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Chapter 3  

Design of Outer Receiver 

 
 
 

3.1 Demapping 

3.1.1 Metric Generation Function 

  In chapter 2, we have discussed BPSK, QPSK, 16-QAM, and 64-QAM 

constellation mapping. According to the standard, the conversion adopts Gray-coded 

mapping. And white Gaussian noise probability distribution can be approximated to 

parabolic curve in a coordinate axis. For the hardware implementation complexity 

consideration, a simple metric generation Equation in form of 1st order linear function 

is proposed. 

                         CnISM II ±×=                         (3.1) 

MI is the output metric of demapping, SI is the slope, I is the input of demapping, and 

Cn is the constant. The larger the value indicates that we have more confidence on 

this bit. By employing Equation (3.1), BPSK, 16-QAM, and 64-QAM metric 
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generation function are presented in Figure 8, Figure 9, and Figure 10, respectively. 

The bi represents the responding code bit. One of QPSK quadrature components is the 

same as BPSK. The metric value represents the quantification of the region from code 

bit 0 to code bit 1. So we only concern about either code bit 0 or code bit 1. In my 

design, code bit 1 methodology is adopted.  

 

 

Figure 8: Metric function of BPSK  



 17

 

Figure 9: Two metric functions of one 16-QAM quadrature component  
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Figure 10: Three metric functions of one 64-QAM quadrature component 

  Trough observing Figure 8~10, it is straightforward that the metric generation 

function only suits with the range which code bit changes. And other range shall be 

set to maximum or minimum value of metric. Figure 11, 12 show the modified 

diagram for one quadrature component 64-QAM of code bit b0, b1, and b2, 

respectively. 

 

Figure 11: Two modified metric functions of one 64-QAM quadrature component 
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Figure 12: One modified metric functions of one 64-QAM quadrature component 

3.1.2 Soft Decision 

  For high QAM technology applications, soft decision algorithm is usually adopted 

in order to get higher performance. Figure 13 shows the SNR vs BER compared with 

hard decision, soft decision 3-bit, 4-bit, 5-bit, and 6-bit. As shown in Figure 13 under 

64-QAM and coding rate 3/4, the coding gain improvement between hard decision 

and soft decision are 3.2dB, 3.6dB, 3.75dB, 3.8dB, respectively. From 3-bit to 4- bit 

soft decision, the performance gets higher improvement, and the improvement of 4-bit 

to 6-bit soft decision is not larger than 3-bit to 4-bit. Therefore, 4-bit soft decision 

shall be adopted in this thesis. As shown in Figure 14, Figure 15, Figure 16, and 

Figure 17, we apply 4-bit soft decision to the demapping functions. 
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Figure 13: BER versus SNR for 3-bit, 4-bit, 5-bit, 6-bit soft decision, and hard 

decision 

 

Figure 14: The demapping functions of BPSK for 4-bit soft decision 
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Figure 15: The demapping functions of QPSK for 4-bit soft decision 
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Figure 16: The demapping functions of 16-QAM for soft decision 4 bits 
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Figure 17: The demapping functions of 64-QAM for 4-bit soft decision  

 

3.1.3 Quantization Effect 

Another issue of demapping design is the problem produced by floor and round 

operations. Since the soft decision is adopted, the demapping function will be 
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quantified as a stepladder form. The problem is that the middle point will shift left or 

right when we truncate or round the demapping function. The mismatch produces the 

unbalance of metric, and then we will lose some performance. Therefore, we shall 

choose proper quantization operation for demapping functions to eliminate the 

mismatch effect. Figure 18 shows the mismatch case of 16-QAM, and the results of 

quantization operation is presented in Table 4. 

 

Table 4: The results of quantization operation  

  Quantization operation 

BPSK Truncate     

QPSK Truncate     

16-QAM B0 B1   

  Truncate Round   

64-QAM B0 B1 B2 

  Truncate Round Round 
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Figure 18: The mismatch of floor and round operation  

 

3.1.4 Generalized Metric Generation Function 

  From Equation (3.1), we can derive the generalized metric generation function for 

other soft decision resolutions. We define M to be the resolution of soft decision.  

                           120 −≤≤ M
IM                       (3.2) 

The minimum value of metric is zero, and the maximum value is 12 −M . And the 

threshold values of code bit range are 0tI  and 1tI , respectively. Therefore, we set 

the slope value to be 
01

12

tt

M

I II
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= . Rewrite Equation (3.1) by replacing IS , we 

obtain Equation (3.3). 
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3.2 Deinterleaver 

  From Table 3, the number of coded bits per OFDM symbol for different type 

modulations is 48, 96, 192, and 288, respectively. For the data capacity of different 

modulation types, it is sure that the deinterleaver employs the maximum value as the 

buffer size. Another role of the deinterleaver in the proposed outer receiver is set to be 

a control unit. The deinterleaver shall enable the following modules for 8 different 

data rate in different time interval.  

 

3.3 Depuncture 

3.3.1 Traditional Method 

  The depuncture module shall insert a dummy “zero” metric into the 

convolutional decoder on the receive side in place of the stolen bit. Because we use 

unsigned number to represent the metric value, we shall insert a middle value between 

maximum and minimum value in order to replace the dummy “zero” metric. As 

shown in Figure 19, the dummy metric value is described. 
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Figure 19: Dummy metric value 

 

3.3.2 Modified Method 

  Through the quantization of metric, there is one problem about unbalance of 

metric given by dummy metric value. For coding rate 3/4 or 2/3 case, there are always 

dummy metric terms of depuncture for the input of Viterbi decoder. The effect of 

dummy metric terms is equivalent to produce error to Viterbi decoder. For example, 

the coding rate 3/4 depuncture pattern responding to trellis diagram is shown in 

Figure 20. According to Figure 20, the branches metric calculations are listed in 

Equation (3.4). In Equation (3.5), the depuncture metric terms inserted. 
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Figure 20: Trellis diagram for depuncture metric term 
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iΓ  is the previous stage survival metric of state i. jiM ,  is the metric of the 

branch of (i,j). irX ,  and irY ,  are the reference metric of code bit i. Ideal 

depuncture dummy metric shall give the middle point for the balance of metric, and 

then the square term shall be equal to other branch square term. Since Viterbi 

algorithm includes comparison with two metrics, the two square terms will be 

eliminated. In depuncture trellis diagram, all branches exist the same square term. So 

we find that the dummy metric term shall not be inserted into Viterbi decoder and it 

shall be replaced by zero metric. 
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3.4 Viterbi Decoder 

An implementation of the Viterbi algorithm, referred to as Viterbi decoder, 

consists of several functional blocks. A branch metric calculation (BMC) unit, which 

is responsible for calculating the set of branch metrics for each time instant, an 

add-compare-select (ACS) unit, which is responsible for generating the decisions 

(survivors) made by the decoder and the metrics for next stage. There are two 

methods which extract decoded bits known as register-exchange (RE) and trace-back 

(TB). In the literature, the RE technique is suitable for trellises with only a small 

number of states, whereas the TB approach is acceptable for trellises with a large 

number of states. We choose the TB method instead of RE method because RE 

consumes more power than TB does [5] [6].  

3.4.1 Branch Metric Calculation 

3.4.1.1 Metric of Euclidean Distance 

Since the soft decision algorithm has been discussed in section 3.1, the traditional 

metric is Euclidean distance. Each instant time the data sequences are received by 

Viterbi decoder, and the data sequences will be divided into real part and imaginary 

part (X , Y). The branch metric equation is described as 
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),( rr YX  is the reference symbol. Bit 1 means metric value being 12 −m , and Bit 0 

means metric value being zero. Although the Euclidean distance should be calculated 

in Equation (3.6), but the hardware implementation of Euclidean distance requests an 

extra ROM to achieve the square root function. We calculate the fixed point operation 

of positive-relationship of Euclidean distance as the right term. We may obtain 0.2dB 

performance better than the right term. Figure 21 shows the SNR versus BER of BMC 

applying square root function or not under 4-bit soft decision, 64-QAM, and coding 

rate 3/4. 

 
Figure 21: SNR versus BER for square-root case and normal case 
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3.4.1.2 Metric of Correlation 

Besides applying Euclidean distance for metric unit, another scheme can be derived 

from Euclidean distance equations. It is described as follows: 
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                               (3.7) 

Derive Equation (3.8) from expanding Equation (3.7). 
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By eliminating the same term, Equation (3.9) is derived. 
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The reference metrics 0,rX , 1,rX , 0,rY , and 1,rY  can be taken as constant. And 

IX  and IY  are discrete random variables. So the calculation of BMC can be 

viewed as correlator. The metric terms consist of real part and imaginary part, and can 

be calculated independently. The branch metric calculation equations are represented 

as: 
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                                         (3.10) 

Table 5 shows the conversion of IX  under bit 1 and bit 0, respectively. For example, 

the case which the decoder receives (0,3) symbol is shown in Figure 22.  
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Figure 22: The example of the received symbol (0,3) 

 

Table 5: The mapping of metrics 

 

 The proposed correlator algorithm for BMC focuses on that the larger value of 
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metric, the more likely path in the trellis. In the literature, it is the original definition 

of the correlation. It is different from the traditional algorithm of Euclidean distance. 

It is sure that we also can employ the reverse operation to find the minimum metric of 

the paths. 

3.4.2 Add-Compare-Select 

  IEEE 802.11a uses (2, 1, 7) convolutional code as its channel encoder, and the 

trellis diagram of Viterbi decoder can be decomposed into basic function blocks. The 

basic function block is called the radix-2 ACS unit. We take the trellis diagram of four 

states as an example in Figure 23. 0,1 st−Γ  is the previous survival metric, 00, sst >−λ  

is the branch metric from state 0 to state 0, and 0,stΓ  is the instant metric of the ACS 

unit. For the application with the large number of trellis state, the fully parallel 

architecture of ACS causes huge gate count in hardware implementation. 

 

Figure 23: Radix-2 ACS function block 
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  The main consideration of ACS architecture design is the trade off between the 

number of ACS stage and the decoder throughput. Several kinds of the ACS unit are 

proposed to achieve the different applications. For low data rate applications, we even 

can complete the same decoding work by parts of the fully parallel architecture of 

ACS. But for high data rate applications, we have to afford the cost of high 

complexity hardware. It is well known that high radix ACS unit is proposed to 

improve the decoding throughput. Actually, the high radix ACS concept is to decode 

several received symbols each instant time. Figure 24 depicts the conversion from 

two-stage radix-2 ACS to one-stage radix-4 ACS. Figure 25 depicts the conversion 

from three-stage radix-2 ACS to one-stage radix-8 ACS for 8 states trellis. Because 

we use 3-stage radix-2 ACS architecture, the word-length optimization of ACS-stage 

registers can be completed. 

 

Figure 24: Two-stage radix-2 trellis to one-stage radix-4 trellis 
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Figure 25: Three-stage radix-2 trellis to one-stage radix-8 trellis 
 
 

3.4.3 Traceback 

  For the decoding scheme, we adopt the well-known traceback method, which is 

described as follows [7] [8]: 

By using ACS methodology, the survivors can be obtained. The survivor means that 

which way the path goes from the previous state to the present state. So we usually 

store the survivors from ACS in memory unit called SMU. For example, the received 

symbol is [ 00 00 11 01 00 01]. When we receive the specified number of symbols, 

we start to trace the path which has the minimum distance. We depend on the 
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survivors to decide the next path we trace back. Figure 26 shows the traceback 

operation. 

 

Figure 26: The traceback operation 

In this example, we pay attention on that we start to trace back the path at 7th 

symbol. The traceback parameter is usually called traceback-length or 

traceback-spread. It means how many symbols we received, and we start to trace back 

the path. Traceback length is an important parameter when we implement Viterbi 

decoder. So we simulate the performance BER versus SNR with different traceback 

length in AWGN as follows. 

3.5 Simulations 

3.5.1 Simulation Environment 

  The simulation environment is set up with MATLAB. The soft decision resolution 

adopts 16-level (4bits). Because the 64QAM is the most critical case, we simulate the 
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case about BER versus SNR and PER versus SNR. The PER simulation is done at a 

length of 1024 bytes. 

3.5.2 Simulation Result 

64-QAM Case 

As depicted in Figure 27, BER versus SNR simulation for different 

traceback-length is presented. It is clear that the case of from traceback-length-51 to 

traceback-length 63 has more coding gain improvement than other cases. Because 

64-QAM is the most critical case, we adopt traceback-length 63 for the proposed 

Viterbi decoder. Figure 28 shows the PER versus SNR for different traceback-length. 

 
Figure 27: BER versus SNR for different traceback-length 
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PER of Decoder Length 90 vs. 63 with the same Soft Bits=4
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Figure 28: PER versus SNR for different traceback-length 

 


