

國立交通大學

電機資訊國際學位學程

碩士論文

Integration and interoperability in the context of enabling

end-user to incorporate arbitrary electronic devices and software

into a collective population of resources capable of cooperation.

研究生：Krzysztof Kamil Jacewicz, 秦學思

指導教授：黃經堯 博士

中華民國一〇二年一月

Integration and interoperability in the context of enabling

end-user to incorporate arbitrary electronic devices and software

into a collective population of resources capable of cooperation.

研究生：秦學思 Student：Krzysztof K. Jacewicz

指導教授：黃經堯 博士 Advisor：Dr. ChingYao Huang

國立交通大學

電機資訊國際學位學程

碩士論文

A Thesis

Submitted to EECS International Graduate Program

National Chiao Tung University

in Partial Fulfilment of the Requirements

for the Degree of

Master

January 2013

Hsinchu, Taiwan, Republic of China

中華民國一〇二年一月

National Chiao Tung University
Authorization of Copyright to E-version of

Doctoral/Master’s Thesis
(For licensor to bind as 2

nd
 page of the thesis’s inside cover)

The degree thesis authorized is required by _______________

(Dept.), National Chiao Tung University in _____(Month), ______(Year).

Thesis Title:
Integration and interoperability in the context of enabling end-user to

incorporate arbitrary electronic devices and software into a collective

population of resources capable of cooperation.

Advisor: Dr ChingYao Huang, 黃經堯 博士

■ Agree □ Disagree

I hereby, non-exclusively and for free, authorize this thesis to

National Chiao Tung University and University System of Taiwan

Library. Based on promoting the idea of ‘Resource Sharing & Mutual

Benefit and Collaboration’ among readers, as well as feed back to the

society and academic research, National Chiao Tung University and

UST Library are allowed to include, reproduce and utilize in different

forms (paper, CD-ROM, other digitized materials) regardless of

regions, time, and frequency. Abiding by the Copyright Law, readers

can search online, read, download, or print out the thesis.

Range and Time for Uploading:

NCTU and UST LAN ■ Accessible from /Y. /M. /D.

Off-Campus Internet ■ Accessible from /Y. /M. /D.

Authorized by:

Signature: ______________________

 /Year /Month /Date

National Chiao Tung University

Authorization of Copyright to

Doctoral/Master’s Thesis
(For licensor to bind as 2

nd
 page of the thesis’s inside cover)

The degree thesis authorized is required by ________________

(Dept.), National Chiao Tung University in _____(Month), ______(Year).

Thesis Title:
Integration and interoperability in the context of enabling end-user to

incorporate arbitrary electronic devices and software into a collective

population of resources capable of cooperation.

Advisor: Dr ChingYao Huang, 黃經堯 博士

■ Agree

I hereby, non-exclusively and for free, authorize this thesis to

National Chiao Tung University. Based on promoting the idea of

‘Resource Sharing & Mutual Benefit and Collaboration’ among

readers, as well as feedback to society and academic research,

National Chiao Tung University is allowed to include, reproduce and

utilize in paper. Abiding by the Copyright Law, readers can read or

print out the thesis.

The thesis accounts for one submitted by me to the MOEA’s

Intellectual Property Office for the patent application (Ignore if not

applying). The application number is ____________________,

please postpone the disclosure of the thesis to

____/Year____/Month____/Date.

Authorized by:

Signature: ______________________

 /Year /Month /Date

Authorization of Online Access to

Doctoral/Master’s Thesis, National

Central Library

ID: GT00 (+ Student Number)

The degree thesis authorized is required by ____________________

(Dept.), National Chiao Tung University in _____(Month), ______(Year).

Thesis Title:
Integration and interoperability in the context of enabling end-user to

incorporate arbitrary electronic devices and software into a collective

population of resources capable of cooperation.

Advisor: Dr ChingYao Huang, 黃經堯 博士

I hereby agree to non-exclusively and for free authorize this thesis

(Abstract included) to National Central Library, who is allowed to,

regardless to regions, time, and frequency, reproduce in different forms

(MF, CD-ROM, other digitized products) and upload to the Internet for

readers to non-profit-making search online, read, download, or print out

the thesis.

※ The non-profit-making purpose of online search, reading, downloading, or printing

should follow the copyright laws and regulations.

Authorized by:

Signature: _______________

 /Year /Month /Date

NATIONAL CHIAO TUNG UNIVERSITY

EECS International Institute

Master’s thesis

Krzysztof Kamil Jacewicz

ABSTRACT

20.01.2013

ABSTRACT

Objectives of the study

How to enhance End-users’ experience by developing a system (and a standard) for integrating owned devices

and programs into a network of resources, and be able to selectively and remotely access functions distributed

across the network? And how to enable developers to easily make their existing products compatible with the

system?

Academic background and methodology

Author’s academic background is in EECS with the concentration in Networking and Telecommunication, and

additional interest in Compiler Theory and programming for embedded systems. Professional background

includes work at Rawspeed (Beijing) Technology Ltd., as Product Manager for CDN related products, at Vale

(Beijing) Internet Technology Ltd., as Product Manager web service and user experience, at Rulingcom Digital

Inc. (Hsinchu) as Project Manager, working on CMS system, GIGABYTE Technology (Xindian), working as

Account Manager for Channel sales division GIGAZONE, and at American Megatrends Inc. Taiwan Branch

(Taipei), as Marketing Specialist and supporting engineer working on projects directly related to cloud

computing, remote server management, and web service architecture. Methodology used in the process of

research includes review of publications and knowledge acquired during professional work.

Findings and conclusions

In process of the research architecture has been designed and proposed for integration of hardware and software

resources. Key finding was that it can be implemented, and even used in a commercial project with much

success. It was also found that created solution has saved time and complexity when adding RPC functionality to

an existing system and did not require the existing code (originally the eventuality of incorporating ignoring

RPC support) to be redesigned in any bit. As a result, the system was found to enable SOA as a Service

Keywords : RPC, Middleware, M2M communications, Internet of Things, Home automation

Acknowledgments

Foremost, I would like to express my sincere gratitude to my advisor Prof. ChingYao Huang

for the continuous support of my study and research, for his immense patience, his motivation,

enthusiasm, and given trust. His guidance helped me in all the time of research and writing of

this thesis, with lot of understanding received from his side.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr. Kai-ten Feng,

and Dr. Sheau-Ling Hsieh, for their encouragement, insightful comments, and hard questions.

I want to add special thanks to Allen Chang, the founder and owner of Rulingcom Digital Inc.,

where I have worked when I first came to Taiwan. Allen himself encouraged me to follow

master degree at the National Chiao Tung University (he is the alumni himself as well) and

gave me the flexibility needed for working and studying both in full-time mode.

Last but not the least, I would like to thank my family: my parents Ryszard and Wanda, for

supporting me spiritually throughout my life.

Table of context

List of abbreviations .. I

List of appendices .. I

1 Introduction: context to the thesis study ... 1

1.1 Mobile computing .. 1

1.2 Cloud computing .. 2

1.3 “… as a Service”... 3

1.4 Internet Of Things (IOT) .. 5

1.5 Machine-to-machine (M2M) communication .. 5

1.6 Modern System Integration (SI) ... 6

1.6.1 Home automation ... 7

1.6.2 Sensor networks .. 7

1.6.3 High level development tools ... 8

2 Problem analysis ... 9

2.1 Problem definition .. 9

2.2 Current designs and solutions potentially useful to address the problem............. 12

2.3 Defining targets for potential solution .. 14

2.3.1 Value to users .. 14

2.3.2 Value to businesses ... 16

2.3.3 Value to industry ... 17

2.3.4 Value to developers ... 20

2.4 Designing benchmarking criteria.. 22

2.4.1 Objectives ... 22

2.4.2 Factor 1: Simplicity to End-users ... 23

2.4.3 Factor 2: Simplicity to developers .. 23

2.4.4 Factor 3: Price effectiveness ... 25

2.4.5 Justifying the selection of factors ... 26

2.4.6 Benchmark summary .. 31

3 Solution proposal .. 31

3.1 Overview .. 31

3.2 Layer 1: Distributed API .. 32

3.2.1 Components of the system .. 32

3.2.2 API Operator .. 33

3.2.3 API Contributor .. 34

3.2.4 Buffered RPC protocol ... 36

3.2.5 Self-hosted API Operator ... 36

3.2.6 Virtual API Contributor .. 36

3.2.7 API Contributor integration to existing code ... 39

3.2.8 Self-configuring feature .. 43

3.2.9 Custom GUI skins .. 43

3.2.10 API Contributor drivers – the unique feature claim ... 43

3.3 Layer 2: Low-level EUD .. 45

3.4 Layer 3: Semantic Channel... 46

3.5 Layer 4: “Company” model .. 49

3.6 Layer 5: High-level EUD ... 52

3.7 Current implementation .. 53

3.7.1 libEngine.pas .. 54

3.7.2 libSupportedTypes.pas .. 55

3.7.3 libHostedVariables.pas ... 56

3.7.4 libHostedFunctions.pas .. 57

3.7.5 libErrors.pas .. 58

3.7.6 Server/client vs. Operator/Contributor vs. Flavors ... 58

3.7.7 libServerMod_HTTP.pas as a flavor of API Operator 60

3.7.8 libMemberTCPLite.pas as a flavor of API Contributor 61

3.7.9 Extending flavors .. 61

3.7.10 uAnLex.pas ... 61

3.8 Non-standard approach to RPC .. 62

4 Solution evaluation ... 64

4.1 Addressing defined targets ... 64

4.2 Meeting benchmarking criteria ... 68

4.3 Proof of concept ... 70

4.3.1 Early prototype ... 70

4.3.2 Life demo .. 70

4.3.3 Case study ... 80

4.4 Study of a prior art .. 82

4.4.1 Case study ... 82

4.4.2 Comparison of main differences ... 83

5 Conclusion .. 85

6 Bibliography ... 88

7 Apendices ... 90

7.1 Apendix 1 ... 90

7.2 Apendix 2 ... 91

8 Resume and CV .. 92

I

List of abbreviations

API = Application Programming Interface

IOT = Internet Of Things

EUD = End User Development

M2M = Machine-to-machine (Communication)

RPC = Remote Procedure Call

RMI = Remote Method Invocation

SI = System Integrator

List of appendices

Appendix 1: Screenshot of a Layer 2 GUI via web browser

Appendix 2: Listing of attached CD

1

1 Introduction: context to the thesis study

This chapter will selectively highlight few areas of interest significantly related to the matter

of this paper. Before the actual problem is defined in the next chapter, here is a brief

introduction to the greater context from which the study has begun.

1.1 Mobile computing

One of the earliest origins of the idea for this research was my first study of mobile

computing after I got my first ever mobile device – a HP Jornada handheld PC

running on Windows CE (now discontinued). I had a special interest in developing

my own software to run on the mobile device, and later, another strong interest in

remotely communicating from the mobile device to the PC and controlling some

features of the server application. My first finding was, that it was much more

complex to develop for mobile, due to things like SDK, cross-compiling, emulating,

debugging on a device, and few others. Also, there were no tools for native

development on the mobile device at the time. Even now in 2013 this is still not

common. I am using Pepe Le Compiler on my Android handset to natively compile

Pascal code on the device and run it.

My second finding was that it was quite time consuming to implement remote

communication between my mobile device and my PC. These were two different

platforms, and I had to re-learn socket programming in another programming

language, that was supported in the SDK for the mobile device. As an effect, I had

to write conceptually the same code twice, in two programming languages (at least).

These two findings have eventually made me more appreciative toward web

programming. As long as I wanted to use my Smartphone as a remote control for a

PC not the other way around, using web browser on the phone was much easier than

2

going through development of a native (or Java) application. Later, with the arrival

of HTML5 and some support for accessing in-phone API via webAPI, I started to

appreciate HTTP protocol even more.

1.2 Cloud computing

My next important study that helped me to approach the research covered here, was

in Cloud Computing. The theory that this study covers is very wide, but my special

interest was in web service architecture and user experience.

Web API concept felt in sync with my approach to solve some problems in mobile

computing. And as soon after first public cloud services started to be available to

end users, I immediately saw an opportunity to help my programming to

incorporate these to save lot of coding on information sharing between applications

in a network. Cloud storage has rapidly become one of my favorite cloud services.

Before the era of Dropbox, I would either need to remotely connect to a database

(which was sometimes too much overhead for small apps) or to implement file

transfer functionality. Today, I could re-write lots of my old applications in a

fraction of time originally spent on them, as I would totally ignore the portion

related to data transfer over network. One of my most recent commercial projects

was a digital signage player. The player would keep digital photographs in a local

folder, and play them on the screen in an infinite loop. If, at any time, the content of

the directory changed, the player would list all the files again and restart the loop.

No network programming included. However, my customer hoped, he could

manage the content remotely from PC in his home, or even better, via mobile phone.

He even requested a feature of being able to upload a photo taken with his mobile

phone directly to any Digital Sign in his network. I have Upgraded my player

without actually upgrading it. I enabled requested functionality to my customer

3

without changing a line of code in my project. I have set up a Dropbox account for

my customer, and installed a client both on his Smartphone and each PC running the

player. I have synced the folder with photos on every player with Dropbox. And

that’s it! My customer can take a photo with his mobile phone, and upload it to

Dropbox. The player on the PC will see that the content of the local folder changed

as soon as Dropbox syncs it with the cloud. And few moments later, the uploaded

photo will display on the Digital Sign. That is my idea of so called “Integration” –

customizing systems to one’s needs, with minimum effort, by integrating resources

designed to share functionality between each other.

On the user experience side, that I mentioned was my other major interest, I found it

almost beautiful, how transparent the whole network programming can be to the

end user. I am a huge fan of simple, intuitive interfaces that hide all the complexity

from the user’s experience.

1.3 “… as a Service”

When I was working for American Trends, I was assign to work on a business plan

with my colleague with MBA background. The business plan consisted of lot of

technology-related problems to address. A lot of it was related to cloud computing,

and particularly to web services, and SaaS (Software-as-a-Service) business model.

Soon, also IaaS (Infrastructure-as-a-Service), PaaS (Platform…), NaaS (Network…)

and all other “aaS’es” came after. Other than the fact that these are all very hot

topics on the market these days, it helped my view on the integration problem to

evolve to a whole new level. My primary programming language was always Pascal.

After I started developing for mobile devices, I had to learn few more programming

languages. Even my rusty C++ ability was of no use (except for developing native

ARM executables, in which case either Pascal or C++ were both fine). I have learnt

4

a bit of Java, and Java-based languages, a bit of objective C used for developing for

iOS, and learnt few different SDK’s (WindowsCE, Android, iOS, Symbian, BREW),

programming environments/editors, and emulators. There were quite a lot of new

things to learn each time before I was able to start coding, and then some more way

to go before being able to compile, and a bit more way to go before I was able to

run. The “…as a Service” approach has changed my life for better! Eventually I

came up with my own, alternative way of programming for mobile: if I needed to

control an asset on my mobile device, I looked up snippets of code in the Internet to

learn the reading from and writing to the asset and enclose it in few function calls.

Then I use previously developed generic code, to export these few functions as a

web service. Now I can immediately use them from any application. Instead of

continue to use programming language I am not fluent in, I use Pascal to write an

application calling the web API. Or I use HTML and Javascript to create a static

page, with an interface to call the web API. And one of my most original ways to

use this approach, is to design and put a static HTML page on my phone, that I will

use to control assets on my phone via phone’s web browser, rather than via mobile

app. If I want to change the program, I only need to change the HTML and

Javascript. No compiling needed. And I am not claiming that this way is optimal for

local on-device use, but it is simpler for me than programming in, say, Java, and

gives me lot of additional benefits:

- such code is web-service oriented and thus my app can have much broader

context of use

- Once exported functions controlling on-device assets, I am no more bound to

use standard and troublesome software development process for Android: no

more eclipse, no more compiling, no more app delivering to the phone.

5

At this stage a concept of the later research was already slowly emerging in my

mind. I learnt to see how much space there is to come up with new, alternative ways

of doing things. And I started to understand that integrating components into a

bigger system saves lot of time otherwise spent on re-inventing the wheel.

1.4 Internet Of Things (IOT)

The first time I really got to know about the IOT was when my thesis adviser Prof.

Huang assigned me to work with one of his research teams. Initially I was seeking a

subject for research around sensor networks. I thought that I might use semantic web

approach to solve some problems in the area. The Semantic Web was a topic I have

studies a bit while working at Rulingcom Digital Inc., and at the time it was because

everyone on the market was discussing Web 2.0 and we wanted to go ahead into the

future, looking for some inspiration for later RND. I thought that Semantic Web can

also help in addressing some of the problems of the sensor networks, related to Data

interoperability. Little did I know, that Semantic Web gives much more potential help

than only dealing with data. My study into IOT helped me to see, that there is a huge

potential in using IOT to integrate devices and programs. I found out, that developing

for the IOT was very challenging and complex problem. Lot of tools was still under

development, or only existed as reference designs. Lot of the topics was still in the

stage of theory. But going through lot of work, IOT was offering a chance for ending

up with a solution giving super-intuitive, simplified and interactive user experience.

That was just what I was always after – hiding all the complexity from the user

experience and providing him with pure functionality, dressed in an intuitive interface.

1.5 Machine-to-machine (M2M) communication

One of the sub-topics in the IOT is machine-to-machine communication. And this area

is already been actively explored by both enthusiasts and commercially by the industry

6

and businesses. The topic is very broad, but again, I mention it in the context of my

research only. Briefly, I got the first idea of the integration system architecture during

the study over M2M. I liked the concept of machines describing their assets to other

machines, and enabling mutual collaboration on achieving common goals. I thought

that it’s great that M2M is getting more and more popular, because soon it will help

users to integrate their devices in their interactive environments, like homes, offices,

and public venues. But as of the present day, I am not satisfied with available M2M

solutions. Although current systems help to solve lot of problems, they just don’t seem

to be solving mine. I am not yet in the stage where I care for the power efficiency

management in my home, nor do I find it fancy to deploy m2m system to help me

turning lights off when I forget to do so. With the current pricing the later would rather

cause me to loose money than earn on return of investment. I am not saying these are

not practical use cases, I am just saying that these are not my immediate needs. Instead,

I would like to have m2m system, that doesn’t require me to purchase expensive

hardware, nor to have a service officer to help me to deploy it. A system, that would

allow me to integrate devices in my house to my liking. I want a system that is

lightweight, elastic, an in open architecture, so I can build my custom solutions on top

of it myself. And I believe that there are more people like me. Yet, I am not able to

find a suitable solution to address my needs. So instead, I eventually came up with my

own, and I want to propose it to others as well.

1.6 Modern System Integration (SI)

After I had a clear idea on what I want to do, I needed to start from researching the

prior art. I have studied into few areas that cover the problem of integration on

different levels and for different types of components.

7

1.6.1 Home automation

The Smart Houses get quite a lot of buzz in the Internet these days, and

living in Hsinchu where the Science Park is located allowed me to see

that it’s not only the thing that people discuss about. Lot of Tech

companies are already providing solutions in that domain, or working on

such solutions. What I have also observed is that there is much more

focus on the Smart House appliances (hardware) than on Smart House

frameworks (software). At least based on my observation of what

solutions Taiwanese manufacturers are presenting to the market. And

Taiwanese manufacturers are known to be powering a lot of worldwide

technological advancement. I thought that it can be a good idea to address

the market niche from the software side, and if implemented, perhaps

propose it to hardware makers, who could push it to world’s markets if

they liked it. Quite a big challenge, but why not?

1.6.2 Sensor networks

While working with one of research teams lead by my thesis adviser, I

moved my study from the home-scale down to on-body network of

sensors. Naturally, the sensor networks do not have to be biosensors wore

on user’s body. They can also be part of home automation systems. But

there are some very interesting problems specific to Body Area Networks

(BAN). One of the problems I was careful to research on, was the need of

real-time system responsiveness for certain applications. Another is the

power efficiency problem, which in case of BAN, is even more crucial

than in home automation systems. While in the Smart Home inefficient

power consumption may at worst result in high electricity bill, in the case

8

of BAN if a sensor stops responding too early, it may have bad outcome

on a patient. And while in home devices can be powered from the grid, in

the BAN we would like to have an autonomic power supply (that we can

wear and be mobile with it). I consider these challenges very interesting

and worth addressing, but for the purpose of my own system proposal, I

eventually understood that I want to limit the target for it. I understood

that I want to develop a solution for the domains where RTT and low

power profiling are not crucial. It does not mean that my design will

ignore power consumption optimization, contrarily – it will allow for

implementing power saving profiles. However, nowhere in the

specification I will claim, that the system optimized for special conditions

like in the case of BAN. Even though, I am sure that it can bring fair

amount of limited value to specialized domains of use.

1.6.3 High level development tools

For all the less then recent domains of various system integration

problems, there are plenty of tools and frameworks worth study.

Throughout my study I found out that there are lots of tools that

significantly speed up the work on integration tasks. And it seems (from

my own observation and experience) that the higher level the tools are,

the greater improvement in the speed of development. In fact, I realized

that nowadays, we often address low level problems indirectly, via high

level simulations and emulations. For example, emulating ARM

architecture under x86 or x64 and developing under it, may turn out to be

faster than actually connecting to the device and managing the

cross-compiling and cross-debugging this way. But using Virtualization as

9

an example is not accidental. In fact, virtualization allowed me to see an

interesting feature of high-level development. It allows for hiding things

from the user experience. Running web service from within a VM will

make no difference to the network. On the top level it will be exactly

same as if the web service ran on an actual machine. Have you ever tried

to run VM inside of a VM? This is an example of one high-level solution

that allows for implementing other solutions on yet higher level in

relation to itself. And finally it hides the fact that the level has increased

from the user. I became particularly interested in this concept, as it allows

for extending current designs by building around them, with the same

effect as if the changes were made internally. I wanted my system to have

this feature. If there is a physical device connected to the network, I

would like to write a virtual one, that implements additional features, and

then handle it over to the network just like if it was a physically upgraded

device. Actually, the WHOLE system follows that psychology. It

combines all the physical and virtual devices into ONE large virtual

device. And if needed, it can then be added as a resource under another

network (just like the VM inside of a VM).

2 Problem analysis

2.1 Problem definition

Although in current times we have access to a massive market for Customer Electronics

and we have lot of standards of communication both wired and wireless, but it is not

trivial for an average user to integrate his devices and programs into a manageable

collective population of software and hardware resources.

10

Let’s think of a bare bone PC for a moment. Because it is equipped with standard I\O

ports, lot of additional hardware can be attached to it, increasing its functionality.

Connect a printer, and PC can print on paper. Connect a scanner, and PC can digitalize

paper documents, even use OCR software to turn it indo editable digital text. Add WiFi

network card and the PC can surf the Internet and connect to even more hardware

peripherals wirelessly. It can now control your DSLR if it has WiFi support too. Add an

IP camera and your PC can carry out surveillance in the house. It can communicate with

a Smartphone. Connect an Ethernet-controlled power outlet, and you can power on and

off just any electrical device around the house. And since the power outlet is connected

to the PC, and the PC is connected to the Internet, and so is a Smartphone, an electrical

device in the house can be turned on and off remotely from any location on Earth

provided only that there is Internet connection available.

The way it has just been presented makes it seem that it is quite easy to carry out

integration of devices into highly custom systems. This thesis explores the integration

problem and later on introduces an alternative way address this problem.

Consider a scenario:

A fictitious user named Bill owns home audio system, PC, DSLR, and couple of mobile

phones. Bill is not an engineer, but he’s a computer hobbyist. He would like to make his

home more intelligent and interactive. He wants that when comes back home, the home

can recognize him and play music based on his preferences. However, if Bill’s wife

comes home first, the home would play music based on her preferences instead. And

besides, every time there is a friend visiting, while Bill’s not home, the home would try

to recognize friend’s face and look it up the local database. Voice message would greet

the guest. Also, the home would email Bill with the photo of visiting friend and the time

record on when the visit took place. Bill thinks that he can build such a system himself

11

using components that are aleary in his house, but were so far being used individually.

He wants his DSLR to hang on the wall in front of the entrance and take photos in a time

loop, then send them wirelessly to the PC. PC would run a face recognition software to

detect people’s faces on these photos (if any). If a face is detected the software would

look it up in a database. If it matches Bill or Bill’s wife, PC would play music from

assigned playlist on the home audio system. Otherwise, if it is someone else, while Bill’s

out of home, an email with the person’s photo would be sent to Bill. So if Bill’s mom

came by to feed Bill’s cat while Bill’s out of town, he would get notified by email. Or if

a burglar has entered his house, Bill would have his photo to show to the Police.

In the scenario above Bill has components to address particular tasks within the scope of

the overall problem individually. However, he needs to implement the integration to turn

these “indivituals” into “team players”. Turns out, that this is not a trivial problem to

solve due to few key factors:

Selfish hardware hardware that is designed to be able to connect to a network is not

designed to serve as a resource to the network (a DSLR may have

WiFi connectivity built in, but its design limits the way it can be used

once connected to only a dedicated domain,)

Selfish software Commercial software owned by the user is not designed to allow the

use of its functionality outside of the dedicated domain either (a photo

browser can have face recognition functionality, but it does not

provide this functionality to other applications)

Middleware challenge The difficulty level of implementing a middleware to enable software

and hardware components to be used as shared resources arises as

each component requires custom approach to building a standardized

12

wrapper/handler/driver around it with custom communication protocol

(be it IPC, Serial port or UDP or TCP/IP signaling, web API or other)

RPC challenge A custom RPC-enabling layer would need to be developed prior to

being able to implement high level code

The above table will serve as a break-down of the problem definition, and will get

referenced to later on.

2.2 Current designs and solutions potentially useful to

address the problem

Various protocols and standards have emerged over the past several decades to address

the challenges of distributed computing. From EDI (Electronic Data Interchange) to

SOAP (Simple Object Access Protocol), to Web Services with WSDL, there are quite

some of standards allowing for integration and interoperability of various systems. These

are on protocol design level and software level. On the other hand, for an inter-device

integration the physical architecture also has to allow for communication to be carried

out. In wired communication we have USB and Ethernet cable support as two very

mainstream options for interconnecting various electronic devices. For the Wireless we

have Wi-Fi and Bluetooth as two other globally popular standards.

Naturally, these are not the only ones, but I chose to focus on these as most common

ones for connecting peripherals (based on my own observation on CE market and

computer accessories/peripherals market). Pointing out these few standards will become

especially relevant when discussing integration in the mainstream market, where end

users care for easiness of connecting their devices. In the industrial environment, or in

very specialized cases, some other standards might be chosen for matching certain needs

more adequately.

13

There are several existing ways to address the factors of “selfish hardware” and “selfish

software”. In practice, addressing hardware customization is in deed same as addressing

software customization, because what we want to actually customize is the firmware

within a device. Otherwise, we can customize the device driver, in which case

customization takes place outside of the device. Yet higher level of customization is in

the layer of the user application controlling the hardware through its driver, in which

case the distinction of hardware and software customizations is no longer needed. From

the user’s perspective there is no hardware versus software concern. What user cares

about is the customization of the way a resource can be used. Addressing this part of the

problem is possible through a range of existing technologies: from plugin-based

development (ie. control-over-http plugins), to a much higher level M2M protocols, to

solutions compliant with the Internet of Things. The IOT however should be considered

a still-emerging solution rather than an existing one.

The middleware challenge (Ch. 2.1) has to be addressed by implementing a

wrapper-code around existing drivers and/or user applications. During the research there

were no 3
rd

 party solutions found that can automate this process for a typical binary

executables, but few wrapper-building frameworks were found for dedicated use:

1. Launch4j (http://launch4j.sourceforge.net) is a cross-platform tool wrapping Java

applications distributed as jars in Windows native executables. The tool allows an

automated building of wrappers because the JAR applications incorporate meta data

describing entire headers of functions compiled into an application. In case of OS

native binary executables, such meta data is not present, or is not complete. Shared

libraries have meta data describing names of exported functions, that can be extracted,

but not the list of the arguments. This has brought a conclusion, that there might not

be tools to automate the process of solving middleware challenge (Ch.2.1) when past

http://launch4j.sourceforge.net/

14

the source-code stage. On the source-code level, there are many libraries that can add

RPC support to an application, like XML-RPC or JSON-RPC to name just few

popular. It will get examined later on, how much work from a programmer is needed

to add RPC to an existing application. It will also be examined if the proposed

alternative solution can actually turn out simpler.

2. W4F is an approach to build web applications based on middleware architecture with

Web wrappers, also called adapters (Sahuguet et al, 2001). This case is worth

mentioning because it shows that not only a de-facto application can wrapped. W4F

communicates with data sources published in the Internet, not applications. This

brought the final conclusion: anything that contains enough of meta description of

itself, can be integrated with a middleware layers relatively easily and allowing

automation in the process – which is not the case with OS native binary executables.

When it goes to the RPC challenge (Ch. 2.2), it is passed the concern for how to integrate

particular RPC standard with existing application. In this stage the concern is actually

deploying the RPC environment. In a generic scenario for RPC standards mentioned

before, there is client-server environment to be built. Chapter 3 will propose some

alternative in details of such architecture.

A new solution for integration and interoperability of SW and HW resources would have

to somehow bring improvement as an alternative to use technologies mentioned above.

Otherwise it would need to allow for incorporating these technologies while still

introducing significant improvement to the overall problem.

2.3 Defining targets for potential solution

2.3.1 Value to users

End users are the principal target because the main focus of this research

is put on the ability of end-users to integrate their devices with their

15

computers and applications running on them. This target group will

naturally care for an integration solution to be inexpensive, easy to deploy

and use, with user-friendly interface, and to be very popular, so that there

is a big community working on it. This target group will also care less for

some very advanced and low-level aspects of the architecture used for

realizing the integration, as long as the solutions brings them positive user

experience. One exception is the energy consumption efficiency. It is

where users will likely care to a greater detail. Users can find it generally

attractive to have their homes delivering the Sci-Fi feel of being able to

control all the devices as a collective network that they can program to

reach high level goals. That kind of experience would follow the concept

of a smart home, which is a growing trend:

“The global home automation systems market has been forecast to

increase at a compound annual growth rate (CAGR) of 35.5% through to

2015, having already boomed from 237,000 systems shipped in 2007,

reach more than 4 million by 2013” (King, 2012).

And the home automations, apart of the user experience aspect, is the key

to having effective energy management in the house:

“Systems from Savant, Crestron, Vantage and others can even be

programmed to turn off or turn down devices if preset energy use ceilings

are reached—though this will likely require programming costs. Even

lower-end systems being sold by the likes of ADT, Comcast, Verizon,

Vivint and Alarm.com can be programmed with basic macros and timed

events to turn things off when someone leaves the house and the security

system is armed.” (Castle, 2011).

16

The proposed solution can address the power efficiency concern in at least

two ways:

1. its own architecture can follow a design optimized for minimalizing

power usage,

2. it can provide an interface for 3
rd

 party systems to deploy

power-saving policies by issuing commands to power devices on/off

or to put them in (or wake from) the sleep mode.

2.3.2 Value to businesses

The value to the business is dual: one set of benefits is related to the

internal use (powering the micro environment = cost) and another relates

to addidional business opportunity from having end users as primary

target for the solution (powering the macro environment = revenue).

Firstly, the solution may help the business to run its operations in more

elastic, perhaps easier, less expensive way as compared to hiring System

Integrators for implementing highly customized solutions. Saving costs is

also earning.

Secondly, any popular standard or feature is potentially a direction for a

product or service providers to create an added-value to end users as there

will be demand for it. Ideally the solution should give businesses a

competitive edge in either introducing innovative features to their

products, or just simply allowing them to implement more products and

services (or same number but faster or cheaper) than without the solution.

And with more compatible/compliant products on the market the more

growth of the solution’s market share is expected.

17

2.3.3 Value to industry

The proposed solution is not especially targeted at industrial use but is

dedicated for spreading through manufacturing industry.

When looking at how brands are selling their CE products it is easy to see

that the hardware factor is the least crucial in determining which brand

will take a market share away off another. Essentially, vast majority of

branded products is being built by OEM manufacturers and in terms of

specs the whole world’s market has access to pretty much same resources,

with only difference in costs, as every buyer gets his own deal with the

supplier. What end users see as differences in specs, is actually a result of

strategic product segmentation, and has little to do with technical

advancement of the brand itself. Having essentially the whole market

getting same hardware technology from same primary sources (major

OEMs), what gives their products competitive edge is largely the design

and features. The more interesting the design and the more feature-packed

the product is, the bigger chance it stands to capture end-user’s attention.

And there is an aspect here worth more study: Customers recognize

brands and pay high margins for big names, while OEM manufacturers

who remain largely unknown to end-users, and who sell products at low

costs minimally above the cost of production (but in large volumes) are

the ones who makes the most money at the end (like when realizing that

Apple considered by end-users as a brand making lots of money falls

short compared to the money that their supplier Foxconn make*). How is

that relevant to the research covered here? A solution proposed later on in

the chapter 3 can potentially have a significant influence on the

manufacturing industry, from OEM to brand-level. When a user buys a

18

Smartphone, the brand, the design, the features are all important. A device

like Smartphone is a self-contained product, and via implemented wired

(USB) and wireless (Wi-Fi/BT) standards, can communicate with lots of

other devices. But built-in specs are not designed to be

exchangeable/upgradeable like in PC computers. When it comes to DIY

approach, and end-users interested in adding features to their intelligent

and automated environments, things become more interesting. A cheap,

“brandless”, simple sensor, that would be no value to an end-user if it was

not self-contained and able to be used stand-alone, becomes a tasty treat if

the same user can just bring it home and add to an existing network of

resources to enable new capabilities to his automated home. Actually, one

of more important reasons why end users would not buy very cheap and

common electronic components, sensors etc. and would instead buy more

expensive, more complex, self-contained, branded products, is that they

would not know how to make use of these cheap components anyways.

It’s simply easier to buy the later, even if one ends up with a product

packed with sensors and other built-in components, only to find out that

lot of them will be at no use to him. This can change dramatically if there

is a common integration solution, that would allow anyone to buy single,

inexpensive components, bring them home, connect and just use. It would

change a lot in the market, if in order to have our homes to intelligently

response to environmental conditions we would only need to bring a box

of cheap sensors from an electronics shop and have it all being used in

conjunction with the PC, laptop or a Smartphone that is already there and

has all the computing power needed to run it all as one complex

19

distributed device. Currently, although far more expensive, it is just easier

to either buy a dedicated system including a hardware + software bundles

and have it deployed in our house, or to hire a System Integrator.

In the same time, it would not necessarily mean that OEM manufacturers

would start to go directly to end-users causing brands to loose business. It

would give businesses more opportunities to sell more, with less effort, at

lower prices and with lower cost. The reasoning behind it is, to put it the

simplest way, is that most of end-users are lazy. Even if an end-user can

easily DIY his own automated home, he will probably (author’s point of

view) not be very interested in developing all the applications to be run in

his integrated system by himself. This is where business can start making

more business. Buy cheap components, spend no time on external design,

and branding, but implement features, and write applications that will be

able to co-use these features with other features that will be available at

the run-time when the product becomes a member of a larger distributed

system. There are at least 2 possible changes that can happen in the

manufacturing industry if the proposed solution went viral:

1. End users would expect devices to be increasingly compliant with the

new standard, so that after purchasing goods there is more freedom to

create applications for these goods even outside of the domains they

(devices) were dedicated to serve originally

2. Manufacturers would be able to start targeting mainstream market

with more component-like products, which have little market value as

stand-alones.

20

2.3.4 Value to developers

Not only hardware makers can potentially find new ways to design and

sell products, but also software developers can be given similar

opportunity. Looking at any end-user level software there is a large

number of functions implemented in it, but in general these functions are

only being used to solve problems that the program containing it was

dedicated to solve. What if an end-user figured out another way to use

certain features of a complex program to solve a problem that was not

expected by the program writers to be solved with it, or was not thought

to solve the problem in the same way? Unfortunately for the user, there

might not be a way to extract a subset of functions from a program and

call them from outside of that program (unless the software was originally

meant to be used in this way). Perhaps allowing the user to be able to

selectively call functions of a program that he finds useful could make a

great added-value to the software product. It could also give software

sellers more possibilities of implementing sales. For example there could

be a price structure for a software based on a license that either allows the

user to selectively call its sub-functions remotely or not. Perhaps it could

give more flexibility to sell SaaS (Software as a Service) where user can

selectively call functions based on his subscription. Google has released a

freeware software called Picasa, that allows to manage, browse, edit and

share photos. Among many features contained by it, there is one that

allows for face detection and recognition. It is a great functionality, but

Picasa only uses it to tag people on photos and allow search in the library

of photos by presence of people tagged on them. If that functionality

could be shared out, then a photo taken by another device could be

21

analyzed and if a face was detected and recognized some further action

could be taken based on the identity of a person or persons (and that

further action could call functions from other programs or other devices).

Picasa is only one of many software products offering face recognition

and tagging functionality. Very similar features will be found in Adobe

Photoshop or Corel Paintshop Pro. There is even a chance that the

software maker has not implemented its own computer vision library, but

that he licensed a third-party library. It is even possible that same library

is being licensed by many software makers. Perhaps that original library

could be added as a resource to an integrated system, so not only software

makers, but anyone could use it (be it for free or by purchasing a license).

And then Google, Adobe and Corel could release their software without

the built-in face recognition functions, but marketing their products as

compliant to a general standard, so that they can integrate with computer

vision library if only one is present in the system where the software is

running. Just like a Mobile Phone Carrier can buy a Smartphone from a

vendor, put a logo on it, create a custom ROM with Skype application

installed, and sell it advertised as a phone with Internet Call support. Even

more interestingly, instead of having many programs running on a

machine having their own “copy” of the vision library loaded into

memory, there could be only one instance of the vision library and all the

programs on all the devices connected to the system could use it as a

service, or as a shared feature.

The integration system itself would be a new type of platform for

developers to write applications for. A platform, in which, features are

22

distributed across devices and programs. Where any feature can be either

software or hardware implemented, while it remains transparent to the

user. Where applications could be designed to use resources before

knowing what these resources might be during the run-time. And possibly

in a programming languages that handles RPC transparently so an RPC

looks like a regular local call from the source code level. This will get

further discussed in chapter 3.

2.4 Designing benchmarking criteria

2.4.1 Objectives

The principal objective for proposed solution (see Ch.3) is to improve (or

replace) alternative/competitive solutions on the market. Even if the

competing systems incorporate more numerous and/or more advanced

features, there are still other factors that might potentially help in reaching

better reception from the market: simplicity to end-users, simplicity to

developers and price effectiveness factor. The more complex (feature rich)

a product is, the more difficult it is to keep a simplistic, intuitive interface

for end users. There is always a chance, that the user when comparing

products, can choose the one with a smaller feature set because of a

simpler, more intuitive interface and a better user-experience. Since the

evaluation of these objectives will not be possible without actually

releasing the solution to the market and waiting for market’s feedback, a

benchmarking model will be designed to approximate system’s potential

to compete with other solutions with more measurable criteria.

23

2.4.2 Factor 1: Simplicity to End-users

This factor is related to how well the proposed solution can satisfy

End-users liking in aspects such as:

- Intuitive and simple User Interface (UI)

- Low learning curve needed before able to deploy and use

- Seamless scalability: growing the system require the little work and

special attention

- Richness of applications: less advanced system stands chance to

become more popular against a much more advanced competitor if it

exposes significantly more use applications for the end-users

(becomes useful for more things)

2.4.3 Factor 2: Simplicity to developers

This factor is related to how easy it is for developers to build more

solutions on top of the provided system, or to integrate it with other

systems. The easier it is, the more development projects are likely to grow

around the proposed system, and use applications go to End-users

(helping the first factor).

Another aspect is that once developing under the proposed system

becomes simple and innexpensive, it can help more End-users to also

become developers. This can grow the rate of End-user development

(EUD) for the system. Computer users nowadays stand for a huge number

and diversity (Scaffidi et al 2005), spreading across many disciplines and

including professionals in many fields: managers, accountants, scientists,

engineers, teachers, health care workers, administrative workers, even

home makers and many more. Their work related tasks may dynamically

24

change on any basis from annually to even daily. If so, then also their

needs and expectations for any software used vary frequently, and become

more complex. Professional software makers fall short in meeting all

these needs directly due to their limited domain knowledge or/and

because of too slow development process (Burnett and Scaffidi 2011).

This shows how increasingly important is the scale and role of EUD. One

of the definitions of EUD states that it is “a set of methods, techniques

and tools that allow users of software systems, who are acting as

non-professional software developers, at some point to create, modify, or

extend a software artifact” (Lieberman et al 2006). End-users can

particularly design and/or customize the UI and functionality of a system,

when they need to better fit their specific context and needs. Also,

because end users outnumber professional software developers by a factor

30:1 (Burnett and Scaffidi 2011), EUD enables much more people to

participate in development. In order to encourage more EUD happening,

some specifically appropriate tools and features are significantly

important, that can make development processes highly usable and

quickly learned. It is because unlike professional developers focused on

durable software assets producing continuous revenue streams, the end

users rather do programming for reaching short or medium-term goals –

sometimes they just want to write code “on the spot” to use it instantly,

and without carrying if they will later need to ever use it again. Enabling

more EUD over the system requires a proper, dedicated development

framework. Because the discussed system is dedicated to enable

integration and interoperability of hardware and software resources

25

forming a network, it shows lot of similarity to End-user programming of

Smart Homes. This is a very challenging issue. A great way to realize

scale of complexity was to propose a model for networked artifacts

inspired from molecular chemistry (Coutaz, 2008). To provide end-users

with the capacity to “program” their interactive spaces like their home, a

way to handle complexity of networked artifacts must be found. There is

an analogy to this complexity found in chemistry where a smart artifact is

modeled as a composition of physical and digital atoms whose

configuration evolves under particular conditions. Software services are

composed of digital atoms only, whereas conventional objects of the real

world are strictly built from physical atoms. A smart house is considered

as an interactive space represented by a unique macro-molecule of both

digital and physical atoms, or a set of smaller molecules. Then just as in

Chemistry, the nature of the events that trigger a reaction has an impact on

the resulting product. This way to look at the EUD problem would rather

discourage average end-users to participate in the development, which is

why hiding all the complexity from the user while still allowing him to

produce results, becomes crucial.

2.4.4 Factor 3: Price effectiveness

New system should allow for an inexpensive integration. An average user

should be able to afford using it. This factor is much more reflecting the

business aspect then just focusing on providing technology solution.

While the actual marketing planning is not within the scope of this paper,

it is relevant to some extent when it comes to architectural design.

Regardless of the form in which the sales of the solution might be

26

implemented in the future, in the architecture level it should be considered

how to accommodate as many possibilities as there might be. From the

Chapter 1 we have seen some new trends in sales design surfacing, like

selling software or infrastructures as a service for example. Even though

this paper only acknowledges the business aspect to become relevant at

some point in time beyond the scope covered, but keeping it in mind can

greatly help in designing system architecture.

2.4.5 Justifying the selection of factors

To justify the 3 factors given a case study of Android’s (operating system)

market share was arbitrary chosen. Below are the worldwide smartphone

unit sales and market share in the 1
st
 quarter of 2012, by IDC

(FRAMINGHAM, Mass. May 24):

Mobile OS 1Q12 Unit Shipments 1Q12 Market Share

Android 89.9 mln 59.0%

iOS 35.1 mln 23.0%

Symbian 10.4 mln 6.8%

BlackBerry OS 9.7 mln 6.4%

Linux 3.5 mln 2.3%

Windows Phone 7/

Windows Mobile

3.3 mln 2.2%

Other 0.4 mln 0.3%

Furthermore, from the research by IDC we can see growth of the above

market shares compared to Q1 2011:

 Android – 145% growth

27

 iOS (iPhone) – 88.7% growth

 Symbian – 60.6% decline

 BlackBerry – 29.7% decline

 Linux – 9.4% growth

 Windows Phone/Mobile – 26.9% growth

Particularly interesting is the growth of Android and the second biggest

player on the market, the iOS. How an OS can reach such success in a

crowded market? Firstly, let’s focus away from the fact, that part of

Android’s success has come from Samsung, which accounted for 45% of

all Android sales in the quarter. Still, Android is the latest into the market

from all the top popular OSes in the Mobile market:

“The popularity of Android and iOS stems from a combination of factors

that the competition has struggled to keep up with, (...) Neither Android

nor iOS were the first to market with some of these features, but the way

they made the smartphone experience intuitive and seamless has quickly

earned a massive following” (Ramon Llamas, Research Analyst with

IDC).

That illustrates how a newly proposed solution can win the popularity

among end-users if only focuses more than the competition on user’s

experience. Another crucial aspect is the number of available applications,

in which case, using the mobile OS market as a case study brings in even

more interesting observations. From the top level, Android and iOS both

are leaders in the number of apps available to their users. This

measurement is greatly influencing the end-users when it comes to

deciding whether or not to start using particular product – in this case it is

28

an operating system, or in broader context, a Smartphone powered by a

particular OS. This case study will make few key observations in process,

that will reflect in the thinking on the solution proposed in Chapter 3. To

start with, let’s point out, that in the case of mobile OS market, the

software becomes a great deal when it comes to the value of a hardware.

One could speculate if a Smartphone great in hardware design, could

represent a high value to end users if it was running on an OS with very

low number of applications. This question also reflects consideration for

the solution proposed in this paper, that is also implemented in software.

But there is more to learn from the example of Android and iOS study in

the area of apps. Great observations has been made by Darcy Travlos in

“Five Reasons Why Google Android versus Apple iOS Market Share

Numbers Don't Matter” for Forbes. She has made some research on

Gartner’s Q2 2012 mobile sales unit report, and some of her findings are

as follows:

- Apple does money on hardware, Google does not

- Google gives away its Android operating system and earns on Search

and delivering ads

- Apple makes money on every iPhone and iPad it sells, even before an

ad is delivered to the device

- Apps are more popular than mobile web, and Apple is winning this

race by any measure

- on mobile devices, 94 minutes per day are spent on apps compared to

72 minutes on the web

- Apple offers more apps, and more are downloaded from Apple

29

- people are spending for Apple’s apps – Apple’s apps make money

- App store generates $5.4M/day for the 200 top-grossing apps while

Google generates just $679K for their top-200 grossing apps. That is

almost a 8:1 revenue ratio

- More of Apple’s apps generate revenue, while most of Google apps

are free (67% of apps on Apple are paid for versus 34% on Google)

- Apple apps make developers money (Android developers made

$210M in all of 2011, compared to the $700M pocketed by Apple iOS

developers in the Q4 2011)

- getting paid attracts more developers to Apple

- ppStoreHQ estimates there are over 43K Apple iOS developers and

10K Android developers (Travlos points that it is because iOS

developers earn more)

- By estimate, for the very same app, a developer will earn $1.00 on the

Apple iOS version compared to $0.24 for the Google Android version

After looking at the findings listed above, a very important consideration

for the research comes to mind. Even if the focus of this very paper is on

proposing a technology-based solution, not a business plan, the aspect of

a potential revenue model for the solution if delivered to market, seems

clearly crutial to satisfy objectives presented earlier. The 3
rd

 factor

(Simplicity to develepers) in particular requires the system architecture to

consider later potential earning opportunities for developers. Before

concluding this portion, it is further helpful to consider 3 reasons for why

many new popular apps are developed for Apple iOS first, given by

Travlos in her article:

30

- Apple has fewer form factors (3 iPhones, 3 iPads) compared to

thousands of Android devices

- Apple’s app approval process requires developers to guarantee a

certain quality

- Apple user demographic is more affluent, an earlier adopter and more

loyal than other brands

What constructive does the fact that iOS developers have fewer sets of

hardware and middleware issues to address than do Android developers

bring to the research covered in this paper? A suggested architecture will

be targeted to numerous and diverse base of hardware platforms. In order

to achieve Apple’s advantage, the developers under this architecture

should be given a very generic development environment, that can hide as

many form-factor-specific details as possible. At least in greater deal than

the competitors have managed to. Another Apple’s advantage is in

building credibility in guarantying quality apps (apps approval process).

In this paper the research does not stretch further into the app market

business model, nor does the proposed architecture include it, but it

should propose alternative ways to achieve credibility among users

(considering specifically the use applications). As for Apple’s third

advantage, the scope of this paper does not reach to the problem of user’s

loyalty to a brand, but some particular demographics can be especially

targeted, to reach as many of the early adapters as possible once the

system gets released.

The third factor treats about the appealing pricing strategy. To create an

advantage in the system design, the architecture should support the

31

integration with various possible implementations of sales strategies. In

particular an effort should be made to design the system in the way to

easily enable some of the trending sales approaches.

2.4.6 Benchmark summary

To allow comparison with other existing solutions, a benchmarking model

will consist of two units: User Experience Unit, and SDK Unit:

User Experience Unit for benchmarking

Intuitive UI Does the solution offer a dedicated Graphical Interface for end-users that

is easy and intuitive?

Learning Curve Is the learning curve reasonably low for end-user to deploy and use the

system?

Scalability Is it made easy for end-user to increase number of resources in the

system?

Applications base Is there a public base of applications for end-users to use?

Affordability Is it expensive for an end-user to get the system, deploy it and use?

SDK Unit for benchmarking

Package What does the SDK package consist of?

Learning Curve How much new knowledge a developer needs to acquire before being

able to develop for the system?

Portability Is it easy to port existing project to this new framework?

EUD support Is there a natively built-in development kit for End User Programming?

3 Solution proposal

3.1 Overview

Designed is a middleware system for allowing the integration of arbitrary electronic

devices and software into a collective population of resources capable of

cooperation. The complete architecture consists of 5 layers, that are covered in

32

subsequent chapters.

3.2 Layer 1: Distributed API

3.2.1 Components of the system

There are two types of components that can exist in the system: API Operator

and API Contributor. The system includes at least one API Operator, and nay

number of API Contributors. API Operator is a server application that collects

RPC calls from connected API Contributors (clients) and presents it to end user

via graphical interface (GUI). The GUI allows for listing and invoking

distributed RPCs. For a network there is only one API Operator, and it is the

End-user’s only interface to invoke RPC throughout connected API

Contributors. However, the system can be configured to allow one API

Operator component to connect to another and create a sub-network (analogy

to network routers). It is because the API Operator also can open client

connections to other servers, in which case it will forward all its API listing to

another API Operator above it. Shall an end-user connect to an API

Contributor that is connected to another, will be informed about the existence

of a higher level API Operator and will be given a link to it, while he will still

be served normally.

Every API Contributor has a built-in domain ID (DID). When API Contributor

connects to API Operator, it presents itself with his built-in DID, and listing of

its API, that may look like this:

DID: AirConditioner

-- API listing: ------

Procedure PowerOn();

Procedure PowerOff(delay: integer);

33

Procedure SetTemperatureCelcius(temp: integer);

After that, the API Operator will list its API as available to the End user, under

the domain “AirConditioner”:

-- API listing for AirConditioner: ------

Procedure AirConditioner.PowerOn();

Procedure AirConditioner.PowerOff(delay: integer);

Procedure AirConditioner.SetTemperatureCelcius(temp:

integer);

And the end user will be able to issue its API by sending RPC calls to the API

Operator in the format:

PowerOn@AirConditioner();

SetTemperatureCelcius@AirConditioner(25);

PowerOff@AirConditioner(30);

If the API Operator is also connected under another, than the above calls can

also be passed to that another one. In such a case, the top level API Operator

will assign a sub domain to access lower level API. Assuming the given sub

domain is “subnet1” the calls will be published as:

PowerOn@subnet1.AirConditioner();

SetTemperatureCelcius@subnet1.AirConditioner(25);

PowerOff@subnet1.AirConditioner(30);

More details are covered in the subsequent chapters.

3.2.2 API Operator

The API Operator is distributed as software for downloading and installing in

34

the end user’s LAN. It can be downloaded as installer package for a dedicated

platform. An API Operator has at least two server sockets: one for API

Contributors to connect (port #8201) and one for HTTP on port #7777

(assigned as a standard for the system) for the end user to access its GUI.

However, it can incorporate more server connections for providing more

access methods for end users or for other custom needs.

The API Operator is required to be given more computing power than API

Contributor components. The system architecture is designed in the way, so

that the API Operator takes all the load of processing and computing on itself,

while API Contributor only receives control commands and responds. The API

Operator has a built-in interpreter that will parse RPC calls, and check the

syntax, do the type control etc. API Operator also has a built-in memory

management system for dynamically creating memory structures like variables

and objects. Its interpreter supports a simple built-in scripting language for End

User Programming. The API Operator is dedicated to be installed on a PC or

mobile computer (PDA, Smartphone, tablet, etc.) where enough computing

power and memory resources are expected to be provided. It takes the high

level syntax from the End user’s input, checks if against errors, interprets and

converts to simplified, low level control commands to be issued to API

Contributor components.

3.2.3 API Contributor

The API Contributor is available for download as shared libraries (ie. DLL in

case of Windows family operating system) and can be added to an existing

code for a software or embedded system, to make it compatible with the

system. Compatible software and hardware, after connecting to end user’s

35

LAN, will be able to automatically detect API Operator component (if present)

and be configured by it. API Contributor has minimal requirements for CPU

power and memory. It does depend on the API Operator to carry out the

business logics. It simply responds for simple control commands with no

additional work. This way allows the whole system to have one dedicated

hardware for API Operator, that will use the power for CPU, and that will use

memory, while other devices with API Contributor built in can function in

power-saving manner. Moreover, the default way for API Contributor to

connect to API Operator is by pooling, in the connectionless manner. This can

further increase power saving. API Contributor, while pooling, will download a

list of control commands, disconnect, and execute the commands. The next

time it connects to the API Operator, it will send out the status messages and

fetch new list of commands.

Another feature of the system, is that in order for a hardware device to be

compatible with the system, a corresponding API Contributor component is not

required to be embedded in the device itself. For example, a device can be

connected to a PC over USB cable, and use a custom driver. In the same PC,

an application can be installed that can be an agent between the device and the

system. A different example may include a sensor that has built-in support for

low-power Bluetooth communication. The API Contributor can run as an

independent agent application on a PC or on a mobile device (ie. Smartphone)

and represent the sensor in the system. API Contributor can be implemented as

a Protocol Adapter (Protocol Gateway) to represent a resource supporting

virtually any standard of communication.

36

3.2.4 Buffered RPC protocol

As the API Contributors use pooling to connect to API Operator, the control

commands that need to be handled are first buffered by the API Operator.

When the API Contributor connects, it will be handled the list of control

commands, and will be expected to return a status of execution in form of

simple messages on the next connection. The buffering happens transparently

to the end user. The API Operator will flag individual resources as available or

unavailable (online or offline) based on status messages (including responses

to PING signals) and timeouts.

3.2.5 Self-hosted API Operator

For some cases a device or software maker may want to use the system

exclusively for it’s own commercial application. This is possible via so called

Self-hosted API Operator SHAPIO). A device or a software would include a

SHAPIO library in the existing code, and set a custom port for an end user to

access its GUI. By doing so, the final product is added a custom RPC interface,

including EUD scripting language support. The advantage of such approach is

that the RPC support is added to the product with entire Front-End and it is

fully independent (as opposite to the default architecture where a central API

Operator hosts the network). A disadvantage is, that by including the entire

implementation of API Operator (Memory management, parser,

communication, etc.) the products need for CPU power and memory

consumption increases. Whether the presented advantage is disadvantage has a

stronger relevance is a matter of a particular application.

3.2.6 Virtual API Contributor

A virtual API Contributor is a component of the system, that shares an API

37

without built-in facilities to perform related actions. Instead, it “hires” other

components of the system to perform actions. A use of a virtual PI Contributor

can be useful to:

- create agents (enable in-compatible resources)

- integrate multiple existing components into one dedicated

- adding an API Operator to another network as a resource

As an example, imagine two components with built-in API:

DID: EPO (Ethernet Power Outlet)

-- API listing: ------

Procedure PowerOn(SocketNumber: integer);

Procedure PowerOff(SocketNumber: integer);

DID: AMS (Ambient Light Sensor)

-- API listing: ------

Function LightAmount(): integer;

The first one is a power outlet and the second one is the ambient light sensor.

The power outlet has 4 sockets that can be controlled remotely. There is a lamp

connected into the 1
st
 socket. The ambient light sensor measures the amount of

ambient light and returns a value from 0 to 100 where 0 means no ambient

light, and 100 means the amount of the light in the full daylight (or higher).

Notice, that the lamp connected to the power outlet is not system compatible,

and does not share any API. We can create a virtual lamp with the setup

described above, with an API listing as follows:

DID: SmartLamp

-- API listing: ------

38

Procedure OperationCondition(AmbientLightLevel: integer);

The SmartLamp will be added as a virtual resource to the system. The network

will not care, that it has no physical representation. Instead, it is a software,

that pretends to be a smart lamp, and uses other resources to perform actions

and deliver outcomes. It has one procedure in it’s API, it allows for the end

user to set a tolerance for the amount of the ambient light. When an amount

lower then the specified is detected, the lamp turns on. The way the virtual API

Contributor delivers the outcomes is that fetches the ambient light sensor

checking the current amount of light, and if a condition is fulfilled (when the

value goes below the set limit), it controls the socket on the Ethernet power

outlet to which the lamp is connected. The physical switch on the lamp is

permanently turned on, and by controlling the power outlet, the lamp can be

either turned on or off.

A more powerful benefit of using virtual API Contributors can be illustrated by

modifying the above example:

DID: SmartLamp

-- API listing: ------

Procedure PowerOutletDID(DID: string);

Procedure SocketIndex(index: integer);

Procedure OperationCondition(AmbientLightLevel: integer);

Now, the Smart Lamp is configurable and can be pointed at the end-user

defined power outlet and a specific socket on it, to tell the smart lamp where

exactly the physical lamp is connected to. Just in case there are more lamps, or

more power outlets in the network. In the same manner, a custom ambient light

39

sensor can be pointed. Furthermore, a built-in PING call can be used by the

Smart Lamp to determine whether or not a particular resource is available for

delivering an outcome. And if the resource is not available, the end user can be

notified. So if an End user Bill sets up the smart lamp for his home, but he

does not have an ambient light sensor, he will get notified to get one. When he

buys one in the local electronic shop, and brings it home, he can then set the

smart lamp to use it. More complex API and implementations of virtual API

Contributors may allow for scenarios like a smart lamp that can detect a

physical resources after they were moved and connected to different power

outlets, or can automatically recognize resources of certain brands, or can take

consideration of more data that are specific to end-user’s preferences stored in

the configuration of his network.

3.2.7 API Contributor integration to existing code

The way that API Contributor component gets embedded into an existing code

is by a shared library. The library contains fully-featured implementation of the

component including network connection layer, pooling protocol layer, and

RPC protocol layer. The developer, after including the library in his code,

needs to export selected functions from his existing code through the API

Contributor component to the network. This procedure only takes 2 simple

steps:

1. Write a wrapper around a function to be exported

2. Pass the wrapper function as an argument to component’s API registering

function

Below is the fragment of source code listing showing the steps listed above,

written in Delphi (a dialect of Pascal programming language):

40

unit Unit1;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

 Dialogs, TnTForms, StdCtrls, libEngine;

(...)

type

 TForm1 = class(TTnTForm)

 Label1: TLabel;

 Edit1: TEdit;

 Button1: TButton;

 procedure FormCreate(Sender: TObject);

 procedure FormDestroy(Sender: TObject);

 procedure Button1Click(Sender: TObject);

 private

 { Private declarations }

 (...)

 Procedure VEcho(const FunctionName: widestring;

const Arguments: TVarTable;

const ArgCount: cardinal;

var FunctionResult: widestring;

const ResultType: widestring;

const RessultFlag: TTypeFlag);

 public

 { Public declarations }

 Function Echo(s: widestring): integer;

 (...)

 end;

var Form1 : TForm1;

implementation

{$R *.dfm}

procedure TForm1.FormCreate(Sender: TObject);

begin

 libEngine.HostedFunctions.RegisterFunction

('function echo(s: string): integer;',VEcho);

end;

41

Procedure TForm1.VEcho(const FunctionName: widestring;

const Arguments: TVarTable;

const ArgCount: cardinal;

var FunctionResult: widestring;

const ResultType: widestring;

const RessultFlag: TTypeFlag);

 begin

 FunctionResult:=IntToStr(Echo(Arguments[1]));

 end;

Function TForm1.Echo(s: WideString): integer;

 begin

 Result:=Length(s); ShowMessage(s);

 end;

(...)

End.

The code decorated with red bold font is the code that the developer needs to

add to the existing code after previously including the API Contributor library.

The libEngine in the list of units refers to provided library unit that includes

and handles the shared library. The example above shows how an existing

function Echo is exported. First a wrapper function is declared, and it is of a

standard format:

FunctionName – contains the function name as expoted

Arguments – an array of string represented arguments passed to the function

ArgCount – the number of arguments passed to the function

FunctionResult – the string represented value for the result of the function

ResultType –type of the result that function is expected to return represented by a string

ID

ResultFlag – same as above but represented by a type constant

42

The arguments of the function call are providing the developer with most

important information that he might want to use in order to pass data to the

built-in function. Let’s first see how this wrapper is being exported:

libEngine.HostedFunctions.RegisterFunction

('function echo(s: string): integer;',VEcho);

The way a function wrapper is exported to the API Contributor component is

by passing a function header in pascal syntax, and the wrapper itself as an

argument. What will happen, is that the API Contributor will assign the VEcho

wrapper to be executed only, when the API Operator matches the RPC call to

the given syntax (that effort is taken off the developer’s hands now). The

system will make sure, that the RPC call is only passed to the developer’s

application if the syntax, type control, variable substitution etc. is properly

executed beforehand. Only then, the function wrapper is called:

FunctionResult:=IntToStr(Echo(Arguments[1]));

Since at this point the information passed to the wrapper is verified and

error-proof (by the API Operator), the End user can trust that there is a string

argument in the first element of the Arguments array, and can pass it to the

built-in Echo function. Also, the result of the function can be returned, but

remembering that it has to be converted to string representation.

This example shows, that there is a very minimal effort from the developer

side to enable functions from his existing code over RPC, when using the

system. The content of a wrapper function will in most cases be only one line

of code. It is a straightforward passing of arguments to the built-function with

eventual conversion from a string to required type, and converting eventual

result to a string.

43

3.2.8 Self-configuring feature

The system is able to configure itself automatically to a certain extent. When

an API Contributor connects to a network for the first time, it will try to detect

presence of the API operator either by checking default addresses or by using

network broadcasting. Once the API Operator is found the API Contributor

will present itself with a Domain ID and few other details like Serial Number

and/or model number (optional). The API Contributor may provide the API

Operator with a driver, or a driver might be delivered to the network from a

separate file provided by the End user (or fetched from given, or public

database). The driver is a plain text file containing Pascal syntax based listing

of functions provided by the API Contributor. A single API Contributor may

work under multiple networks, by putting multiple API Operator addresses on

his list for pooling.

3.2.9 Custom GUI skins

Any resource of the system can be provided with a custom GUI. That is by

preparing an HTML file, that contains designed UI and Javascript that will

send RPC calls to the API Operator. This is to provide the end user with

simpler interface than the custom support for scripting language. The custom

GUI may allow for the end user to interact with a resource without writing

code. Javascript will translate user’s actions on the website into sequences of

RPC calls, and then, it will translate returned status messages into visual

outcomes. Any resource can be provided with multiple custom GUI skins, and

one can always be configured as the default.

3.2.10 API Contributor drivers – the unique feature claim

This is a feature that I claim to be unique and which I believe is one of major

44

differences between the proposed architecture and other existing solutions. At

least it is original when comparing to a competing solution discussed in the

chapter 4.4.A driver is sim. ply a plain-text listing of RPC calls exported by the

API Contributor. Without these listing, the API Operator would not now what

RPC calls the API Contributor accepts. It is very similar to use of header files

in C and C++ programming languages. The driver might be delivered to the

system in two ways: either by the API Contributor itself or externally, from a

network location (via download) or by uploading a file (web page embedded

html form). When the API Contributor introduces itself to the API Operator in

the network for the very first time, it is asked for the driver (or simply a listing

of exported RPC calls). If the API Contributor is configured to do so, it will

send the driver to the API Operator and the resource that its representing will

get installed and will be listed for the entire network to share. Otherwise, the

API Operator will first attempt to fetch the driver from a database specified in

the network configuration, and if that fails, will create an alert to the End user,

so that he can upload the necessary driver via the default user interface.

The role of the driver is much more significant than just listing available API.

The system allows for multiple drivers assigned for each individual resource

(API Contributor). Drivers my come in different editions, where each edition

can selectively expose different subset of the API actually supported by the

API Contributor. A different set of drivers may be distributed to different users,

according on access policy. Also, the vendor/distributor of the resource, may

implement different sales options for the exactly same product based on the

driver version requested by the user. A free version of the product may come

with a driver exposing limited API, while the full-featured API can only be

45

accessed when purchasing a complete driver edition. Also, different versions of

drivers can be shipped for profiling the network. Imagine a scenario in which

the system runs in an office, that has fixed working hours. During the normal

working hours, the full API is available through the complete driver. But after

the working hours, another profile of the network replaces the drivers, and only

a limited API is available, disabling eventual users from accessing certain

services.

3.3 Layer 2: Low-level EUD

This layer is an extension of the Layer’s 1 built-in RPC protocol. The Layer 1

incorporates a parser (Lexical Analyzer + Syntax Analyzer) for interpreting RPC

calls passed as unformatted text. Level 2 layer extends the parser and provides

support for a scripting programming language dedicated to End User Development

programming. The language syntax next to standard grammars like loops,

conditional statements etc. incorporates dedicated grammars for handling RPC flow,

with special consideration to:

- Availability/unavailability of the end-points for RPC calls

- RPC return statuses

- Connection errors during RPC transactions

- RPC expiration

- Blocking and non-blocking RPC

The RPC end-points are resources that RPC calls are being issued to be executed on.

RPC return status is the final element of RPC transaction, after the end-point has

executed the call, and when it confirms the execution to the API Operator and

passes an optional result of the RPC call. If before sending an RPC call to the

end-point and receiving the RPC status a connection breaks, there is no feedback

46

allowing to know whether the call has been successfully executed or not. Level 2

EUD programming language implements event-driven grammars to handle this kind

of situations. RPC expiration is another built-in language feature allowing to

optionally adding conditions on an RPC call defining an acceptable time before

issuing the RPC call and receiving its execution status. In blocking mode, the code

execution within a running script will wait for either the current RPC execution

confirmation, RPC expiration or connection related event. In the non-blocking

mode, the script will not be ran in the sequential way, but in a manner similar to a

state machine, where an event will be an analogy to a state. On the syntax level,

these events will be implementable as jumps, similar to how it is done in modern

programming languages with a “goto” statement.

In this level the source code can be passed to the interpreter either via html Query

String argument (or html form) or via a script file on the server, in which case the

file will have very similar application as server-side scripts in PHP, ASP, Pearl etc.

In fact, a custom interface, which (as discussed earlier) is a static html page, can

include script for interpretation, if this layer is implemented.

3.4 Layer 3: Semantic Channel

This level adds semantic support to lower levels. The support is provided to the

Layer 1 in the level of a driver, and to the Layer 2 as an additional grammar for the

EUD programming language. The support will be delivered by allowing XML

syntax. In the driver the XML will allow to define meta descriptions of API calls, as

well as meta description of a resource itself. In the EUD programming parser, the

XML describing RPC calls will be accessible as function properties, but only

treated as plain text, and no meta language parser will be implemented until the

Layer 5. However, a programmer can choose to programmatically parse the meta

47

content. The layer is called “Semantic Channel” as it only implements a carrier for

the meta language, without implementing tools for processing and interpreting,

except for a a standard object called “tag”. The object “tag” is introduced into the

layer 3 as a built-in type. Let’s consider a code below:

<example value=”demo”/>

var t: tag;

var s: string;

t.assign(“example”);

if t.exists then

 begin

 if t.has(“value”) then s:=t.get(“value”);

 if t.count>1 then s:=s+’,’+t.paramid(2);

 end;

The object tag has following methods:

 assign – specifies a tag’s ID to which the tag object reffers

 exists – returns TRUE if a tag was set in the script and FALSE if not

 has – returns TRUE if tag has a parameter of specified name

 get – returns value of specified parameter or empty string

 count – returns number of tag’s parameters

 paramid – returns name of a parameter by its index (0 is the tag id)

The first occurrence of a tag in the source code will register the tag and keep it until

the end of the script. Any following occurrence of the same tag will replace the

previous one, and the registered tag will be updated.

Additionally, layer 3 implements a built-in function called RegisterGlobalTag,

which takes 1 argument of type string, to pass a specific tag id. All of the tags of

that ID will be registered in the global memory space (managed by API Operator)

and will not be removed after the script exits. Any subsequent occurrence of the

same tag in any script at any point in time will not overwrite preceding occurrences,

48

but instead will be added into an array. The array can be browsed and any

occurrence of the tag can be accessed by its index in the array. If the index is not

specified, it is assumed that reference is made to the most recently recorded

occurrence. There is another object provided to handle global tags, called

globaltag:

var g: globaltag;

 t1,t2: tag;

g.assign(“tag1”);

t1 := g;

t2 := g[3];

In the code above, there are 3 variables: g of type GLOBALTAG, t1 and t2 of type

TAG; The type GLOBALTYPE is actually an array of objects of type TAG, and

therefore “t2 := g[3];” is possible. The code “t1 := g;” is equal to “t1 := g[0];”.

Additionally the GLOBALTAG implements 2 methods:

 length – returns the length of the array

 setlength – limits the length of the array

The SETLENGTH method will only take effect if its argument is smaller than the

current length of the array, and can be used to cancel specified number of most recent

occurrences of the tag. At the beginning of a script, the initial length of an array for a

global tag can be saved, and at the end of the script all the recent occurrences of the

tag that happened during the script execution can be canceled, by limiting the array

length to the initial value. However, due to multi-threading there is a risk that using

the described method can cancel some important occurrences of the global tag that

happened within another script that was running in parallel to the current script. For a

better management there are two additional methods of the GLOBALTAG object:

 Snapshot – to create a restore point

 Reverse – to cancel of the occurrences of a global tag that are coming only

49

from within the current script, and only back to the most recent snapshot

A snapshot is always taken automatically at the moment of calling .assign method of

the GLOBALTAG object. While these two methods are advised to be used instead of

SETLENGTH method for some cases, but sometimes it may be an intention of the

user to limit the tag array regardless to the scope of the current script. For example a

rule can be implemented using SETLENGTH method to reset global tag array

periodically, or to limit a maximal allowed length of the array.

If a negative value is passed to the SETLENGTH method, the array will get limited

from the other end, keeping only the most recent occurrences and discarding old

ones.

3.5 Layer 4: “Company” model

A company has an organizational structure, in which an employee has a supervisor,

who can have another supervisor and so on. There are departments, and sometimes

inter-department positions may be found. Every department, every team, and every

employee has a role. The role is always assigned from the top management

downwards. But in the real life, an employee may change position within a

company, may leave the company forever, or for a period of time and then return,

can get sick, or take a leave, can be required to substitute another employee etc.

Everything is being handled by the company internally in a vertical flow of

decisions (from the top management). However for a customer of the company,

most of that remains transparent. The customer has an interface to communicate

with the company (an account manager, a clerk, a customer service, an email, etc.),

and to communicate his needs. He needs not to worry how exactly the company will

organize itself in a workflow to deliver him the results. He does not care which

employees will do which parts of the task, or if some employee is replacing other,

50

who would normally be handling particular task. It is up to company’s own problem

how the work will be distributed and executed internally. For all that the customer

cares for, is the result. Layer 4 implements this philosophy. Using Semantic

Channel from the lower layer, a support for defining roles to resources is added. The

System will analyze existing resources and group them according to functionality.

The functionality will be examined by reading meta descriptions of RPC calls, and

the system will try to find similarities between different RPC functions across

different resources, then, it will try to create a mapping of how certain resources can

substitute other resources in delivering specific type of results. This layer does not

implement support for taking semantic descriptions of high level goals as input, but

if a resource assigned to a particular RPC function is not available, it will try to

automatically find a substitute and enable the execution of RPC function by

alternative resource.

Implementation of Layer 4 is achieved by extending syntax accepted by the

interpreter of the lower layer, so that it additionally allows for using XML tags

within the source code. Consider a sample code for the layer 2:

var s: string;

s:=systemTimeStr();

TextOutXY@simple-lcd.com(10,10,s);

Let’s assume that systemTimeStr is a function implemented locally on the API

Operator, and returns plain-text encoded current system time. Let’s also assume that

the “simple-lcd.com” is a domain used by a simple, buttonless LCD screen that has

an API Contributor component embedded and is hanging on the wall in the living

room, so that the system can display content on it. Let’s assume, that this LCD

screen exports function called TextOutXY which displays a text at given position

XY (Upper-left corner of the text area). The code above would load current time to

51

a variable s, and then print it on the LCD screen in the position X,Y. In the layer 3

we could add XML tags to add some meta descriptions, and the interpreter would

compile it as valid syntax, then in the layer 4 we additionally have few standard

XML tags and a set of standard functions for handling these tags:

<functional-tag value=”current-date” functionref=”systemTimeStr”

argcount=”0” result=”string” />

Var s: string;

s:=FunctionByFunctionalTag(“current-date”,0,”string”);

TextOutXY@simple-lcd.com(10,10,s);

The first XML tag is called “functional-tag”, and allows to group functions

according to what are their purposes and number of required arguments. In the

example above, the tag’s value is “current-time”, and ARGCOUNT is “0” which

means, that the function does not require any arguments. The FUNCTIONREF

argument contains the function’s name. This XML tag will register the function

“systemTimeStr” globally as delivering a functionality called “current-time” and

not requiring any arguments on calling. And as returning a value of type tsring;

The second instruction is allocating a variable s of type string in the memory.

The third line of code, is a built-in function being a part of standard set in a system

with Layer 3 implemented, and is used to call a function by specifying particular

functionality rather than by calling a specific function by name. The call takes 3

arguments: the first is a functional-tag value, the second is number of arguments,

that the function must require in order to be called, and the third is a type that the

function must return. The call in the demonstrated code, will browse through all

globally-registered functions matching the functional-tag, without any required

arguments, and returning a value of type string. After determining a list of all

matching functions, it will choose the first listed function implemented locally o the

API Operator, or the first matching function that comes from an API Contributor on

52

the local host (relatively to API Operator) or just the first function matching from

the list. If no matching function is found, the code will not take any effect on the

value of the variable s. This mechanism allows for writing scripts without specific

calls to specific functions, but with references to globally registered tags describing

functionalities and calling formats for related functions. The system can take make a

decision at run-time about which RPC to call in order to address requested

functionality, and in special cases, if a specific RPC fails (network error or resource

is unavailable), the system can attempt to deliver the result by matching an

alternative RPC on an alternative resource.

3.6 Layer 5: High-level EUD

This level implements a semantic parser for XML input and a module for translating

semantic descriptions of high-level goals into specific RPC calls of low level. In

this layer the EUD programming is supported purely with XML. A code can also by

a hybrid containing both XML and the lower layer programming language, in which

case two parsers will be involved in executing it – the semantic parser from this

level, and the EUD interpreter from Layer 2 extended but Layers 3 to 4.

In this layer an end user can call the system with requests like “Wake me up at 8am”

and the system will try to translate this request into corresponding sequence of RPC

calls to relevant resources. In the case when the high-level goal is not possible to be

interpreted, the system will interact with the end user to add missing semantic

definitions needed for parsing the request. Let’s consider a diagram below:

53

The Layer 5 assumes integration with an external semantic interpreter (is only a

conceptual reference design), which can parse the human language message and

break it down to semantic description of a goal, referring to a local database storing

semantic definitions that are collected over time during interaction with the end user,

or which can be fetched from other databases. If there is any definition missing to

solve the message, and if it cannot be fetched from a remote database, the system

will create an alert, to which the end user can respond and provide with additional

definition. Only upon gathering all the definitions required to solving the message,

the syntax parser can send its output to a translator that will convert it to a source

code accepted by the layer 4 interpreter for the EUD programming.

This layer is the leas complete in specification as it is a conceptual reference model

for adding semantic layer on top of the proposed system, where the semantic

interpreter is not a part of a design, but is expected to be provided by 3
rd

 parties.

3.7 Current implementation

Currently the implementation has been accomplished to cover Layer 1 and partially

Layer 2. The implementation has been made in Delphi dialect of Object Pascal language,

and compiled for Windows family operating systems. The source code with precompiled

demo is attached to this thesis on a CD. The original feature of this implementation is

that the virtual hosting for variables and function calls functionality is combined with the

54

parsing functionality.

3.7.1 libEngine.pas

This library is introducing most important classes for embedding API Operator

component within existing code. It is also initializing key components to set up

the API Operator environment automatically at the runtime, in the moment

when the library is loaded. The code is very short:

unit libEngine;

interface

uses SysUtils, libSupportedTypes, libHostedVariables, libHostedFunctions;

Var

 SupportedTypes : TSupportedTypes;

 GlobalVariables : TVarTable;

 HostedFunctions : THostedFunctions;

implementation

Initialization

 //Supported Types:

 SupportedTypes := TSupportedTypes.Create;

 SupportedTypes.Add(VTString.Create('string'),stfString);

 SupportedTypes.Add(VTInteger.Create('integer'),stfInteger);

 //Global Variables:

 GlobalVariables := TVarTable.Create(SupportedTypes);

 //Hosted Functions:

 HostedFunctions :=

THostedFunctions.Create(SupportedTypes,GlobalVariables);

Finalization

 //Hosted Functions:

 HostedFunctions.Free;

 //Global Variables:

 GlobalVariables.Free;

55

 //Supported Types:

 SupportedTypes.Free;

end.

The important code is inside the INITIALIZATION section. SupportetTypes

object defines data types supported by the framework and their lexical

identifiers. In the current implementation there are only two supported types:

string and integer. End-user might implement conversion routines for

encoding additional types within existing ones, for example, encoding float

values as string, or Boolean values as either string or integer. Naturally, more

types can be added to the native support, and they would need to be initialized

in this library as well.

The GlobalVariables object is managing the virtual memory and variable

allocation within the API Operator. The constructor of the class requires

reference to previously configured SupportedTypes object, so that the

memory manager knows what data types can be allocated as variables.

The HostedFunctions object is for allocationg and managing dynamically

exported RPC calls. The class’ constructor requires reference to both

GlobalVariables and SupportedTypes objects so that it can carry out type

control and variable substitution during the interpretation of the RPC calls,

which are plain-text encoded instructions. It is important to note, that these

objects will only host functions and variables in the local memory space, so

only functionality exported from within the application hosting the API

Operator component. A different set of classes is responsible for managing

actual remote calls.

3.7.2 libSupportedTypes.pas

This library provides with classes needed to implement natively supported data

56

types. Every data type to be natively supported is a class inheriting from

TSupportedType mother class. One important element for any natively

supported type is built-in conversion to and from the plain-text string type.

This are virtual methods, that have custom implementations for each supported

data type. These methods are used during the interpretation of the RPC code,

when the plain-text lexems are passed to check whether or not the conversion

is possible, which is the actual delivery of type control functionality.

3.7.3 libHostedVariables.pas

This library provides with a class TVarTable, which allows for allocating

memory for storing data of natively supported types, as variables indexed by

plain-text identifiers. Each virtual variable is encapsulated within a very simple

record:

TVarInfo

 = record

 TypeFlag : TTYpeFlag;

 TypeID : widestring;

 Value : TSupportedType;

 end;

that holds 3 member fields: TypeFlag, which is code-level flag assigned to a

natively-supported type, TypeID, which is a plain-tex unique identifier of the

data type for use on the RPC code level, and the Value field, which is a

reference to an object of TSupportedType class that implements interface to

access (reading, writing and conversions) the actual data, and which itself

allocates the actual memory for storing the data. The TVarTable class allows

for accessing variables and their data by the TypeID and is being a part of the

interpreter itself. In other words, not only it serves as an interface for accessing

the hosted variables, but also provides with basic set of methods for parsing

57

plain-text encoded lexems for verifying whether or not they refer to actual

variables.

3.7.4 libHostedFunctions.pas

This library provides with classes for hosting RPC calls, even though in the

case of API Operator component they also host locally exported functions, that

do not require any network traffic to be executed.

Important low-level class in this library is TFunctionPrototype, which

implements support for custom formats of function calls, including function

identifiers and description of required arguments (if any). This class allows for

creating a prototype for a function call at the run-time. It is contained by a

higher-level THostedFunction class that not only allows for accessing the

interface for executing the actual call, but also implements methods for parsing

the plain-text encoded function calls. Above this class, there is a higher-level

THostedFunctions class which manages a collection of THostedFunction

objects. A very important definition from this library is TExternalCallEvent:

TExternalCallEvent = Procedure(const FunctionName: widestring; const Arguments:

TVarTable; const ArgCount: cardinal; var FunctionResult: widestring; const

ResultType: widestring; const RessultFlag: TTypeFlag)of object;

This is a procedural type, which define a generic and universal wrapper for

exporting ANY function or procedure (function without result, void in C

language) from the host application. This is not however, the final data type

that the developer uses for coding wrappers, as there is a higher-level

simplified version defined, that will be discussed later. The definition in this

library requires few arguments in the wrapper:

FunctionName – is a plain-text encoded unique identifier for a function

Arguments – is a reference to the local object of TVarTable class allocating

58

memory for storing and handling function arguments, that exists only

throughout the call of the function, and is being released after the call executes.

FunctionResult – is a string variable for returning plain-text encoded result

value (it will be later converted to a proper type that is natively supported)

ResultType – is a plain-text encoded identifier of the supported type of which

the function result is expected to be

ResultFlag – is the code-level flag with the same purpose as the ResultType,

but easier to use in the statements and expressions, as it is a simple type

comparing to string.

3.7.5 libErrors.pas

This unit contains error codes that the built-in interpreter can return to end user

via the RPC gate. Additionally it contains few functions shared across other

modules for parsing of plain text and HTML, as well as some system-defined

constants that are the standard setup of some core configuration of the system.

3.7.6 Server/client vs. Operator/Contributor vs. Flavors

This might be a confusing portion of the architecture, if not explained.

Essentially neither the API Operator nor API Contributor component is

determined to be strictly corresponding to either a server or client role. Either

of the two components might incorporate multiple servers as well as multiple

clients within. The only certain thing following the system specification is that

the API Operator will at least have one active server opened, thru which API

Contributors can announce their presence in the network by default, and thru

which an End-user default interface (RPC gate) is accessible via http protocol.

The term API Operator and API Contributor only refers to the role in the

59

system, according to the earlier description in this chapter.

The API Contributor may come in many different variants, so called flavors.

The simplest flavor is only incorporating a Client connection, and such API

Contributor will use pooling to check with the API Operator if there are any

pending RPC requests. When API Operator executes RPC via this flavor, the

timeout delay is used for the API Contributor to pool for awaiting RPC calls,

and for the second following pooling that will pass the result statuses of the

previous queue of RPC calls. This flavor is dedicated to embed API

Contributor components on devices on which CPU usage saving is crucial.

Pooling saves lot of CPU usage and therefore also power usage when

comparing to a server connection that is left open..

Other flavor is incorporating a server connection, and RPC calls invoked on

this flavor of API Contributor have fewer critical stages during which a

connection/network error may interrupt the normal RPC flow (RPC call +

ACK roundtrip). The API Operator will only need to open a client connection

to the API Contributor once, and together with submitting the RPC call fetch

the result status, just like a web browser is requesting a webpage directly after

submitting GET or POST request with specified headers and query string

parameters. The ACK can be obtained within a single roundtrip, versus a

double roundtrip in the case of the first introduced flavor. Also the tolerance

for delay may be lower, as there is no need for queuing RPC calls and waiting

for the API Contributor to fetch them via pooling.

Additionally to the above obvious flavors, hybrid flavors are also possible if a

specific application needs it.

Although the second described flavor is less vulnerable to connection/network

60

errors during the RPC call roundtrip (RPC call + ACK), but it also exploits the

API Operator to a greater degree, requiring more client connections to be

dynamically managed, therefore each flavor has its own advantages as well as

disadvantages.

API Operator also comes in multiple flavors, however in this case it more often

refers to the amount of server connection opened for supporting different

protocols, like HTML, XML, JSON etc.

3.7.7 libServerMod_HTTP.pas as a flavor of API Operator

This library defines classes for the default flavor of API Operator component,

which uses HTTP protocol. This flavor incorporates THTTPServer class

responsible for adding active server connection that the end-user will be able to

directly access via web browser, on a custom port. This flavor implements

methods of the http server object with a basic authentication mechanism, that

will require end user to use a login and password to access the default interface

(RPC gate).

Additionally, the very same flavor supports a plain-text based communication,

after not finding valid HTTP protocol header in the incoming connection. This

is used by default by API Contributors when connecting to the API Operator,

and allows for providing both the user interface and the default RPC channel

over the same active service.

Use of this flavor implies use of a CSS file in the home directory of the API

Operator host application, that will be used (if present) to load styling for the

HTML based user interface. The CSS file has to be called NETPASKAL.CSS,

and the naming comes from an older programming project that the discussed

system was implemented upon, that dates back to the project for my Bachelor

61

thesis at Adam Mickiewicz University in Poland.

3.7.8 libMemberTCPLite.pas as a flavor of API

Contributor

This library defines classes for the default flavor of API Contributor

component. It incorporates a client connection and a timer, that will trigger

pooling to the API Operator component over TCP/IP (either over network or

local host). It is the lightest flavor for the API Contributor, and uses the

plain-text communication over the default channel, through which the HTTP

access to the default end user interface is also provided. Any other flavor of

the API Contributor would inherit form this flavor and use the default channel

to set up a custom one(s) and hand over the further communication.

3.7.9 Extending flavors

Flavors might be added as modules (for example as DLL libraries for

Windows-based API Operators) and can add communication channels and

protocols over which RPC transactions can be carried out. For example, a

flavor enabling IPC messaging can be added, for handling RPC transactions via

IPC channel rather than network connection via sockets. This may be a faster

alternative for handling API Contributors residing in the local host in relation

to API Operator. Above the level of the flavor’s internal implementation there

is no difference and the RPC transactions become scalable transparently.

3.7.10 uAnLex.pas

This library implements a Lexical analyzer used in the process of parsing RPC

calls and EUD programming scripts. The code was originally implemented for

my Bachelor’s thesis at Adam Mickiewicz University in Poland, and somewhat

upgraded since then for more convenient use and less memory consumption.

62

3.8 Non-standard approach to RPC

The proposed design changes the standard RPC model quite a lot. As a reference, below

is the simple diagram for the standard RPC flow:

It shows clearly that the RPC calls are handled by the server and on the server, and the

remote call happened one time in two directions, as a roundtrip from Client to server

(call + ACK).

Proposed architecture is greatly extended version of the standard RPC, but the extension

remains transparent to the caller. The main improvement is that the RPC call is only

being managed (also validated) by the server but can be handled also outside of the

server by other machines that are remotely connected to the server. The simplified flow

for the RPC in the proposed design would look like this:

63

The red colored connections are the remote transactions (happen over network). In

contrary to the standard RPC model the server might not be the terminal point for RPC

execution. An RPC might require a subsequent remote transaction over the network to a

remote RPC implementation – remote in relation to the server. The teal colored

components are all implemented within the API Operator, after the web service receives

an RPC code (it might consist of a program block with multiple RPC calls) it is parsed

by a built-in interpreter. When a function call is found, the syntax parser evaluates given

arguments. If there are any references to a variable the parser calls Hosted Variable

manager to fetch the actual values and substitute the argument with it. If there are any

references to a function, the Hosted function manager is called, to check if a function is

listed and if it returns correct type, then, a web service is called once again from within

an iteration to solve the function call, until the result is obtained and can be passed back

to the Syntax Parsed for substitution. Finally, where all the references are solved, the

64

RPC call is being marshaled and sent over network to a API Contributor component, that

will trigger a remote function wrapper, that finally triggers the actual implementation of

the function The API Contributor component can reside locally on the server, or

remotely in the network, in either case, yet another RPC call over the network is being

issued, which is an additional level not present in the standard RPC model. The API

Operator itself can also share functions that are implemented within itself, in such case,

the function call can be resolved directly through hosted variables manager and hosted

function manager. Each of the connections on the diagram is actually bidirectional and if

an error occurs at any point, the flow is broken and returns the error code back to the

web service over the shortest reversed path.

This approach for addressing RPC is actually a multi-level alternative, extended version

of the standard RPC model.

4 Solution evaluation

4.1 Addressing defined targets

The first target introduced in Chapter 2 were end users. This solution will potentially

improve their lives in the way that they will gain more freedom in how they want to use

all the software and hardware resources they happen to own. The proposed system

gives them more control over devices, and a way to go with their creativity to

implement various DIY customizations to their technology-enabled daily life.

Furthermore, satisfying their user experience with the solution-enabled devices and

apps is also a goal, which can be reached if hardware vendors, software developers and

system integrators see the business opportunity in building their own products and

services on top of the proposed system.

65

The second target group is made of businesses. Where the improvement coming from

the use of proposed system is considered for the existing product and services, it is

much faster (and cheaper) to add RPC functionality to existing hardware and software

products by using a 3
rd

 party middleware and linking pre-made libraries than by

designing and implementing communication layers, protocols and parsers in house.

Although alternative middleware and libraries might be considered instead, but the

proposed architecture is especially designed and dedicated to be integrated into the

existing code and hardware with the minimal time and effort needed. Another

competitive edge for businesses comes from lowering the costs of implementing future

upgrades of already compliant products and services. The proposed architecture is

especially designed to allow for adding more functionality to compatible products

without the need of inside the box modifications. A product with a constant number of

features that are exported to the be used over proposed system, can be upgraded to

virtually infinite number of new features even without any modifications needed in the

original hardware nor firmware, by just providing a new software independent from the

product itself. Furthermore, the existing product can be integrated with features of other

compliant products without the need of modification of neither one. This also makes a

great added value to a product, as from the end user’s perspective, because even after

there is a new successor to the product, or if the product support gets discontinued it is

still possible to create updates for it or to dedicate it as a resource for the network. In

this architecture there’s virtually no end of life for a product. Even if the original

provider (a vendor, manufacturer, etc.) goes away from the market, or stops providing

support, any 3
rd

 party can still provide updates, and the product can continue to be of

use on and on. Lot of end users keep some of their old devices even after upgrading to

newer ones. These old devices, even after not being used no more, are still fully

66

functional. Finally they too get thrown away, given away or recycled. But if only they

could be dedicated as resources to newer generations of products, they would surely

continue to serve their owners or would otherwise be valuable goods on the

second-hand market.

If businesses create revenue on products upgrades (like Apple does), it might seem at

the first glance as a threat to new sales if old product don’t go into the end of life stage.

Fortunately in the real life the advancement of technology will still push customers to

purchase new products, while the old ones, instead of being thrown away, can continue

to serve their users but in fulfilling different, lower level demands.

Third target group is the industry. Special consideration has already been given to the

manufacturing industry (see Chapter 2). There are two primary ways how the proposed

system can bring benefits to hardware manufacturers. Both are related to the OEM

market. The first benefit is related to their current client base. Currently, where there are

many OEM suppliers available, the brand owner will expect products rich in features

ready to put their logo on and to market it right off. This is already how things are

happening with lot of consumer electronics (CE) like Smartphones or tables as an

example. Nowadays it is possible to order a fully functional tablet pc from a supplier,

with requested logo printed on the product, paper documentation and boxing, that can

be sold to end-users right off the shipment container. Still, lot of brands will create their

own customizations. In tablets for example a vendor will by default make a custom

ROM (and not only the brand company, but even a reseller can make customizations,

like Telecom providers are often doing). Selling a product that is compatible with the

proposed system would allow these brands to even more customizations. In fact, an

OEM could start selling white boxes with sensors and peripherals only, while their

customers would implement actual features for the end users outside of the box. The

67

second benefit is that OEMs can start selling directly to the end-user market (or through

distributors) without any additional spending on things like branding, marketing etc.

Every single component from a current hardware spec can be sold separately to

end-users as dedicated for DIY. A typical piece of electronics, if it is just a component,

not a standalone product, has little value to an end-user, unless he is an electrical

engineer or a hobbyist with some EE skills. However, if the single component is

compatible with the proposed system it immediately becomes useful for any end-user

regardless of his technical skills or their lack. A user who is not technically inclined,

can bring the component home and create a self-made solution out of it in minutes.

Alternatively, the end user can use a 3
rd

 party software able to use newly added

components as kind of Plug-n-Play resources. If a high level goal given by the user to

the system cannot be realized because of some missing resources, the user can simply

go to a nearby electronic store, grab few cheap, no-brand components that will just do,

bring them home, and let the system to detect these added resources, configure them,

and start using, to rich the given goal.

Finally, the 4
h
 target group are the developers. Apart of everything that has already been

covered and that has already shown possible benefits to the developers in terms of

exploring new market share, there is a set of benefits specific to the process of

developing software. Targeting all the previous groups greatly depends on high

involvement of developers working over the proposed architecture. What are benefits

for them to choose working on this specific solution rather then implementing some

high-level integration and communication solutions without it? Some most crucial

benefits include:

- very easy integration of the system with existing code (linking a library and very

few lines of code to export functions) in the Level 1 development (Ch. 3.2)

68

- Even without consideration to a wider problem of general inter-device and

inter-application integration and communication, the proposed solution can still

work great as easy way to implement RPC, network communication or CGI/Web

services features to existing code for specific and limited use

- On the Level 2 development (Ch. 3.2) a native support for scripting programming

language syntax – after all the communication, protocol and parsing has been

provided, the further development on top if it does not increase complexity of code.

The added layers are transparent, and the RPC handling works seamlessly, so the

code looks like if no remote communication was happening

- Adding further levels on top of the level 2 maintains the complexity of the source

code, as each additional level transparently hides all the levels beneath. In fact an

integration between different levels is possible

4.2 Meeting benchmarking criteria

Below is the evaluation of the system measured through a benchmarking model (Chapter

2.4.6). For each criteria in the benchmark a score is assigned that can take one of 3

possible values: -1 if the system is graded as weaker in fulfilling the criteria than chosen

competitor, 1 if the system is graded better than the competitor, and 0 if the winner is

unclear:

User Experience Unit for benchmarking

Intuitive UI Compared against: CORBA, AJAX, Web Service;

The advantage of the system is that a simple GUI for the end-user is

natively built-in. Compared solutions require a developer of a web

application or web service to build the GUI himself.

1

Learning Curve The set up of the system requires an end user to download an API

Operator software and install it on a PC or mobile device

(alternatively by purchasing a mobile device, with built-in API

Operator). After the setup, end user can just power on compatible

devices and the system will be able to detect them and configure.

Each detected device will have a standard, native GUI created for

listing and remotely accessing its exported functionality. Optionally

1

69

here can be a 3
rd

 party GUI provided as well. This means, that

regardless of how many different UI schemes might exist among

different product makers, there is one native UI that the end-user can

always choose if the one shipped with the product does not seem

intuitive enough.

Scalability The process of installing new devices under the system is simplified.

The only information that end-user needs to look up in the product’s

manual is how to hard-reset the device. The rest of the configuration

is being handled automatically by the system, but interactively with

the end user. A new device might have built-in facility to point it to

the an API Operator from the End-users network, and if there are

many API Operators in the same network it does not matter to which

one the new device connects first – once connected the auto

configuration will happen. Even if the device does not provide a

physical facility to point to an API Operator, there is a natively

supported procedure of installation (see Chapter 3). A device can be

configured (authenticated) to multiple networks and switch between

them seamlessly (or work under few networks simultaneously).

1

Applications base The system architecture does not implement application store, but

has a mechanism similar to GET-APT from Linux to fetch User

Level applications from the Internet. Also, the system distinguishes

between official and 3
rd

 party (or trusted and non-trusted) domains to

fetch applications from. Existing home automation systems do not

yet offer this type of channel for distribution of user applications.

1

Affordability By the will of the creator, the API Operator software is licensed as

free of use for non-commercial use. No dedicated hardware is

required (might be available as optional).

1

SDK Unit for benchmarking

Package SDK consists of non-redistributable edition of API Operator (free to

use for testing), and set of binary shared libraries for supported OSes

and programming libraries with source code for supported

programming languages and platforms. There is no default editor in

the current spec.

-1

Learning Curve The SDK consists of a tutorial and sample programs, and it is

anticipated that a developer can learn to write first programs for the

systems within a day. The only thing to learn is to how to attach a

library to existing code, and how to write a wrapper function. Past

that, everything else is just programming in developers own

1

70

language and programming convention. There is actually no new

programming language to learn, just a basic knowledge of

Pascal-based simplified convention of function call format for

exporting functions.

Portability There is no actual need for porting, just enabling the compatibility.

After a function wrappers are added and exported, it will be

transparent for functions within the existing code whether they are

being called locally or remotely.

1

EUD support For encouraging EUD, a simplified scripting programming language

interpreter is natively built-in. Also there is a native web interface

allowing for execution of the scripts. End users can write simple

scripts without need for SDK.

1

4.3 Proof of concept

The ultimate way to challenge a design is to turn it into an actual implementation. This

chapter provides a description of an early prototype, a demo that puts it into the test, and

a case study of using implemented functionality within an project for commercial use.

4.3.1 Early prototype

The first prototype implements a functional API Operator and a sample

API Contributor. The prototype only implements the RPC Channel, and

does not implement the Meta Channel. The API Operator implements a

basic HTML interface for publishing the distributed API and for calling it.

EUD support is limited to calling functions and declaring variables, but

without support for loops, conditional statements and few other features.

4.3.2 Life demo

The life demo is dedicated to showcase a working prototype in action

during the official defense of this thesis by the Master Thesis Examination

Committee. The demo will demonstrate the implementation of Layer 1

71

and 2. Important features covered by the demo are:

- User Interface (webpage based)

- RPC and virtual memory

The demo is prepared to follow steps described below:

Connect to 127.0.0.1:777, where the IP address is the local host and 7777

is the default port for the API Operator to provide GUI over (API gate):

The browser will return PAGE NOT FOUND error, as the API Operator is

not active. Let’s launch the API Operator provided with

NETPASKAL32.EXE from the attached CD:

72

Above is the API Operator application running, let’s refresh the browser:

The API gate authentication page shows up, for the demo purpose both

the login and the password are “test”. After logging in the default

interface will show up, that is also presented in the Appendix 1, in the

73

demo the interface looks as follows:

Now, let’s launch an API Contributor via RPCCLIENT.EXE from the

CLIENT folder on the attached CD, and apart for seeing the window of

newly launched application:

74

the important to see from the screen is the bubble-window notification in

the bottom-right corner, that shows the detection of a new resource and

automatic process of driver installation (refer to Chapter 3), which in the

case of this demo, is delivered to the API Operator by the API Contributor

itself:

After refreshing the browser, we will find out, that there is a newly added

API listing for a new domain, in our demo, it is called “kriskamra.com”:

75

Let’s make our first use of the API gate:

The function setCaption is listed both in the API Operator itself and under

76

kriskamra.com domain, after submitting, the API gate will show the status

above the RP gate:

And the caption of the API Operator application will change:

Now let’s see how to call the setCaption function under from the API

Contributor’s listing:

77

The call contains the domain name after the function name, followed by

the “@” symbol, which logically implies that we want to call setCaption

function “at” the kriskamra.com domain:

The RPC gate will accept the call, and as a result we will see:

The Caption on the API Contributor got updated via remote invocation of

its API function (remote in the sense, that the TCP/IP protocol carried the

78

RPC call over the network, even if the destination address was on the

local host).

Now let’s declare a new variable in the shared memory:

This will tell the API Operator to allocate a new variable of type string

and call it X, here is the updated Variable listing from the API gate:

We can now assign any value to the newly created variable:

And new value will be applied and reflected on the listing:

The system allows to assigned values to variables not only via constans

but also through references to other variables and function calls. In the

79

implemented demo only constants and references to variables will work.

Now we can invoke remote procedure setBanner passing variable X as the

argument:

The RPC gate will accept the call and return status message:

Now we can see the effect on the API Contributor’s side:

This is the end of this simple demo (Sources and binaries provided on the

attached CD).

80

4.3.3 Case study

Soon after successfully implementing the first working prototype, also the

first use of the implementation within a commercial project was possible.

The project was a restaurant system with features like

- employee database and check-in/check-out interface (working hours

registration)

- restaurant’s menu editor

- seats status manager (displays seats availability)

- Digital Signage player

The prototype implementation was used in that project to add some extra

functionality:

- remote food ordering (via web browser) for the customers

- remote control of the music playback for the employees (so they can

control music in the restaurant from a mobile device)

The project was made for 誠食館 (Chengshi Guan) restaurant owned by

Han-Chih Hsu with 2 stores in Hsinchu: 誠食館文化麵食，新竹市民生

路 109 號 (No.109 Minsheng Rd., Hsinchu City) and 誠食館創意麵食，

新竹市學府路 3 號 (No.3 Xuefu Rd., Hsinchu City).

Using the prototype solution allowed to add new features, without the

need of implementing network connectivity, protocols, http-sessions, and

such. A web script renders a dynamic html page with restaurant’s menu.

User can check and un-check items and adjusts quantities. When user is

finally ready to submit the order, the Javascript simply generates

formatted text string containing the description of user’s order, encloses it

in a plain-text function call and sends to the server via GET request, that

can look like this:

81

192.168.1.201:7777?rpc=XXX

, where XXX is an URI-encoded function call, for example:

Order(”UID1:1;UID4:2;UID23:2;”);

On the server side a local function “Order” is being executed that

interprets it an order of 5 items: 1 item of UID1. 2 items of UID4 and 2

items of UID23. The implementation only required a local function and a

website-side Javascript code – there was no implementation related to

network, sockets, TCP/IP, whatsoever. Later on it was found that the use

of prototype implementation helped to solve a problem of resubmitting a

html form multiple times (ie. by refreshing a website). Normally solving

this type of problem requires using html headers, cookis or hidden form

fields with sequential numbers. In the project the problem has been solved

by changing the Order function call to new format:

Order(order: string; timestamp: string);

So the same call as given before would now look like:

Order(”UID1:1;UID4:2;UID23:2”,”20130128120000.000abc”);

Where the second argument is a timestamp consisting of the date and time

down to a millisecond in the moment of submitting the order with 3

character-long random suffix, just in case there was another order from

different user in the same millisecond. Now the user could resubmit the

form any number of times without replicating the order. The very first

time the function Order is being called with a unique timestamp, it is

recorded, and every next time an order with same timestamp arrives, it is

handled as a request to view the already-existing order, not to create a

new one. Exporting function Order() which was already present in the

82

project’s source code prior to the upgrade, took minutes. Some more time

had to be spent to create a web interface (HTML page with CSS and

Javascript), but the whole upgrade took only 1 working day to deliver,

which would not be the case if the API sharing prototype was not used in

the development.

The feature of remote control of music playback in the restaurant took

approximately 10 minutes to implement, as it only required to export few

existing functions to the resource sharing network: Play(); Pause(); Stop();

Next(); and Prev(); and an HTML interface took another 20 min to create.

On top of that, since the API Operator integrated into the code of

Restaurant’s software runs an WWW server, the end user interface is

available through a web browser, which makes it a cross-platform

solution.

4.4 Study of a prior art

One existing solution that seems to be similar to the proposed one is WOSH Framework

(wosh.sourceforge.net), which stands for Wide Open Smart Home. It is also a

middleware framework that is Service Oriented (SOA) and enables integration of devices

in a network. Additionally WOSH is a free and open source.

4.4.1 Case study

- built-in end-user applications: console and graphical both

- distributed computing, 'zero-configuration' networking (UDP, TCP)

- multi-user, role based access

- remote control using Instant Messaging (using libgloox; compatible with

GTalk), SMS (send/receive) and call monitoring (on Windows-Mobile,

RNDIS connected smart phone)

83

- appliances and sensors (X10 devices) monitor/control (on POSIX, based on

Heyu)

- entertainment, multi-zone media playback (using GStreamer, MPD on

POSIX or QT Phonon on Windows, VLC). Media-Director service

provides a high abstraction layer, the recovery/guess multimedia status,

hardware/software shortcuts and more

- centralized communication system (selecting best communication channel),

using also interpreters (such as Festival for Text2Speech)

- building abstract-representation of the home and its devices (rooms, lights,

audio-box, ..)

- Cron and Automation services, providing support for basic every-day tasks

- Weather service, gathering and merging information from various sources

4.4.2 Comparison of main differences

Feature WOSH
Proposed

system

Main programming language used C++ Pascal

Built-in end-user applications Yes Yes
1

‘zero-configuration’ networking Yes Yes

Multi-user, role based access Yes Yes

Remote control using Instant Messaging Yes No
2

Base communication protocol

messages HTTP,

Plain-text

over TCP/IP

RPC vs RMI approach RMI RPC

Message/RPC-delivery contract weak
3
 strong

4

Message/RPC ordering FIFO,

UDP-based

FIFO,

TCP-based

1
Built-in applications include RPC gate and configuration wizard (both via webpage)

2
the feature is not provided as a ready component, but the architecture supports adding it

3
no ACKs/retransmissions

4
RPC ACKs and ACK-error handling via events

84

Very important part of both systems is the RPC/RMI engine. In the case of WOSH

there are stubs and skeletons responsible for RMI. A stub is a proxy for a remote

object that runs on client computer. A skeleton is a proxy for a remote object that runs

on the server. Stubs forward RMI (along with associated arguments) from clients to

skeletons, which forward them to the appropriate server object. Skeletons return the

results of server method invocations to clients through stubs.

The design of the proposed system is very different when it comes to addressing

RPC/RMI. The primary difference is that WOSH uses RMI, and the proposed system

uses RPC. In the RPC there are no objects stored neither on the client nor the server

side, which would allow for their methods to be invoked remotely. This is also

different from major SOAP/CORBA based solutions. This also allows for exporting

functions from the originally local code up to the SOA without the need of designing

objects for RMI. On the client side, there is only a generic wrapper function whose

only argument is a dynamic length array of strings. The client also incorporates a

small translator responsible for unmarshalling incoming RPC encoded as plain text

messages over TCP/IP into an array of strings containing text-encoded values for

arguments required by the wrapper. The client side trusts the server side, so that no

additional control is being done during the unmarshalling process. After the wrapper

function executes, the translator is responsible for marshalling its result and the

execution status and returning it to the server. On the server side, there is a built-in

interpreter, that receives plain-text (or URI encoded text via Query String arguments)

and parses it to recognize a valid syntax, with valid reference to a remote

function/procedure, and with valid constants values for required arguments, or valid

reference to variables of proper type, or valid references to other functions with proper

result type. All the references are being resolved by the server prior to sending RPC to

85

the client side, and all the arguments gets to be passed as constant values at the end.

Any invalid RPC call would be recognized as broken by the server-side interpreter

before it could be passed on to the remote client. The advantage of such approach is

that it is possible to add a code optimizer to the interpreter, so that an entire block of

code including RPC calls, can be investigated for dependencies to allow buffering

and/or caching of certain data values to limit the number of necessary remote calls in

within the scope of a single script. Each individual RPC call is only grouped under a

domain, not under an object on the server, which seems to be more transparent.

Implementing a similar code optimizer for the RMI approach would require dealing

with more complex syntax of the source code by the parser. Ultimately, WOSH lacks

the interpreter component in its design

5 Conclusion

Proposal architecture for integration of hardware and software resources turned out to be

possible to implement, and was also successfully tested in a commercial project. It has proven

to save time and complexity when adding RPC functionality to an existing system.

Some of the directions for the future work are:

- Publish an edition of API Operator and SDK online, to attract potential developers in using

it for their projects

- Promote a concept of exporting functionality of commercial programs as an added-value

(promoting compatibility with the system)

- Improving the support for EUD by adding supported semantics to the built-in script

interpreter, and perhaps by developing a user-friendly source code editor

- Porting API Operator software and SDK to more platforms

86

There are 2 important aspects that make the proposed system original:

1. The alternative approach

2. Incentives for supporting the philosophy

In terms of the approach, other service-oriented systems allowing for integration of resources

and enabling RPC, generally expect developers to be willing to intentionally build solutions

meant to either be used as a service, or to incorporate and utilize support for RPC. The

approach of the proposed system is that the developer does not have to build solutions with

these intentions. In fact, the solution is also dedicated to developers who do not see the need

for RPC support (and related) or service-like usage in their code. They agree to make their

code compatible with the system only with the consideration to the end-user’s convenience,

and as an added value. By making the compatibility, they manifest the philosophy that the end

user is creative enough, and capable enough to figure out his own ways to use the product,

outside of the manner or problem domain anticipated by its developer in the moment of

creation. And by providing the system compatibility of their products, developer manifest that

end-users deserve that freedom. The developer does not have to especially adapt his

programming style or his architecture to show consideration for RPC support or integration

into a network as a shared resource. He just allows for an alternative input interface apart of

the end user directly interacting with his program. The alternative is to accept input coming

from the network via RPC call, which happens transparently to the program itself. Moreover,

the developer can even decide to share a code that if called, does not affect the program itself

in any way. For example, allowing to perform an operation on an argument, without affecting

any of the documents currently being edited by the program.

As for the incentives, when integrating the solution into existing products, both the target for

the product and the market penetration potentially increase. The target grows because now

also users without interest in the domain, for which the product was originally designed, may

87

find it useful for their own problem domains, even though they were not anticipated by the

developer. The market penetration can potentially grow as well, because some of these end

users not anticipated by the developer may actually purchase the product (if it is not freeware).

Other benefit for the developer is the ability to implement more sales strategies. For example,

his product might be offering a separate licensing terms and pricing for the end users who will

only use it as a standalone product, different from those when the end user will also use the

product as a resource under the system, and perhaps also different from if the end-users is

planning to use the product in both ways. In other words, the incentives for making existing

product compatible may come on many levels.

From the design point of view, API Contributor drivers and the RPC interpreter were not

found to be realized within alternative solutions. Moreover, during the research the feature of

flavors for API Operator and API Contributor editions was also not found in other solutions.

88

6 Bibliography

 Scaffidi, Christopher, Shaw, Mary and Myers, Brad A. (2005): Estimating the

Numbers of End Users and End User Programmers. In: VL-HCC 2005 - IEEE

Symposium on Visual Languages and Human-Centric Computing 21-24 September,

2005, Dallas, TX, USA. pp. 207-214

 Burnett, Margaret M. and Scaffidi, Christopher (2013): End-User Development.

In: Soegaard, Mads and Dam, Rikke Friis (eds.). "The Encyclopedia of

Human-Computer Interaction, 2nd Ed.". Aarhus, Denmark: The Interaction Design

Foundation.

 Lieberman, Henry, Paterno, Fabio, Klann, Markus and Wulf, Volker (2006):

End-user development: An emerging paradigm. End User Development.

In: Lieberman, Henry, Paterno, Fabio and Wulf, Volker (eds.). "End User

Development (Human-Computer Interaction Series)". Springerpp. 1-8

 FRAMINGHAM, Mass. May 24, 2012, IDC Press release: "Android- and iOS-Powered

Smartphones Expand Their Share of the Market in the First Quarter, According to IDC",

Available online at:

http://www.idc.com/getdoc.jsp?containerId=prUS23503312#.UPv0kiesiSo

 Darcy Travlos, “Five Reasons Why Google Android versus Apple iOS Market Share

Numbers Don't Matter”, Forbes 2012, available online at:

http://www.forbes.com/sites/darcytravlos/2012/08/22/five-reasons-why-google-android-

versus-apple-ios-market-share-numbers-dont-matter/

 Arnaud Sahuguet, Fabien Azavant (2001): Building Intelligent Web Applications Using

Lightweight Wrappers. In Data and Knowledge Engineering, Volume 36, Issue 3, p.

283-316.

http://www.interaction-design.org/references/authors/christopher_scaffidi.html
http://www.interaction-design.org/references/authors/mary_shaw.html
http://www.interaction-design.org/references/authors/brad_a__myers.html
http://www.interaction-design.org/references/conferences/vl-hcc_2005_-_ieee_symposium_on_visual_languages_and_human-centric_computing.html
http://www.interaction-design.org/references/conferences/vl-hcc_2005_-_ieee_symposium_on_visual_languages_and_human-centric_computing.html
http://www.interaction-design.org/references/authors/margaret_m__burnett.html
http://www.interaction-design.org/references/authors/christopher_scaffidi.html
http://www.interaction-design.org/references/authors/mads_soegaard.html
http://www.interaction-design.org/references/authors/rikke_friis_dam.html
http://www.interaction-design.org/references/authors/henry_lieberman.html
http://www.interaction-design.org/references/authors/fabio_paterno.html
http://www.interaction-design.org/references/authors/markus_klann.html
http://www.interaction-design.org/references/authors/volker_wulf.html
http://www.interaction-design.org/references/authors/henry_lieberman.html
http://www.interaction-design.org/references/authors/fabio_paterno.html
http://www.interaction-design.org/references/authors/volker_wulf.html
http://www.idc.com/getdoc.jsp?containerId=prUS23503312#.UPv0kiesiSo
http://www.forbes.com/sites/darcytravlos/2012/08/22/five-reasons-why-google-android-versus-apple-ios-market-share-numbers-dont-matter/
http://www.forbes.com/sites/darcytravlos/2012/08/22/five-reasons-why-google-android-versus-apple-ios-market-share-numbers-dont-matter/

89

 Mike King, 9 November 2012: Global home automation systems market forecast to

reach more than 4 million units by 2013, at http://www.companiesandmarkets.com,

News/Information Technology.

 Steven Castle, December 20 2011: We’ll Say it Again: Automation is Key to Home

Energy Management, at: http://greentechadvocates.com

 Joëlle Coutaz, 2008: End-User Programming for the Home: a Challenge, Proc. @home

workshop in conjunction with Pervasive 2008

http://www.companiesandmarkets.com/
http://greentechadvocates.com/

90

7 Apendices

7.1 Apendix 1

Appendix 1: Screenshot of a Layer 2 GUI via web browser

Example via local host

Input for RPC calls

Listing of local API

Listing of global variables

Listing of a remote

resource

91

7.2 Apendix 2

Appendix 2: Listing of attached CD

Folder V1: Folder V2:

1 libEngine.pas

2 libErrors.pas

3 libHostetFunctions.pas

4 libHostedVariables.pas

5 libSupportedTypes.pas

6 libTCPserver.pas

7 NETPASKALv1.exe

1 CLIENT

1.1 RPCclient.dpr

1.2 RPCclient.exe

1.3 Unit1.pas

2 libMemberTCPLite.pas

3 libServerMod_HTTP

4 netpaskal.css

5 Netpaskal32.dpr

6 Netpaskal32.exe

7 Tutorial.txt

8 uAnLex.pas

9 Unit1.pas

Description of listed libraries can be found in the chapter 3.7.

There are two folders on the attached CD: V1 and V2. The V1 folder contains the

core libraries that were implemented from 2010 to 2011 before the final design for

the proposed system was clear. The folder V2 contains additional libraries specific

for the proposed system. The API Operator is implemented in the project

Netpaskal.dpr and compiled as Netpaskal32.exe, the API Contributor demo is

implemented in the subfolder CLIENT in the project RPCclient.dpr and compiled

as RPCclient.exe. Both API Operator and APO Contributor projects include V1

libraries.

The “Netpaskal” word originates form an old project that I was working on between 2009 and 2010,

that was about implementing a Pascal dialect interpreter as a web service. The subset of Netpaskal

project was used to create the core engine for the proposed system, and eventually the name

“Netpaskal” remained as a name of some files in the current project.

92

8 Resume and CV

93

