
國 立 交 通 大 學 
 

電子工程學系 電子研究所碩士班 

碩 士 論 文 
 
 
 

MPEG-4 先進音訊編碼 

在 DSP/FPGA 平台上的實現與最佳化 
 
 
 

MPEG-4 AAC Implementation 

and Optimization on DSP/FPGA 
 

 
 
 

研 究 生：曾建統 

指導教授：杭學鳴 博士 

 

中 華 民 國 九 十 三 年 六 月 



MPEG-4 先進音訊編碼 

在 DSP/FPGA 平台上的實現與最佳化 
 
 

MPEG-4 AAC Implementation 

and Optimization on DSP/FPGA 
 
 

研 究 生：曾建統                   S tudent：Chien-Tung Tseng 
 

指導教授：杭學鳴 博士              Advisor：Dr. Hsueh-Ming Hang 
 

國 立 交 通 大 學 

電子工程學系      電子研究所碩士班 

碩士論文  
 

A Thesis 
Submitted to Institute of Electronics 

College of Electrical Engineering and Computer Science 
National Chiao Tung University 

in Partial Fulfillment of Requirements 
for the Degree of 
Master of Science 

in 
Electronics Engineering 

June 2004 
Hsinchu, Taiwan, Republic of China 

 

中華民國九十三年六月 



MPEG-4 先進音訊編碼在 

DSP/FPGA 平台上的實現與最佳化 

 
學生：曾建統                                     指導教授：杭學鳴 博士 

 

國立交通大學  電子工程學系電子研究所碩士班 

 

摘要 

 

MPEG-4 先進音訊編碼(AAC)是由 ISO/IEC MPEG 所制訂的一套非常有效率的

音訊壓縮編碼標準。 

在本篇論文當中，我們首先統計 MPEG-4 先進音訊編碼在 DSP 上的執行情況，

發現霍夫曼解碼(Huffman decoding)和反修正離散餘弦轉換(IMDCT)所需要的時

脈週期總數為最多，因為針對反修正離散餘弦轉換在 DSP 上的實現作最佳化，同

時我們也希望利用 FPGA 來克服用 DSP 執行的瓶頸部分，所以將霍夫曼解碼以及

反修正離散餘弦轉換的一部份反快速傅立葉轉換(IFFT)放到 FPGA 實現。 

在 DSP 實現方面，我們針對 DSP 的架構使用運算量更少的演算法，使用適合

DSP 處理的資料型態，並使用 TI DSP 特殊指令來改寫程式，大幅提高其執行效

率，這個部分大約增加了 503 倍的速度。在 FPGA 實現方面，我們設計針對霍夫

曼解碼以及反快速傅立葉轉換的架構，並針對硬體架構設計來作調整，使其運算

效能提高，同時兼顧減少使用面積的考量。霍夫曼解碼大約比 DSP 的版本增加了

56 倍的速度，反快速傅立葉轉換大約較 DSP 最快的版本增加了 4 倍的速度。最

後並考慮 DSP 和 FPGA 設計之間的溝通問題。 

 

 

 i



MPEG-4 AAC Implementation 
and Optimization on DSP/FPGA 

 
Student: Chien-Tung Tseng                      Advisor:Dr. Hsueh-Ming Hang 
 

Department of Electronics Engineering 
Institute of Electronics 

National Chiao Tung University 
 

Abstract 
 

MPEG-4 AAC (Advanced Audio Coding) is an efficient audio coding standard. It 

is defined by the MPEG (Moving Pictures Experts Groups) committee, which is one 

of ISO (International Standard Organization) working groups. In this thesis, we first 

analyze the computational complexity of MPEG-4 AAC decoder program. We found 

that the Huffman decoding and the IMDCT (inverse modified discrete cosine 

transform) require the most clock cycles to execute on DSP. Hence, we optimize the 

IMDCT codes on DSP. In addition, we use FPGA to remove the bottleneck in DSP 

execution. Thus, we implement the Huffman decoding and the inverse fast Fourier 

transform), which is a part of IMDCT, on FPGA. 

In order to speed up the AAC decoder on DSP, we need to choose appropriate 

algorithms for DSP implementation. Thus, appropriate data types are chosen to 

present the data. Furthermore, we use the TI (Texas Instruments) DSP intrinsic 

functions to increase the DSP execution efficiency. The modified version of IMDCT 

is about 503 times faster than the original version. For the FPGA implementation, we 

adopt and modify the existing architectures for Huffman decoding and 512-point IFFT. 

In addition, we use VLSI design techniques to improve the performance and reduce 

the chip area in FPGA implementation. The FPGA implementation of Huffman 

decoding and 512-point IFFT is about 56 and 4 times faster than the corresponding 

DSP implementations, respectively. Also, in this project, we design and implement the 

communication interface between DSP and FPGA. 

 ii



誌謝 
 

本論文承蒙恩師杭學鳴教授細心的指導與教誨，方得以順利完成。在研究所

生涯的兩年中，杭教授不僅在學術研究上給予學生指導，在研究態度亦給許相當

多的建議，在此對杭教授獻上最大的感謝之意。 

此外，感謝所有通訊電子暨訊號處理實驗室的成員，包括多位師長、同學、

學長姊和學弟妹們，特別是楊政翰、陳繼大、吳俊榮、蔡家揚學長給予我在研究

過程中的指導與建議。同時也要感謝實驗室同窗仰哲、明瑋、子瀚、筱晴、盈縈、

明哲、宗書在遇到困難的時候能夠互相討論和砥礪，並希望接下我們工作的學弟

盈閩、志楹、昱昇學弟能傳承實驗室認真融洽的氣氛，在學術上有所貢獻。感謝

我的女朋友佳韻，在生活中給予我的支持與鼓勵，使我在艱難的研究過程中，能

夠保持身心的健康與平衡。 

謝謝養育我多年的父親及母親，還有我的弟弟，沒有你們的栽培與鼓勵，我

無法有今天的成就。 

 要感謝的人很多，無法一一列述，謹以這篇論文，獻給全部讓我在研究所生

涯中難忘的人，謝謝。 

 

 曾建統 

民國九十三年六月 於新竹 

 

 

 iii



Contents 

 
 
Chapter 1 Introduction ................................................................................................. 1 
Chapter 2 MPEG-2/4 Advanced Audio Coding.............................................................3  

2.1 MPEG-2 AAC..................................................................................................3  
2.1.1 Gain Control..........................................................................................4  
2.1.2 Filterbank ..............................................................................................5  
2.1.3 Temporal Noise Shaping (TNS)............................................................7  
2.1.4 Intensity Coupling.................................................................................8  
2.1.5 Prediction ............................................................................................ 8 
2.1.6 Middle/Side (M/S) Tool ........................................................................9  
2.1.7 Scalefactors .........................................................................................10  
2.1.8 Quantization........................................................................................10  
2.1.9 Noiseless Coding ................................................................................10  

2.2 MPEG-4 AAC Version 1................................................................................11  
2.2.1 Long Term Prediction (LTP)............................................................. 12 
2.2.2 Perceptual Noise Substitution (PNS) ..................................................13  
2.2.3 TwinVQ...............................................................................................14  

2.3 MPEG-4 AAC Version 2................................................................................15  
2.3.1 Error Robustness.................................................................................15  
2.3.2 Bit Slice Arithmetic Coding (BSAC)..................................................16  
2.3.3 Low-Delay Audio Coding...................................................................17 

2.4 MPEG-4 AAC Version 3................................................................................17  
Chapter 3 Introduction to DSP/FPGA .........................................................................19  

3.1 DSP Baseboard ..............................................................................................19  
3.2 DSP Chip...................................................................................................... 20 

3.2.1 Central Processing Unit (CPU)......................................................... 21 
3.2.2 Data Path.............................................................................................23  
3.2.3 Pipeline Operation ............................................................................ 25 
3.2.4 Internal Memory .................................................................................26  
3.2.5 External Memory and Peripheral Options ........................................ 26 

3.3 FPGA Chip................................................................................................... 27 

 iv



3.4 Data Transmission Mechanism.................................................................... 28 
3.4.1 Message Interface ...............................................................................29  
3.4.2 Streaming Interface........................................................................... 29 

Chapter 4 MPEG-4 AAC Decoder Implementation and Optimization on DSP ........ 31 
4.1 Profile on DSP ............................................................................................. 31 
4.2 Optimizing C/C++ Code.............................................................................. 32 

4.2.1 Fixed-point Coding ........................................................................... 32 
4.2.2 Using Intrinsic Functions.................................................................. 33 
4.2.3 Packet Data Processing ..................................................................... 33 
4.2.4 Loop Unrolling and Software Pipelining.......................................... 34 
4.2.5 Linear Assembly and Assembly........................................................ 34 

4.3 Huffman Decoding....................................................................................... 35 
4.4 IMDCT......................................................................................................... 36 

4.4.1 N/4-point FFT Algorithm for MDCT ............................................... 37 
4.4.2 Radix-23 FFT .................................................................................... 39 
4.4.3 Implementation of IMDCT with Radix-2 IFFT..................................41  
4.4.4 Implementation of IMDCT with Radix-23 IFFT .............................. 41 
4.4.5 Modifying of the Data Calculation Order......................................... 42 
4.4.6 Using Intrinsic Functions.................................................................. 43 
4.4.7 IMDCT Implementation Results....................................................... 44 

4.5 Implementation on DSP............................................................................... 45 
Chapter 5 MPEG-4 AAC Implementation and Optimization on DSP/FPGA ........... 47 

5.1 Huffman Decoding....................................................................................... 47 
5.1.1 Integration Consideration.................................................................. 47 
5.1.2 Fixed-output-rate Architecture.......................................................... 49 
5.1.3 Fixed-output-rate Architecture Implementatiopn Result .................. 51 
5.1.4 Variable-output-rate Architecture...................................................... 52 
5.1.5 Variable-output-rate Architecture Implementation Result ................ 54 

5.2 IFFT ............................................................................................................. 55 
5.2.1 IFFT Architecture.............................................................................. 55 
5.2.2 Quantization Noise Analysis............................................................. 57 
5.2.3 Radix-23 SDF SDF IFFT Architecture.............................................. 59 
5.2.4 IFFT Implementation Result............................................................. 62 

5.3 Implementation on DSP/FPGA.................................................................... 65 
Chapter 6 Conclusions and Future Work .....................................................................67  
Bibliography ................................................................................................................69  
Appendix A N/4-point FFT Algorithm for MDCT .................................................... 71 
Appendix B Radix-22 and Radix-23 FFT................................................................... 75 

 v



List of Tables 

 
 
Table 4.1 Profile of AAC decoding on C64x DSP..................................................... 32 
Table 4.2 Processing time on the C64x DSP with different datatypes....................... 33 
Table 4.3 Comparison of computational load of FFT................................................ 40 
Table 4.4 DSP implementation result of different datatypes ..................................... 41 
Table 4.5 SNR of IMDCT of different datatypes....................................................... 41 
Table 4.6 DSP implementation result of different datatypes ..................................... 42 
Table 4.7 SNR of IMDCT of different datatypes....................................................... 42 
Table 4.8 DSP implementation results of the modified data calculation order.......... 42 
Table 4.9 DSP implementation results of using intrinsic functions ........................... 44 
Table 4.10 DSP implementation results of IMDCT.....................................................45  
Table 4.11 Comparison of modification IMDCT and IMDCT with TI IFFT library  45 
Table 4.12 Comparison of original and the optimized performance ......................... 46 
Table 4.13 The ODG of test sequence “guitar” ...........................................................46  
Table 4.14 The ODG of test sequence “eddie_rabbitt”................................................46  
Table 5.1 The performance Comparison of DSP and FPGA implementation ........... 52 
Table 5.2 Comparison of hardware requirements ...................................................... 56 
Table 5.3 The performance comparison of DSP and FPGA implementation ............ 64 
Table 5.4 Implementation on DSP/FPGA.................................................................. 65 
 
 

 vi



List of Figures 

 
 
Fig. 2.1 Block diagram for MPEG-2 AAC encoder..................................................... 4 
Fig. 2.2 Block diagram of gain control tool for encoder ............................................. 5 
Fig. 2.3 Window shape adaptation process.................................................................. 6 
Fig. 2.4 Block switching during transient signal conditions........................................ 7 
Fig. 2.5 Pre-echo distortion ........................................................................................ 7 
Fig. 2.6 Prediction tool for one scalefactor band ......................................................... 9 
Fig. 2.7 Block diagram of MPEG-4 GA encoder....................................................... 12 
Fig. 2.8 LTP in the MPEG-4 General Audio encoder ................................................ 13 
Fig. 2.9 TwinVQ quantization scheme ...................................................................... 15 
Fig. 3.1 Block Diagram of Quixote ........................................................................... 20 
Fig. 3.2 Block diagram of TMS320C6x DSP ..............................................................21  
Fig. 3.3 TMS320C64x CPU Data Path........................................................................23  
Fig. 3.4 Functional Units and Operations Performed ................................................ 24 
Fig. 3.5 Functional Units and Operations Performed (Cont.).................................... 25 
Fig. 3.6 General Slice Diagram....................................................................................28 
Fig. 4.1 Intrinsic functions of the TI C6000 series DSP (Part.) ................................. 33 
Fig. 4.2 Sequential model of Huffman decoder ......................................................... 35 
Fig. 4.3 Parallel model of Huffman decoder.............................................................. 36 
Fig. 4.4 Fast MDCT algorithm .................................................................................. 38 
Fig. 4.5 Fast IMDCT algorithm ................................................................................. 39 
Fig. 4.6 Butterflies for 8-point radix-2 FFT............................................................... 40 
Fig. 4.7 Butterflies for a radix-23 FFT PE ................................................................. 40 
Fig. 4.8 Simplified data flow graph for 8-point radix-23 FFT ................................... 40 
Fig. 4.9 Comparison of the data calculation order..................................................... 42 
Fig. 4.10 Intrinsic functions we used ......................................................................... 44 
Fig. 4.11 TI IFFT library............................................................................................ 45 
Fig. 5.1 Flow diagram of MPEG-4 AAC Huffman decoding.................................... 48 
Fig. 5.2 Block diagram of DSP/FPGA integrated Huffman decoding....................... 49 
Fig. 5.3 Block diagram of fixed-output-rate architecture ............................................50  
Fig. 5.4 Output Buffer of code index table ..................................................................50  

 vii



Fig. 5.5 Waveform of the fixed-output-rate architecture ........................................... 51 
Fig. 5.6 Synthesis report of the fixed-output-rate architecture .................................. 51 
Fig. 5.7 P&R report of the fixed-output-rate architecture ......................................... 52 
Fig. 5.8 Block diagram of the variable-output-rate architecture................................ 53 
Fig. 5.9 Comparison of the waveform of the two architectures................................. 53 
Fig. 5.10 Synthesis report for the variable-output-rate architecture .......................... 54 
Fig. 5.11 P&R report for the variable-output-rate architecture.................................. 55 
Fig. 5.12 Block diagram of shifter-adder multiplier .................................................. 57 
Fig. 5.13 Quantization noise analysis of twiddle multiplier is 256 ........................... 58 
Fig. 5.14 Quantization noise analysis of twiddle multiplier is 4096 ...........................58  
Fig. 5.15 Block diagram of radix23 SDF 512-point IFFT pipelined architecture...... 59 
Fig. 5.16 Simplified data flow graph for each PE...................................................... 59 
Fig. 5.17 Block diagram of the PE1........................................................................... 60 
Fig. 5.18 Block diagram of the PE2.............................................................................61  
Fig. 5.19 Block diagram of the PE3.............................................................................61  
Fig. 5.20 Block diagram of the twiddle factor multiplier ............................................62  
Fig. 5.21 Waveform of the radix-23 512-point IFFT....................................................62  
Fig. 5.22 Synthesis report of radix-23 512-point IFFT............................................... 63 
Fig. 5.23 P&R report of radix-23 512-point IFFT...................................................... 64 
 
 

 viii



 1 

Chapter 1 

Introduction 

 

 

MPEG stands for ISO “Moving Pictures Experts Groups.” It is a group working under the 

directives of the International Standard Organization (ISO) and the International 

Electro-technical Commission (IEC). This group work concentrates on defining the standards 

for coding moving pictures, audio and related data. 

The MPEG-4 AAC (Advanced Audio Coding) standard is a very efficient audio coding 

standard at the moment. Similar to many other audio coding schemes, MPEG-4 AAC 

compresses audio data by removing the redundancy among samples. In addition, it includes 

several tools to enhance the coding performance, temporal noise shaping (TNS), perceptual 

noise substitution (PNS), spectral band replication (SBR) and others. Hence, the MPEG-4 

AAC standard can compress audio data at high quality with high compression efficiency. 

We implement the MPEG-4 AAC encoder and decoder on a DSP processor. Some of the 

MPEG-4 AAC tools’ efficiencies are limited by the data processing mechanism of the DSP 

processors. In this project, we try to use VLSI (very large scale integration) design concept to 

improve the implementation. The idea is based on the SoC (System on a Chip) methodology. 

We thus adopt the DSP/FPGA (Digital Signal Processor/Field Programmable Gate Array) 

platform to implement MPEG-4 AAC encoder and decoder. The DSP baseboard is made by 

Innovative Integration's Quixote. It houses a Texas Instruments' TMS320C6416 DSP and a 

Xilinx Virtex-II FPGA. We also need the communication interface provided by the DSP 

baseboard manufacture. This thesis will describe the implementation and optimization of an 

AAC decoder on the DSP and on the FPGA. 

 The organization of the thesis is as follows. In chapter 2, we describe the operations of 

MPEG-2 AAC and MPEG-4 AAC. Then, in chapter 3, we describe the DSP/FPGA 

environment. In chapter 4, we speed up the decoder process on DSP. In chapter 5, we include 



 2 

FPGA for implementing Huffman decoding and IFFT to improve the overload performance. 

At the end, we give a conclusion and future work of our system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3 

 

Chapter 2 

MPEG-2/4  

Advanced Audio Coding 

 

 

In this chapter, we will briefly describe the MPEG-2/4 AAC (Advanced Audio Coding) 

operating mechanism. Details can be found in [1] and [2] respectively. 

 

 

2.1  MPEG-2 AAC 
In 1994, a MPEG-2 audio standardization committee defined a high quality multi-channel 

standard without MPEG-1 backward compatiblility. It was the beginning of the development 

of “MPEG-2 AAC.” The aim of MPEG-2 AAC was to reach “indistinguishable” audio quality 

at data rate of 384 kbps or lower for five full-bandwidth channel audio signals as specified by 

the ITU-R (International Telecommunication Union, Radio-communication Bureau). Testing 

result showed that MPEG-2 AAC needed 320 kbps to achieve the ITU-R quality requirements. 

This result showed that MPEG-2 AAC satisfied the ITU-R standard, and then MPEG-2 AAC 

was finalized in 1997. 

Like most digital audio coding schemes, MPEG-2 AAC algorithm compresses audio 

signals by removing the redundancy between samples and the irrelevant audio signals. We can 

use time-frequency analysis for removing the redundancy between samples, and make use of 

the signal masking properties of human hearing system to remove irrelevant audio signals. In 

order to allow tradeoff between compression the audio quality, the memory requirement and 



 4 

the processing power requirement, the MPEG-2 AAC system offers three profiles: main 

profile, low-complexity (LC) profile, and scalable sampling rate (SSR) profile. Fig 2.1 gives 

an overview of a MPEG-2 AAC encoder block diagram. We will describe each tool briefly in 

this section. 

 

Fig. 2.1 Block diagram for MPEG-2 AAC encoder [1] 

 

2.1.1 Gain Control 

The gain control tool receives the time-domain signals, and outputs gain control data and 

signal whose length is equal of the modified discrete cosine transform (MDCT) window. Fig 

2.2 shows the block diagram for the tool. This tool consists of a polyphase quadrature 

filterbank (PQF), gain detectors and gain modifiers. The PQF divided input signals into four 

equal bandwidth frequency bands. The gain detectors produce the gain control data which 

satisfies the bitstream syntax. The gain modifiers control the gain of each signal band. The 



 5 

gain control tool can be applied to each of four bands independently. 

The tool is only available for the SSR profile because of the features of SSR profile. If we 

need lower bandwidth for output signals, lower sampling rate signals can be obtained by 

draping the signal from the upper bands of the PQF. The advantage of this scalability is that 

the decoder complexity can be reduced as the output bandwidth is reduced. 

 

 

Fig. 2.2 Block diagram of gain control tool for encoder [2] 
 

2.1.2 Filterbank 

The filterbank tool converts the time-domain signals into a time-frequency representation. 

This conversion is done by a MDCT (modified discrete cosine transform), which employs 

TDAC (time-domain aliasing cancellation) technique. 

In the encoder, this filterbank takes in a block of time samples, modulates them by an 

appropriate window function, and performs the MDCT to ensure good frequency selectivity. 

Each block of input samples is overlapped by 50% with the immediately preceding block and 

the following block in order to reduce the boundary effect. Hence in the decoder, adjacent 

blocks of samples are overlapped and added after inverse MDCT (IMDCT). 

The mathematical expression for the MDCT is 

 
( ) 1

2
,...,1,0,

2
12

cos2 0

1

0
,, −=�

�

�
�
�

�
�
�

	


�

� ++= 

−

=

N
kknn

N
xX

N

n
niki

π



 6 

                (2.1) 

The mathematical expression of the IMDCT is 

 
                (2.2) 
where 

n = sample index 
 N = transform block length 
 i = block index 
 k = coefficient index 
 n0 = (N/2+1)/2 

 

Since the window function has a significant effect on the filterbank frequency response, 

the filterbank has been designed to allow a change in window length and shape to adapt to 

input signal condition. There are two different lengths and two different shapes for window 

selection. Relatively short windows suit to signals in transient, and the relatively long ones 

suit to signals in steady-state. The sine windows are narrow passband selective, and the other 

choices Kaiser-Bessel Derived (KBD) windows are strong stopband attenuated. 

 

 

Fig. 2.3 Window shape adaptation process [2] 
 

( ) 1,...,1,0,
2
12

cos
2

0

12/

0
,, −=�

�

�
�
�

�
�
�

	


�

� ++= 

−

=
Nnknn

N
X

N
x

N

k
kini

π



 7 

 

Fig. 2.4 Block switching during transient signal conditions [2] 
 

2.1.3 Temporal Noise Shaping (TNS) 

The temporal noise shape (TNS) is used to control the temporal shape of the quantization 

noise within each window of the transform. This is done by applying a filtering process to 

parts of the spectral data of each channel. 

To handle the transient and pitched signals is a major challenge in audio coding. This is 

due to the problem of maintaining the masking effect in the reproduced audio signals. 

Because of the temporal mismatch between masking threshold and quantization noise, the 

phenomenon is called by “pre-echo” problem. Fig 2.5 illustrates this phenomenon, the left 

figure shows the original temporal signals in a window, and the right figure shows the 

quantized spectral coefficients transform to the time domain. 

 

Fig. 2.5 Pre-echo distortion [3] 



 8 

 

The duality between time domain and frequency domain is used in predictive coding 

techniques. The signals with an “unflat” spectrum can be coded efficiently either by directly 

coding the spectral coefficients or predictive coding the time domain signals. According to the 

duality property, the signals with an “unfla” time structure, like transient signals, can be coded 

efficiently either by directly coding time-domain samples or applying predictive coding to the 

spectral coefficients. The TNS tool uses prediction mechanism over frequency-domain to 

enhance its temporal resolution. 

In addition, if predictive coding is applied to spectral coefficients, the temporal noise will 

adapt to the temporal signal when decoded. Hence the quantization noise is put into the 

original signal, and in this way, the problem of temporal noise in transient or pitched signals 

can be avoided. 

 

2.1.4 Intensity Coupling 

The human hearing system is sensitive to amplitude and phase of low frequency signals. It 

also sensitive to amplitude of high frequency signals, but insensitive to phase. The intensity 

coupling tool is used to exploit irrelevance between high frequency signals of each pair of 

channels. It adds high frequency signals from left and right channel and multiplies to a factor 

to rescale the result. The intensity signals are used to replace the corresponding left channel 

high frequency signals, and corresponding signals of the right channel are set to zero. 

 

2.1.5 Prediction Tool 

Prediction tool is used for improved redundancy reduction in spectral coefficients. If the 

spectral coefficients are stationary between adjacent frames, the prediction tool will estimate 

the possible coefficients in the later blocks by coefficients in the prior ones. Then encode the 

difference part of these spectral coefficients, the require bits to code this coefficients will be 

less. If the signals are nonstationary, the short window in the filterbank will be selected, hence 

prediction tool is only used for long windows. 



 9 

For each channel, there is one predictor corresponding to the spectral component from the 

spectral decomposition of the filterbank. The predictor exploits the autocorrelation between 

the spectral component values of consecutive frames. The predictor coefficients are calculated 

from preceding quantized spectral components in the encoder. In this case, the spectral 

component can be recovered in the decoder without other predictor coefficients. A 

second-order backward-adaptive lattice structure predictor is working on the spectral 

component values of the two preceding frames. The predictor parameters are adapted to the 

current signal statistics on a frame-by-frame base, using an LMS-based adaptation algorithm. 

If prediction is activated, the quantizer is fed with a prediction error instead of the original 

spectral component, resulting in a higher coding efficiency. 

 

 

Fig. 2.6 Prediction tool for one scalefactor band [2] 

2.1.6 Middle/Side Tool 

There are two different choices to code each pair of the multi-channel signals, the original 

left/right (L/R) signals or the transformed middle/side (M/S) signals. If the high correlated left 

and right signals could be summed, the require bits to code this signals will be less. Hence in 

the encoder, the M/S tool will operate when the left and right signals’ correlation is higher 

than a threshold. The M/S tool transform the L/R signals to M/S signals, where the middle 

signal equals to the sum of left and right signals, and the side signal equals to the difference of 

left and right ones.  

 



 10 

2.1.7 Scalefactors 

The human hearing system can be modeled as several over-lapped bandpass filters. With 

higher central frequency, each filter has larger bandwidth. These bandpass filters are called 

critical bands. The scalefactors tool divides the spectral coefficients into groups, called 

scalefactor bands, to imitate critical bands. Each scalefactor band has a scalefactor, and all the 

spectral coefficients in the scalefactor band are divided by this corresponding scalefactor. By 

adjusting the scalefactors, quantization noise can be modified to meet the bit-rate and 

distortion constraints. 

2.1.8 Quantization 

While all previous tools perform some kind of preprocessing of audio data, the real 

bit-rate reduction is achieved by the quantization tool. On the one hand, we want to quantize 

the spectral coefficients in such a way that quantization noise under the masking threshold; on 

the other hand, we want to limit the number of bits requested to code this quantized spectral 

coefficients. 

There is no standardized strategy for gaining optimum quantization. One important issue 

is the tuning between the psychoacoustic model and the quantization process. The main 

advantage of nonuniform quantizer is the built-in noise shaping depending on the spectral 

coefficient amplitude. The increase of the signal-to-noise ratio with rising signal energy is 

much lower values than in a linear quantizer.  

 

2.1.9 Noiseless Coding 

The noiseless coding is done via clipping spectral coefficients, using maximum number of 

sections in preliminary Huffman coding, and then merging section to achieve lowest bit count. 

The input to the noiseless coding tool is a set of 1024 quantized spectral coefficients. Up to 

four spectral coefficients can be coded separately as magnitude in excess of one, with value of 

±1 left in the quantized coefficients array to carry the sign. The clipped spectral coefficients 

are coded as integer magnitude and an offset from the base of the coefficient array to mark 



 11 

their location. Since the side information for carrying the clipped spectral coefficients costs 

some bits, this compression is applied only if it results in a net saving of bits. 

The Huffman coding is used to represent n-tuples of quantized spectral coefficients, with 

12 codebooks can be used. The spectral coefficients within n-tuples are ordered from low 

frequency to high frequency and the n-tuple size can be two or four spectral coefficients. Each 

codebook specifies the maximum absolute value that it can represent and the n-tuple size. 

Two codebooks are available for each maximum absolute value, and represent two distinct 

probability distributions. Most codebooks represent unsigned values in order to save 

codebook storage. Sign bits of nonzero coefficients are appended to the codeword. 

 

 

2.2  MPEG-4 AAC Version 1 
MPEG-4 AAC Version 1 was approved in 1998 and published in 1999. It has all the tools 

of MPEG-2 AAC. It includes additional tools such as the long term predictor (LTP) tool, 

perceptual noise substitution (PNS) tool and transform-domain weighted interlaced vector 

quantization (TwinVQ) tool. The TwinVQ tool is an alternative tool for the MPEG-4 AAC 

quantization tool and noiseless coding tool. This new scheme which combined AAC with 

TwinVQ is officially called "General Audio (GA)." We will introduce these new tools in this 

section. 



 12 

 

Fig. 2.7 Block diagram of MPEG-4 GA encoder [2] 

 

2.2.1 Long Term Prediction 

The long term prediction (LTP) tool uses to exploit the redundancy in the speech signal 

which is related to the signal periodicity as expressed by the speech pitch. In speech coding, 

the sounds are produced in a periodical way so that the pitch phenomenon is obvious. Such 

phenomenon may exist in audio signals as well. 

 



 13 

 

Fig. 2.8 LTP in the MPEG-4 General Audio encoder [2] 

 

The LTP tool performs prediction to adjacent frames while MPEG-2 AAC prediction tool 

perform prediction on neighboring frequency components. The spectral coefficients transform 

back to the time-domain representation by inverse filterbank and the associated inverse TNS 

tool operations. Comparing the locally decoded signal to the input signal, the optimum pitch 

lag and gain factor can be determined. The difference between the predicted signal and the 

original signal then is calculated and compared with the original signal. One of them is 

selected to be coded on a scalefactor band basis depending on which alternative is more 

favorable. 

The LTP tool provides considerable coding gain for stationary harmonic signals as well as 

some non-harmonic tonal signals. Besides, the LTP tool is much less computational 

complexity than original prediction tool. 

 

 

2.2.2 Perceptual Noise Substitution 

The perceptual noise substitution (PNS) tool gives a very compact representation of 

noise-like signals. In this way, the PNS tool provides that increasing of the compression 

efficiency for some type of input signals. 



 14 

In the encoder, the noise-like component of the input signal is detected on a scalefactor 

band basis. If spectral coefficients in a scalefactor band are detected as noise-like signals, they 

will not be quantized and entropy coded as usual. The noise-like signals omit from the 

quantization and entropy coding process, but coded and transmitted a noise substitution flag 

and the total power of them. 

In the decoder, a pseudo noise signal with desired total power is inserted for the 

substituted spectral coefficients. This technique results in high compression efficiency since 

only a flag and the power information is coded and transmitted rather than whole spectral 

coefficients in the scalefactor band 

 

2.2.3 TwinVQ 

The TwinVQ tool is an alternative quantization/coding kernel. It is designed to provide 

good coding efficiency at very low bit-rate (16kbps or even lower to 6kbps). The TwinVQ 

kernel first normalizes the spectral coefficients to a specified range, and then the spectral 

coefficients are quantized by means of a weighted vector quantization process. 

The normalization process is carried out by several schemes such as linear predictive 

coding (LPC) spectral estimation, periodic component extraction, Bark-scale spectral 

estimation, and power estimation. As a result, the spectral coefficients are "flattened" and 

normalized across the frequency axis. 

The weighted vector quantization process is carried out by interleaving the normalized 

spectral coefficients and dividing them into sub-vectors for vector quantization. For each 

sub-vector, a weighted distortion measure is applied to the conjugate structure VQ which uses 

a pair of code books. Perceptual control of quantization noise is achieved in this way. The 

process is shown in Fig 2.9. 



 15 

 

Fig. 2.9 TwinVQ quantization scheme [2] 

 

 

2.3  MPEG-4 AAC Version 2 
MPEG-4 AAC Version 2 was finalized in 1999. Compared to MPEG-4 Version 1, Version 

2 adds several new tools in the standard. They are Error Robustness tool, Bit Slice Arithmetic 

Coding (BSAC) tool, Low Delay AAC (LD-AAC). The BSAC tool is for fine-grain bitrate 

scalability, and the LD-AAC for coding of general audio signals with low delay. We will 

introduce these new tools in this section. 

 

2.3.1 Error Robustness 

The Error Robustness tools provide improved performance on error-prone transmission 

channels. The two classes of tools are the Error Resilience (ER) tool and Error Protection (EP) 

tool. 

The ER tool reduces the perceived distortion of the decoded audio signal that is caused by 

corrupted bits in the bitstream. The following tools are provided to improve the error 

robustness for several parts of an AAC bitstream frame: Virtual CodeBook (VCB), Reversible 

Variable Length Coding (RVLC), and Huffman Codeword Reordering (HCR). These tools 



 16 

allow the application of advanced channel coding techniques, which are adapted to the special 

needs of the different coding tools. 

The EP tool provides Unequal Error Protection (UEP) for MPEG-4 Audio. UEP is an 

efficient method to improve the error robustness of source coding schemes. It is used by 

various speech and audio coding systems operating over error-prone channels such as mobile 

telephone networks or Digital Audio Broadcasting (DAB). The bits of the coded signal 

representation are first grouped into different classes according to their error sensitivity. Then 

error protection is individually applied to the different classes, giving better protection to 

more sensitive bits. 

 

2.3.2 Bit Slice Arithmetic Coding Tool 

The Bit-Sliced Arithmetic Coding (BSAC) tool provides efficient small step scalability for 

the GA coder. This tool is used in combination with the AAC coding tools and replaces the 

noiseless coding of the quantized spectral data and the scalefactors. The BSAC tool provides 

scalability in steps of 1 kbps per audio channel, which means 2 kbps steps for a stereo signal. 

One base layer bitstream and many small enhancement layer bitstreams are used. The base 

layer contains the general side information, specific side information for the first layer and the 

audio data of the first layer. The enhancement streams contain only the specific side 

information and audio data for the corresponding layer. 

To obtain fine step scalability, a bit-slicing scheme is applied to the quantized spectral data. 

First the quantized spectral coefficients are grouped into frequency bands. Each of group 

contains the quantized spectral coefficients in their binary representation. Then the bits of a 

group are processed in slices according to their significance. Thus all of the most significant 

bits (MSB) of the quantized spectral coefficients in each group are processed. Then these 

bit-slices are encoded by using an arithmetic coding scheme to obtain entropy coding with 

minimal redundancy. Various arithmetic coding models are provided to cover the different 

statistics of the bit-slices. 

The scheme assigns the bit-slices of the different frequency bands to the enhancement 

layers. Thus if the decoder processes more enhancement layers, quantized spectral 



 17 

coefficients are refined by providing more less significant bits (LSB), and the bandwidth is 

increased by providing bit-slices of the spectral coefficients in higher frequency bands. 

 

2.3.3 Low-Delay Audio Coding 

The MPEG-4 General Audio Coder provides very efficient coding of general audio signals 

at low bitrates. However it has an algorithmic delay of up to several 100ms and is thus not 

well suited for applications requiring low coding delay, such as real-time bi-directional 

communication. To enable coding of general audio signals with an algorithmic delay not 

exceeding 20 ms, MPEG-4 Version 2 specifies a Low-Delay Audio Coder which is derived 

from MPEG-2/4 Advanced Audio Coding (AAC). It operates at up to 48 kHz sampling rate 

and uses a frame length of 512 or 480 samples, compared to the 1024 or 960 samples used in 

standard MPEG-2/4 AAC. Also the size of the window used in the analysis and synthesis 

filterbank is reduced by a factor of 2. No block switching is used to avoid the “look-ahead” 

delay due to the block switching decision. To reduce pre-echo phenomenon in case of 

transient signals, window shape switching is provided instead. For non-transient parts of the 

signal a sine window is used, while a so-called low overlap window is used in case of 

transient signals. Use of the bit reservoir is minimized in the encoder in order to reach the 

desired target delay. As one extreme case, no bit reservoir is used at all. 

 

 

2.4  MPEG-4 AAC Version 3 
MPEG-4 AAC Version 3 was finalized in 2003. Like MPEG-4 Version2, Version 3 adds 

some new tools to increase the coding efficiency. The main tool is SBR (spectral band 

replication) tool for a bandwidth extension at low bitrates encodings. This result scheme is 

called High-Efficiency AAC (HE AAC). 

The SBR (spectral band replication) tool improves the performance of low bitrate audio 

by either increasing the audio bandwidth at a given bitrate or by improving coding efficiency 

at a given quality level. When the MPEG-4 AAC attaches to SBR tool, the encoders encode 



 18 

lower frequency bands only, and then the decoders reconstruct the higher frequency bands 

based on an analysis of the lower frequency bands. Some guidance information may be 

encoded in the bitstream at a very low bitrate to ensure the reconstructed signal accurate. The 

reconstruction is efficient for harmonic as well as for noise-like components and allows for 

proper shaping in the time domain as well as in the frequency domain. As a result, SBR tool 

allows a very large bandwidth audio coding at low bitrates. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 19 

Chapter 3 

Introduction to 

DSP/FPGA 

 

 

In our system, we will use Digital Signal Processor/Field Programmable Gate Array 

(DSP/FPGA) to implement MPEG-4 AAC encoder and decoder. The DSP baseboard is made 

by Innovative Integration's Quixote, which houses Texas Instruments' TMS320C6416 DSP 

and Xilinx Virtex-II FPGA. In this chapter, we will describe DSP baseboard, DSP chip and 

FPGA chip. At the end, we will introduce the data transmission between the Host PC and the 

DSP/FPGA 

 

 

3.1  DSP Baseboard 
Quixote combines one TMS320C6416 600MHz 32-bit fixed-point DSP with a Xilinx 

Virtex-II XC2V2000/6000 FPGA on the DSP baseboard. Utilizing the signal processing 

technology to provide processing flexibility, efficiency and deliver high performance. Quixote 

has 32MB SDRAM for use by DSP and 4 or 8Mbytes zero bus turnaround (ZBT) SBSRAM 

for use by FPGA. Developers can build complex signal processing systems by integrating 

these reusable logic designs with their specific application logic. 



 20 

 
Fig. 3.1 Block Diagram of Quixote [5] 

 

3.2  DSP Chip 
The TMS320C64x fixed-point DSP is using the VelociTI architecture. The VelociTI 

architecture of the C6000 platform of devices use advanced VLIW (very long instruction 

word) to achieve high performance through increased instruction-level parallelism, 

performing multiple instructions during a single cycle. Parallelism is the key to extremely 

high performance, taking the DSP well beyond the performance capabilities of traditional 

superscalar designs. VelociTI is a highly deterministic architecture, having few restrictions on 

how or when instructions are fetched, executed, or stored. It is this architectural flexibility that 

is the key to the breakthrough efficiency levels of the TMS320C6000 Optimizing C compiler. 

VelociTI advanced features include. 

 Instruction packing: reduced code size 
 All instructions can operate conditionally: flexibility of code 
 Variable-width instructions: flexibility of data types 
 Fully pipelined branches: zero-overhead branching 



 21 

 

 
Fig 3.2 Block diagram of TMS320C6x DSP [6] 

 

TMS320C6416 has internal memory includes a two-level cache architecture with 16 KB 

of L1 data cache, 16 KB of L1 program cache, and 1 MB L2 cache for data/program 

allocation. On-chip peripherals include two multi-channel buffered serial ports (McBSPs), 

two timers, a 16-bit host port interface (HPI), and 32-bit external memory interface (EMIF). 

Internal buses include a 32-bit program address bus, a 256-bit program data bus to 

accommodate eight 32-bit instructions, two 32-bit data address buses, two 64-bit data buses, 

and two 64-bit store data buses. With 32-bit address bus, the total memory space is 4 GB, 

including four external memory spaces: CE0, CE1, CE2, and CE3. We will introduce several 

important parts in this section. 

 

3.2.1 Central Processing Unit (CPU) 

Fig. 3.2 shows the CPU, and it contains 
 Program fetch unit 
 Instruction dispatch unit, advanced instruction packing 
 Instruction decode unit 
 Two data path, each with four functional units 
 64 32-bit registers 



 22 

 Control registers 
 Control logic 
 Test, emulation, and interrupt logic 

 

The program fetch, instruction dispatch, and instruction decode units can deliver up to 

eight 32-bit instructions to the functional units every CPU clock cycle. The processing of 

instructions occurs in each of the two data paths (A and B), each of which contains four 

functional units (.L, .S, .M, and .D) and 32 32-bit general-purpose registers. Fig. 3.3 shows 

the comparison of C62x/C67x with C64x CPU. 

 



 23 

3.2.2 Data Path 

 

Fig 3.3 TMS320C64x CPU Data Path [6] 
 

There are two general-purpose register files (A and B) in the C6000 data paths. The C64x 

DSP register is double the number of general-purpose registers that are in the C62x/C67x 

cores, with 32 32-bit registers (A0-A31 for file A and B0-B31 for file B). 

There are eight independent functional units divided into two data paths. Each path has a 

unit for multiplication operations (.M), for logical and arithmetic operations (.L), for branch, 

bit manipulation, and arithmetic operations (.S), and for loading/storing and arithmetic 



 24 

operations (.D). The .S and .L units are for arithmetic, logical, and branch instructions. All 

data transfers make use of the .D units. Two cross-paths (1x and 2x) allow functional units 

from one data path to access a 32-bit operand from the register file on the opposite side. It can 

be a maximum of two cross-path source reads per cycle. Fig. 3.4 and 3.5 show the functional 

unit and its operations. 

 

 
Fig. 3.4 Functional Units and Operations Performed [7] 



 25 

 
Fig. 3.5 Functional Units and Operations Performed (Cont.) [7] 

 
 

3.2.3 Pipeline Operation 

Pipelining is the key feature to get parallel instructions working properly, requiring careful 

timing. There are three stages of pipelining: program fetch, decode, and execute, and each 

stage contains several phases. We will describe the function of the three stages and their 

associated multiple phases in the section. 

The fetch stage is composed of four phases 

  PG: Program address generate 

  PS: Program address send 

  PW: Program address ready wait 

  PR: Program fetch packet receive 

During the PG phase, the program address is generated in the CPU. In the PS phase, the 

program address is sent to memory. In the PW phase, a memory read occurs. Finally, in the 

PR phase, the fetch packet is received at the CPU. 



 26 

 

The decode stage is composed of two phases. 

  DP: Instruction dispatch 

  DC: Instruction decode 

During the DP phase, the instructions in execute packet are assigned to the appropriate 

functional units. In the DC phase, the source registers, destination registers, and associated 

paths are decoded for the execution of the instructions in the functional units. 

 

The execute stage is composed of five phases. 

  E1: Single cycle instruction complete. 

  E2: Multiply instruction complete. 

  E3: Store instruction complete. 

  E4: Multiply extensions instruction complete. 

  E5: Load instruction complete. 

Different types of instructions require different numbers of these phases to complete their 

execution. These phases of the pipeline play an important role in your understanding the 

device state at CPU cycle boundaries.  

  

3.2.4 Internal Memory 

The C64x has a 32-bit, byte-addressable address space. Internal (on-chip) memory is 

organized in separate data and program spaces. When in external (off-chip) memory is used, 

these spaces are unified on most devices to a single memory space via the external memory 

interface (EMIF). The C64x has two 64-bit internal ports to access internal data memory, and 

a single port to access internal program memory, with an instruction-fetch width of 256 bits. 

 

3.2.5 External Memory and Peripheral Options 

The external memory and peripheral options of C6416 contain 

16 KB data L1 cache 



 27 

16 KB program L1 cache 

1M L2 cache 

64 EDMA channels 

3 32-bit timers 

 

 

3.3  FPGA 
The Xilinx Virtex-II FPGA is made by 0.15µ, 8-layer metal process; it offers logic 

performance in excess of 300MHz. We will introduce the FPGA logic in this section. 

Virtex-II XC2V2000 FPGA contains 

2M system gates 

56 x 48 CLB array (row x column) 

10752 slices 

24192 logic cells 

21504 CLB flip-flops 

336K maximum distributed RAM bits 

 

Virtex-II XC2V6000 FPGA contains 

6M system gates 

96 x 88 CLB array (row x column) 

33792 slices 

76032 logic cells 

675844 CLB flip-flops 

1056K maximum distributed RAM bits 

 

Configurable Logic Blocks (CLB) is a block of logic surrounded by routing resources. 

The functional elements are need to logic circuits. One CLB contains four slices; each slice 

contains two Logic Cells (LC); each LC includes a 4-input function generator, carry logic, 

and a storage element. 



 28 

 

 

Fig 3.6 General Slice Diagram [10] 
 

The synthesizer of the Xilinx FPGA is the Xilinx ISE 6.1. The simulation result was 

reference by the synthesizer report and the P&R report in the ISE. 

 

3.4  Data Transmission Mechanism 
In this section, we will describe the transmission mechanism between the Host PC and the 

DSP/FPGA. There are two data transmission mechanism for the DSP baseboard. That is 

message interface and the streaming interface. 

 



 29 

3.4.1 Message Interface 

The DSP and Host PC have a lower bandwidth communications link for sending 

commands or side information between host PC and target DSP. Software is provided to build 

a packet-based message system between the target DSP and the Host PC. A set of sixteen 

mailboxes in each direction to and from Host PC are shared with DSP to allow for an efficient 

message mechanism that complements the streaming interface. The maximum data rate is 56 

kbps, and the higher data rate requirements should use the streaming interface. 

 

3.4.2 Streaming Interface 

The primary streaming interface is based on a streaming model where logically data is an 

infinite stream between the source and destination. This model is more efficient because the 

signaling between the two parties in the transfer can be kept to a minimum and transfers can 

be buffered for maximum throughput. On the other hand, the streaming model has relatively 

high latency for a particular piece of data. This is because a data item may remain in internal 

buffering until subsequence data accumulates to allow for an efficient transfer. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 31 

Chapter 4 

MPEG-4 AAC Decoder 

Implementation and 

Optimization on DSP 

 

 

In this chapter, we will describe the MPEG-4 AAC implementation and optimization on 

DSP. We will first describe how to optimize the C/C++ code for DSP architecture, and then 

discuss how to optimize the functions for DSP execution. 

 

 

4.1  Profile of AAC on DSP 
We do the essential modification on the MPEG-4 AAC source C code, and then 

implement this modified code on DSP. We first optimize the most computational complexity 

parts of these modified codes. We profile this code by TI CCS profiler. The length of the test 

sequence is about 0.95 second, and the C64x DSP takes 0.18 second to decode this test 

sequence. Table 4.1 shows the profile result. We find that the IMDCT and the Huffman 

decoding require 66% and 21% of total clock cycle respectively. Hence, we optimize these 

two functions first. 

 

 

 

 



 32 

 

���������

	
����	��

� �
��
�������

����
� ���������� ����

���	�� ��������� ���

 �!!"����
��#��$� %%�&��&�� %��

�'(�)�
�
�� �%%����� ��

�*(� ������� ��

���
�)���� ��&��� ��

+�,
�)� �%�����&� �%�

Table 4.1 Profile of AAC decoding on C64x DSP 
 
 

4.2  Optimizing C/C++ Code 
In this section, we will describe several schemes that we can optimize our C/C++ code 

and reduce DSP execution time on the C64x DSP. These techniques include the use of 

fixed-point coding, instrinsic functions, packet data processing, loop unrolling and software 

pipelining, using linear assembly and the assembly. 

 

4.2.1 Fixed-point Coding 

The C64x DSP is a fixed-point processor, so it can do fixed-point processing only. 

Although the C64x DSP can simulate floating-point processing, it takes a lot of extra clock 

cycle to do the same job. Table 4.2 is the test results of C64x DSP processing time of 

assembly instructions “add” and “mul” for different datatypes. It is the processing time 

without data transfer between external memory and register. The “char”, “short”, “int” and 

“long” are the fixed-point datatypes, and the “float” and “double” are the floating-point 

datatypes. We can see clearly that floating-point datatypes need more than 10 times longer 

time than fixed-point datatypes in computation time. To optimize our code on the C64x DSP, 

we need to convert the datatypes from floating-point to fixed-point first. But this modification 

has to quantize the input data, so it may lose some accuracy. We need to do the quantization 

noise analysis when we want to do the datatype conversion. 



 33 

-))
".
��

��)���������

	,���

�/.���

),����

��/.���

����

&%/.���


��$�

��/.���

!
����

&%/.���

#��.

�

��/.���

�##� �� �� �� %� ��� ����

"�
� %� %� �� �� ��� ���

Table 4.2 Processing time on the C64x DSP with different datatypes 
 

4.2.2 Using Intrinsic Functions 

TI provides many intrinsic functions to increase the efficiency of code on the C6000 series 

DSP. The intrinsic functions are optimized code by the knowledge and technique of DSP 

architecture, and it can be recognize by TI CCS compiler only. So if the C/C++ instructions or 

functions have corresponding intrinsic functions, we can replace them by intrinsic functions 

directly. The modification can make our code more efficient substantially. Fig 4.1 shows a 

part of the intrinsic functions for the C6000 series DSP, and some intrinsic functions are only 

in the specific DSP. 

 

Fig 4.1 Intrinsic functions of the TI C6000 series DSP (Part.) [6] 

 

4.2.3 Packet Data Processing 

The C64x DSP is a 32-bit fixed-point processor, which suit to 32-bit data operation. 

Although it can do 8-bit, or 16-bit data operations, it will waste some processor resource. So 

if we can place four 8-bit data or two 16-bit data in a 32-bit space, we can do four or two 

 



 34 

operations in one clock cycle. It can improve the code efficiency substantially. One another 

thing should be mentioned that some of the intrinsic functions have similar way to enhance 

the efficiency. 

 

4.2.4 Loop Unrolling and Software pipelining 

Software pipelining is a scheme to generate efficient assembly code by the compiler so 

that most of the functional units are utilized within one cycle. For the TI CCS compiler, we 

can enable the software pipelining function operate or not. If our codes have conditional 

instructions, sometimes the compiler may not be sure that the branch will be happen or not. It 

may waste some clock cycles to wait for the decision of branch operation. So if we can unroll 

the loop, it will avoid some of the overhead for branching. Then the software pipelining will 

have more efficient result. Besides, we can add some compiler constrains, which tell the 

compiler that the branch will taken or not, or the loop will run a number of times at least. 

 

4.2.5 Linear Assembly and Assembly 

When we are not satisfied with the efficiency of assembly codes which generated by the 

TI CCS compiler, we can convert some function into linear assembly or optimize the 

assembly directly. The linear assembly is the input of TI CCS assembly optimizer, and it does 

not need to specify the parallel instructions, pipeline latency, register usage, and which 

functional units is being used. 

Generally speaking, this scheme is too detail and too time consumption in practice. If we 

consider project development time, we may skip this scheme. Unless we have strict constrains 

in processor performance and we have no other algorithm selection, we will do this scheme at 

last. 

 

 



 35 

4.3  Huffman Decoding 
Generally speaking, the architecture of Huffman decoder can be classified into the 

sequential model and the parallel model [12]. The sequential model reads in one bit in one 

clock cycle, so it has a fixed input rate. The parallel model outputs one codeword in one clock 

cycle, so it has a fixed output rate. Fig. 4.2 and 4.3 show the block diagrams of these two 

models. 

 
 

 
Fig 4.2 Sequential model of Huffman decoder [12] 

 



 36 

 
Fig 4.3 Parallel model of Huffman decoder [12] 

 

 Because the Huffman code a is variable length code, it means that the codeword is not 

fixed length for each symbol. Hence the DSP can not know the number of bits in the each 

codeword in advance. The DSP has to fetch one bit in one clock cycle and compare it with the 

stored patterns. If there is no matched pattern, the DSP has to fetch the next bit in the next 

clock cycle and compare with the patterns again. It will take many clock cycles to do the job. 

The Huffman decoder is restricted by the DSP processing structure, so it belongs to sequential 

model. We do not find an efficient algorithm for the DSP Huffman decoding scheme, so we 

plan to implementation the Huffman decoding in the FPGA to enhance the performance of 

total system. 

 

 

4.4  IMDCT 
IMDCT takes the most part of the DSP processing time in an AAC decoder, so we want to 

optimize this part to improve total system performance. At first, we will describe the efficient 

way to use N/4-point IFFT to replace the IMDCT. And then we will discuss the architecture of 

IFFT. At last, we will describe the implementation and optimization of IMDCT on DSP. 

 



 37 

4.4.1 N/4-point FFT Algorithm for MDCT 

We will discuss N/4-point FFT algorithm for MDCT. Since the processing of Yi,k and xi,n 

requires a very heavy computational load, we want to find the faster algorithm to replace the 

original equation. For the fast MDCT algorithm, P. Duhamel had suggested a fast algorithm 

which uses N/4-point complex FFT (Fast Fourier Transform) to replace MDCT [14]. The key 

point is that Duhamel found the relationship between N-point MDCT and N/4-point complex 

FFT. We can thus use the efficient FFT algorithm to enhance the performance of IMDCT. The 

relationship is valid for N-point IMDCT and N/4-point IFFT. 

We will describe the forward operation steps here, and the derivation of this algorithm 

can be found in Appendix A. 

1. Compute )()( 22/,21,212/,2, nNinNinNinin xxjxxz +−−−− ++−=  

2. Multiply the pre-twiddle: 14/,,1,0,' )14(
4 −== +− NnWzz n

Nnn �  

Where )4/2sin()4/2cos(4 NjNW N ππ −=  

3. Do N/4-point complex FFT: }'{' nk zFFTZ =  

4.  Multiply the post-twiddle: 14/,,1,0,'))1(( 1
8

1 −=−= −+ NkZWWZ k
k

N
k

k �  

5. The coefficients Yi,2k are found in the imaginary part of Zk, and the coefficients 

Yi,2k+N/2 are found in the real part of Zk. The odd part coefficients can be obtained 

from kNiki YY −− −= ,1,  

We summarize the fast MDCT algorithm by the flow diagram shown in Fig 4.4. 



 38 

 
Fig 4.4 Fast MDCT algorithm 

 

 

The inverse operation steps are in a similar way. 

1. Compute kNikik jYYZ 212/,2, −−+−=  

2. Multiply the pre-twiddle: 14/,,1,0,))1((' 1
8

1 −=−= −+ NkZWWZ k
k

N
k

k �   

3. Do N/4-point complex IFFT: }'{ kn ZIFFTz =  

4. Multiply the post-twiddle: 14/,,1,0,' )14(
4 −== + NnWzz n

Nnn �  

5. In the range of n form 1 to N/4, the coefficients xi,3N/4-1-2n are found in the imaginary 

part of zn, and the coefficients xi,N/4+2n are found in the real part of zn. In the range of 

n from 1 to N/8, the coefficients xi,3N/4+2n are found in the imaginary part of zn, and 

the coefficients xi,N/4-1-2n are found in the negative of real part of zn. At last, in the 

range of n from N/8 to N/4, the coefficients xi,2n-N/4 are found in the negative of 

imaginary part of zn, and the coefficients xi,5N/4-1-2n are found in the real part of zn. 

We summarize the fast IMDCT algorithm by the flow diagram shown in Fig 4.5. 

 



 39 

 
Fig 4.5 Fast IMDCT algorithm 

 

4.4.2 Radix-23 FFT 

There are many FFT algorithms which have been derived in recent years [18]. The 

radix-2 FFT has the best accuracy, but requires most computations, and the split-radix FFT 

has fewer computations, but requires irregular butterfly architecture [15]. S. He suggested an 

FFT algorithm called radix-22 in 1996. It combined radix-2/4 FFT and radix-2 FFT in a 

processing element (PE), so it has a more regular butterfly architecture than the split-radix 

FFT and needs fewer computations than radix-2 FFT. But the radix-22 FFT is suit to the 

4N-point only, and our requirement for IFFT is 512-point for long window and 64-point for 

short window. So we can use radix-23 FFT which derived form radix-22 FFT is suit to 

8N-point only. 

Fig. 4.6 shows the butterfly of 8-point radix-2 FFT and Fig. 4.7 shows the butterflies of a 

radix-23 PE. We can see the number of twiddle factor multiplication is decreased in the data 

flow graphs. Fig. 4.8 shows the combined split-radix FFT in a radix-23 PE. We can see the 

regular architecture of butterflies than split-radix. Table 4.3 shows the computational 

complexity of radix-2 and radix-23 FFT algorithms. 

 



 40 

 
Fig. 4.6 Butterflies for 8-point radix-2 FFT 

 

Fig. 4.7 Butterflies for a radix-23 FFT PE 

 
Fig. 4.8 Simplified data flow graph for 8-point radix-23 FFT 

 

� 0�#�1/%� 0�#�1/%&�

*� 	�"2

1�

"�
��2
��������

	�"2

1�

�##������

	�"2

1�

"�
��2
��������

	�"2

1�

-##������

�� �� %�� %� %��

��� ���� &��� ��� &���

��%� %���� ����� ����� �����

����� %%�%�� ����%� ��&��� ����%�

Table 4.3 Comparison of computational load of FFT 



 41 

4.4.3 Implementation of IMDCT with Radix-2 IFFT 

We first code the 512-point IMDCT with radix-2 IFFT architecture in double datatype to 

ensure the function is correct for the reasonable input data range. After the function is verified, 

we modified the datatype from floating-point to fixed-point and calculate the data precision 

loss in SNR (signal-to-noise ratio). In the fixed-point edition, we multiply a factor of 4096 to 

all twiddle factors. 

 

� 	�#
�(�3
� 	
����	��

�

���.

� ���%� �&���%��

���� ����� %���&���

(,���� �%��� %�������

Table 4.4 DSP implementation result of different datatypes 
 

� (*0 

���.

� %��4��#5�

���� ���4�%#5�

(,���� ���4&�#5�

Table 4.5 SNR of IMDCT of different datatypes 

 

4.4.4 Implementation of IMDCT with Radix-23 IFFT 

Then we code the 512-point IMDCT with the radix-23 IFFT architecture in double 

datatype to ensure the function is correct in the reasonable input data range. Then we 

modified the register datatype from floating-point to fixed-point. The data precision loss is the 

same with the radix-2 FFT. In the fixed-point edition, we multiply a factor of 4096 to all 

twiddle factors, and multiply a factor of 256 to the 22  in the radix-23 PE. The original 

floating-point datatype edition is slower than radix-2 IFFT might influenced by the coding 

style of the two architectures. 

 

 

 



 42 

� 	�#
�(�3
� 	
����	��

�

���.

� ����� �%�������

���� ����� %�&����

(,���� ��%�� %%�����

Table 4.6 DSP implementation result of different datatypes 
 

� (*0 

���.

� %��4��#5�

���� �&4��#5�

(,���� �&4��#5�

Table 4.7 SNR of IMDCT of different datatypes 
 

4.4.5 Modifying the Data Calculation Order 

We want to the data in the register can be used twice after they are fetch from memory. 

So we modified the C/C++ code for the data calculation order in each stage. The original 

calculation order is from the top to the down in the data flow graph. We calculate the first 

butterfly’s two output data, and then calculate the next butterfly’s two output data. Fig. 4.9 

shows the calculation order of the modified edition. The number in the parentheses is the 

calculation order. In this way, the compiler generates the assembly code which can use the 

data more efficiency. 

 

 
Fig. 4.9 Comparison of the old (left) and new (right) data calculation order 

 

� 	�#
�(�3
� 	
����	��

�

+��$���
� ��%�� %%�����

+2��"�3
#� ���%� ������

Table 4.8 DSP implementation results of the modified data calculation order 

 



 43 

4.4.6 Using Intrinsic Functions 

Since we use the “short” datatype to represent the data in the IMDCT, we may put two 

16-bit data in a 32-bit register to improve the performance as packet data processing. At first, 

we try to use shift the first 16-bit data than add the second 16-bit data into a 32-bit data space. 

Use one intrinsic function to process these data, and then put the result into two 16-bit data. 

But the result of this modification is slower than the original version because the data transfer 

takes too many clock cycles.  

So we modify the total IFFT architecture. Put the real part into the 16-bit MSB 

(maximum significant bit) of 32-bit space, and the imaginary part into the 16-bit LSB (least 

significant bit). Then use intrinsic functions to do all data process in the IFFT. Fig. 4.10 shows 

the intrinsic functions we use. At first, we use _pack2 to put two 16-bit data into a 32-bit 

space. Then we use _add2 and _sub2 to do the 16-bit addition or subtraction. When the data 

needs to multiply a twiddle factor, we use the _dotp2 or _doptn2 to calculate the sum of 

product or difference of product. At each stage, we use the _shr2 to divide the data by the 

factor of 2. At last, we use _bitr to do the bit reverse and put the output data in sequence. 

Table 4.9 shows the modification result. 

 
 



 44 

Fig. 4.10 Intrinsic functions we used [6] 
 

� 	�#
�(�3
� 	
����	��

�

+��$���
� ���%� ������

+2��"�3
#� ����� %�&���

Table 4.9 DSP implementation results of using intrinsic functions 
 

4.4.7 IMDCT Implementation Results 

We has implemented and optimized the MPEG-AAC IMDCT on DSP. Table 4.10 shows 

the final optimized results. If the sampling rate is 44.1 kHz, it has to process 43 frames in one 

second for real time decoding. The final optimized IMDCT can process about 24684 frames 



 45 

in one second on C64x DSP. It is about 530 times faster than the original version. 

 

� 	�#
�(�3
� 	
����	��

�

+��$���
� ����� �%�������

+2��"�3
#� ����� %�&���

Table 4.10 DSP implementation results of IMDCT 
 

Fig. 4.11 TI IFFT library [7] 

 

Then we compare the modification IMDCT to the IMDCT with TI IFFT library as shown 
in Fig. 4.11. Table 4.11 shows the comparison of the modification IMDCT and the IMDCT 
using TI IFFT library. The performance has reached about 81% of the IMDCT with TI IFFT 
library. 

 

� 	�#
�(�3
� 	
����	��

�

6��,�������� ���%� ������

+2��"�3
#� ����� %�&���

Table 4.11 Comparison of modification IMDCT and IMDCT with TI IFFT library 
 
 

4.5  Implementation on DSP 
We has implemented and optimized MPEG-4 AAC on TI C64x DSP. The optimized 

result has been shown in Table 4.12. Using the ITU-R BS.1387 PEAQ (perceptual evaluation 

of audio quality) defined ODG (objective difference grade), we test some sequences on the 

modified MPEG-4 AAC decoder. The first test sequence is “guitar”; it has sounds variations 

and is more complex. The second test sequence is “eddie_rabbitt”; it is a pop music with 

human voice. The test result is shown in Table 4.13 and 4.14. The notation (a) is the original 

 



 46 

floating point version, and (b) is the modified integer version. It seems acceptable in the data 

rate from 32 kbps to 96 kbps. Finally, the overall speed is 2.73 times faster than the original 

architecture. Note that the IMDCT part is 1/14 of the original in computation, and the result in 

shown in table 4.14. 

 

� ���	�� ����
� �
�!��"���
�

0�����

+��$���
� ��������� ���������� ��

+2��"�3
#� ��&�%&�� &�&���&�� %4�&���

Table 4.12 Comparison of original and the optimized performance 

 

 

+�7� ���

�.2)�

&%�

�.2)�

���

�.2)�

���

�.2)�

�%��

�.2)�

����

�.2)�

����

�.2)�

%���

�.2)�

���� /&4�&� /&4&�� /�4��� /�4&�� /�4%�� /�4��� /�4��� /�4���

�.�� /&4��� /&4&�� /�4��� /�4�%� /�4&�� /�4&�� /�4&�� /�4���

Table 4.13 The ODG of test sequence “guitar” 
 
 

+�7� ���

�.2)�

&%�

�.2)�

���

�.2)�

���

�.2)�

�%��

�.2)�

����

�.2)�

����

�.2)�

%���

�.2)�

���� /&4��� /&4��� /�4��� /�4%�� /�4��� /�4��� /�4��� /�4���

�.�� /&4��� /&4&&� /�4��� /�4��� /�4&�� /�4&�� /�4%�� /�4&��

Table 4.14 The ODG of test sequence “eddie_rabbitt” 
 

 

 

 

 

 

 

 

 



 47 

Chapter 5 

MPEG-4 AAC Decoder 

Implementation and 

Optimization on DSP/FPGA 

 

 

In the last chapter, we describe the implementation and optimization of the MPEG-AAC 

decoder on DSP. Also, in this chapter, we will move some of MPEG-4 AAC tools to FPGA to 

enhance the performance. From the statistic profile, the Huffman decoding and the IMDCT 

are the heaviest work tools for DSP processing, so we try to implementation these tools on the 

FPGA. 

 

 

5.1 Huffman Decoding 
In this section, we describe the implementation and optimization of the Huffman decoding 

on FPGA. We will implement two different architectures of Huffman decoder and compare 

the results. 

 

5.1.1 Integration Consideration 

In the MPEG-4 AAC decoder, the Huffman decoder receives a series of bits ranging from 

1 bit to 19 bits from the input bitstream. It uses these bits to search for the matched pattern in 

the code index table. Then it returns a code index and length. The code index is ranging from 



 48 

0 to 120, and we will take this value to find the codeword from the codeword table. Fig. 5.1 

shows the flow diagram of the MPEG-4 AAC Huffman decoding process. 

 

Fig. 5.1 Flow diagram of MPEG-4 AAC Huffman decoding 
 

As we can see, the length of a symbol in the bitstream varies from 1 bit to 19 bits. The 

range of the code index in the table is 0 to 120, and its length is fixed to 7 bits. DSP is not 

suitable to do the variable length data processing, because it needs many extra clock cycles to 

find the correct length. Hence, we map out the MPEG-4 AAC Huffman decoder on 

DSP/FPGA. The patterns in the code index table are variable length, so we put it on FPGA; 

and the patterns in the codeword table are fixed length, so we put it on DSP. Fig. 5.2 shows 

the scheme of the DSP/FPGA integrated Huffman decoding. 

 
 



 49 

 

Fig. 5.2 Block diagram of DSP/FPGA integrated Huffman decoding 
 

5.1.2 Fixed-output-rate Architecture 

We put the code index table on FPGA. Also we want to implement the fixed-output-rate 

Huffman decoder architecture on FPGA. If we want to enhance the Huffman decoding 

performance substantially, we have to implement the parallel model on FPGA. This 

architecture outputs one code index in one clock cycle continuously. 

We designed the code index table with the necessary control signals, Fig. 5.3 shows the 

block diagram. Because the code index range is from 0 to 120, we use 7-bit to represent the 

data. Allowing DSP fetch the code index easily, we put one bit “0” between two adjacent code 

indices in the output buffer. Fig 5.4 shows the output buffer diagram. In this way, the DSP can 

fetch the code index in “char” datatype easily. 

 

 



 50 

 

Fig. 5.3 Block diagram of fixed-output-rate architecture 
 

 

Fig. 5.4 Output Buffer of code index table 
 

The architecture needs some control signals between DSP and FPGA. When the DSP 

sends the “input_valid” signal to FPGA, it means the “input_data” is valid now. When the 

FPGA receives the “input_valid” signal and the FPGA is not busy, it would send a response of 

“input_res” signal to DSP, means the FPGA has received the input data successfully. But 

when the FPGA is busy, it would not send the “input_res” signal, meaning the FPGA has not 

received the input data successfully, and the DSP has to send the same data again. When the 

FPGA finishes the code index processing, it sends the “output_valid” signal to DSP, meaning 

the “output_data” is ready. Fig.5.5 shows the waveform of these signals, and each 

“output_data” contains ten code indeces. The architecture needs a clock cycle latency for the 

input register. 



 51 

Fig 5.5 Waveform of the fixed-output-rate architecture 
 

5.1.3 Fixed-output-rate Architecture 

Implementation Result 

Fig. 5.6 and Fig. 5.7 show the Xilinx ISE 6.1 synthesis and the P&R (place & route) 

reports. The P&R report shows that the clock cycle can reach 5.800 ns (172.4 MHz). It needs 

one clock cycle latency for the input register, meaning that we can retrieve about 156.7 M 

code indeces in one second. We use a test sequence of 38 frames and it contains 13188 code 

indeces. The comparison of DSP implementation and the FPGA implementation is shown in 

the Table 5.1.  

 

Fig 5.6 Synthesis report of the fixed-output-rate architecture 
 

Timing Summary: 
Speed Grade: -6 
Minimum period: 9.181ns (Maximum Frequency: 108.918MHz) 
Minimum input arrival time before clock: 4.812ns 
Maximum output required time after clock: 4.795ns 
Maximum combinational path delay: No path found 
 
Device utilization summary: 
Selected Device : 2v2000ff896-6  
Number of Slices:               820   out of  10752      7% 
Number of Slice Flip Flops:         379   out of  21504      1% 
Number of 4 input LUTs:           1558   out of  21504      7% 
Number of bonded IOBs:           284   out of  624      45% 
Number of GCLKs:              1    out of  16       6% 
 

 



 52 

 

Fig 5.7 P&R report of the fixed-output-rate architecture 
 

� ��"
� �
�!��"���
�0�����

�(���"2

"
�������� �4�����1���/&� ��

��7-��"2

"
�������� �4�����1���/�� ��4&&�

Table 5.1 The performance Comparison of DSP and FPGA implementation 
 

5.1.4 Variable-output-rate Architecture 

The fixed output rate Huffman decoder is limited by the speed of searching for the 

matched pattern [12]. We can further split the code index table into several small tables to 

reduce the comparison operations in one clock cycle. In this way, we can use shorten the time 

of processing short symbol, and it needs more than one clock cycle time to process the long 

symbols, which occurs is less frequently than the short symbol. But the cost is the more 

complex control signals. Fig. 5.8 shows the block diagram of the modified architecture. 

 
 

Timing Summary: 
Speed Grade: -6 

 

 
Device utilization summary: 
Number of External IOBs          285  out of  624      45% 
Number of LOCed External IOBs     0   out of  285      0% 
Number of SLICEs               830  out of  10752    7% 
Number of BUFGMUXs          1   out of  16       6% 
 



 53 

 
Fig. 5.8 Block diagram of the variable-output-rate architecture 

 

Fig. 5.9 shows that the waveform and the external control signals between DSP/FPGA are 

the same for the fixed output rate architecture. The difference between the fixed-output-rate 

and the variable-output-rate architectures is the internal control signal of the 

variable-output-rate architecture is more complex, and the variable output rate architecture 

may need more clock cycle to produce the result. 

 

Fig 5.9 Comparison of the waveform of the two architectures 

 

 



 54 

5.1.5 Variable-output-rate Architecture 

Implementation Result 

Fig. 5.10 and Fig. 5.11 show the synthesis report and the P&R report. Its clock rate is 

slower than that of the fixed-output-rate architecture. The implementation of the control 

signals may be constrained by the FPGA cell. When the control signals of FPGA design are 

too complex, the controller may become the FPGA system operating bottleneck. 

 

 
Fig 5.10 Synthesis report for the variable-output-rate architecture 

 

Timing Summary: 
Speed Grade: -6 
Minimum period: 10.132ns (Maximum Frequency: 98.700MHz) 
Minimum input arrival time before clock: 4.829ns 
Maximum output required time after clock: 4.575ns 
Maximum combinational path delay: No path found 
 
Selected Device : 2v2000ff896-6  
Number of Slices:                945   out of   10752      8% 
Number of Slice Flip Flops:        402   out of   21504      1% 
Number of 4 input LUTs:          1785   out of   21504      8% 
Number of bonded IOBs:           284   out of   624      45% 
Number of GCLKs:                1    out of   16       6% 
 



 55 

 
Fig 5.11 P&R report for the variable-output-rate architecture 

 
 
 

5.2 IFFT 
Continuing the discussion in chapter 4, we implement IFFT on FPGA to enhance 

performance of the IMDCT.  

 

5.2.1 IFFT Architecture 

We can compare several FFT hardware architectures [18], shown in Table 5.2. The SDF 

(single-path delay feedback) means to input one complex data in one clock cycle, then put the 

input data into a series of DFF (delay flip/flop) to wait for the appropriate time. Then we 

process the input data which are the source data from the same butterfly in the data flow 

diagram. The MDC (multi-path delay commutator) means to input two complex data which is 

the source of the same butterfly in the data flow diagram in one clock cycle. These two data 

can be processed in one cycle, but it needs more hardware resources. To summary, the SDF 

Timing Summary: 
Speed Grade: -6 

 
Device utilization summary: 
Number of External IOBs           285  out of  624      45% 
Number of LOCed External IOBs     0   out of 285      0% 
Number of SLICEs              989  out of  10752    9% 
Number of BUFGMUXs            1   out of  16       6% 
 



 56 

architecture demands fewer registers and arithmetic function units, but the MDC architecture 

has less latency. We will use the radix-23 SDF architecture of our IFFT. 

� *�".
���!�

	�"2

1�

��
��2
�
�)�

*�".
���!�

	�"2

1�

-##
�)�

*�".
���!�

	�"2

1�

0
$�)�
�)�

0�#�1/%�(��� 
�$%*/%� %�
�$%*� */��

0�#�1/��(��� �'%�
�$%*/�� ��
�$%*� */��

0�#�1/��(��� �'&�
�$%*/�� ��8%�'&��
�$%*� */��

0�#�1/%%�(��� �'%�
�$%*/�� %�
�$%*� */��

0�#�1/%&�(��� �'&�
�$%*/�� �%8�'&��
�$%*� */��

0�#�1/%���	� 
�$%*/%� %�
�$%*� �4��*/%�

0�#�1/����	� &'%�
�$%*/&� ��
�$%*� %4��*/��

0�#�1/����	� �'&�
�$%*/�� ��8%�'&��
�$%*� �4��*/��

0�#�1/%%���	� 
�$%*/%� %�
�$%*� �4��*/%�

0�#�1/%&���	� %'&�
�$%*/%� �%8�'&��
�$%*� �4��*/%�

Table 5.2 Comparison of hardware requirements [18] 
 

Because the data in PE is always multiplier a factor of 22 , so we can use several 

shifters and adders to replace the multiplier. At first, we can see the binary representation of 
the 

22 =0.7071=0.10110101, 

If we set the “twiddle multiply factor” be 256, then the binary representation can be 
represented in fixed-point datatype by “10110101.” Then we can use five shifters and five 
adders to replace one multiplier as Fig 5.12 shows the block diagram. In the Table 5.2, the “t” 
represent that the “1” of the simplified multiplier used. 
 



 57 

 
Fig. 5.12 Block diagram of shifter-adder multiplier 

 

5.2.2 Quantization Noise Analysis 

First, we want to analyze the quantization noise due to transforming the datatype from 

floating-point to fixed-point. The original range of the twiddle factor is from –1 to 1, so we 

need to scalar up the “twiddle multiplier” for integer representation. Also, we need to scalar 

up the input data to the “scaling multiplier.” At the end, we generate 1000 sets of random 

input data in the range from –5000 to 5000, and compute the output SNR for the IFFT. If an 

overflow occurs, the SNR would drop down drastically. Therefore, we do not label the SNR 

for the overflow codes. 

There are two main differences between the FFT and the IFFT. The first one is the twiddle 

factor is conjugate, and the second is the IFFT has to multiply a 1/N factor but the FFT does 

not. If we multiply the 1/N factor at the last stage, the SNR would be better, but the effective 

bit in the output data would be less. So we split the 1/N factor into multiple stage, and each 

stage is only a multiplication of a factor of 1/2. Fig. 5.13 and 5.14 show the comparison of the 

noise analysis. As the result, we choose “twiddle multiplier” to be 256, and the “scaling 

multiplier” to be 1. 



 58 

Fig. 5.13 Quantization noise analysis for twiddle multiplier with scaling of 256 
 

Fig. 5.14 Quantization noise analysis for twiddle multiplier with scaling of 4096 
 

 

 



 59 

5.2.3 Radix-23 SDF IFFT Architecture 

We use the radix-23 SDF 512-point IFFT pipelined architecture as Fig. 5.15 shows. The 

input data from the first one to the last one are put into the IFFT sequentially. Fig. 5.16 shows 

the computational work for each PE. 

 

 

Fig. 5.15 Block diagram of radix23 SDF 512-point IFFT pipelined architecture 
 

 

 

Fig. 5.16 Simplified data flow graph for each PE 
 



 60 

PE1 has the architecture as Fig 5.17 shows. At the fist N/4 clock cycle, PE1 puts the DFF 

output data to the PE1 output and put the input data to the DFF input. The next N/4 clock 

cycle, PE1 multiply the DFF output data by j then put to the PE1 output and put the input data 

to the DFF input. We can replace the multiplication by exchange the real part and the 

imaginary part of data. At the last N/2 clock cycle, PE1 add the DFF output data to the input 

data to the PE1 output, and subtract the DFF data from the input data to the DFF input. 

 

 

Fig 5.17 Block diagram of the PE1 
 

PE2 has the architecture as Fig 5.18 shows. At the fist N/8 clock cycle, the PE2 put the 

DFF output data to the PE2 output and put the input data to the DFF input. The next N/8 clock 

cycle, PE2 multiply DFF output data by j then put to the PE2 output and put the input data to 

the DFF input. We can replace the multiplication by exchange the real part and the imaginary 

part of data. At the third N/8 clock cycle, PE2 add the DFF output data to the input data to the 

PE2 output, and subtract the DFF output data from the input data to the DFF input. At the 

forth N/8 clock cycle, PE2 add the DFF output data and the input data, then multiply 

22 (1+j) to the PE2 output, and subtract the DFF output data from the input data to the 

DFF input. At the fifth N/8 clock cycle, PE2 put the DFF output data to the output and put the 

input data to the DFF input. At the sixth N/8 clock cycle, PE2 multiply the DFF output data 

by - 22 (1-j) to the output, and put input data to the DFF input. At the last N/4 clock cycle, 

PE2 add the DFF output data to the input data to the PE2 output, and subtract the DFF output 

data from the input data to the DFF input. 



 61 

 

 

Fig 5.18 Block diagram of the PE2 
 

PE3 has the architecture as Fig 5.19 shows. At the fist N/8 clock cycle, the PE3 put the 

DFF output data to the PE3 output and put the input data to the DFF input. At the next N/8 

clock cycle, add the DFF output data to the input data to the PE3 output, and subtract the DFF 

output data from the input data to the DFF input. 

 

 
Fig 5.19 Block diagram of the PE3 

 

In the beginning, we use a big MUX and control signals to select the twiddle factor. In the 

Huffman decoding section in this chapter, we found that the complex control signal would 

slow down the clock. In the IFFT, the complex control signals might not be synthesized in the 

FPGA. So we try a simple way to implement the twiddle multiplier which does not to use the 

complex control signals. We put the twiddle factor in a circular shift register in the order and 

then access the first one at each clock cycle. Fig. 5.20 shows the circular shift register of 

twiddle factor multiplier. In this way, we can avoid to use complex control signals. 



 62 

 

 

Fig 5.20 Block diagram of the twiddle factor multiplier 
 

The Fig. 5.21 shows the signal waveform of the IFFT. When the DSP sends a 

“input_valid” signal to FPGA, it means the input data will start to transfer sequentially. The 

FPGA sends the “output_valid” signal to DSP meaning the output data will start to transfer in 

sequentially. 

 
Fig 5.21 Waveform of the radix-23 512-point IFFT 

 

5.2.4 IFFT Implementation Result 

The Fig. 5.22 and 5.23 show the synthesis report and the P&R repot of the IFFT. The 

clock frequency on P&R can reach 93.14 MHz. It means it can process 95.9k long window 

data in one second. We use a test sequence with 12 long window data. The comparison of 

DSP implementation and FPGA implementation is shown in Table 5.3. 

 
 

 



 63 

 
Fig 5.22 Synthesis report of radix-23 512-point IFFT 

 

Timing Summary: 
Speed Grade: -6 
Minimum period: 11.941ns (Maximum Frequency: 83.745MHz) 
Minimum input arrival time before clock: 2.099ns 
Maximum output required time after clock: 4.994ns 
Maximum combinational path delay: No path found 
 
Selected Device : 2v6000ff1152-6  
Number of Slices:               17045   out of   33792     50% 
Number of Slice Flip Flops:          28295   out of   67584     41% 
Number of 4 input LUTs:           2503   out of   67584      3% 
Number of bonded IOBs:          67   out of 824      8% 
Number of MULT18X18s:         54   out of   144      37% 
Number of GCLKs:             1    out of   16       6% 



 64 

 
Fig 5.23 P&R report of radix-23 512-point IFFT 

 
 

� ��"
� �
�!��"���
�0�����

�(���"2

"
�������� �4�����1���/�� ��

��7-��"2

"
�������� �4��%��1���/�� &4��%��

Table 5.3 The performance comparison of DSP and FPGA implementation 
 
 

Timing Summary: 
Speed Grade: -6 

 
Design Summary 
Logic Utilization: 

Number of Slice Flip Flops:  28,267  out of   67,584    41% 
Number of 4 input LUTs:  2,420  out of   67,584     3% 

Logic Distribution: 
Number of occupied Slices:      15,231  out of   33,792    45% 
Number of Slices containing only related logic: 15,231 out of 15,231 100% 
Number of Slices containing unrelated logic:    0  out of   15,231   0% 
Total Number 4 input LUTs:      2,568  out of   67,584     3% 
Number used as logic:           2,420 
Number used as a route-thru:     148 
Number of bonded IOBs:        68   out of  824   8% 
IOB Flip Flops:                28 
Number of MULT18X18s:       54   out of   144   37% 
Number of GCLKs:            1   out of    16      6% 

 
Total equivalent gate count for design:  464,785 
 



 65 

5.3 Implementation on DSP/FPGA 
We have implemented and optimized MPEG-4 AAC on TI C64x DSP and Xilinx 

Virtex-II FPGA. The optimized result has been shown in Table 5.4. We use a 0.95 second test 

sequence to compare the performance of the DSP implementation and the DSP/FPGA 

implementation. The overall speed is 8.17 times faster than the original version, and the 

DSP/FPGA version can process 48-second audio data of in 1 second. 

 

�  �!!"���

�
��#��$�

���	�� ����
� �
�!��"���
�

0�����

+��$���
� �4�&�&��%%� �4��������� �4��������� ��

�(����#�!�
#� �4�&�&��%%� �4���&��&�� �4��������� %4�&�

�(�'��7-� �4�����&��� �4��%���&�� �4�%��%���� �4���

Table 5.4 Comparison of DSP and DSP/FPGA implementation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 66 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 67 

Chapter 6 

Conclusion and Future Work 

 

 

We have implemented the MPEG-4 AAC decoder on DSP and FPGA together. In this 

project, we speed up the IMDCT implementation on DSP implementation, and the modified 

version is 503 times faster than the original version. And then we implement the Huffman 

decoding and IFFT on FPGA. The implementation and optimized results are faster than the 

DSP version as expected. 

For the IMDCT calculation, we use radix-23 FFT algorithm in DSP implementation. Then, 

we use fixed-point data type to present the input data. In addition, we rearrange the data 

calculation order in IFFT. Furthermore, we use intrinsic functions to speed up the IFFT. The 

test result is 503 times faster than the original version. The details of our design and results 

can be found in chapter 4. 

We use FPGA to implement the fixed-output-rate Huffman decoder. Also, we modify this 

architecture to a more efficient variable-output-rate architecture. But the latter is in fact 

slower than the former due to the complexity of the control signals, which create slow paths 

on FPGA. The FPGA implementation is about 56 times faster than the DSP implementation. 

We also use FPGA to implement IFFT. Similar to the DSP implementation, we use 

radix-23 FFT algorithm for IFFT. The 512-point IFFT has a heavy computational load. 

Therefore, we use three types of PE to perform these computations in order to reduce the chip 

area. The FPGA implementation of IFFT is about 4 times faster than the fastest DSP version. 

The details of our design and results can be found in chapter 5. 

Due to the board hardware defect and/or system software bug, we are unable to run and 

test our implementations on the DSP/FPGA baseboard yet. Thus, there are two important 

targets in the future. First, the DSP implementation should be executed on the DSP baseboard, 

and the streaming interface is needed to connect to the Host PC in real time execution. The 

Host PC reads in the source data from the file in the memory, and then it transfers the data to 



 68 

DSP through the streaming interface. After DSP has processed data, it transfers data back to 

the Host PC. The second target is to integrate the FPGA implementation together with DSP to 

demonstrate the overall system. DSP does the pre-processing and then it transfers the data to 

FPGA through the streaming interface. After FPGA has processed the data, it transfers data 

back to DSP. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 69 

Bibliography 

 

 
[1] ISO/IEC JTC/SC29/WG11 MPEG, International Standard ISO/IEC 13818-7 “Advanced 

Audio Coding”, 1997 

[2] ISO/IEC JTC/SC29/WG11 MPEG, International Standard ISO/IEC 14496-3 “Advanced 

Audio Coding”, 1999 

[3] M. Bosi and et al., “ISO/IEC MPEG-2 Advanced Audio Coding”, JAES, Vol.45, No.10 

Oct. 1997 

[4] M. Wolters and et al., “A closer look into MPEG-4 High Efficiency AAC”, AES 115th 

Convention Paper, 2003 

[5] Innovative Integration, “Quixote User’s Manual”, Dec. 2003 

[6] Texas Instruments, “TMS320C6000 Programmer’s Guide”, SPRU198F, Feb. 2001 

[7] Texas Instruments, “TMS320C6000 CPU and Instruction Set Reference Guide”, 

SPRU189F, Jan. 2000 

[8] Texas Instruments, “TMS320C6000 Peripherals Reference Guide”, SPRU190D, Mar. 

2001 

[9] Texas Instruments, “TMS320C64x Technical Overview”, SPRU395B, Jan. 2001 

[10] Xilinx, “Virtex-II Platform FPGA User Guide”, UG002(v1.7) Feb. 2004 

[11] K. S. Lee and et al., “A VLSI implementation of MPEG-2 AAC decoder system,” ASICs, 

1999 AP-ASIC '99. The First IEEE Asia Pacific Conf., pp. 139-142, 23-25 Aug. 1999 

[12] M. K. Rudberg and L. Wanhammer, “New approaches to high speed Huffman decoding”, 

IEEE Int. Symp., Vol. 2, pp. 149-152, 12-15 May 1996 



 70 

[13] M. K. Rudberg and L. Wanhammar, “High speed pipelined parallel Huffman decoding,” 

IEEE Proc. Int. Symp., Vol. 3, pp.2080-2083, 9-12 Jun. 1997 

[14] P. Duhamel and et al., “A fast algorithm for the implementation of filter banks based on 

‘time domain aliasing cancellation’”, IEEE Trans. Acous., Speech, Signal Processing, 

ICASSP, Vol. 3, pp. 2209-2212, Apr. 1991 

[15] P. Duhamel and H. Hollmann, “Split-radix FFT algorithm for complex, real, and real 

symmetric data,” IEEE Trans. Acous., Speech, Signal Processing, ICASSP, Vol. 10, pp. 

784-787, Apr. 1985 

[16] S. He and M. Torkelson, “A new approach to pipeline FFT processor”, IEEE Proc. 10th 

Int. Parallel Processing Symp., IPPS, Apr. 1996 

[17] S. He and M. Torkelson, “Designing pipeline FFT processor for OFDM (de)modulation”, 

IEEE Proc. URSI Int. Symp. Signals, Syst., Electron., pp. 257-262, Oct. 1998 

[18] W. C. Yeh and C. W. Jen, “High speed and low power split-radix FFT,” IEEE Trans. 

Signal Processing, Vol. 51, No. 3, Mar. 2003 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 71 

Appendix A 

N/4-point FFT Algorithm 

for MDCT 

 

 

We will describe the N/4-point complex FFT in detail in this appendix. We will show the 

mathematical derivation to the algorithm. The details can be found in [14]. 

 

 

A.1 MDCT 
The MDCT can be seen as a block of signals xm(n) project on a set of cosine functions as 

follow 

,)/))(2/)12(2cos(()1()()(
1

0
0


−

=
++−−=

N

n
mm NnnknNhnxkY π     (A.1) 

where h(n) is a weighting function, N is the block size, and n0 is a phase shift. It can be seen 

that this transform is not invertible, since 

),()1( kNYkY mm −−=−             (A.2) 

only N/2 output points are linearly independent.  

 

However, if two adjacent block xm(n) and xm+1(n) overlap by N/2, the set of values xm(n) 

can be removed from two successive output sets Ym-1(n) and Ym(n). Let 



−

=
++=

1

0
0 )/))(2/)12(2cos(()()(

N

k
mm NnnkkYnX π  for blocks m-1 and m.  (A.3) 

Then, xm(n) can be shown to be equal to 

)()()2/()2/()( 1 nXngNnXNngnx mmm +++= −        (A.4) 

this reconstruction is perfect when the windows are symmetric and identical, thus g(n)=h(n). 



 72 

A.2 N/4-Point FFT 
The antisymmetry of the FFT output coefficients allows that we only compute half the 

input signals. In order to obtain a formula which is easy to handle, we have chosen to keep the 

even coefficients. The odd ones are reduced by Eq. (A.2). Hence Eq. (A.1) is equivalent to 

,)4/)14(4/)14)(12(2cos(
1

0
2 


−

=
++++=

N

n
nk kNknyY ππ      (A.5) 

which can be rewritten as 



−

=
++−++−=

1

0
2 ))4/)14)(12(2sin()4/)14)(12(2((cos(2/2)1(

N

n
n

k
k NknNknyY ππ  (A.6) 

 

A symmetrical function in n and k can be obtained by performing the following 

permutation, which is typical in the DCT case 

12/,0,' 2 −== Nnyy nn �          (A.7) 

12/,0,'' 12 −== −− Nnyy nNn �          (A.8) 

Here we will use two symbols: 

)4/)14)(14(2cos( Nknc ++= π          (A.9) 

)4/)14)(14(2sin( Nkns ++= π          (A.10) 

 

It can be shown that 



−

=
−−+−−=

12/

0
2 )('')('2/2)1(

N

n
nn

k
k scyscyY        (A.11) 



−

=
+ +−+−−−=

12/

0
)4/(2 )('')('2/2)1(

N

n
nn

k
Nk scyscyY       (A.12) 

 

If we define W4N as the 4Nth root of unity, 

)4/2sin()4/2cos(4 NjNW N ππ +=          (A.13) 

Then Eq (A.11) and Eq. (A.12) can be grouped into a complex formula: 



−

=

++
++

−+
+ −=++−−=+

14/

0

)14)(14(
44/4/

1
8

1
24/2 14/,0))'''(()'''(()1(

N

n

nk
NNnnNnn

k
kNk NkWyyjyyWjYY �

                (A.14) 

which is in the form of a modified complex DFT. 



 73 

Appendix B 

Radix-22 and Radix-23 FFT 

 

 

We will describe the radix-22 and radix-23 FFT in detail in this appendix. We will discuss 

the mathematical derivation to the algorithm. The details can be found in [16] and [17]. 

 

 

B.1 Radix-22 FFT 
At first, we will see the analytical expression for the FFT is 



−

=
−=⋅=

1

0

,1,..,1,0,
N

n

kn
Nnk NkWxX        Eq. B.1 

and the analytical expression for the IFFT is 



−

=

− −=⋅=
1

0

,1,..,1,0,
1 N

k

kn
Nkn NnWX

N
x       Eq. B.2 

 
The derivation of the radix-22 FFT algorithm starts with a substitution with a 

3-dimensional index map. The index n and k in Eq. B.1 can be expressed as 

Nnn
N

n
N

n )
42

( 321 ++=           Eq. B.3 

Nkkkk )42( 321 ++=            Eq. B.4 

 
When the above substitutions are applied to DFT definition, the definition can be 

rewritten as 





−

= = =

++⋅++
⋅++=++

1
4

0

1

0

1

0

)42()
42

(

321321
3 2 1

321321

)
42

()42(

N

n n n

kkknn
N

n
N

NWnn
N

n
N

xkkkX  




−

= =

+⋅++
⋅

�
�
�

�
�
�

⋅+=
1

4

0

1

0

)42()
4

()
4

(

32
23 2

3232132
1 )

4
(

N

n n

kknn
N

N

knn
N

N
k
N WWnn

N
B  Eq. B.5 

where 



 74 

)
24

()1()
4

()
4

( 323232
2

11
N

nn
N

xnn
N

xnn
N

B kk
N ++⋅−++=+      Eq. B.6 

which is a general radix-2 butterfly 
 

Now, the two twiddle factor in Eq. B.6 can be rewritten as 

33213
212

32
32132 4)2()2(

4
)42()

4
( kn

N
kkn

N

kkn
N

N
kNn

N

kkknn
N

N WWWWW ++++⋅+
=  

33213212 4)2()2()( kn
N

kkn
N

kkn WWj ++−=           Eq. B.7 

 
Observe that the last twiddle factor in the above Eq. B.5 can be rewritten. 

33
3333

33

4

4
2

4
2

4 kn
N

kn
N

j
kn

N
j

kn
N WeeW ===

⋅−⋅− ππ

         Eq. B.8 

 
Insert Eq. B.8 and Eq. B.7 in Eq. B.5, and expand the summation over n2. The result is a 

DFT definition with four times shorter. 



−

=

+=++
1

4

0 4

)2(
213321

3

33213 ]),,([)42(

N

n

kn
N

kkn
N WWkknHkkkX       Eq. B.9 

 
The result is that the butterflies have the following structure. The PE2 butterfly takes the 

input from two PE1 butterflies. 

)]
4

3
()1()

4
([)()]

2
()1()([),,( 33

)2(
33213

1211
N

nx
N

nxj
N

nxnxkknH kkkk +−++−++−+= +  

Eq. B.10 
 
These calculations are for first radix-22 butterfly, or components the PE1 and PE2 

butterflies. The PE1 is the one represented by the formulas in brackets in Eq. B.10 and PE2 is 
the outer computation in the same equation. The complete radix-22 algorithm is derived by 
applying this procedure recursively. 
 
 

B.2 Radix-23 FFT 
Like radix-22 FFT algorithm, the derivation of the radix-23 FFT algorithm starts with a 

substitution with a 4-dimensional index map. The index n and k in Eq. B.1 can be expressed 
as 



 75 

Nnn
N

n
N

n
N

n )
842

( 4321 +++=          Eq. B.11 

Nkkkkk )842( 4321 +++=           Eq. B.12 

 
When the above substitutions are applied to DFT definition, the definition can be 

rewritten as 






−

= = = =
⋅+++=+++

1
8

0

1

0

1

0

1

0
43214321

4 3 2 1

)
842

()842(

N

n n n n

nk
NWnn

N
n

N
n

N
xkkkkX  Eq. B.13 

is a general radix-2 butterfly 
 

Now, the two twiddle factor in Eq-. B.13 can be rewritten as 

)842()
842

( 43214321 kkkknn
N

n
N

n
N

N
nk

N WW
+++⋅+++

=  

)842()42(
8

)2(
42 43214

32132111 kkkkn
N

kkkn
N

N

kk
N

N

kn
N

N WWWW ++++++
=  

443214
3213

21211 8)42()42(
8)2()()1( kn

N
kkkn

N

kkkn
N

N
kknkn WWWj +++++−−=     Eq. B.14 

 
Substitute Eq. B.14 into Eq. B.13, and expand the summation with regard to index n1, n2 and 
n3. After simplification we have a set of 8 DFT of length N/8. 



−

=

++=+++
1

8

0 8

)42(
32144321

4

333214 ]),,,([)842(

N

n

kn
N

kkkn
N WWkkknTkkkkX   Eq. B.15 

There a third butterfly structure has the expression of 

),,
8

(),,(),,,( 214
4

)42(
8

214
4

3214

321

kk
N

nHWkknHkkknT N

kkk
N

NN ++=
++

  Eq. B.16 

 
As in the Radix-22 FFT algorithm, Eq. B.6 and Eq. B.10 represent the first two columns of 
butterflies with only trivial multiplications in the Radix-23 FFT algorithm. The third butterfly 
contains a special twiddle factor 

)2()42(
8 321

321

)())1(
2
2

( kkkkkk
N

N jjW +++
−−=        Eq. B.17 

 

 

 

 



 76 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



作者簡歷 
 

曾建統，民國六十七年出生於新竹市。民國九十一年六月畢業於國立交通大

學電子工程學系，同年九月進入國立交通大學電子所就讀，從事多媒體訊號處理

系統設計與實現之相關研究。民國九十三年六月取得碩士學位，碩士論文題目為

『MPEG-4 先進音訊編碼在 DSP/FPGA 平台上的實現與最佳化』。研究範圍與興趣

包括：多媒體訊號處理，軟硬體整合實現與最佳化。 

 

 


	國立交通大學
	電子工程學系 電子研究所碩士班
	碩士論文
	MPEG-4先進音訊編碼�在DSP/FPGA平台上的實現與最佳化
	MPEG-4 AAC Implementation�and Optimization on DSP/FPGA
	研究生：曾建統
	指導教授：杭學鳴 博士
	中華民國九十三年六月




	封面
	MPEG-4先進音訊編碼�在DSP/FPGA平台上的實現與最佳化
	MPEG-4 AAC Implementation�and Optimization on DSP/FPGA
	研究生：曾建統                   Student：Chien-Tung Tseng
	指導教授：杭學鳴 博士              Advisor：Dr. Hsueh-Ming Hang
	國立交通大學
	電子工程學系      電子研究所碩士班
	碩士論文
	中華民國九十三年六月





	contents.pdf
	Contents

	tables.pdf
	List of Tables

	figures.pdf
	List of Figures

	contents.pdf
	Contents

	tables.pdf
	List of Tables

	figures.pdf
	List of Figures




