7_BIbE_cToF_shFh_00D0_0000_00A0_0000_0000_0000_0000

LIl

[

Fc3h_3d3a_32ed0_3E38_4037 T 4147_3643_3544_3445_3040

i 0

oo 1 Er

Ui iU i Ui iU U U U Ty

ot

fZaf_35he_30cE* |

35EL_e7d7_bIhE_c7cl_chib_U000_0000_0000_0000_0000_0000_000n

1

n

Jc3b_3d3s_3=30_3F30 4037 T T137_3643_3544_ 3445 3040

I]

2c [1] 4f

Fig 5.9 Comparison of the waveform of the two architectures

53

5.1.5 Variable-output-rate Architecture

Implementation Result

Fig. 5.10 and Fig. 5.11 show the synthesis report and the P&R report. Its clock rate is
slower than that of the fixed-output-rate architecture. The implementation of the control
signals may be constrained by the FPGA cell. When the control signals of FPGA design are

too complex, the controller may become the FPGA system operating bottleneck.

Timing Summary:

Speed Grade: -6

Minimum period: 10.132ns (Maximum Frequency: 98.700MHz)
Minimum input arrival time before clock: 4.829ns

Maximum output required time after clock: 4.575ns

Maximum combinational path delay: No path found

Selected Device : 2v2000ff896-6

Number of Slices: 945 outof 10752 8%
Number of Slice Flip Flops: 402 outof 21504 1%
Number of 4 input LUTs: 1785 outof 21504 8%
Number of bonded IOBs: 284 outof 624 45%
Number of GCLKs: 1 outof 16 6%

Fig 5.10 Synthesis report for the variable-output-rate architecture

54

Timing Summary:

Speed Grade: -6

Clock to Setup on destination clock clk

--------------- s T S e
| Src:Risel Src:Falll Src:Risel Src:Falll

Source Clock IDest:RiselDest:RiselDest:FalllDest:Falll

Device utilization summary:

Number of External IOBs 285 outof 624 45%
Number of LOCed External IOBs 0 outof 285 0%
Number of SLICEs 989 outof 10752 9%
Number of BUFGMUXs 1 outof 16 6%

Fig 5.11 P&R report fotthe Variable-output-rate architecture

5.2 IFFT

Continuing the discussion in chapter 4, we implement IFFT on FPGA to enhance

performance of the IMDCT.

5.2.1 IFFT Architecture

We can compare several FFT hardware architectures [18], shown in Table 5.2. The SDF
(single-path delay feedback) means to input one complex data in one clock cycle, then put the
input data into a series of DFF (delay flip/flop) to wait for the appropriate time. Then we
process the input data which are the source data from the same butterfly in the data flow
diagram. The MDC (multi-path delay commutator) means to input two complex data which is
the source of the same butterfly in the data flow diagram in one clock cycle. These two data

can be processed in one cycle, but it needs more hardware resources. To summary, the SDF

55

architecture demands fewer registers and arithmetic function units, but the MDC architecture

has less latency. We will use the radix-2° SDF architecture of our IFFT.

Number of Number of Number of

Complex Complex Complex

Multipliers Adders Registers
Radix-2 SDF logzN-2 2 logzN N-1
Radix-4 SDF 1/2 log,N-1 4 logzN N-1
Radix-8 SDF 1/3 logaN-1| (8+2t/3) logzN N-1
Radix-22 SDF 1/2 logaN-1 2 logzN N-1
Radix-2> SDF 1/3 logaN-1 (2+t/3) logzN N-1
Radix-2 MDC logoN-2 2 logzN 1.5 N-2
Radix-4 MDC 3/2 log,N-3 4 logzN 2.5 N-4
Radix-8 MDC 7/3 logaN-7 (8+2t/3) logzN 4.5 N-8
Radix-2? MDC logaN-2 2 logzN 1.5 N-2
Radix-2° MDC 2/3 logzN-2 (2+t/3) logzN 1.5 N-2

Table 5.2 Comparison of hardware requirements [18]

Because the data in PE is=always multiplier a factor of V2 / 2, so we can use several

shifters and adders to replace the multiplier. At first, we can see the binary representation of
the

V2/2=0.7071=0.10110101,

If we set the “twiddle multiply factor” be 256, then the binary representation can be
represented in fixed-point datatype by “10110101.” Then we can use five shifters and five
adders to replace one multiplier as Fig 5.12 shows the block diagram. In the Table 5.2, the “t”

represent that the “1” of the simplified multiplier used.

56

Y A, A, 4 A4
Shifter do <<7 Shifter do <<5 Shifter do <<4 Shifter do <<2 Shifter do <<0
Adder Adder
Adder

Adder

A 4

i Output /

Fig. 5.12 Block diagram’of shifter-adder multiplier

5.2.2 Quantization Noise Analysis

First, we want to analyze the ‘quantization nois¢ due to transforming the datatype from
floating-point to fixed-point. The original range of the twiddle factor is from —1 to 1, so we
need to scalar up the “twiddle multiplier” for integer representation. Also, we need to scalar
up the input data to the “scaling multiplier.” At the end, we generate 1000 sets of random
input data in the range from —5000 to 5000, and compute the output SNR for the IFFT. If an
overflow occurs, the SNR would drop down drastically. Therefore, we do not label the SNR
for the overflow codes.

There are two main differences between the FFT and the IFFT. The first one is the twiddle
factor is conjugate, and the second is the IFFT has to multiply a 1/N factor but the FFT does
not. If we multiply the 1/N factor at the last stage, the SNR would be better, but the effective
bit in the output data would be less. So we split the 1/N factor into multiple stage, and each
stage is only a multiplication of a factor of 1/2. Fig. 5.13 and 5.14 show the comparison of the
noise analysis. As the result, we choose “twiddle multiplier” to be 256, and the “scaling

multiplier” to be 1.

57

120 T T T T T

100 - 5

G—

0y —* * =
in)
=

o B0 —
=
i
e

401 —

—£- T=256, 3=1, 1/N in fanal stage
20 —— T=2Z56, 5=1/4, 1/M in fanal stage
—— T=Z5B, 5=1A86, 1/M in fanal stage
T=28E, 5=1, 1/2 in each stage
—— T=2E6, 3=1/4,1/2 in each stage
T=256, 5=1/16, 1/2 in each stage
I

I T
g 10 12 14 16 18 20
Coefficient bits (c)

Fig. 5.13 Quantization noise analysis for twiddle multiplier with scaling of 256

120 T T T T T
—
100
80 * ¥ *
= % % % % = % 4——F
in
=
o BOR =
=
o]
0
40+ -
—&- T=40595, S=1, 1/M in final stage
20+ —— T=40595, S=1/4, 1M in final stage H
—— T=40595, S=1/16, 1/M in final stage
T=4096, 5=1, 1/2 in each stage
—— T=4096, 5=1/4, 1/2 in each stage
T=4096, 3=1/16, 122 in each stage
0 | | 1 T I
a 10 12 14 16 18 20

Coefficient bits (c)

Fig. 5.14 Quantization noise analysis for twiddle multiplier with scaling of 4096

58

5.2.3 Radix-2% SDF IFFT Architecture

We use the radix-2®> SDF 512-point IFFT pipelined architecture as Fig. 5.15 shows. The
input data from the first one to the last one are put into the IFFT sequentially. Fig. 5.16 shows

the computational work for each PE.

DFF DFF DFF DFF DFF DFF DFF DFF DFF
[256}[128}[64} [32}[16} 4}[2}[1}
PEL —» PE2 | PE3»®-» PEL | PE2 || PE3 PEL o PE2 | PE3

1 r 1

Control Unit

@

.

>
>
—»
>

Fig. 5.15 Block diagram of radix2’ SDF 512-point IFFT pipelined architecture

x0 » AQ

x1 > A4

f
-
B, Y
SR R
o L\

VAN

x7

» A2

» A6

» A5

» A3

><:1
<
><:1

» A7

PE1 PE2 PE3

Fig. 5.16 Simplified data flow graph for each PE

59

PE1 has the architecture as Fig 5.17 shows. At the fist N/4 clock cycle, PE1 puts the DFF
output data to the PE1 output and put the input data to the DFF input. The next N/4 clock
cycle, PE1 multiply the DFF output data by j then put to the PE1 output and put the input data
to the DFF input. We can replace the multiplication by exchange the real part and the
imaginary part of data. At the last N/2 clock cycle, PE1 add the DFF output data to the input

data to the PE1 output, and subtract the DFF data from the input data to the DFF input.

~H ™
X]J

Controll Control2

DFF
Output

+

R

Input >

DFF
MUX / Input

!

Controll

+

Fig 5117 Block diagram of the PE1

PE2 has the architecture as Fig 5.18 shows. At the fist N/8 clock cycle, the PE2 put the
DFF output data to the PE2 output and put'the'input data to the DFF input. The next N/8 clock
cycle, PE2 multiply DFF output data by j then put to the PE2 output and put the input data to
the DFF input. We can replace the multiplication by exchange the real part and the imaginary
part of data. At the third N/8 clock cycle, PE2 add the DFF output data to the input data to the
PE2 output, and subtract the DFF output data from the input data to the DFF input. At the

forth N/8 clock cycle, PE2 add the DFF output data and the input data, then multiply
V2 / 2 (14j) to the PE2 output, and subtract the DFF output data from the input data to the

DFF input. At the fifth N/8 clock cycle, PE2 put the DFF output data to the output and put the
input data to the DFF input. At the sixth N/8§ clock cycle, PE2 multiply the DFF output data

by - V2 / 2 (1-j) to the output, and put input data to the DFF input. At the last N/4 clock cycle,

PE2 add the DFF output data to the input data to the PE2 output, and subtract the DFF output

data from the input data to the DFF input.

60

[
DFF

Output + >
4‘[MUX
—» X0.707(1-j) —»
Controll

L—» X0.707(1+j) —»
DFF
Input + MUX r Input

‘ Control2

!

Controll

Fig 5.18 Block diagram of the PE2

PE3 has the architecture as Fig 5.19 shows. At the fist N/8 clock cycle, the PE3 put the
DFF output data to the PE3 output and put the input data to the DFF input. At the next N/8
clock cycle, add the DFF output data to the input data to the PE3 output, and subtract the DFF

output data from the input data to the DFF input.

DFF
Output

+

MUX / Output

Controll

|

Controll

]

Input »

+

Fig 5.19 Block diagram of the PE3

In the beginning, we use a big MUX and control signals to select the twiddle factor. In the
Huffman decoding section in this chapter, we found that the complex control signal would
slow down the clock. In the IFFT, the complex control signals might not be synthesized in the
FPGA. So we try a simple way to implement the twiddle multiplier which does not to use the
complex control signals. We put the twiddle factor in a circular shift register in the order and
then access the first one at each clock cycle. Fig. 5.20 shows the circular shift register of

twiddle factor multiplier. In this way, we can avoid to use complex control signals.

61

wo w1 w2 W3 w4 | e W511

Input /Lv X 7 Output

Fig 5.20 Block diagram of the twiddle factor multiplier

The Fig. 5.21 shows the signal waveform of the IFFT. When the DSP sends a
“input_valid” signal to FPGA, it means the input data will start to transfer sequentially. The
FPGA sends the “output_valid” signal to DSP meaning the output data will start to transfer in

sequentially.

1 [L A O D
i

st

input_walid | \
datar [15:0] N N N N N R N R 1ff

data [15:0] 1

output_walid jf} [|
datar_out[15:0] 1] A O AR R
datai_out[15:0] fy [1] IO T T)T Ty T I T T Uy T T ey Ty

Fig 5.21 Waveférm-of theradix=2" 512-point IFFT

5.2.4 IFFT Implementation Result

The Fig. 5.22 and 5.23 show the synthesis report and the P&R repot of the IFFT. The
clock frequency on P&R can reach 93.14 MHz. It means it can process 95.9k long window
data in one second. We use a test sequence with 12 long window data. The comparison of

DSP implementation and FPGA implementation is shown in Table 5.3.

62

Timing Summary:

Speed Grade: -6

Minimum period: 11.941ns (Maximum Frequency: 83.745MHz)
Minimum input arrival time before clock: 2.099ns

Maximum output required time after clock: 4.994ns

Maximum combinational path delay: No path found

Selected Device : 2v6000ff1152-6

Number of Slices: 17045 outof 33792 50%
Number of Slice Flip Flops: 28295 outof 67584 41%
Number of 4 input LUTs: 2503 outof 67584 3%
Number of bonded IOBs: 67 outof 824 8%
Number of MULT18X18s: 54 outof 144 37%
Number of GCLKs: 1 outof 16 6%

Fig 5.22 Synthesis report of radix-2° 512-point IFFT

63

Timing Summary:

Speed Grade: -6

Clock to Setup on destination clock clk

--------------- Rt S s ST &
| Src:Risel Src:Falll Src:Risel Src:Falll

Source Clock [Dest:RiselDest:RiselDest:FalllDest:Falll

Design Summary

Logic Utilization:

Number of Slice Flip Flops: 28,267 outof 67,584 41%

Number of 4 input LUTs: 2,420 outof 67,584 3%
Logic Distribution:

Number of occupied Slices: 15,231 out of 33,792 45%

Number of Slices containing only related logic: 15,231 out of 15,231 100%

Number of Slices containing unrelated logic: 0 outof 15,231 0%

Total Number 4 input LUTs: 2,568 outof 67,584 3%

Number used as logic: 2,420

Number used as a route-thru: 148

Number of bonded IOBs: 68 outof 824 8%

IOB Flip Flops: 28

Number of MULT18X18s: 54 outof 144 37%

Number of GCLKSs: 1 outof 16 6%
Total equivalent gate count for design: 464,785

Fig 5.23 P&R report of radix-2° 512-point IFFT

Time Performance Ratio
DSP Implementation 4.0486 x 107 1
FPGA Implementation 1.0428 x 107 3.8825

Table 5.3 The performance comparison of DSP and FPGA implementation

64

5.3 Implementation on DSP/FPGA

We have implemented and optimized MPEG-4 AAC on TI C64x DSP and Xilinx

Virtex-1I FPGA. The optimized result has been shown in Table 5.4. We use a 0.95 second test

sequence to compare the performance of the DSP implementation and the DSP/FPGA

implementation. The overall speed is 8.17 times faster than the original version, and the

DSP/FPGA version can process 48-second audio data of in 1 second.

Huffman IMDCT Total Performance

Decoding Ratio
Original 0.03738622 | 0.11808099 | 0.17917694 1
DSP Modified 0.03738622 | 0.00938539 | 0.06560996 2.73
DSP/FPGA 0.00066370 | 0.00241736| 0.02192054 8.17

Table 5.4 Comparison of DSP.and DSP/FPGA implementation

65

66

Chapter 6

Conclusion and Future Work

We have implemented the MPEG-4 AAC decoder on DSP and FPGA together. In this
project, we speed up the IMDCT implementation on DSP implementation, and the modified
version is 503 times faster than the original version. And then we implement the Huffman
decoding and IFFT on FPGA. The implementation and optimized results are faster than the
DSP version as expected.

For the IMDCT calculation, we use radix-2° FFT algorithm in DSP implementation. Then,
we use fixed-point data type to present the input-data. In addition, we rearrange the data
calculation order in IFFT. Furthermore, we| use intrinsic functions to speed up the IFFT. The
test result is 503 times faster than the original versions The details of our design and results
can be found in chapter 4.

We use FPGA to implement the fixed-output-rate Huffman decoder. Also, we modify this
architecture to a more efficient variable-output-rate architecture. But the latter is in fact
slower than the former due to the complexity of the control signals, which create slow paths
on FPGA. The FPGA implementation is about 56 times faster than the DSP implementation.

We also use FPGA to implement IFFT. Similar to the DSP implementation, we use
radix-2® FFT algorithm for IFFT. The 512-point IFFT has a heavy computational load.
Therefore, we use three types of PE to perform these computations in order to reduce the chip
area. The FPGA implementation of IFFT is about 4 times faster than the fastest DSP version.
The details of our design and results can be found in chapter 5.

Due to the board hardware defect and/or system software bug, we are unable to run and
test our implementations on the DSP/FPGA baseboard yet. Thus, there are two important
targets in the future. First, the DSP implementation should be executed on the DSP baseboard,
and the streaming interface is needed to connect to the Host PC in real time execution. The

Host PC reads in the source data from the file in the memory, and then it transfers the data to

67

DSP through the streaming interface. After DSP has processed data, it transfers data back to
the Host PC. The second target is to integrate the FPGA implementation together with DSP to
demonstrate the overall system. DSP does the pre-processing and then it transfers the data to
FPGA through the streaming interface. After FPGA has processed the data, it transfers data
back to DSP.

68

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Bibliography

ISO/IEC JTC/SC29/WG11 MPEG, International Standard ISO/IEC 13818-7 “Advanced
Audio Coding”, 1997

ISO/IEC JTC/SC29/WG11 MPEG, International Standard ISO/IEC 14496-3 “Advanced
Audio Coding”, 1999

M. Bosi and et al., “ISO/IEC MPEG-2 Advanced Audio Coding”, JAES, Vol.45, No.10
Oct. 1997

M. Wolters and et al., “A ¢loser look into. MPEG-4 High Efficiency AAC”, AES 115th
Convention Paper, 2003

Innovative Integration, “Quixote User’s Manual”, Dec. 2003

Texas Instruments, “TMS320C6000 Programmer’s Guide”, SPRU198F, Feb. 2001

Texas Instruments, “TMS320C6000 CPU and Instruction Set Reference Guide”,
SPRU189F, Jan. 2000

Texas Instruments, “TMS320C6000 Peripherals Reference Guide”, SPRU190D, Mar.
2001

Texas Instruments, “TMS320C64x Technical Overview”, SPRU395B, Jan. 2001

[10] Xilinx, “Virtex-1I Platform FPGA User Guide”, UG002(v1.7) Feb. 2004

[11] K. S. Lee and et al., “A VLSI implementation of MPEG-2 AAC decoder system,” ASICs,

1999 AP-ASIC '99. The First IEEE Asia Pacific Conf., pp. 139-142, 23-25 Aug. 1999

[12] M. K. Rudberg and L. Wanhammer, “New approaches to high speed Huffman decoding”,

IEEE Int. Symp., Vol. 2, pp. 149-152, 12-15 May 1996

69

[13] M. K. Rudberg and L. Wanhammar, “High speed pipelined parallel Huffman decoding,”
IEEE Proc. Int. Symp., Vol. 3, pp.2080-2083, 9-12 Jun. 1997

[14] P. Duhamel and et al., “A fast algorithm for the implementation of filter banks based on
‘time domain aliasing cancellation’”, IEEE Trans. Acous., Speech, Signal Processing,
ICASSP, Vol. 3, pp. 2209-2212, Apr. 1991

[15] P. Duhamel and H. Hollmann, “Split-radix FFT algorithm for complex, real, and real
symmetric data,” IEEE Trans. Acous., Speech, Signal Processing, ICASSP, Vol. 10, pp.
784-787, Apr. 1985

[16] S. He and M. Torkelson, “A new approach to pipeline FFT processor”’, IEEE Proc. 10th
Int. Parallel Processing Symp., IPPS, Apr. 1996

[17] S. He and M. Torkelson, “Designing pipeline FFT processor for OFDM (de)modulation”,
IEEE Proc. URSI Int. Symp. Signals, Syst., Eléctron., pp. 257-262, Oct. 1998

[18] W. C. Yeh and C. W. Jeny“High speed and low: power split-radix FFT,” IEEE Trans.

Signal Processing, Vol. 51,"No. 3, Mar. 2003

70

Appendix A
N/4-point FFT Algorithm
for MDCT

We will describe the N/4-point complex FFT in detail in this appendix. We will show the

mathematical derivation to the algorithm. The details can be found in [14].

A.1 MDCT

The MDCT can be seen as a:-block of signals x,,(n) project on a set of cosine functions as

follow

Y, (k)= NZI x (Mh(N —1=n)cos(2z(2k +1)/2)(n +n,)/ N), (A.1)

n=0

where h(n) is a weighting function, N is the block size, and ng is a phase shift. It can be seen

that this transform is not invertible, since
Y (k=1)=-Y (N —k), (A.2)

only N/2 output points are linearly independent.

However, if two adjacent block x,(n) and x,,+1(n) overlap by N/2, the set of values x;,(n)

can be removed from two successive output sets Yy,.1(n) and Y,(n). Let
N-1

X, (n)= z Y, (k)cos((2x(2k +1)/2)(n+n,)/ N) for blocks m-1 and m. (A.3)
k=0

Then, x,(n) can be shown to be equal to
x,(n)=gmn+N/2)X, ,(n+N/2)+gn)X, (n) (A4)

this reconstruction is perfect when the windows are symmetric and identical, thus g(n)=h(n).

71

A.2 N/4-Point FFT

The antisymmetry of the FFT output coefficients allows that we only compute half the
input signals. In order to obtain a formula which is easy to handle, we have chosen to keep the

even coefficients. The odd ones are reduced by Eq. (A.2). Hence Eq. (A.1) is equivalent to

N-1
Yy =Y.y, cosQa(2n+1)(4k +1)/4N + (4k +)7/ 4), (A.5)

n=0

which can be rewritten as

Y, =(-)*+2/ 2% y. ((cosRm(2n + 1)(4k +1)/4N) —sin(27(2n + 1)(4k +1)/4N)) (A.6)

n=0

A symmetrical function in n and k can be obtained by performing the following
permutation, which is typical in the DCT case
V.= Vo n=0,---N/2-1 (A7)
V' = Yaons n=0,--N2-1 (A.8)

Here we will use two symbols:

c=cos2r(4n+1)(4k +1)/4N) (A.9)

s =sin(2z(4n+1)(4k +1)/4N) (A.10)

It can be shown that

N/2-1

Y, =(=Dfv2/2 Dy, c=s)+y", (—c—s) (A.11)
- N/2-1
Yornrn =D V272 D0y (e =)+ 3", (=c+5) (A.12)

n=0

If we define W4y as the 4Nth root of unity,

W,y =cos(2z/4N)+ jsin(2z/4N) (A.13)
Then Eq (A.11) and Eq. (A.12) can be grouped into a complex formula:
N/4-1
Yoeowsa + JYa = DWW Z((yvn =3 s) F I Y oy g DD k=0,--N/4-1
n=0

(A.14)

which is in the form of a modified complex DFT.

72

Appendix B
Radix-2° and Radix-2° FFT

We will describe the radix-2* and radix-2° FFT in detail in this appendix. We will discuss

the mathematical derivation to the algorithm. The details can be found in [16] and [17].

B.1 Radix-2° FFT

At first, we will see the analytical expression foi:the FFT is
N-1
X, =D x, Wy, k=0L,.,N -1, Eq.B.1
n=0

and the analytical expression forithe IEFF1s

N-1
X, :NZX" W, n=01N-1, Eq. B.2

The derivation of the radix-2* FFT algorithm starts with a substitution with a

3-dimensional index map. The index n and k in Eq. B.1 can be expressed as

N N
nz(?nl+zn2+n3),\, Eq.B.3
k =(k, +2k, +4k;), Eq. B4

When the above substitutions are applied to DFT definition, the definition can be

rewritten as

N
-1
Ldd N A N) (k420 +4K3)
X (ky + 2k, +4ky) =D x(—n, + n2+n) SUACEEE
n3=0n,=0n,=0 2
N

4 1 (ny+n3)k (ﬁn +n3)-(2ky+4k3)
ZZ{Bk‘(—n2+n3) Wyt ‘}.WN“ 7 Eq.BS
2

n3=0n,=0

where

73

leizl (%nz +ny) = x(%nz +n3)+(_1)k' 'x(%nz +n, +%) Eq. B.6

2
which is a general radix-2 butterfly

Now, the two twiddle factor in Eq. B.6 can be rewritten as
(%n2+n3)4(1\'1+2k2+4k3) gnz(kl+2k2)

_ a7 Nmoks 13 (ky+2ky) yr7 4nsks
N =Wy Wy Wy Wy

— (_j)nz(kl+2k2)WAr/l3(k|+2k2)W;]1n3k3 Eq B7

Observe that the last twiddle factor in the above Eq. B.5 can be rewritten.

—j2 —j2
T2 ks IR ks

4nzky __ N _ 4N _ nzks
W, " =e =e =W, Eq. B.8

4

Insert Eq. B.8 and Eq. B.7 in Eq. B.5, and expand the summation over n,. The result is a

DFT definition with four times shorter.

N
—-1
4
X (k, + 2k, +4ky) = D [H(ny, kyyk)W et Eq. B.9
ny=0 4

The result is that the butterflies have the following structure. The PE2 butterfly takes the
input from two PE1 butterflies.

N o (kg 42k, N 3N
H(ny,k,,k,) = [x(ny) + (=" x(n, +?)] + (=) [x(ny +Z) +(=1)" x(n, +T)]
Eq. B.10
These calculations are for first radix-2* butterfly, or components the PE1 and PE2
butterflies. The PE1 is the one represented by the formulas in brackets in Eq. B.10 and PE2 is

the outer computation in the same equation. The complete radix-2* algorithm is derived by

applying this procedure recursively.

B.2 Radix-2° FFT

Like radix-2* FFT algorithm, the derivation of the radix-2° FFT algorithm starts with a
substitution with a 4-dimensional index map. The index n and k in Eq. B.1 can be expressed

as

74

N N N
nz(?nl+1n2+§n3+n4),\, Eq. B.11

k =(k, +2k, +4k, +8k,) Eq. B.12

When the above substitutions are applied to DFT definition, the definition can be

rewritten as

Cldae N NN
X(k1+2k2+4k3+8k4):ZZZZx(?nI+Zn2+§n3+n4)-WA’}k Eq. B.13

ny,=0n;=0n,=0n,=0

is a general radix-2 butterfly

Now, the two twiddle factor in Eq-. B.13 can be rewritten as

N
(En1 +—n2+%n3+n4)(ky+2ky+4k;+8ky)

nk _ 2 4
Wy =W,
N N N
—nk; —(k;+2k —n3 (ky+2k,+4k
—w Sk k2 s (k4 2k 3)Wn4(k|+2k2+4k3+8k4)
N N N N
%n3(k,+2k2+4k3)

- (_l)n]k] (_j)nz(kl+2k2)WN W[\I]14(k1+2k2+4k3)W]§n4k4 Eq. B.14

Substitute Eq. B.14 into Eq. B. 13, and expand the summation with regard to index n;, n, and
n3. After simplification we have a set of 3-DFL-of length N/8.

N
——1
8
X (ky + 2k, + 4k, +8k,) = DT (g, ky, kg KW G280 s Eq. B.15
ny=0 8

There a third butterfly structure has the expression of

ﬁ(kl+2k2 +4ky) N
T(n,, k. k,,ky)=H , (n,,k,k,)+W,3 HN(n4+§,k,,k2) Eq. B.16

4 4

As in the Radix-2* FFT algorithm, Eq. B.6 and Eq. B.10 represent the first two columns of
butterflies with only trivial multiplications in the Radix-23 FFT algorithm. The third butterfly

contains a special twiddle factor

%(kﬁererztk3 A/

) 2 . (gt
Wy = (7(1— NPT Eq. B.17

75

76

27
|

HHE

PAF A LS ENA NS AR Lo E) RENRE A

RELE RRCE R S

2 8 B 1H ;ﬁ.l %?,«,EF[J’/‘Q{}\B &

PMPEG-4 i3 3 %75 & DSP/FPGA & &} cn@ M & ik it ;o A7 7§ Fl & 245

A SRR I AMEEFREE R -

SRR EFRZAPMETT cARL L= &

	國立交通大學
	電子工程學系 電子研究所碩士班
	碩士論文
	MPEG-4先進音訊編碼�在DSP/FPGA平台上的實現與最佳化
	MPEG-4 AAC Implementation�and Optimization on DSP/FPGA
	研究生：曾建統
	指導教授：杭學鳴 博士
	中華民國九十三年六月

	封面
	MPEG-4先進音訊編碼�在DSP/FPGA平台上的實現與最佳化
	MPEG-4 AAC Implementation�and Optimization on DSP/FPGA
	研究生：曾建統 Student：Chien-Tung Tseng
	指導教授：杭學鳴 博士 Advisor：Dr. Hsueh-Ming Hang
	國立交通大學
	電子工程學系 電子研究所碩士班
	碩士論文
	中華民國九十三年六月

	contents.pdf
	Contents

	tables.pdf
	List of Tables

	figures.pdf
	List of Figures

	contents.pdf
	Contents

	tables.pdf
	List of Tables

	figures.pdf
	List of Figures

