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ABSTRACT

This thesis discusses microscale heat transfer phenomena in solid-state
multilayer structures. First, we discuss heat transfer in dielectric thin films from both
macroscopic and microscopic points of view. Phonon radiative transfer model as well
as Fourier law and thermal wave theory are utilized to analyze the transient heat
conduction phenomena in dielectric thin films. Phonon radiative trarsfer model
predicts temperature discontinuities at boundaries due to its ballistic nature when the
thickness of the film is less than the phonen,mean free path. In contrast, the results
predicted by the phonon radiative transter model approaches to that of Fourier law
when the thickness of the film:is much grater than the phonon mean free path. The
results show that as the ratio of thin film thicknessto phonon mean free path, L/L, is
greater than 100, Fourier law, a macroscopic heat transfer model, is a good
approximation to deal with the transient heat transfer problems in dielectric thin films.

Second, we present a numerical analysis on estimating the microscale heat
transfer in atwo-layer concentric circular tube. The phonon radiative heat conduction
equation and the diffuse mismatch model are utilized to simulate the microscale heat
conduction in solids. The results show that the reduction of layer thickness will reduce
the effective thermal conductivity. Moreover, the numerical predictions agree with the
experimental data very well. Besides the size effect, the reduction of curvature will
also reduce the effective thermal conductivity. However, the size and curvature effects
on the interface thermal resistance are not significant.

Third, we concern microscale hest transfer in micro tubes. A two-dimensional



equation of phonon radiative transfer was derived to simulate this system. The
influences of size and curvature on thermal conductivity are examined closely. The
results show that ballistic transport dominates if the tube thickness or height is
comparable or less than phonon mean free path. The reduction of size reduces the
effective thermal conductivity. However, the curvature effect on the effective thermal
conductivity is not significant.

Extending the foregoing analysis on microscale heat transfer, size effects on the
performance of thermoelectric micro coolers are examined in detail. EPRT and DMM
are utilized to model the microscale heat transfer in thin film, nano wire and nano tube
superlattices. The results show that the effective thermal conductivity of
thermoelectric materials in superlattice structures decreases as the layer thickness
decreases. In addition, the thermal conductivities of nano wire and nano tube
superlattices are less than that of: thin film superlattices when they have the same layer
thickness. Thus, nano wire and nano tube-superlattices are potential materials for high
performance thermoel ectric devices.

From the above studies, it is observed that the reduction of size causes the
reduction of thermal conductivity. Thus, to assure the heat dissipation ability, we
utilize the effective thermal conductivity calculated by the microscale heat transfer
model to estimate the surface temperature in thin-film/substrate systems. Numerical
results show that the inverse method accurately estimates surface conditions and
temperature distributions in a two-layer system even with an abrupt temperature drop
at the interface. Sensor locations and interface thermal resistance only dightly affect
the accuracy of the inverse estimation when the exact input data (without
measurement errors) are applied. However, the inaccuracy might be amplified by the

interface thermal resistance and sensor locations if measurement errors exist.
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1. INTRODUCTION

1.1 Motivation

Owing to the trend towards miniaturization in engineering systems, the study of
microscale phenomena has attracted significant attention for the past two decades.
Reducing sizes have increased device switching speed, and thus have also increased
heat generation [1]. Since the temperature of solid-state devices significantly
influences their performance, heat dissipation becomes a vital issue. Experimental
results of thermal conductivity measurements demonstrate that the thermal
conductivities of thin films are frequently smaller than those of corresponding bulk
materials [2-4]. This phenomenon implies:that the Fourier law of heat conduction,
which is derived from the macrascopic point of view, is inappropriate for treating
microxxale heat transfer in: solids. Thus, heat transport mechanisms and
thermophysical properties of materrals must -be known prior to deaing with
microscale heat transfer problems.

From a microscopic perspective, heat carriers in solids include both free
electrons and phonons. In metas, free electrons dominate heat conduction, while
phonons are the major heat carriers in dielectrics and semiconductors [3, 5]. The
macroscopic heat transfer model such as Fourier law requires hundreds of thousands
of energy carrier collisons. However, if the length and/or time scales are shrinking
into the micro/nano scale, there is no sufficient space or time for the process of heat
transport to occur. The macroscale heat transfer model can result in a significant error
in the calculated heat transfer rate or temperature distribution in the devices involving
the miniaturization length and time scales.

Since multilayer structures have been widely used in many solid-state devices

1



such as microelectronic, optical, and superconducting devices, it is important to
realize the microscale heat transfer in multilayer structures. In practical engineering
applications, thin films are amost always on supporting substrates and/or in
multilayer configurations. Besides the size effect, interface thermal resistance also is
important in determining heat flow in thin-film/substrate systems. For example, a
restriction in heat flow from the superconducting film can cause a transition from the
superconducting state to the normal state during operation of the device, resulting in
device failure. The interface thermal resistance prevents heat transporting from one
medium to another and this thus reduces the overall thermal conductivity of materials.
It is undesired for heat dissipation. However, the lower thermal conductivity makes
high performance thermoel ectric devices.

Thermoelectric devices are solid-state energy conversion devices. Since they
have no moving parts, they have no'noise'and are reliable. They have small size and
light weight. Moreover, unlike the -conventional ~compressor-based refrigerators,
thermoelectric refrigerators use no CFC.gas or any other refrigerant gas so they are
environmentally friendly [6]. Owing to these advantages, the thermoelectric devices
have found a large range of applications[7].

To describe the performance of the thermoelectric materials, an index called the

dimensionless thermoel ectric figure of merit, ZT , was defined as [8]

2
T=>Se (1-1)
K

where S is the Seebeck coefficient, s, is the electrical conductivity, T is the

temperature and K is the thermal conductivity. To increase the performance of a
thermoelectric device, the figure of merit must be maximizing. In genera, metals

have high electrical conductivity and high Seebeck coefficient. However, their high



thermal conductivity makes the thermoelectric devices impracticable. Materials with
high Seebeck coefficients generally have low thermal conductivity, but their electrical
conductivity are too low. The properties of semiconductors lie between conductors
and insulators and make for the best thermoelectric materials.

By the end of 1950’ s, the best thermoelectric materials were found to be alloys of
bismuth telluride and antimony telluride and the ZT vaue was about unity. A ZT
value of 4 would make thermoelectric refrigerators economically competitive with
conventional compressor-based refrigerators [9]. Over the past 40 years, the ZT
value has improved very little. In the 1990’ s, the rapid development of semiconductor
industrial makes the searching for thermoelectric materials with high ZT values
hopeful.

It is clear that high Seebeck:coefficient, high electrical conductivity and low
therma conductivity maximize the..ZT value. There are several methods to increase
the ZT vaue. One approach-is the use-of lowdimensiona nanostructures like
superlattices, nanowires and quantum..dots [10, 11]. Superlattices are periodic
structures consisted of hundreds of layers of thin films [12]. Due to the confinement
of phonon in superlattices, the therma conductivity will be reduced and then

increasesthe ZT vaue [13].

1.2 Nano Technology in Energy and Heat Transfer

Nano technology has become a very hot topic in recent years. Nano machines
and nano materials are very important issues in the area of nano technology. As the
advancement in fabrication, the device size is shrinking into micro/nano meter and it
is possible to produce a nano machine. A nanoscale submarine might be useful in

medicine by navigating through the blood, seeking out cancer cells and destroying



them [14]. Besides developing a novel nanomachine, a material with desired physical
characteristics is aso helpful to improve the performance of the current machines or
devices. The past nano science researches told us that the physical properties of
materials are different from their bulk values when the size of a device is reduced to
nanometer scale. Thus, new structures with novel physical properties can be designed
with known materials. There are many potential engineering applications associated
with nano technology in energy and heat transfer such as thermoelectric superlattices,
carbon nanotubes, electrokinetic microchannel battery, nanofluids and solar cells. The
brief introductions of carbon nanotubes, electrokinetic microchannel battery,

nanofluids and solar cells are presented as below.

Carbon Nanotubes

Carbon nanotubes, as shewn.in Fig. 1.1, .have attracted many researchers
attention due to their widely possible.applications. They are constructed by rolling up
an infinite stripe of graphite sheet‘and.can be described as graphite cylinders. The
extraordinary high and reversible hydrogen absorption in single walled carbon
nanotubes make it possible that using them as high capacity hydrogen storage media,
which is important for fuel cells [15]. Besides, single walled carbon nanotubes are
used as battery electrodes owing to their large irreversible capacities and voltage

hysteresis[16].

Electrokinetic Microchannel Battery

Yang et a. [17] developed an electrokinetic battery consisting of an array of
microchannels to convert the hydrostatic pressure of a liquid into electrical work.

Electrically neutral liquids perform a charge distribution near the solid-liquid interface,



asillustrated in Fig. 1.2, owing to a charged solid surface and this region is known as
electrica double layer. Due to the presence of an electrica double layer

pressure-driven flow in a microchannel will induce a streaming current.

Nanofluids

Solid particle suspensions with high thermal conductivity have the potential to
enhance the heat transfer in liquids. Nanofluid, asillustrated in Fig. 1.3, isanew kind
of heat transfer medium containing uniformly and stably distributed nanoparticles
[18]. Recent measurements showed that the thermal conductivity of nanofluids
increases as the particle size decreases. To explain this phenomenon, Keblinski et al.
[19] proposed four possible mechanisms: (1) Brownian motion of the particles, (2)
molecular-level layering of the liquid at the liquid/particle interface, (3) ballistic heat
transfer in the nanoparticles, and (4) the effects of nanoparticle clustering. However,
these mechanisms are insufficient /in -explaining / the dramatic increasing thermal
conductivity of nanofluids. There iS‘a need.to explore other heat transfer mechanisms

to complete the heat transfer enhancement theory of nanofluids.

Solar Cells

The polymer-based devices are mostly attractive due to their easy production
technology and lower costs [20]. However, the efficiencies of polymer solar cells are
much lower than those of conventional solar cells. Solar cells assembled from
blending inorganic nanorods with polymers have the potential to enhance the
efficiency of solar power conversion [21]. Controlling inorganic materials on the
nanoscale opens new opportunities for the development of novel solar cells because of

the nanoscale nature of light absorption and photocurrent generation in solar energy



conversion [22]. Since inorganic nanorods naturaly provide a directed path for
electrical transport, they are preferable in solar energy conversion. By atering the
radius of CdSe nanorods, as shown in Fig. 1.4, the quantum size effect can be used to
control the band gap. Moreover, quantum confinement enhances the absorption

coefficient and thus the devices can be made more conmpact.

1.3 Microscale Heat Transfer Models

1.3.1 Molecular Dynamics Simulation

Utilizing a true representation of the intermolecular potentia in molecular
dynamics ssimulations is critical for ensuring that the physics underlying microscale
heat transfer pheromena is accurate [23]. However, it is difficult to obtain a precise
potential function. One of the well established intermolecular potential functions is

the Lennard-Jones (LJ) potential. The LJ 12-6°potential is

4 12 6
% ,0 =®,0
f(n)=4e, = P é v =
i o fi

: (1-2)

where r; is the distance between atoms i and j, e is the well depth of the

potential and s, is the equilibrium separation parameter. The Lennard-Jones

potentia is a two-body potential and it is valid for inert gases. Another frequently
mentioned two-body potential called Morse potential is adequate for metals. The
two-body potential functions are the simplest potential functions since only the
interactions between two atoms are considered. Thus, many-body potential functions,
such as tight-binding potential, Stillinger-Weber potential and the embedded-atom
method, are developed to describe the interactions among atoms more precisaly.

The first derivative of Eq. (1-2) is the force experienced by an atom due to the

presence of another atom. Using Newton’ s second law of motion, a relation between

6



force and acceleration can be established as

d’r,

dt?

QJo
T

m

(ry) (1-3)
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where m represents the atom mass and F is the force. Subgtituting the first
derivative of EQ. (1-2) into Eq. (1-3), a relation between the interatomic potential and

the vibrational motion of the atoms in the system will be established.

1.3.2 Thermal Wave M odel

The original thought of the thermal wave theory is that the speed of heat
propagation cannot be infinity. Thus, there must be a time lag between heat flux and
temperature gradient [24]. Cattaneo 5] and Vernotte P6] proposed a modified

model as following:

q(r.0 +t, ﬂq:;’t) = kNT, (1-4)

where q isthe heat flux, t . iSithe rélaxation time, Kk is the thermal conductivity
and T is the temperature. Substitution the above equation into the energy
conservation equation, then an aternative heat transfer model which is known as
thermal wave model or hyperbolic heat conduction equation was developed. The

hyperbolic heat conduction equation can be expressed as

2
te 1 I N LI (1-5)
a It a ft

where a isthethermal diffusion coefficient.

1.3.3 Phonon-Electron Interaction Model
Heat transfer in metals are attributed to electron and phonon transport. Since the

heat capacity of electron is much smaller than that of phonon, the heating of electron



and phonon can be described as a two-step process [27-29].

C. ﬂ'l;:e =NxkNNT,) - G(T, - T,), heating of electron, (1-6a)
T, .
C, o G(T, - T,), heating of phonon, (1-6b)

where C is the heat capacity, k is the therma conductivity, and the subscript

indices € and p denoting for electron and phonon, respectively. The energy

exchange between electrons and phonons is characterized by the coupling factor G.

1.3.4 Phonon Scattering Model
The phonon scattering model was developed by solving the linearized Boltzmann
transport equation for the pure phononfield [30]. Only heat transport by phonon

scattering was emphasized and the contribution of+€electron in conducting heat was

neglected.
1T <
C,—+Nxg=0, 1-7
et (17
W, VCo e, LotV ook
— NT +—Q= +2N(N , 1-8
o N+ g =[N+ 2N(Rbg)] (1-8)

where C isthe heat capacity, Vv is the phonon velocity, t  is the relaxation time,

and t istherelaxation time of elastically scattering.

1.3.5 Phonon Radiative Transfer M odel

The phonon radiative heat transfer model starts from the solution of the
linearized Boltzmann transport equation. The collision term in the Boltzmann
transport equation is very complicated and make the Boltzmann equation difficult to

solve. By using the relaxation-time approximation, the linearized Boltzmann equation



(1-9)

Where f° is the equilibrium phonon distribution, which follows the Bose-Einstein

distribution. Majumdar transformed the Boltzmann equation to an equation of phonon

radiative transfer (EPRT) in the form[31]

A N W P )
v qt Ix vt ,e2™ 7]

(1-10)

where | is the phonon intensity, and mr is the direction cosine. This equation has
the same form as the equation of radiative transfer. Therefore, Mgjumdar called it the

equation of phonon radiative transfer.

1.4 Interface Thermal ResistanceModels

1.4.1 Interfacial Layer M odel

The interfacial layer model assumes an.interfacia layer with variable thickness
and thermal conductivity in between two dissimilar materials. Two very important
parameters directly and significantly affecting heat transport across the two dissimilar
materials are the thermal and thickness ratios of the interfacial layer to the reference
material. For example, according to the experimental results of Marshall et a. [32] the
thermal conductivity and thickness ratios of the interfacial layer to ¥Ba-Cu-O thin
film are 0.01 and 0.02, respectively. However, these parameters are strongly
depending on the contact conditions such as contact areas and contact pressure. Thus,
it is difficult to estimate the thermal and thickness ratios of the interfacial layer to the

reference material.



1.4.2 Acoustic Mismatch Model

The acoustic mismatch model starts by assuming that phonons are the major
carriers of heat. The interface thermal resistance is attributed to the transmitting and
reflecting of phonons at the interface. The interface is perfect and structureless so
there is no scattering occurring at the interface. The phonon transmission probability
from medium 1 to medium 2 is governed by the Fresnel equations and can be
expressed as [33]

ar vV, (1-11)

a,=—-+%+22 |
" (r 1V1 +r 2\/2)2

where r isthe density and Vv is the sound velocity. Before proceeding the AMM,
the range of validity of assumptions should be checked. At very low temperatures, the
phonon wavelength is much smallef than the interfacial roughness and the size of
defect near the boundary. The interface may appear to be a perfectly flat plane, which
is the basic assumption in the acoustic mismateh model. Thus, the AMM works well
a low temperatures. For example, ‘Herth and ‘Weis [34] measured the interface

resistance between gold film and sapphire substrate at 100K and confirmed that the

AMM predictions matched the experimental results.

1.4.3 Diffuse Mismatch M odel

For most interfaces above a few Kelvin, the interface itself is a very strong
scatterer of phonons. The analog to the Fresnel equations is no longer valid. Instead,
Swartz and Pohl [35] assumed that all the phonons are diffusely scattered at the

interface and derived the phonon transmissivity from medium 1 to medium 2 as

a5y =75 r; o (1-12)

where v, isthe sound velocity of mode m (longitudinal or transverse).
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The acoustic mismatch model is valid for smooth interfaces and the diffuse
mismatch model is adequate for rough interfaces. The ratio of phonon wavelength to
the interface roughness determines the applicability of AMM and DMM. When the
phonon wavelength is far small than the interface roughness, the interface can be seen
as a rough interface and the diffuse mismatch model is applicable. Otherwise, the
acoustic mismatch model is more suitable for a smooth interface which roughness is

small compared to the phonon wavelength.

1.4.4 Scattering-M ediated Acoustic Mismatch M odel

Scattering-mediated acoustic mismatch model (SMAMM) was developed by
observing the close analog between radiative and phonon heat transport [36].
Scattering near the interface is dominant than any other mechanism [35]. At high
temperatures, the phonon mean free path is short,-so that the phonon wave will
attenuate rapidly. In contrast, scattering-has-hardly any effect on the transmission and
reflection of acoustic waves at very 1ow.temperatures. The reflectivity from medium 1

to medium 2 predicting by SMAMM can be expressed as

2
écos(q,) A u ecos(q ) B u
¢- e hl+—
SRS LVRASN | B R (1-13)
o écos(q,) A o écos(q;) B il
e —alt— +é e— bt —y
e '\ r.a érlvl r.a
and the transmissivity is
a;,@,)=1- R,@,), (1-14)
where
.2
ac= 1+&L 9 (1-158)
e2dwg
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SMAMM accurately describes the behavior of interface thermal resistance at high

temperatures and it can reduce to AMM at low temperatures.

1.5 Literature Survey

1.5.1 Microscale Heat Transfer
As mentioned before, Fourier law, a macroscale model, is inadequate to deal

with microscale heat transfer problems. Thus, it is important to develop microscale
heat transfer model. Preliminary to develop microscale heat transfer models, the
thermophysical characteristics of heat carriers must be clarified. An understanding of
heat carriers is the first step toward solving microscale heat transfer problems. The
major heat carriers for heat transfer in solids are free electrons, phonons, and photons.
Tien and Chen [3] listed important features of heat carriers and the motion of which
governs heat transport, as illustrated in Table 1.1. After knowing the general features
of heat carriers, one question is raised-which heat transport model is adequate under a

given time- and length scales. Flik et al. [37] developed regime maps showing the



boundary between the macroscale and microscale transfer regimes. Further,
Majumdar [38] listed the characteristic time- and length scales and corresponding
transport phenomena of energy carriers, as shown in Table 1.2. Wave transport and
microscopic particle transport are suitable for describing microscale heat transfer in
solids. The wave and particle nature of phonons can be obtained from classical text by
Kittel [39]. Recently, Chen [40] studied the phonon wave effects on heat conduction
in thin films. The results had demonstrated that it is safe to treat the phonon transport
based on the phonon particle picture for thin films of practical thickness. The
Boltzmann Transport Equation (BTE) is the most suitable model for describing
phonon transport in solids due to its ability to correctly describe both equilibrium and
non-equilibrium phenomena [41]. To solve the Boltzmann transport equation, severa
approximation methods had been proposed by numerous researchers [42]. According
to BTE, Majumdar [31] developed.an equation of phenon radiative transfer (EPRT) to
deal with microscale heat conduction—in--dielectric thin films. Later, Joshi and
Majumdar [43] employed the EPRT to study heat transfer across diamond thin films
for both steady-state and transient cases. In their studies, the results demonstrated that
the geometric size has a great influence on the thermal properties of materials, which

is so-called size effect.

1.5.2 Interface Thermal Resistance

The interface thermal resistance also plays an important role in determining heat
flow in thin-film/substrate systems. The existence of interface thermal resistance
prevents the heat from propagating and may cause device failure. Many experiments
[44-48] have been conducted b determine the interface thermal resistance between

thin films and substrates. Besides the experimental quantification of interface thermal
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resistance, theoretical analysis also has been done by many researchers. Little [49]
predicted interface therma resistance by treating phonons as plane waves and
proposed the acoustic mismatch model (AMM). An essential assumption of the AMM
is that no scattering occurs at the interface. Swartz and Pohl [35] considered the
diffuse scattering occurring at the interface and proposed the diffuse mismatch model

(DMM). Phelan [50] pointed out that the applicability of AMM and DMM is

determined by the ratio, | /5, where |, is the dominant phonon wavelength, and
§ is the mean interfacial roughness. When | /S >>1, the AMM s applicable,

otherwise, the DMM applies. Chen [51] examined the effect of interface conditions on
the thermal conductivity of superlattices in the direction parallel to the film plare. He
divided the interface conditions into diffuse scattering and specular scattering. It was
concluded that diffuse interface seatteringy rather than specular scattering, is the cause
of the observed reduction in thermal conductivity of superlattices. Later, Chen [52]
investigated the interface effect-on the thermal conductivity of superlattices in the
cross-plane direction. The results based ‘on DMM were in reasonable agreement with
experimental results by Capinski and Maris on a GaAs/AlAs superlattices [53]. Zeng
and Chen [54] examined the applicability of the thermal boundary resistance to the
case with interna heat generation. Prasher and Phelan [36] developed a model, called
the scattering- mediated acoustic mismatch model (SMAMM), to exploit the analogy
between phonon and radiative transport by developing a damped wave equation to
describe the phonon transport. More recently, Chantrenne and Raynaud [55]
developed the simulations of heat transfer through an interface by molecular

dynamics.
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1.5.3 Thermoelectrics

In 1821, Seebeck discovered that when two different conductors were joined
together and one of the junctions was heated, a voltage appeared. Later, Peltier
discovered the reverse phenomenon that a temperature gradient appeared when an
electric current passed through the junction between two conductors [56]. The
discovery of thermoelectric materials offers the conversion between heat and
electricity [57]. A typica thermoelectric power generator, as illustrated in Fig. 1.5, is
based on the Seebeck effect. Both electrons in ntype semiconductors and holes in
p-type semiconductors transport from the hot side toward the cold side due to thermal
diffusion. Thus, a closed loop is formed and the current flows through an external
load to do useful work [58]. Thermoelectric coolers, as shown in Fig. 1.6, is based on
Peltier effect and work in reverse to thermoelectric power generators. A current flows
through all the elements in series.such that both.eectrons in nrtype semiconductors
and holes in ptype semiconductorsileave-the cold side to the hot side. During the
transport process, electrons and holes carry. thermal energy from the cold side to the
hot side and served as heat pumps. In general, practical thermoelectric coolers are
consisted of a number of n- and p-type thermoelements [59], asillustrated in Fig. 1.7.
The current flows in series through all the semiconductor thermoelements and energy
flowsin parallel from the cold side to the hot side.

The most important issue in thermoelectrics is to increase the figure of merit,
ZT . High dectrical conductivity, high Seebeck coefficient and low thermal
conductivity are desired to improve the performance of thermoelectric devices. Slack
[60] introduced a concept of “phonon-glass electron-crystal” (PGEC) to describe the
best thermoelectric materials. PGEC means that the thermoelectric materias should

possess a low thermal conductivity as in glass and a high electrical conductivity as in
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crystal. For bulk materias, the use of “phonon rattlers’ [61] will reduce the phonon
thermal conductivity. Phonon rattlers are interstitial atoms inserted into the empty
gpace in the host material. These atoms are weakly bound by the host material [62].
Their vibrations are not consistent with atoms in the host material and thus scatter the
phonon in the original lattice. As a result of phonon scattering, the lattice thermal
conductivity will decrease. Another approach to reduce thermal conductivity of
thermoelectric materials is to develop low-dimensioral thermoelectric materials, such
as nanodots (0D), nanowires (1D) and thin films (2D) [63, 64]. Low dimensionality
provides several advantages. (1) one way for enhancing the density of states near the
Fermi energy, resulting in an increasing Seebeck coefficient; (2) opportunities to take
advantage of the anisotropic Fermi surfaces in multi-valley cubic semiconductors; and
(3) opportunities to increase boundary scattering of phonons at the barrier-well
interfaces, without an large increase in electron scaitering at the interface [65]. An
increase in boundary scattering of phononsreduces the lattice thermal conductivity of
materials. Size and interface effects are utilized to develop novel thermoelectric
materials. Thin film superlattices and nanowire superlattices are very popular in
designing high performance thermoelectric devices.

Since many applications require materias in large quantities, it is desired to
develop a bulk materiad with high ZT vaue. The highest ZT in a bulk
thermoelectric material at 300 K is 1.14 for p-type (Bix Tes)o.25(ShaTes)o 72(ShSes)o.03
alloy [B6]. Polvani et a. [67] reported a ZT >2 at 300K in BipsShysTes aloy.
However, the hydrostatic pressure is as high as 2GPa.. It is not adequate for practical
engineering applications. Recently, Hsu et a. [68] discovered that the ZT of
Ag1-xPbnSoTexnm reached a value of 2.2 at 800 K. The Ag\PbomSbnTen+2n materials

may find potential applications in thermoelectric power generation. Like the
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enhancement of ZT in bulk materias, the thermoelectric figure of merit of
low-dimensiona  materials gets great improvement in  recent years.
Venkatasubramanian et a. [69] reported a maximum ZT of 24 for the p-type
BixTes/ShyTes thin-film superlattices devices. Up to date, it is the highest value

observed by researchers.

1.5.4 Thermal Conductivity M easurementsin Micro/Nano Structures

Many studies on the thermal conductivity of thin films have been carried out [1].
Besides the establishment of theoretical models, measurements of thermophysical
properties are aso very important. Thermal conductivity characterization of
micro/nano structures is chalenging since it is difficult to establish and to measure the
temperature difference over a small:distance [63}.-Some researchers developed several
measurement methods to quantify..the thermal conductivity d materials. Yao [70]
measured the thermal properties-of GaAs/AlAs.superlattice. Yu et al. [71] reported the
temperature dependence of thermophysical. properties of GaAsAIAs superlattices.
Both Yu and Yao et a. measured the thermal conductivity of superlattices in the
inplane direction. By contrast, a popular method developed by Cahill [72] for
measuring the thermal conductivity of thin filmsin the cross-plane direction is the 3w
method. Lee and Cahill [ 73] measured the thermal conductivity of Si/Ge superlattices.
Capinski and Maris B3] presented measurements of the thermal conductivity of
GaAg/AlAs superlattices. Venkatasubramanian et al. [69] measured the thermal
conductivity of Bi,Tes/Sh,Tes thin-film superlattices. Huxtable et al. [74] measured
the thermal conductivity of Si/SiGe and SiGe/SiGe superlattices over a temperature
range of 50 to 320K . Additionally, Yang et a. [75] developed a method based onthe

3w method to simultaneously measure the Seebeck coefficient and thermal
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conductivity of an ntype Si/Ge quantum-dot superlattice in the cross-plane direction.
In the 3w method, a metal line that was used as a heater/thermometer was
deposited onto the sample, as illustrated in Fig. 1.8. Since thermoelectric thin films
are electrically conducting, there is a need to deposit an electrically insulating layer to
isolate the thermoelectric film from the heater. An ac current with angular frequency
w is applied to the heater and then generates a 2w temperature variation inside the
sample. Since the variation of electrical resistance of a meta is proportiona to its
temperature variation, the electrical resistance of the metal line oscillates at 2w .
Multiplying the current and the electrical resistance together, and the product is the
voltage drop across the heater. Thus, the voltage containsa 3v signa that depends
on the temperature rise. Measuring the voltage change and the temperature rise and
then substituting them into the eguation_derived by Lee and Cahill [76] will get the

thermal conductivity of thin films.

1.5.5 Inverse Heat Conduction Problems

Over the past three decades, a considerable amount of work has been done on the
study of inverse heat transfer problems by either analytical methods or numerical
methods. The analytica methods include exact methods, polynomia methods, and
integr methods [77]. These methods are only useful for solving linear
one-dimensional problems with particular initial and boundary conditions. Numerical
methods, on the other hand, have the advantage of being applicable to any problem
type.

In genera, inverse heat transfer problems are classified into 5 groups [77-79]: (1)
inverse boundary problem; (2) inverse initia problems; (3) inverse geometry

problems; (4) parameter estimation; (5) other problems. The intrinsic characteristic of
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inverse problems is that they are ill-posed [78]. By contrast, a well-posed problem
meets the following three requirements: existence, uniqueness and stability. It has
been proved that solutions to inverse heat conduction problems usually exist and are
unique. However, the obtained estimates are not always numerically stable [77-80]. In
other words, small inaccuracies in the measured interior temperatures may cause large
oscillations in the calculated surface conditions. Thus, many special methods have
been proposed to solve inverse heat conduction problems (IHCPs) [81-84]. The main
purpose of these inverse methods is to improve the stability of numerical calculation

results.

1.6 Objectives

This study primarily deals.with microscale. heat transfer in solids. First, it
discusses transient heat transfer phenomena‘in solid dielectric thin films from both
macroscopic and microscopic points of view:1Phonon radiative transfer model as well
as Fourier law and thermal wave theory are ‘utilized to analyze the transient heat
conduction phenomena in dielectric thin films. Diamond and GaAs thin films are
chosen as the examples to demonstrate the differences between the macroscale and
microscale heat transfer models.

Second, we examine microscale heat transfer in multilayer structures. The size
and interface effects on the effective therma conductivity will be checked.
Furthermore, curvature effects on the effective thermal conductivity for a two-layer
concentric micro tube will also be examined. EPRT is employed to analyze the
transient heat transport in the micro tube aong radial direction. The DMM is utilized
to model the interface condition between layers. Due to the similarity of EPRT and

ERT (Equation of Radiative Transfer), the numerical approach based on the Discrete
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Ordinate Method [85] is adopted to solve the integro-differential equation. Besides the
influences of size and curvature on thermal conductivity, the size and curvature effects
on interface thermal resistance are also studied. Furthermore, the numerical
predictions are compared to the experimental data to demonstrate the validity of the
microscale heat conduction model.

Third, we examine microscale heat transfer in two-dimensional micro tubes. The
past literature contains many theoretical and experimental studies of thermal
characteristics of thin films, but very few of them pad attention to the thermal
characteristic of micro tubes. There is no existing study, which shows that the size
(thickness and height) and the curvature effects will change the effective thermal
conductivity for micro tubes. In this study, the EPRT is employed to anayze the
transient heat transfer in micro tubes. The influences of size and curvature on the
thermal conductivity are examined closely.

By extending the foregoing analysis,-we-examine size effects on the performance
of thermoelectric micro coolers. Superlattice structures are widely used to create high

performance thermoelectric device because they can greatly reduce the phonon
thermal conductivity of materials without much degrading the power factor (S°s ,).

In this study, microscale heat transfer in thin film, nano wire and nano tube
superlattices is simulated and then the effective thermal conductivity is calculated.
Understanding the influence of device sizes on the their thermal conductivity gives
the designing guides for high performance thermoelectric devices.

After knowing what parameters affecting the effective thermal conductivity and
how they influencing, the thermophysical properties of materials can be properly
defined. The effective thermal conductivity and the temperature histories in the

interior points are used to estimate the surface temperature in thin-film/substrate



systems. In this study, a space-marching technique [84] is adopted to estimate the
temperature distributions and unknown boundary conditions from internal
measurements. A radiationboundary-condition model based on the AMM is
employed to consider the interface thermal resistance between the thin-film and
substrate. The influences of interface thermal resistance, measurement errors, and
measurement locations are studied. Furthermore, the results of the estimation for the

cases with or without interface thermal resistance are also compared.
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Table 1.1 General features of heat carriers [3]

Free Electron Phonon Photon
_ valence or lattice atomic, molecule
Generation _ o N
excited electrons vibration transition
Propagating In vacuum : _ In vacuum
, _ inmedia _
Media or media or media
Statistics Fermion Boson Boson
Frequency O~infinite Debye cut-off O~infinite
Dispersion E =h’g®/(2m) E=E(q) n=cl
Velocity (m/s) ~10° ~10° ~10°




Table 1.2 Characteristic time- and length scales and corresponding transport
phenomena of energy carriers [38]

Length Scales
Time Scales _ S
Wavelength Mean Free | Relaxation | Diffusion
Path Length Length

Collison e g

Time
Mean Free

Time Wave

Microscopic Particle Transport Theory

Relaxation | 'ransport

Time

Diffusion Macroscopic

Time Transport
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Fig. 1.1 Schematic diagram of single-walled carbon nanotubes: (a) armchair, (b)

zigzag, and (c) chiral [86].
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Fig. 1.2 Schematic diagram of electric double layer [17].
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Fig. 1.3 Bright-field transmission electron micrograph of Cu nanoparticles dispersed
in ethylene glycol [87].
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Fig. 1.4 TEM images of CdSe nanorods with various aspect ratios. (a) 7nm by 7nm,
(b) 7nm by 30nm, and (c) 7nm by 60nm [22].
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Hot Side

Cold Side

Fig. 1.5 Schematic diagram of a thermoelectric power generator.
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Cold Side

Fig. 1.6 Schematic diagram of athermoelectric cooler.
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Fig. 1.7 (a) Schematic diagram of a practical thermoelectric cooler [7]. (b) Actual
device[88].



Heater/Thermometer

Thin Film

Fig. 1.8 Schematic diagram for the 3w method to measure the thermal conductivity
of thin films [89].
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2. MICROSCALE HEAT TRANSFER IN SOLID THIN FILMS

Microscale heat transfer in solid thin films is attracting many researchers notice
in recent years. To find out the difference between macroscopic and microscopic
points of view is of great importance. In this chapter, damond and GaAs thin films
are chosen as the examples to illustrate the discrepancy between the macroscale and
microscale heat transfer models. Fourier law, therma wave theory and phonon
radiative transfer model are utilized to analyze the transient heat conduction
phenomena in solid thin films. Comparison of the temperature distributions predicted
by Fourier law and EPRT has been done to seek the boundary between macroscale

and microscale transfer regimes.

2.1 Analysis
2.1.1 Mathematical For mulation

Consider adielectric thin film of thickness L with temperature T, initialy. At
time t =0, the temperature at x=0 isrisento T,. Meanwhile, the temperature at
x=L isdll maintained a T,. The schematic diagram is shown in Fig. 2.1. Phonon

radiative transfer model as well as Fourier law and thermal wave theory are utilized to
analyze heat conduction in the dielectric thin film. The dimensionless variables are

defined as follows:

_ t _ q X
YR Ty &

=X
a L’

where v isthe speed of sound.
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Fourier Law

The governing eguation of the above problem according to Fourier law is

To. _a Tq,
M, vLIx2'

with initial condition
9.(x,,0) =0,

and boundary conditions
q.(0t,) =1,

q.(Lt,)=0.

Thermal Wave Theory

The equation of thermal wave theory-can.be written as

tRV2 ﬂan +Hﬂqa - ﬂ2Qa

a T2 aft, ™2

a

with initial conditions
d.(x,,0) =0,

T4, &.0) _
mt,

and boundary conditions
q.(0t,)=1,

q.(t,)=0.

Phonon Radiative Transfer M odél

(2-2)

(2-3)

(2-49)

(2-4b)

(2-5)

(2-6a)

(2-6b)

(2-738)

(2-7h)

The semi-classical Boltzmann transport equation for the case of one dimensional

heat transport by phonons between two parallel platesis
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T, Jr_gro (2-8)

fit ix eft é&on .

Here f is thedistribution function of phonons. The collision term, 8519 , Isvery

eflt a,
complicated and makes the Boltzmann equation difficult to be solved. By using the

rel axation-time approximation, the Boltzmann equation becomes

—+v—= . (2-9

Where f° is the equilibrium phonon distribution, which follows the Bose-Einstein

distribution. At 1993, Mgumdar transformed the Boltzmann equation to an equation

of phonon radiative transfer (EPRT) in the form [31]

M, a1

= , (2-10)

v it x vty
where | represents the intensity of phonons and i is the direction cosine. 1° is
the equilibrium intensity which can betransformed by the following relation

0 — l \l _

1° = Eolldm. (2-11)
Replacing 1° in the EPRT by the integral in Eq. (2-11) obtains

M mll - 18 o igm- 12 2-12)

Al Ix vt é2™ 7]

Once the intensity of phonons is solved from the above equation, the temperature

distribution is obtained from the Bose-Einstein distribution function at an equilibrium

state:
14 o AwD (w)
1°M==8 ldm=3 v.———~~_ 2-13
e +u
ésTh

where 7 is the Planck’ s constant divided by 2p, kg is the Boltzmann constant,
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D(w) isthe density of states, and subscript p isthe polarization index.

2.1.2 Numerical Method
Fourier Law

The governing system is solved using the finite difference technique with
implicit algorithm in time and central difference in space. Thus, the difference

equation becomes

n+l

n+l _ n+l n+1
d.i - da _aUn- 20, *t0ai ’ (2-14)
Dt vL (D<a)

a

where q,, represents the dimensionless temperature at x, = (i - )Dx, and
t,=(n-1)Dt . The computational grid number in the thin film are taken 31
points and the time step (Dt ) 'is 107 The corresponding grid test has been

carried out and is shown in Fig. 2.2,

Thermal Wave Theory

By using the technique of Laplace transform, the solution can be obtained

é& 0 2 2 u
_ & P TR ) Bl 3,
a == —"e o+ e 5 q,
u Z’an'v+tR ug : 2 ’uairtiug u
% 1-e £ °g 1-e : o g
(2-15)
where
q. (X, U) =(‘3‘qa(xa,t Jettedt , . (2-16)
The temperature is obtained by the Laplace inversion:
Xt ) = —— & o u)ee du. (2-17)
Q. Xy, 2 Q. Qo (Xa;



Let u=g+iV and subdtitute it into the above equation. Eq. (2-17) is reduced to a

Fourier transform:

a

¢!
!ta =
qa(Xarts) P

0. Gk, u =g +iV)E V. (2-18)

The Fourier integral can be approximated by its Riemann sum. Let V=np/b and

DV, =p/b,where b isthe half-period, Eq. (2-18) can be expressed as

da ¥ . '
0u(arta) Fo & GulK,, g +)e ™o
2b -y b
:ega élq_ (X g)+Regq_ (X g+in_p)eintap/b l;' (2-19)
b éfz a a’ A a ar b u
At b =t,, Eq. (2-19) yidds
S e inp., U
qa(Xa’t a) t éEqa(Xa’g)+Rea qa(Xalg+t_)(' 1) |;| (2_20)
a € =i A o

The temperature distribution in the thin film can be obtained by using the above

equation.

Phonon Radiative Transfer M odel

Eqg. (2-12) is an ntegro-differential equation and difficult to obtain the exact

solution. Numerical approach is utilized to solve it. It' s convenient to separate the
intensity | into aforward component |*(x,m) and a backward component |~ (x,m).

Defining the forward and backward radiosities as

J+=dl+dm, 0<m<1, (2-213)
J'=(‘)01I'dm -1<m<0. (2-21b)

Under the Schuster-Schwarzschild approximation, the nondimensional governing

eguations become [90]



W AW Lo b grea), 0<m<t, (2-223)
ﬂta Zﬂxa VtR 2VtR

W I by b i), -1<m<o. (2-22h)
t, 2Tx, g 2vt 4

The initial condition can be written as
l(x,,0,m=1(, =0). (2-23)
And boundary conditions are
1(0t,,m=1°@, =1), (2-244)
It ,,m=1°q, =0). (2-24b)
Backward difference is used in space when 0< <1 and forward difference is

used in spacewhen - 1<mr<0. Thus, the governing equations can be expressed as

+Nn+l _ +n +n_ q+n
Ji 'Jl +1'J| ‘Jl—l + L Ji+|n - L

Dt 2 Dx Wt g At

a a

(J""+J."),0<m<1, (2-259)

Jm- g0 1Ji'+'1“-Ji"”+ .5 1896 |8

J =
Dt 2 Dx

, (3""+J3M),-1<m<0, (2-25b)
Vt R 2Vt R

a a

where n and i are the time and space index, respectively. 31 computational grids
are used in this study and the dimensionless time step (Dt ,) is 0.01. Grid refinement

study, as shown in Fig. 2.3, has been done to ensure that the essential physics are

independent of grid size.

2.2 Results and Discussion

In order to dissipate the heat generated in electronic packages, dielectric films
with high thermal conductivity are highly desirable. Diamond has excellent
conductivity of heat but high electrical thermal resistance, so the diamond thin filmis

chosen as the demonstrating case in this study.
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Fig. 2.4 displays the temperature profiles for the films of thickness L =0.1, 1,

and 10L at dimensionlesstime t, =0.5. Fourier law predicts diffusion behavior

and thermal wave theory predicts wavelike behavior. EPRT is essentidly a wave
equation. It has not only wavelike nature but also diffusive one. The propagation
speed of heat predicted by Fourier law is fastest. Because it has no time delay between

temperature gradient and heat flux, the speed of heat transfer isinfinity. However, the

propagation speed of heat predicted by EPRT isv and that is v/ V3 by thermal wawe

theory. For examples, at t, = 0.5, the temperature predicted by Fourier law within

the thin film isn’ t zero anywhere, i.e. heat has aready reached the other side of the

thin film, whose thicknessis 0.1L . At the sametime, it reaches x_ = 0.3 by thermal
wave theory and near x, =0.7 by EPRT.

Fig. 2.5 shows the temperature profiles for the films of thickness L =0.1, 1, and
10L at dimensionless timet; =10. For such long time, thermal wave model

approaches to Fourier law. It has no difference from thermal wave theory and Fourier
law in the cases of thickness L =1 and 10L . However, in the case of thickness
L =0.1L , heat predicted by thermal wave theory gets to reflect from the boundaries
and then raises the temperature within the film. Meanwhile, the temperature predicted
by Fourier law has already reached its steady-state in such small film thickness. EPRT
has already reached its steady-state and then shows a linear temperature profile, like
Fourier law. The most obvious difference between EPRT and the other two models is
that EPRT predicts temperature jump at boundaries. It is similar to the pure radiation
heat transfer problem. Thus the phonon transport is partially balistic, partially
wavelike, and partially diffusive. As film is getting thicker, the temperature jump at

boundaries is getting smaller. The ratio of film thickness to the phonon mean free path,



L/L , is the most important parameter to determine the heat transfer behavior in thin

films. Diffusion effects dominate for the case that L/L is greater than 1, and
wavelike and ballistic heat transfer behavior are much more dominant for the case that

L/L islessthan 1.
Fig. 2.6 shows the heat flux history at x, =0 for the films of thickness L =0.1,

1,and 10L . The heat transfer predicted by Fourier law reaches steady-state very soon
for thecase of L =0.1L , and the heat flux is unchanged after steady-state. For the
same case, therma wave theory predicts a toothed heat flux profile due to reflections
from boundaries. EPRT predicts a lower value of heat flux than Fourier law at
steady-state for L/L less than 1. Contrarily, EPRT predicts a higher value for L/L
greater than 1.

Sound velocity, phonon mean free path, film thickness, and Debye temperature
determine the heat transfer phenomena in solids. However, the ratio of film thickness
to phonon mean free path is the most important parameter for microscale heat transfer.
Fig. 2.7 demonstrates the temperature distributions of diamond and GaAs thin films of
the same dimensionless film thickness at the same dimensionless time. It can be found
that L/L isthe only parameter to determine the temperature distribution.

From the above discussion, the microscale hesat transfer model, EPRT,
approaches the macroscale heat transfer model, Fourier law, as the film is getting
thicker. It is important to find out the criterion whether Fourier law is applicable in a
given thin film. It can be seen that EPRT approaches to Fourier law when the film is
getting thick. From Fig. 2.8, no observable difference could be detected between
EPRT and Fourier law when L/L =100.

Fig. 2.9 displays the steady-state boundary temperature of GaAs and diamond



thin films predicted by Fourier law and EPRT for different L/L . The boundary
temperature approaches to 1 as the film is getting thick. On the other hand, it
approaches to 0.5 when the film is getting thin. The right hand limit is caled the
Fourier limit, and the left hand limit is called Casimir limit. The EPRT of GaAs thin
film approaches to Fourier law as the film thickness is great than 2 mm, and reduces to
Casimir limit when the film thickness is less than 5 nm. In the case of diamond, those
[imits are 10 nm and 80 nm respectively. This profile offers a simple way to judge

which conduction heat transfer model is applicable in a given film thickness.



['(L,w)

E/ u=cos ¢
1°(0,)

Fig. 2.1 Schematic diagram of a diglectric thin film.
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Fig. 2.2 Grid-refinement test for the numerical scheme used to solve Fourier law.
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3. MICROSCALE HEAT TRANSFER IN MULTILAYER

STRUCTURES

Some microscale heat transfer problems are associated with cylindrical geometry.
For example, heat transport in slicon and germanium multishell nanowire
heterostructures. Lauhon et al. [91] synthesized core-shell nanowires by chemical
vapor deposition. Then, they developed a high-performance coaxialy gated
fidd-effect transistor of core-shell structures, as illustrated in Fig. 3.1. In this chapter,
EPRT and DMM are employed to analyze microscale heat transfer in multilayer

structures.

3.1 Analyss

3.1.1 Mathematical Formulation
Phonon heat transfer in dielectric thin filmscan be modeled by the Boltzmann

transport equation [31]. Under the first-order relaxation time approximation, the BTE

isreduced to
O_
T;—Y[V+v>4<lfw = fwt by : (3-1)
R

where f, denotes the phonon distribution function as a function of frequency w,

f° represents the equilibrium distribution function, v is the group velocity, and

w

t ; denotes the relaxation time. Phonon intensity can be represented as follows

I, =8 vf,AwD(w), (3-2)

p
where 7 isthe Planck’ s constant divided by 2p, D denotes the density of states,

and the summation index p is the phonon polarization. Let v =vg, and
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substituting Eqg. (3-2) into Eq. (3-1) yields
10 -1
(3-3)

L, o o, =
v It t RV

The second term on the |eft-hand-side in the above equation is described in the form

[90]
&I, = d(!lg ﬂ‘ﬂr ds IlITIz ds 1‘|11| ds
| : o (3-4)
=d9nz cosj Wy =dnzdgnj ﬂ—W
r r |

1‘#—: 0 was employed in the above eguation due to axisymmetric assumption
z
Substituting Eq. (3-4) into Eq. (3-3) and letting m=d9nz cosj , h=d9nzdnj , Eq

(3-3) becomes

0
A1 S (P N | P Iv;- l (3-5)

v It qror RV

The equilibrium phonon intensity 1. ‘can be approximated by assuming equilibrium

at every frequency, then

O 1 \
ly =— (3-6)
w, I
Substituting Eg. (3-6) into Eq. (3-5) leads to
19 R o gudW- 1,
ﬂ w4 mﬂ wo_ —h ﬂlw - WE4p . (3_7)
v It T r 9 t Vv

Equation (3-7) is the equation of phonon radiative transfer (EPRT) for the cylindrical

coordinates. Additionally, the heat flux q is
q=20 éldv m,, dwdm, (3-8)
where w,, isthe Debye cut-off frequency.
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This study considers a two-layer concentric cylinder with inner radius r, and
outer radius r,, asillustrated in Fig. 3.2. The medium temperature initially is T,. At

time t=0, the temperature a r =r.

risesto T, (T, >T,). Meanwhile, the
temperature at r =r, remains T,. For convenience, the subsequent analysis assumes

the medium to be gray, i.e., frequency independent, while the EPRT can be expressed

as
L yeaw- 1,
im+mﬂ|—k_ihﬂlfk: W=4p , k=1 2. (3_9)
v, it Tt r 9 U RVi

The subscript indices k =1 and 2 represent layer 1 (inner layer) and layer 2 (outer

layer), respectively. Theinitial conditions of this system can be written as
I t=0)=12(T.), k=12, (3-10)
Moreover, the boundary conditionsare
L,(r=r)=12(T=T), (3-119)
L (r=r)=13(T=T,. (3-11b)

The energy balance at theinterface (r =r,) between layer 1 and layer 2 is [52]

J: (r,-m)mdm =R, @, (r,,m)mdm +a,, g, (r,,- m)mdm,,  (3-12a)
2

2p 2p

J: (. m)mdm =Ry, 0 (r,,- m)mdm, +a, g, (r,,m)mdm,  (3-12b)
2p

2p 2p

where R, and a,, represent the energy reflectivity and transmissivity at the
interface for phonons from layer 1 to layer 2, and vice versa. The superscripts
and represent the positive and negative radial directions, respectively. Assuming

phonons leaving an interface are isotropicaly distributed, Egs. (3-12a) and (3-12b)

can be written as
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I; (- m) = 2R, g, (r,,m)mdm + 2a,, ¢, (r,,- my)mdm,, (3-133)

2p 2p
15 (r,,m) = 2Ry, O, (ry,- m)mdm, + 2a,, §, (r,,m)mdm . (3-13b)
2p 2p

Many theories have been developed to describe the interfacial condition between
two dissimilar materials, and various a; have been caculated using different

models. Chen [92] derived the energy transmission coefficient for diffuse interface, as
follows:

Cyv,
Cv, +Cyy,

, 1, ]=1,2, (3-19)
where C is the volumetric specific heat and Vv is the phonon group velocity. The
diffuse mismatch model (DMM) is based on the assumption that phonons arriving at
the interface totally lose their memory on.the side'which they come from. Swartz and
Pohl [35] stated that the phonon reflectivity from layer 1 to layer 2 equals the phonon
transmissivity from layer 2 to layer 1. 1t'can be expressed as

a; =R, i,i=12. (3-15)
Once the transmissivity is obtained from EqQ. (3-14), the reflectivity can be calculated
according to the requirement to conserve energy, and thus

R, =1-a,, i,j=12. (3-16)

ij
3.1.2 Numerical Method

Since Eq. (3-9) is an integro-differential equation, it is difficult to obtain an exact
solution. This study applies a rumerical approach to solve this problem. Employing
the discrete ordinates method, the integral term is approximated by Gaussian

quadrature



ddW a I| i (3_17)

W=4p i=1

where w are the weighting factors for the Gaussian quadrature. The governing

equation then is transformed to

143
lo.w. -1
1 1-“i,k +mﬂ|i'k-£h T“ik 4pja:'1 JkT |,k

— ,i=12--,m, k=12
v, Tt T ' U RVs

(3-18)

Since m =dnq, cosj ; and h, =d9nq, 9nj ,, the above equation can be rewritten as

18
_a ljij - lik
I- ~ i '
IR M T )20 g )= (319
v, Tt qIr r t LV,
The third term on the left- hand-side’in Eq. (3-19):ean be approximated as [90]
1l(hi|i)@lp‘1+1/2 sz = Aeaalions “i=12:...m, (3-20)
r r 4w,
where coefficient Ay, is
Az = Ay, tWim, A=A, =0, i=12,---,m. (3-21)
Substituting Eqg. (3-20) into Eq. (3-19) leads to
ig [ w, -
iﬂli,k +ﬂ1(r|ik)' 1A+1/2|i+1/2,k - A—llzli—llz,k — 4p j=1 He " ,(3_22)
v, It rrt 0o 4w, t v,
where 1, ad |, ,, are expressed as
_|i+1+|i _Ii+|i-1
|i+1/2_T’and Ii-1/2 _T- (3-23)
Rewriting Eqg. (3-22), the governing equations are obtained as
iém I w. - |
iﬂli,k + ﬂ m | A+l/2 i+1k A 1/2 i-Lk - 4p j=1 b ' (3_24)
v, Tt ‘ﬂr 2r « 8rw, t v,
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In this study, the S, scheme, which means m=2, is selected to deal with the

governing equations. The finite difference method is employed to approximate the

differential terms in the governing equatiors. Backward difference is used in space
when 0<m<1 and forward difference is used in space when -1<m<O0.

Additionally, forward difference is used in time in both cases. Thus, Eq. (3.24)

becomes
n+1 n n n n
ili,k,j - I.k; m Ii,k,] Ii,k,j—1+ m n . A1+1/2|i+lk,j
v, Dt Dr 2(j- br " 8(j- 1)Drw,
18 ., , , 0<m <1,
—a I|,|<,1W| - li,k,j
_ =1
t RV,
(3-253)
illn;lJ -1 +m |k jon = 450 + n N A+1/2|in+1k,j
v, Dt Df 2(j:- Dbr ' 8(j - 1Drw,
18 ., . , - 1<m<Q0,
Ef’:_llh,k,;vw - li,k,j
) t Vi
(3-25b)

where n and | represent the time index and the space index in the radial direction,

respectively. To solve the simultaneous governing equations, an iterative procedure is

performed in this study. The convergence criterion is that the relative error for

temperatureislessthan 10°.

3.2 Resultsand Discussion
Grid-refinement and time-step-sensitivity studies have been done to ensure the
accuracy of the numerical method and the results are shown in Fig. 3.3. There are 31

grids employed in space and the time step (Dt) is taken as 10 fs. In the following



cases, GaAg/AlAs superlatices [40] and diamond thin film deposited on silicon
substrate are selected as examples for demonstration.

Fig. 3.4 shows the transient temperature distributions on GaAS/AlAsS
superlattices with inner radius r, =10° m under different film thicknesses:
@L,=L,=5"10° m, (b)L, =L, =5"10" m. Due to the ballistic transport of
phonons, temperature discontinuities (dropping at high-temperature boundary and
jumping at low-temperature boundary) occur at two boundaries. Both temperatures at

r=r, and r =r, increase with time and approach to the steady state. It is noticed

that the dimensionless temperature of layer 2 is zero in the early time (t <10°*° s) for
case (b) because it takes time to make phonons thermal equilibrium. Moreover, the
tube thickness significantly influences phonen;heat transport. Comparing Figs. (3.49)
and (3.4b) reveals that the temperature discontinuities at boundaries decrease with
increasing tube thickness. With increasing tube thickness, the temperature profile
presents the diffuse-like behavior.— thet Is diffusive transport dominates. Otherwise,
ballistic transport dominates, snce the tube Is thin. Ballistic transport dominates for
small length scale which is comparable to phonon mean free path.

The length scale considered here is the micro/nano-meter. In practica
engineering applications, steady states are reached within a micro-second. The steady
state thus is assumed in the following demonstrating cases. Fig. 3.5 illustrates the

effect of tube thickness on the temperature profiles of GaAs/AlAs superlattices at
r, =10"" m. As mentioned previously, the temperature discontinuities at boundaries

decrease with increasing tube thickness. This phenomenon occurs because
temperatures drop or jump sharply at boundaries owing to the ballistic transport
nature of phonons. However, the temperature discontinuity at the interface results

fromthe dissimilarity between two materials. Notably, the quantity of the temperature
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difference divided by the heat flux at the interface is defined as interface thermal
resistance (1TR), thus

ITR= D;im : (3-26)

where DT, is the temperature difference at the interface. Numerous models are
proposed for describing the interface thermal resistance. This study employs the
DMM modedl. Fig. 3.5 clearly shows that the interface temperature discontinuity
increases with decreasing tube thickness. Additiorally, the temperature discontinuity
also increases at boundaries with decreasing tube thickness. The temperature drop
inside each layer is small compared to that at the interface when the layers are very
thin. In other words, the thermal resistance at the surfaces, including the boundary and
interface, is greater than that inside the materias. Surface properties thus dominate

heat transfer inathin tube.

Fig. 3.6 displays the effect .of “curvature .on the temperature profiles of
GaAs/AlAs superlattices at L, =L;=10."m." Notably, the temperature profile

approaches that for slab when the inner radius (r,) is large. In this case, no obvious

difference exists between slab and r, =10"° m This phenomenon can be explained

by Eg. (3-9). Once the term Eh‘#fw equals zero, Eqg. (3-9) is reduced to the
r
governing equation for a slab. Large r, makes lhmfw small compared to other
r

termsin Eq. (3-9), and thus the temperature profiles for large r, approach those for a

dab.
The Fourier law is known to be inadequate for analyzing microscale heat transfer

behavior. However, effective thermal conductivity offers an efficient concept for
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calculating the heat transfer rate. According to the Fourier law, the effective thermal
conductivity k, is defined as[93]

_ Qp In(r, /1)

= , 3-2
o ST (327

where Q; isthe total net radial heat transfer. To show the effect of film thickness on
thermal conductivity, the plane-parallel GaAS/AlAs superlattices are chosen for a
demonstration. Furthermore, the numerical calculatiors are compared to the
experimental data. Fig. 3.7 reveals that the therma conductivity of GaAgAlAs
superlattices is smaller than its bulk value. Additiorally, the thermal conductivity
decreases with decreasing film thickness. The ssimulation results agree closely with
the experimental data. The miniaturization of microelectronic devices reduces the heat
transfer ability and causes device failure if the'size effect is ignored. The size effect
thus must be considered when designing a microelectronic device.

Fig. 3.8 illustrates the effect "of —eurvature / on the therma conductivity of

GaAS/AlAs superlattices. Three inner radiizyr, =10° m, r, =10° myand r, =10’

m are chosen as examples. The thermal conductivity increases with the increasing
curvature. Moreover, this phenomenon is amplified by large tube thickness. However,
no obvious difference exists among these three cases when the tube is getting thinner.
When the film thickness is small compared to its inner radius, the phonon transport in
the ultra-thin tube approaches that in the slab. Consequently, the effect of curvature on
thermal conductivity decreases with decreasing tube thickness Size effect rather than
curvature effect thus dominates the hesat transfer behavior in an ultra-thin tube.
Because the interface thermal resistance is a significant determinant of heat flow
rate of multi-layered structures, interface thermal resistance behavior must be

examined closaly. Fig. 3.9 shows the effect of curvature on the interface thermal



resistance of GaAs/AlAs superlattices. The figure reveals that no visible discrepancy
exists under three different inner radii, indicating that the effect of curvature on the
interface thermal resistance of GaAs/AlAs superlattices is insignificant. Additiorally,
the size effect on the interface thermal resistance is aso unimportant. The size and
curvature effects on the interface thermal resistance are not significant if the diffuse
mismatch model is employed to describe the interface condition.

Since the curvature effect on the interface is insignificant in this study (DMM is
employed), a plane-paralel diamond thin film deposited on the silicon substrate is
used to illustrate the behavior of the interface thermal resistance. Fig. 3.10 displays
the comparison of interface thermal resistance for diamond/silicon with experimental
data. The calculated interface therma resistance is smaller than the experimental
value. Since DMM is a simplified.model, it can'not completely describe the interface
condition. The interface roughness,.inelastic scattering resulting from the anharmonic
interatomic force interaction, and the phonon-mode-conversion at the interface may
cause diffuse scattering at the interface. Additionally, measurement errors may also
contribute the discrepancy between the numerically predicted and experimental values.
All of them make the caculated interface thermal resistance lower than the

experimental value.
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Fig. 3.1 Schematic diagram of coaxially- gated nanowire transistors [91].



Fig. 3.2 Schematic diagram of the physical system.
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4. MICROSCALE HEAT TRANSFER IN

TWO-DIMENSIONAL MICRO TUBES

There are many applications that require a material with high thermal
conductivity, high strength and minimum weight. Hollow diamond micro tubes made
by CVD are potential candidates [95]. Thus, it is important to assure the ability of
heat dissipation in micro tubes. In this chapter, a two-dimensional EPRT is derived to

analyze microscale heat tranfer in micro tubes.

4.1 Analysis

4.1.1 Mathematical Formulation

Phonon hesat transfer in dielectric micro tubes can be modeled by the Boltzmann
trangport equation. The scattering mechanism-is difficult to simulate. Majumdar [31]
used the first-order relaxation-time approximation to approach the scattering term in

BTE. Thus, the Boltzmann equation was redwced to

0
— +yNf, =W (4-1)

where f, is the phonon distribution function as a function of frequency w, f? is

w

the equilibrium distribution function, v =ve is the group velocity, and t  is the
relaxation time. One can define the intensity of phonons as follows

l, =Q v, f,AwDWw), (4-2)
p

where 7 isthe Plank’ s constant divided by 2p, D is the density of states, and the
summationindex p isthe phonon polarization. Multiplying Eq. (4-1) by vawD(Ww),
the Boltzmann equation can be transformed to
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This study considers atwo-dimensional hollow cylinder of inner radius r,, outer
radius r, and height L,, as illustrated in Fig. 4.1. The second term of the
left- hand-side in the EQ. (4-3) is described in the form

d, W, d W, d f,dz 1,

év XNIW = (4-4)
ds qir ds I ds Tz ds 9z ds
where ﬁzsjnz cosf i: _3nzsnt snf , d—Z—O and gzc:osz . Substituting
ds ds r ds g

Eg. (4-4) into EQ. (4-3), and then

111, meﬂ(rl Ju 1é7(ht,)u &M, u 121,
iy 0 -e atY ecu”
vt r& 9 4§ ré If g &fza vy

, (4-5)

where m=gnz cosf , h=dnzdanf , andpy.= cosz .

0
IW

Assume that the equilibrium phonon.intensity can be approximated to the

average over al solid angle, and thus

1 \
Iy :Eaplwdw- (4-6)

Substituting Eq. (4-6) into Eq. (4-5) leadsto

1

1M, , men(r,)o 1évbr, o émwg:gdplde- L, wn
vt rS‘ﬂr 4 r& of Hyg'ﬂZH vt .

Eq. (4-7) isthe equation of phonon radiative transfer for the cylindrical coordinate.
For convenience in the subsequent analysis, the medium is assumed to be gray,

i.e., frequency independent. The steady-state EPRT can be expressed as

mef(r)u_1én(i)a, y & 4p04p'dw

me
T 0w LY ERATT w. 8
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Consider the temperatures of the top surface (z=L,) and the inner surface (r =r;)

are maintained at T =T,. The temperatures of other two surfaces (bottom and outer

surfaces) are T =T,, where T, >T_. The boundary conditions can be expressed as
I(r=r)=1(z=1L,)=1°(T), (4-93)

I(r=r,)=1(z=0)=1°(T,). (4-9b)

4.1.2 Numerical Method

Since Eqg. (4-8) is an integro-differential equation, it is difficult to obtain the
exact solution. Numerical approach is used to solve it. Employing the discrete
ordinates method, the integral term of the right-hand-side in Eq. (4-8) is approximated

by Gaussian quadratures

deW@ﬁ Wl (4-10)

where w_ are the weighting factors!

Substituting Eq.(4-10) into Eq. (4-8) leadsto

m, el )u 1é7h,l,)u

, -

A ty
rE T o org Hjm me‘ﬂ

(4-11)

The third term of the left-hand-side in EQ. (4-11) is approximated by central

difference technique. Then, thisterm is transformed to

\ A A
900 Al Ayley
Iy (hl)é @ — . m=12,..N. (4-12)

e m

Thus, EQ. (4-11) becomes
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where

A ,=wm+A . A,=A =0, m=12...N._. 4-14

g = WM T ALy Ay = Ay 120s Ny (4-14)

The S; scheme, N, =8, is employed in this study. Forward and backward

difference approximations are utilized in negative and positive directions, respectively.

The governing equations become

m, Im,i,j B Im,i-l,j + m, |- An+]/2|m+l,i,j B An-J/zlm-J,i,j
- mi, j -
Dr 2(i - HDr 2(i - )Drw,, j0<m <1
) I )
™ ig.wmlm,i,j' Im,i,j T0<ym<1
Imij Imi j-1 =1
+y m " - = r'=
Dz vt .
(4-153)
m Im,i,j - Im,i—l,j + m, 7P A\m/zlmﬂ,i,j - An-J/zlm-Li,j
— miv| —
Dr 2(i - )Dr 2(|css )Drw,, | 0<m, <1
1 I
iaw [ -1 .. 71-1<y <0
lijor = Tmij _Ap e ™
+ - = m=
Y Dz vt .
(4-15b)
m, Im,i+1j - Im,i,j + m, |- An+]/2|m+1,i,j - An-l/zlm-],i,j
— mi. j —
Dr 2(i - )Dr 2(i - )Drw,, |- 1<m, <0
) I )
+ lm,i,j - Im,i,j—l 4 2 mm m
Yom Dz - vt .
(4-15c¢)
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mi+Lj " Im,i,j m, An+]/2|m+l,i,j - An-]/ZIm-Li,j
m, + i -

. mii, j =
Dr 2(i - )Dr 2(; 1)Drw,, -1<m, <0
1 v
| A I . _anIm,i,j- Im,i,j T-1<ym<0
oy Amiin i 4P
" Dz vt
(4-15d)

Since the governing system is a set of simultaneous equations, iterative method is

used to solve this problem. The convergence criterion is that the relative error for

temperature is lessthan 10°*.

4.2 Results and Discussion

The governing equations deal with the heat conduction in two-dimensional micro
tubes. By using the discrete ordinates method, the approximated solutions can be
derived. The grid-refinement study, as shown.in Fig.-4.2, has been done to ensure the
accuracy of the numerica method and the.30--30 grid is employed. In the following
cases, diamond is chosen as an example for the demonstration.

Majumdar [31] had obtained microscale heat transfer across diamond thin films
by solving the one-dimensional EPRT in the rectangular coordinate. In order to
demonstrate the accuracy of the present numerical method, a very long tube with very
small curvature is chosen to approach the slab. Fig. 4.3 shows the temperature profiles

predicted by the EPRT under different tube thickness with a inner radius r, =1 mm

and a tube height L, =10,000L . The present results have excellent agreement with

the results of Joshi and Majumdar [30].

Fig. 4.4 displays the effect of tube thickness on the radial temperature

distributions in the middle plane (z=0.5L,) with the inner radius r, =10 nm and
the tube height L, =10L . Three different tube thickness, r, =10L, r, =1L and
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r, =0.1L are utilized to examine the size effects. From Fig. 4.4, it is noticed that the
temperature jump and drop at two boundaries are found. The temperature
discontinuities at two boundaries decrease as the tube thickness increase. The reason
that temperature jump and drop occur at two boundaries is the nonlocal and
nonequilibrium ballistic transport nature of phonons. In the limit of no interna
scattering, the phonon excited by the hot and the cool walls propagates in the opposite
directions without interacting with each other. The lacking of interaction implies that

the two groups of phonons will not reach a local equilibrium state with each other.
Thus the temperature discontinuity appears. In the case of r, =0.1L , such thin

thickness reduces the probability of internal scattering within the medium; therefore
phonons scatter only at boundaries. This is the so-called ballistic heat transport. As the
increasing of tube thickness, internal scattering takes place more frequently, and the
heat transport is more diffuse- like: The results of Fig. 4.4 are similar to the results of
Fig. 4.3. However, owing to theeffect.of -curvature; the temperature distributions are
not linear.

Fig. 4.5 shows the effect of tube thickness on the axial temperature distributions

at thelocation r =0.5(r; +r,) with the inner radius r; =10 mm and the tube height
L, =10L . Similar to the Fig. 4.4, the ballistic heat transport dominates while the tube

is ultra-thin. Since the tube height is ten times of the phonon mean free path, the heat

transport is diffuse-like across the axial direction. In the case of r, =10L , both axial
and radia directions are diffuse transport dominant. In the cases of r, =0.1L and
r, =1L, diffuse dominant in the axial direction but ballistic transport in the radial

direction. Thus, the axia temperature distributions are different from those of Fig. 4.4.

It is well known that Fourier law is inadequate to analyze microscale heat
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conduction. However, the concept of effective thermal conductivity is an effective
way to estimate the heat dissipative ability of the materials. The radial and axial

effective thermal conductivity are defined as

r\Fo = T

K e :Y—Tq-r(- T ), (4-162)
0, L.

K, er = T (4-16b)

! (o]

where the heat flux is

d =8 MWl o, (4-179)
Q=AY mWal - (4-17h)

m

Fig. 4.6 and Fig. 4.7 show the size effects.on the thermal conductivity under different
tube heights in the radial and axial directions, respectively. The thermal conductivity
of diamond micro tubes is smaller than its bulk value; The radial thermal conductivity
decreases as tube thickness decreases.”Similarly, the radia thermal conductivity of a

tubewith L, =1L is small than that of L, =50L . It can be concluded that the

reduction of size, no matter the radial or axial directions, will reduce the thermal
conductivity of the material. From Fig. 4.6, it is noticed that the radial thermal
conductivity approaches to the bulk value when the tube is getting thick. Fig. 4.7 have
similar trend as Fig. 4.6. However, the axial thermal conductivity varies very small as
the tube thickness decreases. The tube height is more important than the tube
thickness in calculating the axial thermal conductivity. The axial thermal conductivity
does not approach the bulk value if the tube is short. The small tube height restricts
the axial thermal conductivity growing although the tube is thick enough.

Fig. 4.8 and Fig. 4.9 depict the effect of curvature on the radial and axial thermal
conductivities at different tube heights. The radial and axia thermal conductivities do
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not vary with different curvature. The effect of tube curvature is not significant on the

effective thermal conductivity.




v

Fig. 4.1 Schematic diagram of the physical system.
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Fig. 4.2 Grid-refinement test for the numerical scheme.
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Fig. 4.3 Temperature profiles of diamond tube under different tube thickness at the
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Fig. 44 The effect of tube thickness on the radia temperature distributions of

diamond tube in the middle plane (z=0.5L,) with the inner radius

r, =10 mm and the tube height L, =10L .
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Fig. 45 The effect of tube thickness on the axia temperature distributions of
diamond tube at the location r =05(r, +r,) with the inner radius

r, =10 mm and the tube height L, =10L .
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5. SIZE EFFECTSON THE PERFORMANCE OF

THERMOELECTRIC MICRO COOLERS

By utilizing the Peltier effect, heat will be absorbed on the cold side and rejected
to the heat sink when an electric current is passed through a thermoelectric material,
thus providing a refrigeration capability. Conversely, an imposed temperature gradient
will result in a voltage so a power generator is created. This aspect is widely utilized
in deep space applications. A radioactive materia is used as the heat source in the
radioactive thermoelectric generators to provide the electricity [88]. The advantages
of thermoelectric devices include compactness, quietness, localized heating or cooling
and environmentally friendly. Applications: of: thermoelectric refrigeration include
cooling of CCDs (charged coupled devices), laser diedes, infrared detectors, computer
processor chips and biological specimens [88]. Low-dimensional thermoelectric
materials, such as nanodots (OD); nanowires (1D) and thin films (2D) are of great
potential due to the dramatic reduction in thermal conductivity. In this chapter, EPRT
and DMM are utilized to calculate the thermal conductivity of thin film superlattices,
nano wire superlattices and nano tube superlattices. Size effects on the performance of

thermoelectric micro coolers will be examined in detail.

5.1 Thin Film Supperlattices

A thermoelectric micro cooler that is consisted of thin film superlattices is under
consideration. The transmission electron microscopy image of thin film superlattices

is shown in Fig. 5.1 and the schematic diagram is illustrated in Fig. 5.2. The thickness

of layer 1is L,, the thickness of layer 2 is L,, and the total thicknessis L. The
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temperature of bottom surface (x=0) is T, . Meanwhile, the temperature of top
surface (x =L ) ismaintained at T, .
Utilizing EPRT to analyze heat transfer in thin film superlattices and the

governing eguations can be expressed as

1

1 \
ﬂ|k_§01|kdm- Ik
X t eV

m

k=12, (5-1)

where the subscript indices k =1 and 2 represent layer 1 and layer 2, respectively.

The boundary conditions are
L (x=0)=1(T =T,), (5-23)
L,(x=L)=1(T =T,.), (5-2b)
where the superscript 0 means that*phonons are.in the state of thermal equilibrium.

The conservation of energy is used to describe the interface conditions.

J:mdm =R, g, mdm#a, gzmdms, (5-33)
2 2p 2

J,mdm, =R, ¢, mdm, +a,, 3, mdm, (5-3p)
2 2 2p

J.: mdm =R, @, mdm +a,, @ ,mdm,, (5-3c)
is] is] 2p

J.mdm, =R, g, mdm, +a,, ¢J; mdm, (5-3d)
p 2p 2p

where a;; and R; represent the transmissivity and the reflectivity, respectively.
Since the governing equations and interface conditions are integro-differential

equations, the discrete ordinate method is employed to solve the governing system.

The S, scheme is selected to deal with the governing system in this study. To

conduct a numerica simulation, the finite difference method is utilized to

approximate the differential terms in the governing system. Forward and backward
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differences are used in the negative and positive x-direction, respectively. The
governing system is then turned into a set of simultaneous algebraic equations. Thus,
an iterative procedure is performed in this study and the convergence criterion is that

the relative error for temperature is less than 107*.

5.2 Nano Tube Supperlattices and Nano Wir e Super lattices

This study considers a two-dimensional hollow cylinder of inner radius R,
outer radius R, and height L, as illustrated in Fig. 5.3. The tube is consisted of
periodically permuted layer 1 and layer 2. The thickness of layer 1 and the thickness
of layer 2are L, and L,, respectively. For convenience in the subsequent analysis,

the medium is assumed to be gray. The EPRT ‘can be expressed as

1
meflr Ju 1e1bl)u Setu_ gy
e - e u € u=
ré Ir greW g “eflzg Vit g

dlpljdw' IJ
, =12, (5-9)

oOC

where the subscript indices j =1 and 2 represent layer 1 and layer 2, respectively.
Consider the temperatures of the top surface (z = L) and the inner surface (r =R)
are maintained at T =T,. The temperatures of other two surfaces (bottom and outer

surfaces) are T =T,, where T, >T_. The boundary conditions can be expressed as

L =R)=17(T), j=12, (5-5a)
1, =R)=17(T,), =12, (5-5b)
1,z=0)=1.(T,), (5-50)
l,z=0)=12(T). (5-5d)

The interface conditions are the same with Egs. (5-3a), (5-3b), (5-3c) and (5-3d).

Nano wires and nano wire superlattices, as shown in Fig. 5.4, are potential
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materials for engineering applications, especially in thermoelectrics. The formulation
of microscale heat transfer in nano wire superlattices is similar to that in nano tube
superlattices. In this study, a nano wire superlattice of radius R and length L is
under consideration. The schematic diagram isillustrated in Fig. 5.5. The thickness of
layer 1 is L, and the thickness of layer 2 is L,. The governing equations of
microscale hesat transfer in the nano wire superlattice are the same with those in the
nano tube superlattice. Moreover, the boundary conditions in top, bottom and outer
surface are also identical with those in the nano tube superlattice. The only difference
between the nano wire superlattice and the nano tube superlattice is that the nano wire
superlattice is solid not hollow. To specify the boundary condition in the zaxis, the

axisymmetric assumption was made and it can be expressed as
I, (r,zmx)=1,(r,z- mx)," ] =12, (5.6)
where the subscript indices j =1 and 2 represent layer 1 and layer 2, respectively.
Similar to the strategy of  solving microscae heat transfer in thin film
superlattices, the S, scheme is selected to deal with the microscale heat transfer in

nano wire superlattices and nano tube superlattices. Backward and forward difference
approximations are utilized in positive and negative directions, respectively. The
numerical method is the same as used in chapter 4. To solve the simultaneous

governing equations, an iterative procedure is performed in this study and that the

relative error for temperature islessthan 10 is the convergence criterion.

5.3 Resaultsand Discussion

The comparison between numerical calculations and experiments was made in
Fig. 5.6. GaAg/AlAs, Si/Ge and BipTes/ShyTes superlattices are chosen as examples

and the results are shown in Figs. 5.6(a), 5.6(b) and 5.6(c), respectively. From Fig.
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5.6(a), it can be seen that the present results match Chen’ s study [52] and agree with
the experimental data measured by Capinski and Maris [b3]. Similarly, Fig. 5.6(b)
tells that the numerical calculations of Si/Ge are in agreement with Chen’ s study [52].
In addition, Fig. 5.6(b) reveals that the numerical calculations match the experiments
conducted by Lee et a. [73] when the period thickness is less than 7 nm. However,
the measured thermal conductivity of Si/Ge is lower than the numerical simulations
by about one order of magnitude when the period thickness is greater than 13 nm. Lee
et al. argued that the relatively poor crystal quality of long-period superlattices should
be responsible for such low thermal conductivity. The comparison between numerical
simulations and experiments for BixTes/SbhyTe; superlattices, the well-known
thermoelectric material, was made in Fig. 5.6(c). The discrepancy between the
numerical calculations and experiments is less than 10% when the period thickness is
less than 5 nm. Although the discrepancy is-higher for larger period thickness case,
the numerical calculations and experiments-have the same order of magnitude. It can
be concluded that EPRT with DMM: is adequate to describe the microscale heat
transfer behavior in practical engineering applications.

Up to date, BixTes/Sh,Tes is the most efficiency thermoelectric material for
room-temperature applications [97]. Thus, it is selected to demonstrate the following
numerical calculations.

Fig.5.7 shows the effect of thin film superlattices thickness on the thermal
conductivity. Three different periods are selected to demonstrate the size effect on the
thermal conductivity. It can be seen that the thermal conductivity of Bi,Tes/ShyTes
thin film superlattices decreases with decreasing film thickness. On the other hand,
the thermal conductivity approaches its bulk value as superlattices getting thick.

In practical engineering applications, how to produce a product as compact as
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possible is a very important issue. For a restricted space, it is desired to design a
miniaturized thermoelectric cooler with high performance. As mentioned before,
reducing the thermal conductivity is a good way to increase the performance of a
thermoelectric cooler. Fig. 5.8 illustrates how the number of periods affects the
thermal conductivity for a fixed total film thickness, L. It is noticed that the thermal
conductivity decreases with increasing number of periods. For a fixed total film
thickness, increasing number of periods means decreasing layer thickness of each
layer and increasing number of interfaces. As discussed in chapter 3, the thermal
conductivity decreases as the film thickness decreases. Thus, to decrease the thermal
conductivity of thin film superlattices for a restricted space, it is recommended to
increase the number of periods. However, for L =10 nm, the thermal conductivity of
BiyTes/ShyTes thin film superlattices approaches a constant value as number of
periods increase. In this case, the.layer thickness is small compared to the phonon
mean free path, which is about'5 A-Altheugh increasing number of periods will
decrease the thermal conductivity of BixTes/ShyTes thin film superlattices for a fixed
total film thickness, it has no further significant influence when the layer thickness is
small compared to the phonon mean free path of materials.

Fig. 5.9 shows the effect of thin film superlattices thickness on the figure of

merit, ZT . Itisobvious that the figure of merit increases as film thickness decreases.

2
From the definition of the figure of merit, ZT = > SkeT , It is easy to find out that the

figure of merit increases as the therma conductivity decreases. Since the thermal
conductivity decreases as film thickness decreases, the figure of merit increases with
decreasing film thickness. The reduction of film thickness is helpful in improving the
performance of the thin film superlattices thermoelectric cooler. The size of the thin

film superlattices has a significant influence on the figure of merit when the film
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thickness is comparable to the phonon mean free path of materials. However, this
effect is not obvious when the film thickness is getting large. Fig. 5.9 reveals that the
figure of merit approaches a corstant value as film thickness increases.

Fig. 5.10 illustrates the influence of the number of periods on the figure of merit.
For afixed film thickness, increasing the number of periods resultsin increasing ZT .
It indicates that increasing the number of periods for a fixed film thickness will
improve the performance of athin film superlattices thermoelectric cooler.

From the above discussion, it can be concluded that size effects have significant
influence on the performance of thermoelectric micro coolers. Thin film superlattices
are two-dimensional thermoelectric materials since the size of one of their dimensions
is small compared to the others. The thermal conductivity in the direction which size
is small compared to the others.is reduced owing to size effects. Thus, reducing
dimensionality further can be considered as.an approach for decreasing the thermal
conductivity of thermoelectric materials-and-then increasing their performance. Nano
wire superlattices, which are one-dimensional materials, are considered as potential
thermoelectric materials.

In practical engineering applications, the axial thermal conductivity of nano wire
and nano tube superlattices is a very important parameter for designing thermoelectric
coolers. In the following discussion, it will only discuss the axial thermal conductivity
of nano wires and nano tubes.

Fig. 5.11 displays the effect of number of periods on the thermal conductivity of
nano tube superlattices. Each layer of the superlattices has the same thickness and it is
1 nm. The inner radius and outer radius of the nano tube superlattices are 10 and 11
nm, respectively. The effect of number of periods on the thermal conductivity of nano

tube superlattices is not obvious. Increasing number of periods does not decrease the



thermal conductivity of nano tube superlattices. The most important parameter
relative to thermal conductivity is the layer thickness. Once the thickness of every
individua layer is determined, the thermal conductivity of nano tube superlattices will
not vary with increasing number of periods. It is convenient for numerical simulations.
We just need to caculate the one-period nano tube superlattices case and it is
timesaving.

Fig. 5.12 depicts the effect of tube thickness on the thermal conductivity of nano

tube superlattices. The layer thickness of the tube, L, =L,, is1 nm and its inner
radius is 10 nm. Here the tube thickness is defined as R, - R. From Fig. 5.12, it is

noticed that the thermal conductivity decreases as the tube thickness decreases. Thisis
very interesting that not only reducing the size in axial direction but also reducing the
size in radia direction will reduce the axialsthermal conductivity. On the other hand,
the thermal conductivity does not increase with increasing tube thickness when the
tube thickness is greater than 50.nm: Since-the layer thickness is 1 nm, which is less
than the phonon mean free path, phonon transport is confined due to size effects in the
axial direction. The axial thermal conductivity of the tube approaches a constant value,
0.35 W/mK, and it is less than the bulk value, 0.6 W/mK .

Fig. 5.13 shows the effect of layer thickness on the therma conductivity of nano
tube superlattices. The inner and outer radius of the tube is 1 and 101 nm, respectively.
The axial thermal conductivity decreases as the layer thickness decreases. The results
of numerica simulations again demonstrate the influence of size effects on the
thermal conductivity. Reducing layer thickness of nano tube superlattices is an
effective way to decrease the axial therma conductivity.

Fig. 5.14 illustrates the curvature effect on the thermal conductivity of nano tube

superlattices. Three values of tube thickness, 1 nm, 10 nm and 100 nm, are selected to
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show how does the curvature affect the axia thermal conductivity of nano tube
superlattices. The layer thickness is 1 nm in al the three cases. The thermal
conductivity increases with decreasing inner radius. It indicates that increasing
curvature results in increasing axia thermal conductivity. However, this phenomenon
is not obvious. The thermal conductivity of a tube with 1 nm inner radius is merely
1.6 % greater than that of a tube with 1000 nm inner radius for 1nm tube thickness.
Similarly, for 10 nm and 100 nm tube thickness, the discrepancy is 0.03% and 0.3%,
respectively. Curvature just dightly affects the axial thermal conductivity. Moreover,
the curvature effect is less important when the tube thickness is getting large.

Fig. 5.15 reveals the size effect on the therma conductivity of nano wire
superlattices. The axia thermal conductivity decreases as the radius decreases.
Additionally, reducing the layer thickness further reduces the axia thermal
conductivity. To enhance the performance of nano wire superlattices thermoelectric
micro coolers, it is necessary to-decrease the-axial thermal conductivity. Reducing the
radius and layer thickness of the nano wire superlattices will be helpful to design a
high performance thermoel ectric device.

Fig. 5.16 displays the comparison of thermal conductivities of thin film, nano
wire and nano tube superlattices. The radius of the nano wire is 101 nm. The outer
and inner radius of the nano tube is 101 nm and 100 nm, respectively. All the three
cases show the same behavior that decreasing the layer thickness will reduce the

thermal  conductivity.  Furthermore, it is easy to oObserve that

k >k >k when they have the same layer thickness. The

nano- tube nano- wire thin- film

restriction of boundary should be responsible for reducing thermal conductivity. Low
dimensionality enhances the boundary scattering, so hano tubes and nano wires have

lower therma conductivities. Thus, nano tube and nano wire superlattices are



potential thermoelectric materials.




—— S cap layer

SiGeC
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Fig. 5.1 Cross sectional transmission electron microscopy image of the MBE grown
SiGeC/Si superlattice cooler sample [98].
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I\q<|x Layer 1

Fig. 5.2 Schematic diagram of thin film superlattices.




Fig. 5.3 Schematic diagram of nano tube superlattices.



Fig. 5.4 SEM image of the heterostructured nanowire array on Si(111) substrate. The
scade bar is 1 nm. The inset shows the tip of one nanowire. The scale bar is
100 nm. (b)STEM image of two nanowires in bright field mode. The scale
bar is500 nm. [99]
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Fig. 5.5 Schematic diagram of nano wire superlattices.

101



1x10° T T TTTT] T TTTTT T T T

[ 101l

1x10*

1x10°

a present results
- < theoretical results [52]
o @ experiments [53]

Thermal Conductivity (W/mK)

1X10'1 I IIIIIII| I IIIIIII| NN
1x10° 1x10" 1x10° 1x10°

Period Thickness (nm)
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Fig. 5.6 (b) Comparison of numerical calculations and experiments for Si/Ge
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BioTes/SbyTes thin film superlattices for a fixed total film thickness:

(@ L =10nm, (b) L =100nm and (c) L =1000nm.
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thin film superlattices for a fixed total film thickness: (a) L =100nm and

(b) L =1000 nm.
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6. INVERSE DETERMINATION OF SURFACE

TEMPERATURE IN THIN-FILM/SUBSTRATE SYSTEMS

Thin-film/substrate systems are widely used in superconducting bolometers,
microelectronics systems, and electro-optic devices. In such systems it is often
necessary to know surface temperatures and temperature distributions within the
media. These temperature profiles can be calculated if material thermal properties,
initial and boundary conditions are given. However, in some circumstances, boundary
conditions are difficult to determine. For example, if the surface of the thin-film is
suffering laser heating, it is unsuitable for attaching a sensor on the surface. Hence,
temperature detectors are placed ipside the substrate. Use of the inverse methods
allows determination of thermal properties and estimation of temperature distributions
and unknown boundary conditions by means of internal or external measurements

[102].

6.1 Analysis

6.1.1 Mathematical Formulation

Direct Problem Formulation

Consider one-dimensional conductive heat transfer in a two-layer medium as

illustrated in Fig. 6.1. The temperature of the medium isinitially T,. Attime t=0,
the temperature at X =0 hasrisen to T, while the temperature at x =L, is still

T,. All thermal properties in this study are assumed to be temperature-independent.

For convenience in the subsequent analysis, nondimensional variables are defined as

follows:
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TJ’ _ait X Ly L — Lq;

X:_lxlz_lx =_r) QJ:kT
ilL

TG L LT

: (6-1)

where a is the thermal diffusivity and Kk is the thermal conductivity. The subscript

j represents layer j,where j =1 or 2. The governing equations for this problem

are
Theinitial conditions are
q;(0.x) =q,. (6-3)
The boundary conditions are
q,(.0) =1, (6-4a)
0.t .1 =0,. (6-4b)

At the interface, the radiation-boundary-condition model is employed, thus the heat

flux continuity is

% LT?
ﬂiqu(t X1) :k_iﬂlx%‘t x)=m klaze x) - a2 x,), (6-5)

where k is a function of the material properties of the two media in contact. Higher

K represents less interface thermal resistance.

I nver se Problem For mulation

The inverse heat conduction problem is to estimate the temperature histories over
the whole domain from internal temperature measurements. In this study, instead of
using measured temperatures, the input data for the inverse heat conduction problem
are predicted from the solution of a direct problem for a given set of boundary

conditions.

116



The set of equations for the IHCP are Eqg. (6-2) and Eq. (6-5) aong with:

q,(t,0) =7 (6-6)
Q2(t ’Xr) =Y1(t ) (6-7&)
qz(t ,1) = Y2 (t ) (6'7b)

The medium is divided into a direct and an inverse region. The problem in the

direct region, X, <x <1, is a boundary-value problem with boundary conditions
given by the temperature measurements Y, and Y,. Y, and Y, representing the
temperature history of the first sensor located at x =X, and the second sensor

located at x =1, respectively. In this study, Y, and Y, were simulated by the
solution of the direct heat-transfer problem. After the temperature distributions in the
direct region were obtained, the temperature distributions in the inverse region were

determined by the space- marching method.

6.1.2 Numerical Method

The inverse estimation is not always numerically stable, which means small
inaccuracies in the measured interior temperatures may cause large oscillations in the
calculated surface conditions. Thus, many special methods have been proposed to
improve the stability of numerical calculation results. The space-marching method is
easy to use, accurate and stable [77]. Therefore, it was adopted to deal with the
engineering problem in this manuscript. The calculations start on the boundary
between direct and inverse regions and then are continued for the subsequent grids
within the inverse region. The space-marching technique proposed by Raynaud and
Bransier [84] uses the finite-difference method to approximate the governing

equations. Central-difference approximations in space and time lead to
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n+l _ n-1

di; - di a_] i—:l/2,j'Qi2:l/2,j
2Dt a Dx

: (6-8)

where the subscripts j =1 or 2 represent Layer 1 or Layer 2, respectively. In
addition, the dimensionless heat flux values Q',; and QU ,; are approximated as

follows:

=0 Qi?' - q” y
Qe =- JT“, (6-9a)

A~ N1 n+l

~n 1(=n: 0. 199 -4 qirl-l' . qirj_'ll\:I
Qi+]/2,j :E(Qi+]/12,j+Qi+J/12,j):'Eg lJDX L+ lJDX ]a.

(6-9b)

It can be seen that the dimensionless heat flux QZJ/ZVJ. is the average of

central-difference at times n+1 and _n-1. This will decrease the sersitivity to
measurement errors and stabilize the inversermethod. Substituting Egs. (6-9a) and
(6-9b) into EQ. (6-8) resultsin

(DX)2 (Qir?;rl - qir,]j-l)' %blrl-{l] - qi?;rl +qirl_1:,Lj - qi?}l)- (6'10)

n n al
di-1j =9 +a_j oDt
The temperatures at times n+1 and n- 1 are called future and past temperatures. If
the temperature at time n =N is desired to be calculated, the measurements should
be known upto | +N time steps. Herel is the number of the space grids in the
inverse region. Eg. (6-10) cannot be used to calculate the temperature field at the final
time step since it includes future temperatures. Thus, an explicit scheme that does not
include future temperatures, proposed by D’ Souza [103], is used to calculate the

temperaure distribution at the final time step. Backward-difference in time and

central-difference in space lead to

m m-1 m m m
di; - di; _a_jqi+].j - Z:Ii,j i1

5 - 507 (6-11)
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Rearranging the above equation yields

m —_ m m a (D()2 m m-
Qisaj =i - Ui +i D (qi,,- - qi,jl)- (6-12)
Thus, at each time step toward the unknown boundary, Eq. (6-10) is used for times
n=1to m-1, while Eq. (6-12) is used for n=m. The space-time grid for

numerical calculations is shown in Fig. 6.2.

6.2 Results and Discussion

Grid-refinement and time-step-sensitivity studies have been done to ensure the
accuracy of the numerical method. In general, the accuracy of a numerical method
increases as the time step decreases. However, in the inverse method sensitivity to
measurement errors increases due:to the smallness of the time steps. Thus, a trade-off
between accuracy and stability exists. In thefollowing cases, thetime step Dt =0.01,

the grid size Dx =0.01, the thermal diffusivity ratio a,/a, =0.1, and the thermal
conductivity ratio k,/k, =0.1 are employed.

Fig. 6.3 shows the exact and estimated temperature profiles for k =5" 10°*

over the time sequence. It can be seen that the absolute value of the Slope in Layer 2 is

greater than that in Layer 1 near the interface. Because Kk, is smaler than k; and

l k, 1 o : T :

—q,(t X,)=—=—o0,(t ,%X,), It to det that —q.,(t, eat
o g,(t x,) i Tx g,(t,x,), it is easy to determine ™ g,(t,x,) is gresater
than 1 g,(t ,x,) . Moreover, owing to the existence of interface thermal resistance

™
there is an abrupt temperature jump at the interface (x = 0.5). In this case, the first
sensor is located a X, =0.75 and the second sensor is located at x =1. Thus,

0.75<x <1 is the direct region and 0<x <0.75 is the inverse region. It can be
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seen that inverse estimation predicts well in theregion 0.5<x <0.75. The maximum
relative error is about 0.7%. However, a difference between exact and estimated
values appears as the calculation marches through the interface. This phenomenon is
obvious for the first few time steps. For example, the estimated values did not match
the exact values very well at t =0.2 (the relative error is about 1%), but they did at
t =05 and t =0.8 (the relative errors are less than 0.1%). The temperature of the
left surface (unknown in the inverse problem) suddenly rose from T, to T, in the
direct problem. Such an abrupt temperature jump could not be predicted accurately
using a numerical method. Thus, estimation accuracy is not good for the first few time
steps.

Three values of k were chosen to illustrate the effect of interface thermal
resistance on the inverse solution: k =5710%, k.=1" 10, and k ® ¥ (without
interface thermal resistance). Fig. 6.4(a) depicts the exact and estimated temperature
distributions within the medium at - t “=0.3;'with the first sensor located at x, =0.75.
It can be seen that the differences between exact and estimated values decrease as Kk
increases. In other words, the accuracy of the inverse estimation increases as the
interface thermal resistance decreases. Furthermore, it is interesting to note that the
differences between the exact and estimated values trend toward diminution as the

calculation marches through the interface to the left surface (x = 0). For example, the

difference between the exact and estimated temperatures at x =0.4, x =0.3, and

x =0.2 are 0.005216, 0.004617, and 0.003221, respectively, for k =5~ 10"°. The

discrepancy between the estimated and exact temperatures seems to recover as the
estimated solution moves to the surface. In order to investigate this phenomenon,

another case was selected to be tested. The results of the case with k,/k, =10 were
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plotted in Fig. 6.4(b). From Fig. 6.4(b), the results show that the discrepancy between
the estimated and exact temperatures was slightly diverged as the estimated solution
moves to the surface. However, al of these cases show that the error of inverse
estimation of surface temperature is less than 1.3%.

Fig. 6.5 presents the exact and estimated surface temperature histories for
k=5710"°, k=1"10°, and k ® ¥, with x, =0.75. The inverse estimation
solution is not good for the first few time steps, as mentioned above, however, after
about 10 time steps (t =0.1), the estimated values approach to the exact values as
time elapses. In other words, the relative error decreases when the time increases. The
maximum relative error is about 1% at t =0.1. Furthermore, the accuracy of the
inverse method dlightly increases as the interface therma resistance decreases.
However, in this case, the error is.80 small_that.it is.generally not significant.

Fig. 6.6 shows the exact and estimated histories of the temperature difference
(Dg ) at the interface for k=1710%, 'k =5"10", and k =1 10°, with
X, =0.75. As time elapses, the temperature difference at the interface initialy
increases until reaching maximum then decreases to a fixed value. Thus, the steady
state is reached. The small value of Kk represents high interface thermal resistance
that prevents heat from propagating from one material to the other, so the temperature
difference at the interface decreases as k increases. Furthermore, the moment that
the maximum temperature difference appears tends to shift toward short time as k
decreases. Inverse estimation predicts this phenomenon accurately after a few time
steps.

Fig. 6.7 illustrates the exact and estimated temperature distributions for various
sensor locations, with k =1 10"*. At t =0.2, the accuracy of the inverse estimation

with X, =0.60 is better than that of the other two cases. The small value of x,
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mears that the sensor was located near the unknown boundary. Thus, the best inverse
solution is obtained with the sensor closest to the unknown boundary. However, this
phenomenon is not significant as time elapses. At t =0.6, x, =0.60, x, =0.75,
and x, =0.90 predict aimost the same temperature distribution and they match the
exact value reasonably well. The relative errors are less than 0.1% for these three
casesat t =0.6.

The maximum inverse estimation error occurs at the interface for our
demonstrated case. Thus, the inverse estimation error at the interface must be

thoroughly examined. E, . is the absolute value of the relative error at the interface.

int
It is chosen as an index of the inverse estimation error. Fig. 6.8 shows the inverse
estimation error a the interface for .ky=5;10°, k =1"10*, k =510, and

K ® ¥ with x, =0.75. For the frst few time steps such as t <0.1, E, varies

int
sharply with time. As mentioned before; an abrupt temperature jump could not be
predicted accurately using a numerical method sa that the estimation accuracy is not

good for the first few time steps. Furthermore, the existence of interface thermal

resistance will make the estimation less accurate. Therefore, E

int

is affected by both

k and t . Thereisno generd trend for E,, when t islessthan 0.1. However, the

int
results show that E,, decreases as k increases after t =0.1, i.e. less interface
thermal resistance results in more accurate prediction. Besides, the figure
demonstrates again that the inverse estimation error decreases as time elapses.

In order to examine the influence of sensor locations on the inverse estimation

eror at the interface, three different semsor location, x, =0.60, x, =0.75, and
X, =0.90 were designated as sample cases. Fig. 6.9 depicts inverse estimation error

a the interface for various sensor locations with k ® ¥ . It is obvious that E,
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decreases as X, increases. Thus, the inverse estimation predicts more accurately
while the sensor is close to the unknown boundary.

The discussion above shows that the inverse method provides a good estimation
with exact input data. However, in practical engineering applications, measurement
errors are unavoidable. Thus, the effect of measurement errors on the inverse method
must be taken into account. The temperature data for the measurement locations were
calculated from direct problems to simulate measurements. The ssimulated temperature
measurements used in the inverse problems are considered to include measurement
errors. In this study, random errors were added to the exact temperatures. The

measured temperature T, ... CaN be expressed as

T

ensured = Toat FV Toea » v <fs|, (6-13)
where T, is the exact temperature, V- is the random error, and s is the bound
of v .

Fig. 6.10 depicts the exact: and estimated ‘surface temperature histories for
various sensor locations, with k =1 10°°, when measurement errors are taken into
account. It can be seen that large measurement errors make the estimation less
accurate. Furthermore, the inaccuracy is amplified by large X, values. For the cases
with exact input data (without measurement errors), sensor locations merely slightly
affect the accuracy of the inverse estimation. However, the effect will be amplified if
measurement errors are taken into account. Thus, for practical engineering problems
in which measurement errors are unavoidable, sensors must be located as close to
unknown boundaries as possible. Fig. 6.11 shows an estimated surface temperature
history with (8 )k =1 10"* and (b)k ® ¥ . Comparing Figs. 6.11(a) and 6.11(b), it is

clear that the differences between exact and estimated values are amplified when
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thermal resistance exists at the interface.

124



Layer 1 Layer 2

A
i AN

A
\

Lt

A
\ A
A
\ 4

Interface

Thermocouples

Fig. 6.1 Schematic diagram of atwo-layer medium
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128



exact

estimated

Fig. 6.4(b) Exact and estimated temperature distributions at t = 0.3 for various

interface conditionswith k,/k, =10.
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Fig. 6.6 Exact and estimated temperature-difference (Dq ) histories at the interface
for k =1"10*, k =57 10*,and k =1" 10"® with x, =0.75.
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Fig. 6.8 Inverse estimation error at the interface for k =5 10°, k =1 10*,
k =5710",and k ® ¥ with x, =0.75.
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7. CONCLUSIONSAND RECOMMENDATION

This thesis discusses microscale heat transfer phenomena in solid-state
multilayer structures. We examine the size, interface and geometry effects on the
thermal conductivity of materias. This chapter daws some conclusions as well as
directions for future work in this area.

The phonon radiative transfer model is partialy ballistic, partially wavelike, and
partialy diffusive. EPRT approaches to Fourier limit (totaly diffusive) when the
thickness of the film is much greater than the phonon mean free path. However, EPRT
reduces to Casimir limit (totally ballistic) when the thickness of the film is much less
than the phonon mean free path. The study suggests a profile for engineers to apply
conduction heat transfer models:in different. film thickness. When the ratio of film
thickness to phonon mean free ‘path is. great than 100, Fourier law is a good
approximation to deal with conduction heat-transfer problem in dielectric thin film.

Extending the one-layer system to'atwo-1ayer system, the interface effect on the
thermal conductivity must be considered. Microscale heat transport in a two-layer
concentric circular cylinder with interface thermal resistance is examined in this study.
The size and curvature effects on the effective thermal conductivity and the interface
thermal resistance are examined in detail. The results show that the reduction of size
will reduce the effective thermal conductivity. In addition, the effective thermal
conductivity increases as the curvature ncreases. However, the size and curvature
effects on interface thermal resistance are not significant when the DMM is employed
to describe the interface condition.

Microscale heat transfer in two-dimensional micro tubes is also examined. The

results show that the curvature effect on the effective thermal conductivity is not
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significant. However, the reduction of thickness or height will reduce the effective
thermal conductivity. Thus, the miniaturization of microelectronic devices will reduce
the ability of heat transfer and may cause the fallure of devices if the size effect is
ignored.

Extending the foregoing analysis on microscale heat transfer, size effects on the
performance of thermoelectric micro coolers are explored in detail. Thin film, nano
wire and nano tube superlattices are utilized to make thermoelectric micro coolers and
EPRT as well as DMM are used to model the microscale heat transfer in the micro
cooler. The results show that the layer thickness has significant influence on the
effective thermal conductivity of thermoelectric materials in superlattice structures.
The reduction of the layer thickness will reduce the therma conductivity of
superlattices and thus enhance their. thermoel ectric.performance. For afixed total film
thickness, increasing number of periods means decreasing layer thickness of each
layer and increasing number of-interfaces.Thus, the thermal conductivity decreases
with increasing number of periods. ln_addition, low-dimensionality offers more
boundary scattering and cawses further reduction in therma conductivity of
low-dimensional thermoelectric materials. Nano wire or nano tube superlattices are
potential materials for high performance thermoel ectric devices.

After knowing what parameters affecting the effective thermal conductivity and
how they influencing, the thermophysical properties of materials can be properly
defined. The effective thermal conductivity and the temperature histories in the
interior points are used to estimate the surface temperature in thin-filmy/substrate
systems. This study presents a numerical analysis of estimating transient behavior of
surface temperatures for thin-film/substrate system using an inverse method. The

acoustic mismatch model was employed to model the interface thermal resistance
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between thin-film and substrate. The space-marching technique is adopted for the
analysis of the inverse heat conduction problem. Numerical results show that the
inverse method accurately estimated the surface conditions and temperature
distributions in atwo-layer system even with an abrupt temperature drop in the
interface. Sensor locations and interface thermal resistance just dightly affected the
accuracy of the inverse estimation during the transient process when exact input data
(without measurement errors) were applied. However, inaccuracy might be amplified
by interface thermal resistance and sensor locations if measurement errors exist.
Thermal transport theory based on Boltzmann equation successfully describes
the microscale heat transfer phenomenain solids. This study closely examines the size
effects on the thermal conductivity of solid-state devices with multilayer structures. In
addition, the study of size effects on the electrical conductivity can be found
elsewhere. However, there are-rare studies that simultaneously deal with heat and
electron transport in solids. It would:be-more-valuable to smultaneously predict the
thermal and electrical conductivity of aminiaturized thermoelectric device since heat
transfer and electron transfer are not independent. Besides, we need more
experimental results to demonstrate the validity of the microscale heat transfer theory.
Unfortunately, the reported thermophysical properties of materials in small scale are
very few. It is difficult to fabricate perfect micro structures and measurements of
thermophysical properties are not easy. Future work should be emphasized in
experimental researches, particularly in developing the measurement method that
simultaneously measures the thermal conductivity, the electrical conductivity and the

Seebeck coefficient of thermoel ectric materials.
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