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中文摘要中文摘要中文摘要中文摘要 

近十年隨著老年人口快速膨脹，醫療費用的增加儼然成為全球關注的共同議題。

人手的短缺使得醫療照顧體系無法應接數量激增的老年病人，昂貴的診金和治療費更

讓許多人無法享用到優質的醫療服務。因此近年來，生物醫學工程已成為至關重要的

研究和發展主題。 

為了應對在特定緊急護理、長期的觀察、認知科學在醫療監控應用的需求，我們

提出發展一個綜合的腦心臟監測系統芯片，並提供一個示範平台，以證明此領域之研

究是可行的，也為了今後相關的工作和發展。這項工作的動機有三：第一是以便攜式

的生物醫學工具使病人在治療期間更舒適，行動更方便；二是降低整體系統成本，當

中包括在家庭和醫院裡相關的設備、操作過程、物流和管理；三，為腦心監測應用的

新研究方向鋪路。 

本論文旨在發展一種能夠整合多種生物醫學訊號的系統處理器，包括擴散光學腦

部影像重建（DOT）處理器、可除去腦電訊號（EEG）雜訊的獨立成分分析（ICA）器、

用來分析心電訊號（ECG）的心率變異性處理器(HRV)。同時，為了降低功率消耗與延

長工作時間，此種多功能處理器內含一種無失真資料的壓縮處理器，可用來降低從可

攜式裝置(portable device) 傳送生物醫學訊號到生醫資訊工作站(science station)時的帶寬

要求。此多重處理器設計使用聯華電子 65 奈米 CMOS 製程下線晶片，此外，也實現於

AHB 相容 IP 之 Xilinx FPGA 做系統單晶片設計。 

為了展示此多重處理器設計的功能性和即時處理的廣泛應用，此篇論文提出一個
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完整的、端至端且實現於 SoC FPGA 開發平台的腦心監測系統。由前端訊號擷取模組

所得到的生醫訊號被傳送至相應的即時運算引擎進行分析處理後，處理完的結果再與

原始訊號由一個無損失性生醫信號壓縮模組進行資料壓縮，最後再經由一個商業藍牙

模組傳至臨近的生醫資訊工作站進行 3D 顯像及遠端觀察與診斷。 

 

 

關鍵字：獨立成分分析、心率變異率分析、擴散式光學影像重建、整合型生醫系統、

藍牙傳輸、無失真資料壓縮、可攜式系統、數位訊號處理、系統晶片 
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Abstract 

In the recent decade, the accelerated emergence of an aged population alongside 

increased medical costs has been recognized as a worldwide problem. Whereas a shortage in 

medical personnel will leave the healthcare system unable to meet the requirements of a 

growing number of elderly patients, even more will be deprived of access to quality 

healthcare due to the high costs of diagnosis and treatment. As a result, in recent years, the 

field of biomedical engineering has emerged as a top priority research and development topic. 

In response to the needs of healthcare monitoring applications in particular emergency 

care, long-term observation and cognitive science, we propose the development of an 

integrated brain-heart monitoring system and provide a demonstration platform as a proof of 

concept for future works and development along this topic. The motivation of this work is 

threefold; first is to improve patient experience by means of a portable biomedical device; 

second, to reduce overall system costs associated with the equipment, operations, logistics 

and management in both hospital and home care settings; and third, to pave the way for new 

research directions relating to brain-heart monitoring applications. 

In this thesis, we present the development of a biomedical signal multiprocessor 

comprising a novel diffuse optical tomography (DOT) processor for brain imaging, an 

independent component analysis (ICA) processor for removing electroencephalogram (EEG) 
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signal artifacts, and a heart rate variability (HRV) analysis processor for monitoring 

electrocardiogram (ECG) signals. Furthermore, in order to reduce power consumption and 

prolong operating time, a lossless data compressor is employed to reduce bandwidth 

requirements during wireless transmission of biomedical data. The multiprocessor design is 

implemented both as an AHB-compatible IP for ARM-based SOCs on a Xilinx FPGA and as 

an IC fabricated using UMC 65nm CMOS technology. 

 To demonstrate the functionality and real-time application of the developed 

multiprocessor design, a complete, end-to-end brain-heart monitoring system platform 

employing the SoC-based implementation is presented. EEG, ECG and/or functional near 

infrared (fNIR) signals acquired by an analog front-end IC are processed or bypassed by the 

biomedical multiprocessor depending on configuration commands sent wirelessly from a 

remote science station. Processed or raw biomedical data optionally compressed by a lossless 

data compressor are packaged according to a fixed output data format and finally sent back to 

the remote science station for real-time LCD display, data storage, or further off-line 

processing and analysis. 

 

Keywords: Independent Component Analysis, Heart Rate Variability, Diffuse Optical 

Tomography, Integrated Healthcare System, Bluetooth Wireless Communication, Lossless 

Data Compression, Portable Healthcare, Digital Signal Processing, System-on-Chip 
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Chapter 1 Introduction 

1.1 Today’s Burdened Healthcare System 

The population of people over the age of 65 worldwide has been predicted to more 

than double from 375 million in 1990 to 761 million by 2025 [1]. In Taiwan, the average age 

of the population has risen from 26 to 36 within the past two decades and the number of 

people below the age of 25 is rapidly decreasing. With later marriages and record-low 

birthrates, this trend is expected to worsen into the future. Such decline in the working age 

population is sure to result in a shortage of medical personnel, which, alongside rising costs 

will leave hospitals unable to meet the medical requirements of the growing number of elderly 

patients. Therefore, whilst life expectancy is seen to be rising, inadequacies in the provision of 

healthcare pose a major threat to the quality of life of the aged. 

1.2 Technology as a Solution 

Proper system design and integration of carefully selected technologies can help 

improve society’s healthcare infrastructure and thereby alleviate the burden experienced by 

the medical community. With such systems, in combination with small, inexpensive, smart 

and easy-to-use healthcare products, not only can the hospital save on equipment cost and 

increase its capacity to handle patients, but more importantly, healthcare normally 

administered in the clinical setting can be pushed towards the home environment allowing for 

frequent monitoring, early diagnosis, and prevention. With early detection, disease conditions 

that would have otherwise deteriorated to be life-threatening, costly and time-consuming to 

treat, can be managed with higher success rates, at a reduced amount of time, cost and burden 

to both patient and the medical community. Such technologies can encourage elderly patients 

to become more independent regarding their own health, while also maximizing their quality 

of life at the convenience and comfort of their own homes. In order to achieve the greatest 

benefit, the most common diseases of the elderly are targeted and addressed. 
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1.3 Common Diseases of the Elderly 

Studies have shown that the most common ailment affecting the elderly is 

cardiovascular disease (CVD) followed by central nervous system (CNS) conditions.  

Deterioration of the circulatory system, in particular atherosclerosis, plays a major role in the 

progression of CVDs leading to blood clots, stroke and ischemic heart attacks, which are 

associated with high risk of sudden death. On the other hand, neurodegeneration caused by 

oxidative stress accelerates with age, causing typical neurological disorders in the elderly such 

as mental dementia or Alzheimer’s disease, Parkinson’s disease and epilepsy. Patients 

afflicted with these neurological conditions experience various degrees of deterioration and 

loss in cognitive, psychomotor and somatosensory functions. As the elderly population 

increases, healthcare technologies enabling the early detection of these heart and brain 

illnesses have become more important than ever before. Through early detection, diagnosis 

and treatment, the quality of life of the elderly patient can be maintained and even improved. 

1.4 Biosignal Modalities for Detection of Brain and Heart Disease 

For detection of brain-related illnesses, the electroencephalogram or EEG recording is 

the most common method and provides important information regarding the state of the 

central nervous system. Applications of EEG in diagnostic neurology include detection of 

encephalopathy such as epilepsy, seizures, coma, stroke and tumors. In addition, diffuse 

optical tomography (DOT), a non-invasive imaging method popularly used to detect cancers 

in the breast, can also be used to render images of the brain, allowing early localization of 

dangerous brain tumors, cerebral hemorrhage and blood clot formations that can cause stroke 

[2]. Other uses of DOT are the measurement of blood flow, blood volume, oxygen saturation 

and cardiopulmonary function. 

On the other hand, the electrocardiogram or ECG recording allows detection of a wide 

range of heart conditions. In clinical practice, it is possible to make accurate diagnosis of 

many diseases from the ECG. In myocardial infarction, commonly known as heart attack, the 
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ECG can be used to determine if heart muscles have been damaged after the attack. It can also 

serve as major predictor of mortality after myocardial infarction [3]. Other main applications 

of diagnostic ECG include detection of arrhythmias, disorders of the heart activation 

sequence, heart enlargement, myocardial ischemia and infarction, electrolyte imbalances and 

carditis [4]. 

In other indications, however, combined monitoring of physiological indicators may 

be required. For cases of sudden death in epilepsy, joint analysis of EEG and ECG can 

provide a vital indicator for prevention of occurrence [5]. Furthermore, recent studies have 

shown that analysis of EEG together with heart rate variability (HRV) or brain functional near 

infrared spectroscopy (fNIRS) can aid in better diagnosis and treatment. For example, EEG 

and HRV data were jointly analyzed for the automatic detection of seizures in newborns [6] 

and sleep apnea in hospital patients [7], while the advantage of combined analysis of EEG and 

fNIRS data for cognitive rehabilitation and post-traumatic stress syndrome was presented in 

[8] and indicated for the measurement of cerebral blood volume during seizures in [9]. 

1.5 Motivation for an Integrated Brain-Heart Monitoring Solution 

Despite these studies indicating the need for both individual and joint monitoring of 

brain fNIRS, EEG, and ECG, an integrated brain-heart monitoring solution has not been 

developed. Furthermore, most biomedical monitoring systems today are very expensive, 

bulky and heavy, lacking wireless capability and the ability to simultaneously monitor and 

process multiple types of biomedical signals. The purpose of this work is to address these 

deficiencies and make available a feasible solution for integrated and portable brain-heart 

monitoring. 

There are many benefits in having an integrated biomedical monitoring solution 

instead of multiple separate systems. Most of the time, multiple types of biomedical signals 

need to be recorded and synchronized in time. For example, patients suffering from insomnia 
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go to the hospital to have their sleep quality evaluated. In this process, the patients are 

required to be monitored by EEG, ECG, EMG, fNIR, respiration, posture and sound. Without 

an integrated system, the technician must operate a plurality of medical equipment, 

prolonging administration, setup, logistics and examination time. With multiple devices, there 

is more room for error, especially during data and records handling, which is one of the 

biggest dangers in hospital management. With an integrated portable system, the operation is 

greatly simplified such that the technician only needs to put attention on a single equipment 

user interface, and all measured data can be stored safely, reliably and synchronized in one 

place. With the additional feature of wireless capability, even more convenience can be 

offered to the patient, since not only is the examination time shortened, but the patient can 

move around more freely as well. The following list summarizes the benefits of the proposed 

integrated portable brain-heart monitoring system: 

• Lower product/device/system cost 

• Improved system design and operation 

o Lower power consumption 

o Efficient use of wireless communication bandwidth (only one channel, and 

more fully utilized) 

o Multiple types of biomedical signals are synchronized in time 

o Short wiring for feeble physiological electrical signals 

o Decreased chance of sensor fall off 

o Reduced system size and volume allowing wider range of applications 

• Lower healthcare operation costs and improved service 

o Lower administration costs 

o Allows experiment to be conducted more quickly 

o Savings in equipment logistics and management for hospital 

o Savings in technician training costs for multiple equipment 
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o Simpler and more efficient integrated system reduces chances for 

administration errors 

• More convenient and comfortable for patient 

o Less time needed to perform the experiment 

o Single, light-weight, wireless, clutter-free portable and wearable device 

o Allows patient to carry on normal daily lifestyle 

o Can be used in the home setting 

With the abovementioned advantages, the integrated portable health-care device will 

soon become an inevitable trend. In the next sections, three major target application scenarios 

will be pointed out, and in Chapter 3, a complete architecture for the portable brain-heart 

monitoring system will be proposed. 

1.6 Application Scenarios 

Before presenting the detailed design of the proposed system, three major target 

application scenarios are first discussed below. The proposed system targets applications in 

long-term medical observation, emergency care and potential researches on brain function and 

cognitive science. 

1.6.1 Long-Term Observation 

Traditional electroencephalogram acquisition systems and DOT systems are very 

bulky and very heavy. As a result, these expensive equipment installations are only possible in 

the hospital setting. For patients requiring long-term observation such as seizure, epileptic and 

degenerative brain disease patients, they have no choice but to stay in the hospital for long 

periods of time under stringent observation protocols, degrading severely their quality of life. 

Furthermore, because these equipment lack wireless communication features, many 

connecting wires (one for each channel) come between the subject and the monitoring 
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tissues have become an active and challenging research area in recent years. Even more 

recently, the research community is seeking more innovative ways of understanding the 

human brain, with the functional near-infrared (fNIR) technology showing great promise. 

Through fNIR, the cortical hemodynamic response can be localized thereby showing which 

area of the brain is active at a given point in time [11]. The flexible nature of DOT, which uses 

a wearable imaging cap shown in Figure 1-1d, makes it well-suited to human brain studies in 

enriched environments and for a wide range of behavioral paradigms and activations [12], 

including visual [11], motor tasks [13], somatosensory system [14], auditory [15], speech 

[16], and language [17]. Although technologies like magnetic resonance imaging (MRI) and 

positron emission tomography (PET) together with multiple-channel EEG can provide 

significantly higher brain activity resolution, their high cost and huge size result in low 

availability for academic research. 

1.7 Organization of the Thesis 

The organization of this thesis is as follows. In Chapter 2, a brief background on the 

mechanics of the three important health indicators namely DOT, ECG and EEG is provided, 

including the significance of the associated signal processing algorithms independent 

component analysis (ICA) and HRV for EEG and ECG respectively. 

In Chapter 3, the proposed integrated biomedical monitoring system is presented in 

detail, starting with the overall system overview and application, and followed by a quick 

review of the algorithms implemented – independent component analysis (ICA) for EEG, 

heart rate variability (HRV) analysis for ECG, and brain image reconstruction for DOT. The 

chapter continues with a comprehensive implementation-level description of the system, the 

hardware architecture, the individual sub modules and their interoperation. Functional 

verification of the entire system is discussed and finally, the chapter concludes with the results 

of chip implementation using UMC 65nm CMOS technology. 
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In Chapter 4, a special integrated DOT/ECG/EEG biomedical SoC IP design based on 

the previously taped-out chip is presented. The purpose of this SoC IP is to allow practical 

integration of the developed biomedical solution into today’s standard ARM-based SoCs. 

Modifications from the chip implementation such as hardware-software repartitioning of the 

original design into an SoC architecture, wrapping of the original biomedical multiprocessor 

core into an AHB-compatible IP, support for additional functionality, and overall SoC system 

operation are described in detail. Results of system implementation and verification using 

SOCLE’s ARM-based SoC Cheetah Development Kit are presented, and the chapter 

concludes with a demonstration of the developed system’s functionality in various real-time 

biomedical applications. 

Finally, the conclusion and future works along the line of this thesis are outlined in 

Chapter 5. 
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can be generally divided into three main categories: the Continuous Wave (CW), Frequency 

Domain and Time Domain. 

Table 2-1 Characteristics of the three main types of diffuse optical measurements 

Type Advantages Disadvantages 

Time 
Domain (TD) 

1. Spatial resolution 
2. Penetration depth 
3. Most accurate separation of 

absorption and scattering 
coefficients 

1. High sampling rate 
2. Instrument size and weight 
3. Stabilization and cooling 
4. Cost 

Example Uses: Imaging cerebral oxygenation and breast imaging 

Frequency 
Domain (FD) 

1. Relatively low sampling rate 
2. Relatively accurate separation 

of absorption and scattering 
coefficients 

1. Penetration depth 
2. Instrument size and weight 
3. Cost 

Example Uses: Cerebral and muscle oximetry, breast imaging 

Continuous 
Wave (CW) 

1. Low sampling rate 
2. Instrument size, weight and 

simplicity 
3. Low cost 

1. Penetration depth 
2. Difficult to separate absorption 

and scattering coefficients 

Example Uses: Finger pulse oximeter, functional brain experiments, 
cerebral hemorrhage 

Table 2-1 shows the characteristics of different DOT systems. The CW system 

provides advantages such as low cost, high portability, low power consumption and 

computation overhead, despite lack of depth information [13]. The volume of the CW-DOT 

system can be miniaturized which is the biggest advantage compared to other algorithms.  

Therefore, the CW-DOT system appears to be the most feasible candidate for hardware 

implementation. However, little literature has been published on such implementation of CW-

DOT signal processing. Most CW-DOT systems post-process the signal offline by means of a 

computer such as [18] and [19]. This immediately eliminates the feature of portability, and 

therefore highlighting the advantage of a VLSI hardware implementation. 

2.2 Electrocardiogram (ECG) 

Electrocardiography (ECG) is an interpretation of the electrical activity of the heart 

over time captured and externally recorded by skin electrodes [20]. It is a noninvasive 



recording produced by an electrocardiographic device. The ECG is an essential tool for health 

professionals in diagnosing heart conditions such as a

when one is suspected.

The ECG works mostly by detecting and amplifying the tiny electrical changes on the 
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Table 2-2 Different peaks in a typical ECG waveform 

Peak Origination and Description 

P Systole (depolarization) of the atrium. 
QRS Systole (depolarization) of the ventricle. The amplitudes of QRS peaks are usually 

larger than P and T peaks, because of the stronger ventricular muscle. 
T Repolarization of the ventricle. 

Table 2-3 Different types of peak intervals that can be used to evaluate heart health 

Interval Description 

RR Two adjacent R peaks can represent for the heart rate. The normal heart rate is between 
50 bpm to 100 bpm (beat per minute). 

PR It is usually 120 to 200 ms long. The PR interval reflects the time the electrical impulse 
takes to travel from the sinus node through the AV node and entering the ventricles. 
The PR interval is therefore a good estimate of AV node function. 
� A long PR interval (of over 200 ms) may indicate a first degree heart block. 

Prolongation can be associated with hyperkalemia or acute rheumatic fever. 
� A short PR interval may indicate a pre-excitation syndrome via an accessory 

pathway that leads to early activation of the ventricles, such as seen in Wolff-
Parkinson-White syndrome. 

� A variable PR interval may indicate other types of heart block. 
QT The QT interval generally represents electrical depolarization and repolarization of the 

left and right ventricles. A prolonged QT interval is a risk factor for ventricular 
tachyarrhythmias and sudden death. 

The heart rate (HR) is a non-stationary value; it can vary as the body's need to absorb 

oxygen and excrete carbon dioxide changes, such as during exercise or sleep. The 

measurement of heart rate is used by medical professionals to assist in the diagnosis and 

tracking of medical conditions. It is also used by individuals, such as athletes, who are 

interested in monitoring their heart rate to gain maximum efficiency from their training. Heart 

rate variability (HRV) is measured as the variation in the beat-to-beat interval. 

Heart rate variation (HRV) may contain indicators of current disease, or warnings 

about impending cardiac diseases [21]; it has proved to be a valuable tool to investigate the 

sympathetic and parasympathetic function of the ANS, especially in diabetic and post-

infarction patients [21]. Sympathetic activity is associated with the low frequency range 

(0.04–0.15 Hz) while parasympathetic activity is associated with the higher frequency range 

(0.15–0.4 Hz) of modulation frequencies of the HR. This difference in frequency ranges 

allows HRV analysis to distinguish sympathetic from parasympathetic contributions evidently 

[21]. 
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bipolar derivation uses two probe electrodes and a reference electrode. The potential 

difference between the two probe electrodes is taken as the EEG signal and relatively smaller 

signal amplitudes can be detected using this method. 

Today, there are many proposed identification systems and human brain wave 

techniques used for medical diagnosis and treatment. For example, Fuzzy C-means (FCM) 

algorithm can be used to identify epileptic seizures and cerebral palsy [24]. However EEG 

signals are very weak, and thus often contaminated by various noise such as eye movement, 

EMG and electrical noise from nearby instruments [25]. 

Fortunately, this problem can be alleviated by algorithms such as independent 

component analysis (ICA) [26], which separates artifacts and noise from the measured EEG 

signals. Wavelet [27] and Spatially-Constrained [28] techniques can be used to identify 

artifact source channels thus making possible the automatic removal of such artifacts. As a 

result, clean EEG signals can be derived after the noise channel is eliminated and the 

remaining source channels remixed. However, the computation complexity is so intense that 

real-time ICA analysis is not feasible for a software implementation. Therefore, in recent 

years, research on the VLSI hardware implementation of ICA such as on FPGA and ASIC has 

become a hot topic. 
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Chapter 3 Integrated DOT/ECG/EEG Biomedical 

Multiprocessor for Portable Brain-Heart Monitoring Systems 

In this chapter, a highly-integrated multiprocessor chip design enabling the real-time 

processing of biomedical signals in portable brain-heart monitoring systems is presented. The 

design comprises a novel diffuse optical tomography (DOT) processor for taking brain 

imaging, an independent component analysis (ICA) processor for removing artifacts of brain 

electroencephalogram (EEG) signals, and a heart rate variability (HRV) analysis processor for 

monitoring heart electrocardiogram (ECG) signals. In the following subsections, a detailed 

discussion on the chip development starting from the top-level system overview and 

application, to algorithm flow, hardware design and leading down to the final chip 

implementation using UMC 65nm CMOS technology is presented. 

3.1 System Overview and Application 

The proposed system, shown in Figure 3-1, comprises an analog front-end (AFE) 

circuit, the developed integrated biomedical DSP chip, and a commercial Bluetooth module 

supporting the UART protocol. The AFE circuit acquires, digitizes and sends multi-channel 

biomedical data such as EEG, ECG, and DOT to the front-end control unit (FICU) upon 

request by the DSP chip. The different biomedical signals are relayed to their respective 

engines and time-multiplexed according to a priority scheme for minimizing data latency at 

the output side. To reduce the bandwidth requirement and thereby save power, the multi-

channel biomedical data is losslessly compressed and packetized prior to UART and wireless 

transmission. Finally, biomedical data packets received by the science station over the 

Bluetooth channel are decoded, displayed in real-time, or stored in non-volatile media for 

further processing and analysis. Operation modes for bypassing a particular engine or 

disabling compression are received as control packets from the base station and decoded by 

the system control unit. A summary of the system specifications is presented in Table 3-1. 
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3.2 Algorithm Discussion 

In this section, a brief discussion on the various digital signal processing algorithms 

employed in the integrated biomedical multiprocessor is presented. As indicated in Table 3-1, 

the primary functions of the EEG, ECG and DOT subsystems are independent component 

analysis (ICA), heart rate variability (HRV) analysis, and DOT image reconstruction 

respectively. In addition, the theoretical basis of the specially developed lossless data 

compression algorithm is also discussed in this section as well. 

3.2.1 Independent Component Analysis (ICA) 

3.2.1.1 Background and Motivation 

Recently, blind source separation by Independent Component Analysis (ICA) has 

received attention because of its potential applications in signal processing such as in speech 

recognition systems, telecommunications and medical signal processing [29]. The goal of ICA 

is to recover hidden independent sources given only sensor observations that are unknown 

linear mixtures of the unobserved independent source signals. 

In physiological electrical signal measurement such as the EEG, the observed signals 

are always the superposition of independent source signals, as shown in Figure 3-2. However, 

EEG signals are especially vulnerable and easily contaminated by artifacts such as eye 

movement, eye blink, power line noise and muscle (EMG) noise due to its weak signal 

strength at the microvolt range, thus posing a serious problem in the analysis and 

interpretation of EEG recordings. Fortunately, a particular flavor of ICA called the Infomax 

ICA [30] has been demonstrated to be an effective, powerful and feasible method for EEG de-

noising, which is able to identify both EEG components and artifact components and separate 

them into different channels [31]. By zeroing out the artifactual channels and performing a 

remixing of the remaining EEG channels of interest, artifact-free EEG can be obtained. Figure 

3-3 summarizes the process of EEG artifact removal using the ICA technique. 
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3.2.1.2 Discussion 

Moving on from the theoretical background and application of ICA on EEG, we 

proceed to discuss the mathematical details of the implemented signal processing algorithm 

for the EEG subsystem. The algorithm implemented comprises three major steps: 1) pre-

processing through centering and whitening, 2) determination of the unmixing weight using 

Infomax ICA and 3) computation of the ICA components. Note that the final stage of artifact 

channel selection and removal is left out from this section since it is implemented off-chip. 

Because the Infomax ICA algorithm takes many training iterations to achieve 

convergence, a pre-processing step called whitening (a.k.a. principal component analysis or 

PCA) is employed to accelerate the training process. The whitening transformation is a de-

correlation method that converts the covariance matrix of a set of samples into an identity 

matrix. This effectively creates new random variables that are uncorrelated and have the same 

variances as the original random variables. After whitening, the number of training iterations 

needed to achieve convergence is largely decreased. Prior to whitening, the EEG data is first 

centered to obtain zero mean data 

X�i, j� = X	
��i, j� − E�X	
��j�� = X	
��i, j� − 1N�X	
��i, j��
���  (3-1)

where j = 1 to 4 indicating the channel, and i = 1..N where N is the window size. Next, the 

actual whitening step is performed to obtain uncorrelated data. The covariance matrix of the 

centered EEG data is calculated first 

���� = E����� (3-2)

resulting in a 4x4 Xcov covariance matrix for four channel ICA. The next step is to determine 

the whitening matrix P such that the resulting transformation Z = PX yields a Zcov = I. In 

order to find P, the eigenvalue decomposition (EVD) of Xcov is calculated such that 

���� = E����� = �	�	�� (3-3)
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where E is the orthogonal matrix of eigenvectors of Xcov, and D = diag(λ1, λ2,…, λn) is the 

diagonal matrix of eigenvalues of Xcov. Since Xcov is a positive semi-definite matrix, the 

resulting eigenvalues in D are all positive. With these observations, we choose 

� = �	� �!	��	 (3-4)

as the whitening transformation matrix. Because ET = E-1 and D -½ = (D -½)T, we can show that 

"��� = E�""�� = E�������� = �E������� = 	�	� �!	��	�����	�� �!��	�� = # (3-5)

satisfying the original requirement for Z. After whitening, the next step is to find the 

unmixing weight matrix W by performing Infomax ICA training on the new uncorrelated 

random variables Z. 

The procedure of Infomax ICA training is described as follows: 

1. Initialize WWWW�1� to IIII, iteration number  i = 1 

2. Calculate independent source estimates 

UUUU�i�	=	WWWW�i�	ZZZZ 

3. Apply sigmoid contrast function to source estimates 

(�i� = 11 + e +��� 
4. Apply the gradient ascent learning rule to improve unmixing weight estimate W 

	∆- = L	
/0�# + �1 − 2(�+��- 

-�i + 1� = -�i� + ∆- 

5. Check for convergence 

If ‖∆-‖! < T��6� or i = I7�8�/ 
Output WWWW				

else 

i = i + 1, go back to step 2 

Finally, the estimates for the independent source components are calculated as 

ICA_OUT = W’ P’ X, where W’ and P’ are the converged unmixing weight and whitening 
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transformation matrices respectively of the previous sample window. Thus, it should be clear 

that ICA_OUT is not the same as the final U calculated in the Infomax ICA training 

procedure. Based on MATLAB simulations, the parameters Lrate, Tconv and Ilimit have been 

chosen as 7.4768x10-4, 1.0012x10-8 and 512 respectively to achieve a balance among 

convergence speed, convergence stability, memory size and calculation time. 

3.2.2 Heart Rate Variability (HRV) Analysis 

3.2.2.1 Background 

Heart rate variability (HRV) is a normal physiological phenomenon where the interval 

between successive heart beats of an individual varies over time. The term “heart rate 

variability” has widely become the adopted term to describe the variations of both 

instantaneous heart rate and RR interval [33]. To understand the implications of HRV, the 

origins of the heart rate and HRV are first discussed.  

In the human body, visceral functions are controlled by the autonomic nervous system 

(ANS). These functions include heart rate, digestion, perspiration, and respiration. While 

some actions such as breathing may be controlled through conscious thought, visceral 

functions are generally involuntary. This is in contrast to voluntary motor functions controlled 

by the somatic nervous system (SNS), which together with the ANS formulates the peripheral 

nervous system (PNS).  

The ANS classically consists of two main systems: the parasympathetic nervous 

system and the sympathetic nervous system. The parasympathetic and sympathetic nervous 

systems can be seen as two opposing branches exerting opposite effects on various internal 

organs. The parasympathetic nervous system regulates a ‘resting’ mechanism and causes heart 

rate and blood pressure to decrease. The sympathetic nervous system, on the other hand, 

provides a ‘fighting’ mechanism which increases heart rate and blood flow to muscles. The 

complementary nature of the two nervous systems allows humans to rest when possible and to 
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react to mentally or physically stressful situations when required. The resulting state of the 

autonomic system due to influences of the sympathetic and parasympathetic nervous system 

has become known as the sympathovagal balance. 

3.2.2.2 Motivation 

As the heart rate is largely under the control of the ANS, variations in heart rhythm can 

reflect the influences of the parasympathetic and sympathetic nervous systems. Under resting 

conditions the level of activity of the parasympathetic nervous system, or vagal tone, prevails 

[34], and contributes to the high frequencies (HF) of HRV. Low frequencies (LF), on the other 

hand, can be associated with sympathetic activity which occurs in response to stress, exercise, 

and heart disease [21]. 

HRV has been shown to be an important indicator of cardiovascular health [33]. As the 

regulation mechanism of the heart is closely governed by the sympathetic and 

parasympathetic nervous systems, HRV is often used as a quantitative marker of the 

autonomic nervous system. Studies have shown that the HRV is an important indicator in 

many diseases and may contribute to a better treatment [21]. Applications of HRV have been 

applied to many forms of medical researches including studies in sleep apnea, patient 

monitoring after cardiac arrest [35], and use in intensive care units [36]. 

3.2.2.3 Discussion 

In order to provide insight to the intrinsic periodicities of HRV, the use of spectral 

analysis is indicated since HRV is the result of super-imposed components relating to the 

ANS. Through spectral analysis the contributions of sympathetic and parasympathetic activity 

can be viewed in a much clearer perspective than time-domain analysis or geometrical 

methods. In this section, the algorithm employed to perform the HRV is presented in detail. 

The HRV algorithm takes in raw ECG samples and outputs a time-frequency spectrum 

representing the heart rate variability, and comprises the following steps: 1) R-peak detection 
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scheme introduces inconsistencies in the final HRV analysis [39]. Thus, to address this issue 

while also maintaining an area-efficient portable solution, the Lomb periodogram [38], a 

spectral density tool specially designed for unevenly-spaced data sets, is chosen instead. 

The Lomb method uses least squares fitting to estimate the amplitude of a given 

sinusoid with angular frequency ωj over non-uniformly sampled data. In other words, the 

power of the given sinusoid, PN(ωj), for a set of data points of length N is computed using a 

least-squares fit to the model 

x�t�� = 	AcosOωQt�R + 	BsinOωQt�R + n�t�� (3-9)

for i=0,1,…,N, where n(ti)n�t��  is noise. The Lomb transform is based on the DFT for 

unevenly sampled signals given as 

X��ω� ≡�xQe �U/VQ  (3-10)

where tj corresponds to the time when xj is sampled. As the Lomb method weights the data on 

a “per point” basis rather than a “per time interval” basis, it is suitable for the analysis of non-

uniform data. 

Since the frequency range of interest in the analysis of HRV is between 0 to 0.4 Hz, 

the frequency range is normalized to 0 to 1Hz using N=256 points, yielding a frequency 

resolution of approximately 0.004 Hz per point. Setting ω to 2πk/N and substituting into 

(3-10), the Lomb transform is given as 

  X� W!XY� Z  =	�xQe �!XY� /V
Q  

(3-11) 

 =	�xQcos 2πkN tQQ − i�xQsin 2πkN tQQ  

where k = 0, 1, …, N-1, and xj are zero-mean data. The pseudo code of the final algorithm is 

given as 

for n = 1 to (Number of RR intervals) 
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for k = 0 to 255 

t = t + x[n]; 

x = x[n] ˗ µ; 

X(k) = X(k) + x * [cos(k/N * t) - i * sin(k/N * t)] ; 

end 

end 

3.2.3 Diffuse Optical Tomography (DOT) 

The scattering behavior of near-infrared photon projected through biological tissue has 

been derived based on the radiative transfer equation (RTE) since the 1990s. Since the 

scattering probability is much greater than the absorption probability in turbid media, the 

diffusion approximation to the transport equation can be used. Under the assumption of a 

continuous wave optical source, the diffusion equation is reduced to 

−D^!Φ�r� + υμcΦ�r� = υS�r� (3-12)

where Φ�r� and S�r� are the photon fluence rate and light source density with respect to 

location r, while D, μc and υ are constant properties of a homogenous medium referred to as 

scattering factor, absorption coefficient and speed of light, respectively. 

In the presence of impurities in the homogenous medium, changes in the absorption 

coefficient can be manifested.  Using the Rytov approximation, a linearized equation of the 

form b = Ax can be derived from (3-12), and extending to the case of n voxels and m source-

detector pairs, 

e Φ��rf�, rg��Φ!�rf!, rg!�⋮Φi�rfi, rgi�j = e
k�� k�! … k�lk!� k!! … k!l⋮ ⋮ ⋱ ⋮ki� ki! … kilj e

Δoc�pq��Δoc�pq!�⋮Δoc�pql�j (3-13)

where each row of matrix a transforms the changes in the absorption coefficient rst  at 

various voxels v1, v2, .. vn into light densities u transmitted between particular source-detector 

pairs. Solving for the pseudoinverse of a, the inverse solution is established, from which the 

DOT image manifested as rst can be reconstructed based on the light intensities u received 
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at the detector side. Note that any two ΦI�rfI , rgI� , ΦvOrfv , rgvR are considered distinct if at 

least rsi ≠ rsj or rdi ≠ rdj. 

In our actual wearable DOT headband application, the target depth, locations of the 

LED sources and detectors, and medium characteristics are fixed, and as a result, the forward 

model matrix a and its inverse becomes a fixed characteristic of the DOT system. With this 

observation, the inverse solution matrix is implemented as a constant array. By multiplying it 

with the detected light intensities, the changes in absorption coefficient at various locations at 

the target depth can be derived and interpreted as the DOT image. 

3.2.4 Lossless Biomedical Data Compression 

3.2.4.1 Background 

Today, portability and thus wireless transmission capability in patient monitoring 

systems is highly desired in order to enhance the patient’s comfort and convenience. Strict 

restrictions on the size, weight and construction of portable devices have greatly limited the 

available onboard battery capacity, whereas wireless transmission of multi-channel 

biomedical data only aggravates the energy problem in these inherently power-isolated 

devices. Since most of the power is dissipated during wireless transmission, minimizing the 

amount of data through compression is essential to reduce the total system energy 

consumption, thereby allowing prolonged device autonomy and battery operating time. 

3.2.4.2 Compression for Low Power 

It is well-known that wireless data communication takes up a large share of the total 

power consumption in most portable wireless devices or systems, with power dissipation 

proportional to the amount of data transferred.  By compressing the data prior to wireless 

transmission, power can be saved provided that the compression operation itself does not 

consume too much power. A power tradeoff analysis for wireless EEG systems was presented 

in [40], showing the relationships among compression ratio (CR), power required to perform 



 
 

30 
 

compression (Pcomp), and power required for wireless transmission (Ptx). If Pcomp + CR-1• Ptx < 

Ptx, then total power consumption can be reduced. 

For short-range, low data bandwidth applications such as brain-heart signal 

monitoring, the Bluetooth and Zigbee wireless protocols are recommended over ultra-

wideband and Wi-Fi [41]. Table 3-2 shows a comparison of various commercial wireless 

transceiver ICs in terms of their power-related characteristics assuming nominal operating 

usage. The lower operating current draw of the Bluetooth and Zigbee ICs is particularly 

attractive, especially in applications with low-power requirements such as portable biomedical 

devices. 

Table 3-2 Energy consumption of commercial transceiver ICs 

Protocol Bluetooth Zigbee UWB Wi-Fi 

Chipset BlueCore2 CC2430 XS110 CX53111 
VDD (V) 1.8 3.0 3.3 3.3 

TX (mA) 57 24.7 227.3 219 

RX (mA) 47 27 227.3 215 
Bit rate (Mb/s) 0.72 0.25 114 54 

Energy consumption (nJ/bit) 143 296 6.5 13.4 

 In order to save energy, a common practice is to turn on the transceiver only when 

data is available for transmission. Thus, when data bandwidth utilization is low, the 

transceiver spends most of its time in “sleep” mode, minimizing unnecessary energy 

consumption. Since power-up and power-down overheads are minimal, duty cycling can 

result in considerable energy savings. From an operational point of view, data compression 

can reduce the energy consumption even further by effecting a reduction in the amount of 

transmission data and essentially the resulting duty cycle. Figure 3-7 illustrates the possible 

energy savings Esaved as a function of CR and Ecomp for cases employing a commercial 

Bluetooth or Zigbee transceiver IC. Energy savings can be maximized if a good compression 
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Table 3-3 Survey of lossless biomedical data compression algorithms 

Ref. 
Biomedical 

Signal 

Algorithm Compression 

Ratio (CR) 
Prediction Transform Entropy Coding 

[42] 
EEG 

(16-bit) 
DPCM 

Integer Karhunen–

Loève Transform, 

Stereo Integer DCT 
Huffman 2.80 

[43] 
EEG 

(16-bit) 

SLP Neural Network, 

Adaptive Error Modeling, 

Context-Based Bias Cancellation 

-- Arithmetic 3.23 

[44] 
EEG 

(16-bit) 
Auto-Regression Filter, 

Context-Based Bias Cancellation 
-- 

Conditional Coding, 

Huffman 
2.16 (approx.) 

[45] 
ECG 

(11-bit) 
Auto-Regression Filter 

Burrows-Wheeler 

Transform, 

Inversion Ranks 
Arithmetic 3.41 (approx.) 

[46] 
ECG 

(11-bit) 

Short-Term Prediction 

(Context-Based Bias Cancellation), 

Long-Term Prediction (R-R 

Interval) 

-- Golomb-Rice 3.49 (approx.) 

[47] 
ECG 

(13-bit) 
Lempel-Ziv '77/Complex Extract -- 

Exp-Golomb/ 

Huffman 
2.23/2.18 

However, unlike traditional data compression applications where storage space 

reduction and hence CR is the primary, and usually only, figure of merit, compression for low 

overall system power requires the algorithm’s space-time complexity to be considered as well. 

For example, [43] is exceedingly superior over [44] as far as the compression ratio is 

concerned, but then requires large buffers and numerous computational iterations for training 

and accurate error modeling. In a hardware implementation point of view, the former is 

expected to require significantly more memory and computational elements or iterations, 

resulting in higher leakage and switching power consumption. As an illustration, Figure 3-7 

shows how an algorithm with modest compression performance can be more suitable in a 

particular application when power consumption is also considered. Note that the power 

consumption points in the figure are indicated only for discussion purposes and do not 

represent actual results. 

3.2.4.3.1 Algorithm complexity considerations 

In order to select a suitable candidate for a baseline hardware implementation, an 

assessment of algorithm complexity in the literature is presented. Most algorithms comprise a 

prediction step followed by entropy coding. More powerful algorithms [42], [45] additionally 
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employ a lossless reversible transform in between, typically resulting in improved 

compression ratios. However, aside from introducing considerable computational overheads, 

transforms cause data dependencies that require sample buffering, negatively impacting 

power consumption as well as latency. With respect to low power compression, the inclusion 

of transforms is generally not recommended. 

Entropy coding is an essential step in compression algorithms, where frequently 

occurring values or symbols are mapped to shorter binary sequences and less frequent ones to 

longer sequences. In the literature, the entropy coding step is well-represented by Huffman, 

arithmetic and variations of Golomb coding. Although Huffman and arithmetic codes can 

closely follow source entropies, they require the upkeep of large memory structures for 

modeling source symbol probabilities. Alternatively, Golomb coding only requires the storage 

and estimation of a single code scaling parameter, since it assumes a particular shape of 

symbol probability distribution. Because predictive coding of biomedical signals roughly 

satisfies the statistical assumptions of Golomb coding, the resulting entropy coding 

performance is only slightly inferior from optimal (by around 5%), but the hardware 

complexity can be significantly much lower. Hence, for entropy coding, the power of two 

variant of Golomb coding, Golomb-Rice, is suggested. 

Another important problem distinct from entropy coding is prediction. Prediction 

attempts to model the source signal such that an estimate of the current sample can be derived 

from previous samples. If the prediction can be recreated at the decoder side, then only the 

difference between the original and prediction values, called the prediction error, needs to be 

transmitted. An accurate predictor yields very small prediction errors, resulting in a low 

entropy signal that encodes efficiently into a shorter binary sequence after entropy coding. 

Prediction techniques for biomedical signals range from the very simple like discrete 

pulse code modulation (DPCM) (where the previous sample is taken as the expected value for 

the current sample) to memory-intensive and computationally involved ones like neural 
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networks [43], auto-regression (AR) filters [44]-[46], Lempel-Ziv and complex extraction 

[47]. 

As mentioned earlier, most works focus only on the compression ratio, and hence take 

full advantage of more sophisticated mathematical techniques in order to achieve better 

prediction. For example, AR modeling and neural networks require multiple training 

iterations to be run against long sequences of samples in order to find precise floating-point 

model parameters that yield good prediction. Similarly, the Lempel-Ziv and complex 

extraction methods perform pattern or template matching on blocks of samples, exploiting the 

periodicity of ECG signals [47]. For the same reasons, the above methods are generally 

considered unsuitable for real-time, low power hardware implementation. 

3.2.4.3.2 Context-based bias cancellation 

In [44], although the best reported compression ratio was associated with a 6th order 

AR predictor, it was shown that a very simple DPCM predictor, coupled with a 

computationally simple context-based bias cancellation, can attain compression performance 

close to that of more complicated techniques such as the AR model. In this scheme, contexts 

are defined based on past samples, and the typical DPCM prediction error in each context is 

estimated. By subtracting this estimate from the original prediction, an improved prediction 

can be achieved. Due to its simplicity, the method is seen to be very suitable for low power 

compression. 

From the foregoing discussions in the previous sections, the prediction technique 

based on a DPCM predictor with context-based bias cancellation [44] shows most promise, 

while an entropy coding method based on Golomb-Rice is recommended due to its low 

complexity and good entropy coding performance. In the next section, the chosen lossless 

data compression algorithm is described in more detail. 
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latency is seen to be the window size WS. From simulation results, the window size WS must 

be large enough (typically a quarter to half the period) to achieve reasonable compression 

performance. In many clinical situations, a latency of half a second is already unacceptable. 

To solve this problem, the estimation loop for the K parameter and bias cancellation 

value C is opened and is instead performed on a per sample basis according to [49]. As an 

additional benefit of this scheme, since at any time, the estimates are based on past samples 

only, the estimation procedure can be performed in exactly the same manner at the decoder, 

and hence both the K parameter and bias cancellation value C need not be transmitted as part 

of the output coded stream anymore. 

3.2.4.4.5 Final algorithm 

Unfortunately, in the final algorithm, the bias cancellation mechanism had to be 

removed due to restrictions in chip real estate; resulting in around 7% performance loss in 

CR. Context-based estimation of the Golomb-Rice K parameter was retained. Table 3-4 

summarizes all the above considerations to arrive at the final chosen lossless data 

compression algorithm for low power biomedical monitoring systems. 

Table 3-4 Pseudo code of lossless biomedical data compression algorithm 

1 Initialize N = ones(1,32) % N is the number of occurrences of a particular context 
2 Initialize A = 8*ones(1,32) % A is the accumulated absolute prediction error in a context 
3 Initialize prev_sample = 0, dpcm_pred = 0 
4 Initialize context = 1  % 1 (00000) increasing ~ 32 (11111) decreasing 
5 Initialize idx = 1 
6 For each sample in signal do 
7  context = 1 + (dpcm_pred – prev_sample >= 0) + ((context-1)%16) << 1 
8  dpcm_pred = prev_sample 
9  pred_resd = signal(idx) - dpcm_pred 

10  % compute Golomb-Rice parameter k 

11  K = 0 
12  While (N(context)*2K < A(context)) 
13   K = K + 1 
14  End while 
15  % do Rice mapping 

16  If (pred_resd < 0) 
17   resd_mapped = -2 * pred_resd – 1 
18  Else 
19   resd_mapped = 2 * pred_resd 
20  End 
21  % do Golomb-Rice encoding using K on resd_mapped, and output 
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22  For unary = 1 to resd_mapped/2K 
23   OUTPUT(1) 
24  End for 
25  OUTPUT(0) % output delimiter 
26  OUTPUT(resd_mapped%2K) 
27  % update context counters, resetting (by halving) when N = 255 

28  A(context) = A(context) + abs(pred_resd) 
29  If (N(context)==255) 
30   A(context) = A(context)/2 
31   N(context) = 128 
32  Else 
33   N(context) = N(context) + 1 
34  End if 
35  % setup next iteration 

36  prev_sample = signal(idx) 
37  idx = idx + 1 
38 End for 

3.3 Hardware Design and Implementation 

In this section, the hardware design and implementation of the proposed integrated 

EEG/ECG/DOT multiprocessor chip is described in detail. A top to bottom approach in the 

discussions is adopted, beginning with the system or chip top level design, architecture, 

operation and I/O interfacing, followed by the presentation of the main signal processing 

engines namely the ICA engine, HRV engine, DOT engine and the lossless data compression 

engine. Design considerations such as data buffering, inter-module handshaking and data 

bandwidth calculations are then discussed, and finally the results of chip implementation 

using UMC 65nm CMOS process technology is presented as a conclusion to this section. 

3.3.1 Top Level Design 

3.3.1.1 Chip Architecture 

The chip top architecture, shown in Figure 3-11, comprises 1) a UART communication 

interface for receiving control and configuration commands and transmitting mixed 

multichannel raw or processed biomedical data; 2) a system control unit (SCU); 3) a front-end 

control interface unit (FICU) for controlling the analog front-end (AFE) circuitry and 4) a 

main biomedical DSP IP core containing the ICA, HRV, DOT and lossless data compression 

engines. A detailed description of the chip’s I/O pins is given in Table 3-5. 
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Figure 3-11 Top architecture of the integrated EEG/ECG/DOT multiprocessor IC 

Table 3-5 Chip I/O pin descriptions 

Pin Name Direction Width Description 

Clock and Reset 

 CLK Input 1 24MHz master clock 

 RESET Input 1 Master reset signal 

Analog Front-End Interface 

 AIC_CLK10K Output 1 10KHz clock for CHDDA and LPF of AIC 

 AIC_CLK_SLOW Output 1 1.2MHz master clock for ADC of AIC 

 AIC_RESET Output 1 Synchronous reset for ADC 

 AIC_CH_SEL Output 3 

Bio-signal channel select for ADC conversion  LED_SEL Output 3 

 DOT_CHSEL Output 4 

 AIC_START Output 1 Start of conversion command to ADC 

 AIC_VALID_CONVERSION Output 1 Debug pin (no need to connect) 

 AIC_EOC Input 1 End of conversion flag from ADC 

 AIC_DATA Input 10 Converted digital bio-signal output by ADC 

UART Interface 

 RX Input 1 UART RX port for receiving system commands 

 TX Output 1 UART TX port for transmitting biomedical data 

Special Control Signals 

 OVERFLOW Output 1 Indicates that buffer overflow has occurred inside the chip 

 MANUAL_START Input 1 Manually initialize chip to default mode w/o using UART 

3.3.1.2 System Operation 

Upon external reset, the chip enters into an inactive state. For chip operation to start, a 

configuration/control command must be sent to the UART RX interface. The command byte, 

whose fields are shown in Table 3-6, tells the chip which biomedical signal processing 

engines to enable. Note that if the HRV or ICA engines are to be used, their corresponding 

biomedical signal sampling must be enabled as well. So, commands like 8’bxxxxxx10 (ICA 

on, but EEG sampling off) and 8’bxxxx10xx (HRV on, but ECG sampling off) are illegal. 
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Table 3-6 Bit field description of system mode byte command 

Bit Meaning 

0 Enable 4-ch EEG data sampling 

1 Enable 4-ch EEG ICA processing 

2 Enable 3-ch ECG data sampling 

3 Enable HRV analysis on ECG channel 0 

4 Enable fNIR data sampling and DOT 

5 Bypass EEG compression 

6 Bypass ECG compression 

7 Bypass DOT compression 

Upon receiving the system mode command bit stream, the UART module decodes it 

into byte-register format and sends it to the SCU along with a start trigger signal. Figure 3-12 

illustrates the operation of the SCU. After receiving the trigger from the UART, the SCU 

issues a chip-wide internal reset and broadcasts the system mode (by way of register pins) to 

relevant modules. The main DSP IP core requires 96 clock cycles to fully initialize. After 

initialization is done, the SCU sends a trigger signal to the FICU to start periodic requesting 

of biomedical data from the AFE. Depending on the system mode configuration, EEG, ECG 

and/or fNIR samples are received and processed by the main DSP IP core. Finally, raw or 

processed biomedical data is output through the UART TX interface according to the output 

data format described in 3.3.1.4. The whole chip continues to operate in an infinite loop of 

data sampling, signal processing and data transmission as described above until a stop 

command (8’bxxx00000) or new configuration command is received. 

 

Figure 3-12 Flow chart of system control by SCU 
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Alternatively, the chip can be triggered to operate using the MANUAL_START 

special control signal. In this case, the system mode defaults internally to 8’b1111_1111 such 

that the biomedical signal processing engines ICA, HRV and DOT are all turned on and 

lossless data compression of any sort is turned off. From this point forward, the chip operates 

as described in the normal mode, and can be turned off or reconfigured through new 

commands received at the UART RX interface.  

3.3.1.3 Interface to the Analog Front-End (AFE) Circuitry 

The interconnections between the analog front-end circuit and the FICU form the 

interface from which mixed multichannel biomedical data (i.e. EEG, ECG, fNIR) are acquired 

into the system. Figure 3-13 shows the schematic of the AFE circuit interface. A 10 KHz 

clock generated by the FICU is provided to the chopper-stabilized differential difference 

(CHDDA) instrumentation amplifiers and low-pass switched-capacitor filters (SC LPF) of the 

AFE circuit, while a 1200 KHz clock is provided as master clock to the AD converter. 

 

Figure 3-13 Analog front-end (AFE) interface 
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Since there are a total of 31 analog signal channels involved (7 for EEG/ECG and 24 

for fNIR), the different signals are time-multiplexed through a single AD converter in order to 

reduce the number of I/O pins at the chip interface. Prior to starting AD conversion, the FICU 

first selects the desired biomedical signal using AIC_CHSEL, LED_SEL and DOT_CHSEL. 

A description of these signals is provided in Table 3-7. 

Table 3-7 Biomedical signal selection using AIC_CHSEL, DOT_CHSEL and LED_SEL 

AIC_CHSEL Selected Channel 

0 EEG Channel 0 

1 EEG Channel 1 

2 EEG Channel 2 

3 EEG Channel 3 

4 EKG Channel 0 

5 EKG Channel 1 

6 EKG Channel 2 

7 

LED_SEL DOT_CHSEL DOT Channel 

0 (LED 1) 

0 0 

4 1 

1 2 

5 3 

1(LED 2) 

1 4 

5 5 

2 6 

6 7 

2 (LED 3) 

2 8 

6 9 

3 10 

7 11 

3 (LED 4) 

4 12 

8 13 

5 14 

9 15 

4 (LED 5) 

5 16 

9 17 

6 18 

10 19 

5 (LED 6) 

6 20 

10 21 

7 22 

11 23 

Once the selected biomedical signal is set up at the AD converter’s analog input, the 

FICU asserts AIC_START_CONVERSION for one clock cycle, to which the ADC responds 

with the converted digital data 12 cycles later together with a single-cycle assertion of 

AIC_EOC. Internally, latching of AIC_DATA depends only on the assertion of AIC_EOC, 

and so the end-of-conversion (EOC) signal can be directly used as an INPUT_VALID signal 

for AIC_DATA. 
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3.3.1.4 Output Data Format 

After the biomedical data has been sampled and processed, the results need to be 

output. To allow the easy adoption of the proposed design in third party systems, a standard 

output data format is specified and documented. 

The output data format is defined on top of the UART byte layer, wherein the data unit 

is a 40-bit biomedical data packet as shown in Figure 3-15. The unit biomedical data packet 

comprises a 38-bit data payload and a 2-bit data type header specifying whether the packet 

carries DOT, HRV, ECG or EEG/ICA biomedical data. The presence of a particular type of 

biomedical data depends on the configured system mode (received from the science station) 

and is described in Table 3-9. Note that because the lower bytes are transmitted first before 

the upper bytes, only until the last byte is received (BYTE4) will determination of the data 

type be possible. The rest of the output data format specifications is summarized in Table 3-9. 

Note that although the EEG and ICA data share the same data type header, the science station 

can distinguish between the two based on the system mode it sent to the chip. 

 
Figure 3-15 40-bit biomedical data packet 

Table 3-9 Summary of the output data format 

 DOT HRV ECG EEG / ICA 

System 

Mode Bit 
4 3 2 1 0 

Action 

Enable NIR 

Sampling and 

DOT Engine  

Enable HRV Engine 

(operates on CH0 

only)  

Enable 3-ch EKG 

Sampling  
Enable ICA Engine  

Enable 4-ch EEG 

Sampling  

Output 

Description 

8x12 pixel DOT 

image (735nm) 

256-point 

frequency 

spectrum  

3-ch EKG signal  4-ch ICA signal  4-ch EEG signal  

Output Data 

Rate 
1 image / sec  1 spectrum / min  

3-ch x 256 

samples / sec  

4-ch x 128 

samples / sec  

4-ch x 128 

samples / sec  

Output Unit 
20-bit signed 

pixel intensities  

32-bit signed 

coefficient pairs  

{16-bit REAL, 16-bit 

IMAG}  

10-bit signed 

EKG samples  

16-bit signed 

independent 

component 

samples  

10-bit signed EEG 

samples  

Output 

Sequence 

Sub-frame, 

raster order  

coeff0, coeff1, …, 

coeff255  

CH0 -> CH1 - > 

CH2  

CH0 -> CH1 -> CH2 

-> CH3  

CH0 -> CH1 -> 

CH2 -> CH3  

Data Type 

Header 
2’b11  2’b10  2’b01  

2’b00 (if ICA is enabled, raw EEG 

samples are not output)  
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In order to achieve low latency real-time performance, processed biomedical data are 

immediately packetized and output, such that consecutive packets can be of different data 

types during actual operation. Since the time lapse between the last pixel of a DOT image to 

the first pixel of the next takes one second, data flush pad bits are appended to the last pixel to 

form a complete 40-bit packet for immediate transmission. The same is done for HRV data, 

wherein the frequency spectrum is output only once every minute. For the times series ECG 

and EEG/ICA data, the worst case stall is just a minimal sampling period and so data padding 

is not employed. An explicit illustration of the different types of biomedical data packets 

(lumped together for clean layout) is shown in Figure 3-16 through Figure 3-21. 

 
Figure 3-16 Raw EEG biomedical data packets composed of EEG samples 

 

Figure 3-17 ICA-processed EEG biomedical data packets composed of ICA samples 

 

Figure 3-18 Raw ECG biomedical data packets composed of ECG samples 
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Figure 3-19 HRV data packets composed of frequency spectrum coefficients 

 
Figure 3-20 DOT biomedical data packets composed of image pixels 

 
Figure 3-21 DOT image pixel transmission sequence 

In the case when lossless data compression is enabled for EEG/ICA, ECG or DOT, the 

output data format is the same, except that the fixed-precision output sample units become 

variable length comprising Golomb-Rice coded prediction errors (in the form of 

unary(quotient), delimiter, binary(remainder)) as previously illustrated in Figure 3-9c. In this 

case, the amount of data padding for DOT and HRV data becomes conditional to whether or 

not the last pixel or coefficient pair completely fills up the 40-bit data packet, respectively. 
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In order for the proposed chip to connect to the Bluetooth module, a UART 

communication interface is implemented within the chip. Aside from the advantage of having 

a reduced number of I/O pins at the chip interface, by employing a UART interface, the 

usability of the chip is further enhanced such that its connection to many other devices that 

support UART (e.g. PC through RS232 COM port, Zigbee module w/ UART interface, and so 

on) becomes possible. Table 3-11 summarizes the specifications of the UART module 

implemented in the chip while Table 3-12 shows the maximum bandwidth usage calculations 

in the case of full mode (system mode = 8’b1111_1111) operation. Note that the effective 

baud rate is only 80% of the gross baud rate since the UART start and stop bits take up 20% 

of the UART frame. 

Table 3-11 Specifications of the on-chip UART module 

Parameter Description 

Baud rate 115,200 

Data bits 8 

Parity bits None 

Stop bits 1 

Pins TX, RX 

Flow control None 

Table 3-12 Calculation of maximum UART bandwidth usage 

Data Calculation Bandwidth (bps) 

ICA 

16 bits/sample × 

128 samples/s-ch × 

4 ch 

8,192 

ECG 

10 bits/sample × 

256 samples/s-ch × 

3 ch 

7,680 

HRV 
32 bits/coefficient × 

256 coefficients/60 s 
136.53 

DOT 
20 bits/pixel × 

96 pixels/s  
1920 

Header (approx.) 
(8,192 + 7,680 + 136.53 + 

1,920) ×
!C� 943.6 

Total Used -- 18,872.13 

Total Available 115,200 bps × 
��� 92,160 

Percent Used -- 20.4% 
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3.3.2 Core Module Design 

In this section, the design of the main biomedical DSP IP core containing the ICA, 

HRV, DOT and lossless data compression engines is described in detail. Figure 3-23 shows 

the architecture of the core biomedical DSP IP and its relation to the rest of the chip. The main 

biomedical DSP core IP, conditional to the configured system mode, takes in EEG, ECG 

and/or fNIR data, processes them and outputs various combinations of 1) raw EEG signals; 2) 

independent component signals; 3) raw ECG signals; 4) HRV frequency spectrum coefficients 

and 5) DOT image pixels, packaged according to the 40-bit output format specified in Section 

3.3.1.4. In the following subsections, top-level data flow issues will be discussed first, after 

which the detailed design of the ICA, HRV, DOT and COMP engines will be presented. 

 

Figure 3-23 Architecture of the main biomedical DSP IP core within the chip 

3.3.2.1 Priority Data Selector (PDS) 

The ICA, HRV and DOT engines processes input EEG, ECG and fNIR data as 

described in Section 3.2. Although the timing of the input data is guaranteed to be non-

simultaneous, the processing delays of the corresponding engines vary causing the possibility 

of simultaneous data at the output side. Since the lossless compression module accepts only 

one biomedical data sample at a time, a priority data selector (PDS) module is employed to 
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perform time-multiplexing of the different types of biomedical data into a single data stream. 

Although it’s possible to schedule the input data timing such that the outputs are ensured to 

arrive at different times, for robustness of the design we choose to support arbitration based 

on priority instead. The architecture of the priority data selector module, including the 

implemented priority assignment, is shown in Figure 3-24. 

Each biomedical data sample sent to the lossless data compressor is annotated with 

COMP info parameters by the PDS. These info parameters indicate the sample precision 

(COMP_SP) and type (CH_SEL) of the biomedical data and also whether the sample will be 

compressed or not (BYPASS). Given these information, the lossless compression module 

conditionally compresses and packages the received biomedical data samples accordingly into 

40-bit packets as described in Section 3.3.1.4. 

 

Figure 3-24 Architecture of PDS and priority assignment 

3.3.2.2 Inter-module Handshaking Mechanism 

Although it has been shown in Section 3.3.1.5 that the UART bandwidth is enough to 

handle the maximum output data rate during full mode operation, the instantaneous data rate 

at the input of the UART can, during some short segments in time, actually exceed the 
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maximum UART baud rate. This is in part due to the process of sample windowing employed 

by the signal processing algorithms which causes bursty data timing at the output side, and is 

further exacerbated by the faster clock used by the processing engines. Therefore, to address 

this issue, a three-stage inter-module handshaking mechanism is employed such that upstream 

modules can be instructed to stall and hold their output until the UART is ready again to 

receive new data. Figure 3-25 illustrates the three-stage handshaking mechanism wherein the 

backward READY handshaking signal is highlighted in red. Finally, to prevent hard stalling 

of the modules and also to serve as allowance over possible data overflows, sample and 

stream buffers are employed in the PDS and COMP modules respectively. 

 

Figure 3-25 Three-stage handshaking mechanism 

3.3.2.3 Diffuse Optical Tomography (DOT) Engine 

The main design problem in the development of the DOT engine is the determination 

of the inverse solution matrix. As discussed in Section 3.2.3, indeed when the LED source-

detector pair geometry, target medium and depth parameters are fixed, the coefficients of the 

inverse matrix are constant. Therefore, the inverse matrix was derived empirically based on an 

actual experimental set up and then implemented as a look-up table using a ROM. The 

distances between the LED source-detector pairs are illustrated in Figure 3-26, whereas the 
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3.3.2.4 Independent Component Analysis (ICA) Engine 

The independent component analysis (ICA) engine is mostly a straightforward 

implementation of the Infomax ICA algorithm outlined in Section 3.2.1. The hardware 

architecture of the ICA engine, shown in Figure 3-28, comprises 1) an input buffering and 

preprocessing unit (STAGE1) that calculates the covariance matrix and centers the input EEG 

data; 2) a whitening unit (WU) which calculates the whitening transformation matrix; 3) an 

ICA training unit (TU) which performs the unmixing weight training; and 4) an ICA 

computation unit (CU) that calculates the whitened unmixing weight matrix and outputs the 

final estimated independent source signals. 

 

Figure 3-28 Architecture and sequenced operation of the ICA engine 

The top operation of the ICA engine follows the described algorithm flow in Section 

3.2.1 and is detailed as follows: 

1. STAGE1 receives sparsely-timed EEG data and the input buffering unit (IBU) stores 

them into an interleaved SRAM array for later processing. (sequence in green) 

2. Once a complete window of 64 by 4ch EEG samples has been received, the EEG 

samples are read out from the memory and the channel means are calculated. The mean 

values are then 1) immediately used to calculate the covariance matrix; and 2) saved in 

a register array for later use during the centering operation. The eigenvalue value 

decomposition (EVD) unit of the whitening unit then iteratively diagonalizes the 
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covariance matrix, and upon convergence outputs the final estimated eigenvalue D and 

eigenvector E matrices. The inverse square root of D calculated by the INV_SQRT unit 

is then multiplied together with E and its transpose, and the resulting matrix P is stored 

in a register array for use later on during Infomax ICA training and calculation. 

(sequence in light blue) 

3. All this time, the ICA training unit (TU) had been waiting for whitened data to train on, 

asserting the request signal Z_REQ. Once the whitening matrix P has been calculated, 

the whitening unit issues a request (X_ZM_REQ) and STAGE1 starts outputting 

centered data (channel means are subtracted from the raw data read from IBU’s 

SRAM). The whitening unit then transforms the centered data X4x1 to uncorrelated 

whitened data Z4x1 = P4x4 X4x1, and forwards the result to the ICA training unit. The 

ICA TU calculates an estimate of the unmixing weight matrix W based on a window of 

Z4x1, if the change in W is small enough, convergence is reached and training 

concludes; otherwise, the ICA TU will keep on requesting for the same window of 

Z4x64 data (through X_ZM_RESEND and X_ZM_REQ) up to 512 times or until W 

convergence is achieved, whichever comes first. The final value of W in this process 

serves as the best estimate of W and is stored for 1) training the next window; and 2) 

calculating ICA_OUT. (sequence in red; note how all of IBU, CTR, WU and TU are 

active concurrently) 

4. In the beginning of the next window cycle when the P and W have not yet been 

calculated and overwritten, STAGE1 triggers ICA output calculation by issuing an 

OUTPUT_W command for ICA TU to send to ICA CU the previously calculated best 

estimate of the unmixing weight matrix W. Upon receiving W, ICA CU is triggered to 

calculate UW = WP which is stored in UW_REG upon completion (sequence in pink). 

Finally, STAGE1 sends X and the ICA CU calculates the final ICA_OUT = WPX 

(sequence in orange).  
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The above discussion only focuses on the top operation of the ICA engine, omitting 

the details on the data windowing scheme, eigenvalue and eigenvector calculation in the 

whitening unit, and the iterative operation of the Infomax ICA training unit. These 

mechanisms actually form bulk of the complexity of the ICA engine; therefore, in the 

following subsections, more details will be provided regarding these topics, and special 

highlight will be shed on the hardware implementation issues associated with each of them. 

3.3.2.4.1 Data windowing scheme 

A basic but important parameter to consider in the implementation of real-time ICA is 

the input data length (number of multi-channel sampling events) on which one full run of the 

algorithm is operated upon. This length of data or “window size (WS)” is illustrated in Figure 

3-29. The input data is broken down into data segments each of length N, denoted as x1, 

x2, …, xn, and data windows are specified by combining a number of consecutive data 

segments, denoted as w1, w2, …, wn. In order to achieve tractable performance and 

complexity in the proposed design, only fixed window sizes are considered (the window size 

is not allowed to vary during operation) while overlapped windows are introduced in order to 

improve ICA training and to facilitate pipelined operation. 

A window size of 512 with 50% overlap (N=256, WS=2N, OV=50%) was initially 

chosen since it was able to achieve a good ICA performance of 0.9208 correlation coefficient 

using super-gaussian random pattern sets. However, because the tape out shuttle area budget 

was severely limited, this design was not feasible to be released due to its large area attributed 

to high memory requirements. Therefore with the intention of minimizing memory size at 

acceptable performance loss, a performance trade-off analysis of the ICA algorithm against 

various combinations of window size (WS) and overlap (OV) parameters was performed 

using MATLAB. Based on the results shown in Table 3-13, a window size of 64 with 50% 

window overlap was chosen for the final design since it was able to achieve an acceptable 

0.84 correlation using only a minimal 3.84Kb of memory. 
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Figure 3-29 Illustration of the data windowing concept 

Table 3-13 ICA correlation performance vs. window size and window overlap 

Window Size 

(WS) 

Window Overlap 

(OV) 
N 

Average 

Correlation 

Memory 

Size(Kb) 

512 256 (50%) 256 0.9208 30.72 

128 

112 (87.5%) 16 0.8307 5.76 

96 (75%) 32 0.8336 6.4 

64 (50%) 64 0.8334 7.68 

64 32 (50%) 32 0.8401 3.84 

Figure 3-30 illustrates the implications of the chosen design parameters (N=32, 

WS=2N, OV=50%) on the pipelined operation schedule of the ICA engine. Three separate 

interleaved SRAMs each of size N are employed and allocated such that memory writes 

performed during storing of x2 (RAM2) do not conflict with the memory reading of x0 and x1 

(RAM0 and RAM1) during training of window w0. Because of the 50% window overlap, a 

new unmixing weight matrix wn is available for every new xn. Therefore, under the 

assumption that the unmixing weight matrix does not change too much from window to 

window, the unmixing of xn (ICA computation) is performed using the unmixing weight 

matrix wn-1, which is based on the training of window wn-1 formed by xn and xn-1. 

 

Figure 3-30 Data windowing scheme (50% overlap) and operation schedule 
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3.3.2.4.2 Eigenvalue and eigenvector calculation in the whitening unit 

The primary function of the whitening unit is the determination of the whitening 

transformation matrix P expressed in Equation (3-4). Its calculation requires the matrix 

factorization of the covariance matrix of X into the form �	�	��, where each of diagonal 

matrix D and orthogonal matrix E comprises the covariance matrix’s eigenvalues and 

eigenvectors respectively. The diagonalization of the real, symmetric, positive semi-definite 

covariance matrix Xcov into �	�	��, known more formally in linear algebra as eigenvalue 

decomposition or EVD, is specifically performed by the EVD_PROCESSOR shown in Figure 

3-28. It is a non-trivial mathematical problem whose solution takes up most of the 

computational burden handled by the whitening unit and is arguably the most interesting and 

algorithmically colorful and complex numerical method in the ICA engine. The details of the 

EVD computation, in terms of both algorithm and hardware architecture, are described here 

instead of the ICA algorithm discussion in 3.2.1, as the method’s rationale is more of a 

consequence of hardware implementation rather than ICA itself. 

The Jacobi Eigenvalue Decomposition Algorithm - Introduction 

Eigenvalue decomposition is an old mathematical problem and many methods for its 

solution have been proposed in the literature. Among these methods, the two most popular are 

the Jacobi eigenvalue algorithm [51] and the QR algorithm [52][53]. Although the QR 

method has been widely celebrated for its superior computational speed (presumably on 

general purpose computers), it has proved to be numerically less stable and less accurate than 

the Jacobi method [54][55][56]. On the other hand, the Jacobi algorithm possesses, in 

addition, desirable characteristics of simplicity, elegance, and regularity [57] making it 

extremely well-suited to efficient parallel VLSI implementations [58]. Indeed, while hardware 

implementation of the QR method has proven to be problematic due to the division, square 

root and inverse square root operations performed in the algorithm [59][60], rotation matrix 

multiplications in the parallel Jacobi method [61] can be efficiently handled by CORDIC 
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(COordinate Rotation DIgital Computer) arithmetic [62] such that even multiplications can be 

avoided altogether [63][64]. Due to its numerous attractive features, especially ones 

concerning hardware implementation, the Jacobi method was chosen for solving the EVD 

problem in the developed ICA engine. In the following subsection the Jacobi eigenvalue and 

the CORDIC algorithms are described in more detail. 

The Jacobi Eigenvalue Decomposition Algorithm – Basic Idea 

The basic idea behind Jacobi’s method is to systematically reduce to zero the quantity 

off��� = ���kIv!6
v��v�I

6
I��  (3-17)

i.e., the “norm” of the off-diagonal elements of the input symmetric n-by-n matrix A. The 

input matrix A is iteratively updated according to 

�Y�� = �Y�	�Y	�Y, (3-18)

where JJJJ is orthogonal, such that the new A is more diagonal than the previous one in the sense 

of (3-17). When off(Ak+1) goes below a predefined threshold, say after K iterations, the 

algorithm is said to have converged; and the final 

�� = �� �� 	�� !� …�!�	���	���	��	��	��	�!…�� !	�� � (3-19)

is a diagonal matrix D containing the eigenvalues of A0. Furthermore, recalling that JJJJ is 

orthogonal, then JJJJT	=	JJJJ-1	and	J	J	J	J	JJJJT	=					JJJJT				JJJJ				=				IIII, and manipulating both sides of (3-19) gives 

����… �� ���	�� �� … 	���	��� = ����…�� ��� �� … 	���	���	��	��	��… 	�� ��� �� … 	���	��� (3-20)

�	�	�� = �� (3-21)

where matrix E	 =	 JE	 =	 JE	 =	 JE	 =	 J0	 JJJJ1…JJJJK-1 is orthogonal and whose rows (or columns) are the eigenvectors of 

A0, thus solving the original eigenvalue decomposition problem. 

By now it should be apparent that the key to Jacobi’s method lies in the proper design 

of matrix JJJJ to produce the effects described above. It follows then that the specifications of JJJJ 
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must at least include the following: 1) it should be orthogonal; 2) for manageability, it should 

be able to selectively “annihilate” specific off-diagonal elements only; 3) it should be able to 

cause a net effect of off(Ak+1) < off(Ak) after each iteration; and 4) it should have the ability to 

converge. 

To satisfy these requirements, Jacobi defined JJJJ as 

���, �, θ� =
���
���
�1 ⋯ 0 ⋯ 0 ⋯ 0⋮ ⋱ ⋮ ⋮ ⋮0 ⋯ cos θ ⋯ sin θ ⋯ 0⋮ ⋮ ⋱ ⋮ ⋮0 ⋯ −sin θ ⋯ cos θ ⋯ 0⋮ ⋮ ⋮ ⋱ ⋮0 ⋯ 0 ⋯ 0 ⋯ 1��

���
��	 ��     , p	<	q	

 p	 q	
(3-22)

called the Jacobi rotation matrix, which is simply an identity matrix whose elements at (p,p), 

(q,q), (p,q) and (q,p) are replaced with sine and cosine trigonometric functions as shown 

above. By using trigonometric identities, it can be easily verified that JJJJ is orthogonal, 

satisfying the first requirement. To illustrate the second requirement, Figure 3-31 shows an 

expansion of (3-18) using the Jacobi rotation matrix defined in (3-22). The left (right) 

rotations in blue (red) simply “remixes” or “rotates” pairs of column (row) elements (k�I| ,	k�I| ) 

to (k�I|��,	k�I|��) ((kI�| ,	kI�| ) to (kI�|��,	kI�|��)).  It becomes obvious then that the only opportunity 

here is to “rotate” the energy of the off-diagonal elements apq and aqp into the diagonal 

elements app and aqq, since the remaining off-diagonal elements (red only or blue only) have 

no paired diagonal elements to transfer their energy to. It becomes clear then that the rotation 

angle θ must be chosen based on app, aqq, apq and aqp in order to achieve the desired effect. 
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Figure 3-31 Illustration of matrix AAAA update using two-sided Jacobi plane rotations 
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Evaluating the right hand side of Figure 3-31 for k��|�� and k��|��  and noting that 

k��| = k��|  since Ak is symmetric, gives 

k��|�� = k��|�� = k��| sinθcosθ + k��| cosθcosθ − k��| sinθsinθ − k��| sinθcosθ  

 = �k��| − k��| �sinθcosθ + k��| cos!θ − k��| sin!θ  

 = �k��| − k��| �sinθcosθ + k��| �cos!θ − sin!θ�  

 = �k��| − k��| �tanθ + k��| �1 − tan!θ� (3-23) 

Since the off-diagonal elements in the updated matrix must be 0, setting k��|�� = k��|�� = 0 

gives 2tanθ1 − tan!θ = 2k��|k��| − k��|   

tan2θ = 2k��|k��| − k��|   

θ = 12 tan �	  2k��|k��| − k��| ¡ (3-24) 

Using the rotation angle θ “annihilates” k��|�� and k��|�� to zero, and their energy is transferred 

to the diagonal elements. As for the rest of the rotation pairs (in blue only or red only), it can 

be shown that each pair’s total norm remains constant, i.e., �kIv|���! + �kil|���! = �kIv| �! +�kil| �!, such that on the global perspective, off(Ak+1)
2 – off(Ak)

2 = 0! − 2�k��| �! or 

off��Y���! = off��Y�! − �k��| �! (3-25) 

satisfying the third requirement. 

The remaining question now is how to choose the indices (p,q) in each iteration. From 

the standpoint of maximizing the reduction of off(Ak) in (3-25), it makes sense to choose (p,q) 

so that �k��| �! is maximal. Indeed, this is the strategy originally proposed by Jacobi in his 

work [51], where a proof of convergence is also given. However, the drawback of this method 

is that sweeping the whole n-by-n matrix just to search for the largest off-diagonal element at 

every iteration is a costly operation. This problem is overcome by fixing the sequence of (p,q) 

locations to be updated in advance. Common schemes are the cyclic-by-row and the cyclic-
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by-column procedures where the pair (p,q) is chosen in a row-by-row, or column-by-column 

fashion respectively [65][66]. Any such sequence, called a sweep, must cover all possible 

pairs of (p,q) and requires N = n(n-1)/2 iterations. For example, the row-cyclic strategy uses 

the following sequence of update locations (p,q): 

(1,2) → (1,3) → (1,4) → … → (1,n-1) → (1,n) → 

(2,3) → (2,4) → (2,5) → … → (2,n) → 

… 

(n-2,n-1) → (n-2,n) → 

(n-1,n) 

By foregoing the off-diagonal searching procedure, the cyclic Jacobi executes considerably 

faster than Jacobi’s original method. 

While not immediately apparent in Jacobi’s original method due to the conditional off-

diagonal search, the more regular cyclic version is able to expose more readily the inherent 

parallelism present in Jacobi’s method. From Figure 3-31, it can be seen that each right 

rotation (matrix multiplication in red) involves only columns p and q. Thus, any other right 

rotation (p’,q’) where p’≠p and q’≠q is a totally separate problem. For example, given n = 8, a 

possible “non-conflicting” set of rotation pairs could be {(1,2),(3,4),(5,6),(7,8)} such that all 

four can be performed in parallel. After all the right rotations are done, the left rotations can 

all be performed in parallel as well. 

The final question would then be how to group together the remaining (p,q) pairs in 

the sweep while also maintaining the maximum n/2- way parallelism as shown above. A 

practical approach to the problem is to visualize a chess tournament with n players in which 

everybody must play everybody else exactly once; and, to minimize the total duration of the 

tournament (like a sweep), matches are conducted in parallel as much as possible. A simple 

method for generating rotation sets covering a full sweep is presented in [61] and a mnemonic 

illustration of this process is given in Figure 3-32. 
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Figure 3-32 Illustration of parallel Jacobi rotation set sequence 

The CORDIC (COordinate Rotation DIgital Computer) Algorithm 

Based on the discussion above, hardware implementation of the Jacobi EVD algorithm 

presents some challenges, particularly in the following sub operations: 1) squaring and square 

root functions in the calculation of off(A) during convergence check, as in (3-17); 2) division 

and arctangent operations for calculating θ in (3-24); and 3) numerous matrix rotation 

multiplications during iterative updates, involving sine and cosine elements as shown in 

Figure 3-31. Straightforward evaluation of these functions can prove costly in hardware; 

therefore alternative approaches are investigated in order to achieve efficient implementation. 

The square and square root operations in 1) are avoided by simplifying the condition for 

convergence to max(|aij|,i≠j) < threshold. On the other hand, explicit division, arctangent and 

matrix rotation operations associated with 2) and 3) are avoided altogether through the use of 

CORDIC arithmetic, a powerful algorithm capable of evaluating these functions using only 

simple add, shift and table look-up operations. 

CORDIC stands for “COordinate Rotation DIgital Computer” and is a simple yet very 

powerful computational algorithm invented by Jack E. Volder in 1959 [62]. Using only shift-

add and look-up operations, it has the ability to evaluate a wide variety of mathematical 

computational tasks including trigonometric, hyperbolic, exponential and logarithmic 
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The advantage of this scheme becomes apparent when the cosine terms in (3-26) are 

factored out and the equations rewritten in incremental form: 

{I�� = cos	�~I¤I�	�{I − £I	tan	�~I¤I�� £I�� = cos�~I¤I�	�£I + {I	tan�~I¤I�� (3-27) 

and substituting tan	�¤I� = 2 I, {I�� = cos	�¤I�	�{I − ~I£I2 I� £I�� = cos�¤I�	�£I + ~I{I2 I� (3-28) 

since αi < π/2 and cos() and tan() are even and odd functions respectively. 

However, based on (3-28), cos	�¤I ��	can be factored out from the right product term 

{I − ~I£I2 I, and then cos�¤I !� and so on. Thus, instead of multiplying by cos(αi) in every 

iteration, an accumulated scaling product ¦ = ∏ cos�¤I�lI��  is defined, and applied only once 

at the final output. This way, many multiplication operations can be saved and the update 

iterations simplified to {I�� = {I − ~I£I2 I £I�� = £I + ~I{I2 I (3-29) 

which only requires elementary shift and add operations. Table 3-14 shows the value of the 

accumulated product K at the end of any given iteration. The value of K actually converges to 

0.607252935 as the number of iterations goes to infinity. 

Table 3-14 Constant parameters in the CORDIC algorithm 

i ¨ © ª© = «¬­ 1�¨ ©� ®¯°�ª©� ± =	∏ ®¯°�ª©�²©�³   

0 1.000000000000 0.785398163397 0.70710678118655 0.70710678118655 
1 0.500000000000 0.463647609001 0.89442719099992 0.63245553203368 
2 0.250000000000 0.244978663127 0.97014250014533 0.61357199107790 
3 0.125000000000 0.124354994547 0.99227787671367 0.60883391251775 
4 0.062500000000 0.062418809996 0.99805257848289 0.60764825625617 
5 0.031250000000 0.031239833430 0.99951207608708 0.60735177014130 
6 0.015625000000 0.015623728620 0.99987795203470 0.60727764409353 
7 0.007812500000 0.007812341060 0.99996948381879 0.60725911229889 
8 0.003906250000 0.003906230132 0.99999237069278 0.60725447933256 
9 0.001953125000 0.001953122516 0.99999809265682 0.60725332108988 
10 0.000976562500 0.000976562190 0.99999952316318 0.60725303152913 
11 0.000488281250 0.000488281211 0.99999988079073 0.60725295913895 
12 0.000244140625 0.000244140620 0.99999997019768 0.60725294104140 
13 0.000122070313 0.000122070312 0.99999999254942 0.60725293651701 
14 0.000061035156 0.000061035156 0.99999999813735 0.60725293538591 
15 0.000030517578 0.000030517578 0.99999999953434 0.60725293510314 
16 0.000015258789 0.000015258789 0.99999999988359 0.60725293503245 
17 0.000007629395 0.000007629395 0.99999999997090 0.60725293501477 
18 0.000003814697 0.000003814697 0.99999999999272 0.60725293501035 
19 0.000001907349 0.000001907349 0.99999999999818 0.60725293500925 
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In addition to calculating the Cartesian coordinates in (3-29), the accumulated angle 

must be taken note of as well: ´I�� = ´I − ~I¤I (3-30) 

The negative accumulation is just a matter of convention. In the typical vector rotation use 

case, the rotation angle θ is assigned to ´�, and ´I is iteratively decremented until ´l = 0. 

The CORDIC iterations in (3-29) and (3-30) can be used in two operating modes, 

namely rotation mode (RM) and vectoring mode (VM). In rotation mode, the desired 

information are the new coordinates (xn,yn) of an input vector (x0,y0) after being rotated by a 

specified angle ω0 = θ. In this mode, the direction of each micro rotation di is determined by 

the sign of ωi; if ωi is positive, then di = 1 (counterclockwise) otherwise di = −1 (clockwise). 

After n iterations, ωn becomes zero and (xn,yn) is multiplied by K to get the final output vector 

(x’, y’) as in (3-26). On the other hand, in vectoring mode, an input vector (x0,y0) is rotated 

onto the x-axis, such that yn becomes zero and the magnitude and angle of the vector can be 

obtained from xn and ωn respectively. The direction of each micro rotation is determined by 

the sign of yi; if yi is positive, then di = −1 (clockwise) otherwise di = 1. As before, xn must be 

scaled by K to get the real magnitude. Table 3-15 shows the summary of the CORDIC 

algorithm, as well as its application in (3-24) and Figure 3-31. 

Table 3-15 Summary of CORDIC algorithm and interfacing with Jacobi EVD algorithm; 
* refers to θ in (3-24) 

 Rotation Mode (RM) Vectoring Mode (VM) 

Iterative system of 
equations 

{I�� = {I − ~I£I2 I £I�� = £I + ~I{I2 I ´I�� = ´I − ~I¤I 
Input 

x0 = x = k�I|  

y0 = y = k�I|  

ω0 = θ* 

x0 = x = k��| − k��|  

y0 = y = 2k��|  

ω0 = 0 

Operation description Counterclockwise rotation of vector (x0,y0) by ω0 Rotation of vector (x0,y0) onto x-axis 

Direction of micro 
rotation ~I = �−1, ´I ≤ 0			1, ´I > 0 ~I = �			1, £I ≤ 0−1, £I > 0 

Output result 

k�I|�� = {¢ = ¦{l = {�cosω� − £�sinω� k�I|�� = £¢ = ¦£l = {�sinω� + £�cosω� 

ωl = 0 

¦{l = ·{�! + £�! 2θ∗ = 	ωl = tan �	�£�/{�� £l = 0 
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Hardware Architecture of the CORDIC Engine 

The hardware architecture of the CORDIC engine supporting both rotation (RM) and 

vectoring (VM) modes follows naturally from Table 3-15 and is shown in Figure 3-34. The 

engine is first configured to perform vectoring or rotation operation through the VM/RM pin. 

Once the inputs x0, y0 and ω0 have all been latched into registers Dx, Dy and Dω, the main FSM 

sets x_sel, y_sel and ω_sel to iteration update mode and starts the CORDIC operation. The 

CORDIC architecture proceeds with the calculations described in Table 3-15 as the counter i 

is incremented in each iteration. After n iterations, the solution converges and the output logic 

is asserted. A fixed CORDIC iteration count of n = 16 is used in this implementation. 

Excluding memory read and write cycles associated with loading of kIv|  for the inputs and 

storing of the outputs as kIv|��, the total processing time is 17 clock cycles. Multiplication by 

constant K is implemented using the canonical signed digit method which comprises shift and 

add circuits only. 

 

Figure 3-34 Hardware architecture of the CORDIC engine 
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Hardware Architecture of the Jacobi EVD Engine 

As discussed earlier, by adopting the parallel cyclic Jacobi rotation sequence, 

significant parallelism can be introduced into the architecture and operation of the Jacobi 

EVD. The Jacobi EVD engine (EVD_PROCESSOR in Figure 3-28) features multiple parallel 

CORDIC engines and is shown in Figure 3-35. The CORDIC engines efficiently handle the 

calculation of the rotation angle θ in (3-24) and the two-sided rotational matrix multiplications 

in Figure 3-31. For the case of n = 4 (4-by-4 matrix), each sweep in the Jacobi algorithm 

comprises three sets of non-conflicting Jacobi (p,q) rotation pairs: {(1,2),(3,4)}, {(1,4),(2,3)} 

and {(1,3),(2,4)}. Memory address translations based on these patterns are automatically 

managed by the parallel cyclic Jacobi sequencer built into the main controller FSM. 

The Jacobi EVD engine operates as follows. The received input covariance matrix is 

initially stored in a single-port random access memory D. The rotation angles for two non-

conflicting Jacobi (p,q) rotation pairs (ex. J(1,2) and J(3,4)) are then calculated using two 

parallel CORDIC vectoring mode (VM) engines. Ideally, the two non-conflicting right-side 

matrix multiplications can then proceed fully in parallel, and then the left-side multiplications 

afterwards. However, because the original and rotated matrix elements are read from and 

written to the same single-port memory D, the CORDIC engines are operated in a staggered, 

pseudo-parallel schedule instead as shown in Figure 3-36. The accumulated product of Jacobi 

rotation matrices is calculated by the E rotator CORDIC (RM) engines and stored in a 

separate single-port memory E. Since the eigenvector E matrix updates involve left rotations 

only, they are performed together with the D left rotations to save on control circuitry. 

Finally, at the end of the sweep, the convergence detection unit checks if all the non-

diagonal elements of D written back to memory are all less than the threshold. If this 

condition is satisfied, or if the sweep count is already 3, the main controller FSM enables the 

output I/F to send out the eigenvalues D and eigenvectors E, and returns to an idle state. 

Otherwise, the sweep count is incremented and another sweep is performed again. 
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Figure 3-35 Hardware architecture of the Jacobi EVD engine 

 

Figure 3-36 Parallel right rotations for rotation set {(1,2),(3,4)} 
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to an unnecessarily large ROM size. For example, L need not be too large since g(u) saturates 

to -1 or 1 when |u| > 8. To objectively choose a suitable configuration, MATLAB simulations 

using various combinations of L and N were performed, whose results are summarized in 

Table 3-16. From these results, we see that by choosing an LUT configuration of N=2 and 

L=8, the ROM size can be reduced by 87.5% from 256 to 32 entries, with almost no loss in 

performance. The resulting architecture of the mirrored ROM lookup table unit is shown in 

Figure 3-38. 

Table 3-16 ICA performance using various configurations of the ROM lookup table 

L 
Step 

Size 
ROM Size 

Average 

Correlation 

#Training 

Iterations 
16 (float) -- 0.8612 502 

16 1/16 256 0.8581 486 

16 1/8 128 0.8588 503 

16 1/4 64 0.8675 531 

16 1/2 32 0.8704 - 

8 1/8 64 0.8588 503 

8 1/4 32 0.8655 535 

8 1/2 16 0.8704 584 

The second design issue concerns the amount of temporary variables needed to 

support the ICA training iterations. Assuming a 4-channel implementation and a window size 

of 64 as discussed in Section 3.3.2.4.1, steps 2 to 4 of the ICA algorithm outlined in 3.2.1.2 

can be relisted to include the matrix dimensions as follows: 

UUUU4x64	=	WWWW4x4	ZZZZ4x64 (3-31) 

(D»GD = 11 + e +¼½¾¼ (3-32) 

∆-D¿D = L	
/0�#D¿D + �1D¿GD − 2(D¿GD��+��GD¿D�-D¿D (3-33) 

and substituting g(u) as discussed previously into (3-33), 

∆-D¿D = L	
/0�#D¿D + �ÀD¿GD��+��GD¿D�-D¿D (3-34) 

It would be extremely inefficient if each equation were to be completely solved before 

proceeding to the next, as doing so would require the intermediate storage of U4x64, Y4x64 and 

G4x64. This problem can be partially solved by processing Z in a column-wise fashion, since 
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each column in U4x64, Y4x64 and G4x64 depends only on a particular column of Z. The 

problematic bottleneck in the algorithm is actually equation (3-34), where conventional dot 

product style multiplication of G and UT requires the complete storage of G4x64 and U4x64 as 

intermediate variables. 

To solve this problem, the multiplication of G and U
T is performed instead as an 

accumulation of outer products as follows 

ÁD¿D = ÀD¿GD�+��GD¿D (3-35) 

ÁD¿D = ÀD¿�� �+���¿D� + ÀD¿�! �+���¿D! +	…	+ ÀD¿�GD �+���¿DGD  (3-36) 

such that ÀD¿��  and �+���¿D�  depend only on the first column of Z4x64, ÀD¿�!  and �+���¿D!  only 

on the second column, and so on. As a result, each received column Z4x1 can be consumed 

into T4x4 and discarded immediately following each accumulation. 

The resulting hardware architecture and operation flow of the ICA training unit is 

shown in Figure 3-38, and its main controller state machine and detailed data and operation 

control logic are shown in Figure 3-39 and Table 3-17 respectively. 
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Figure 3-38 Hardware architecture and operation flow of the ICA training unit 
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Figure 3-39 Actual hardware states used by the main controller FSM 

Table 3-17 State, operation and data control in the ICA training unit 

State Adder Operation 

Multiplier 

Operation 

[OpA, OpB] 

Variable Update 
Required No. of 

Cycles 

0 S_wait - - 
T=I4x4 

u=Z4x1 
1 

1 S_cal_U 
[muli_out,mulj_out] 

[addi_out,addj_out] 
[W,u] 

u1=add3_out 

u2=add6_out 

u3=add9_out 

u4=add12_out 

1 

2 S_lookup_G - - 

g1=Lookup(u1) 

g2=Lookup(u2) 

g3=Lookup(u3) 

g4=Lookup(u4) 

4 

3 S_update_T [T,mul_out] [g,u] 
u= Z4x1 

T=add_out 
1 

4 S_cal_delW 
[muli_out,mulj_out] 

[addi_out,addj_out] 

For counter=0 

[Rlearning,T] 

For 

counter=1~4 

[T(1,:),W] 

[T(2,:),W] 

[T(3,:),W] 

[T(4,:),W] 

T=mul_out 

 

T(1,:)=add3_out 

T(2,:)=add6_out 

T(3,:)=add9_out 

T(4,:)=add12_out 

5 

5 S_update_W [W,T] - W=add_out  

6 S_compare 
[muli_out,mulj_out] 

[addi_out,addj_out] 
[T,T] T= I4x4  

7 S_output - - - 16 

3.3.2.5  Heart Rate Variability (HRV) Analysis Engine 

The hardware architecture of the HRV analysis engine follows from the algorithm 

discussion in 3.2.2.3 and is shown in Figure 3-40. The RR interval calculation and HRV 

analysis units are straightforward implementations of the algorithm described previously. Of 

special interest in this section is the sliding window memory manager, which is the hardware 

mechanism by which real-time operation of the HRV analysis engine is made possible. 

Similar to the data windowing scheme employed by the ICA engine (3.3.2.4.1), its operation 

is transparent to both the upstream and downstream blocks. That is, the RRI calculation and 

HRV analysis units both need not be aware of the sliding window scheme employed. 
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The RR interval data are buffered in an SRAM memory prior to HRV analysis. The 

size of the memory depends on the maximum number of RR intervals (or equivalently, heart 

beats) that can fit in two minutes. Thus, assuming that the maximum safe heart rate does not 

exceed 220 bpm [67], a 512 word SRAM memory is chosen. For robustness, a cooldown 

block (in the RR interval calculation unit) that limits the frequency of RR interval data 

ensures that this data size requirement is strictly met at the point prior to buffering. 

The overlap period between each window is one minute, so each minute of RR 

intervals, or frames, has to be stored separately. In our design, the SRAM memory is 

categorized into two sections to store the different frames of RR intervals so 256 words can be 

allocated for each minute of data. During one minute, data is stored into one section of the 

memory, after which the number of elements (x_addr) is noted and storage of data is switched 

to the second section using a path selector. After two minutes, the RR intervals are passed to 

the HRV analysis unit for spectral analysis. 

To output the RR intervals to the HRV analysis unit, a bank selector is employed to 

choose which section of the SRAM is currently active. After all RR interval data have been 

read from one section the next section is selected. As spectral analysis requires the signal to be 

zero-mean, the mean of the data in each section is calculated and stored (x_mean). This 

ensures that when the next window is encountered the overlapping section from the previous 

window has the correct mean value. The two mean values are summed to form the final mean 

of the data. Division by two is simplified to a bit-shift (or re-position of the fixed point). The 

architecture of the sliding window memory manager is shown in Figure 3-40. 

3.3.2.6 Lossless Data Compression (COMP) Engine 

The hardware architecture of the lossless data compression engine is shown in Figure 

3-42. It comprises three pipeline stages including first, a prediction and parameter estimation 

stage, second, a Golomb-Rice entropy coding stage, and third, an output packaging stage. 

Since Golomb-Rice codes vary in length, the number of clock cycles needed to completely 
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pack an encoded stream onto a fixed bus width varies at the final packaging stage. To prevent 

pipeline overflow, a ready-acknowledge handshaking mechanism is employed throughout 

every stage in the engine, including the input and output ports that connect to the PDS and 

UART respectively. 
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Figure 3-42 Hardware architecture of the lossless data compression engine 

To conserve hardware resources, the prediction circuitry is shared among the different 

biomedical signals. The upstream PDS unit functions as a multiplexer/arbitrator, feeding the 

otherwise parallel multi-channel biomedical signals serially into the lossless data compression 

engine. At the same time, the PDS unit also annotates each sample with its signal type, 

precision and bypass mode through the CHSEL, SP and BYPASS pins respectively. Table 

3-18 shows a detailed description of these control signals. 

The prediction stage, upon receiving a biomedical sample, determines its context and 

loads the context statistics from memory. In the following clock cycle, the k parameter is 

calculated, the prediction error remapped, and the context variables updated and written back 

to the memory. The prediction stage maintains the individual memory locations for the 
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context statistics of the different biomedical data channels. For DOT, DPCM prediction is 

performed on an inter-frame, per pixel basis, and context-based k parameter estimation is not 

performed, due to memory space limitations. 

Table 3-18 Control signal parameters of the lossless data compression engine 

Port Name Width Description 

BYPASS 1 

If the input data comes with the BYPASS signal set to high, data 

compression is bypassed and the input data is directly packed as 

raw data by the output packaging unit 

CHSEL 

(channel 

select) 

4 

Value Channel Value Channel 

0 EEG/ICA Ch0 
5 DOT Pixel 

1 EEG/ICA Ch1 

2 EEG/ICA Ch2 6 EKG Ch0 

3 EEG/ICA Ch3 7 EKG Ch1 

4 HRV Coefficients 8 EKG Ch2 

SP 

(sample 

precision) 

3 

0 8-bit 4 16-bit 

1 10-bit 5 18-bit 

2 12-bit 6 20-bit 

3 14-bit 7 32-bit 

The Golomb-Rice entropy coder in Figure 3-42 implements the Golomb-Rice coding 

table shown in Figure 3-9b for various values of k. It calculates the quotient Q and remainder 

R based on the estimated Golomb-Rice k parameter and input remapped prediction errors, and 

outputs the result to the next stage within a single clock cycle. 

The output packaging unit is the final pipeline stage and maintains four separate 

output buffers for the different biomedical signals, which are filled up as samples are encoded 

into bit streams. Whenever any of the buffers become full, the buffer value is driven onto the 

output bus, together with an appended data type ID indicating the type of biomedical data, as 

described previously in 3.3.1.4. In case two or more buffers are full simultaneously, a priority 

scheme is enforced such that minimal output latency is achieved. 

The first two stages, namely the prediction and Golomb-Rice encoding stages, 

correspond to the proposed algorithm described in 3.2.4 to which the overhead energy 

consumption Ecomp (3.2.4.2) is attributed. The PDS and output packaging stages perform 

mainly data routing and packing, which operate regardless of whether compression is 

employed or not. 
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3.3.3 Functional Verification 

The functionality of the complete system from algorithm down to hardware 

implementation must be verified thoroughly before taping out the design for chip fabrication. 

To achieve this, detailed functional verification is performed at key points in the pre-silicon 

phase of the IC development flow shown in Figure 3-43. In general, the algorithms (i.e. DOT, 

ICA, HRV and COMP) have been from the very beginning developed with hardware issues 

considered as much as possible. However, as one cannot foresee all of the problems that may 

arise in the chip implementation down the road (either due to lack of judgment or experience), 

redesign at the RTL, architectural or even algorithm level is typically necessary to resolve any 

area, timing closure or power issues that may block the way to successful physical 

implementation. In the following discussion, the verification approaches at both individual 

subsystem and chip integration levels are described further in detail. 
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Figure 3-43 IC development flow methodology 
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The algorithms for the individual biomedical signal processing engines, including 

lossless data compression, have been previously developed and verified using MATLAB. 

Simulation results of the developed ICA algorithm demonstrate a verified average correlation 

coefficient performance of 0.86 using randomly generated mixed super-gaussian sources. 

Performance of the HRV algorithm was evaluated and verified using both real ECG signals 

(from the MIT-BIH database) and artificially controlled RRI data [68]. Reconstructed DOT 

images based on fNIR light intensities acquired from self-developed DOT sensor array board 

were compared to reference images using MSE [50]. Finally, the lossless data compression 

algorithm was evaluated using publicly available reference biomedical data such as the MIT-

BIH and UCI-KDDI databases as well as outputs of the upstream algorithm blocks [69]. Table 

3-19 shows a summary of the function verification and performance evaluation procedures 

performed for the various biomedical signal processing algorithms as described above. 

Table 3-19 Verification of the various biomedical signal processing algorithms 

Subsystem ICA DOT HRV COMP 

Algorithm 

model 
MATLAB MATLAB MATLAB MATLAB 

Input pattern 1. Random mixed super-

 gaussian signals 

2. Real EEG acquired using 

 Neuroscan EEG 

 acquisition equipment 

1. fNIR light 

 intensities acquired 

 from self-made, 

 calibrated DOT

 sensor array board 

1. MIT-BIH 

 ECG 

 Database 

2. Artificial 

 RRI 

1. MIT-BIH Database 

2. UCI KDDI (EEG) 

3. EEGLab (EEG) 

4. Output data of ICA, 

 DOT and HRV 

Third-party 

model 
EEGLab -- -- -- 

Function 

verification/ 

performance 

evaluation 

0.86 correlation coefficient 

between original and 

extracted source signals, 

and comparison with 

EEGLab output 

MSE comparison 

between reference 

and reconstructed 

DOT images 

LF/HF ratio of 

artificially 

generated RRI 

vs FFT and 

Lomb floating 

point 

Exact match between 

original source and 

decompressed data; 

average compression ratio 

(CR) of 2.05 for mixed 

biomedical streams 

In order to ensure that the hardware implementation behaves the same way, golden test 

patterns at key points in the algorithms are generated from the MATLAB models, and 

attached to the RTL, gate-level and post-layout simulation test benches for automated data 

checking. Individual unit testing of the ICA, DOT, HRV and COMP engines at the RTL level 

is first performed before moving up to chip integration level testing so as to allow easier 
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localization of bugs or defects. While the main focus during unit testing is to check the 

correctness of the individual processing engines against their respective algorithms, system-

level verification focuses more on the correctness of data communication and chip integration. 

The system-level test bench used to verify the chip design and integration is shown in 

Figure 3-44. After the test patterns have been attached to their respective models and 

monitors, chip operation is initiated by the main test control either through a manual pin 

trigger or a system mode command transmitted through UART. The DUT then begins to 

periodically request for raw biomedical data samples for processing. In response, the AFE 

model retrieves the requested data from attached raw input data files and sends them back to 

the DUT according to the AFE interface protocol. Processed data received by the UART 

model is unpacked, decoded and finally verified on-line against expected data generated from 

the MATLAB models. 

 

Figure 3-44 System test bench for functional verification of biomedical multiprocessor IC 
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Chapter 4 Integrated DOT/ECG/EEG Multiprocessor IP for SoC 

Implementation 

In the previous chapter, the design and implementation of a highly-integrated 

DOT/ECG/EEG biomedical signal multiprocessor IC was presented. Although it possesses 

desirable features of small size, low power and a high degree of functional integration, the 

designed chip lacks the flexibility and adaptability to be extended in future derivative 

applications. In this chapter, the extended development of the proposed biomedical 

multiprocessor as an SoC-compatible IP is presented as a solution. 

4.1 Motivation for SoC Implementation 

SoC stands for system-on-a-chip, and is literally the large scale functional integration 

of traditional discrete PCB (printed circuit board) components comprising a complete 

computer system onto a single chip. A typical SoC design is a HW/SW integration of at least 

one programmable microcontroller, microprocessor or DSP core; on-chip memory blocks 

such as ROM, RAM, EEPROM and flash; HW accelerators that perform special processing 

tasks (ex. data encryption, multimedia encoding, 3D graphics rendering, etc.); I/O 

connectivity modules such as ADC/DAC, UART, USB, SPI, SD, Ethernet, Firewire, 

Thunderbolt, LCD and GPIO to interface with the outside world; computer architecture 

peripherals such as direct memory access (DMA), memory and interrupt controllers, bus 

arbiters and bridges, counter timers and real-time clocks; bus interconnects for data transfer 

and control; oscillators, phase-locked loops (PLL), voltage regulators, power management 

circuits and reset generators for providing clock, power and reset infrastructure; and most 

importantly, the embedded software that controls it. Table 4-1 shows a summary of the above 

enumeration and Figure 4-1 shows a typical SoC hardware architecture. 

Table 4-1 Typical hardware components comprising an SoC 

Category/Function Component(s) 

Main processor Microcontroller, microprocessor or DSP core 

Memory ROM, RAM, EEPROM, Flash 
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effective silicon that can be shared across different applications, shorter software development 

schedules, lower component counts and assembly costs, dramatic reductions in the total 

system cost can be achieved. With these many advantages, SoC-based systems have become 

extremely popular that they can be found in virtually every modern electronic device today. 

SoC development is not without challenges however. As more and more functions are 

pushed into the SoC, the SoC becomes increasingly complex that the time and effort needed 

for design and verification becomes a significant issue. To make matters worse, product 

lifecycles and development schedules demanded by the market have only but shortened over 

the years. To work around these difficulties, many different approaches have been widely 

adopted by the industry such as design reuse, orthogonal design partitioning, and higher 

abstraction levels (ex. transistors, gates, RTL, behavioral) to increase productivity. An SoC 

design methodology called platform-based design is a culmination of these ideas, whose 

practice has changed from option to necessity in recent years. 

In a typical platform-based design, basic system functionality is provided by a 

reusable HW/SW platform (Figure 4-2, left side), comprising a reference SoC platform 

design, a corresponding basic set of device driver software, and optionally an operating 

system with system function libraries. This pre-verified HW/SW platform serves as a stable 

foundation upon which application-specific hardware and software (Figure 4-2, right side) can 

be rapidly and reliably built to allow system customization/differentiation for various target 

applications. This is in particular supported by the extensive use of well-designed system 

interfaces such as libraries and APIs for software and standard data transfer protocols, 

memory maps and interrupt schemes for hardware (Figure 4-2, in red colored font). Such 

organized structure of hardware and software architectures facilitates easy functional 

extension, parallel development (both in-house and third-party) and maximal reuse of IP at 

both platform and component levels; as a result, system complexity becomes manageable and 

development time, effort and costs become reduced significantly. 
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Figure 4-2 Platform-based system design 

In recent years, as SoC platforms have become more common, system design is 

increasingly performed from the perspective of software running on an SoC embedded 

processor [71]. As much as possible, differentiation is implemented in software avoiding the 

use of silicon, with the goal of achieving a performance just enough to meet the requirements. 

Only when really called for based on software profiling are a few select functions elected for 

specialized hardware implementation. With bulk of the commercial value getting associated 

more and more with system design and application differentiation nowadays, modeling of 

customized systems becomes a top priority. Examples of some new methodologies further 

built on top of the framework of platform-based design are early high-level exploration of 

function versus architecture in electronic system-level (ESL) design, and separation of 

computation and communication as manifested in transaction-level modeling (TLM). 

In line with these recent trends, the previously developed integrated DOT/ECG/EEG 

biomedical multiprocessor design is repackaged and delivered as a pre-verified IP core for 

ready integration in today’s ubiquitous platform-based SoCs. Among the many different SoC 
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platforms out in the market, we choose the platform based on the ARM processor and AMBA 

bus architecture due to its status as the most widely adopted platform in the industry today. In 

the remaining sections of this chapter, the development of the proposed biomedical 

multiprocessor IP as an application extension to SOCLE’s Cheetah ARM SoC platform is 

presented in greater detail. 

4.2 SoC-based Design of the Biomedical Multiprocessor System 

4.2.1 SoC Architecture 

The Cheetah ARM SoC platform solution offered by SOCLE Technology Corp. 

(platform vendor) is chosen for the development of the proposed multiprocessor IP, for its rich 

set of SoC features and friendly technical support. With respect to Figure 4-2, the Cheetah 

SoC platform solution comprises 1) for hardware, a reusable SoC platform based on the 

ARM926EJ-S processor and AMBA AHB/APB bus protocols, including many of the 

peripheral/support hardware components listed in Table 4-1; and 2) a software suite 

comprising a toolchain set, board support package, boot loader (U-boot), operating system 

(OpenLinux), root file system tools (BusyBox) and device drivers. A feature list of the 

Cheetah ARM SoC is shown in Table 4-2 and its architecture is shown in Figure 4-3. 

Table 4-2 Select features of the SOCLE Cheetah ARM SoC platform 

CPU (ARM926EJ-S) Clock frequency up to 266MHz 

AHB bus Clock frequency up to 50/133MHz (FPGA expansion/no FPGA exp.) 

Bus extensions: 2 Master, 2 Slave 

Memory Controller NOR-Flash/NAND-Flash/SRAM/ROM (4 banks) 

SDRAM (4 banks) 

System Controller Reset control, power mode control (normal/idle/slow) 

Clock control: CPU/AHB clock ratios 8:1/4:1/3:1/2:1/1:1 

DMA Controller 4 channels, mem-to-mem/IO-to-mem/mem-to-IO transfers 

Interrupt Controller 31 sources, programmable rise/fall/high/low scheme, 1 FIQ 

General Purpose I/O (GPIO) 8 individually programmable input/output pins 

UART 3 channels 

16-byte RX and 16-byte TX FIFOs per channel 

Programmable up to 2.7Mbps 

PCI Host Bridge v2.1/v2.2 compliant (2 devices) 

USB 2.0 Host / Device 1 

10/100 Mbps Ethernet MAC 1 

IDE Host (ATA/ATAPI-6) Up to 2 devices , PIO or Multi-word DMA mode 

Supports microdrive, CF card, PCMCIA, CD-ROM, HDD (16-bit) 

STN/TFT Controller Up to 1024x768, 1/2/4/8/16/24 bpp, with programmable timing 
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implemented as an AHB-compatible hardware IP extension. Based on this function mapping, 

the resulting architecture block diagram of the complete biomedical system is shown in Figure 

4-6. In the following sections, the design of the DSP IP core is presented first, after which the 

full system operation is described in detail. 

Table 4-3 Remapping of original functional blocks to SoC implementation; 
* modified to support output of ICA UW matrix for downstream deartifact calculation 

Function 
Original 

(non-SoC) 

Remapped (SoC) 

Hardware (HW) Software (SW) 

Platform Extension Platform Extension 

System 

control 
SCU -- -- -- 

Reset, clock, 

initialization and 

main control 

Data 

sampling 
FICU 

ADC, TMR, 

GPIO 
-- 

ADC driver, 

TMR driver, 

GPIO driver 

ADC ISR 

TMR ISR 

Data 

processing 
DSP IP core -- 

DSP IP core* + 

AHB slave 

wrapper + 

interrupt logic 

-- Core driver + ISR 

Comm.  I/F UART UART -- UART driver UART ISR 

 

Figure 4-6 Architecture view of SoC-based integrated biomedical multiprocessor system 
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4.2.2 Integrated DOT/ECG/EEG Multiprocessor DSP IP Core 

The integrated biomedical multiprocessor IP connects to the Cheetah ARM SoC 

platform via an AMBA AHB slave interface and an interrupt pin. Control actions such as reset 

and configuration of the biomedical IP are performed through software register writes via the 

AHB interface. Similarly, sending of raw biomedical data and retrieval of processed results to 

and from the IP core are handled by programmed I/O (PIO) register writes and reads 

respectively. To avoid wasteful register data polling for processed biomedical data output, an 

interrupt pin indicating their availability in the output FIFO for reading is provided. The 

complete list of software-programmable AHB registers supported by the biomedical IP core is 

shown in Table 4-4 and the hardware architecture is illustrated in Figure 4-7. 

The biomedical IP is typically operated as follows. First, the main biomedical IP core 

is reset by setting the BIO_IP_RESET register to 1. Next, BIO_IP_MODE is configured with 

the desired operating mode according to Table 3-6 and the FIFO interrupt threshold value is 

set by writing to BIO_IP_THRESHOLD. Raw biomedical data are input to the three 

processing engines by writing to BIO_IP_DOT_IN, BIO_IP_ECG_IN and BIO_IP_EEG_IN 

periodically according to their respective biomedical signal sampling frequencies. After 

processing, the results are multiplexed by the PDS and packed by the lossless compression 

engine (COMP) into its output FIFO according to 3.3.1.4. When the number of entries in the 

output FIFO reaches the value set in BIO_IP_THRESHOLD, the interrupt logic issues an 

interrupt to indicate availability of biomedical data packets for reading. The software, in the 

form of an interrupt service routine (ISR), finally reads out the data packets from 

BIO_IP_FIFO_OUT. 

In this version of the biomedical multiprocessor design, the ICA engine was slightly 

modified to support outputting of the ICA UW matrix for downstream deartifact calculations. 

The resulting modified data format for ICA data packets replaces Figure 3-17 and is shown in 

Figure 4-8. 
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Table 4-4 Description of AHB registers supported by the biomedical DSP IP core 

Address 

Offset 
Name Access Description 

+0x0000 BIO_IP _RESET W Reset and initialization 

+0x0004 BIO_IP _MODE RW System operation mode 

+0x0008 BIO_IP _DOT_IN W fNIR sample input (10-bit, LSB-aligned) 

+0x000C BIO_IP _ECG_IN W ECG sample input (10-bit, LSB-aligned) 

+0x0010 BIO_IP _EEG_IN W EEG sample input (10-bit, LSB-aligned) 

+0x0014 BIO_IP _FIFO_OUT  R Mixed biomedical data output (8-bit, LSB-aligned) 

+0x001C BIO_IP _THRESHOLD RW FIFO interrupt threshold; minimum number of entries 

in the output FIFO to cause interrupt assertion 

 

Figure 4-7 Architecture of the AHB-compatible biomedical multiprocessor DSP IP core 

 
Figure 4-8 Modified ICA data packets; UW matrix transmitted row-wise 
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4.2.3 System Operation Details 

Due to the orthogonality of function versus architecture characteristic to SoC-based 

design, the system operation of the biomedical multiprocessor system is not apparent from the 

SoC architecture shown in Figure 4-6. Therefore, in this section, a discussion detailing the 

system operation is provided. The system operation can be generally divided into three 

distinct threads, namely 1) system mode command reception and consequent operation of the 

biomedical multiprocessor system; 2) biomedical data sampling and consequent sample input 

and processing by the DSP IP core; and 3) transmission of processed results from the IP core 

back to the science station. 

The system mode is chosen by the user at the science station and transmitted to the 

SOCLE CDK’s UART device to trigger start of operation. The UART device, upon receiving 

the system mode, asserts its interrupt and the CPU branches to the uart_isr(). The uart_isr() 

clears and disables all other modules and their associated interrupts, and configures the DSP 

IP according to the system mode retrieved from the UART receive register. The timer is 

enabled for periodic 256Hz countdown and the ADC is readied for biomedical data sampling. 

Finally, all the interrupts are enabled to prepare for full system operation. 

Each time the timer countdown expires, an interrupt is sent to the CPU and the CPU 

branches to the tmr_isr(). Inside the tmr_isr(), an AD conversion chain (sequence of channels 

to be sampled) is set up according to the biomedical sampling frequencies and the system 

mode configured earlier. The tmr_isr() triggers the AD conversion chain by starting the first 

AD conversion. Upon (each) successful conversion, the ADC asserts its interrupt and the CPU 

branches to the adc_isr(), which moves the converted sample from the ADC to the DSP IP for 

signal processing. The adc_isr() finally triggers the next AD conversion link in the chain, and 

the process repeats until all AD conversions in the chain are completed. 

As processing of the biomedical samples proceeds, the output FIFO of the DSP IP core 

gets filled. When the number of entries in the output FIFO reaches a specified threshold, the 
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DSP IP core asserts its interrupt and the CPU branches to the ip_isr(). The ip_isr() simply 

moves data packets from the DSP IP core to the UART for eventual transmission back to the 

science station. 

The UML (unified modeling language) 2.0-like sequence diagram shown in Figure 4-9 

illustrates the typical system operation described above and the driver configuration and 

software ISR behavior are summarized in Table 4-5. The three threads discussed previously 

are depicted in Figure 4-9 as yellow, blue and purple action state sequences respectively. 

Table 4-5 Summary of hardware devices and associated software interrupt handling 
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Figure 4-9 Typical system operation sequence; †refer to Table 4-5, ‡refer to 3.3.1.4 
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4.3 Results of Implementation Using the SOCLE CDK 

The SoC-based biomedical multiprocessor system based on the previously taped-out 

design has been successfully ported and implemented using the SOCLE ARM-based SoC 

Platform Cheetah Development Kit. Application-specific and extension software have been 

built on top of the reference BSP provided by the platform vendor, resulting in a total software 

image size of 31kB for total ROM and 51kB for total RAM, using the toolchain configured 

for an ARM926EJ-S target with RealView debug information. The application-specific 

biomedical multiprocessor DSP IP implemented on a Xilinx Spartan-3 XC3S4000-5fg676 

reports an FPGA device utilization shown in Table 4-6 and can run up to a maximum clock 

frequency of 15.7MHz. The main DSP IP core is operated using an AHB clock of 10MHz, 

while the CPU and APB clock frequencies are set to 80MHz and 5MHz respectively. 

Table 4-6 Xilinx XC3S4000 FPGA device utilization 

Logic Utilization Used Available Utilization 

Number of Slice Flip Flops 10,615 55,296 19% 

Number of 4 input LUTs 30,550 55,296 55% 

Number of occupied Slices 18,747 27,648 67% 

    Number of Slices containing only related logic 18,747 18,747 100% 

    Number of Slices containing unrelated logic 0 18,747 0% 

Total Number of 4 input LUTs 30,774 55,296 55% 

    Number used as logic 30,550    

    Number used as a route-thru 224    

Number of bonded IOBs 91 489 18% 

Number of RAMB16s 14 96 14% 

Number of MULT18X18s 23 96 23% 

Number of BUFGMUXs 1 8 12% 

Average Fanout of Non-Clock Nets 3.44    

An unavoidable consequence of porting the biomedical multiprocessor IP from an IC 

to an FPGA implementation is the necessary change in the IP libraries used. Synopsys 

DesignWare IP blocks used in the IC implementation must be replaced with components 

available in Xilinx ISE’s CORE Generator IP library. At times, the interfaces and functionality 

are not perfectly the same, and additional logic must be introduced to successfully do the 

porting. Therefore, to verify the integrity of the new target FPGA implementation after the 

porting process, golden patterns used during verification of the IC implementation are 

employed to allow comparison between the old (IC) and new (FPGA) implementations. 
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Figure 4-10 shows the verification setup for the SoC-based biomedical multiprocessor 

IP. Golden raw biomedical signal data are introduced into the system by pre-loading them 

into system memory through an in-circuit emulator (ICE) connected to the ARM processor. In 

addition, the adc_isr() is modified to retrieve these data patterns from memory instead of real-

time biomedical data from the ADC. The golden patterns are sent to the respective biomedical 

DSP engines and the processed results are sent over Bluetooth and saved to file on a remote 

PC using free commercial serial port monitoring software. Finally, the file contents are 

decoded by a MATLAB packet decoder and verified to match with golden expected data. The 

tests are repeatedly performed under various system modes. On a separate test case for 

verifying the complementary ADC function, the sampling of various fixed-frequency 

sinusoids has also been verified through frequency spectrum analysis using MATLAB. 

 

Figure 4-10 Verification setup for the SoC-based biomedical multiprocessor system 

4.4 Real-Time Application 

With the biomedical multiprocessor system implemented and verified as described in 

the previous section, we proceed to discuss the employment of the newly developed 

integrated DOT/ECG/EEG multiprocessor system in various real-time biomedical 

applications. The general real-time demonstration setup comprises 1) a human test subject, 2) 
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the proposed system, which represents a portable biomedical sensing device worn by the 

patient, and 3) a science station model, which represents a remote biomedical application 

apparatus that delivers real-time services to 4) a medical expert. In this thesis, the prototype 

development and demonstration of two application models are presented. 

4.4.1 Real-Time Integrated Brain-Heart Monitoring 

In the first application, the remote biomedical device takes the form of an SoC-based 

portable wireless science station modeled using the SOCLE CDK. The science station 

supports user selection and transmission of the type of examination (system mode) to be 

performed, as well as real-time decoding and display of multi-channel DOT, ECG, EEG, ICA 

or HRV data received as in Figure 4-9. These application-specific features are developed as an 

all-software differentiation built on top of the SOCLE Cheetah SoC platform. A configuration 

wizard user interface (UI) is employed to allow user selection and transmission of the system 

mode, while decoding and LCD display of the biomedical samples are supported in a UART 

receive interrupt service routine. The architectural block diagram of the application demo is 

shown in Figure 4-11 and some photos showing the demonstration setup and operation are 

shown from Figure 4-12 to Figure 4-16. 

 

Figure 4-11 Block diagram of the real-time integrated brain-heart monitoring application 
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Figure 4-12 EEG and ECG electrode placement on human test subject 

  
(a) 8-ch max. EEG/ECG AFE (b) Single channel IA+filter AFE 

  
(c) Alternate 4-ch EEG AFE (d) Alternate 3-ch ECG AFE 

 
(e) DOT LED source and sensor array 

Figure 4-13 Analog front-end (AFE) modules used 



Figure 

Figure 

Figure 4-14 Configuration wizard user interface

Figure 4-15 

Configuration wizard user interface

 System status monitor on patient
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Configuration wizard user interface

System status monitor on patient

 

Configuration wizard user interface

System status monitor on patient-

Configuration wizard user interface on science station

-side sensing device

 

on science station 

side sensing device 
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(a) LCD display usage layout (b) EEG and ECG signals close up 

  
(c) Alternate demonstration setup (d) Close up view 

Figure 4-16 Real-time biomedical data display on LCD 

4.4.2 SSVEP-based Brain-Computer Interface 

4.4.2.1 Introduction to UCSD’s SSVEP-based Brain Dialer System 

In the second application, the proposed system is integrated with University of 

California at San Diego’s (UCSD) SSVEP-based brain dialer system [72]. SSVEP, which 

stands for steady-state visually evoked potential, is the brain’s natural response to visual 

stimulus that flickers at a specific frequency. When the retina is excited by a stimulus ranging 

from 6 Hz to 75 Hz, the brain generates electrical activity (i.e. EEG) of the same (or multiples 

of) frequency as the visual stimulus [73][74]. UCSD’s brain dialer system takes advantage of 

this physiological phenomenon to allow a user to dial a phone number using only EEG. 

A block diagram of the original system reproduced from [72] is shown in Figure 4-17. 

Buttons of a virtual telephone keypad comprising digits 0-9, ‘*’ and ‘#’ are frequency-coded 
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the EEG acquisition unit nor the cellphone is powerful (or efficient) enough to take on the 

heavy computational load of ICA; thus, a hardware-based approach such as our proposed 

biomedical multiprocessor system is offered as a real-time solution to the problem. 

To explore the feasibility of ICA in the improvement of SSVEP detection in EEG 

signals, a preliminary investigation with UCSD is performed using the collaborative system 

integration development and evaluation setup shown in Figure 4-18. The setup comprises 1) 

UCSD’s VisualStim software, which can generate visual stimuli of various frequencies, sizes, 

colors, etc. for operation on different monitors with different refresh rates (Figure 4-19); 2) 

NCTU Brain Research Center’s 4-ch EEG module, tapped at its final analog output (Figure 

4-13c); 3) our proposed biomedical multiprocessor implemented on the SOCLE CDK; 4) a 

PC/Laptop-based real-time EEG display and analysis Java software, which uses the canonical 

correlation analysis (CCA) method for SSVEP detection [76]; and 5) a set of MATLAB tools 

used for offline analysis. Since the ICA engine does not perform EEG artifact removal, the 

application software of the biomedical multiprocessor SoC is extended to support this 

function. The details of this development are described in the pages that follow. 

 

Figure 4-18 System integration development and evaluation setup 
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incoming sample in that channel. The remaining independent component channels are then 

remixed, packed and finally output as artifact-free EEG provided to UCSD’s brain dialer 

system. 

 
Figure 4-20 Software extension to support de-artifact function 

4.4.2.3 Results of Integration 

A photograph of the actual system integration and evaluation setup is shown in Figure 

4-21. The laptop on the left is set up to run UCSD’s VisualStim software and the other 

configured for real-time EEG display and CCA analysis. In between are 1) the test subject 

wearing the EEG acquisition module connected to 2) the SOCLE CDK on which the proposed 

biomedical multiprocessor system offering the ICA/de-artifact solution is implemented. EEG 

electrode placement is chosen for optimal observation of the visual cortex, so as to maximize 

the SNR of the SSVEP. 

Prior to operating the system according to its target application, a series of progressive 

sanity checks were performed first. These checks included 1) stabilizing the Bluetooth 

connection; 2) checking the integrity of golden test patterns (ex. sine waves) transmitted from 

the SOCLE CDK to the analysis laptop; and 3) ensuring the quality of EEG signal acquisition 

by visually checking for alpha waves (by closing the eyes) and eye blink artifacts on UCSD’s 

real-time EEG display software. Finally, the matrix inverse and remixing operations in Figure 

4-20 were also verified by checking that raw input EEG can be reconstructed when all four 

independent component signals are remixed. 
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Table 4-7 Detected SSVEP frequencies in Figure 4-23 to Figure 4-25 

Stimulus 

Frequency 

Detected SSVEP 

w/o ICA with ICA 

9Hz (Figure 4-23) FAIL 9Hz 

10Hz (Figure 4-24) 9.5Hz 10Hz 

11Hz (Figure 4-25) 10.75Hz 11Hz 

In order to achieve a more thorough and quantitative comparison of SSVEP detection 

performance with and without ICA, all 6 minutes of recorded EEG data comprising the 6 

cases are analyzed (1 minute per case). In each case, histograms of the detected frequencies 

are generated using both 1-second and 2-second CCA analysis. For the case of 2-second CCA 

analysis, a sliding window of 1 second is utilized. The results using 1-second and 2-second 

windows are shown in Figure 4-26 and Figure 4-27 respectively. 

When a 1-second CCA window is used, the number of instances the SSVEP was 

detected correctly increased significantly by 53%, 48% and 44% for the three stimulus 

frequencies. On the other hand, ICA is only slightly helpful, at times even detrimental to 

SSVEP detection, when a 2-second CCA window is used. The details of the comparisons are 

summarized in Table 4-8. 

Based on these results, it can be concluded that at least for smaller CCA windows, ICA 

is an effective means for improving the detection of SSVEPs in EEG signals. Within the 

context of the brain dialer system, this implies that ICA can assist in improving the accuracy 

of key detection when faster dial times are desired. 

Table 4-8 Improvement in SSVEP detection using ICA, 1s CCA vs 2s CCA 

Stimulus 

Frequency 

SSVEP Detection Improvement w/ ICA 

1-second CCA 2-second CCA 

9Hz 53% -18% 

10Hz 48% 20% 

11Hz 44% 11% 
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Chapter 5 Conclusion and Future Work 

5.1 Conclusion 

In this thesis, a highly-integrated biomedical multiprocessor design for portable 

wireless brain-heart monitoring systems has been developed for the technological 

advancement of medical emergency care, long-term observation, personal home care and 

cognitive science. 

Various advanced biomedical signal processing algorithms – diffuse optical 

tomography (DOT) for brain imaging, independent component analysis (ICA) for removing 

artifacts in brain electroencephalogram (EEG) signals, and heart rate variability (HRV) 

analysis for monitoring heart electrocardiogram (ECG) signals have been researched, 

developed, designed and integrated into a complete hardware multiprocessor system. 

The design has been functionally verified and implemented both as an IC using UMC 

65nm CMOS technology and as an AHB-compatible IP for ARM-based SoCs on a Xilinx 

FPGA validated using an SOCLE CDK. The biomedical multiprocessor IC features a small 

chip area of 1.73mm2 and a low estimated power consumption of 3.6mW and can hence be 

employed in small, portable and wireless biomedical devices. Alternatively, while the pre-

verified biomedical SoC IP can be offered to third-party developers as a proven biomedical 

solution ready for practical integration into ARM-based SoCs, it can also be reused and 

extended in more sophisticated applications in the future. In conjunction with an analog front-

end sensing circuit and a Bluetooth communications module, the developed biomedical 

multiprocessor hardware can be packaged as a solution to assist in the detection, diagnosis 

and monitoring of brain- and heart-related illnesses. 

To demonstrate the functionality and real-time operation of the proposed design in the 

context of complete biomedical monitoring systems, the SoC-based multiprocessor 

implemented on the SOCLE CDK is featured in two real-time biomedical application settings. 

In the first application, the proposed design models a patient-worn biomedical sensing device 
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that services a remote science base station with mixed multichannel biomedical data upon 

demand. In the second application, the proposed design is integrated with an SSVEP-based 

BCI brain dialer system to serve as a preprocessor for EEG artifact removal. Based on the 

experimental results, the proposed biomedical multiprocessor can help improve significantly 

the brain dialer system’s key detection accuracy when reduced dialing times are required. 

In conclusion, given the specifications, research, development, validation and 

demonstration of the work presented, the proposed integrated DOT/ECG/EEG multiprocessor 

is offered as a proof-of-concept, reference design for the research and development of next 

generation portable brain-heart monitoring systems. 

5.2 Future Work 

On the implementation level, further size, power and cost reductions can be achieved 

by integrating the biomedical multiprocessor together with the AFE and wireless 

communications module using either system-in-package (SIP) technology or mixed-signal IC 

design. To further reduce power consumption, the next generation design can also adopt more 

advanced low-power techniques such as power shut-off (PSO) and dynamic voltage and 

frequency scaling (DVFS). By employing these strategies, the portable biomedical sensing 

device can operate much longer and thereby improve further the patient’s healthcare 

experience. 

From a system-level perspective, change in the way biomedical data is processed and 

used can also result in significant operational efficiencies. A possible future research direction 

would be the development of smart, expert system devices that require minimal user 

management, which prompt action from the user only when a disease condition requiring 

medical attention is automatically detected. For example, biomedical signal modalities 

suitable for such type of processing include body temperature, blood pressure and ECG, 

wherein objective boundary conditions indicating critical illness have already been researched 
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and clearly defined previously. Thus, acquired biomedical signals can be processed locally 

and diagnoses be concluded on chip. For ECG, such a system has been developed in [79]. In 

such systems, there is no need to continuously transmit biomedical data wirelessly over to a 

science station, and so significant amounts of power can be saved. This way, the operating 

time of the portable biomedical sensing device can be prolonged even further. 

Finally, next generation portable biomedical monitoring systems need not be limited to 

just the brain and heart. There are many other physiological signals/information that are 

important for monitoring the human health status. Examples are body temperature, blood 

oxygen levels (pulse oximetry), blood pressure, blood sugar levels, and many more. By 

integrating more kinds of biomedical data into one system, the usefulness and efficiency of 

the integrated biomedical monitoring system can be further increased, benefiting doctors, 

patients and the general population alike. 
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