Contents

中文摘要	Ι
Abstract	II
誌謝	III
Contents	IV
List of Tables	VII
List of Figures	VIII
Chapter 1 Introduction	1
1.1 Introduction to Outer Receiver	1
1.2 Design and Implementation Iss	sues3
1.3 Organization of Thesis	
Chapter 2 Architecture of Outer Receive	rES. N
2.1 IEEE 802.11a/g Standard relati	ve to Outer Receiver5
2.1.1 Scrambler	
2.1.2 Convolutional encoder	6
2.1.3 Interleaveing	7
2.1.4 Puncture	
2.1.5 Mapping	
2.2 System Requirements to Outer	Receiver11
2.2.1 Data Flow	
2.2.2 Clock Latency Require	ment12
2.3 Modified Viterbi decoder Archi	tecture13
2.3.1 3 stages radix-2 ACS	
2.3.2 Modified Outer Receive	er Clock Rate13
2.4 Multi-Rate System	14

4.3.3 Decoding Mechanism of 16-QAM	44
4.3.4 Decoding Mechanism of 64-QAM	45
4.3.5 Throughput Issue	46
4.4 Viterbi Decoder	47
4.4.1 Proposed Architecture	47
4.4.2 BMC Module	48
4.4.3 ACS Module	48
4.4.3.1 Implementation Issues	48
4.4.3.2 ACS Overflow Prevention	50
4.4.4 Traceback Module	51
4.4.5 The Comparison between Different Traceback Length	53
4.4.6 Power Reduce	53
4.5 Implementation Results	54
4.6 Verification	57
Chapter 5 Integration and Evaluation	59
5.1 Integration	
5.2 The Interface between Outer Receiver and MAC	62
5.3 Evaluation	63
5.4 Comparisons	65
Chapter 6 Conclusions and Future Work	67
6.1 Conclusions	67
6.2 Future Work	68
Bibliography	69

List of Tables

Table 1: Timing-related parameters
Table 2: Normalization factor Kmod10
Table 3: The 8 data rates of IEEE 802.11a and the corresponding parameters14
Table 4: The results of quantization operation
Table 5: The mapping of metrics
Table 6: The enable interval to the following modules40
Table 7: The result of gate count with traceback-length 90 and 63
Table 8: The gate count of the proposed outer receiver
Table 9: The layout area of the proposed outer receiver
Table 10: Contents of the RATE field60
Table 11: Comparisons of Viterbi decoders
Table 12: Comparison with Atheros for PER versus SNR for system performance66
Contraction of the second s

List of Figures

Figure 1: IEEE 802.11a baseband system2
Figure 2: Scrambler
Figure 3: (2, 1, 7) convolutional encoder6
Figure 4: 16-QAM interleaving8
Figure 5: Puncture procedure9
Figure 6-1: BPSK, QPSK, and 16-QAM constellation bit encoding10
Figure 6-2: 64-QAM constellation bit encoding11
Figure 7: Outer receiver data flow timing diagram12
Figure 8: Metric function of BPSK16
Figure 9: Two metric functions of one 16-QAM quadrature component17
Figure 10: Three metric functions of one 64-QAM quadrature component17
Figure 11: Two modified metric functions of one 64-QAM quadrature component18
Figure 12: One modified metric functions of one 64-QAM quadrature component19
Figure 13: BER versus SNR for 3-bit, 4-bit, 5-bit, 6-bit soft decision, and hard
decision20
Figure 14: The demapping functions of BPSK for 4-bit soft decision20
Figure 15: The demapping functions of QPSK for 4-bit soft decision21
Figure 16: The demapping functions of 16-QAM for soft decision 4 bits21
Figure 17: The demapping functions of 64-QAM for 4-bit soft decision22
Figure 18: The mismatch of floor and round operation24
Figure 19: Dummy metric value26
Figure 20: Trellis diagram for depuncture metric term27
Figure 21: SNR versus BER for square-root case and normal case29
Figure 22: The example of the received symbol (0,3)31

Figure 23: Radix-2 ACS function block
Figure 24: Two-stage radix-2 trellis to one-stage radix-4 trellis
Figure 25: Three-stage radix-2 trellis to one-stage radix-8 trellis
Figure 26: The traceback operation
Figure 27: BER versus SNR for different traceback-length
Figure 28: PER versus SNR for different traceback-length37
Figure 29: Constant-multiplier with constant number 7
Figure 30: The enable clock diagram of the following modules40
Figure 31: The pattern of coding rate 1/241
Figure 32: The pattern of coding rate 3/441
Figure 33: The pattern of coding rate 2/342
Figure 34: BPSK 1/2 decoding mechanism each OFDM symbol43
Figure 35: BPSK 3/4 decoding mechanism each OFDM symbol43
Figure 36: The QPSK 1/2 decoding mechanism each OFDM symbol44
Figure 37: The QPSK 3/4 decoding mechanism each OFDM symbol44
Figure 38: The 16-QAM 1/2 decoding mechanism each OFDM symbol45
Figure 39: The 16-QAM 3/4 decoding mechanism each OFDM symbol45
Figure 40: The 64-QAM 2/3 decoding mechanism each OFDM symbol46
Figure 41: The 64-QAM 3/4 decoding mechanism each OFDM symbol46
Figure 42: The architecture of correlator algorithm
Figure 43: The architecture of Euclidean distance algorithm
Figure 44: The traceback element
Figure 45: The location of the upper and lower elements
Figure 46: The traceback architecture53
Figure 47: The micro photo of the outer receiver chip
Figure 48: The packet view of the outer receiver

Figure	49:	The setup of verification platform	57
Figure	50:	The setup of verification platform	58
Figure	51:	IEEE 802.11a packet data frame format	60
Figure	52:	The modified 3-bit scrambler	61
Figure	53:	The indicators of the receiver	61
Figure	54:	The proposed outer receiver architecture	62
Figure	55:	RF, baseband and MAC interface	63
Figure	56:	CRC-16 structure	64
Figure	57:	PER for 8 different data rate with traceback-length 90	64

