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Integrated DOT/ECG/EEG Multiprocessor Design for Portable Brain-

Heart Monitoring Systems

Student: Ericson Go Chua Adyvisor: Dr. Wai-Chi Fang

EECS International Graduate Program

National Chiao Tung University

Abstract

In the recent decade, the accelerated emergence of an aged population alongside
increased medical costs has been recoghnized as-a worldwide problem. Whereas a shortage in
medical personnel will leave therhealthcare system unable.to meet the requirements of a
growing number of elderly spatients, even more will be deprived of access to quality
healthcare due to the high costs of diagnosis and treatment. AS a result, in recent years, the
field of biomedical engineering has.emerged as a top priority tesearch and development topic.

In response to the needs of healtheare monitering applications in particular emergency
care, long-term observation and cognitive science, we propose the development of an
integrated brain-heart monitoring system and provide a demonstration platform as a proof of
concept for future works and development along this topic. The motivation of this work is
threefold; first is to improve patient experience by means of a portable biomedical device;
second, to reduce overall system costs associated with the equipment, operations, logistics
and management in both hospital and home care settings; and third, to pave the way for new
research directions relating to brain-heart monitoring applications.

In this thesis, we present the development of a biomedical signal multiprocessor
comprising a novel diffuse optical tomography (DOT) processor for brain imaging, an

independent component analysis (ICA) processor for removing electroencephalogram (EEG)
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signal artifacts, and a heart rate variability (HRV) analysis processor for monitoring
electrocardiogram (ECG) signals. Furthermore, in order to reduce power consumption and
prolong operating time, a lossless data compressor is employed to reduce bandwidth
requirements during wireless transmission of biomedical data. The multiprocessor design is
implemented both as an AHB-compatible IP for ARM-based SOCs on a Xilinx FPGA and as
an IC fabricated using UMC 65nm CMOS technology.

To demonstrate the functionality and real-time application of the developed
multiprocessor design, a complete, end-to-end brain-heart monitoring system platform
employing the SoC-based implementation is presented. EEG, ECG and/or functional near
infrared (fNIR) signals acquired by an analog front-end IC are processed or bypassed by the
biomedical multiprocessor depending on~configuration’ commands sent wirelessly from a
remote science station. Processeéd or raw-biomedical data optionally compressed by a lossless
data compressor are packaged.according to a fixed‘output'data.format and finally sent back to
the remote science station for real-time”LCD display, data storage, or further off-line

processing and analysis.

Keywords: Independent Component Analysis, Heart Rate Variability, Diffuse Optical

Tomography, Integrated Healthcare System, Bluetooth Wireless Communication, Lossless

Data Compression, Portable Healthcare, Digital Signal Processing, System-on-Chip
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Chapter 1 Introduction

1.1 Today’s Burdened Healthcare System

The population of people over the age of 65 worldwide has been predicted to more
than double from 375 million in 1990 to 761 million by 2025 [1]. In Taiwan, the average age
of the population has risen from 26 to 36 within the past two decades and the number of
people below the age of 25 is rapidly decreasing. With later marriages and record-low
birthrates, this trend is expected to worsen into the future. Such decline in the working age
population is sure to result in a shortage of medical personnel, which, alongside rising costs
will leave hospitals unable to meet the medical requirements of the growing number of elderly
patients. Therefore, whilst life expectancy is seen to be rising, inadequacies in the provision of

healthcare pose a major threat to the quality of life"of the aged.

1.2 Technology as a Solution

Proper system design.and integration of Carefully selected technologies can help
improve society’s healthcare infrastructure-and-thereby alleviate the burden experienced by
the medical community. With such:systems, in combination with small, inexpensive, smart
and easy-to-use healthcare products, not only can the hospital save on equipment cost and
increase its capacity to handle patients, but more importantly, healthcare normally
administered in the clinical setting can be pushed towards the home environment allowing for
frequent monitoring, early diagnosis, and prevention. With early detection, disease conditions
that would have otherwise deteriorated to be life-threatening, costly and time-consuming to
treat, can be managed with higher success rates, at a reduced amount of time, cost and burden
to both patient and the medical community. Such technologies can encourage elderly patients
to become more independent regarding their own health, while also maximizing their quality
of life at the convenience and comfort of their own homes. In order to achieve the greatest

benefit, the most common diseases of the elderly are targeted and addressed.



1.3 Common Diseases of the Elderly

Studies have shown that the most common ailment affecting the elderly is
cardiovascular disease (CVD) followed by central nervous system (CNS) conditions.
Deterioration of the circulatory system, in particular atherosclerosis, plays a major role in the
progression of CVDs leading to blood clots, stroke and ischemic heart attacks, which are
associated with high risk of sudden death. On the other hand, neurodegeneration caused by
oxidative stress accelerates with age, causing typical neurological disorders in the elderly such
as mental dementia or Alzheimer’s disease, Parkinson’s disease and epilepsy. Patients
afflicted with these neurological conditions experience various degrees of deterioration and
loss in cognitive, psychomotor and somatosensory functions. As the elderly population
increases, healthcare technologies enabling-the-garly sdetection of these heart and brain
illnesses have become more important-than ever before. Through early detection, diagnosis

and treatment, the quality of life ofithe elderly patient can.be maintained and even improved.

14 Biosignal Modalities forDetection of Brain and Heart Disease

For detection of brain-relatedullnesses, the electroeneephalogram or EEG recording is
the most common method and provides important information regarding the state of the
central nervous system. Applications of EEG in diagnostic neurology include detection of
encephalopathy such as epilepsy, seizures, coma, stroke and tumors. In addition, diffuse
optical tomography (DOT), a non-invasive imaging method popularly used to detect cancers
in the breast, can also be used to render images of the brain, allowing early localization of
dangerous brain tumors, cerebral hemorrhage and blood clot formations that can cause stroke
[2]. Other uses of DOT are the measurement of blood flow, blood volume, oxygen saturation
and cardiopulmonary function.

On the other hand, the electrocardiogram or ECG recording allows detection of a wide
range of heart conditions. In clinical practice, it is possible to make accurate diagnosis of

many diseases from the ECG. In myocardial infarction, commonly known as heart attack, the
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ECG can be used to determine if heart muscles have been damaged after the attack. It can also
serve as major predictor of mortality after myocardial infarction [3]. Other main applications
of diagnostic ECG include detection of arrhythmias, disorders of the heart activation
sequence, heart enlargement, myocardial ischemia and infarction, electrolyte imbalances and
carditis [4].

In other indications, however, combined monitoring of physiological indicators may
be required. For cases of sudden death in epilepsy, joint analysis of EEG and ECG can
provide a vital indicator for prevention of occurrence [5]. Furthermore, recent studies have
shown that analysis of EEG together with heart rate variability (HRV) or brain functional near
infrared spectroscopy (fNIRS) can aid in better diagnosis and treatment. For example, EEG
and HRV data were jointly analyzed:for the automatic detection of seizures in newborns [6]
and sleep apnea in hospital patichts’[7];-while the advantage of combined analysis of EEG and
fNIRS data for cognitive rehabilitation and post-traumatic”stress syndrome was presented in

[8] and indicated for the measurement of cerebral blood volumerduring seizures in [9].

1.5 Motivation for an Integrated Brain-Heart Monitoring Solution

Despite these studies indicating the need for both individual and joint monitoring of
brain fNIRS, EEG, and ECG, an integrated brain-heart monitoring solution has not been
developed. Furthermore, most biomedical monitoring systems today are very expensive,
bulky and heavy, lacking wireless capability and the ability to simultaneously monitor and
process multiple types of biomedical signals. The purpose of this work is to address these
deficiencies and make available a feasible solution for integrated and portable brain-heart
monitoring.

There are many benefits in having an integrated biomedical monitoring solution
instead of multiple separate systems. Most of the time, multiple types of biomedical signals

need to be recorded and synchronized in time. For example, patients suffering from insomnia



go to the hospital to have their sleep quality evaluated. In this process, the patients are
required to be monitored by EEG, ECG, EMG, fNIR, respiration, posture and sound. Without
an integrated system, the technician must operate a plurality of medical equipment,
prolonging administration, setup, logistics and examination time. With multiple devices, there
1s more room for error, especially during data and records handling, which is one of the
biggest dangers in hospital management. With an integrated portable system, the operation is
greatly simplified such that the technician only needs to put attention on a single equipment
user interface, and all measured data can be stored safely, reliably and synchronized in one
place. With the additional feature of wireless capability, even more convenience can be
offered to the patient, since not only is the examination time shortened, but the patient can
move around more freely as well. The following list.summarizes the benefits of the proposed
integrated portable brain-heart monitoting-system:

e Lower product/device/system cost

¢ Improved system design and operation

o Lower power consumption

o Efficient use of wireless communiecation bandwidth (only one channel, and
more fully utilized)
o Multiple types of biomedical signals are synchronized in time

o Short wiring for feeble physiological electrical signals

o Decreased chance of sensor fall off

o Reduced system size and volume allowing wider range of applications
e Lower healthcare operation costs and improved service

o Lower administration costs

o Allows experiment to be conducted more quickly

o Savings in equipment logistics and management for hospital

o Savings in technician training costs for multiple equipment



o Simpler and more efficient integrated system reduces chances for
administration errors
e More convenient and comfortable for patient

o Less time needed to perform the experiment

o Single, light-weight, wireless, clutter-free portable and wearable device

o Allows patient to carry on normal daily lifestyle

o Can be used in the home setting

With the abovementioned advantages, the integrated portable health-care device will

soon become an inevitable trend. In the next sections, three major target application scenarios
will be pointed out, and in Chapter 3, a complete architecture for the portable brain-heart

monitoring system will be proposed.

1.6  Application Scenarios

Before presenting the_detailed design of the proposed system, three major target
application scenarios are first.discussedsbelow..The proposedssystem targets applications in
long-term medical observation, emergency care and potential researches on brain function and

cognitive science.

1.6.1 Long-Term Observation

Traditional electroencephalogram acquisition systems and DOT systems are very
bulky and very heavy. As a result, these expensive equipment installations are only possible in
the hospital setting. For patients requiring long-term observation such as seizure, epileptic and
degenerative brain disease patients, they have no choice but to stay in the hospital for long
periods of time under stringent observation protocols, degrading severely their quality of life.
Furthermore, because these equipment lack wireless communication features, many

connecting wires (one for each channel) come between the subject and the monitoring



equipment, thus restricting free movement and bringing tremendous inconvenience to the

patient. Figure 1-1 shows some traditional EEG and DOT acquisition instruments.

' 3
(c) (d)

Figure 1-1 (a) Traditional EEG measuring equipment (b) Traditional EEG System
enlargement at head part (c) Frequency Domain DOT System (d) Frequency domain DOT
system enlargement at head part

The proposed system, shown in Figure 1-2, addresses this problem by offering a
portable and inexpensive solution such that the subject is freed from the abovementioned
restrictions. With wireless capability, the patient needs only wear a light-weight comfortable
headgear for EEG and DOT, coupled with a few electrodes for ECG, thus granting the patient
unrestricted movement and significantly improving his or her healthcare experience.

Biomedical data received at the base station can be displayed in real-time, and stored into

non-volatile storage media for further off-line processing, analysis and diagnosis. In addition,



the data can be sent from the base station to a remote workstation in a hospital for online
monitoring and diagnosis by a medical expert.

With an inexpensive and portable implementation, the patient can even bring home the
bio-signal acquisition device, improving significantly his or her quality of life, and allowing a
more realistic biomedical monitoring more closely in accordance to the patient’s daily
lifestyle.

Wearable Brain-Heart Base Station Remote Monitoring

and Diagnosis
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Figure 1-2 Application s€enario for the proposed wearable brain monitoring system

1.6.2 Emergency Care

Current brain imaging technologies _used . in”hospitals are not useful in emergency
situations. For example, due to its massive size, a CT scanning machine cannot be equipped in
an ambulance, even though cerebral hemorrhage is a very common case for car accident
victims. If the ambulance can be equipped with a portable CW DOT device on board,
occurrence of cerebral hemorrhage can be quickly determined on site, while requests for
necessary preparations can be relayed to the hospital in advance even when the ambulance is

still en route.

1.6.3 Research on Brain and Cognitive Science
Past researches have shown that the electroencephalogram (EEG) contains important
information about the human cognitive process. As a result, related topics such as brain

computer interface [10], artificial intelligence, electronic prosthesis and artificial neural



tissues have become an active and challenging research area in recent years. Even more
recently, the research community is seeking more innovative ways of understanding the
human brain, with the functional near-infrared (fNIR) technology showing great promise.
Through fNIR, the cortical hemodynamic response can be localized thereby showing which
area of the brain is active at a given point in time [11]. The flexible nature of DOT, which uses
a wearable imaging cap shown in Figure 1-1d, makes it well-suited to human brain studies in
enriched environments and for a wide range of behavioral paradigms and activations [12],
including visual [11], motor tasks [13], somatosensory system [14], auditory [15], speech
[16], and language [17]. Although technologies like magnetic resonance imaging (MRI) and
positron emission tomography (PET) together with multiple-channel EEG can provide
significantly higher brain activity _resolution, their high, cost and huge size result in low

availability for academic research:

1.7 Organization of the Thesis

The organization of this‘thesis is7as follows. In.Chapter 2, a brief background on the
mechanics of the three important health indicators namely?"DOT, ECG and EEG is provided,
including the significance of the associated signal processing algorithms independent
component analysis (ICA) and HRV for EEG and ECG respectively.

In Chapter 3, the proposed integrated biomedical monitoring system is presented in
detail, starting with the overall system overview and application, and followed by a quick
review of the algorithms implemented — independent component analysis (ICA) for EEG,
heart rate variability (HRV) analysis for ECG, and brain image reconstruction for DOT. The
chapter continues with a comprehensive implementation-level description of the system, the
hardware architecture, the individual sub modules and their interoperation. Functional
verification of the entire system is discussed and finally, the chapter concludes with the results

of chip implementation using UMC 65nm CMOS technology.



In Chapter 4, a special integrated DOT/ECG/EEG biomedical SoC IP design based on
the previously taped-out chip is presented. The purpose of this SoC IP is to allow practical
integration of the developed biomedical solution into today’s standard ARM-based SoCs.
Modifications from the chip implementation such as hardware-software repartitioning of the
original design into an SoC architecture, wrapping of the original biomedical multiprocessor
core into an AHB-compatible IP, support for additional functionality, and overall SoC system
operation are described in detail. Results of system implementation and verification using
SOCLE’s ARM-based SoC Cheetah Development Kit are presented, and the chapter
concludes with a demonstration of the developed system’s functionality in various real-time
biomedical applications.

Finally, the conclusion and_future-works along the line of this thesis are outlined in

Chapter 5.



Chapter 2 Background on DOT, ECG and EEG

2.1 Diffuse Optical Tomography (DOT) of Human Tissue

Due to its non-invasive and real-time characteristics as a radiography tool, DOT
(Diffuse Optical Tomography) technology has been widely used to detect tumors in the breast
and render images of the brain in recent years. Infrared and near-infrared rays (NIR) are
transmitted into human tissue, and depending on the internal biological composition and
structure, varying degrees of photon diffusion and signal attenuation are detected at the light
sensor end. Using an array of NIR source and detector pairs, a map of received light
intensities can be established from which the DOT image can be calculated and displayed for
medical analysis and diagnosis. Figure 2-1 illustrates the foundation of DOT imaging based

on NIR physics and technology.
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(a) Phenomenon of photon migration (b) NIR source and detector pair
Figure 2-1 Foundation of DOT imaging based on NIR physics and technology
Many researches pertaining to DOT technology have made rapid progress and
development in recent years. In particular, DOT can be used to detect oxygenated hemoglobin
(HbO) and deoxygenated hemoglobin (Hb) concentration and volume using bi-wavelength
near-infrared. Therefore, in clinical application, the primary uses of DOT are monitoring
blood flow, blood volume, oxygen saturation, tumors within the brain, and detecting breast

cancer [2]. Depending on the method of measurement of the diffused near-infrared light, DOT
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can be generally divided into three main categories: the Continuous Wave (CW), Frequency

Domain and Time Domain.

Table 2-1 Characteristics of the three main types of diffuse optical measurements

Type Advantages Disadvantages
1. Spatial resolution 1. High sampling rate
2. Penetration depth 2. Instrument size and weight
Time 3. Most accurate separation of | 3. Stabilization and cooling
Domain (TD) absorption  and  scattering | 4. Cost
coefficients
Example Uses: Imaging cerebral oxygenation and breast imaging
1. Relatively low sampling rate 1. Penetration depth
2. Relatively accurate separation | 2. Instrument size and weight
Frequency . .
Domain (FD) of a'bs.orptlon and scattering | 3. Cost
coefficients
Example Uses: Cerebral and muscle oximetry, breast imaging
1. Low sampling rate 1. Penetration depth
2. Instrument size, ~weight “and { 2 Difficult to separate absorption
Continuous simplicity and scattering coefficients

Wave (CW) | 3. Low cost
Example Uses:' Finger— pulseoximeter,  functional brain experiments,
cerebral hemerrhage

Table 2-1 shows the «characteristics of.different DOT systems. The CW system
provides advantages such as low ‘cost, high portability, low power consumption and
computation overhead, despite lack of depth information [13]. The volume of the CW-DOT
system can be miniaturized which is the biggest advantage compared to other algorithms.
Therefore, the CW-DOT system appears to be the most feasible candidate for hardware
implementation. However, little literature has been published on such implementation of CW-
DOT signal processing. Most CW-DOT systems post-process the signal offline by means of a
computer such as [18] and [19]. This immediately eliminates the feature of portability, and

therefore highlighting the advantage of a VLSI hardware implementation.

2.2 Electrocardiogram (ECG)

Electrocardiography (ECG) is an interpretation of the electrical activity of the heart

over time captured and externally recorded by skin electrodes [20]. It is a noninvasive
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recording produced by an electrocardiographic device. The ECG is an essential tool for health
professionals in diagnosing heart conditions such as abnormal heart rhythms or arrhythmia
when one is suspected.

The ECG works mostly by detecting and amplifying the tiny electrical changes on the
skin that are caused when the heart muscle depolarizes during each heartbeat. Usually more
than two electrodes are used and they can be combined into a number of pairs. The output
from each pair is known as a “lead”. Different types of ECG measurements can be referred to
by the number of leads that are recorded, for example 3-lead, 5-lead or 12-lead ECGs. A 12-
lead ECG is one in which 12 different electrical signals are recorded at approximately the
same time and will often be used as a one-off recording of an ECG, typically printed out as a
paper copy. 3- and 5-lead ECGs tend to be monitored continuously and viewed only on the
screen of an appropriate monitoring device, for example during an operation or whilst being
transported in an ambulance.

A typical ECG waveform, shown tn'Figure 2-2, is composed of a P peak, a complex of
QRS peaks and a T peak. How these peaks in the ECG are, originated is explained in Table
2-2. Additionally, intervals between cachipeak can-indicate the health of the heart. The three

most commonly used intervals are listed in Table 2-3 along with their usages and descriptions.

QRS Durationt—+ 1+t 1t 11 111 11111
1 | | | | -

R | Pl | | | ]

Atrial 1 Ven't?‘icular | Ventricular
Depolarisation Depolarisation Repolarisation

l)

l
PR Interval

S
QT Intverval . - .

e =

Figure 2-2 A typical ECG waveform and its parts
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Table 2-2 Different peaks in a typical ECG waveform

Peak Origination and Description
P Systole (depolarization) of the atrium.
QRS Systole (depolarization) of the ventricle. The amplitudes of QRS peaks are usually
larger than P and T peaks, because of the stronger ventricular muscle.
T Repolarization of the ventricle.

Table 2-3 Different types of peak intervals that can be used to evaluate heart health

Interval Description
RR Two adjacent R peaks can represent for the heart rate. The normal heart rate is between
50 bpm to 100 bpm (beat per minute).
PR It is usually 120 to 200 ms long. The PR interval reflects the time the electrical impulse

takes to travel from the sinus node through the AV node and entering the ventricles.

The PR interval is therefore a good estimate of AV node function.

e A long PR interval (of over 200 ms) may indicate a first degree heart block.
Prolongation can be associated with hyperkalemia or acute rheumatic fever.

e A short PR interval may indicate a pre-excitation syndrome via an accessory
pathway that leads to early activation of the ventricles, such as seen in Wolff-
Parkinson-White syndrome.

e  Avariable PR interval may indicate other types of heart block.

QT The QT interval generallyirepresents electrical depolarization and repolarization of the

left and right ventricles. A prolonged QT interval is a risk factor for ventricular

tachyarrhythmias andisudden-death.

The heart rate (HR) isranon-stationary value; it can vary as the body's need to absorb
oxygen and excrete carbon” dioxide 'changes, such as /during exercise or sleep. The
measurement of heart rate is used by ‘medical professionals to assist in the diagnosis and
tracking of medical conditions. It i1s" also used by ‘individuals, such as athletes, who are
interested in monitoring their heart rate to gain maximum efficiency from their training. Heart
rate variability (HRV) is measured as the variation in the beat-to-beat interval.

Heart rate variation (HRV) may contain indicators of current disease, or warnings
about impending cardiac diseases [21]; it has proved to be a valuable tool to investigate the
sympathetic and parasympathetic function of the ANS, especially in diabetic and post-
infarction patients [21]. Sympathetic activity is associated with the low frequency range
(0.04-0.15 Hz) while parasympathetic activity is associated with the higher frequency range
(0.15-0.4 Hz) of modulation frequencies of the HR. This difference in frequency ranges
allows HRV analysis to distinguish sympathetic from parasympathetic contributions evidently

[21].
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On the other hand, time-frequency parameters calculated using wavelet transform and
extracted from the nocturnal heart period analysis appeared as powerful tools for obstructive
sleep apnea syndrome diagnosis. Time-frequency domain analysis of the nocturnal HRV using
wavelet decomposition could represent an efficient marker of obstructive sleep apnea

syndrome [22].

2.3 Electroencephalogram (EEG)

The electroencephalogram (EEG) is a non-invasive tool for recording electrical
activity along the scalp produced by the firing of neurons within the brain. EEG
measurements of different locations, frequency ranges, amplitudes, waveforms and
periodicities can be used to distinguish different type of EEG. The EEG provides important
information about the health of the“eentral nervous system,(CNS), especially in the newborn
[23]. In the medical application“ef neurology, it is<common toise EEG to diagnose conditions
such as epilepsy, coma, encephalopathy and brain’death.

The typical voltage range of (EEG Signals.is.about/10:microvolts to 100 microvolts,
and the frequency domain is less-than 100 Hz. In addition, there are five major bands of
continuous rhythmic sinusoidal EEG activity. They are recognized as Delta (below 4Hz),
Theta (4-8Hz), Alpha (8-12Hz), Beta (12-30Hz) and Gamma (above 30Hz) waves, and their
characteristics are listed in Table 2-4. Signal components beyond this range are taken to be

artifactual noise, under standard clinical recording techniques.

Table 2-4 Classification of continuous rhythmic sinusoidal EEG

Frequenc Common
Type Ranqe (sz) Amplitude Description
g Range (V)

Delta is often associated with the very young
Delta () 0~4 - and certain encephalopathies and underlying
lesions. It is seen in stage 3 and 4 sleep.
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Theta is associated with drowsiness, childhood,
adolescence and young adulthood. This EEG
frequency can sometimes be produced by
hyperventilation. Theta waves can be seen during
hypnagogic states such as trances, hypnosis, deep
day dreams, lucid dreaming and light sleep and
the preconscious state just upon waking, and just
before falling asleep.

Theta (0) 4~7 Below 20u

Alpha is characteristic of a relaxed, alert state of
consciousness. For alpha rhythms to arise,
usually the eyes need to be closed. Alpha
attenuates with drowsiness and open eyes, and
Alpha (o) 8~ 12 20 ~ 80u typically come from the occipital (visual) cortex.
An alpha-like normal variant called mu is
sometimes seen over the motor cortex (central
scalp) and attenuates with movement, or rather
with the intention to move.

Beta rhythms ‘with low amplitude or multiple and
varying . frequencies is often associated with
active, -busy ‘ot .anxious thinking and active
Beta (B) 12 ~30 Below 20p | eoncentration,) Rhythmic beta with a dominant
set of frequencies, is associated with various
pathologies and ' drug effects, especially
benzodiazepines.

v
v v N
.

Gamma rhythms may be involved in higher
Gamma (y) 30~100 - mental activity, including perception, problem
solving, fear, and consciousness.

In clinical experiments, EEG signals are displayed based on the location of the
electrode, which affects the amplitude, phase and frequency of the signal. EEG measurements
can be divided into monopolar derivation and bipolar derivation. The monopolar derivation
uses a probe electrode and a reference electrode fixed on the scalp surface, and it measures the

relative potential between the probe electrode and reference electrode. On the other hand,
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bipolar derivation uses two probe electrodes and a reference electrode. The potential
difference between the two probe electrodes is taken as the EEG signal and relatively smaller
signal amplitudes can be detected using this method.

Today, there are many proposed identification systems and human brain wave
techniques used for medical diagnosis and treatment. For example, Fuzzy C-means (FCM)
algorithm can be used to identify epileptic seizures and cerebral palsy [24]. However EEG
signals are very weak, and thus often contaminated by various noise such as eye movement,
EMG and electrical noise from nearby instruments [25].

Fortunately, this problem can be alleviated by algorithms such as independent
component analysis (ICA) [26], which separates artifacts and noise from the measured EEG
signals. Wavelet [27] and Spatially-Constrained~{28]/techniques can be used to identify
artifact source channels thus making possible the automatic"removal of such artifacts. As a
result, clean EEG signals can be derived after the noise channel is eliminated and the
remaining source channels remixed. However; the computation complexity is so intense that
real-time ICA analysis is not feasible for a software implementation. Therefore, in recent
years, research on the VLSI hardware 4mplementation of ICA such as on FPGA and ASIC has

become a hot topic.
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Chapter 3 Integrated DOT/ECG/EEG Biomedical
Multiprocessor for Portable Brain-Heart Monitoring Systems

In this chapter, a highly-integrated multiprocessor chip design enabling the real-time
processing of biomedical signals in portable brain-heart monitoring systems is presented. The
design comprises a novel diffuse optical tomography (DOT) processor for taking brain
imaging, an independent component analysis (ICA) processor for removing artifacts of brain
electroencephalogram (EEG) signals, and a heart rate variability (HRV) analysis processor for
monitoring heart electrocardiogram (ECG) signals. In the following subsections, a detailed
discussion on the chip development starting from the top-level system overview and
application, to algorithm flow, hardware design and leading down to the final chip

implementation using UMC 65nm CMOS technology is presented.

3.1 System Overview and Application

The proposed systemy=shown in Figure 3-1; comprises an analog front-end (AFE)
circuit, the developed integratéd biomedical-DSP chip, and a ‘commercial Bluetooth module
supporting the UART protocol. The,AEE circuit acquires; digitizes and sends multi-channel
biomedical data such as EEG, ECG, and;DOTto the front-end control unit (FICU) upon
request by the DSP chip. The different biomedical signals are relayed to their respective
engines and time-multiplexed according to a priority scheme for minimizing data latency at
the output side. To reduce the bandwidth requirement and thereby save power, the multi-
channel biomedical data is losslessly compressed and packetized prior to UART and wireless
transmission. Finally, biomedical data packets received by the science station over the
Bluetooth channel are decoded, displayed in real-time, or stored in non-volatile media for
further processing and analysis. Operation modes for bypassing a particular engine or
disabling compression are received as control packets from the base station and decoded by

the system control unit. A summary of the system specifications is presented in Table 3-1.
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DSP chip for portable brain-heart monitoring systems
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Figure 3-1 System overview and architecture of biomedical multiprocessor

Table 3-1 Top-level.spécifications of proposed system

Parameter DOT EEG ECG
Sub-System Sub-System Sub-System
. . DOT Image Independent Heart Rate
Primary Function . Component .
Reconstruction . Variability
Analysis
Changq n Electrical activity .
absorption Electrical changes
. e on the scalp caused .
Signal Source coefficients . on the skin caused
. by firing neurons
influenced by . . by heartbeat
. in the brain
hemoglobin
1 frame
Sample Rate(Hz) (24 sensor values) 128 256
#Sensor
(Channel) 12 4 3
#NIR LED 6 - -
ADC Resolution 10-bit 10-bit 10-bit
. . EEG/ ECG/
CO‘gI%i“Orsson Dgf? ICA/ ECG+HRV/
P Off Off
. ECG: On/ Off
Compression Mode On/ Off On / Off HRV: not supported
UART Configuration 115200 baud, 8-N-1
Supported. Oqu ut RS232, Bluetooth or Zigbee
Communication
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3.2  Algorithm Discussion

In this section, a brief discussion on the various digital signal processing algorithms
employed in the integrated biomedical multiprocessor is presented. As indicated in Table 3-1,
the primary functions of the EEG, ECG and DOT subsystems are independent component
analysis (ICA), heart rate variability (HRV) analysis, and DOT image reconstruction
respectively. In addition, the theoretical basis of the specially developed lossless data

compression algorithm is also discussed in this section as well.

3.2.1 Independent Component Analysis (ICA)
3.2.1.1 Background and Motivation

Recently, blind source separation by Independent Component Analysis (ICA) has
received attention because of its potential applications insignal processing such as in speech
recognition systems, telecommunications-and medical signal processing [29]. The goal of ICA
is to recover hidden independent sources given only sensor observations that are unknown
linear mixtures of the unobserved independent source signals.

In physiological electrical’signal'measurement such as the EEG, the observed signals
are always the superposition of independent source signals, as shown in Figure 3-2. However,
EEG signals are especially vulnerable and easily contaminated by artifacts such as eye
movement, eye blink, power line noise and muscle (EMG) noise due to its weak signal
strength at the microvolt range, thus posing a serious problem in the analysis and
interpretation of EEG recordings. Fortunately, a particular flavor of ICA called the Infomax
ICA [30] has been demonstrated to be an effective, powerful and feasible method for EEG de-
noising, which is able to identify both EEG components and artifact components and separate
them into different channels [31]. By zeroing out the artifactual channels and performing a
remixing of the remaining EEG channels of interest, artifact-free EEG can be obtained. Figure

3-3 summarizes the process of EEG artifact removal using the ICA technique.
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Figure 3-3 EEG artifact removal using ICA (reproduced from [32])
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3.2.1.2 Discussion

Moving on from the theoretical background and application of ICA on EEG, we
proceed to discuss the mathematical details of the implemented signal processing algorithm
for the EEG subsystem. The algorithm implemented comprises three major steps: 1) pre-
processing through centering and whitening, 2) determination of the unmixing weight using
Infomax ICA and 3) computation of the ICA components. Note that the final stage of artifact
channel selection and removal is left out from this section since it is implemented off-chip.

Because the Infomax ICA algorithm takes many training iterations to achieve
convergence, a pre-processing step called whitening (a.k.a. principal component analysis or
PCA) is employed to accelerate the training process. The whitening transformation is a de-
correlation method that converts the\covariance matrix’of a set of samples into an identity
matrix. This effectively creates fiew random variables that'aré uncorrelated and have the same
variances as the original random variables. After whitening, the number of training iterations
needed to achieve convergence'is largely decreased. Prior to whitening, the EEG data is first

centered to obtain zero mean data

N
XG1) = Xeaw0) ~ EC s OO Kb )~ Kra ) (3-1)

i=1
where j = 1 to 4 indicating the channel, and i = 1..N where N is the window size. Next, the
actual whitening step is performed to obtain uncorrelated data. The covariance matrix of the

centered EEG data is calculated first

Xoov = E{XXT} (3-2)
resulting in a 4x4 X,y covariance matrix for four channel ICA. The next step is to determine
the whitening matrix P such that the resulting transformation Z = PX yields a Z., = L. In

order to find P, the eigenvalue decomposition (EVD) of X,y is calculated such that

Xcov = E{XXT} = EDET (3-3)
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where E is the orthogonal matrix of eigenvectors of X, and D = diag(A, A,,..., Ay) is the
diagonal matrix of eigenvalues of X o. Since X, is a positive semi-definite matrix, the

resulting eigenvalues in D are all positive. With these observations, we choose

1
P=ED ZET (3-4)

as the whitening transformation matrix. Because E'=E'and D" = D 'V’)T, we can show that

Z.ov = E{ZZ"} = E{PXX"P"} = PE{XX"}PT = E D"z ET EDETE (D‘%)T ET=1 (35
satisfying the original requirement for Z. After whitening, the next step is to find the
unmixing weight matrix W by performing Infomax ICA training on the new uncorrelated
random variables Z.

The procedure of Infomax ICA training/is described as follows:
1. Initialize W(1) to I, itefation number i = 1
2. Calculate independent source-estimates

U@i)=W(@)Z

3. Apply sigmoid contrast function to source estimates

_ 1
YO 1w

4. Apply the gradient ascent learning rule to improve unmixing weight estimate W
AW = L1+ (1 —2Y)UDHW
W@+ 1) =W(@{) + AW
5. Check for convergence
If [[AW]|? < Teony OF i = Ijimit
Output W
else
i=1+ 1, go back to step 2
Finally, the estimates for the independent source components are calculated as

ICA_OUT = W’ P’ X, where W’ and P’ are the converged unmixing weight and whitening

22



transformation matrices respectively of the previous sample window. Thus, it should be clear
that ICA_OUT is not the same as the final U calculated in the Infomax ICA training
procedure. Based on MATLAB simulations, the parameters Lyye, Tconv and Iimic have been
chosen as 7.4768x10™, 1.0012x10® and 512 respectively to achieve a balance among

convergence speed, convergence stability, memory size and calculation time.

3.2.2 Heart Rate Variability (HRV) Analysis
3.2.2.1 Background

Heart rate variability (HRV) is a normal physiological phenomenon where the interval
between successive heart beats of an individual varies over time. The term ‘“heart rate
variability” has widely become the adopted_term to describe the variations of both
instantaneous heart rate and RR interval [33]. To understand the implications of HRYV, the
origins of the heart rate and HRV-are first-discussed.

In the human body, visceral functions arecontrolled by the autonomic nervous system
(ANS). These functions include' heart rate, digestion, perspiration, and respiration. While
some actions such as breathing.-may be controlled .thfetugh conscious thought, visceral
functions are generally involuntary. Thi$ is/in contrastto voluntary motor functions controlled
by the somatic nervous system (SNS), which together with the ANS formulates the peripheral
nervous system (PNS).

The ANS classically consists of two main systems: the parasympathetic nervous
system and the sympathetic nervous system. The parasympathetic and sympathetic nervous
systems can be seen as two opposing branches exerting opposite effects on various internal
organs. The parasympathetic nervous system regulates a ‘resting’ mechanism and causes heart
rate and blood pressure to decrease. The sympathetic nervous system, on the other hand,
provides a ‘fighting” mechanism which increases heart rate and blood flow to muscles. The

complementary nature of the two nervous systems allows humans to rest when possible and to
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react to mentally or physically stressful situations when required. The resulting state of the
autonomic system due to influences of the sympathetic and parasympathetic nervous system
has become known as the sympathovagal balance.

3.2.2.2 Motivation

As the heart rate is largely under the control of the ANS, variations in heart rhythm can
reflect the influences of the parasympathetic and sympathetic nervous systems. Under resting
conditions the level of activity of the parasympathetic nervous system, or vagal tone, prevails
[34], and contributes to the high frequencies (HF) of HRV. Low frequencies (LF), on the other
hand, can be associated with sympathetic activity which occurs in response to stress, exercise,
and heart disease [21].

HRYV has been shown to be aniimportant indicator of cardiovascular health [33]. As the
regulation mechanism of they heart—is closely governed by the sympathetic and
parasympathetic nervous systems, HRV is often usedvas .a quantitative marker of the
autonomic nervous system. Studies have shown that the HRV is an important indicator in
many diseases and may contribute te ‘a better treatment [21]., Applications of HRV have been
applied to many forms of medical {researches-including studies in sleep apnea, patient
monitoring after cardiac arrest [35], and use in intensive care units [36].
3.2.2.3 Discussion

In order to provide insight to the intrinsic periodicities of HRV, the use of spectral
analysis is indicated since HRV is the result of super-imposed components relating to the
ANS. Through spectral analysis the contributions of sympathetic and parasympathetic activity
can be viewed in a much clearer perspective than time-domain analysis or geometrical
methods. In this section, the algorithm employed to perform the HRV is presented in detail.

The HRV algorithm takes in raw ECG samples and outputs a time-frequency spectrum

representing the heart rate variability, and comprises the following steps: 1) R-peak detection
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based on Pan and Tompkins [37], 2) R-peak to R-peak (RR) interval calculation and 3)
spectral analysis of the RR intervals using the Lomb periodogram [38].
3.2.2.3.1 R-peak detection

In consideration of architecture simplicity and real-time properties, a classical
derivative-based QRS detection algorithm based on Pan and Tompkins [37] is employed.
Figure 3-4 summarizes the R-peak detection algorithm employed, comprising 1)
differentiation, 2) squaring, 3) threshold detection and finally 4) peak detection.
Differentiation is performed to identify the slope of the R wave in the QRS complex, of which

the transfer function is
H(z) = %(—22‘2 —z 1+ 71 + 22%) (3-6)
with the corresponding difference equation
d[n] = %(Zx[n] + x[p=1] = x[n =3}, —2X[n — 4]) (3-7)
After the derivative is ealculated a squaring'is performed‘to enhance the characteristics
of the signal. Then a threshold.is applied.to the squared signal to detect the start of the QRS

complex. The peak of the QRS complex is identified as'the R peak of the ECG data segment.

Figure 3-5 shows the progression of the algorithm towards detecting the R peak location.

ECG _ | peratvell—{Esauatinal Threshold | | Peak N R Peak
=i E g Detection Detection Detection

Figure 3-4 Flowchart for R-peak detection

3.2.2.3.2 RR interval calculation
After the R-peaks have been identified, the next step is to record the time intervals in
between them. Figure 3-6 illustrates the time intervals between R-peaks, denoted by ti, such

that the RR interval time series is formed as

RR = {t;, t,, t3, ty, ts, tg, ..., t;} (3-8)
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Finding the variability of these values with respect to time in terms of frequency is our main
objective in HRV analysis. These values are passed on to the Lomb periodogram algorithm for

spectral analysis.
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Figure 3-6 R-peak to R-peak intervals of the ECG

3.2.2.3.3 Spectral analysis of RR intervals using the Lomb periodogram

Spectral analysis of time series signals is typically performed using transforms such as
the Fast Fourier Transform (FFT). However, the RR interval time series is unevenly sampled
in time, thus, if FFT is to be used, the data must be resampled into evenly-spaced points in

time. Unfortunately, studies have shown that such resampling and the choice of interpolation
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scheme introduces inconsistencies in the final HRV analysis [39]. Thus, to address this issue
while also maintaining an area-efficient portable solution, the Lomb periodogram [38], a
spectral density tool specially designed for unevenly-spaced data sets, is chosen instead.

The Lomb method uses least squares fitting to estimate the amplitude of a given
sinusoid with angular frequency ®; over non-uniformly sampled data. In other words, the
power of the given sinusoid, Px(®;), for a set of data points of length N is computed using a

least-squares fit to the model

x(t) = Acos(wjti) + Bsin(oo]-ti) + n(t;) (3-9)
for i=0,1,...,N, where n(tj)n(t;) is noise. The Lomb transform is based on the DFT for

unevenly sampled signals given as

Xj(w) = z x;je 14 (3-10)

j
where t; corresponds to the time when X; is sampled. As the'l.omb method weights the data on
a “per point” basis rather thanra *per time intetval’ basis, it is suitable for the analysis of non-
uniform data.
Since the frequency range of interest in-thetanalysis of HRV is between 0 to 0.4 Hz,
the frequency range is normalized to 0 to 1Hz using N=256 points, yielding a frequency
resolution of approximately 0.004 Hz per point. Setting ® to 2wtk/N and substituting into

(3-10), the Lomb transform is given as
2mk = Z xie N U
XN( N ) :
2tk _ - 2mk
= ZXjCOSTt]‘ - 1ZstmTt]~

) ]

(3-11)

where k =0, 1, ..., N-1, and x; are zero-mean data. The pseudo code of the final algorithm is

given as

for n = I to (Number of RR intervals)
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fork =0to 255

t=t+x[n];

x=x[n]-u;

X(k) = X(k) + x * [cos(k/N *t) - i *sin(k/N *t)] ;
end

end

3.2.3 Diffuse Optical Tomography (DOT)

The scattering behavior of near-infrared photon projected through biological tissue has
been derived based on the radiative transfer equation (RTE) since the 1990s. Since the
scattering probability is much greater than the absorption probability in turbid media, the
diffusion approximation to the transport equation can be used. Under the assumption of a

continuous wave optical source, the diffusion-equation is,reduced to

—DV20 (r)+0p, @ (r) = vS(r) (3-12)
where @ (r) and S(r) are the*photon fluence rate and light source density with respect to
location r, while D, p, and v are constant‘properties of a homogenous medium referred to as
scattering factor, absorption coefficient and speed of light; fespectively.

In the presence of impurities in‘thé homogenous medium, changes in the absorption
coefficient can be manifested. Using the Rytov approximation, a linearized equation of the
form b = Ax can be derived from (3-12), and extending to the case of n voxels and m source-

detector pairs,
@1 (rsy,Ta1) - Qi | [Auqa(rv1)
Z(rSZ' rdZ) " a?n Aua (TUZ) (3-13)
mz e

Aua (rvn)

m (rsm' r'dm) Amn
where each row of matrix a transforms the changes in the absorption coefficient Au, at
various voxels v;, vy, .. v, into light densities ® transmitted between particular source-detector

pairs. Solving for the pseudoinverse of a, the inverse solution is established, from which the

DOT image manifested as Au, can be reconstructed based on the light intensities ® received
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at the detector side. Note that any two ®;(rg;, rg;) , ®; (rs i Ta j) are considered distinct if at
least ry; # 1y OF 1g; # 1.

In our actual wearable DOT headband application, the target depth, locations of the
LED sources and detectors, and medium characteristics are fixed, and as a result, the forward
model matrix a and its inverse becomes a fixed characteristic of the DOT system. With this
observation, the inverse solution matrix is implemented as a constant array. By multiplying it
with the detected light intensities, the changes in absorption coefficient at various locations at

the target depth can be derived and interpreted as the DOT image.

3.2.4 Lossless Biomedical Data Compression
3.2.4.1 Background

Today, portability and thus,wir€less transmission, capability in patient monitoring
systems is highly desired in otfder to emhance the patient’s comfort and convenience. Strict
restrictions on the size, weight and construction-of portable devices have greatly limited the
available onboard battery ecapacity, -whereas wireless / transmission of multi-channel
biomedical data only aggravatés.the energy problem’in, these inherently power-isolated
devices. Since most of the power is dissipated during wireless transmission, minimizing the
amount of data through compression is essential to reduce the total system energy
consumption, thereby allowing prolonged device autonomy and battery operating time.
3.2.4.2 Compression for Low Power

It is well-known that wireless data communication takes up a large share of the total
power consumption in most portable wireless devices or systems, with power dissipation
proportional to the amount of data transferred. By compressing the data prior to wireless
transmission, power can be saved provided that the compression operation itself does not
consume too much power. A power tradeoff analysis for wireless EEG systems was presented

in [40], showing the relationships among compression ratio (CR), power required to perform
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compression (Peomp), and power required for wireless transmission (Py). If Peomp + CR's Py <
Py, then total power consumption can be reduced.

For short-range, low data bandwidth applications such as brain-heart signal
monitoring, the Bluetooth and Zigbee wireless protocols are recommended over ultra-
wideband and Wi-Fi [41]. Table 3-2 shows a comparison of various commercial wireless
transceiver ICs in terms of their power-related characteristics assuming nominal operating
usage. The lower operating current draw of the Bluetooth and Zigbee ICs is particularly

attractive, especially in applications with low-power requirements such as portable biomedical

devices.
Table 3-2 Energy consumption of commercial transceiver ICs
Protocol Bluetooth Zigbee UWB Wi-Fi
Chipset BlueCore2 CC2430 XS110 CX53111
VDD (V) 1.8 3.0 33 33
TX (mA) 57 24.7 227.3 219
RX (mA) 47 27 227.3 215
Bit rate (Mb/s) 0.72 0.25 114 54
Energy consumption (nJ/bit) 143 296 6.5 13.4

In order to save energy, a common practice is to turn on the transceiver only when
data 1is available for transmission. Thus, when data bandwidth utilization is low, the
transceiver spends most of its time in “sleep” mode, minimizing unnecessary energy
consumption. Since power-up and power-down overheads are minimal, duty cycling can
result in considerable energy savings. From an operational point of view, data compression
can reduce the energy consumption even further by effecting a reduction in the amount of
transmission data and essentially the resulting duty cycle. Figure 3-7 illustrates the possible
energy savings Eged as a function of CR and Ec.np, for cases employing a commercial

Bluetooth or Zigbee transceiver IC. Energy savings can be maximized if a good compression
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ratio can be realized at a minimal energy consumption cost, but may become negative when

CR is too low or when Ecomp 15 too high.

(a) Zigbee (b) Bluetooth
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Figure 3-7 Energy savings (1 - (CR'*E{+ Ecomp)/Efx).in percent as a function of Ecomp and
CR using (a) Zigbee and (b) Bluetooth'transceiver ICs:Solid and dotted red lines correspond
to the'CRs 0f{43] and [44] respectively.

3.2.4.3  Survey of Biomedical ' Data Compression Algorithms

Many biomedical data_compréssion algorithms have already been developed in the
past, mostly for EEG and ECG signals, and can be classified as either lossy or lossless. For
brain-heart monitoring systems, we only consider lossless compression techniques in order to
avoid the possibility of losing biomedical signal artifacts of potential diagnostic value. Table
3-3 shows a survey of various lossless biomedical data compression algorithms and their
reported compression ratio performance. Since the compression ratio is highly sensitive to the
characteristics of the input data (e.g. type of biomedical signal, sample precision, sampling
frequency, slew rate, etc.), and most works were done independently using their own input
data sets, the reported figures above only suggest expected compression performance possible
within the bounds of standard clinical practice, and should not be objectively compared
against each other. In summary, published lossless compression techniques report average

compression ratio figures of 2.16 to 3.23 for EEG and 2.18 to 3.49 for ECG signals.
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Table 3-3 Survey of lossless biomedical data compression algorithms

Biomedical Algorithm Compression
Ref. ™ Gignal Ratio (CR)
g Prediction Transform Entropy Coding
EEG Integer Karhunen-
[42] 16-bi DPCM Loéve Transform, Huffman 2.80
(16-bit) Stereo Integer DCT
EEG SLP Neural Network,
[43] 16-bit Adaptive Error Modeling, = Arithmetic 3.23
(16-bit) Context-Based Bias Cancellation
EEG Auto-Regression Filter, Conditional Coding,
[44] (16-bit) Context-Based Bias Cancellation - Huffman 2.16 (approx.)
ECG Burrows-Wheeler
[45] 11-bi Auto-Regression Filter Transform, Arithmetic 3.41 (approx.)
(11-bit) Inversion Ranks
Short-Term Prediction
ECG Context-Based Bias Cancellation), .
[46] (11-bit) ( Long-Term Prediction (R-R ) -- Golomb-Rice 3.49 (approx.)
Interval)
ECG i Exp-Golomb/
L 1-Ziv '77/C lex Extract - . .
[47] (13-bit) empel-Ziv '77 /Complex Extrac Huffman 2.23/2.18

However, unlike traditional data pcompression applications where storage space
reduction and hence CR is the primaty, and usually only, figure of merit, compression for low
overall system power requires the/algorithm’s space-time .complexity to be considered as well.
For example, [43] is exceedingly superior over [44] as far®as the compression ratio is
concerned, but then requires large buffers-and numerous computational iterations for training
and accurate error modeling. In“a hardware impleméntation point of view, the former is
expected to require significantly more memory ‘and computational elements or iterations,
resulting in higher leakage and switching power consumption. As an illustration, Figure 3-7
shows how an algorithm with modest compression performance can be more suitable in a
particular application when power consumption is also considered. Note that the power
consumption points in the figure are indicated only for discussion purposes and do not

represent actual results.

3.2.4.3.1 Algorithm complexity considerations
In order to select a suitable candidate for a baseline hardware implementation, an
assessment of algorithm complexity in the literature is presented. Most algorithms comprise a

prediction step followed by entropy coding. More powerful algorithms [42], [45] additionally
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employ a lossless reversible transform in between, typically resulting in improved
compression ratios. However, aside from introducing considerable computational overheads,
transforms cause data dependencies that require sample buffering, negatively impacting
power consumption as well as latency. With respect to low power compression, the inclusion
of transforms is generally not recommended.

Entropy coding is an essential step in compression algorithms, where frequently
occurring values or symbols are mapped to shorter binary sequences and less frequent ones to
longer sequences. In the literature, the entropy coding step is well-represented by Huffman,
arithmetic and variations of Golomb coding. Although Huffman and arithmetic codes can
closely follow source entropies, they require the upkeep of large memory structures for
modeling source symbol probabilities. Alternatively,.Golomb coding only requires the storage
and estimation of a single code;scaling-parameter, since it assumes a particular shape of
symbol probability distribution.’ Because predictive coding of biomedical signals roughly
satisfies the statistical assumptions, of “Gelomb coding,  the resulting entropy coding
performance is only slightly inferior «from optimal (by .around 5%), but the hardware
complexity can be significantly much lower. Hencg, for entropy coding, the power of two
variant of Golomb coding, Golomb-Rice, is suggested.

Another important problem distinct from entropy coding is prediction. Prediction
attempts to model the source signal such that an estimate of the current sample can be derived
from previous samples. If the prediction can be recreated at the decoder side, then only the
difference between the original and prediction values, called the prediction error, needs to be
transmitted. An accurate predictor yields very small prediction errors, resulting in a low
entropy signal that encodes efficiently into a shorter binary sequence after entropy coding.

Prediction techniques for biomedical signals range from the very simple like discrete
pulse code modulation (DPCM) (where the previous sample is taken as the expected value for

the current sample) to memory-intensive and computationally involved ones like neural
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networks [43], auto-regression (AR) filters [44]-[46], Lempel-Ziv and complex extraction
[47].

As mentioned earlier, most works focus only on the compression ratio, and hence take
full advantage of more sophisticated mathematical techniques in order to achieve better
prediction. For example, AR modeling and neural networks require multiple training
iterations to be run against long sequences of samples in order to find precise floating-point
model parameters that yield good prediction. Similarly, the Lempel-Ziv and complex
extraction methods perform pattern or template matching on blocks of samples, exploiting the
periodicity of ECG signals [47]. For the same reasons, the above methods are generally
considered unsuitable for real-time, low power hardware implementation.
3.2.4.3.2 Context-based bias cancellation

In [44], although the best réportedicompression ratio”was associated with a 6™ order
AR predictor, it was shown 'that a very simple DPCM. predictor, coupled with a
computationally simple context-based,bias‘cancellation, can attain compression performance
close to that of more complicated techniques such as the/AR model. In this scheme, contexts
are defined based on past samples, and, the . typical-DPCM prediction error in each context is
estimated. By subtracting this estimate from the original prediction, an improved prediction
can be achieved. Due to its simplicity, the method is seen to be very suitable for low power
compression.

From the foregoing discussions in the previous sections, the prediction technique
based on a DPCM predictor with context-based bias cancellation [44] shows most promise,
while an entropy coding method based on Golomb-Rice is recommended due to its low
complexity and good entropy coding performance. In the next section, the chosen lossless

data compression algorithm is described in more detail.
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3.2.4.4 Lossless Data Compression for Low-Power Biomedical Monitoring Systems
3.2.4.4.1 Basic DPCM prediction with Golomb-Rice entropy coding

The proposed lossless data compression algorithm is largely based on a basic discrete
pulse code modulation (DPCM) predictor followed by Golomb-Rice entropy coding, whose
block diagram and algorithm listing is shown in Figure 3-8. The previous sample is taken as
the prediction for the current sample, and the prediction error is obtained by subtracting the
two. From a window size WS of prediction errors, the Golomb-Rice code scaling K parameter
is estimated and the prediction errors are Golomb-Rice entropy coded using this parameter.
Finally, the encoded stream is packed into data chunks of fixed width for output.

Set Window Size WS = 64, 128 or 256
. Set Sample Precision SP = 8 or 10
. Output the first sample x[@]
. Set sample pointer S_PTR =1

- . Set SUM_ABS_ERR = @

Encoded For n from S_PTR to S_PTR+WS-1:
TX[M] stream Set SUM_ABS_ERR = SUM_ABS_ERR
. + abs(x[n]-x[n-17)

DPCM Golomb-Rice Packing ——> 7. Set K = ceil(log2(SUM_ABS_ERR/WS))
Prediction Coding 8. Output Golomb-Rice parameter K

9. For n from S_PTR to S_PTR+WS-1:

Output GR_ENCODE(x[n]-x[n-1], K)

10. Advance to next window: S_PTR = S_PTR + WS
o 11. Repeat steps 5 to 10 until all samples
are processed

Prediction
errors

K-Parameter

X[n] ——p
[l Estimation

AUV h WN R

Figure 3-8 Basic DPCM prediction followed by Golomb-<Rice entropy coding described as a
block diagram (left).and-pseudo code (right)

DPCM prediction is partly able to model the redundancies between consecutive
samples, such that the resulting frequency distribution of prediction errors tends to center and
peak near zero, as shown in Figure 3-9a. From this distribution, an appropriate K parameter
can be estimated, such that distributions with smaller variances result in smaller K and
distributions with larger variances result in larger K. A Golomb-Rice encoding table with K
parameter equal to 2 is shown as an example in Figure 3-9b. Since smaller symbol (the
prediction error is taken as the symbol) values occur more frequently, shorter code lengths
dominate, resulting in overall compression. Finally, the encoded output stream, illustrated in
Figure 3-9c, contains all the necessary information for the decoder to reconstruct the original

signal.
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Figure 3-9 (a) prediction error distribution and its mapping to (b) Golomb-Rice encoding
table with K =2;(c).encoded output stream

3.2.4.4.2 Context modeling

A typical overall distribution of prediction errors after, DPCM is shown in Figure 3-9a,
and is typically zero-mean with andoverall variance<to which an optimal K parameter is
associated. However, it has been demonstrated in earlier literature [44], [48] that the overall
Laplacian distribution is actually a composition of a plurality of Laplacian distributions, each
having its own variance and mean shift away from zero (Figure 3-9a). By appropriately
defining a context model, these individual structures can be extracted, upon which 1) bias
cancellation can be performed to re-center each distribution back to zero, resulting in smaller
prediction errors; and 2) more optimal Golomb-Rice K parameters can be estimated for each
distribution.

A simple yet effective context model definition based on the past five sample
differences was suggested in [44] for EEG signals, and is depicted in Figure 3-10. The current

sample is xi, and the sample differences d; are defined as
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di = Xg—i = Xg—i—1 (3-14)
where 1 is an integer between 1 and 5, inclusive, indexing the past five samples. To limit the
number of contexts, the sample differences are quantized according to (3-15)

0, if d; <T
) =1 ST (3-15)

where T = 0, resulting in a total of 32 contexts as defined according to (3-16).

context(x,) = {Q(d,),Q(d,), Q(d3),Q(dy), Q(ds) } (3-16)
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Figure 3-10 Context model based on‘five past sample differences, where the context of xy is
aMfunction of-dy to ds

3.2.44.3 Bias estimation and cancellation

For a particular context, the bias cancellation estimate is taken as the average
prediction error occurring in that context. For example, the simple DPCM prediction for a
current sample in an “always increasing” context (i.e. context(xx) = {1,1,1,1,1}) tends to be
short by some positive value. This bias is added back to the DPCM prediction, and the result
is a shorter binary code sequence after Golomb-Rice coding.
3.2.44.4 Latency reduction

From a system point of view, a major disadvantage of the algorithm described thus far
is its high output latency. Ideally, once a biomedical data sample (e.g. EEG, ECG) is sensed, it
can be immediately shown on the display device. Since the Golomb-Rice encoder can only

start outputting when the K parameter or bias cancellation value C has been calculated, the
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latency is seen to be the window size WS. From simulation results, the window size WS must
be large enough (typically a quarter to half the period) to achieve reasonable compression
performance. In many clinical situations, a latency of half a second is already unacceptable.

To solve this problem, the estimation loop for the K parameter and bias cancellation
value C is opened and is instead performed on a per sample basis according to [49]. As an
additional benefit of this scheme, since at any time, the estimates are based on past samples
only, the estimation procedure can be performed in exactly the same manner at the decoder,
and hence both the K parameter and bias cancellation value C need not be transmitted as part
of the output coded stream anymore.
3.2.4.45 Final algorithm

Unfortunately, in the final_ algerithm, the-bias’cancellation mechanism had to be
removed due to restrictions in ¢hip real-estate; resulting in“around 7% performance loss in
CR. Context-based estimation. of ‘the Golomb-Rice K parameter was retained. Table 3-4
summarizes all the above econsiderations.«to arrive at /the final chosen lossless data
compression algorithm for low power biomedical monitoring, Systems.

Table 3-4 Pseudo code of lossléss-biomedical data compression algorithm

1 Initialize N = ones(1,32) % N is the number of occurrences of a particular context
2 Initialize A = 8*ones(1,32) % A is the accumulated absolute prediction error in a context
3 Initialize prev_sample = 0, dpcm_pred =0
4 Initialize context = 1 % 1 (00000) increasing ~ 32 (11111) decreasing
5 Initialize idx = 1
6 For each sample in signal do
7 context = | + (dpcm_pred — prev_sample >= 0) + ((context-1)%16) << 1
8 dpcm_pred = prev_sample
9 pred_resd = signal(idx) - dpcm_pred

10 9% compute Golomb-Rice parameter k

11 K=0

12 While (N(context)*ZK < A(context))

13 K=K+1

14 End while

15 9 do Rice mapping

16 If (pred_resd < 0)

17 resd_mapped = -2 * pred_resd — 1

18 Else

19 resd_mapped = 2 * pred_resd

20 End

21 % do Golomb-Rice encoding using K on resd_mapped, and output
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22 For unary =1 to resd_mapped/ZK

23 OUTPUT(1)

24 End for

25 OUTPUT(0) % output delimiter

26 OUTPUT(resd_mapped%2K)

27 90 update context counters, resetting (by halving) when N = 255
28 A(context) = A(context) + abs(pred_resd)

29 If (N(context)==255)

30 A(context) = A(context)/2
31 N(context) = 128

32 Else

33 N(context) = N(context) + 1
34 End if

35 % setup next iteration

36 prev_sample = signal(idx)
37 idx =idx + 1

38 End for

3.3 Hardware Design and Implementation

In this section, the hardware designjand implementation of the proposed integrated
EEG/ECG/DOT multiprocessor chip’is described in.detaile A top to bottom approach in the
discussions is adopted, beginning with—the system or:chip top level design, architecture,
operation and I/O interfacingg followed by the presentation of the main signal processing
engines namely the ICA engin€é, HRV engine; DOT-engine/and the lossless data compression
engine. Design considerations such.as data buffering; inter-module handshaking and data
bandwidth calculations are then discussed, and finally the results of chip implementation

using UMC 65nm CMOS process technology is presented as a conclusion to this section.

3.3.1 Top Level Design
3.3.1.1 Chip Architecture

The chip top architecture, shown in Figure 3-11, comprises 1) a UART communication
interface for receiving control and configuration commands and transmitting mixed
multichannel raw or processed biomedical data; 2) a system control unit (SCU); 3) a front-end
control interface unit (FICU) for controlling the analog front-end (AFE) circuitry and 4) a
main biomedical DSP IP core containing the ICA, HRV, DOT and lossless data compression

engines. A detailed description of the chip’s I/O pins is given in Table 3-5.
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Integrated EEG/ECG/DOT Multiprocessor IC
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Figure 3-11 Top architecture of the integrated EEG/ECG/DOT multiprocessor IC

Table 3-5 ChipJ/O.pin descriptions

Pin Name Direction LWidth Description
Clock and Reset
CLK Input 1 24MHz master clock
RESET Input 1 Master reset signal
Analog Front-End Interface
AIC_CLK10K Output 1 10KHz clock for CHDDA and LPF of AIC
AIC_CLK_SLOW Output 1 1.2MHz master clock for ADC of AIC
AIC_RESET Output 1 Synchronous reset for ADC
AIC_CH_SEL Output 3
LED_SEL Output 3 Bio-signal channel select for ADC conversion
DOT_CHSEL Output 4
AIC_START Output 1 Start of conversion command to ADC
AIC_VALID_CONVERSION Output 1 Debug pin (no need to connect)
AIC_EOC Input 1 End of conversion flag from ADC
AIC_DATA Input 10 Converted digital bio-signal output by ADC
UART Interface
RX Input 1 UART RX port for receiving system commands
TX Output 1 UART TX port for transmitting biomedical data
Special Control Signals
OVERFLOW Output 1 Indicates that buffer overflow has occurred inside the chip
MANUAL_START Input 1 Manually initialize chip to default mode w/o using UART

3.3.1.2 System Operation

Upon external reset, the chip enters into an inactive state. For chip operation to start, a
configuration/control command must be sent to the UART RX interface. The command byte,
whose fields are shown in Table 3-6, tells the chip which biomedical signal processing
engines to enable. Note that if the HRV or ICA engines are to be used, their corresponding
biomedical signal sampling must be enabled as well. So, commands like 8’bxxxxxx10 (ICA

on, but EEG sampling off) and 8’bxxxx10xx (HRV on, but ECG sampling off) are illegal.
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Table 3-6 Bit field description of system mode byte command

Bit Meaning

Enable 4-ch EEG data sampling
Enable 4-ch EEG ICA processing
Enable 3-ch ECG data sampling
Enable HRV analysis on ECG channel 0
Enable fNIR data sampling and DOT
Bypass EEG compression

Bypass ECG compression

Bypass DOT compression

NOULHS WN = O

Upon receiving the system mode command bit stream, the UART module decodes it
into byte-register format and sends it to the SCU along with a start trigger signal. Figure 3-12
illustrates the operation of the SCU. After receiving the trigger from the UART, the SCU
issues a chip-wide internal reset and broadcasts the system mode (by way of register pins) to
relevant modules. The main DSP IP cere ‘requiréss96 clock cycles to fully initialize. After
initialization is done, the SCU sendsa trigger.signalsto'the FICU to start periodic requesting
of biomedical data from the AEE. Depending on'the system mode configuration, EEG, ECG
and/or fNIR samples are received and processed by the imain DSP IP core. Finally, raw or
processed biomedical data is output through the UART TX /interface according to the output
data format described in 3.3.1.4. The.whole chip continues to operate in an infinite loop of
data sampling, signal processing and data transmission as described above until a stop

command (8’bxxx00000) or new configuration command is received.

System RESET

Y v

Wait for UART Wait for
command MANUAL_START

v v

Send internal Set System Mode to
reset 8'b1111_1111

v

System Wait for
Mode INIT_DONE

Enable ICA Clock
From DSP IP
Core

Gated Clock
Generation

Enable HRV Send trigger
Clock signal to FICU

A

Enable DOT
Clock

Figure 3-12 Flow chart of system control by SCU
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Alternatively, the chip can be triggered to operate using the MANUAL_START
special control signal. In this case, the system mode defaults internally to 8’b1111_1111 such
that the biomedical signal processing engines ICA, HRV and DOT are all turned on and
lossless data compression of any sort is turned off. From this point forward, the chip operates
as described in the normal mode, and can be turned off or reconfigured through new
commands received at the UART RX interface.
3.3.1.3 Interface to the Analog Front-End (AFE) Circuitry

The interconnections between the analog front-end circuit and the FICU form the
interface from which mixed multichannel biomedical data (i.e. EEG, ECG, fNIR) are acquired
into the system. Figure 3-13 shows the schematic of the AFE circuit interface. A 10 KHz
clock generated by the FICU is provided to the-chopper-stabilized differential difference
(CHDDA) instrumentation amplifiers and-low-pass switched-=capacitor filters (SC LPF) of the

AFE circuit, while a 1200 KHz clock is provided as masterclock to the AD converter.

EEG/ECG Electrode Array

Digital Si I
/ @ @ @ @ @ @ @ Prggés,asing’giip
AIC_CLK10K

-

|
|
|
AIC_CHSEL |
|
|
I
|

Flexible DOT Sensor Board

\d
E: IA + Filter (EEGO) [» AIC_CLK_SLOW
\ IA + Filter (EEG1) | » B
AIC_RESET
\ IA + Filter (EEG2) | » - 1
\ A + Filter (EEG3) | > Analog > ADC AIC_START_CONVEF&SION
\ IA + Filter (ECGO) |[» MUX -
\ IA + Filter (ECG1) | > AIC_DATA | > FICU
IA + Filter (ECG2) | » AIC_EOC |
r IA + Filter (NIR) > | -
oo o of : DOT_CHSEL |
o o o — | Multiplexer |- i
N S LED_SEL |
© o © — | Decoder | =
O O ] O |

Figure 3-13 Analog front-end (AFE) interface
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Since there are a total of 31 analog signal channels involved (7 for EEG/ECG and 24
for fNIR), the different signals are time-multiplexed through a single AD converter in order to
reduce the number of I/O pins at the chip interface. Prior to starting AD conversion, the FICU
first selects the desired biomedical signal using AIC_CHSEL, LED_SEL and DOT_CHSEL.

A description of these signals is provided in Table 3-7.

Table 3-7 Biomedical signal selection using AIC_CHSEL, DOT_CHSEL and LED_SEL

AIC_CHSEL Selected Channel
0 EEG Channel 0
1 EEG Channel 1
2 EEG Channel 2
3 EEG Channel 3
4 EKG Channel 0
5 EKG Channel 1
6 EKG Channel 2
LED_SEL | DOT_CHSEL DOT Channel
0 0
4 1
0 (LED 1) 1 >
5 3
1 4
5 5
1(LED 2) 2 6
6 7
2 8
6 9
2 (LED 3) 3 10
7 7 11
4 12
8 13
3 (LED 4) 5 14
9 15
5 16
9 17
4 (LED 5) 6 18
10 19
6 20
10 21
5 (LED 6) 7 22
11 23

Once the selected biomedical signal is set up at the AD converter’s analog input, the
FICU asserts AIC_START_CONVERSION for one clock cycle, to which the ADC responds
with the converted digital data 12 cycles later together with a single-cycle assertion of
AIC_EOC. Internally, latching of AIC_DATA depends only on the assertion of AIC_EOC,
and so the end-of-conversion (EOC) signal can be directly used as an INPUT_VALID signal

for AIC_DATA.
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The FICU has 128 Hz, 256 Hz and 24 Hz internal counters to periodically generate the
acquisition requests for EEG, ECG and fNIR samples respectively, as needed depending on
the system mode. Since the requests are asserted independently and can occur at the same
time, actual access to the ADC interface is arbitrated according to a simple ADC priority
scheme to ensure proper operation.

The fNIR sampling requires a 24 Hz counter since there are a total of 24 conversions
that need to be performed within 1 second. Figure 3-14 shows a model diagram of the DOT
sensor board with the 6 fNIR LED sources and 12 detectors labeled for reference. For each
source, the four nearest detectors are enabled in sequence for AD conversion. For example,
DOT conversions 1 to 4 (in black font) requires LED 1 (orange circle) to be turned on while
sampling detectors (yellow squares), 4,1 then 5-in‘succession. The complete sequence of
LED sensor control and fNIR data‘acquiSition is ordered from top to bottom in Table 3-7. A

summary of the specifications,of the AFE circuitry and interface.is shown in Table 3-8.

Figure 3-14 Model diagram of the DOT sensor board

Table 3-8 Summary of AFE specifications

Parameter DOT Sub-System EEG Sub-System ECG Sub-System
Sampling rate (Hz) (24 selnfsr(?;r\l/iilues) 128 256
Sensors (channels) 12 4 3

fNIR LEDs 6 - -
LPF cut-off freq. (Hz) 10 50 100

Gain (dB) - 250 5000

Output range (V) 0 ~ 2.2 (external sensor) 0 ~ 2.5 (built-in IA) 0 ~ 2.5 (built-in I1A)
ADC sample precision 10-bit 10-bit 10-bit
Digitized data range 0~900 0~1023 0~1023
ADC priority 3 1 2
ADC order One sample each time Ch0-Ch1-Ch2-Ch3 Ch0-Ch1-Ch2
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3.3.1.4  Output Data Format

After the biomedical data has been sampled and processed, the results need to be
output. To allow the easy adoption of the proposed design in third party systems, a standard
output data format is specified and documented.

The output data format is defined on top of the UART byte layer, wherein the data unit
is a 40-bit biomedical data packet as shown in Figure 3-15. The unit biomedical data packet
comprises a 38-bit data payload and a 2-bit data type header specifying whether the packet
carries DOT, HRV, ECG or EEG/ICA biomedical data. The presence of a particular type of
biomedical data depends on the configured system mode (received from the science station)
and is described in Table 3-9. Note that because the lower bytes are transmitted first before
the upper bytes, only until the last byte is‘received (BYTE4) will determination of the data
type be possible. The rest of the"output-data format specifications is summarized in Table 3-9.
Note that although the EEG and ICA data share the same'data type header, the science station

can distinguish between the two based.on the.system mode it sent to the chip.

39 38 37 0
TYPE | Biomedical Data

BYTE4 | BYTE3 | BYTE2 | BYTE1 | BYTEO
< TIME

Figure 3-15 40-bit biomedical data packet

Table 3-9 Summary of the output data format

DOT HRV ECG EEG / ICA
System
Mode Bit 4 3 2 1 0
Enable NIR Enable HRV Engine
Action Sampling and (operates on CHO g:;blﬁs-m EKG Enable ICA Engine g;;bll(?:{h EEG
DOT Engine only) ping piing
. 256-point

Outp u.t . file pixel DOT frequency 3-ch EKG signal | 4-ch ICA signal 4-ch EEG signal
Description image (735nm)

spectrum
Output Data 1 image / sec 1 spectrum / min 3-chx 256 4-chx 128 4-chx 128
Rate 5 p samples / sec samples / sec samples / sec

32-bit signed 16-bit signed
Output Unit 20-bit signed coefficient pairs 10-bit signed independent 10-bit signed EEG

P pixel intensities | {16-bit REAL, 16-bit | EKG samples component samples

IMAG} samples
Output Sub-frame, coeff0, coeffd, ..., CHO ->CH1 - > CHO -> CH1 -> CH2 | CHO -> CH1 ->
Sequence raster order coeff255 CH2 ->CH3 CH2 -> CH3
Data Type 2b11 2'b10 2b01 2'b00 (if ICA is enabled, raw EEG
Header samples are not output)
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In order to achieve low latency real-time performance, processed biomedical data are

immediately packetized and output, such that consecutive packets can be of different data

types during actual operation. Since the time lapse between the last pixel of a DOT image to

the first pixel of the next takes one second, data flush pad bits are appended to the last pixel to

form a complete 40-bit packet for immediate transmission. The same is done for HRV data,

wherein the frequency spectrum is output only once every minute. For the times series ECG

and EEG/ICA data, the worst case stall is just a minimal sampling period and so data padding

is not employed. An explicit illustration of the different types of biomedical data packets

(lumped together for clean layout) is shown in Figure 3-16 through Figure 3-21.

[ oHs [ cH2 | omn cHo |
39 38 37 0
EEG - RAW | | |
1Packet [0 0] EEG_CH3SAMPO[7:0] | EEG_CH2.SAMPO [9:0] | EEG_CH1.SAMPO [9:0] [ EEG_CHO0.SAMPO [9:0]
1™ Packet | 0 0 [EEG_CH3.SAMP1 [5:0] EEG_CH2.SAMP1 [9:0] | EEG_CH1.SAMP1 [9:0] | EEG_CHO.SAMP1 [9:0] [ 1o:8)
3%Packet |0 0 o | EEG_CH2.SAMP2 [9.0] | EEG_CH1.SAMP2 [9.0] | EEG_CH0.SAMP2 [9:0] HED
4"pPacket [0 0| 0] | EEG_CH2.SAMP3 [9:0] | EEG_CH1.SAMP3 [9:0] [ EEG_CHO.SAMP3 [9:0] [EEG_CH3.5AMP3 [9:4]
T
|
N"Packet [0 0 [ EEG_CH3.SAMP31 [9:0] [EEG_cH2 sAmP31 [9:4]

Next segment
<_

Figure 3-16 Raw EEG biomedical data-packets composed of EEG samples

[ cHa | cH2 [ cHt | cHo |
39 38 37 0
EEG - ICA | | |
1% Packet [ 0 0 [ICA_CH2.SAMPO [5:0]] ICA_CH1.SAMPO [15:0] [ ICA_CHO0.SAMPO [15:0]
1" Packet | 0 0 ICA_CHO.SAMP1 [11:0] | ICA_CH3.SAMPO [15:0] | ICA_CH2.SAMPO [15:6]
3%Packet | 0 0| [1:0] ICA_CH2.SAMP1 [15:0] | ICA_CH1.SAMP1 [15:0] [ sz
4"Packet [0 0 ICA_CH1.SAMP2[7:0] | ICA_CHO0.SAMP2 [15:0] | ICA_CH3.SAMP1 [15:2]
5"Packet [0 0 ICA_CH3.SAMP2 [13:0] [ ICA_CH2.SAMP2 [15:0] | 1cA_cH1.sAMP2[15:8]
T
|
N"Packet [0 0 FEEEE ICA_CH3.SAMP31 [15:0] [ ICA_CH2.SAMP31 [15:0] [15:14)]
Next segment
4_

Figure 3-17 ICA-processed EEG biomedical data packets composed of ICA samples

[ om2 | cwt | cHo |
39 38 37 0
EKG - RAW | | |
1Packet [0 1| EKG_CHOSAMP1[7:0] | EKG_CH2.SAMPO [9:0] | EKG_CH1.SAMPO [9:0] [ EKG_CHO.SAMPO [9:0]
1" Packet | 0 1 [EKG_CH1.SAMP2 [50] EKG_CHO.SAMP2 [9:0] | EKG_CH2.SAMP1 [9:0] | EKG_CH1.SAMP1 [9:0] [ 18]
39 Packet | 0 1 3o | EKG_CH1.SAMP3 [9.0] | EKG_CHO0.SAMP3 [9:0] | EKG_CH2.SAMP2 [9:0] R
4" Packet [0 1 | EKG_CH2.SAMPO [9:0] | EKG_CH1.SAMPO [9:0] | EKG_CHO.SAMPO [9:0] [ExG_cH2.sAMP3 [9:4

X"Packet |0 1 | EKG_CH1SAMP(N)[70] |

T
|
|
EKG_CHO.SAMP(N) [9:0] |

EKG_CH2.SAMP(N-1) [9:0]

| EKG_CH1.SAMP(N-1)[9:0] |

Figure 3-18 Raw ECG biomedical data packets composed of ECG samples
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EKG_HRV.SAMP_N [31:16] is REAL EKG_HRV.SAMP_N [15:0] is IMAGE
EKG_HRV.SAMP_N [31:0]

39 38 37 0
HRV | |
1%Packet [ 1 0 |EKG_HRV.SAMP1 [5:0] EKG_HRV.SAMPO [31:0]
1™ Packet | 1 0 EKG_HRV.SAMP2 [11:0] EKG_HRV.SAMP1 [31:6]
3%Packet | 1 0 EKG_HRV.SAMP3 [9:0] EKG_HRV.SAMP2 [31:12]
4"Packet | 1 0 EKG_HRV.SAMP4 [23:0] EKG_HRV.SAMP3 [31:10]
5"Packet | 1 0 EKG_HRV.SAMP5 [29:0] EKG_HRV.SAMP4 [31:24]
10 [3:0] EKG_HRV.SAMPS [31:0] [131:30]
T
I
I
216" Packet [1 0] 16'bxXXX_XXXX_XXXX_XXXX (data padding) | EKG_HRV.SAMP255 [31:10] |
Figure 3-19 HRYV data packets composed of frequency spectrum coefficients
E15 e }--4 e2 | & [ e |
39 38 37 0
DOT-pixel | | |
1 Packet |1 1 DOT (0, 1) [17:0] [ DOT (0, 0) [19:0]
2" Packet | 1 1 DOT (0, 3) [15:0] | DOT (0, 2) [19:0] [119:18)
T
I
I
N-1" Packet [ 1 1 DOT (0, 13) [19:0]
N" Packet | 1 1 DOT (1, 0) [15:0] DOT (0, 15) [19:0]
Next sub-fra;nﬂ :
I
50" Packet | 1 1 DOT (5, 13) [19:2]
51 Packet | 1 1 18'bxx_xxxx_xxxx_xxxx_xxxx (data padding) DOT (5, 15) [19:0]

Figure 3-20 DOT biomedical data‘packets composed of image pixels

Sub- Sub- Sub-

Sub-frame 0 Sub-frame 1" _« Sub-frame.2 Sub-frame'N frame Oframe 1frame 2
0|48 |12J0| 4|8 (|12 0|4 ]| 8|12 P 1 p ’}2
1]s5|of13f1|5][9]13]1[5]9]13 / 3/ /)
2|6 [10(14] 2|6 |10]|14] 2|6 |10[14 /‘(1¥ P >
3|17 (11153 |7 |11{154 3|7 |11]15

o|a|s[12]o4a]8]12fo|4]8][12 Sub- Sub-  Sub-
115913011519 1130115| 913 frame 3 frame 4 frame 5
2(6|10|14] 2| 6 |10|14]2 | 6 |10(14

3|17 (11153 |7 |11{154 3|7 |11]15

Sub-frame 3  Sub-frame 4  Sub-frame 5

Figure 3-21 DOT image pixel transmission sequence

In the case when lossless data compression is enabled for EEG/ICA, ECG or DOT, the
output data format is the same, except that the fixed-precision output sample units become
variable length comprising Golomb-Rice coded prediction errors (in the form of
unary(quotient), delimiter, binary(remainder)) as previously illustrated in Figure 3-9c. In this
case, the amount of data padding for DOT and HRV data becomes conditional to whether or

not the last pixel or coefficient pair completely fills up the 40-bit data packet, respectively.
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3.3.1.5 Wireless Data Communication Interface and UART

Among the wireless data communication protocols commercially available today,
Bluetooth and Zigbee are two protocols specially designed for portable applications, featuring
short communication ranges and low power consumption at reasonable data rates [41]. Table
3-10 shows a comparison between the Bluetooth and Zigbee protocols. Given that the
intended application consists of only a few nodes communicating at a low data bandwidth,
Zigbee appears to be the more attractive solution, since the nominal power consumption is
much lower. However, none of today’s consumer devices, i.e. smart phones, laptops, PDAs or
tablets, support the Zigbee protocol. Since connectivity and accessibility are primary
requirements, Bluetooth was the protocol chosen to serve as the wireless communication
interface in our system. Figure 3-22a shows the commetrcial Bluetooth IC module employed
for wireless data communication‘in thé&proposed system andits specifications are summarized

in Figure 3-22b.

Table 3-10®Comparison’between Bluetooth and Zigbee

Parameter Bluetooth ZigBee

Operating Frequency 2.4 GHz 2.4 GHz

Frequency Hopping Direct Sequence

S Spread Spectrum Spread Spectrum

Transmission rate (kbit/s) 1000 250
Nominal Range 10 meters 10-100 meters
Typical network join time 3 seconds 30 milliseconds
Nominal TX Power 0 to 10 dBm -25to 0 dBm

Standard Bluetooth specification version 2.1+EDR
Profile Serial port profile (SPP)
Frequency 2.402GHz ~ 2.480GHz unlicensed ISM band
Modulation | GFSK (1Mbps); I1/4-DQPSK (2Mbps); 8-DPSK (3Mbps)
TxD, RxD, CTS, and RTS

LTI 1.2 t0 921.6kbps, 8-N/E/0-1/2
RF Spec. TX: Class 2, Max 4 =1 dBm
RX: -80 dBm typical sensitivity
Range Up to 10m
Power 3.3V, up to 60mA
Dimensions | 27mm x 13mm x 2mm
(a) (b)

Figure 3-22 (a) Bluetooth transceiver module from Hotlife; (b) Specifications summary of

employed Bluetooth transceiver module
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In order for the proposed chip to connect to the Bluetooth module, a UART
communication interface is implemented within the chip. Aside from the advantage of having
a reduced number of I/O pins at the chip interface, by employing a UART interface, the
usability of the chip is further enhanced such that its connection to many other devices that
support UART (e.g. PC through RS232 COM port, Zigbee module w/ UART interface, and so
on) becomes possible. Table 3-11 summarizes the specifications of the UART module
implemented in the chip while Table 3-12 shows the maximum bandwidth usage calculations
in the case of full mode (system mode = 8’bl1111_1111) operation. Note that the effective
baud rate is only 80% of the gross baud rate since the UART start and stop bits take up 20%

of the UART frame.

Table 3-11 Specifications of the on-chip UART module

Parameter Description
Baud rate 115,200
Data bits 8
Parity bits None
Stop bits 1
Pins TX, RX
Flow control None

Table 3-12 Calculation of maximum UART bandwidth usage

Data Calculation Bandwidth (bps)
16 bits/sample X
ICA 128 samples/s-ch X 8,192
4 ch
10 bits/sample X
ECG 256 samples/s-ch X 7,680
3ch
32 bits/coefficient X
HRV 256 coefficients/60 s 13653
20 bits/pixel x
DOT 96 pixels/s 1920
(8,192 + 7,680 + 136.53 +
Header (approx.) 1,920) x% 943.6
Total Used -- 18,872.13
Total Available 115,200 bps X - 92,160
Percent Used -- 20.4%
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3.3.2 Core Module Design

In this section, the design of the main biomedical DSP IP core containing the ICA,
HRYV, DOT and lossless data compression engines is described in detail. Figure 3-23 shows
the architecture of the core biomedical DSP IP and its relation to the rest of the chip. The main
biomedical DSP core IP, conditional to the configured system mode, takes in EEG, ECG
and/or fNIR data, processes them and outputs various combinations of 1) raw EEG signals; 2)
independent component signals; 3) raw ECG signals; 4) HRV frequency spectrum coefficients
and 5) DOT image pixels, packaged according to the 40-bit output format specified in Section
3.3.1.4. In the following subsections, top-level data flow issues will be discussed first, after

which the detailed design of the ICA, HRV, DOT and COMP engines will be presented.

Integrated EEG/ECG/DOT Multiprocessor IC
- o System Control Unit (SCU) -g--- RX |
Special (C:Og:/gj Config/Control
Control c ronmron d Command
Signals omma Bitstream
Start Cmd System Mode Bytes
SystemMode __ ___ __ __ o o o o —
Y A\ I
| EEG |
Data ICA o Priority
| T 7| Engine "] Data | UART UART
-4 Selector Interface
-4 | | (PDS) Lossless | |
Analog | L Compressor Mixed
Front-End Front-End (COMP) | Multichanne!
Control Interface I ECG ) | Raw or
Analog Signals Control Data_ |  HRV o R:Q‘Stzf Processed
Front-En . - i - ase Biomedical
neriace | > unit || Enane o ! pata
Time- (FICu) | ° RAV- | | Bitstroam
Multiplexed > RAM > based » ™ -
Digital EEG, | pased Fro | |
ECG or iNIR | MR EEG/ICA ot
Data Data_|  DOT - FIFO " Data
| "| Engine g backets
I Main Biomedical DSP IP Core I

Figure 3-23 Architecture of the main biomedical DSP IP core within the chip

3.3.2.1 Priority Data Selector (PDS)

The ICA, HRV and DOT engines processes input EEG, ECG and fNIR data as
described in Section 3.2. Although the timing of the input data is guaranteed to be non-
simultaneous, the processing delays of the corresponding engines vary causing the possibility
of simultaneous data at the output side. Since the lossless compression module accepts only

one biomedical data sample at a time, a priority data selector (PDS) module is employed to
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perform time-multiplexing of the different types of biomedical data into a single data stream.
Although it’s possible to schedule the input data timing such that the outputs are ensured to
arrive at different times, for robustness of the design we choose to support arbitration based
on priority instead. The architecture of the priority data selector module, including the
implemented priority assignment, is shown in Figure 3-24.

Each biomedical data sample sent to the lossless data compressor is annotated with
COMP info parameters by the PDS. These info parameters indicate the sample precision
(COMP_SP) and type (CH_SEL) of the biomedical data and also whether the sample will be
compressed or not (BYPASS). Given these information, the lossless compression module
conditionally compresses and packages the received biomedical data samples accordingly into

40-bit packets as described in Section 3.3.1:4.

Priority Data Selector (PDS)
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EEGICA | )
—

FIFO
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System CH_SEL
Mode N Priority Control Logic COMP_spP >
ECG: 1, EEG/ICA: 2, HRV: 3, DOT: 4

Data - - Data
{ Handshaking Handshaking Control Logic Handshaking

Figure 3-24 Architecture of PDS and priority assignment

3.3.2.2 Inter-module Handshaking Mechanism
Although it has been shown in Section 3.3.1.5 that the UART bandwidth is enough to
handle the maximum output data rate during full mode operation, the instantaneous data rate

at the input of the UART can, during some short segments in time, actually exceed the
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maximum UART baud rate. This is in part due to the process of sample windowing employed
by the signal processing algorithms which causes bursty data timing at the output side, and is
further exacerbated by the faster clock used by the processing engines. Therefore, to address
this issue, a three-stage inter-module handshaking mechanism is employed such that upstream
modules can be instructed to stall and hold their output until the UART is ready again to
receive new data. Figure 3-25 illustrates the three-stage handshaking mechanism wherein the
backward READY handshaking signal is highlighted in red. Finally, to prevent hard stalling
of the modules and also to serve as allowance over possible data overflows, sample and

stream buffers are employed in the PDS and COMP modules respectively.
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------- READY signal

> DATA signal bus &
DATA_VALID signal

Figure 3-25 Three-stage handshaking mechanism

3.3.2.3 Diffuse Optical Tomography (DOT) Engine

The main design problem in the development of the DOT engine is the determination
of the inverse solution matrix. As discussed in Section 3.2.3, indeed when the LED source-
detector pair geometry, target medium and depth parameters are fixed, the coefficients of the
inverse matrix are constant. Therefore, the inverse matrix was derived empirically based on an
actual experimental set up and then implemented as a look-up table using a ROM. The

distances between the LED source-detector pairs are illustrated in Figure 3-26, whereas the
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absorption coefficient, scattering factor and target depth are fixed at p, = 0.05cm™, v = 10cm™
and d = 0.5cm respectively in the experiments. To reduce the complexity of the forward
model, a sub-frame image reconstruction technique [50] was employed such that the 8x12
DOT image is broken into smaller 4x4 sub images each reconstructed based on its 4 nearby
fNIR sensor readings (surrounding an LED source).

Figure 3-27 shows the hardware architecture of the DOT engine. Input data in the form
of fNIR light intensity values are received and initially stored in a shift register buffer. After
receiving a complete input data unit of 24 fNIR data values, the main state machine shifts to a
calculate and save state. During this state, the data access sequencer logic controls the
memory accesses and time-sharing of the singular MAC unit to effect a matrix multiplication
operation, wherein the intermediatetand-final tesults are stored in the output pixel buffer.
Finally, the calculated image pixels forming the 8x12.DOT image are read from the output
pixel buffer RAM and sent to the PDS unit. The pixclioutput sequence is as shown previously

in Figure 3-21.

- Wavelengths
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Figure 3-26 DOT sensor array board
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Figure 3-27 Hardware architecture of the DOT engine

53



3.3.2.4 Independent Component Analysis (ICA) Engine

The independent component analysis (ICA) engine is mostly a straightforward
implementation of the Infomax ICA algorithm outlined in Section 3.2.1. The hardware
architecture of the ICA engine, shown in Figure 3-28, comprises 1) an input buffering and
preprocessing unit (STAGE1) that calculates the covariance matrix and centers the input EEG
data; 2) a whitening unit (WU) which calculates the whitening transformation matrix; 3) an
ICA training unit (TU) which performs the unmixing weight training; and 4) an ICA
computation unit (CU) that calculates the whitened unmixing weight matrix and outputs the

final estimated independent source signals.
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Figure 3-28 Architecture and sequenced operation of the ICA engine

The top operation of the ICA engine follows the described algorithm flow in Section
3.2.1 and is detailed as follows:

1. STAGEI1 receives sparsely-timed EEG data and the input buffering unit (IBU) stores
them into an interleaved SRAM array for later processing. (sequence in green)

2. Once a complete window of 64 by 4ch EEG samples has been received, the EEG
samples are read out from the memory and the channel means are calculated. The mean
values are then 1) immediately used to calculate the covariance matrix; and 2) saved in
a register array for later use during the centering operation. The eigenvalue value

decomposition (EVD) unit of the whitening unit then iteratively diagonalizes the
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covariance matrix, and upon convergence outputs the final estimated eigenvalue D and
eigenvector E matrices. The inverse square root of D calculated by the INV_SQRT unit
is then multiplied together with E and its transpose, and the resulting matrix P is stored
in a register array for use later on during Infomax ICA training and calculation.
(sequence in light blue)

. All this time, the ICA training unit (TU) had been waiting for whitened data to train on,
asserting the request signal Z_REQ. Once the whitening matrix P has been calculated,
the whitening unit issues a request (X_ZM_REQ) and STAGEI starts outputting
centered data (channel means are subtracted from the raw data read from IBU’s
SRAM). The whitening unit then transforms the centered data Xux; to uncorrelated
whitened data Zasy; = Paxa X4z, and-forwards. the result to the ICA training unit. The
ICA TU calculates an estimate of the unmixing weight'matrix W based on a window of
Z,y,, if the change in.W'is small enough; convergence is reached and training
concludes; otherwise, the ICA  TU-will keep on requesting for the same window of
Z,x64 data (through X_ZM RESEND and X_ZM/REQ) up to 512 times or until W
convergence is achieved, whichever,comes first. The final value of W in this process
serves as the best estimate of W and is stored for 1) training the next window; and 2)
calculating ICA_OUT. (sequence in red; note how all of IBU, CTR, WU and TU are
active concurrently)

. In the beginning of the next window cycle when the P and W have not yet been
calculated and overwritten, STAGE1 triggers ICA output calculation by issuing an
OUTPUT_W command for ICA TU to send to ICA CU the previously calculated best
estimate of the unmixing weight matrix W. Upon receiving W, ICA CU is triggered to
calculate UW = WP which is stored in UW_REG upon completion (sequence in pink).
Finally, STAGEI1 sends X and the ICA CU calculates the final ICA_OUT = WPX

(sequence in orange).
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The above discussion only focuses on the top operation of the ICA engine, omitting
the details on the data windowing scheme, eigenvalue and eigenvector calculation in the
whitening unit, and the iterative operation of the Infomax ICA training unit. These
mechanisms actually form bulk of the complexity of the ICA engine; therefore, in the
following subsections, more details will be provided regarding these topics, and special
highlight will be shed on the hardware implementation issues associated with each of them.
3.3.2.4.1 Data windowing scheme

A basic but important parameter to consider in the implementation of real-time ICA is
the input data length (number of multi-channel sampling events) on which one full run of the
algorithm is operated upon. This length of data or “window size (WS)” is illustrated in Figure
3-29. The input data is broken down into“data“segments each of length N, denoted as xi,
X2, ..., Xp, and data windows ‘are specified by combining”a number of consecutive data
segments, denoted as wi, Wa, ..., Wp. In order to achieve tractable performance and
complexity in the proposed design, only fixed' window sizes are considered (the window size
is not allowed to vary during operation)«while overlapped windows are introduced in order to
improve ICA training and to facilitate pipelined-operation.

A window size of 512 with 50% overlap (N=256, WS=2N, OV=50%) was initially
chosen since it was able to achieve a good ICA performance of 0.9208 correlation coefficient
using super-gaussian random pattern sets. However, because the tape out shuttle area budget
was severely limited, this design was not feasible to be released due to its large area attributed
to high memory requirements. Therefore with the intention of minimizing memory size at
acceptable performance loss, a performance trade-off analysis of the ICA algorithm against
various combinations of window size (WS) and overlap (OV) parameters was performed
using MATLAB. Based on the results shown in Table 3-13, a window size of 64 with 50%
window overlap was chosen for the final design since it was able to achieve an acceptable

0.84 correlation using only a minimal 3.84Kb of memory.
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Figure 3-29 Illustration of the data windowing concept

Table 3-13 ICA correlation performance vs. window size and window overlap

Window Size Window Overlap N Average Memory
(WS) (ov) Correlation Size(Kb)
512 256 (50%) 256 0.9208 30.72
112 (87.5%) 16 0.8307 5.76
128 96 (75%) 32 0.8336 6.4
64 (50%) 64 0.8334 7.68
64 32 (50%) 32 0.8401 3.84

Figure 3-30 illustrates 4he’ implications of the ‘chosen design parameters (N=32,
WS=2N, OV=50%) on the pipelined operation schedule-of the ICA engine. Three separate
interleaved SRAMs each of size N are employed and allocated such that memory writes
performed during storing of x, (RAM2).do not conflict with the memory reading of x¢ and x;
(RAMO and RAMI1) during training of windew-wo.“Because of the 50% window overlap, a
new unmixing weight matrix w, is available for every new x,. Therefore, under the
assumption that the unmixing weight matrix does not change too much from window to
window, the unmixing of X, (ICA computation) is performed using the unmixing weight

matrix wy.j, which is based on the training of window w,,_; formed by X, and x,_;.
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Figure 3-30 Data windowing scheme (50% overlap) and operation schedule
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3.3.2.4.2 FEigenvalue and eigenvector calculation in the whitening unit

The primary function of the whitening unit is the determination of the whitening
transformation matrix P expressed in Equation (3-4). Its calculation requires the matrix
factorization of the covariance matrix of X into the form E D ET, where each of diagonal
matrix D and orthogonal matrix E comprises the covariance matrix’s eigenvalues and
eigenvectors respectively. The diagonalization of the real, symmetric, positive semi-definite
covariance matrix X. into E D ET, known more formally in linear algebra as eigenvalue
decomposition or EVD, is specifically performed by the EVD_PROCESSOR shown in Figure
3-28. It is a non-trivial mathematical problem whose solution takes up most of the
computational burden handled by the whitening unit and is arguably the most interesting and
algorithmically colorful and complex.numerical method/in the ICA engine. The details of the
EVD computation, in terms of both algorithm and hardware architecture, are described here
instead of the ICA algorithm.discussion in 3.2.1{ as the” method’s rationale is more of a
consequence of hardware implementation rathér than ICA itself:
The Jacobi Eigenvalue Decomposition Algorithm - Introduction

Eigenvalue decomposition is an/old-mathematical problem and many methods for its
solution have been proposed in the literature. Among these methods, the two most popular are
the Jacobi eigenvalue algorithm [51] and the QR algorithm [52][53]. Although the QR
method has been widely celebrated for its superior computational speed (presumably on
general purpose computers), it has proved to be numerically less stable and less accurate than
the Jacobi method [54][55][56]. On the other hand, the Jacobi algorithm possesses, in
addition, desirable characteristics of simplicity, elegance, and regularity [57] making it
extremely well-suited to efficient parallel VLSI implementations [58]. Indeed, while hardware
implementation of the QR method has proven to be problematic due to the division, square
root and inverse square root operations performed in the algorithm [59][60], rotation matrix

multiplications in the parallel Jacobi method [61] can be efficiently handled by CORDIC
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(COordinate Rotation DIgital Computer) arithmetic [62] such that even multiplications can be
avoided altogether [63][64]. Due to its numerous attractive features, especially ones
concerning hardware implementation, the Jacobi method was chosen for solving the EVD
problem in the developed ICA engine. In the following subsection the Jacobi eigenvalue and
the CORDIC algorithms are described in more detail.

The Jacobi Eigenvalue Decomposition Algorithm — Basic ldea

The basic idea behind Jacobi’s method is to systematically reduce to zero the quantity

(3-17)

i.e., the “norm” of the off-diagonal elements ;of the input symmetric n-by-n matrix A. The
input matrix A is iteratively updated according to

A=k Al (3-18)
where ] is orthogonal, such that the new A is more‘diagonal than the previous one in the sense

of (3-17). When off(Axs1) goes below a predefined thresheld, say after K iterations, the

algorithm is said to have converged; and. the final

Ag = ko1 Jk—2 - J2 J1 00 Ao Jo Ju )z Tz Jxa (3-19)
is a diagonal matrix D containing the eigenvalues of A,. Furthermore, recalling that | is

orthogonal, then JT=]J1and JJT = JT] =1, and manipulating both sides of (3-19) gives

JoJi - Jx-1Bg Jio1 - J1 Jo = JoJ - Jx-aJkoa o J1 06 Ao Jo Ju o Jxmalimr - J1 0o (3-20)

EDET =4, (3-21)

where matrix E = Jo J1...Jx1 is orthogonal and whose rows (or columns) are the eigenvectors of
Ay, thus solving the original eigenvalue decomposition problem.

By now it should be apparent that the key to Jacobi’s method lies in the proper design

of matrix ] to produce the effects described above. It follows then that the specifications of ]
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must at least include the following: 1) it should be orthogonal; 2) for manageability, it should
be able to selectively “annihilate” specific off-diagonal elements only; 3) it should be able to
cause a net effect of off(Ay.;) < off(Ay) after each iteration; and 4) it should have the ability to
converge.

To satisfy these requirements, Jacobi defined J as

r1 - 0 el 0 e 0
(:) co:se sir:16 0 p
A A DL (3-22)
F S S
P q

called the Jacobi rotation matrix, which is simply an identity matrix whose elements at (p,p),
(9,9), (p,q) and (q,p) are replaced. with-sine and-cosine, trigonometric functions as shown
above. By using trigonometricyidentities) it can be easily  verified that ] is orthogonal,
satisfying the first requirement. To illustrate the second requirement, Figure 3-31 shows an
expansion of (3-18) using the Jacobi' rotation matrix defined in (3-22). The left (right)
rotations in blue (red) simply “remixes’’or “rotates™ pairs/of.column (row) elements (a’;i, a’;i)

to (ak+1’ k+1) ((a

i lq) to (ak+1, k+1)) It becomes obvious then that the only opportunity
here is to “rotate” the energy of the off-diagonal elements a,, and a,, into the diagonal
elements a,, and a4, since the remaining off-diagonal elements (red only or blue only) have

no paired diagonal elements to transfer their energy to. It becomes clear then that the rotation

angle 0 must be chosen based on a,,, a,4, ap,and a,, in order to achieve the desired effect.
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Figure 3-31 Illustration of matrix A update using two-sided Jacobi plane rotations
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k+1

Evaluating the right hand side of Figure 3-31 for ak+1 and ag,~ and noting that

k _ k . . . .
Agp = Apq Since Ay is symmetric, gives

k+1 _ k+1 _ _
Agp~ = Qpgq appsm9c056+apqcosecose apqsmesme aqqsmecose

— 2
= (am, aqq)smecose + apqcos 06— apqsm 29

= (ak, — al)sinbcosb + af, (cos?6 — sin?6)

= (ap, — altand + ak, (1 — tan?) (3-23)
Since the off-diagonal elements in the updated matrix must be 0, setting ak+1 = agz',* 1=0
gives
k
2tand  2a;
— - k
1—tan?6  af, —ay,
2ak
tan20 = ¢ L i
—a
qq — Ypp
1 26450
0= tan={ ey (3-24)
%qq =~ Cop

Using the rotation angle 6 “anaihilates” agéf L and ag;{ ¥'to zeroy-and their energy is transferred

to the diagonal elements. As for the rest’ofsthe-rotation:pairs (in blue only or red only), it can
be shown that each pair’s total norm,remains constant,ite., (af*)? + (afh)? = (af)* +

(ak,)?, such that on the global perspective, off(Aw )" — off(Ay)” = 0% — 2(ak,)? or

off(A11)? = off(A)* — (ag,)? (3-25)

satisfying the third requirement.
The remaining question now is how to choose the indices (p,q) in each iteration. From
the standpoint of maximizing the reduction of off(Ay) in (3-25), it makes sense to choose (p,q)
so that (a{;q)2 is maximal. Indeed, this is the strategy originally proposed by Jacobi in his
work [51], where a proof of convergence is also given. However, the drawback of this method
is that sweeping the whole n-by-n matrix just to search for the largest off-diagonal element at
every iteration is a costly operation. This problem is overcome by fixing the sequence of (p,q)

locations to be updated in advance. Common schemes are the cyclic-by-row and the cyclic-
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by-column procedures where the pair (p,q) is chosen in a row-by-row, or column-by-column
fashion respectively [65][66]. Any such sequence, called a sweep, must cover all possible
pairs of (p,q) and requires N = n(n-1)/2 iterations. For example, the row-cyclic strategy uses

the following sequence of update locations (p,q):

12)—-13)->104)—...—-An1)—=>{Un —

23)->24)—>25—>...52n —

(n-2,n-1) = (n-2,n) —>
(n-1,n)
By foregoing the off-diagonal searching procedure, the cyclic Jacobi executes considerably
faster than Jacobi’s original methods
While not immediately apparentin-Jacobi’s originalimethod due to the conditional off-
diagonal search, the more regular cyclic version«is-able to expose more readily the inherent
parallelism present in Jacobi’s. method.-From Figure 3-31,.it can be seen that each right
rotation (matrix multiplication in'red) involves only colamns p and q. Thus, any other right
rotation (p’,q’) where p’#p and q’#q is a totally separate problem. For example, given n = 8, a
possible “non-conflicting” set of rotation pairs could be {(1,2),(3,4),(5,6),(7,8)} such that all
four can be performed in parallel. After all the right rotations are done, the left rotations can
all be performed in parallel as well.
The final question would then be how to group together the remaining (p,q) pairs in
the sweep while also maintaining the maximum n/2- way parallelism as shown above. A
practical approach to the problem is to visualize a chess tournament with n players in which
everybody must play everybody else exactly once; and, to minimize the total duration of the
tournament (like a sweep), matches are conducted in parallel as much as possible. A simple
method for generating rotation sets covering a full sweep is presented in [61] and a mnemonic

illustration of this process is given in Figure 3-32.
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Pair A Pair B Pair C Pair D

1 3 5 7 Ro;a;t:on Sequence
Rotation /' ¢
Set1 /1 1 [4(1,2),(34),(56),(7,8)}
2 4 6 8
2 | {(1.4)(2,6),3,8).(57}
Rotation 1 2 ° i 3 | {1,6).(4,8),(2,7),(3,5)}
Set 2 ,/ ¢ ””””
4 6 8 7 4 [ {(1,8),(6,7),(4,5)(2,3)}
L]
. 5 [{(1,7).(5.8),(3,6),(2,4)}
cotation | ! , O 7 8 6 | {(1.5).3.7).(28)(46)
Set7 ,/ ¢
3 2 4 6 7 | 401,3)(2,5).(4,7),(6,8)}

Figure 3-32 Illustration of parallel Jacobi rotation set sequence

The CORDIC (COordinate Rotation Dlgital Computer) Algorithm

Based on the discussion above, hatdware implementation of the Jacobi EVD algorithm
presents some challenges, particularly in the following sub eperations: 1) squaring and square
root functions in the calculation; of off(A)-during.-convergence check, as in (3-17); 2) division
and arctangent operations for'calculating 671in (3-24); land..3) numerous matrix rotation
multiplications during iterative” updates,‘involving sine andvcosine elements as shown in
Figure 3-31. Straightforward evaluation. of these fufictions can prove costly in hardware;
therefore alternative approaches are investigated in order to achieve efficient implementation.
The square and square root operations in 1) are avoided by simplifying the condition for
convergence to max(la;l,i#j) < threshold. On the other hand, explicit division, arctangent and
matrix rotation operations associated with 2) and 3) are avoided altogether through the use of
CORDIC arithmetic, a powerful algorithm capable of evaluating these functions using only
simple add, shift and table look-up operations.

CORDIC stands for “COordinate Rotation DIgital Computer” and is a simple yet very
powerful computational algorithm invented by Jack E. Volder in 1959 [62]. Using only shift-
add and look-up operations, it has the ability to evaluate a wide variety of mathematical

computational tasks including trigonometric, hyperbolic, exponential and logarithmic
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functions, real and complex multiplication, division, square-root, and many others, thus
making it indispensable in solving higher level mathematical problems such as linear systems,
eigenvalue estimation, singular value decomposition, QR factorization and so on. The
CORDIC has been utilized for applications in diverse areas such as signal and image
processing, communication systems, robotics and 3D graphics apart from general scientific
and technical computation.

The CORDIC algorithm is based on the 2D geometric rotation transformation wherein
a vector in the Cartesian plane is rotated counterclockwise by an angle 0, as shown in Figure
3-33a. The relationship between the original vector (x,y) and the rotated vector (x’,’), as

constrained by 0, can be derived using elementary trigonometry and is shown in (3-26).

Y y &

> ¥

(a) (b)

Figure 3-33 Rotation of vector in a Cartesian plane

x' = x cos® — y sin®
y' = x sin® + y cosb

(3-26)

Instead of finding the solution of (3-26) in one evaluation, the CORDIC algorithm
breaks down the problem into a series of smaller rotations, such that each incremental rotation
moves the system closer to the correct solution as in Figure 3-33b. The rotation angle 0 is
decomposed into component rotations a; = tan~1(27%) such that 8 = Y¥"' d;a;, where d; =
+1 specifying the direction of rotation. These fixed component rotation angles «; are shown in

Table 3-14. Any angle 0 can then be uniquely represented as a sequence of rotation directions

{do,d1,d>,...,dy.1} where n is the total number of iterations.
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The advantage of this scheme becomes apparent when the cosine terms in (3-26) are
factored out and the equations rewritten in incremental form:

Xiy1 = cos(d;a;) (x; —y; tan(d;q;))

3-27
Yis1 = cos(d;a;) (y; + x; tan(d;a;)) (3-27)
and substituting tan(a;) = 27,
Xip1 = cos(a;) (x; — d;y;27)
- (3-28)
Yi+1 = cos(a;) (v; + d;x;27")

since o; < /2 and cos() and tan() are even and odd functions respectively.

However, based on (3-28), cos(a;_1) can be factored out from the right product term
x; — d;y;27%, and then cos(a;_,) and so on. Thus, instead of multiplying by cos(a;) in every
iteration, an accumulated scaling product K = [[iL, cos(«;) is defined, and applied only once

at the final output. This way, manytmultiplication-operations can be saved and the update

iterations simplified to

Xig1 = X — diy; 27
Vi1 =Y + dix 2™

(3-29)

which only requires elementary shift and<add operations. Table 3-14 shows the value of the

accumulated product K at the end‘of any_given iteration./The value of K actually converges to

0.607252935 as the number of iterations goes to infinity.

Table 3-14 Constant parameters in the CORDIC algorithm

i 27 a; = tan"1(279) cos(a,) K = [, cos(a;)
0 1.000000000000 0.785398163397 0.70710678118655 0.70710678118655
1 0.500000000000 0.463647609001 0.89442719099992 0.63245553203368
2 0.250000000000 0.244978663127 0.97014250014533 0.61357199107790
3 0.125000000000 0.124354994547 0.99227787671367 0.60883391251775
4 0.062500000000 0.062418809996 0.99805257848289 0.60764825625617
5 0.031250000000 0.031239833430 0.99951207608708 0.60735177014130
6  0.015625000000 0.015623728620 0.99987795203470 0.60727764409353
7 0.007812500000 0.007812341060 0.99996948381879 0.60725911229889
8 0.003906250000 0.003906230132 0.99999237069278 0.60725447933256
9  0.001953125000 0.001953122516 0.99999809265682 0.60725332108988
10 0.000976562500 0.000976562190 0.99999952316318 0.60725303152913
11 0.000488281250 0.000488281211 0.99999988079073 0.60725295913895
12 0.000244140625 0.000244140620 0.99999997019768 0.60725294104140
13 0.000122070313 0.000122070312 0.99999999254942 0.60725293651701
14 0.000061035156 0.000061035156 0.99999999813735 0.60725293538591
15 0.000030517578 0.000030517578 0.99999999953434 0.60725293510314
16  0.000015258789 0.000015258789 0.99999999988359 0.60725293503245
17 0.000007629395 0.000007629395 0.99999999997090 0.60725293501477
18 0.000003814697 0.000003814697 0.99999999999272 0.60725293501035
19 0.000001907349 0.000001907349 0.99999999999818 0.60725293500925
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In addition to calculating the Cartesian coordinates in (3-29), the accumulated angle

must be taken note of as well:
Wiy = w; — d;a; (3-30)
The negative accumulation is just a matter of convention. In the typical vector rotation use
case, the rotation angle 0 is assigned to wg, and w; is iteratively decremented until w,, = 0.
The CORDIC iterations in (3-29) and (3-30) can be used in two operating modes,
namely rotation mode (RM) and vectoring mode (VM). In rotation mode, the desired
information are the new coordinates (x,,y,) of an input vector (xy,yp) after being rotated by a
specified angle ay = 6. In this mode, the direction of each micro rotation d; is determined by
the sign of @; if @ is positive, then d; = 1 (counterclockwise) otherwise d; = —1 (clockwise).
After n iterations, @, becomes zero and (xy;,)1S multiplied by K to get the final output vector
(x’, ¥’) as in (3-26). On the othérshand, in vectoring mode; an input vector (xp,yp) is rotated
onto the x-axis, such that y, becomes zero and the magnitude.and angle of the vector can be
obtained from x, and @, respectively. The direction of each micro rotation is determined by
the sign of y;,; if y; is positive, then d; = =1 (clockwise) otherwise d; = 1. As before, x, must be

scaled by K to get the real magnitude:~Table 3-15-8hows the summary of the CORDIC

algorithm, as well as its application in (3-24) and Figure 3-31.

Table 3-15 Summary of CORDIC algorithm and interfacing with Jacobi EVD algorithm;
* refers to 0 in (3-24)

Rotation Mode (RM) ‘ Vectoring Mode (VM)
. Xipp = Xx; — d;y; 27
Iterative system of m 4 d‘ylz_i
equations Yiv1 = Vi iXi
Wiy1 = w; — d;a;
k
)C()=X=api x0=x=a’,§q—a’5p
Input yO = y =] a’(;i )70 =] y =] 2a}z§q
Operation description Counterclockwise rotation of vector (xy,y,) by @, | Rotation of vector (x,,y,) onto x-axis
Direction of micro d = =1l w; <0 4 = 1, y; <0
rotation L1, w; >0 = yi >0
k+1 _ 0 _ — ;
apl-+ =x' = Kx, = xycoswy — YoSinw, Kx, = /xoz + 2
Output result st =" = Ky, = xosina, + yocosm, 20" = @, = tan"1(y,/x,)
o, =0 Yn =0

66




Hardware Architecture of the CORDIC Engine

The hardware architecture of the CORDIC engine supporting both rotation (RM) and
vectoring (VM) modes follows naturally from Table 3-15 and is shown in Figure 3-34. The
engine is first configured to perform vectoring or rotation operation through the VM/RM pin.
Once the inputs xy, yo and ap have all been latched into registers Dy, Dy and D, the main FSM
sets x_sel, y_sel and @_sel to iteration update mode and starts the CORDIC operation. The
CORDIC architecture proceeds with the calculations described in Table 3-15 as the counter i
is incremented in each iteration. After n iterations, the solution converges and the output logic
i1s asserted. A fixed CORDIC iteration count of n = 16 is used in this implementation.
Excluding memory read and write cycles associated with loading of a{‘j for the inputs and
storing of the outputs as aﬁ‘jﬂ, the total-processing-time’is 17 clock cycles. Multiplication by

constant K is implemented usingithe canonical signed digit method which comprises shift and

add circuits only.

K >
Vi y
v i
y>0:0 0;>0:1

yi<0:1 0;<0:0)
- - >1 — 0

D, >
Yo ——— — Vit ! MUX 0 o
VM/RM 76075‘61

. - -

xc=Z

>> P> addisis
y sel ] = d
xjel — +\g w/

>> [N —p  addisud 2dd/sUD | Dw <

™S -

—— Wy

xc=Z

X0 — L Xi+g Wi+ <«
+ a; .

7 Dx > ¢ ROM [« ¢

LUT

5
Main FSM / > Xx_sel
OutputLogic  ——— y se/

xc=Z

> w_sel

Figure 3-34 Hardware architecture of the CORDIC engine
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Hardware Architecture of the Jacobi EVD Engine

As discussed earlier, by adopting the parallel cyclic Jacobi rotation sequence,
significant parallelism can be introduced into the architecture and operation of the Jacobi
EVD. The Jacobi EVD engine (EVD_PROCESSOR in Figure 3-28) features multiple parallel
CORDIC engines and is shown in Figure 3-35. The CORDIC engines efficiently handle the
calculation of the rotation angle 0 in (3-24) and the two-sided rotational matrix multiplications
in Figure 3-31. For the case of n = 4 (4-by-4 matrix), each sweep in the Jacobi algorithm
comprises three sets of non-conflicting Jacobi (p,q) rotation pairs: {(1,2),(3,4)}, {(1,4),(2,3)}
and {(1,3),(2,4)}. Memory address translations based on these patterns are automatically
managed by the parallel cyclic Jacobi sequencer built into the main controller FSM.

The Jacobi EVD engine operates-asfollows..The received input covariance matrix is
initially stored in a single-port fandom-access memory D. The rotation angles for two non-
conflicting Jacobi (p,q) rotation| pairs (ex. J(1,2)-and J(3i4)).are then calculated using two
parallel CORDIC vectoring mode (VM) engines. Ideally, thestwo non-conflicting right-side
matrix multiplications can then proceedfully in parallel, and then the left-side multiplications
afterwards. However, because the original-and rotated matrix elements are read from and
written to the same single-port memory D, the CORDIC engines are operated in a staggered,
pseudo-parallel schedule instead as shown in Figure 3-36. The accumulated product of Jacobi
rotation matrices is calculated by the E rotator CORDIC (RM) engines and stored in a
separate single-port memory E. Since the eigenvector E matrix updates involve left rotations
only, they are performed together with the D left rotations to save on control circuitry.

Finally, at the end of the sweep, the convergence detection unit checks if all the non-
diagonal elements of D written back to memory are all less than the threshold. If this
condition is satisfied, or if the sweep count is already 3, the main controller FSM enables the
output I/F to send out the eigenvalues D and eigenvectors E, and returns to an idle state.

Otherwise, the sweep count is incremented and another sweep is performed again.
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Eigenvalues & Eigenvectors
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Figure 3-35 Hardware architecture of the Jacobi EVD engine
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Figure 3-36 Parallel right rotations for rotation set {(1,2),(3,4)}
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3.3.2.4.3 Hardware design of the Infomax ICA training unit

Straightforward implementation of the Infomax ICA algorithm listed in 3.2.1.2
presents two major issues from a hardware point of view. The first concern is the ROM size
for the non-linear contrast function lookup table and the second is the amount of temporary
variables used throughout the ICA training iterations.

The main purpose of the ROM lookup table is to support the calculation of the
exponential function required in the ICA algorithm. However, instead of just simply
implementing exp(-u) (step 3 in 3.2.1.2) into the ROM lookup table, it makes sense to
implement the more complete expression g(u) = 1-2Y(u) (step 4 in 3.2.1.2), such that the
division, addition, subtraction and shift operations get built into the lookup operation as well,
thus saving a considerable amount of hardware tesources.. The graphical plot of g(u) is shown

in Figure 3-37.

1
0.8
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a(w)
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Figure 3-37 Non-linear function implemented in the ROM lookup table
In order to implement the function as a ROM lookup table, the range g(u) is digitized to
10-bits and the domain u discretized in steps of 1/2" within [-L, L). If an input is out of the
domain’s range, a saturated value of —1 or 1 is output. Taking into account the anti-symmetric
property of g(u), the calculated ROM size can be cut in halfto L*2~. Common sense suggests

that larger values of both L and N will lead to better ICA performance. However, this will lead
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to an unnecessarily large ROM size. For example, L need not be too large since g(u) saturates

to -1 or 1 when lul > 8. To objectively choose a suitable configuration, MATLAB simulations

using various combinations of L and N were performed, whose results are summarized in

Table 3-16. From these results, we see that by choosing an LUT configuration of N=2 and

L=8, the ROM size can be reduced by 87.5% from 256 to 32 entries, with almost no loss in

performance. The resulting architecture of the mirrored ROM lookup table unit is shown in

Figure 3-38.

Table 3-16 ICA performance using various configurations of the ROM lookup table

L SFep ROM Size Averag'e #Trail.ling
Size Correlation Iterations
16 (float) - 0.8612 502
16 1/16 256 0.8581 486
16 1/8 128 0.8588 503
16 1/4 64 0.8675 531
16 1/2 32 0.8704 -
8 1/8 64 0.8588 503
| 8 1/4 32 0.8655 535
8 1/2 16 0.8704 584

The second design issue concerns the amount of temporary variables needed to

support the ICA training iterations. Assuming a 4-channel implementation and a window size

of 64 as discussed in Section 3.3.2.4.1,/steps-2-to-4 of the ICA algorithm outlined in 3.2.1.2

can be relisted to include the matrix dimensions as follows:

Usxes = Waxa Zaxes

Yaxes =

1
1 + e~Uaxes

Aw4x4 = Lrate (I4x4- + (14x64 - 2Y4x64)(UT)64-x4)W4-x4

and substituting g(u) as discussed previously into (3-33),

Aw4x4 = Lrate (l4x4- + (G4x64)(UT)64x4)w4x4

(3-31)

(3-32)

(3-33)

(3-34)

It would be extremely inefficient if each equation were to be completely solved before

proceeding to the next, as doing so would require the intermediate storage of Uaxes, Yaxes and

Guxes. This problem can be partially solved by processing Z in a column-wise fashion, since
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each column in Usyes, Yaxes and Guxes depends only on a particular column of Z. The
problematic bottleneck in the algorithm is actually equation (3-34), where conventional dot
product style multiplication of G and U" requires the complete storage of Gayes and Usyes as
intermediate variables.

To solve this problem, the multiplication of G and U" is performed instead as an

accumulation of outer products as follows
Tyxs = G4x64(UT)64x4 (3-35)
Taxs = Gix1 (U Ixa + G5 (U0 + o + G5 (U (3-36)

such that G},; and (UT1,, depend only on the first column of Zyxes, G2,, and (UT)2, only
on the second column, and so on. As.a\result,-each received column Zu.,; can be consumed
into T4x4 and discarded immediately following each-accumulation.

The resulting hardware architecture and-operation flow of the ICA training unit is
shown in Figure 3-38, and itssmain controllef state machine and detailed data and operation

control logic are shown in Figure 3-39 and Table 3-17respectively.
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EEG Data Matrix > |’ 5b11111—1 . :
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—
- 1 s = dx) | {1—72 } |
Adderx 16 |/ = |5'b11111—v1 o I+expU) |
er x B Q T_re . |
—s=) Routing -l e —
: | © Uregl| [/
Matrix [— £ = 1) p \
o
. £ | (START) (FINISH) |
G_reg ’ A
A (— g —) Ixl | Get whitened Out_ptl:t g |
Multiplier x 16 | ® (4x1) EEG sample weight matrix
(16b*16b)  |" e — | I
Irrore:
g C: Lookup : cogter‘iltfl:‘tliaot: of :
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Figure 3-38 Hardware architecture and operation flow of the ICA training unit
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S_wait S_cal_U S_lookup_G S_update_T S_cal_delW S_update_ W S_compare S_output

state=0 state=1 state=2 state=3 state=4 state=5 state=6 state=7

i of 64 iteration

Finite State Machine |

Figure 3-39 Actual hardware states used by the main controller FSM

Table 3-17 State, operation and data control in the ICA training unit

Multiplier Required No. of
State Adder Operation Operation Variable Update g Cvcles '
[OpA, OpB] d
0 | S_wait - - o !
u=Zsx1
ur=add3_out
[mul;_out,mul;_out] uz=add6_out
1| Scall [addi_out,add;_out] (Wl uz=add9_out !

us=add12_out
g1=Lookup(u;)
_ ) gz=Lookup(uz)
2 | S_lookup_G gsz=Lookup(us) *

gs=Lookup(u4)

U= Zx1
3 | S_update_T [Tmul_out] [gu] T=add_out 1
For counter=0
[Rlearning;T] T=mul_out
For
[mul;_out,mul;_out] | counter=1~4 T(1,:)=add3_out
4| ScaldelW | 44 outadd,out] | [T(L,OW] | T(2.)=add6_out >
[T(2,:),W] T(3,:)=add9_out
[T(3,:),W] T(4,:)=add12_out
[T(4,:),W]
5 | S_update W [WT] - W=add_out
[mul;_out,mul;_out] _
6 | S_compare [add;_out,add;_out] [TT] T=Taxs
7 | S_output - - - 16

3.3.2.5 Heart Rate Variability (HRV) Analysis Engine

The hardware architecture of the HRV analysis engine follows from the algorithm
discussion in 3.2.2.3 and is shown in Figure 3-40. The RR interval calculation and HRV
analysis units are straightforward implementations of the algorithm described previously. Of
special interest in this section is the sliding window memory manager, which is the hardware
mechanism by which real-time operation of the HRV analysis engine is made possible.
Similar to the data windowing scheme employed by the ICA engine (3.3.2.4.1), its operation
is transparent to both the upstream and downstream blocks. That is, the RRI calculation and

HRYV analysis units both need not be aware of the sliding window scheme employed.

73



I RR Interval Calculation Unit

new sample

Sliding Window Memory Manager

L%

INCR

Sample
Counter

I

oo
Threshold

RESET

Cooldown

_pulse

Timed
RAM Section|
Select

Shared Mean Calculator

accumulator

a/b_n

rr_interval

num_data

RRI RAM
Section A

RRI RAM
Section B

|

v

l Main FSM+ RR Interval Output Sequencerl

HRV

Analysis

RAM

I" ------------------------------- b
rr_interval -
: ?
| Time k/N Counter AX\ A\
Accumulator " O N
| sin()
I Cos0 R )
X X )
: %9, \T/
|

HRV Analysis Unit

|
|
|
|
Coefficient i
|
|
|
)

Figure 3-40 Hardwate architecture of:the HRV analysis engine

RR intervals spanning a period-of two to five minutes, is suggested for evaluation of

short term HRV [33]. In our design, in order to address the HE.and LF components of HRV, a

two minute window is adopted. Time-frequiency analysis of HRV is achieved by performing

spectral analysis on the RR intervals using a sliding window configuration. This produces a

series of power spectra from sequential windows-0f data over time. To ensure a smoother

transition between windows, and to provide better observability, the sliding window is

configured to have fifty percent overlap. This implies that the window of data moves forward

by one minute after every analysis of power spectra. The configuration of the sliding window

is shown in Figure 3-41.

0s 60s 120s 180s 240s 300s
Time | 1 | | 1 1
, Wo W) . Ws
’ A i A § A
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RRI Data ; 5 ; ; | ]
| N N A
; ¢ e : Y :
: Wi W3

Figure 3-41 The sliding window scheme. RR intervals are divided into one minute frames. A
data window consists of two frames with one frame overlapping with the previous window.
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The RR interval data are buffered in an SRAM memory prior to HRV analysis. The
size of the memory depends on the maximum number of RR intervals (or equivalently, heart
beats) that can fit in two minutes. Thus, assuming that the maximum safe heart rate does not
exceed 220 bpm [67], a 512 word SRAM memory is chosen. For robustness, a cooldown
block (in the RR interval calculation unit) that limits the frequency of RR interval data
ensures that this data size requirement is strictly met at the point prior to buffering.

The overlap period between each window is one minute, so each minute of RR
intervals, or frames, has to be stored separately. In our design, the SRAM memory is
categorized into two sections to store the different frames of RR intervals so 256 words can be
allocated for each minute of data. During one minute, data is stored into one section of the
memory, after which the number of elements (X_addr)ds'noted and storage of data is switched
to the second section using a path selector; After two minutes, the RR intervals are passed to
the HRV analysis unit for spectral analysis.

To output the RR intervals to the HRV analysis unit, a-bank selector is employed to
choose which section of the SRAM.is' currently active. After all RR interval data have been
read from one section the next section4ds selected.-As spectral analysis requires the signal to be
zero-mean, the mean of the data in each section is calculated and stored (x_mean). This
ensures that when the next window is encountered the overlapping section from the previous
window has the correct mean value. The two mean values are summed to form the final mean
of the data. Division by two is simplified to a bit-shift (or re-position of the fixed point). The

architecture of the sliding window memory manager is shown in Figure 3-40.

3.3.2.6  Lossless Data Compression (COMP) Engine

The hardware architecture of the lossless data compression engine is shown in Figure
3-42. It comprises three pipeline stages including first, a prediction and parameter estimation
stage, second, a Golomb-Rice entropy coding stage, and third, an output packaging stage.

Since Golomb-Rice codes vary in length, the number of clock cycles needed to completely
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pack an encoded stream onto a fixed bus width varies at the final packaging stage. To prevent
pipeline overflow, a ready-acknowledge handshaking mechanism is employed throughout

every stage in the engine, including the input and output ports that connect to the PDS and

UART respectively.
|
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Memory Memory (DOT) | Biomedical
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Figure 3-42 Hardware architecture-of-the-lossless data compression engine

To conserve hardware resources, the prediction circuitry is shared among the different
biomedical signals. The upstream PDS unit functions as a multiplexer/arbitrator, feeding the
otherwise parallel multi-channel biomedical signals serially into the lossless data compression
engine. At the same time, the PDS unit also annotates each sample with its signal type,
precision and bypass mode through the CHSEL, SP and BYPASS pins respectively. Table
3-18 shows a detailed description of these control signals.

The prediction stage, upon receiving a biomedical sample, determines its context and
loads the context statistics from memory. In the following clock cycle, the k parameter is
calculated, the prediction error remapped, and the context variables updated and written back

to the memory. The prediction stage maintains the individual memory locations for the
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context statistics of the different biomedical data channels. For DOT, DPCM prediction is
performed on an inter-frame, per pixel basis, and context-based k parameter estimation is not
performed, due to memory space limitations.

Table 3-18 Control signal parameters of the lossless data compression engine

Port Name | Width Description
If the input data comes with the BYPASS signal set to high, data
BYPASS 1 compression is bypassed and the input data is directly packed as
raw data by the output packaging unit
Value Channel Value Channel
0 EEG/ICA ChO .
f;iﬁ:‘lel . 1 EEG /ICA Ch1 > DOT Pixel
select) 2 EEG/ICA Ch2 6 EKG Ch0
3 EEG/ICA Ch3 7 EKG Ch1l
4 HRV Coefficients 8 EKG Ch2
Sp 0 8-bit 4 16-bit
(sample 3 1 10—b?t 5 18—bit
precision) 2 12-bit 6 20-bit
3 14-bit 7 32-bit

The Golomb-Rice entropy coder-in Figure 3-42 implements the Golomb-Rice coding
table shown in Figure 3-9b for.various values of k: It-calculatessthe quotient Q and remainder
R based on the estimated Golomb-Rice k parameter and input femapped prediction errors, and
outputs the result to the next stage within a single clock cycle.

The output packaging unit is‘the~final pipeline stage and maintains four separate
output buffers for the different biomedical signals, which are filled up as samples are encoded
into bit streams. Whenever any of the buffers become full, the buffer value is driven onto the
output bus, together with an appended data type ID indicating the type of biomedical data, as
described previously in 3.3.1.4. In case two or more buffers are full simultaneously, a priority
scheme is enforced such that minimal output latency is achieved.

The first two stages, namely the prediction and Golomb-Rice encoding stages,
correspond to the proposed algorithm described in 3.2.4 to which the overhead energy
consumption Ecomp (3.2.4.2) is attributed. The PDS and output packaging stages perform
mainly data routing and packing, which operate regardless of whether compression is

employed or not.
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3.3.3 Functional Verification

The functionality of the complete system from algorithm down to hardware
implementation must be verified thoroughly before taping out the design for chip fabrication.
To achieve this, detailed functional verification is performed at key points in the pre-silicon
phase of the IC development flow shown in Figure 3-43. In general, the algorithms (i.e. DOT,
ICA, HRV and COMP) have been from the very beginning developed with hardware issues
considered as much as possible. However, as one cannot foresee all of the problems that may
arise in the chip implementation down the road (either due to lack of judgment or experience),
redesign at the RTL, architectural or even algorithm level is typically necessary to resolve any
area, timing closure or power issues that may block the way to successful physical
implementation. In the following discussion, the“wverification approaches at both individual

subsystem and chip integration levels are-described furtheriin‘detail.

Pre-Silicon Phase Post-Silicon Phase

RTL Design FPGA Functional Verification

Build FPGA
Define System Verification Platform
Architecture

Wrap System into
FPGA SOC Platform

Partition System

Design into
Blgcks - Chip Delivery
<) FPGA Synthesis &
APR
Define Block ] Test Functionality of Chip Verification
Architecture v _f_Sys_lemPclmf
\L erification Platform Build Target Platform
(PCB)
MATLAB Code RTL J/ l/
Modeling Chip Implementation Check Functional
/ \ Correctness
Block R Trial Synthesis \L
Testing Synthesis
\ / Analyze and
------------------ Cadence Low Characterize System
! BlockLevel ! Power GPF
i FPGA Verification !
I Scan Chain / ATPG l/

Develop

\L Floor Plan & APR Demonstration Suite
System
Integration DRC /LVS / Antenna Package

LN

System N Trial
Testing Synthesis

Post-Layout
imulation

Figure 3-43 IC development flow methodology
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The algorithms for the individual biomedical signal processing engines, including
lossless data compression, have been previously developed and verified using MATLAB.
Simulation results of the developed ICA algorithm demonstrate a verified average correlation
coefficient performance of 0.86 using randomly generated mixed super-gaussian sources.
Performance of the HRV algorithm was evaluated and verified using both real ECG signals
(from the MIT-BIH database) and artificially controlled RRI data [68]. Reconstructed DOT
images based on fNIR light intensities acquired from self-developed DOT sensor array board
were compared to reference images using MSE [50]. Finally, the lossless data compression
algorithm was evaluated using publicly available reference biomedical data such as the MIT-
BIH and UCI-KDDI databases as well as outputs of the upstream algorithm blocks [69]. Table
3-19 shows a summary of the function verification.and performance evaluation procedures

performed for the various biomgdical signal processing algorithms as described above.

Table 3-19 Verification.of the various biomedical signal-processing algorithms

Subsystem ICA DOT HRV COMP
Algorithm MATLAB MATLAB MATLAB MATLAB
model
Input pattern (1. Random mixed super- |1. fNIR light 1. MIT-BIH 1. MIT-BIH Database
gaussian signals intensities acquired| ECG 2. UCIKDDI (EEG)
2. Real EEG acquired using| from self-made, Database  |3. EEGLab (EEG)
Neuroscan EEG calibrated DOT 2. Artificial 4. Output data of ICA,
acquisition equipment sensor array board | RRI DOT and HRV
Third-party EEGLab _ B _
model
Function 0.86 correlation coefficient MSE comparison |LF/HF ratio of| Exact match between
verification/ between original and between reference artificially original source and
performance extracted source signals, | and reconstructed |generated RRI decompressed data;
evaluation and comparison with DOT images vs FFT and | average compression ratio
EEGLab output Lomb floating | (CR) of 2.05 for mixed
point biomedical streams

In order to ensure that the hardware implementation behaves the same way, golden test
patterns at key points in the algorithms are generated from the MATLAB models, and
attached to the RTL, gate-level and post-layout simulation test benches for automated data
checking. Individual unit testing of the ICA, DOT, HRV and COMP engines at the RTL level

is first performed before moving up to chip integration level testing so as to allow easier
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localization of bugs or defects. While the main focus during unit testing is to check the
correctness of the individual processing engines against their respective algorithms, system-
level verification focuses more on the correctness of data communication and chip integration.

The system-level test bench used to verify the chip design and integration is shown in
Figure 3-44. After the test patterns have been attached to their respective models and
monitors, chip operation is initiated by the main test control either through a manual pin
trigger or a system mode command transmitted through UART. The DUT then begins to
periodically request for raw biomedical data samples for processing. In response, the AFE
model retrieves the requested data from attached raw input data files and sends them back to
the DUT according to the AFE interface protocol. Processed data received by the UART
model is unpacked, decoded and finally-verified on-line/against expected data generated from

the MATLAB models.

Main Test Control Expected data Output
—_— e from MATLAB data from
aw biomedical model DUT
Siggalidaia Parameter
Settings
. Output Data
D _Controldsl\llglgna_lt Monitor and Checker
river and Monitor
Analog Front-End Clock and Reset ?
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Time- 4 H Mixed P
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Data v 0 Data +
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Figure 3-44 System test bench for functional verification of biomedical multiprocessor IC
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3.3.4 Chip Implementation in UMC 65nm CMOS Technology

The functionally and physically verified chip has been successfully implemented and
fabricated using UMC 65nm CMOS 1P10M technology. The die size is 1,317 x 1,317 um?,
and the core size is 680 x 680 um?, comprising a total of 368,314 gates. Power consumption
estimated using Synopsys Prime Power reports a total of 3.6mW consumed at an operating
condition of 1.0V core voltage and 24MHz clock frequency. The details of the area and power
breakdown across the different modules are shown in Table 3-21. The floor plan and die
micrograph of the fabricated chip is shown in Figure 3-45 and a summary of the chip
specifications is given in Table 3-20. The chip bonding map is shown in Figure 3-46 and the

final packaged chip is shown in Figure 3-47.

Figure 3-45 Die micrograph and chip layout of the integrated biomedical DSP IC

Table 3-20 Chip specifications summary

Technology UMC 65nm CMOS 1P10M
Pad/Core Voltage 1.8V / 1.0V
Die/Core Area 1.317 x 1.317 mm? / 0.680 x 0.680 mm?
Logic Gates 368.3K
Operating Frequency 24 MHz
Power Consumption 3.6 mW (full system mode)
Number of PADs 104 pins (functional / 10 power / core power: 32 / 64 / 8)
Test Package 128-pin CQFP
Package Dimensions 28mm x 28mm
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Table 3-21 Area and power breakdown across different modules

Area (um2) Power (mW)

Modules
Total |Proportion| Leakage | Dynamic Total | Proportion

BioChip 366,077 100% 1.866 1.739 3.605 100%

/ICA_ENGINE 198,476 54.2% 1.260 1.076 2.336 64.8%

/COMP 80,682 22.0% 0.273 0.129 0.402 11.4%

/HRV_ENGINE 34,984 9.56% 0.128 0.026 0.154 4.27%

/DOT_ENGINE 9,295 2.54% 0.031 0.119 0.150 4.16%

/PDS 27,081 7.40% 0.147 0.192 0.339 9.40%

/FIFO_MEM 12,695 3.47% 0.006 0.178 0.184 5.10%

/UART 1,366 0.37% 0.009 0.009 0.018 0.50%

/SCU 216 0.06% 0.002 0.001 0.003 0.08%

/FICU 1,279 0.35% 0.011 0.008 0.019 0.54%
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Figure 3-47 Chip packaged in 28mm 128-pin CQFP
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Chapter 4 Integrated DOT/ECG/EEG Multiprocessor IP for SoC
Implementation

In the previous chapter, the design and implementation of a highly-integrated
DOT/ECG/EEG biomedical signal multiprocessor IC was presented. Although it possesses
desirable features of small size, low power and a high degree of functional integration, the
designed chip lacks the flexibility and adaptability to be extended in future derivative
applications. In this chapter, the extended development of the proposed biomedical

multiprocessor as an SoC-compatible IP is presented as a solution.

4.1 Motivation for SoC Implementation

SoC stands for system-on-a-chip, and is literally the large scale functional integration
of traditional discrete PCB (printéd <circuit board) components comprising a complete
computer system onto a single chip. A-typical SoC design'is’a HW/SW integration of at least
one programmable microcontroller, microprocessor<or DSP .core; on-chip memory blocks
such as ROM, RAM, EEPROM ‘and flash; HW accelerators/that perform special processing
tasks (ex. data encryption, multimedia encoding, 3D .graphics rendering, etc.); /O
connectivity modules such as ADC/DAC;-UART, USB, SPI, SD, Ethernet, Firewire,
Thunderbolt, LCD and GPIO to interface with the outside world; computer architecture
peripherals such as direct memory access (DMA), memory and interrupt controllers, bus
arbiters and bridges, counter timers and real-time clocks; bus interconnects for data transfer
and control; oscillators, phase-locked loops (PLL), voltage regulators, power management
circuits and reset generators for providing clock, power and reset infrastructure; and most
importantly, the embedded software that controls it. Table 4-1 shows a summary of the above
enumeration and Figure 4-1 shows a typical SoC hardware architecture.

Table 4-1 Typical hardware components comprising an SoC

Category/Function |Component(s)
Main processor Microcontroller, microprocessor or DSP core
Memory ROM, RAM, EEPROM, Flash
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Architecture DMA /memory/interrupt controllers, bus arbiters and bridges, counter

peripherals timer, real-time clock

Data and control lines |Bus interconnects, encoders, decoders and multiplexers

HW accelerator IPs Data encryption, multimedia encoder/decoder, 3D graphics engine, etc.
(examples)

1/0 connectivity ADC/DAC, UART, USB, SP], SD, Ethernet, LCD, GPIO

Clock, power and reset | Oscillators, PLLs, voltage regulators, power management circuits, reset
and clock generators
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Figure 4-1 Atmel AT91SAM9263 SoC architecture

Such high degree of system integration is possible thanks to the steady advances in
semiconductor device fabrication technology wherein transistor sizes have shrunk more than
100,000 fold over the past decades [70]. As more components are moved from the board into
the SoC, the system’s form factor and power consumption become greatly reduced while
reliability and performance are enhanced significantly (i.e. due to faster internal interconnects,
on-chip caches/memories). Furthermore, because the SoC is programmable, it is possible to
differentiate an SoC-based system to support new functional requirements by simply updating
its software components. The useful lifetime of existing silicon is extended and the need to

redesign, verify and fabricate new chips from the ground up can be avoided. With cost-
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effective silicon that can be shared across different applications, shorter software development
schedules, lower component counts and assembly costs, dramatic reductions in the total
system cost can be achieved. With these many advantages, SoC-based systems have become
extremely popular that they can be found in virtually every modern electronic device today.

SoC development is not without challenges however. As more and more functions are
pushed into the SoC, the SoC becomes increasingly complex that the time and effort needed
for design and verification becomes a significant issue. To make matters worse, product
lifecycles and development schedules demanded by the market have only but shortened over
the years. To work around these difficulties, many different approaches have been widely
adopted by the industry such as design reuse, orthogonal design partitioning, and higher
abstraction levels (ex. transistors, gates, RTL, behavioral) to increase productivity. An SoC
design methodology called platform:based design is.a culmination of these ideas, whose
practice has changed from option to necessity in recent years,

In a typical platform=based design,«basic system/ functionality is provided by a
reusable HW/SW platform (Figure, 4-2, left side), comprising a reference SoC platform
design, a corresponding basic set of device driver software, and optionally an operating
system with system function libraries. This pre-verified HW/SW platform serves as a stable
foundation upon which application-specific hardware and software (Figure 4-2, right side) can
be rapidly and reliably built to allow system customization/differentiation for various target
applications. This is in particular supported by the extensive use of well-designed system
interfaces such as libraries and APIs for software and standard data transfer protocols,
memory maps and interrupt schemes for hardware (Figure 4-2, in red colored font). Such
organized structure of hardware and software architectures facilitates easy functional
extension, parallel development (both in-house and third-party) and maximal reuse of IP at
both platform and component levels; as a result, system complexity becomes manageable and

development time, effort and costs become reduced significantly.
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In recent years, as S common, system design is

increasingly performed from ning on an SoC embedded

5 1896
processor [71]. As much as possi ifferentiation is ented in software avoiding the

use of silicon, with the goal of achievi just enough to meet the requirements.
Only when really called for based on software profiling are a few select functions elected for
specialized hardware implementation. With bulk of the commercial value getting associated
more and more with system design and application differentiation nowadays, modeling of
customized systems becomes a top priority. Examples of some new methodologies further
built on top of the framework of platform-based design are early high-level exploration of
function versus architecture in electronic system-level (ESL) design, and separation of
computation and communication as manifested in transaction-level modeling (TLM).

In line with these recent trends, the previously developed integrated DOT/ECG/EEG

biomedical multiprocessor design is repackaged and delivered as a pre-verified IP core for

ready integration in today’s ubiquitous platform-based SoCs. Among the many different SoC
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platforms out in the market, we choose the platform based on the ARM processor and AMBA
bus architecture due to its status as the most widely adopted platform in the industry today. In
the remaining sections of this chapter, the development of the proposed biomedical
multiprocessor IP as an application extension to SOCLE’s Cheetah ARM SoC platform is

presented in greater detail.

4.2 SoC-based Design of the Biomedical Multiprocessor System
4.2.1 SoC Architecture

The Cheetah ARM SoC platform solution offered by SOCLE Technology Corp.
(platform vendor) is chosen for the development of the proposed multiprocessor IP, for its rich
set of SoC features and friendly technical_support. With respect to Figure 4-2, the Cheetah
SoC platform solution comprises, 1) for hardware, a.reusable SoC platform based on the
ARMO926EJ-S processor and “AMBA—AHB/APB "bus, ptotocols, including many of the
peripheral/support hardware .components listed in Table 4-1; and 2) a software suite
comprising a toolchain set, beard support. package, boot loader (U-boot), operating system
(OpenLinux), root file system tools,(BusyBox) and _device drivers. A feature list of the
Cheetah ARM SoC is shown in Table 4-2/and its architecture is shown in Figure 4-3.

Table 4-2 Select features of the SOCLE Cheetah ARM SoC platform

CPU (ARM926EJ-S)
AHB bus

Clock frequency up to 266MHz

Clock frequency up to 50/133MHz (FPGA expansion/no FPGA exp.)
Bus extensions: 2 Master, 2 Slave
NOR-Flash/NAND-Flash/SRAM/ROM (4 banks)

SDRAM (4 banks)

Reset control, power mode control (normal/idle/slow)

Clock control: CPU/AHB clock ratios 8:1/4:1/3:1/2:1/1:1

Memory Controller

System Controller

DMA Controller 4 channels, mem-to-mem/I10-to-mem/mem-to-10 transfers
Interrupt Controller 31 sources, programmable rise/fall /high /low scheme, 1 FIQ
General Purpose I/0 (GPIO) 8 individually programmable input/output pins
UART 3 channels
16-byte RX and 16-byte TX FIFOs per channel
Programmable up to 2.7Mbps
PCI Host Bridge v2.1/v2.2 compliant (2 devices)
USB 2.0 Host / Device 1
10/100 Mbps Ethernet MAC 1

IDE Host (ATA/ATAPI-6)

Up to 2 devices, PIO or Multi-word DMA mode

Supports microdrive, CF card, PCMCIA, CD-ROM, HDD (16-bit)

STN/TFT Controller

Up to 1024x768,1/2/4/8/16/24 bpp, with programmable timing
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SPI Interface

2 channels w/ interrupt-based operation

12C-Bus Interface

v2.1 compliant, programmable clock up to 400Kbps

Master/slave /multi-master modes

12S-Bus Audio Interface

1 channel, DMA or interrupt based operation

8 or 16-bits resolution, 32 to 96KHz sample rate

Secure Digital (SD) Host

1 channel, DMA or interrupt based operation, v1.01 compliant

Timers

32-bit timer w/ PWM (2 channels)

32-bit internal timer (3 channels)

Real Time Clock 24-hr time mode, 1/10s precision, alarm interrupt
32.768KHz operation
A/D Converter (ADC) 8 channels, 10-bit resolution, max. 50kSPS
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Figure 4-3 Architécture of the Cheetah’ARM SoC

To speed up the development process; SOCLE provides a programmable, board-level

system integration prototype upon which applications can be rapidly verified on top of the

Cheetah SoC platform in real-time. The development board, called the SOCLE Cheetah

Development Kit (CDK), exercises the full functionality of the Cheetah ARM SoC

implemented with all necessary board-level elements including off-chip memories, /O

connectivity hardware ports (ex. RS232/UART, USB, SPI, IDE, etc.), and other components

controlled by the SoC (ex. LCD screen, GPIO ports, audio line out, etc). For development of

application-specific hardware IP, a Xilinx Spartan-3 XC3S4000 FPGA with direct

connections to the Cheetah SoC’s internal AMBA buses, interrupt and direct memory access

(DMA) lines is provided. The SOCLE CDK board is shown in Figure 4-4 and the connections

between the Cheetah ARM SoC platform and the FPGA are illustrated in Figure 4-5.
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The first step in porting the original design to the Cheetah ARM SoC platform is to
decide the HW/SW repartitioning of the original functional blocks. The original functional
blocks are derived from Figure 3-23, and remapped into an SoC-oriented HW/SW
implementation as shown in Table 4-3. The functions of the SCU, FICU and UART can be
sufficiently covered by the SoC platform and application-specific software, whereas the

computationally intensive data processing of multichannel DOT/ECG/EEG signals is

&9



implemented as an AHB-compatible hardware IP extension. Based on this function mapping,
the resulting architecture block diagram of the complete biomedical system is shown in Figure
4-6. In the following sections, the design of the DSP IP core is presented first, after which the
full system operation is described in detail.

Table 4-3 Remapping of original functional blocks to SoC implementation;
* modified to support output of ICA UW matrix for downstream deartifact calculation

Remapped (SoC)
. Original
Function (non-SoC) Hardware (HW) Software (SW)
Platform Extension Platform Extension
Svstem Reset, clock,
Y SCU -- -- -- initialization and
control :
main control
Data ADC, TMR, ADC driver, ADC ISR
samplin FICU GPIO - TMR driver, TMR ISR
pling GPIO driver
DSP IP core* +
Data. DSP IP core -- AHB slave -- Core driver + ISR
processing wrapper +
interrupt logic
Comm. I/F UART UART -- UART driver UART ISR
Analog Front-End J S 7 S S Hotlife BT Module
EEG/ECG Electrode Array
voo008® || .
B ADC Ti UART
776 " E== Multiplexer Controller GPIO "(T]‘e" 1 -
DODODOD Decoder -bi .E
0o oo =- X)Dbct
Flexible DOT Sensor Board APB_Slave APB_Slave | | APB_Slave APB_Slave

Y
APB_Slave AHB_Master AHB_Slave AHB_Slave AHB_Slave
ARM926EJ-S | ’TA° Used/indirecti] Integrated DOT/EEG/ECG
CLKGEN Memory controlled IPs Interrupt Multiprocessor DSP IP
Controller Controller Core
MMU
I-Cache D-Cache
16KB 16KB U IntSrc26
Cheetah ARM SoC 41 Xilinx FPGA
Intel NOR StrataFlash SDRAM
(Boot ROM)
SOCLE CDK Board

Figure 4-6 Architecture view of SoC-based integrated biomedical multiprocessor system
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4.2.2 Integrated DOT/ECG/EEG Multiprocessor DSP IP Core

The integrated biomedical multiprocessor IP connects to the Cheetah ARM SoC
platform via an AMBA AHB slave interface and an interrupt pin. Control actions such as reset
and configuration of the biomedical IP are performed through software register writes via the
AHB interface. Similarly, sending of raw biomedical data and retrieval of processed results to
and from the IP core are handled by programmed I/O (PIO) register writes and reads
respectively. To avoid wasteful register data polling for processed biomedical data output, an
interrupt pin indicating their availability in the output FIFO for reading is provided. The
complete list of software-programmable AHB registers supported by the biomedical IP core is
shown in Table 4-4 and the hardware architecture is illustrated in Figure 4-7.

The biomedical IP is typically, operated as-follows. First, the main biomedical IP core
is reset by setting the BIO_IP_RESET register to 1. Next, BIO_IP_MODE is configured with
the desired operating mode according to Table 3-6"and the FIEO interrupt threshold value is
set by writing to BIO_IP_THRESHOLD. Raw biomedical~data are input to the three
processing engines by writing to.BIO_IP- DOT_IN, BIOZIP. ECG_IN and BIO_IP_EEG_IN
periodically according to their respective.-biomedical signal sampling frequencies. After
processing, the results are multiplexed by the PDS and packed by the lossless compression
engine (COMP) into its output FIFO according to 3.3.1.4. When the number of entries in the
output FIFO reaches the value set in BIO_IP_THRESHOLD, the interrupt logic issues an
interrupt to indicate availability of biomedical data packets for reading. The software, in the
form of an interrupt service routine (ISR), finally reads out the data packets from
BIO_IP_FIFO_OUT.

In this version of the biomedical multiprocessor design, the ICA engine was slightly
modified to support outputting of the ICA UW matrix for downstream deartifact calculations.
The resulting modified data format for ICA data packets replaces Figure 3-17 and is shown in

Figure 4-8.
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Table 4-4 Description of AHB registers supported by the biomedical DSP IP core

A(()i;if:(:s Name Access Description

+0x0000 |BIO_IP _RESET w Reset and initialization

+0x0004 |BIO_IP _MODE RW System operation mode

+0x0008 |BIO_IP _DOT_IN w fNIR sample input (10-bit, LSB-aligned)

+0x000C |BIO_IP _ECG_IN w ECG sample input (10-bit, LSB-aligned)

+0x0010 |BIO_IP _EEG_IN w EEG sample input (10-bit, LSB-aligned)

+0x0014 |BIO_IP _FIFO_OUT R Mixed biomedical data output (8-bit, LSB-aligned)

+0x001C |BIO_IP _THRESHOLD RW FIFO interrupt threshold; minimum number of entries
in the output FIFO to cause interrupt assertion
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Figure 4-7 Architecture of the AHB-compatible biomedical multiprocessor DSP IP core
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9"Packet | 0 0 [EEG_CH1.SAMP1 [5:0] EEG_CHO.SAMP1 [15:0] EEG_CH3.SAMPO [15:0]
10" Packet [0 0 EEG_CH3.SAMP2 [11:0] EEG_CH2.SAMP1 [15:0] EEG_CH1.SAMP1 [15:6]
11" Packet [0 0 [ [1:0] EEG_CH1.SAMP3 [15:0] [ EEG_CHO0.SAMP3 [15:0] [ ns12
12"Packet [0 0| EEG_CHO.SAMP4[7:0] | EEG_CH3.SAMP3 [15:0] [ EEG_CH2.SAMP3 [15:2]
T
|
N"Packet [0 o[ Uwi1(30] | UWO [15:0] EEG_CH2.SAMP31 [15:0] [15:141]

Next segment
-«

Figure 4-8 Modified ICA data packets; UW matrix transmitted row-wise
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4.2.3 System Operation Details

Due to the orthogonality of function versus architecture characteristic to SoC-based
design, the system operation of the biomedical multiprocessor system is not apparent from the
SoC architecture shown in Figure 4-6. Therefore, in this section, a discussion detailing the
system operation is provided. The system operation can be generally divided into three
distinct threads, namely 1) system mode command reception and consequent operation of the
biomedical multiprocessor system; 2) biomedical data sampling and consequent sample input
and processing by the DSP IP core; and 3) transmission of processed results from the IP core
back to the science station.

The system mode is chosen by the user at the science station and transmitted to the
SOCLE CDK'’s UART device to trigger start of operation. The UART device, upon receiving
the system mode, asserts its interrupt and-the CPU branches to the uart_isr(). The uart_isr()
clears and disables all other modules and their associated interrupts, and configures the DSP
IP according to the system mode retrieved. from the UARTwreceive register. The timer is
enabled for periodic 256Hz countdown and the ADC is readied for biomedical data sampling.
Finally, all the interrupts are enabled to prepate for full system operation.

Each time the timer countdown expires, an interrupt is sent to the CPU and the CPU
branches to the tmr_isr(). Inside the tmr_isr(), an AD conversion chain (sequence of channels
to be sampled) is set up according to the biomedical sampling frequencies and the system
mode configured earlier. The tmr_isr() triggers the AD conversion chain by starting the first
AD conversion. Upon (each) successful conversion, the ADC asserts its interrupt and the CPU
branches to the adc_isr(), which moves the converted sample from the ADC to the DSP IP for
signal processing. The adc_isr() finally triggers the next AD conversion link in the chain, and
the process repeats until all AD conversions in the chain are completed.

As processing of the biomedical samples proceeds, the output FIFO of the DSP IP core

gets filled. When the number of entries in the output FIFO reaches a specified threshold, the
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DSP IP core asserts its interrupt and the CPU branches to the ip_isr(). The ip_isr() simply
moves data packets from the DSP IP core to the UART for eventual transmission back to the
science station.

The UML (unified modeling language) 2.0-like sequence diagram shown in Figure 4-9
illustrates the typical system operation described above and the driver configuration and
software ISR behavior are summarized in Table 4-5. The three threads discussed previously

are depicted in Figure 4-9 as yellow, blue and purple action state sequences respectively.

Table 4-5 Summary of hardware devices and associated software interrupt handling

. Interrupt
= § Function Source/ L
T2 - - Meaning . . Software ISR Action
Driver Configuration (Priority)
Biomedical data sampling 1. Read recently converteq biomec‘iical. sample
b5 . 24 Send sample to appropriate engine in DSP IP
O SlcHo: poT CH4: EEG ch3 | Single A.DC Source 14 |3+ Start next AD conversion in conversion chain (if
% £|CH1: EEG¢ch0  CH5: ECGch0 |, Conversion (1) not final conversion)
S) : : finished
@) ggg Egg zg; ggg Egg zﬂé AD comfersio.n chain: ECGx3 _( if a.vailable) —
EEGx4 (ifavailable) — DOTxI (if available)
Generate periodic interrupt 1."Setup |AD conversion chain according to the
S [Countdown frequency: 256Hz systen.l mode (Tablle 3-6) and biomedical signal
©  [Periodic: Yes 1/256 séc has| < Source 8 samplitts frequencies )
é CG: 256Hz x 4 channels elapsed (2) 2. Start'first AD conversion (head of chain)
[EEG: 128Hz x 3 channels ADS conversion chain: ECGx3 (if available) —
DOT: 1Hz x 1 channel EEGx4 (if available) — DOTxI (if available)
] ] i Processed
& o Biomedical data processing . : If the UART output buffer is empty, transfer 16
o = biomedical | 'Source 26 b ¢ biomedical data fi he DSP IP
72} 8 System mode: from UART RX ISR | qata output 3) ytes of biome 1ca at.a rom the core to
[a) FIFO interrupt threshold: 8 entries available the UART transmit register (one byte at a time)
Data communication 1. Disable TimerO, ADC and DSP IP core
2. Clear and disable all other interrupts
— S 3. Get system mode from UART receive register
E Baud rate: 115200 ystem d Source 1 4. Reset DSP IP core
<¢  [Data bits: 8 commanc g (highest) |5. Initialize DSP IP core with the received system|
= [Parity: No received mode and threshold equal to 8
Stop bits: 1 6. Configure and enable TimerQ and ADC
7. Enable Timer0, ADC and DSP IP interrupts
- 5 Interrupt management
%‘ = [Interrupt Priority:
& £/0- UARTI RX (highest) - - -
2 E|i-ADcC
— U [2 - Timer0
3 — DSPIP core
© | fNIR LED and sensor select
E - - -
©) -
A % Clock management
(’j O [Clock frequency settings: - - -
CPU/AHB/APB - 80/10/5 MHz
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Science DSP IP ARM
Station Sl Core Processor Ll ADC/GPIO
Reset and w | | | |
initialization =) 1 3 3 |
22 i : | |
£ :| Configure i | |
Get & Attach ISR i . i i
user input = '>u;'_ i i main() | |
Z | | | |
i Receive & store i i i
| SYSTEM_MODE : | |
| ; INTERRUPT. | |
| | Disable Disable Disable
! ! Detach ISR Detach ISR Detach ISR
| 1 | |
| Read RX ! i |
| register | isr() | |
3 } — -byte (SYSTEM_MODE)- —p»| uart_isr() 3 3
| | Reset t o
! i Configure Configure Configure
! ! Attach ISR Attach ISR Attach ISR
ar  [SYSTEM_MODE =0] | 1 1
-.P ..... : 3[ - ] 3 loop + | 1
| |
| | Timer
3 | main() count down
i i T Timer expire
| | Timer reset
| : tmr_isr()’
i i 1 tart X |
| | | main() ! Convert sample0 |
! ! INTERRUPT. by :
| | |
| | ' d sample—{ -y
! ! adc_isr() ! Read sample0 |
| | - ===y ———=———————— ]
3 3 Write sample0 3
! ! tart ,
3 3 main() ! Convert sample1 |
! ! INTERRUPT: by !
i i Processing i
| | d sampl - ! !
| | adc_isr()' | Read sample1 |
! ! [— - — —sample- — — — —— !
1 1 Write sample1 l
3 3 : i :
! ! i .
| | . .
| | | . i |
| | Processing | | |
i | ! INTERRUPT. : ; !
| | |
i i read sample — . !
| | adc_isr()’r ! Read sampleN |
| | |— + — —samplee — — — —L-——-———- il ]
! ! Write sampleN
Processing main() Timer
count down
----------------------------------------- b cmm- b ------------ﬁ.-------------------.---------
3 3 Processing main() 3 3
| PR e S S ; |
! loop : FIFO threshold | . i 3
Processing | | | q 3 |
- i :
Read byte g E | |
> ipsn) b |
v :
(L |
v |
' |
Processing 3. ------------------- 3' ---------
: i

Figure 4-9 Typical system operation sequence; frefer to Table 4-5, frefer to 3.3.1.4
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4.3 Results of Implementation Using the SOCLE CDK

The SoC-based biomedical multiprocessor system based on the previously taped-out
design has been successfully ported and implemented using the SOCLE ARM-based SoC
Platform Cheetah Development Kit. Application-specific and extension software have been
built on top of the reference BSP provided by the platform vendor, resulting in a total software
image size of 31kB for total ROM and 51kB for total RAM, using the toolchain configured
for an ARM926EJ-S target with RealView debug information. The application-specific
biomedical multiprocessor DSP IP implemented on a Xilinx Spartan-3 XC3S4000-5fg676
reports an FPGA device utilization shown in Table 4-6 and can run up to a maximum clock
frequency of 15.7MHz. The main DSP IP core is operated using an AHB clock of 10MHz,
while the CPU and APB clock frequencies are-set-:to 80MHz and SMHz respectively.

Table 4-6 Xilinx X€E3S4000 FPGA deviee utilization

Logic Utilization Used Available | Utilization

Number of Slice Flip Flops 10,615 55,296 19%
Number of 4 input LUTs 30,550 55,296 55%
Number of occupied Slices 18,747 27,648 67%

Number of Slices containing only related logic 18,747 18,747 100%

Number of Slices containing unrelated logic 0 18,747 0%
Total Number of 4 input LUTs 30,774 55,296 55%

Number used as logic 30,550

Number used as a route-thru 224
Number of bonded I0Bs 91 489 18%
Number of RAMB16s 14 96 14%
Number of MULT18X18s 23 96 23%
Number of BUFGMUXs 1 8 12%
Average Fanout of Non-Clock Nets 3.44

An unavoidable consequence of porting the biomedical multiprocessor IP from an IC
to an FPGA implementation is the necessary change in the IP libraries used. Synopsys
DesignWare IP blocks used in the IC implementation must be replaced with components
available in Xilinx ISE’s CORE Generator IP library. At times, the interfaces and functionality
are not perfectly the same, and additional logic must be introduced to successfully do the
porting. Therefore, to verify the integrity of the new target FPGA implementation after the
porting process, golden patterns used during verification of the IC implementation are

employed to allow comparison between the old (IC) and new (FPGA) implementations.
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Figure 4-10 shows the verification setup for the SoC-based biomedical multiprocessor
IP. Golden raw biomedical signal data are introduced into the system by pre-loading them
into system memory through an in-circuit emulator (ICE) connected to the ARM processor. In
addition, the adc_isr() is modified to retrieve these data patterns from memory instead of real-
time biomedical data from the ADC. The golden patterns are sent to the respective biomedical
DSP engines and the processed results are sent over Bluetooth and saved to file on a remote
PC using free commercial serial port monitoring software. Finally, the file contents are
decoded by a MATLAB packet decoder and verified to match with golden expected data. The
tests are repeatedly performed under various system modes. On a separate test case for
verifying the complementary ADC function, the sampling of various fixed-frequency

sinusoids has also been verified through-frequency spectfum analysis using MATLAB.

3 Debug PC Offine Checking |

| | !

! |

I |

| L Raw RealView | Data Golden/ | |

| iomedica »| Debugger | Checker «— Expected !

Data Signals SW } SW Data i

% i [ |

i | |

| Multi-ICE D — |

3 ! |
A v l EEG/ICA/ MATLAB i
F R R | HRV/ECG/ Packet ‘
E Cheetah L L ! DOT Data Decoder |

' ARM SoC | I

| System ullY Uiy | Y !

LA Memo E E ! |

i ry A A N, I B |

» D i el T TR
| | C 719 Sk HHD Free _Mixed
1 DSP IP/ o o Serial Port Biomedical
memory Xilinx T T » Moni » Data Packet
i onitor Stream
variables FPGA H H SW
. \/’\
SOCLE CDK Remote PC

Figure 4-10 Verification setup for the SoC-based biomedical multiprocessor system

4.4 Real-Time Application

With the biomedical multiprocessor system implemented and verified as described in
the previous section, we proceed to discuss the employment of the newly developed
integrated DOT/ECG/EEG multiprocessor system in various real-time biomedical

applications. The general real-time demonstration setup comprises 1) a human test subject, 2)
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the proposed system, which represents a portable biomedical sensing device worn by the
patient, and 3) a science station model, which represents a remote biomedical application
apparatus that delivers real-time services to 4) a medical expert. In this thesis, the prototype

development and demonstration of two application models are presented.

4.4.1 Real-Time Integrated Brain-Heart Monitoring

In the first application, the remote biomedical device takes the form of an SoC-based
portable wireless science station modeled using the SOCLE CDK. The science station
supports user selection and transmission of the type of examination (system mode) to be
performed, as well as real-time decoding and display of multi-channel DOT, ECG, EEG, ICA
or HRV data received as in Figure 4-9. These application-specific features are developed as an
all-software differentiation built on‘top-of the SOCLE-Chéetah SoC platform. A configuration
wizard user interface (UI) is employed-to-allow user selection’and transmission of the system
mode, while decoding and LCD /display of the biomedical samples are supported in a UART
receive interrupt service routine. The/architectural block diagram of the application demo is
shown in Figure 4-11 and some photos showing the demenstration setup and operation are

shown from Figure 4-12 to Figure 4-16.

Patient-Side Biomedical Sensor Device Remote Science Station
Analog Front-End Debug PC Debug PC .
EEGIECG Arra Medical
Teo0eeee® | ([ Expert
ealView
Debugger SW RealView Debugger SW
(System Status (Configuration Wizard Ul)
Monitor)
Multi-ICE Multi-ICE

- >Cc
I-H00-mcrw
A
A
IH00-mMmCcrw
- >Cc

Patient

SOCLE CDK SOCLE CDK

Figure 4-11 Block diagram of the real-time integrated brain-heart monitoring application
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Figure 4-13 Analog front-end (AFE) modules used
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Figure 4-15 System status monitor on patient-side sensing device
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Figure 4-16 _Real-time®biomedical-data display on LCD

4.4.2 SSVEP-based Brain-Computer Interface
4.4.2.1 Introduction to UCSD’s SSVEP-based Brain Dialer System

In the second application, the proposed system is integrated with University of
California at San Diego’s (UCSD) SSVEP-based brain dialer system [72]. SSVEP, which
stands for steady-state visually evoked potential, is the brain’s natural response to visual
stimulus that flickers at a specific frequency. When the retina is excited by a stimulus ranging
from 6 Hz to 75 Hz, the brain generates electrical activity (i.e. EEG) of the same (or multiples
of) frequency as the visual stimulus [73][74]. UCSD’s brain dialer system takes advantage of
this physiological phenomenon to allow a user to dial a phone number using only EEG.

A block diagram of the original system reproduced from [72] is shown in Figure 4-17.

Buttons of a virtual telephone keypad comprising digits 0-9, “*” and ‘# are frequency-coded
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and displayed onscreen as 12 flickering rectangles ranging from 9 to 11.75Hz with 0.25Hz
interval between consecutive keys. To dial a number or symbol, the user focuses his visual
field onto a specific rectangle; consequently evoking an SSVEP with energy centered about
the target key’s associated frequency. The SSVEP-containing EEG is then acquired by a 4-ch
EEG headband unit [75] worn by the user, and transmitted to a nearby commercial cellphone
via Bluetooth. The cellphone, whose microprocessor is programmed to perform various time-
and frequency-domain signal processing algorithms, identifies the dominant frequency in the
EEG and determines the user’s intended key. Upon successful detection, the cellphone
prompts the user with an auditory feedback for the next entry. When the phone number is

complete, the cellphone finally dials out the digits and symbols to place the call.

EEG Acquisition Unit

Pre- Band-pass .
amplifier E{> Filter E:> Amplifier

Bluetooth Micro- 12-bit
module Cl:' controller <\l:| ADC

Stimulator

] [N [ [=]
Sl el [2] ]
@@TH

evwven N
Feedback
I T | SN

| Mobile Cell Phone

L1 Dial out

ooo i Signal Bluetooth

ooo Dﬂ : Cj !

ooo : processing receiver
Phone

Figure 4-17 Original SSVEP-based brain dialer system of UCSD
4.4.2.2  Integration with Proposed Biomedical Multiprocessor System
Although the published work [72] reports promising results, artifactual noise such as
those caused by eye blinks and body movements disrupt the accuracy of the system, as a
result limiting its practical application in daily life settings. Therefore, the employment of an

ICA preprocessor for the removal of these EEG artifacts is hypothesized. However, neither
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the EEG acquisition unit nor the cellphone is powerful (or efficient) enough to take on the
heavy computational load of ICA; thus, a hardware-based approach such as our proposed
biomedical multiprocessor system is offered as a real-time solution to the problem.

To explore the feasibility of ICA in the improvement of SSVEP detection in EEG
signals, a preliminary investigation with UCSD is performed using the collaborative system
integration development and evaluation setup shown in Figure 4-18. The setup comprises 1)
UCSD’s VisualStim software, which can generate visual stimuli of various frequencies, sizes,
colors, etc. for operation on different monitors with different refresh rates (Figure 4-19); 2)
NCTU Brain Research Center’s 4-ch EEG module, tapped at its final analog output (Figure
4-13c¢); 3) our proposed biomedical multiprocessor implemented on the SOCLE CDK; 4) a
PC/Laptop-based real-time EEG display and analysis Java software, which uses the canonical
correlation analysis (CCA) method for-SSVEP detection [76]; and 5) a set of MATLAB tools
used for offline analysis. Singce the ICA engine does not'perform EEG artifact removal, the
application software of the biomedical multiprocessor SoCris extended to support this

function. The details of this development are described insthe, pages that follow.

NCTU BRC 4-ch EEG Front-End

UCSD VisualStim SW

Pre- Band-pass

amplifier [ )| filter | ) AmPlifier

Bluetooth De-

(BT) | artifact | ICA | ") -2
module N (new) |\ N

NCTU SOCLAB Biomedical|
Multiprocessor (SOCLE CDK)

File storage | — ' Waveformicca (—
11 BT | Graph BP/
ICA, Deartifact, module | | LPF
CCA Analysis File storage /;
. MATLAB Offline Analysis i - T
NCTU/UCSD (PC/Laptop); | UCSD Real-Time EEG Display/Analysis SW (PC/Laptop)

Figure 4-18 System integration development and evaluation setup
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Figure 4-19 UCSD's VisualStim SSVEP stimulus generation software

The functional diagramof the biomedical.multiprocessor SoC modified to support the
de-artifact function is shown in Figure 4-20. A pure-software block distributed over ip_isr()
and main() is inserted between the biomedical multiprocessor. TP and UART to perform the
artifact removal function. The system.mode 1s configuredto ICA only (OxE3).

When the biomedical multiprocessor IP-asserts its interrupt, instead of moving the ICA
data (i.e. unmixing matrix, independent component samples) directly to the UART for
outputting (as in the case of the original design), the ip_isr() unpacks and pushes them into a
software FIFO for de-artifact processing. The software FIFO facilitates data passing from
ip_isr() to main(), such that intensive de-artifact computations can be implemented in the
main() function instead. As a result, the ip_isr() can be kept as light and short as possible.

The main() function loops infinitely to retrieve and process any data that becomes
available in the FIFO. The main() function performs the de-artifact function as illustrated in
Figure 3-3. Matrix inversion is performed on the first 16 samples (see Figure 4-8) according
to a fast inverse calculation method [77][78] to generate the mixing matrix. The independent

component (i.e. channel) considered by the user as the artifact is removed by zeroing out each
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incoming sample in that channel. The remaining independent component channels are then
remixed, packed and finally output as artifact-free EEG provided to UCSD’s brain dialer

system.

RealView Debugger

ip_isr() } ych
Channel
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F T
Unpack . |
o fw

Matrix
-
w| Inverse
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Figure 4-20 Software extension to support de-artifact function

4.4.2.3  Results of Integration

A photograph of the actual system-integration and evaluation setup is shown in Figure
4-21. The laptop on the left.is set up to run UCSD’s VisualStim software and the other
configured for real-time EEG-display, and"CCA analysis. In between are 1) the test subject
wearing the EEG acquisition module, connected to 2) the SOCLE CDK on which the proposed
biomedical multiprocessor system offering;the ICA/de-artifact solution is implemented. EEG
electrode placement is chosen for optimal observation of the visual cortex, so as to maximize
the SNR of the SSVEP.

Prior to operating the system according to its target application, a series of progressive
sanity checks were performed first. These checks included 1) stabilizing the Bluetooth
connection; 2) checking the integrity of golden test patterns (ex. sine waves) transmitted from
the SOCLE CDK to the analysis laptop; and 3) ensuring the quality of EEG signal acquisition
by visually checking for alpha waves (by closing the eyes) and eye blink artifacts on UCSD’s
real-time EEG display software. Finally, the matrix inverse and remixing operations in Figure
4-20 were also verified by checking that raw input EEG can be reconstructed when all four

independent component signals are remixed.
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Figure 4-21 Actual system integration and evaluation setup, showing real-time CCA plot of
9Hz SSVEP without ICA

With the system stabilized, the setup is operated according to the target application.
Figure 4-21 shows a snapshot of the 'system running for the real-time detection of 9Hz
SSVEP. The CCA analysis software calculates a power spectrum estimate of the received
EEG and displays the result as a bar graphplot.of 12 vertical bars corresponding to the 9Hz
up to the 11.75Hz frequencies. Taller bars suggest higher correlation with a particular
frequency.

The CCA plot is initially generated from 2 seconds worth of EEG and afterwards
recalculated and refreshed every second taking into account new EEG data until the SSVEP is
detected. The particular frequency that stays dominant for two consecutive frames is taken as
the detected SSVEP. In Figure 4-21, wherein ICA was turned off, CCA failed to identify the
9Hz SSVEDP, since the tallest bar corresponds to 11.5Hz. In contrast, in Figure 4-22, the first
bar (9Hz) was most prominent for two consecutive frames, indicating the successful detection

of 9Hz SSVEP when ICA is enabled.
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Figure 4-22 Real-time CCA plot of 9Hz SSVEP. with ICA enabled

Since it is difficult toscompare SSVEP detection, performance using the real-time
setup, a collection of offline MATLAB toolsis employed to_help visualize the sequential
nature of the SSVEP detection” process: Four -progressive “CCA plots corresponding to 5
seconds of real-time operation are superimposed-onto@a single plot using MATLAB. Detection
latencies greater than 5 seconds are considered unacceptable (from a system point of view)
and are therefore excluded from the analysis.

The results in Figure 4-23 to Figure 4-25 show the MATLAB CCA plots of various 5-
second EEG segments taken from the 9Hz, 10Hz and 11Hz stimulus test cases, both with and
without ICA, for a total of six cases. Table 4-7 shows the summary of the detected SSVEPs in
these particular cases. Using raw EEG, false SSVEP detection occurs and in one case fails
altogether. In contrast, all SSVEPs are detected correctly when ICA is enabled. These
particular results suggest the possible effectiveness of ICA as a means to improve detection of

SSVEPs from EEG signals.
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Figure 4-25 MATLAB CCA plot for 11Hz stimulus
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Table 4-7 Detected SSVEP frequencies in Figure 4-23 to Figure 4-25

Stimulus Detected SSVEP
Frequency w/o ICA with ICA
9Hz (Figure 4-23) FAIL 9Hz
10Hz (Figure 4-24) 9.5Hz 10Hz
11Hz (Figure 4-25) 10.75Hz 11Hz

In order to achieve a more thorough and quantitative comparison of SSVEP detection
performance with and without ICA, all 6 minutes of recorded EEG data comprising the 6
cases are analyzed (1 minute per case). In each case, histograms of the detected frequencies
are generated using both 1-second and 2-second CCA analysis. For the case of 2-second CCA
analysis, a sliding window of 1 second is utilized. The results using 1-second and 2-second
windows are shown in Figure 4-26 and Figure-4-27 respectively.

When a 1-second CCA window is usedysthe number of instances the SSVEP was
detected correctly increased significantly by 53%,48% and. 44% for the three stimulus
frequencies. On the other hand, ICA 1s only slightly helpfuly=at times even detrimental to
SSVEP detection, when a 2-se¢ond CCA window 1S used./The details of the comparisons are
summarized in Table 4-8.

Based on these results, it can be concluded that at least for smaller CCA windows, ICA
is an effective means for improving the detection of SSVEPs in EEG signals. Within the
context of the brain dialer system, this implies that ICA can assist in improving the accuracy

of key detection when faster dial times are desired.

Table 4-8 Improvement in SSVEP detection using ICA, 1s CCA vs 2s CCA

Stimulus SSVEP Detection Improvement w/ ICA
Frequency 1-second CCA 2-second CCA
9Hz 53% -18%
10Hz 48% 20%
11Hz 44% 11%
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Chapter 5 Conclusion and Future Work

5.1 Conclusion

In this thesis, a highly-integrated biomedical multiprocessor design for portable
wireless brain-heart monitoring systems has been developed for the technological
advancement of medical emergency care, long-term observation, personal home care and
cognitive science.

Various advanced biomedical signal processing algorithms - diffuse optical
tomography (DOT) for brain imaging, independent component analysis (ICA) for removing
artifacts in brain electroencephalogram (EEG) signals, and heart rate variability (HRV)
analysis for monitoring heart electrocardiogram (ECG) signals have been researched,
developed, designed and integrated.ifitora-complete-hardware multiprocessor system.

The design has been functionally-verified and implemented both as an IC using UMC
65nm CMOS technology andwas an AHB-compatiblé IP for ARM-based SoCs on a Xilinx
FPGA validated using an SOCLE CDK. The'biomedical multiprocessor IC features a small
chip area of 1.73mm’ and a low-estimated power consumption of 3.6mW and can hence be
employed in small, portable and wirelessibiomedical devices. Alternatively, while the pre-
verified biomedical SoC IP can be offered to third-party developers as a proven biomedical
solution ready for practical integration into ARM-based SoCs, it can also be reused and
extended in more sophisticated applications in the future. In conjunction with an analog front-
end sensing circuit and a Bluetooth communications module, the developed biomedical
multiprocessor hardware can be packaged as a solution to assist in the detection, diagnosis
and monitoring of brain- and heart-related illnesses.

To demonstrate the functionality and real-time operation of the proposed design in the
context of complete biomedical monitoring systems, the SoC-based multiprocessor
implemented on the SOCLE CDK is featured in two real-time biomedical application settings.

In the first application, the proposed design models a patient-worn biomedical sensing device
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that services a remote science base station with mixed multichannel biomedical data upon
demand. In the second application, the proposed design is integrated with an SSVEP-based
BCI brain dialer system to serve as a preprocessor for EEG artifact removal. Based on the
experimental results, the proposed biomedical multiprocessor can help improve significantly
the brain dialer system’s key detection accuracy when reduced dialing times are required.

In conclusion, given the specifications, research, development, validation and
demonstration of the work presented, the proposed integrated DOT/ECG/EEG multiprocessor
is offered as a proof-of-concept, reference design for the research and development of next

generation portable brain-heart monitoring systems.

5.2 Future Work

On the implementation levely further size, powerd@nd cost reductions can be achieved
by integrating the biomedical /multiprocessor: together »with the AFE and wireless
communications module using either system-in-package (SIP).technology or mixed-signal IC
design. To further reduce power consumption,.the next.generation design can also adopt more
advanced low-power techniques such as power shut-off (PSO) and dynamic voltage and
frequency scaling (DVES). By employing these strategies, the portable biomedical sensing
device can operate much longer and thereby improve further the patient’s healthcare
experience.

From a system-level perspective, change in the way biomedical data is processed and
used can also result in significant operational efficiencies. A possible future research direction
would be the development of smart, expert system devices that require minimal user
management, which prompt action from the user only when a disease condition requiring
medical attention is automatically detected. For example, biomedical signal modalities
suitable for such type of processing include body temperature, blood pressure and ECG,

wherein objective boundary conditions indicating critical illness have already been researched
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and clearly defined previously. Thus, acquired biomedical signals can be processed locally
and diagnoses be concluded on chip. For ECG, such a system has been developed in [79]. In
such systems, there is no need to continuously transmit biomedical data wirelessly over to a
science station, and so significant amounts of power can be saved. This way, the operating
time of the portable biomedical sensing device can be prolonged even further.

Finally, next generation portable biomedical monitoring systems need not be limited to
just the brain and heart. There are many other physiological signals/information that are
important for monitoring the human health status. Examples are body temperature, blood
oxygen levels (pulse oximetry), blood pressure, blood sugar levels, and many more. By
integrating more kinds of biomedical data into one system, the usefulness and efficiency of
the integrated biomedical monitoring system can-be' further increased, benefiting doctors,

patients and the general populationalike:
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