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固態層狀結構中微觀熱傳現象之分析 

 

學生：吳世國 指導教授：曲新生 

 

摘  要 

 

 本文主要是探討固態層狀結構中之微觀熱傳現象。首先，我們分

別從巨觀和微觀的觀點探討介電薄膜內的熱傳行為。聲子輻射熱傳模

式、傅立葉定律以及熱波理論分別被用來分析介電薄膜內的暫態熱傳

現象。當薄膜厚度小於聲子平均自由徑(mean free path)時，由於聲子

穿透傳播(ballistic transport)的緣故，聲子輻射熱傳模式預測到在邊界

處會有溫度不連續的情形產生。相反地，當薄膜厚度遠大於聲子平均

自由徑時，聲子輻射熱傳模式會趨近於傅立葉定律。結果顯示，當薄

膜厚度與聲子平均自由徑的比值大於 100時，描述巨觀熱傳現象之傅

立葉定律便很適合處理介電薄膜內的熱傳問題。 

 其次，本文分析了雙層同心微圓管中微觀熱傳的現象。應用聲

子輻射熱傳方程式模擬固態材料內的熱傳導行為。同時以散異模型

(diffuse mismatch model)來描述兩層材料交界處的介面條件。結果

顯示，當微圓管厚度縮小時，材料的熱傳導係數也隨之降低。而數

值模擬的結果與實驗數據非常吻合。除了尺寸效應外，微圓管曲率

的縮減也會使得材料的熱傳導係數降低。不過，微圓管的尺寸及曲

率對介面熱阻的影響並不明顯。 

 接下來，我們推導出二維聲子輻射熱傳方程式，用以模擬微圓管

內的熱傳行為。本研究檢視了微圓管尺寸和曲率對其熱傳導係數的

影響。結果顯示，當微圓管的高度或管壁厚度小於或相當於聲子平
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均自由徑時，聲子穿透傳播主宰了整個熱傳行為。尺寸的縮減造成等

效熱傳導係數變小。不過，曲率對等效熱傳導係數的影響並不明顯。 

 將上述微觀熱傳的分析擴展，本研究檢視了尺寸效應對熱電微

冷卻器性能的影響。本研究應用了聲子輻射熱傳方程式和散異模型

來模擬超晶格薄膜、超晶格奈米線以及超晶格奈米管內的微觀熱傳

行為。結果顯示，具超晶格結構的熱電材料會因其組成材料層厚度

降低而使得其等效熱傳導係數下降。更進一步地，當超晶格薄膜、

超晶格奈米線和超晶格奈米管的厚度相同時，超晶格奈米線和超晶

格奈米管具有較低的等效熱傳導係數。因此，超晶格奈米線或是超

晶格奈米管很有潛力製成高性能熱電裝置。 

 由以上分析得知，在奈米尺度的系統內，尺寸縮減會造成等效

熱傳導係數降低。因此，為了確保散熱的能力，我們利用了由微觀

熱傳模式所計算出的等效熱傳導係數去推估薄膜/基材系統的表面

溫度。結果顯示，即使在薄膜/基材介面處有急劇的溫度變化，逆運

算法仍能準確地預測薄膜/基材系統的表面狀況。當輸入的溫度資訊

為正確值(即沒有量測誤差)時，溫度感測器的擺放位置和介面熱阻

對逆運算法的準確性影響非常小。不過，若是有量測誤差存在時，

不準度便會被介面熱阻和溫度感測器的擺放位置給放大。 
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Microscale Heat Transfer in Solid-State Multilayer Structures 

Student: Shih-Kuo Wu Advisor: Hsin-Sen Chu 

 

ABSTRACT 

 This thesis discusses microscale heat transfer phenomena in solid-state 

multilayer structures. First, we discuss heat transfer in dielectric thin films from both 

macroscopic and microscopic points of view. Phonon radiative transfer model as well 

as Fourier law and thermal wave theory are utilized to analyze the transient heat 

conduction phenomena in dielectric thin films. Phonon radiative transfer model 

predicts temperature discontinuities at boundaries due to its ballistic nature when the 

thickness of the film is less than the phonon mean free path. In contrast, the results 

predicted by the phonon radiative transfer model approaches to that of Fourier law 

when the thickness of the film is much grater than the phonon mean free path. The 

results show that as the ratio of thin film thickness to phonon mean free path, L/Λ, is 

greater than 100, Fourier law, a macroscopic heat transfer model, is a good 

approximation to deal with the transient heat transfer problems in dielectric thin films. 

 Second, we present a numerical analysis on estimating the microscale heat 

transfer in a two-layer concentric circular tube. The phonon radiative heat conduction 

equation and the diffuse mismatch model are utilized to simulate the microscale heat 

conduction in solids. The results show that the reduction of layer thickness will reduce 

the effective thermal conductivity. Moreover, the numerical predictions agree with the 

experimental data very well. Besides the size effect, the reduction of curvature will 

also reduce the effective thermal conductivity. However, the size and curvature effects 

on the interface thermal resistance are not significant. 

 Third, we concern microscale heat transfer in micro tubes. A two-dimensional 
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equation of phonon radiative transfer was derived to simulate this system. The 

influences of size and curvature on thermal conductivity are examined closely. The 

results show that ballistic transport dominates if the tube thickness or height is 

comparable or less than phonon mean free path. The reduction of size reduces the 

effective thermal conductivity. However, the curvature effect on the effective thermal 

conductivity is not significant. 

 Extending the foregoing analysis on microscale heat transfer, size effects on the 

performance of thermoelectric micro coolers are examined in detail. EPRT and DMM 

are utilized to model the microscale heat transfer in thin film, nano wire and nano tube 

superlattices. The results show that the effective thermal conductivity of 

thermoelectric materials in superlattice structures decreases as the layer thickness 

decreases. In addition, the thermal conductivities of nano wire and nano tube 

superlattices are less than that of thin film superlattices when they have the same layer 

thickness. Thus, nano wire and nano tube superlattices are potential materials for high 

performance thermoelectric devices. 

 From the above studies, it is observed that the reduction of size causes the 

reduction of thermal conductivity. Thus, to assure the heat dissipation ability, we 

utilize the effective thermal conductivity calculated by the microscale heat transfer 

model to estimate the surface temperature in thin-film/substrate systems. Numerical 

results show that the inverse method accurately estimates surface conditions and 

temperature distributions in a two-layer system even with an abrupt temperature drop 

at the interface. Sensor locations and interface thermal resistance only slightly affect 

the accuracy of the inverse estimation when the exact input data (without 

measurement errors) are applied. However, the inaccuracy might be amplified by the 

interface thermal resistance and sensor locations if measurement errors exist. 
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1. INTRODUCTION 

 

1.1 Motivation 

 Owing to the trend towards miniaturization in engineering systems, the study of 

microscale phenomena has attracted significant attention for the past two decades. 

Reducing sizes have increased device switching speed, and thus have also increased 

heat generation [1]. Since the temperature of solid-state devices significantly 

influences their performance, heat dissipation becomes a vital issue. Experimental 

results of thermal conductivity measurements demonstrate that the thermal 

conductivities of thin films are frequently smaller than those of corresponding bulk 

materials [2-4]. This phenomenon implies that the Fourier law of heat conduction, 

which is derived from the macroscopic point of view, is inappropriate for treating 

microscale heat transfer in solids. Thus, heat transport mechanisms and 

thermophysical properties of materials must be known prior to dealing with 

microscale heat transfer problems. 

 From a microscopic perspective, heat carriers in solids include both free 

electrons and phonons. In metals, free electrons dominate heat conduction, while 

phonons are the major heat carriers in dielectrics and semiconductors [3, 5]. The 

macroscopic heat transfer model such as Fourier law requires hundreds of thousands 

of energy carrier collisions. However, if the length and/or time scales are shrinking 

into the micro/nano scale, there is no sufficient space or time for the process of heat 

transport to occur. The macroscale heat transfer model can result in a significant error 

in the calculated heat transfer rate or temperature distribution in the devices involving 

the miniaturization length and time scales. 

 Since multilayer structures have been widely used in many solid-state devices 
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such as microelectronic, optical, and superconducting devices, it is important to 

realize the microscale heat transfer in multilayer structures. In practical engineering 

applications, thin films are almost always on supporting substrates and/or in 

multilayer configurations. Besides the size effect, interface thermal resistance also is 

important in determining heat flow in thin-film/substrate systems. For example, a 

restriction in heat flow from the superconducting film can cause a transition from the 

superconducting state to the normal state during operation of the device, resulting in 

device failure. The interface thermal resistance prevents heat transporting from one 

medium to another and this thus reduces the overall thermal conductivity of materials. 

It is undesired for heat dissipation. However, the lower thermal conductivity makes 

high performance thermoelectric devices. 

 Thermoelectric devices are solid-state energy conversion devices. Since they 

have no moving parts, they have no noise and are reliable. They have small size and 

light weight. Moreover, unlike the conventional compressor-based refrigerators, 

thermoelectric refrigerators use no CFC gas or any other refrigerant gas so they are 

environmentally friendly [6]. Owing to these advantages, the thermoelectric devices 

have found a large range of applications [7]. 

 To describe the performance of the thermoelectric materials, an index called the 

dimensionless thermoelectric figure of merit, ZT , was defined as [8] 

 
k

TS
ZT eσ2

= , (1-1) 

where S  is the Seebeck coefficient, eσ  is the electrical conductivity, T  is the 

temperature and k  is the thermal conductivity. To increase the performance of a 

thermoelectric device, the figure of merit must be maximizing. In general, metals 

have high electrical conductivity and high Seebeck coefficient. However, their high 
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thermal conductivity makes the thermoelectric devices impracticable. Materials with 

high Seebeck coefficients generally have low thermal conductivity, but their electrical 

conductivity are too low. The properties of semiconductors lie between conductors 

and insulators and make for the best thermoelectric materials. 

 By the end of 1950’s, the best thermoelectric materials were found to be alloys of 

bismuth telluride and antimony telluride and the ZT  value was about unity. A ZT  

value of 4 would make thermoelectric refrigerators economically competitive with 

conventional compressor-based refrigerators [9]. Over the past 40 years, the ZT  

value has improved very little. In the 1990’s, the rapid development of semiconductor 

industrial makes the searching for thermoelectric materials with high ZT  values 

hopeful. 

 It is clear that high Seebeck coefficient, high electrical conductivity and low 

thermal conductivity maximize the ZT  value. There are several methods to increase 

the ZT  value. One approach is the use of low-dimensional nanostructures like 

superlattices, nanowires and quantum dots [10, 11]. Superlattices are periodic 

structures consisted of hundreds of layers of thin films [12]. Due to the confinement 

of phonon in superlattices, the thermal conductivity will be reduced and then 

increases the ZT  value [13]. 

 

1.2 Nano Technology in Energy and Heat Transfer 

 Nano technology has become a very hot topic in recent years. Nano machines 

and nano materials are very important issues in the area of nano technology. As the 

advancement in fabrication, the device size is shrinking into micro/nano meter and it 

is possible to produce a nano machine. A nanoscale submarine might be useful in 

medicine by navigating through the blood, seeking out cancer cells and destroying 
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them [14]. Besides developing a novel nanomachine, a material with desired physical 

characteristics is also helpful to improve the performance of the current machines or 

devices. The past nano science researches told us that the physical properties of 

materials are different from their bulk values when the size of a device is reduced to 

nanometer scale. Thus, new structures with novel physical properties can be designed 

with known materials. There are many potential engineering applications associated 

with nano technology in energy and heat transfer such as thermoelectric superlattices, 

carbon nanotubes, electrokinetic microchannel battery, nanofluids and solar cells. The 

brief introductions of carbon nanotubes, electrokinetic microchannel battery, 

nanofluids and solar cells are presented as below.  

 

Carbon Nanotubes 

 Carbon nanotubes, as shown in Fig. 1.1, have attracted many researchers’ 

attention due to their widely possible applications. They are constructed by rolling up 

an infinite stripe of graphite sheet and can be described as graphite cylinders. The 

extraordinary high and reversible hydrogen absorption in single walled carbon 

nanotubes make it possible that using them as high capacity hydrogen storage media, 

which is important for fuel cells [15]. Besides, single walled carbon nanotubes are 

used as battery electrodes owing to their large irreversible capacities and voltage 

hysteresis [16]. 

 

Electrokinetic Microchannel Battery 

 Yang et al. [17] developed an electrokinetic battery consisting of an array of 

microchannels to convert the hydrostatic pressure of a liquid into electrical work. 

Electrically neutral liquids perform a charge distribution near the solid- liquid interface, 
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as illustrated in Fig. 1.2, owing to a charged solid surface and this region is known as 

electrical double layer. Due to the presence of an electrical double layer 

pressure-driven flow in a microchannel will induce a streaming current. 

 

Nanofluids  

 Solid particle suspensions with high thermal conductivity have the potential to 

enhance the heat transfer in liquids. Nanofluid, as illustrated in Fig. 1.3, is a new kind 

of heat transfer medium containing uniformly and stably distributed nanoparticles 

[18]. Recent measurements showed that the thermal conductivity of nanofluids 

increases as the particle size decreases. To explain this phenomenon, Keblinski et al. 

[19] proposed four possible mechanisms: (1) Brownian motion of the particles, (2) 

molecular-level layering of the liquid at the liquid/particle interface, (3) ballistic heat 

transfer in the nanoparticles, and (4) the effects of nanoparticle clustering. However, 

these mechanisms are insufficient in explaining the dramatic increasing thermal 

conductivity of nanofluids. There is a need to explore other heat transfer mechanisms 

to complete the heat transfer enhancement theory of nanofluids. 

 

Solar Cells 

 The polymer-based devices are mostly attractive due to their easy production 

technology and lower costs [20]. However, the efficiencies of polymer solar cells are 

much lower than those of conventional solar cells. Solar cells assembled from 

blending inorganic nanorods with polymers have the potential to enhance the 

efficiency of solar power conversion [21]. Controlling inorganic materials on the 

nanoscale opens new opportunities for the development of novel solar cells because of 

the nanoscale nature of light absorption and photocurrent generation in solar energy 
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conversion [22]. Since inorganic nanorods naturally provide a directed path for 

electrical transport, they are preferable in solar energy conversion. By altering the 

radius of CdSe nanorods, as shown in Fig. 1.4, the quantum size effect can be used to 

control the band gap. Moreover, quantum confinement enhances the absorption 

coefficient and thus the devices can be made more compact. 

 

1.3 Microscale Heat Transfer Models 

1.3.1 Molecular Dynamics Simulation 

 Utilizing a true representation of the intermolecular potential in molecular 

dynamics simulations is critical for ensuring that the physics underlying microscale 

heat transfer phenomena is accurate [23]. However, it is difficult to obtain a precise 

potential function. One of the well established intermolecular potential functions is 

the Lennard-Jones (LJ) potential. The LJ 12-6 potential is 
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where ijr  is the distance between atoms i  and j , ε  is the well depth of the 

potential and LJσ  is the equilibrium separation parameter. The Lennard-Jones 

potential is a two-body potential and it is valid for inert gases. Another frequently 

mentioned two-body potential called Morse potential is adequate for metals. The 

two-body potential functions are the simplest potential functions since only the 

interactions between two atoms are considered. Thus, many-body potential functions, 

such as tight-binding potential, Stillinger-Weber potential and the embedded-atom 

method, are developed to describe the interactions among atoms more precisely. 

 The first derivative of Eq. (1-2) is the force experienced by an atom due to the 

presence of another atom. Using Newton’s second law of motion, a relation between 



 7 

force and acceleration can be established as 
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where m  represents the atom mass and F  is the force. Substituting the first 

derivative of Eq. (1-2) into Eq. (1-3), a relation between the interatomic potential and 

the vibrational motion of the atoms in the system will be established. 

 

1.3.2 Thermal Wave Model 

 The original thought of the thermal wave theory is that the speed of heat 

propagation cannot be infinity. Thus, there must be a time lag between heat flux and 

temperature gradient  [24]. Cattaneo [25] and Vernotte [26] proposed a modified 

model as following: 

 Tk
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vv τ , (1-4) 

where q  is the heat flux, Rτ  is the relaxation time, k  is the thermal conductivity 

and T  is the temperature. Substitution the above equation into the energy 

conservation equation, then an alternative heat transfer model which is known as 

thermal wave model or hyperbolic heat conduction equation was developed. The 

hyperbolic heat conduction equation can be expressed as 
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τ

, (1-5) 

where α  is the thermal diffusion coefficient. 

 

1.3.3 Phonon-Electron Interaction Model 

 Heat transfer in metals are attributed to electron and phonon transport. Since the 

heat capacity of electron is much smaller than that of phonon, the heating of electron 
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and phonon can be described as a two-step process [27-29]. 
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where C  is the heat capacity, k  is the thermal conductivity, and the subscript 

indices e  and p  denoting for electron and phonon, respectively. The energy 

exchange between electrons and phonons is characterized by the coupling factor G . 

 

1.3.4 Phonon Scattering Model 

 The phonon scattering model was developed by solving the linearized Boltzmann 

transport equation for the pure phonon field [30]. Only heat transport by phonon 

scattering was emphasized and the contribution of electron in conducting heat was 

neglected. 
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where pC  is the heat capacity, v  is the phonon velocity, Rτ  is the relaxation time, 

and Nτ  is the relaxation time of elastically scattering. 

 

1.3.5 Phonon Radiative Transfer Model 

 The phonon radiative heat transfer model starts from the solution of the 

linearized Boltzmann transport equation. The collision term in the Boltzmann 

transport equation is very complicated and make the Boltzmann equation difficult to 

solve. By using the relaxation-time approximation, the linearized Boltzmann equation 
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becomes 

 
R

ff
x
f

v
t
f

τ
−

=
∂
∂

+
∂
∂ 0

. (1-9) 

Where 0f  is the equilibrium phonon distribution, which follows the Bose-Einstein 

distribution. Majumdar transformed the Boltzmann equation to an equation of phonon 

radiative transfer (EPRT) in the form [31] 
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where I  is the phonon intensity, and µ  is the direction cosine. This equation has 

the same form as the equation of radiative transfer. Therefore, Majumdar called it the 

equation of phonon radiative transfer. 

 

1.4 Interface Thermal Resistance Models 

1.4.1 Interfacial Layer Model 

 The interfacial layer model assumes an interfacial layer with variable thickness 

and thermal conductivity in between two dissimilar materials. Two very important 

parameters directly and significantly affecting heat transport across the two dissimilar 

materials are the thermal and thickness ratios of the interfacial layer to the reference 

material. For example, according to the experimental results of Marshall et al. [32] the 

thermal conductivity and thickness ratios of the interfacial layer to Y-Ba-Cu-O thin 

film are 0.01 and 0.02, respectively. However, these parameters are strongly 

depending on the contact conditions such as contact areas and contact pressure. Thus, 

it is difficult to estimate the thermal and thickness ratios of the interfacial layer to the 

reference material. 
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1.4.2 Acoustic Mismatch Model 

 The acoustic mismatch model starts by assuming that phonons are the major 

carriers of heat. The interface thermal resistance is attributed to the transmitting and 

reflecting of phonons at the interface. The interface is perfect and structureless so 

there is no scattering occurring at the interface. The phonon transmission probability 

from medium 1 to medium 2 is governed by the Fresnel equations and can be 

expressed as [33] 

 
2

2211

2211
12 )(

4
vv
vv

ρρ
ρρ

α
+

= , (1-11) 

where ρ  is the density and v  is the sound velocity. Before proceeding the AMM, 

the range of validity of assumptions should be checked. At very low temperatures, the 

phonon wavelength is much smaller than the interfacial roughness and the size of 

defect near the boundary. The interface may appear to be a perfectly flat plane, which 

is the basic assumption in the acoustic mismatch model. Thus, the AMM works well 

at low temperatures. For example, Herth and Weis [34] measured the interface 

resistance between gold film and sapphire substrate at 100K and confirmed that the 

AMM predictions matched the experimental results. 

 

1.4.3 Diffuse Mismatch Model 

 For most interfaces above a few Kelvin, the interface itself is a very strong 

scatterer of phonons. The analog to the Fresnel equations is no longer valid. Instead, 

Swartz and Pohl [35] assumed that all the phonons are diffusely scattered at the 

interface and derived the phonon transmissivity from medium 1 to medium 2 as 
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where mv  is the sound velocity of mode m  (longitudinal or transverse). 



 11 

 The acoustic mismatch model is valid for smooth interfaces and the diffuse 

mismatch model is adequate for rough interfaces. The ratio of phonon wavelength to 

the interface roughness determines the applicability of AMM and DMM. When the 

phonon wavelength is far small than the interface roughness, the interface can be seen 

as a rough interface and the diffuse mismatch model is applicable. Otherwise, the 

acoustic mismatch model is more suitable for a smooth interface which roughness is 

small compared to the phonon wavelength. 

 

1.4.4 Scattering-Mediated Acoustic Mismatch Model 

 Scattering-mediated acoustic mismatch model (SMAMM) was developed by 

observing the close analog between radiative and phonon heat transport [36]. 

Scattering near the interface is dominant than any other mechanism [35]. At high 

temperatures, the phonon mean free path is short, so that the phonon wave will 

attenuate rapidly. In contrast, scattering has hardly any effect on the transmission and 

reflection of acoustic waves at very low temperatures. The reflectivity from medium 1 

to medium 2 predicting by SMAMM can be expressed as 
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and the transmissivity is 
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SMAMM accurately describes the behavior of interface thermal resistance at high 

temperatures and it can reduce to AMM at low temperatures. 

 

1.5 Literature Survey 

1.5.1 Microscale Heat Transfer 

 As mentioned before, Fourier law, a macroscale model, is inadequate to deal 

with microscale heat transfer problems. Thus, it is important to develop microscale 

heat transfer model. Preliminary to develop microscale heat transfer models, the 

thermophysical characteristics of heat carriers must be clarified. An understanding of 

heat carriers is the first step toward solving microscale heat transfer problems. The 

major heat carriers for heat transfer in solids are free electrons, phonons, and photons. 

Tien and Chen [3] listed important features of heat carriers and the motion of which 

governs heat transport, as illustrated in Table 1.1. After knowing the general features 

of heat carriers, one question is raised-which heat transport model is adequate under a 

given time- and length scales. Flik et al. [37] developed regime maps showing the 
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boundary between the macroscale and microscale transfer regimes. Further, 

Majumdar [38] listed the characteristic time- and length scales and corresponding 

transport phenomena of energy carriers, as shown in Table 1.2. Wave transport and 

microscopic particle transport are suitable for describing microscale heat transfer in 

solids. The wave and particle nature of phonons can be obtained from classical text by 

Kittel [39]. Recently, Chen [40] studied the phonon wave effects on heat conduction 

in thin films. The results had demonstrated that it is safe to treat the phonon transport 

based on the phonon particle picture for thin films of practical thickness. The 

Boltzmann Transport Equation (BTE) is the most suitable model for describing 

phonon transport in solids due to its ability to correctly describe both equilibrium and 

non-equilibrium phenomena [41]. To solve the Boltzmann transport equation, several 

approximation methods had been proposed by numerous researchers [42]. According 

to BTE, Majumdar [31] developed an equation of phonon radiative transfer (EPRT) to 

deal with microscale heat conduction in dielectric thin films. Later, Joshi and 

Majumdar [43] employed the EPRT to study heat transfer across diamond thin films 

for both steady-state and transient cases. In their studies, the results demonstrated that 

the geometric size has a great influence on the thermal properties of materials, which 

is so-called size effect. 

 

1.5.2 Interface Thermal Resistance 

 The interface thermal resistance also plays an important role in determining heat 

flow in thin-film/substrate systems. The existence of interface thermal resistance 

prevents the heat from propagating and may cause device failure. Many experiments 

[44-48] have been conducted to determine the interface thermal resistance between 

thin films and substrates. Besides the experimental quantification of interface thermal 
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resistance, theoretical analysis also has been done by many researchers. Little [49] 

predicted interface thermal resistance by treating phonons as plane waves and 

proposed the acoustic mismatch model (AMM). An essential assumption of the AMM 

is that no scattering occurs at the interface. Swartz and Pohl [35] considered the 

diffuse scattering occurring at the interface and proposed the diffuse mismatch model 

(DMM). Phelan [50] pointed out that the applicability of AMM and DMM is 

determined by the ratio, σλd , where dλ  is the dominant phonon wavelength, and 

σ  is the mean interfacial roughness. When 1>>σλd , the AMM is applicable, 

otherwise, the DMM applies. Chen [51] examined the effect of interface conditions on 

the thermal conductivity of superlattices in the direction parallel to the film plane. He 

divided the interface conditions into diffuse scattering and specular scattering. It was 

concluded that diffuse interface scattering, rather than specular scattering, is the cause 

of the observed reduction in thermal conductivity of superlattices. La ter, Chen [52] 

investigated the interface effect on the thermal conductivity of superlattices in the 

cross-plane direction. The results based on DMM were in reasonable agreement with 

experimental results by Capinski and Maris on a GaAs/AlAs superlattices [53]. Zeng 

and Chen [54] examined the applicability of the thermal boundary resistance to the 

case with internal heat generation. Prasher and Phelan [36] developed a model, called 

the scattering-mediated acoustic mismatch model (SMAMM), to exploit the analogy 

between phonon and radiative transport by developing a damped wave equation to 

describe the phonon transport. More recently, Chantrenne and Raynaud [55] 

developed the simulations of heat transfer through an interface by molecular 

dynamics. 
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1.5.3 Thermoelectrics 

 In 1821, Seebeck discovered that when two different conductors were joined 

together and one of the junctions was heated, a voltage appeared. Later, Peltier 

discovered the reverse phenomenon that a temperature gradient appeared when an 

electric current passed through the junction between two conductors [56]. The 

discovery of thermoelectric materials offers the conversion between heat and 

electricity [57]. A typical thermoelectric power generator, as illustrated in Fig. 1.5, is 

based on the Seebeck effect. Both electrons in n-type semiconductors and holes in 

p-type semiconductors transport from the hot side toward the cold side due to thermal 

diffusion. Thus, a closed loop is formed and the current flows through an external 

load to do useful work [58]. Thermoelectric coolers, as shown in Fig. 1.6, is based on 

Peltier effect and work in reverse to thermoelectric power generators. A current flows 

through all the elements in series such that both electrons in n-type semiconductors 

and holes in p-type semiconductors leave the cold side to the hot side. During the 

transport process, electrons and holes carry thermal energy from the cold side to the 

hot side and served as heat pumps. In general, practical thermoelectric coolers are 

consisted of a number of n- and p-type thermoelements [59], as illustrated in Fig. 1.7. 

The current flows in series through all the semiconductor thermoelements and energy 

flows in parallel from the cold side to the hot side. 

 The most important issue in thermoelectrics is to increase the figure of merit, 

ZT . High electrical conductivity, high Seebeck coefficient and low thermal 

conductivity are desired to improve the performance of thermoelectric devices. Slack 

[60] introduced a concept of “phonon-glass electron-crystal” (PGEC) to describe the 

best thermoelectric materials. PGEC means that the thermoelectric materials should 

possess a low thermal conductivity as in glass and a high electrical conductivity as in 
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crystal. For bulk materials, the use of “phonon rattlers” [61] will reduce the phonon 

thermal conductivity. Phonon rattlers are interstitial atoms inserted into the empty 

space in the host material. These atoms are weakly bound by the host material [62]. 

Their vibrations are not consistent with atoms in the host material and thus scatter the 

phonon in the original lattice. As a result of phonon scattering, the lattice thermal 

conductivity will decrease. Another approach to reduce thermal conductivity of 

thermoelectric materials is to develop low-dimensional thermoelectric materials, such 

as nanodots (0D), nanowires (1D) and thin films (2D) [63, 64]. Low dimensionality 

provides several advantages: (1) one way for enhancing the density of states near the 

Fermi energy, resulting in an increasing Seebeck coefficient; (2) opportunities to take 

advantage of the anisotropic Fermi surfaces in multi-valley cubic semiconductors; and 

(3) opportunities to increase boundary scattering of phonons at the barrier-well 

interfaces, without an large increase in electron scattering at the interface [65]. An 

increase in boundary scattering of phonons reduces the lattice thermal conductivity of 

materials. Size and interface effects are utilized to develop novel thermoelectric 

materials. Thin film superlattices and nanowire superlattices are very popular in 

designing high performance thermoelectric devices. 

 Since many applications require materials in large quantities, it is desired to 

develop a bulk material with high ZT  value. The highest ZT  in a bulk 

thermoelectric material at 300 K  is 1.14 for p-type (Bi2Te3)0.25(Sb2Te3)0.72(Sb2Se3)0.03 

alloy [66]. Polvani et al. [67] reported a 2>ZT  at 300 K  in Bi0.5Sb1.5Te3 alloy. 

However, the hydrostatic pressure is as high as 2GPa . It is not adequate for practical 

engineering applications. Recently, Hsu et al. [68] discovered that the ZT  of 

Ag1-xPbmSbTe2+m  reached a value of 2.2 at 800 K . The AgnPbmSbnTem+2n materials 

may find potential applications in thermoelectric power generation. Like the 
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enhancement of ZT  in bulk materials, the thermoelectric figure of merit of 

low-dimensional materials gets great improvement in recent years. 

Venkatasubramanian et al. [69] reported a maximum ZT  of 2.4 for the p-type 

Bi2Te3/Sb2Te3 thin-film superlattices devices. Up to date, it is the highest value 

observed by researchers. 

 

1.5.4 Thermal Conductivity Measurements in Micro/Nano Structures 

 Many studies on the thermal conductivity of thin films have been carried out [1]. 

Besides the establishment of theoretical models, measurements of thermophysical 

properties are also very important. Thermal conductivity characterization of 

micro/nano structures is challenging since it is difficult to establish and to measure the 

temperature difference over a small distance [63]. Some researchers developed several 

measurement methods to quantify the thermal conductivity of materials. Yao [70] 

measured the thermal properties of GaAs/AlAs superlattice. Yu et al. [71] reported the 

temperature dependence of thermophysical properties of GaAs/AlAs superlattices. 

Both Yu and Yao et al. measured the thermal conductivity of superlattices in the 

in-plane direction. By contrast, a popular method developed by Cahill [72] for 

measuring the thermal conductivity of thin films in the cross-plane direction is the 3ω 

method. Lee and Cahill [73] measured the thermal conductivity of Si/Ge superlattices. 

Capinski and Maris [53] presented measurements of the thermal conductivity of 

GaAs/AlAs superlattices. Venkatasubramanian et al. [69] measured the thermal 

conductivity of Bi2Te3/Sb2Te3 thin-film superlattices. Huxtable et al. [74] measured 

the thermal conductivity of Si/SiGe and SiGe/SiGe superlattices over a temperature 

range of 50 to 320 K . Additionally, Yang et al. [75] developed a method based on the 

3ω method to simultaneously measure the Seebeck coefficient and thermal 
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conductivity of an n-type Si/Ge quantum-dot superlattice in the cross-plane direction. 

 In the 3ω method, a metal line that was used as a heater/thermometer was 

deposited onto the sample, as illustrated in Fig. 1.8. Since thermoelectric thin films 

are electrically conducting, there is a need to deposit an electrically insulating layer to 

isolate the thermoelectric film from the heater. An ac current with angular frequency 

ω  is applied to the heater and then generates a ω2  temperature variation inside the 

sample. Since the variation of electrical resistance of a metal is proportional to its 

temperature variation, the electrical resistance of the metal line oscillates at ω2 . 

Multiplying the current and the electrical resistance together, and the product is the 

voltage drop across the heater. Thus, the voltage contains a ω3  signal that depends 

on the temperature rise. Measuring the voltage change and the temperature rise and 

then substituting them into the equation derived by Lee and Cahill [76] will get the 

thermal conductivity of thin films. 

 

1.5.5 Inverse Heat Conduction Problems  

 Over the past three decades, a considerable amount of work has been done on the 

study of inverse heat transfer problems by either analytical methods or numerical 

methods. The analytical methods include exact methods, polynomial methods, and 

integral methods [77]. These methods are only useful for solving linear 

one-dimensional problems with particular initial and boundary conditions. Numerical 

methods, on the other hand, have the advantage of being applicable to any problem 

type. 

 In general, inverse heat transfer problems are classified into 5 groups [77-79]: (1) 

inverse boundary problem; (2) inverse initial problems; (3) inverse geometry 

problems; (4) parameter estimation; (5) other problems. The intrinsic characteristic of 
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inverse problems is that they are ill-posed [78]. By contrast, a well-posed problem 

meets the following three requirements: existence, uniqueness and stability. It has 

been proved that solutions to inverse heat conduction problems usually exist and are 

unique. However, the obtained estimates are not always numerically stable [77-80]. In 

other words, small inaccuracies in the measured interior temperatures may cause large 

oscillations in the calculated surface conditions. Thus, many special methods have 

been proposed to solve inverse heat conduction problems (IHCPs) [81-84]. The main 

purpose of these inverse methods is to improve the stability of numerical calculation 

results. 

 

1.6 Objectives 

 This study primarily deals with microscale heat transfer in solids. First, it 

discusses transient heat transfer phenomena in solid dielectric thin films from both 

macroscopic and microscopic points of view. Phonon radiative transfer model as well 

as Fourier law and thermal wave theory are utilized to analyze the transient heat 

conduction phenomena in dielectric thin films. Diamond and GaAs thin films are 

chosen as the examples to demonstrate the differences between the macroscale and 

microscale heat transfer models. 

 Second, we examine microscale heat transfer in multilayer structures. The size 

and interface effects on the effective thermal conductivity will be checked. 

Furthermore, curvature effects on the effective thermal conductivity for a two-layer 

concentric micro tube will also be examined. EPRT is employed to analyze the 

transient heat transport in the micro tube along radial direction. The DMM is utilized 

to model the interface condition between layers. Due to the similarity of EPRT and 

ERT (Equation of Radiative Transfer), the numerical approach based on the Discrete 
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Ordinate Method [85] is adopted to solve the integro-differential equation. Besides the 

influences of size and curvature on thermal conductivity, the size and curvature effects 

on interface thermal resistance are also studied. Furthermore, the numerical 

predictions are compared to the experimental data to demonstrate the validity of the 

microscale heat conduction model. 

 Third, we examine microscale heat transfer in two-dimensional micro tubes. The 

past literature contains many theoretical and experimental studies of thermal 

characteristics of thin films, but very few of them paid attention to the thermal 

characteristic of micro tubes. There is no existing study, which shows that the size 

(thickness and height) and the curvature effects will change the effective thermal 

conductivity for micro tubes. In this study, the EPRT is employed to analyze the 

transient heat transfer in micro tubes. The influences of size and curvature on the 

thermal conductivity are examined closely.  

 By extending the foregoing analysis, we examine size effects on the performance 

of thermoelectric micro coolers. Superlattice structures are widely used to create high 

performance thermoelectric device because they can greatly reduce the phonon 

thermal conductivity of materials without much degrading the power factor ( eS σ2 ). 

In this study, microscale heat transfer in thin film, nano wire and nano tube 

superlattices is simulated and then the effective thermal conductivity is calculated. 

Understanding the influence of device sizes on the their thermal conductivity gives 

the designing guides for high performance thermoelectric devices. 

 After knowing what parameters affecting the effective thermal conductivity and 

how they influencing, the thermophysical properties of materials can be properly 

defined. The effective thermal conductivity and the temperature histories in the 

interior points are used to estimate the surface temperature in thin-film/substrate 
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systems. In this study, a space-marching technique [84] is adopted to estimate the 

temperature distributions and unknown boundary conditions from internal 

measurements. A radiation-boundary-condition model based on the AMM is 

employed to consider the interface thermal resistance between the thin-film and 

substrate. The influences of interface thermal resistance, measurement errors, and 

measurement locations are studied. Furthermore, the results of the estimation for the 

cases with or without interface thermal resistance are also compared. 
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Table 1.1 General features of heat carriers [3] 
 

 Free Electron Phonon Photon 

Generation 
valence or 

excited electrons 

lattice 

vibration 

atomic, molecule 

transition 

Propagating 

Media 

in vacuum 

or media 
in media 

in vacuum 

or media 

Statistics Fermion Boson Boson 

Frequency 0~infinite Debye cut-off 0~infinite 

Dispersion )2(22 mqE h=  )(qEE =  λν c=  

Velocity (m/s) ~106 ~103 ~108 
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Table 1.2 Characteristic time- and length scales and corresponding transport 

phenomena of energy carriers [38] 
 

Length Scales 
Time Scales 

Wavelength 
Mean Free 

Path 

Relaxation 

Length 

Diffusion 

Length 

Collision 

Time 
 Wave Transport  

Mean Free 

Time 

Relaxation 

Time 

Wave 

Transport 
Microscopic Particle Transport Theory 

Diffusion 

Time 
   

Macroscopic 

Transport 
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Fig. 1.1 Schematic diagram of single-walled carbon nanotubes: (a) armchair, (b) 

zigzag, and (c) chiral [86]. 
 

(a) (b) (c) 



 25 

 
 
 
 
 
 
 
 

 

 
 
 
 

Fig. 1.2 Schematic diagram of electric double layer [17]. 
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Fig. 1.3 Bright- field transmission electron micrograph of Cu nanoparticles dispersed 

in ethylene glycol [87]. 
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Fig. 1.4 TEM images of CdSe nanorods with various aspect ratios: (a) 7nm by 7nm, 

(b) 7nm by 30nm, and (c) 7nm by 60nm [22]. 

(a) 
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(c) 
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Fig. 1.5 Schematic diagram of a thermoelectric power generator. 
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Fig. 1.6 Schematic diagram of a thermoelectric cooler. 
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(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

 

 
Fig. 1.7 (a) Schematic diagram of a practical thermoelectric cooler [7]. (b) Actual 

device [88]. 
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Fig. 1.8 Schematic diagram for the 3ω method to measure the thermal conductivity 

of thin films [89]. 
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2. MICROSCALE HEAT TRANSFER IN SOLID THIN FILMS 

 

Microscale heat transfer in solid thin films is attracting many researchers’ notice 

in recent years. To find out the difference between macroscopic and microscopic 

points of view is of great importance. In this chapter, diamond and GaAs thin films 

are chosen as the examples to illustrate the discrepancy between the macroscale and 

microscale heat transfer models. Fourier law, thermal wave theory and phonon 

radiative transfer model are utilized to analyze the transient heat conduction 

phenomena in solid thin films. Comparison of the temperature distributions predicted 

by Fourier law and EPRT has been done to seek the boundary between macroscale 

and microscale transfer regimes. 

 

2.1 Analysis  

2.1.1 Mathematical Formulation 

 Consider a dielectric thin film of thickness L  with temperature 0T  initially. At 

time 0=t , the temperature at 0=x  is risen to rT . Meanwhile, the temperature at 

Lx =  is still maintained at 0T . The schematic diagram is shown in Fig. 2.1. Phonon 

radiative transfer model as well as Fourier law and thermal wave theory are utilized to 

analyze heat conduction in the dielectric thin film. The dimensionless variables are 

defined as follows: 

 
0

0

TT
TT

r
a −

−
=θ , 

L
x

a =ξ , 
)/( vL

t
a =τ , 

)( 4
0

4 TT
q

Q
rs

a −
=

σ
, (2-1) 

where v  is the speed of sound. 
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Fourier Law 

The governing equation of the above problem according to Fourier law is 

 
2

2

a

a

a

a

vL ξ
θα

τ
θ

∂
∂

=
∂
∂

, (2-2) 

with initial condition 

 0)0,( =aa ξθ , (2-3) 

and boundary conditions 

 1),0( =aa τθ , (2-4a) 

 0),1( =aa τθ . (2-4b) 

 

Thermal Wave Theory 

The equation of thermal wave theory can be written as 

 
2

2
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a

a
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θ

τ
θ
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α
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∂
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∂
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, (2-5) 

with initial conditions 

 0)0,( =aa ξθ , (2-6a) 

 0
)0,(

=
∂

∂

a

aa

τ
ξθ

, (2-6b) 

and boundary conditions 

 1),0( =aa τθ , (2-7a) 

 0),1( =aa τθ . (2-7b) 

 

Phonon Radiative Transfer Model 

The semi-classical Boltzmann transport equation for the case of one dimensional 

heat transport by phonons between two parallel plates is 
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collt
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Here f  is the distribution function of phonons. The collision term, 
collt

f








∂
∂

, is very 

complicated and makes the Boltzmann equation difficult to be solved. By using the 

relaxation-time approximation, the Boltzmann equation becomes 

 
R

ff
x
f

v
t
f

τ
−

=
∂
∂

+
∂
∂ 0

. (2-9) 

Where 0f  is the equilibrium phonon distribution, which follows the Bose-Einstein 

distribution. At 1993, Majumdar transformed the Boltzmann equation to an equation 

of phonon radiative transfer (EPRT) in the form [31] 

 
Rv
II

x
I

t
I

v τ
µ

−
=

∂
∂

+
∂
∂ 01

, (2-10) 

where I  represents the intensity of phonons and µ  is the direction cosine. 0I  is 

the equilibrium intensity which can be transformed by the following relation 

 ∫−
=

1

1

0

2
1

µIdI . (2-11) 

Replacing 0I  in the EPRT by the integral in Eq. (2-11) obtains 

 
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IId
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Once the intensity of phonons is solved from the above equation, the temperature 

distribution is obtained from the Bose-Einstein distribution function at an equilibrium 

state: 

 ∑∫
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1

0 , (2-13) 

where h  is the Planck’s constant divided by π2 , Bk  is the Boltzmann constant, 
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)(ωD  is the density of states, and subscript p  is the polarization index. 

 

2.1.2 Numerical Method 

Fourier Law 

The governing system is solved using the finite difference technique with 

implicit algorithm in time and central difference in space. Thus, the difference 

equation becomes 
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, (2-14) 

where n
ia,θ  represents the dimensionless temperature at aa i ξ∆ξ )1( −=  and 

aa n τ∆τ )1( −= . The computational grid number in the thin film are taken 31 

points and the time step ( aτ∆ ) is 510− . The corresponding grid test has been 

carried out and is shown in Fig. 2.2.  

 

Thermal Wave Theory 

 By using the technique of Laplace transform, the solution can be obtained 
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 (2-15) 

where 

 ∫
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u
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The temperature is obtained by the Laplace inversion: 
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Let ςγ iu +=  and substitute it into the above equation. Eq. (2-17) is reduced to a 

Fourier transform: 

 ∫
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2
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The Fourier integral can be approximated by its Riemann sum. Let βπς /n=  and 

βπς∆ /=n , where β  is the half-period, Eq. (2-18) can be expressed as 
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At aτβ = , Eq. (2-19) yields 
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The temperature distribution in the thin film can be obtained by using the above 

equation. 

 

Phonon Radiative Transfer Model 

 Eq. (2-12) is an integro-differential equation and difficult to obtain the exact 

solution. Numerical approach is utilized to solve it. It’s convenient to separate the 

intensity I into a forward component ),( µxI +  and a backward component ),( µxI − . 

Defining the forward and backward radiosities as 

 10,
1

0
<<= ∫ ++ µµdIJ , (2-21a) 

 01,
0

1
<<−= ∫−

−− µµdIJ . (2-21b) 

Under the Schuster-Schwarzschild approximation, the nondimensional governing 

equations become [90] 
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The initial condition can be written as 

 )0(),0,( == aa II θµξ . (2-23) 

And boundary conditions are 

 )1(),,0( 0 == aa II θµτ , (2-24a) 

 )0(),,1( 0 == aa II θµτ . (2-24b) 

 Backward difference is used in space when 10 << µ  and forward difference is 

used in space when 01 <<− µ . Thus, the governing equations can be expressed as 
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where n  and i  are the time and space index, respectively. 31 computational grids 

are used in this study and the dimensionless time step ( aτ∆ ) is 0.01. Grid refinement 

study, as shown in Fig. 2.3, has been done to ensure that the essential physics are 

independent of grid size. 

 

2.2 Results and Discussion 

 In order to dissipate the heat generated in electronic packages, dielectric films 

with high thermal conductivity are highly desirable. Diamond has excellent 

conductivity of heat but high electrical thermal resistance, so the diamond thin film is 

chosen as the demonstrating case in this study.  
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 Fig. 2.4 displays the temperature profiles for the films of thickness 1.0=L , 1, 

and Λ10  at dimensionless time 5.0=aτ . Fourier law predicts diffusion behavior 

and thermal wave theory predicts wavelike behavior. EPRT is essentially a wave 

equation. It has not only wavelike nature but also diffusive one. The propagation 

speed of heat predic ted by Fourier law is fastest. Because it has no time delay between 

temperature gradient and heat flux, the speed of heat transfer is infinity. However, the 

propagation speed of heat predicted by EPRT is v and that is 3/v  by thermal wave 

theory. For examples, at 5.0=aτ , the temperature predicted by Fourier law within 

the thin film isn’t zero anywhere, i.e. heat has already reached the other side of the 

thin film, whose thickness is Λ1.0 . At the same time, it reaches 3.0=aξ  by thermal 

wave theory and near 7.0=aξ  by EPRT. 

 Fig. 2.5 shows the temperature profiles for the films of thickness 1.0=L , 1, and 

Λ10  at dimensionless time 10=aτ . For such long time, thermal wave model 

approaches to Fourier law. It has no difference from thermal wave theory and Fourier 

law in the cases of thickness 1=L  and Λ10 . However, in the case of thickness 

Λ1.0=L , heat predicted by thermal wave theory gets to reflect from the boundaries 

and then raises the temperature within the film. Meanwhile, the temperature predicted 

by Fourier law has already reached its steady-state in such small film thickness. EPRT 

has already reached its steady-state and then shows a linear temperature profile, like 

Fourier law. The most obvious difference between EPRT and the other two models is 

that EPRT predicts temperature jump at boundaries. It is similar to the pure radiation 

heat transfer problem. Thus the phonon transport is partially ballistic, partially 

wavelike, and partially diffusive. As film is getting thicker, the temperature jump at 

boundaries is getting smaller. The ratio of film thickness to the phonon mean free path, 
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ΛL , is the most important parameter to determine the heat transfer behavior in thin 

films. Diffusion effects dominate for the case that ΛL  is greater than 1, and 

wavelike and ballistic heat transfer behavior are much more dominant for the case that 

ΛL  is less than 1. 

 Fig. 2.6 shows the heat flux history at 0=aξ  for the films of thickness 1.0=L , 

1, and Λ10 . The heat transfer predicted by Fourier law reaches steady-state very soon 

for the case of Λ1.0=L , and the heat flux is unchanged after steady-state. For the 

same case, thermal wave theory predicts a toothed heat flux profile due to reflections 

from boundaries. EPRT predicts a lower value of heat flux than Fourier law at 

steady-state for ΛL  less than 1. Contrarily, EPRT predicts a higher value for ΛL  

greater than 1. 

 Sound velocity, phonon mean free path, film thickness, and Debye temperature 

determine the heat transfer phenomena in solids. However, the ratio of film thickness 

to phonon mean free path is the most important parameter for microscale heat transfer. 

Fig. 2.7 demonstrates the temperature distributions of diamond and GaAs thin films of 

the same dimensionless film thickness at the same dimensionless time. It can be found 

that ΛL  is the only parameter to determine the temperature distribution. 

 From the above discussion, the microscale heat transfer model, EPRT, 

approaches the macroscale heat transfer model, Fourier law, as the film is getting 

thicker. It is important to find out the criterion whether Fourier law is applicable in a 

given thin film. It can be seen that EPRT approaches to Fourier law when the film is 

getting thick. From Fig. 2.8, no observable difference could be detected between 

EPRT and Fourier law when 100=ΛL . 

 Fig. 2.9 displays the steady-state boundary temperature of GaAs and diamond 



 40 

thin films predicted by Fourier law and EPRT for different ΛL . The boundary 

temperature approaches to 1 as the film is getting thick. On the other hand, it 

approaches to 0.5 when the film is getting thin. The right hand limit is called the 

Fourier limit, and the left hand limit is called Casimir limit. The EPRT of GaAs thin 

film approaches to Fourier law as the film thickness is great than 2 µm, and reduces to 

Casimir limit when the film thickness is less than 5 nm. In the case of diamond, those 

limits are 10 µm and 80 nm respectively. This profile offers a simple way to judge 

which conduction heat transfer model is applicable in a given film thickness. 
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Fig. 2.1 Schematic diagram of a dielectric thin film. 
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Fig. 2.2 Grid-refinement test for the numerical scheme used to solve Fourier law.  

θa 

ξa 



 43 

 
 
 
 
 
 
 
 

0 0.2 0.4 0.6 0.8 1

ξ

0

0.2

0.4

0.6

0.8

1

θ

21 Grids
31 Grids
51 Grids

 

 
 

Fig. 2.3 Grid-refinement test for the numerical scheme used to solve EPRT.  
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Fig. 2.4 The temperature profiles predicted by Fourier law, thermal wave and EPRT 

for the films of thickness 1.0=L , 1, and Λ10  at dimensionless time 

5.0=aτ . 
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Fig. 2.5 The temperature profiles predicted by Fourier law, thermal wave and EPRT 

for the films of thickness 1.0=L , 1, and Λ10  at dimensionless time 

10=aτ . 
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Fig. 2.6 The heat flux history predicted by Fourier law, thermal wave and EPRT at 

0=aξ  for the films of thickness 1.0=L , 1, and Λ10 . 
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Fig. 2.7 The temperature distributions predicted by EPRT for GaAs and diamond 

thin films. 
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Fig. 2.8 The steady-state boundary temperature predicted by Fourier law and EPRT 

for different ΛL . 
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Fig. 2.9 The steady-state boundary temperature of GaAs and diamond thin films 

predicted by Fourier law and EPRT for different ΛL . 
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3. MICROSCALE HEAT TRANSFER IN MULTILAYER 

STRUCTURES 

 

Some microscale heat transfer problems are associated with cylindrical geometry. 

For example, heat transport in silicon and germanium multishell nanowire 

heterostructures. Lauhon et al. [91] synthesized core-shell nanowires by chemical 

vapor deposition. Then, they developed a high-performance coaxially gated 

field-effect transistor of core-shell structures, as illustrated in Fig. 3.1. In this chapter, 

EPRT and DMM are employed to analyze microscale heat transfer in multilayer 

structures. 

 

3.1 Analysis  

3.1.1 Mathematical Formulation 

 Phonon heat transfer in dielectric thin films can be modeled by the Boltzmann 

transport equation [31]. Under the first-order relaxation time approximation, the BTE 

is reduced to 
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where ωf  denotes the phonon distribution function as a function of frequency ω , 

0
ωf  represents the equilibrium distribution function, vv  is the group velocity, and 

Rτ  denotes the relaxation time. Phonon intensity can be represented as follows 

 ∑=
p

DvfI )(ωωωω h , (3-2) 

where h  is the Planck’s constant divided by π2 , D  denotes the density of states, 

and the summation index p  is the phonon polarization. Let vevv vv =  and 
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substituting Eq. (3-2) into Eq. (3-1) yields 
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The second term on the left-hand-side in the above equation is described in the form 

[90] 
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 was employed in the above equation due to axisymmetric assumption. 

Substituting Eq. (3-4) into Eq. (3-3) and letting ϕζµ cossin= , ϕζη sinsin= , Eq. 

(3-3) becomes 
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The equilibrium phonon intensity 0
ωI  can be approximated by assuming equilibrium 

at every frequency, then 
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Substituting Eq. (3-6) into Eq. (3-5) leads to 
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Equation (3-7) is the equation of phonon radiative transfer (EPRT) for the cylindrical 

coordinates. Additionally, the heat flux q  is 

 ∫ ∫−
=

1

1 0
2 µωµπ

ω

ω ddIq D , (3-8) 

where Dω  is the Debye cut-off frequency.  
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 This study considers a two-layer concentric cylinder with inner radius ir  and 

outer radius or , as illustrated in Fig. 3.2. The medium temperature initially is oT . At 

time 0=t , the temperature at irr =  rises to iT  ( oi TT > ). Meanwhile, the 

temperature at orr =  remains oT . For convenience, the subsequent analysis assumes 

the medium to be gray, i.e., frequency independent, while the EPRT can be expressed 

as 
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The subscript indices 1=k  and 2 represent layer 1 (inner layer) and layer 2 (outer 

layer), respectively. The initial conditions of this system can be written as 

 )()0( 0
okk TItI == , 2,1=k . (3-10) 

Moreover, the boundary conditions are 

 )()( 0
11 ii TTIrrI === , (3-11a) 

 )()( 0
22 oo TTIrrI === . (3-11b) 

The energy balance at the interface )( brr =  between layer 1 and layer 2 is [52] 
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2222 ),(),(),( drIdrIRdrI bbb , (3-12b) 

where 12R  and 12α  represent the energy reflectivity and transmissivity at the 

interface for phonons from layer 1 to layer 2 , and vice versa. The superscripts ＋ 

and － represent the positive and negative radial directions, respectively. Assuming 

phonons leaving an interface are isotropically distributed, Eqs. (3-12a) and (3-12b) 

can be written as 
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 Many theories have been developed to describe the interfacial condition between 

two dissimilar materials, and various ijα  have been calculated using different 

models. Chen [92] derived the energy transmission coefficient for diffuse interface, as 

follows: 
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jj
ij vCvC

vC

+
=α , 2,1, =ji , (3-14) 

where C  is the volumetric specific heat and v  is the phonon group velocity. The 

diffuse mismatch model (DMM) is based on the assumption that phonons arriving at 

the interface totally lose their memory on the side which they come from. Swartz and 

Pohl [35] stated that the phonon reflectivity from layer 1 to layer 2 equals the phonon 

transmissivity from layer 2 to layer 1. It can be expressed as 

 ijji R=α , 2,1, =ji . (3-15) 

Once the transmissivity is obtained from Eq. (3-14), the reflectivity can be calculated 

according to the requirement to conserve energy, and thus 

 ijijR α−= 1 , 2,1, =ji . (3-16) 

 

3.1.2 Numerical Method 

 Since Eq. (3-9) is an integro-differential equation, it is difficult to obtain an exact 

solution. This study applies a numerical approach to solve this problem. Employing 

the discrete ordinates method, the integral term is approximated by Gaussian 

quadrature 
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where iw  are the weighting factors for the Gaussian quadrature. The governing 

equation then is transformed to 
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Since iii ϕθµ cossin=  and iii ϕθη sinsin= , the above equation can be rewritten as 
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The third term on the left-hand-side in Eq. (3-19) can be approximated as [90] 
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where coefficient 21+iA  is 
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 Substituting Eq. (3-20) into Eq. (3-19) leads to 
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where 21+iI  and 21−iI  are expressed as 
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Rewriting Eq. (3-22), the governing equations are obtained as 
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In this study, the 2S  scheme, which means 2=m , is selected to deal with the 

governing equations. The finite difference method is employed to approximate the 

differential terms in the governing equations. Backward difference is used in space 

when 10 << iµ  and forward difference is used in space when 01 <<− iµ . 

Addit ionally, forward difference is used in time in both cases. Thus, Eq. (3.24) 

becomes 

 

kR

n
jki

l
l

n
jkl

i

n
jkiin

jki
i

n
jki

n
jki

i

n
jki

n
jki

k

v

IwI

rwj

IA
I

rjr

II

t

II

v

τ
π

∆∆
µ

∆
µ

∆

,,

2

1
,,

,,121
,,

1,,,,,,
1
,,

4
1

)1(8)1(2
1

−
=

−
−

−
+

−
+

−

∑
=

++−
+

, 10 << iµ , 

  (3-25a) 

 

kR

n
jki

l
l

n
jkl

i

n
jkiin

jki
i

n
jki

n
jki

i

n
jki

n
jki

k

v

IwI

rwj

IA
I

rjr

II

t

II

v

τ
π

∆∆
µ

∆
µ

∆

,,

2

1
,,

,,121
,,

,,1,,,,
1
,,

4
1

)1(8)1(2
1

−
=

−
−

−
+

−
+

−

∑
=

+++
+

, 01 <<− iµ , 

  (3-25b) 

where n  and j  represent the time index and the space index in the radial direction, 

respectively. To solve the simultaneous governing equations, an iterative procedure is 

performed in this study. The convergence criterion is that the relative error for 

temperature is less than 410− . 

 

3.2 Results and Discussion 

Grid-refinement and time-step-sensitivity studies have been done to ensure the 

accuracy of the numerical method and the results are shown in Fig. 3.3. There are 31 

grids employed in space and the time step ( t∆ ) is taken as 10 fs. In the following 
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cases, GaAs/AlAs superlatices [40] and diamond thin film deposited on silicon 

substrate are selected as examples for demonstration. 

Fig. 3.4 shows the transient temperature distributions on GaAs/AlAs 

superlattices with inner radius 710−=ir  m under different film thicknesses: 

(a) 9
21 105 −×== LL  m, (b) 7

21 105 −×== LL  m. Due to the ballistic transport of 

phonons, temperature discontinuities (dropping at high-temperature boundary and 

jumping at low-temperature boundary) occur at two boundaries. Both temperatures at 

irr =  and orr =  increase with time and approach to the steady state. It is noticed 

that the dimensionless temperature of layer 2 is zero in the early time ( 1010−<t  s) for 

case (b) because it takes time to make phonons thermal equilibrium. Moreover, the 

tube thickness significantly influences phonon heat transport. Comparing Figs. (3.4a) 

and (3.4b) reveals that the temperature discontinuities at boundaries decrease with 

increasing tube thickness. With increasing tube thickness, the temperature profile 

presents the diffuse-like behavior – that is diffusive transport dominates. Otherwise, 

ballistic transport dominates, since the tube is thin. Ballistic transport dominates for 

small length scale which is comparable to phonon mean free path. 

The length scale considered here is the micro/nano-meter. In practical 

engineering applications, steady states are reached within a micro-second. The steady 

state thus is assumed in the following demonstrating cases. Fig. 3.5 illustrates the 

effect of tube thickness on the temperature profiles of GaAs/AlAs superlattices at 

710−=ir  m. As mentioned previously, the temperature discontinuities at boundaries 

decrease with increasing tube thickness. This phenomenon occurs because 

temperatures drop or jump sharply at boundaries owing to the ballistic transport 

nature of phonons. However, the temperature discontinuity at the interface results 

from the dissimilarity between two materials. Notably, the quantity of the temperature 
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difference divided by the heat flux at the interface is defined as interface thermal 

resistance ( ITR ), thus 

 
q
T

ITR int∆
= , (3-26) 

where intT∆  is the temperature difference at the interface. Numerous models are 

proposed for describing the interface thermal resistance. This study employs the 

DMM model. Fig. 3.5 clearly shows that the interface temperature discontinuity 

increases with decreasing tube thickness. Additionally, the temperature discontinuity 

also increases at boundaries with decreasing tube thickness. The temperature drop 

inside each layer is small compared to that at the interface when the layers are very 

thin. In other words, the thermal resistance at the surfaces, including the boundary and 

interface, is greater than that inside the materials. Surface properties thus dominate 

heat transfer in a thin tube. 

Fig. 3.6 displays the effect of curvature on the temperature profiles of 

GaAs/AlAs superlattices at 7
21 10−== LL  m. Notably,  the temperature profile 

approaches that for slab when the inner radius ( ir ) is large. In this case, no obvious 

difference exists between slab and 510−=ir  m. This phenomenon can be explained 

by Eq. (3-9). Once the term 
ϕ

η ω

∂
∂I

r
1

 equals zero, Eq. (3-9) is reduced to the 

governing equation for a slab. Large ir  makes 
ϕ

η ω

∂
∂I

r
1

 small compared to other 

terms in Eq. (3-9), and thus the temperature profiles for large ir  approach those for a 

slab. 

The Fourier law is known to be inadequate for analyzing microscale heat transfer 

behavior. However, effective thermal conductivity offers an efficient concept for 
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calculating the heat transfer rate. According to the Fourier law, the effective thermal 

conductivity effk  is defined as [93] 
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rrQ
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π
, (3-27) 

where TQ  is the total net radial heat transfer. To show the effect of film thickness on 

thermal conductivity, the plane-parallel GaAs/AlAs superlattices are chosen for a 

demonstration. Furthermore, the numerical calculations are compared to the 

experimental data. Fig. 3.7 reveals that the thermal conductivity of GaAs/AlAs 

superlattices is smaller than its bulk value. Additionally, the thermal conductivity 

decreases with decreasing film thickness. The simulation results agree closely with 

the experimental data. The miniaturization of microelectronic devices reduces the heat 

transfer ability and causes device failure if the size effect is ignored. The size effect 

thus must be considered when designing a microelectronic device. 

Fig. 3.8 illustrates the effect of curvature on the thermal conductivity of 

GaAs/AlAs superlattices. Three inner radii: 510−=ir  m, 610−=ir  m, and 710−=ir  

m are chosen as examples. The thermal conductivity increases with the increasing 

curvature. Moreover, this phenomenon is amplified by large tube thickness. However, 

no obvious difference exists among these three cases when the tube is getting thinner. 

When the film thickness is small compared to its inner radius, the phonon transport in 

the ultra-thin tube approaches that in the slab. Consequently, the effect of curvature on 

thermal conductivity decreases with decreasing tube thickness. Size effect rather than 

curvature effect thus dominates the heat transfer behavior in an ultra-thin tube. 

 Because the interface thermal resistance is a significant determinant of heat flow 

rate of multi- layered structures, interface thermal resistance behavior must be 

examined closely. Fig. 3.9 shows the effect of curvature on the interface thermal 
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resistance of GaAs/AlAs superlattices. The figure reveals that no visible discrepancy 

exists under three different inner radii, indicating that the effect of curvature on the 

interface thermal resistance of GaAs/AlAs superlattices is insignificant. Additionally, 

the size effect on the interface thermal resistance is also unimportant. The size and 

curvature effects on the interface thermal resistance are not significant if the diffuse 

mismatch model is employed to describe the interface condition. 

Since the curvature effect on the interface is insignificant in this study (DMM is 

employed), a plane-parallel diamond thin film deposited on the silicon substrate is 

used to illustrate the behavior of the interface thermal resistance. Fig. 3.10 displays 

the comparison of interface thermal resistance for diamond/silicon with experimental 

data. The calculated interface thermal resistance is smaller than the experimental 

value. Since DMM is a simplified model, it can not completely describe the interface 

condition. The interface roughness, inelastic scattering resulting from the anharmonic 

interatomic force interaction, and the phonon mode conversion at the interface may 

cause diffuse scattering at the interface. Additionally, measurement errors may also 

contribute the discrepancy between the numerically predicted and experimental values. 

All of them make the calculated interface thermal resistance lower than the 

experimental value. 
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Fig. 3.1 Schematic diagram of coaxially-gated nanowire transistors [91]. 
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Fig. 3.2 Schematic diagram of the physical system. 
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Fig. 3.3 Grid-refinement test for the numerical scheme. 
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Fig. 3.4 Transient temperature distributions on GaAs/AlAs superlattices with 

710−=ir  m under different film thicknesses: (a) 9
21 105 −×== LL  m, 

(b) 7
21 105 −×== LL  m. 
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Fig. 3.5 Effect of tube thickness on the temperature profiles of GaAs/AlAs 

superlattices with 710−=ir  m. 
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Fig. 3.6 Effect of curvature on the temperature profiles of GaAs/AlAs superlattices 

with 7
21 10−== LL  m. 
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Fig. 3.7 Effect of film thickness on the thermal conductivity of GaAs/AlAs 

superlattices. 
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Fig. 3.8 Effect of curvature on the thermal conductivity of GaAs/AlAs superlattices. 
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Fig. 3.9 Effect of curvature on the interface thermal resistance of GaAs/AlAs 

superlattices. 
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Fig. 3.10 Comparison of interface thermal resistance for diamond/silicon with 

experimental data. 
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4. MICROSCALE HEAT TRANSFER IN 

TWO-DIMENSIONAL MICRO TUBES 

 

 There are many applications that require a material with high thermal 

conductivity, high strength and minimum weight. Hollow diamond micro tubes made 

by CVD are potential candidates [95]. Thus, it is important to assure the ability of 

heat dissipation in micro tubes. In this chapter, a two-dimensional EPRT is derived to 

analyze microscale heat tranfer in micro tubes. 

 

4.1 Analysis  

4.1.1 Mathematical Formulation 

Phonon heat transfer in dielectric micro tubes can be modeled by the Boltzmann 

transport equation. The scattering mechanism is difficult to simulate. Majumdar [31] 

used the first-order relaxation-time approximation to approach the scattering term in 

BTE. Thus, the Boltzmann equation was reduced to 

 
R

ff
fv

t
f

τ
ωω

ω
ω −

=∇⋅+
∂
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where ωf  is the phonon distribution function as a function of frequency ω , 0
ωf  is 

the equilibrium distribution function, evv vv =  is the group velocity, and Rτ  is the 

relaxation time. One can define the intensity of phonons as follows 

 ∑=
p

p DfvI )(ωωωω hv , (4-2) 

where h  is the Plank’s constant divided by π2 , D  is the density of states, and the 

summation index p  is the phonon polarization. Multiplying Eq. (4-1) by )(ωωDvh , 

the Boltzmann equation can be transformed to  
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This study considers a two-dimensional hollow cylinder of inner radius ir , outer 

radius or  and height aL , as illustrated in Fig. 4.1. The second term of the 

left-hand-side in the Eq. (4-3) is described in the form 
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. Substituting 

Eq. (4-4) into Eq. (4-3), and then 

 

( ) ( )
Rv
II

z
II

rr
rI

rt
I

v τ
ψ

φ
ηµ ωωωωωω −

=





∂
∂

+







∂

∂
−





∂
∂

+
∂

∂ 011
, (4-5) 

where φζµ cossin= , φζη sinsin= , and ζψ cos= .  

Assume that the equilibrium phonon intensity 0
ωI  can be approximated to the 

average over all solid angle, and thus 
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Substituting Eq. (4-6) into Eq. (4-5) leads to 
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Eq. (4-7) is the equation of phonon radiative transfer for the cylindrical coordinate. 

For convenience in the subsequent analysis, the medium is assumed to be gray, 

i.e., frequency independent. The steady-state EPRT can be expressed as 
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Consider the temperatures of the top surface ( aLz = ) and the inner surface ( irr = ) 

are maintained at iTT = . The temperatures of other two surfaces (bottom and outer 

surfaces) are oTT = , where oi TT > . The boundary conditions can be expressed as 

 ( )iai TILzIrrI 0)()( ==== , (4-9a) 

 ( )oo TIzIrrI 0)0()( ==== . (4-9b) 

 

4.1.2 Numerical Method 

Since Eq. (4-8) is an integro-differential equation, it is difficult to obtain the 

exact solution. Numerical approach is used to solve it. Employing the discrete 

ordinates method, the integral term of the right-hand-side in Eq. (4-8) is approximated 

by Gaussian quadratures 
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where mw  are the weighting factors. 

Substituting Eq.(4-10) into Eq. (4-8) leads to 
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The third term of the left-hand-side in Eq. (4-11) is approximated by central 

difference technique. Then, this term is transformed to 
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Thus, Eq. (4-11) becomes 
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where 
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The 8S  scheme, 8=mN , is employed in this study. Forward and backward 

difference approximations are utilized in negative and positive directions, respectively. 

The governing equations become
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Since the governing system is a set of simultaneous equations, iterative method is  

used to solve this problem. The convergence criterion is that the relative error for 

temperature is less than 410− . 

 

4.2 Results and Discussion 

The governing equations deal with the heat conduction in two-dimensional micro 

tubes. By using the discrete ordinates method, the approximated solutions can be 

derived. The grid-refinement study, as shown in Fig. 4.2, has been done to ensure the 

accuracy of the numerical method and the 3030×  grid is employed. In the following 

cases, diamond is chosen as an example for the demonstration. 

Majumdar [31] had obtained microscale heat transfer across diamond thin films 

by solving the one-dimensional EPRT in the rectangular coordinate. In order to 

demonstrate the accuracy of the present numerical method, a very long tube with very 

small curvature is chosen to approach the slab. Fig. 4.3 shows the temperature profiles 

predicted by the EPRT under different tube thickness with a inner radius mmri 1=  

and a tube height Λ000,10=aL . The present results have excellent agreement with 

the results of Joshi and Majumdar [30]. 

Fig. 4.4 displays the effect of tube thickness on the radial temperature 

distributions in the middle plane ( aLz 5.0= ) with the inner radius mri µ10=  and 

the tube height Λ10=aL . Three different tube thickness, Λ10=ar , Λ1=ar  and 
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Λ1.0=ar  are utilized to examine the size effects. From Fig. 4.4, it is noticed that the 

temperature jump and drop at two boundaries are found. The temperature 

discontinuities at two boundaries decrease as the tube thickness increase. The reason 

that temperature jump and drop occur at two boundaries is the nonlocal and 

nonequilibrium ballistic transport nature of phonons. In the limit of no internal 

scattering, the phonon excited by the hot and the cool walls propagates in the opposite 

directions without interacting with each other. The lacking of interaction implies that 

the two groups of phonons will not reach a local equilibrium state with each other. 

Thus the temperature discontinuity appears. In the case of Λ1.0=ar , such thin 

thickness reduces the probability of internal scattering within the medium; therefore 

phonons scatter only at boundaries. This is the so-called ballistic heat transport. As the 

increasing of tube thickness, internal scattering takes place more frequently, and the 

heat transport is more diffuse- like. The results of Fig. 4.4 are similar to the results of 

Fig. 4.3. However, owing to the effect of curvature, the temperature distributions are 

not linear. 

Fig. 4.5 shows the effect of tube thickness on the axial temperature distributions 

at the location )(5.0 oi rrr +=  with the inner radius mri µ10=  and the tube height 

Λ10=aL . Similar to the Fig. 4.4, the ballistic heat transport dominates while the tube 

is ultra-thin. Since the tube height is ten times of the phonon mean free path, the heat 

transport is diffuse- like across the axial direction. In the case of Λ10=ar , both axial 

and radial directions are diffuse transport dominant. In the cases of Λ1.0=ar  and 

Λ1=ar , diffuse dominant in the axial direction but ballistic transport in the radial 

direction. Thus, the axial temperature distributions are different from those of Fig. 4.4. 

It is well known that Fourier law is inadequate to analyze microscale heat 
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conduction. However, the concept of effective thermal conductivity is an effective 

way to estimate the heat dissipative ability of the materials. The radial and axial 

effective thermal conductivity are defined as 
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where the heat flux is 

 ∑=
m

mmmr Iwq µ , (4-17a) 

 ∑=
m

mmmz Iwq ψ . (4-17b) 

Fig. 4.6 and Fig. 4.7 show the size effects on the thermal conductivity under different 

tube heights in the radial and axial directions, respectively. The thermal conductivity 

of diamond micro tubes is smaller than its bulk value. The radial thermal conductivity 

decreases as tube thickness decreases. Similarly, the radial thermal conductivity of a 

tube with Λ1=aL  is small than that of Λ50=aL . It can be concluded that the  

reduction of size, no matter the radial or axial directions, will reduce the thermal 

conductivity of the material. From Fig. 4.6, it is noticed that the radial thermal 

conductivity approaches to the bulk value when the tube is getting thick. Fig. 4.7 have  

similar trend as Fig. 4.6. However, the axial thermal conductivity varies very small as 

the tube thickness decreases. The tube height is more important than the tube 

thickness in calculating the axial thermal conductivity. The axial thermal conductivity 

does not approach the bulk value if the tube is short. The small tube height restricts 

the axial thermal conductivity growing although the tube is thick enough. 

 Fig. 4.8 and Fig. 4.9 depict the effect of curvature on the radial and axial thermal 

conductivities at different tube heights. The radial and axial thermal conductivities do 
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not vary with different curvature. The effect of tube curvature is not significant on the 

effective thermal conductivity. 
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Fig. 4.1 Schematic diagram of the physical system. 



 79 

 

 

 

 

 

0 0.2 0.4 0.6 0.8 1

R

0

0.2

0.4

0.6

0.8

1

θ

20 = 20
30 = 30
40 = 40

 

 

 

Fig. 4.2 Grid-refinement test for the numerical scheme. 
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Fig. 4.3 Temperature profiles of diamond tube under different tube thickness at the 

inner radius mmri 1=  and the tube height Λ10000=aL . 
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Fig. 4.4 The effect of tube thickness on the radial temperature distributions of 

diamond tube in the middle plane ( aLz 5.0= ) with the inner radius 

mri µ10=  and the tube height Λ10=aL . 
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Fig. 4.5 The effect of tube thickness on the axial temperature distributions of 

diamond tube at the location )(5.0 oi rrr +=  with the inner radius 

mri µ10=  and the tube height Λ10=aL . 
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Fig. 4.6 Size effects on the radial thermal conductivity of diamond tube under 

different tube heights. 
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Fig. 4.7 Size effects on the axial thermal conductivity of diamond tube under 

different tube heights. 
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Fig. 4.8 The effect of curvature on the radial thermal conductivity of diamond tube 

for different tube heights. 
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Fig. 4.9 The effect of curvature on the axial thermal conductivity of diamond tube 

for different tube heights. 
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5. SIZE EFFECTS ON THE PERFORMANCE OF 

THERMOELECTRIC MICRO COOLERS 

 

By utilizing the Peltier effect, heat will be absorbed on the cold side and rejected 

to the heat sink when an electric current is passed through a thermoelectric material, 

thus providing a refrigeration capability. Conversely, an imposed temperature gradient 

will result in a voltage so a power generator is created. This aspect is widely utilized 

in deep space applications. A radioactive material is used as the heat source in the 

radioactive thermoelectric generators to provide the electricity [88]. The advantages 

of thermoelectric devices include compactness, quietness, localized heating or cooling 

and environmentally friendly. Applications of thermoelectric refrigeration include 

cooling of CCDs (charged coupled devices), laser diodes, infrared detectors, computer 

processor chips and biological specimens [88]. Low-dimensional thermoelectric 

materials, such as nanodots (0D), nanowires (1D) and thin films (2D) are of great 

potential due to the dramatic reduction in thermal conductivity. In this chapter, EPRT 

and DMM are utilized to calculate the thermal conductivity of thin film superlattices, 

nano wire superlattices and nano tube superlattices. Size effects on the performance of 

thermoelectric micro coolers will be examined in detail. 

 

5.1 Thin Film Supperlattices 

 A thermoelectric micro cooler that is consisted of thin film superlattices is under 

consideration. The transmission electron microscopy image of thin film superlattices 

is shown in Fig. 5.1 and the schematic diagram is illustrated in Fig. 5.2. The thickness 

of layer 1 is 1L , the thickness of layer 2 is 2L , and the total thickness is L . The 
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temperature of bottom surface ( 0=x ) is HT . Meanwhile, the temperature of top 

surface ( Lx = ) is maintained at CT . 

 Utilizing EPRT to analyze heat transfer in thin film superlattices and the 

governing equations can be expressed as 
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where the subscript indices 1=k  and 2 represent layer 1 and layer 2, respectively. 

The boundary conditions are 
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where the superscript 0 means that phonons are in the state of thermal equilibrium. 

The conservation of energy is used to describe the interface conditions. 
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where ijα  and ijR  represent the transmissivity and the reflectivity, respectively.  

 Since the governing equations and interface conditions are integro-differential 

equations, the discrete ordinate method is employed to solve the governing system. 

The 2S  scheme is selected to deal with the governing system in this study. To 

conduct a numerical simulation, the finite difference method is utilized to 

approximate the differential terms in the governing system. Forward and backward 
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differences are used in the negative and positive x-direction, respectively. The 

governing system is then turned into a set of simultaneous algebraic equations. Thus, 

an iterative procedure is performed in this study and the convergence criterion is that 

the relative error for temperature is less than 410− . 

 

5.2 Nano Tube Supperlattices and Nano Wire Superlattices 

 This study considers a two-dimensional hollow cylinder of inner radius iR , 

outer radius oR  and height L , as illustrated in Fig. 5.3. The tube is consisted of 

periodically permuted layer 1 and layer 2. The thickness of layer 1 and the thickness 

of layer 2 are 1L  and 2L , respectively. For convenience in the subsequent analysis, 

the medium is assumed to be gray. The EPRT can be expressed as 
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where the subscript indices 1=j  and 2 represent layer 1 and layer 2, respectively.  

Consider the temperatures of the top surface ( Lz = ) and the inner surface ( iRr = ) 

are maintained at iTT = . The temperatures of other two surfaces (bottom and outer 

surfaces) are oTT = , where oi TT > . The boundary conditions can be expressed as 

 ( )ijij TIRrI 0)( == , 2,1=j , (5-5a) 

 ( )ojoj TIRrI 0)( == , 2,1=j , (5-5b) 

 ( )oTIzI 0
11 )0( == , (5-5c) 

 ( )iTILzI 0
22 )( == . (5-5d) 

The interface conditions are the same with Eqs. (5-3a), (5-3b), (5-3c) and (5-3d). 

 Nano wires and nano wire superlattices, as shown in Fig. 5.4, are potential 
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materials for engineering applications, especially in thermoelectrics. The formulation 

of microscale heat transfer in nano wire superlattices is similar to that in nano tube 

superlattices. In this study, a nano wire superlattice of radius R  and length L  is 

under consideration. The schematic diagram is illustrated in Fig. 5.5. The thickness of 

layer 1 is 1L  and the thickness of layer 2 is 2L . The governing equations of 

microscale heat transfer in the nano wire superlattice are the same with those in the 

nano tube superlattice. Moreover, the boundary conditions in top, bottom and outer 

surface are also identical with those in the nano tube superlattice. The only difference 

between the nano wire superlattice and the nano tube superlattice is that the nano wire 

superlattice is solid not hollow. To specify the boundary condition in the z-axis, the 

axisymmetric assumption was made and it can be expressed as 

 ),,,(),,,( ξµξµ −= zrIzrI jj , 2,1=j , (5.6) 

where the subscript indices 1=j  and 2 represent layer 1 and layer 2, respectively.  

Similar to the strategy of solving microscale heat transfer in thin film 

superlattices, the 2S  scheme is selected to deal with the microscale heat transfer in 

nano wire superlattices and nano tube superlattices. Backward and forward difference 

approximations are utilized in positive and negative directions, respectively. The 

numerical method is the same as used in chapter 4. To solve the simultaneous 

governing equations, an iterative procedure is performed in this study and that the 

relative error for temperature is less than 410−  is the convergence criterion. 

 

5.3 Results and Discussion 

 The comparison between numerical calculations and experiments was made in 

Fig. 5.6. GaAs/AlAs, Si/Ge and Bi2Te3/Sb2Te3 superlattices are chosen as examples 

and the results are shown in Figs. 5.6(a), 5.6(b) and 5.6(c), respectively. From Fig.  
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5.6(a), it can be seen that the present results match Chen’s study [52] and agree with 

the experimental data measured by Capinski and Maris [53]. Similarly, Fig. 5.6(b) 

tells that the numerical calculations of Si/Ge are in agreement with Chen’s study [52]. 

In addition, Fig. 5.6(b) reveals that the numerical calculations match the experiments 

conducted by Lee et al. [73] when the period thickness is less than 7 nm. However, 

the measured thermal conductivity of Si/Ge is lower than the numerical simulations 

by about one order of magnitude when the period thickness is greater than 13 nm. Lee 

et al. argued that the relatively poor crystal quality of long-period superlattices should 

be responsible for such low thermal conductivity. The comparison between numerical 

simulations and experiments for Bi2Te3/Sb2Te3 superlattices, the well-known 

thermoelectric material, was made in Fig. 5.6(c). The discrepancy between the 

numerical calculations and experiments is less than 10% when the period thickness is 

less than 5 nm. Although the discrepancy is higher for larger period thickness case, 

the numerical calculations and experiments have the same order of magnitude. It can 

be concluded that EPRT with DMM is adequate to describe the microscale heat 

transfer behavior in practical engineering applications. 

 Up to date, Bi2Te3/Sb2Te3 is the most efficiency thermoelectric material for 

room-temperature applications [97]. Thus, it is selected to demonstrate the following 

numerical calculations. 

 Fig.5.7 shows the effect of thin film superlattices thickness on the thermal 

conductivity. Three different periods are selected to demonstrate the size effect on the 

thermal conductivity. It can be seen that the thermal conductivity of Bi2Te3/Sb2Te3 

thin film superlattices decreases with decreasing film thickness. On the other hand, 

the thermal conductivity approaches its bulk value as superlattices getting thick. 

 In practical engineering applications, how to produce a product as compact as 
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possible is a very important issue. For a restricted space, it is desired to design a 

miniaturized thermoelectric cooler with high performance. As mentioned before, 

reducing the thermal conductivity is a good way to increase the performance of a 

thermoelectric cooler. Fig. 5.8 illustrates how the number of periods affects the 

thermal conductivity for a fixed total film thickness, L . It is noticed that the thermal 

conductivity decreases with increasing number of periods. For a fixed total film 

thickness, increasing number of periods means decreasing layer thickness of each 

layer and increasing number of interfaces. As discussed in chapter 3, the thermal 

conductivity decreases as the film thickness decreases. Thus, to decrease the thermal 

conductivity of thin film superlattices for a restricted space, it is recommended to 

increase the number of periods. However, for 10=L  nm, the thermal conductivity of 

Bi2Te3/Sb2Te3 thin film superlattices approaches a constant value as number of 

periods increase. In this case, the layer thickness is small compared to the phonon 

mean free path, which is about 5 Å. Although increasing number of periods will 

decrease the thermal conductivity of Bi2Te3/Sb2Te3 thin film superlattices for a fixed 

total film thickness, it has no further significant influence when the layer thickness is 

small compared to the phonon mean free path of materials. 

 Fig. 5.9 shows the effect of thin film superlattices thickness on the figure of 

merit, ZT . It is obvious that the figure of merit increases as film thickness decreases. 

From the definition of the figure of merit, 
k

TS
ZT eσ2

= , it is easy to find out that the 

figure of merit increases as the thermal conductivity decreases. Since the thermal 

conductivity decreases as film thickness decreases, the figure of merit increases with 

decreasing film thickness. The reduction of film thickness is helpful in improving the 

performance of the thin film superlattices thermoelectric cooler. The size of the thin 

film superlattices has a significant influence on the figure of merit when the film 



 93 

thickness is comparable to the phonon mean free path of materials. However, this 

effect is not obvious when the film thickness is getting large. Fig. 5.9 reveals that the 

figure of merit approaches a constant value as film thickness increases. 

 Fig. 5.10 illustrates the influence of the number of periods on the figure of merit. 

For a fixed film thickness, increasing the number of periods results in increasing ZT . 

It indicates that increasing the number of periods for a fixed film thickness will 

improve the performance of a thin film superlattices thermoelectric cooler. 

 From the above discussion, it can be concluded that size effects have significant 

influence on the performance of thermoelectric micro coolers. Thin film superlattices 

are two-dimensional thermoelectric materials since the size of one of their dimensions 

is small compared to the others. The thermal conductivity in the direction which size 

is small compared to the others is reduced owing to size effects. Thus, reducing 

dimensionality further can be considered as an approach for decreasing the thermal 

conductivity of thermoelectric materials and then increasing their performance. Nano 

wire superlattices, which are one-dimensional materials, are considered as potential 

thermoelectric materials. 

 In practical engineering applications, the axial thermal conductivity of nano wire 

and nano tube superlattices is a very important parameter for designing thermoelectric 

coolers. In the following discussion, it will only discuss the axial thermal conductivity 

of nano wires and nano tubes. 

 Fig. 5.11 displays the effect of number of periods on the thermal conductivity of 

nano tube superlattices. Each layer of the superlattices has the same thickness and it is 

1 nm. The inner radius and outer radius of the nano tube superlattices are 10 and 11 

nm, respectively. The effect of number of periods on the thermal conductivity of nano 

tube superlattices is not obvious. Increasing number of periods does not decrease the 
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thermal conductivity of nano tube superlattices. The most important parameter 

relative to thermal conductivity is the layer thickness. Once the thickness of every 

individual layer is determined, the thermal conductivity of nano tube superlattices will 

not vary with increasing number of periods. It is convenient for numerical simulations. 

We just need to calculate the one-period nano tube superlattices case and it is 

timesaving. 

 Fig. 5.12 depicts the effect of tube thickness on the thermal conductivity of nano 

tube superlattices. The layer thickness of the tube, 21 LL = , is 1 nm and its inner 

radius is 10 nm. Here the tube thickness is defined as io RR − . From Fig. 5.12, it is 

noticed that the thermal conductivity decreases as the tube thickness decreases. This is 

very interesting that not only reducing the size in axial direction but also reducing the 

size in radial direction will reduce the axial thermal conductivity. On the other hand, 

the thermal conductivity does not increase with increasing tube thickness when the 

tube thickness is greater than 50 nm. Since the layer thickness is 1 nm, which is less 

than the phonon mean free path, phonon transport is confined due to size effects in the 

axial direction. The axial thermal conductivity of the tube approaches a constant value, 

0.35 mKW , and it is less than the bulk value, 0.6 mKW . 

 Fig. 5.13 shows the effect of layer thickness on the thermal conductivity of nano 

tube superlattices. The inner and outer radius of the tube is 1 and 101 nm, respectively. 

The axial thermal conductivity decreases as the layer thickness decreases. The results 

of numerical simulations again demonstrate the influence of size effects on the 

thermal conductivity. Reducing layer thickness of nano tube superlattices is an 

effective way to decrease the axial thermal conductivity.  

 Fig. 5.14 illustrates the curvature effect on the thermal conductivity of nano tube 

superlattices. Three values of tube thickness, 1 nm, 10 nm and 100 nm, are selected to 
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show how does the curvature affect the axial thermal conductivity of nano tube 

superlattices. The layer thickness is 1 nm in all the three cases. The thermal 

conductivity increases with decreasing inner radius. It indicates that increasing 

curvature results in increasing axial thermal conductivity. However, this phenomenon 

is not obvious. The thermal conductivity of a tube with 1 nm inner radius is merely 

1.6 % greater than that of a tube with 1000 nm inner radius for 1nm tube thickness. 

Similarly, for 10 nm and 100 nm tube thickness, the discrepancy is 0.03% and 0.3%, 

respectively. Curvature just slightly affects the axial thermal conductivity. Moreover, 

the curvature effect is less important when the tube thickness is getting large. 

 Fig. 5.15 reveals the size effect on the thermal conductivity of nano wire 

superlattices. The axial thermal conductivity decreases as the radius decreases. 

Additionally, reducing the layer thickness further reduces the axial thermal 

conductivity. To enhance the performance of nano wire superlattices thermoelectric 

micro coolers, it is necessary to decrease the axial thermal conductivity. Reducing the 

radius and layer thickness of the nano wire superlattices will be helpful to design a 

high performance thermoelectric device. 

 Fig. 5.16 displays the comparison of thermal conductivities of thin film, nano 

wire and nano tube superlattices. The radius of the nano wire is 101 nm. The outer 

and inner radius of the nano tube is 101 nm and 100 nm, respectively. All the three 

cases show the same behavior that decreasing the layer thickness will reduce the 

thermal conductivity. Furthermore, it is easy to observe that 

filmthinwirenanotubenano kkk −−− >>  when they have the same layer thickness. The 

restriction of boundary should be responsible for reducing thermal conductivity. Low 

dimensionality enhances the boundary scattering, so nano tubes and nano wires have 

lower thermal conductivities. Thus, nano tube and nano wire superlattices are 
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potential thermoelectric materials. 
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Fig. 5.1 Cross sectional transmission electron microscopy image of the MBE grown 
SiGeC/Si superlattice cooler sample [98]. 
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Fig. 5.2 Schematic diagram of thin film superlattices. 
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Fig. 5.3 Schematic diagram of nano tube superlattices. 
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Fig. 5.4 SEM image of the heterostructured nanowire array on Si(111) substrate. The 
scale bar is 1 µm. The inset shows the tip of one nanowire. The scale bar is 
100 nm. (b)STEM image of two nanowires in bright field mode. The scale 
bar is 500 nm. [99] 
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Fig. 5.5 Schematic diagram of nano wire superlattices. 
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Fig. 5.6 (a) Comparison of numerical calculations and experiments for GaAs/AlAs 

superlattices. 
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Fig. 5.6 (b) Comparison of numerical calculations and experiments for Si/Ge 

superlattices. 
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Fig. 5.6 (c) Comparison of numerical calculations and experiments for Bi2Te3/Sb2Te3  

superlattices. 

[100] 



 105 

 

 

 

 

 

10 100 1000
Film Thickness (nm)

0

0.2

0.4

0.6

0.8

1

Th
er

m
al

 C
on

d
uc

tiv
ity

 (W
/m

K
)

Bulk
5 periods
10 periods
50 periods

 

 

 

 

Fig. 5.7 The effect of film thickness on the thermal conductivity of Bi2Te3/Sb2Te3  

thin film superlattices. 
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Fig. 5.8 The effect of the number of periods on the thermal conductivity of 

Bi2Te3/Sb2Te3 thin film superlattices for a fixed total film thickness: 

(a) 10=L nm, (b) 100=L nm and (c) 1000=L nm. 
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Fig. 5.9 The effect of film thickness on the figure of merit of Bi2Te3/Sb2Te3 thin film 

superlattices. 
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Fig. 5.10 The effect of the number of periods on the figure of merit of Bi2Te3/Sb2Te3 

thin film superlattices for a fixed total film thickness: (a) 100=L nm and 

(b) 1000=L nm. 
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Fig. 5.11 The effect of number of periods on the thermal conductivity of 

Bi2Te3/Sb2Te3 nano tube superlattices. 
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Fig. 5.12 The effect of tube thickness on the thermal conductivity of Bi2Te3/Sb2Te3 

nano tube superlattices. 
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Fig. 5.13 The effect of layer thickness on the thermal conductivity of Bi2Te3/Sb2Te3 

nano tube superlattices. 
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Fig. 5.14 The curvature effect on the thermal conductivity of Bi2Te3/Sb2Te3 nano tube 

superlattices. 



 113 

 

 

 

 

 

200 400 600 800 1000
Radius (nm)

0.2

0.3

0.4

0.5

Th
er

m
al

 C
on

du
ct

iv
it

y 
(W

/m
K

)

L1 = L2 = 3 nm 
L1 = L2 = 2 nm 
L1 = L2 = 1 nm 

 

 

 

 

Fig. 5.15 The size effect on the thermal conductivity of Bi2Te3/Sb2Te3 nano wire 

superlattices. 
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Fig. 5.16 The comparison of thermal conductivities of Bi2Te3/Sb2Te3 thin film, nano 

wire and nano tube superlattices. 
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6. INVERSE DETERMINATION OF SURFACE 

TEMPERATURE IN THIN-FILM/SUBSTRATE SYSTEMS 

 

 Thin-film/substrate systems are widely used in superconducting bolometers, 

microelectronics systems, and electro-optic devices. In such systems it is often 

necessary to know surface temperatures and temperature distributions within the 

media. These temperature profiles can be calculated if material thermal properties, 

initial and boundary conditions are given. However, in some circumstances, boundary 

conditions are difficult to determine. For example, if the surface of the thin-film is 

suffering laser heating, it is unsuitable for attaching a sensor on the surface. Hence, 

temperature detectors are placed inside the substrate. Use of the inverse methods 

allows determination of thermal properties and estimation of temperature distributions 

and unknown boundary conditions by means of internal or external measurements 

[102]. 

 

6.1 Analysis  

6.1.1 Mathematical Formulation 

Direct Problem Formulation 

 Consider one-dimensional conductive heat transfer in a two-layer medium as 

illustrated in Fig. 6.1. The temperature of the medium is initially 0T . At time 0=t , 

the temperature at 0=x  has risen to LT  while the temperature at fLx =  is still 

0T . All thermal properties in this study are assumed to be temperature- independent. 

For convenience in the subsequent analysis, nondimensional variables are defined as 

follows: 
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where α  is the thermal diffusivity and k  is the thermal conductivity. The subscript 

j  represents layer j , where 1=j  or 2. The governing equations for this problem 

are 
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The initial conditions are 

 0),0( θξθ =j . (6-3) 

The boundary conditions are 

 1)0,(1 =τθ , (6-4a) 

 02 )1,( θτθ = . (6-4b) 

At the interface, the radiation-boundary-condition model is employed, thus the heat 

flux continuity is 
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where κ  is a function of the material properties of the two media in contact. Higher 

κ  represents less interface thermal resistance. 

 

Inverse Problem Formulation 

 The inverse heat conduction problem is to estimate the temperature histories over 

the whole domain from internal temperature measurements. In this study, instead of 

using measured temperatures, the input data for the inverse heat conduction problem 

are predicted from the solution of a direct problem for a given set of boundary 

conditions. 
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 The set of equations for the IHCP are Eq. (6-2) and Eq. (6-5) along with: 

 ?)0,(1 =τθ  (6-6) 

 )(),( 12 τξτθ Yr =  (6-7a) 

 )()1,( 22 ττθ Y=  (6-7b) 

 The medium is divided into a direct and an inverse region. The problem in the  

direct region, 1<< ξξ r , is a boundary-value problem with boundary conditions 

given by the temperature measurements 1Y  and 2Y . 1Y  and 2Y  representing the 

temperature history of the first sensor located at rξξ =  and the second sensor 

located at 1=ξ , respectively. In this study, 1Y  and 2Y  were simulated by the 

solution of the direct heat-transfer problem. After the temperature distributions in the 

direct region were obtained, the temperature distributions in the inverse region were 

determined by the space-marching method. 

 

6.1.2 Numerical Method 

 The inverse estimation is not always numerically stable, which means small 

inaccuracies in the measured interior temperatures may cause large oscillations in the 

calculated surface conditions. Thus, many special methods have been proposed to 

improve the stability of numerical calculation results. The space-marching method is 

easy to use, accurate and stable [77]. Therefore, it was adopted to deal with the 

engineering problem in this manuscript. The calculations start on the boundary 

between direct and inverse regions and then are continued for the subsequent grids 

within the inverse region. The space-marching technique proposed by Raynaud and 

Bransier [84] uses the finite-difference method to approximate the governing 

equations. Central-difference approximations in space and time lead to 
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where the subscripts 1=j  or 2 represent Layer 1 or Layer 2, respectively. In 

addition, the dimensionless heat flux values n
jiQ ,21−  and n

jiQ ,21+  are approximated as 

follows: 
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It can be seen that the dimensionless heat flux n
jiQ ,21+  is the average of 

central-difference at times 1+n  and 1−n . This will decrease the sensitivity to 

measurement errors and stabilize the inverse method. Substituting Eqs. (6-9a) and 

(6-9b) into Eq. (6-8) results in 
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The temperatures at times 1+n  and 1−n  are called future and past temperatures. If 

the temperature at time Nn =  is desired to be calculated, the measurements should 

be known up to NI +  time steps. Here I  is the number of the space grids in the 

inverse region. Eq. (6-10) cannot be used to calculate the temperature field at the final 

time step since it includes future temperatures. Thus, an explicit scheme that does not 

include future temperatures, proposed by D’Souza [103], is used to calculate the 

temperature distribution at the final time step. Backward-difference in time and 

central-difference in space lead to 
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Rearranging the above equation yields 
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Thus, at each time step toward the unknown boundary, Eq. (6-10) is used for times 

1=n  to 1−m , while Eq. (6-12) is used for mn = . The space-time grid for 

numerical calculations is shown in Fig. 6.2. 

 

6.2 Results and Discussion 

 Grid-refinement and time-step-sensitivity studies have been done to ensure the 

accuracy of the numerical method. In general, the accuracy of a numerical method 

increases as the time step decreases. However, in the inverse method sensitivity to 

measurement errors increases due to the smallness of the time steps. Thus, a trade-off 

between accuracy and stability exists. In the following cases, the time step 01.0=∆τ , 

the grid size 01.0=∆ξ , the thermal diffusivity ratio 1.012 =αα , and the thermal 

conductivity ratio 1.012 =kk  are employed. 

 Fig. 6.3 shows the exact and estimated temperature profiles for 4105 −×=κ  

over the time sequence. It can be seen that the absolute value of the slope in Layer 2 is 

greater than that in Layer 1 near the interface. Because 2k  is smaller than 1k  and 

),(),( 12
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11 ξτθ

ξ
ξτθ

ξ ∂
∂

=
∂
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k
k

, it is easy to determine that ),( 12 ξτθ
ξ∂
∂

 is greater 

than ),( 11 ξτθ
ξ∂
∂

. Moreover, owing to the existence of interface thermal resistance 

there is an abrupt temperature jump at the interface ( 5.0=ξ ). In this case, the first 

sensor is located at 75.0=rξ  and the second sensor is located at 1=ξ . Thus, 

175.0 << ξ  is the direct region and 75.00 << ξ  is the inverse region. It can be 
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seen that inverse estimation predicts well in the region 75.05.0 << ξ . The maximum 

relative error is about 0.7%. However, a difference between exact and estimated 

values appears as the calculation marches through the interface. This phenomenon is 

obvious for the first few time steps. For example, the estimated values did not match 

the exact values very well at 2.0=τ  (the relative error is about 1%), but they did at 

5.0=τ  and 8.0=τ  (the relative errors are less than 0.1%). The temperature of the 

left surface (unknown in the inverse problem) suddenly rose from 0T  to LT  in the 

direct problem. Such an abrupt temperature jump could not be predicted accurately 

using a numerical method. Thus, estimation accuracy is not good for the first few time 

steps. 

 Three values of κ  were chosen to illustrate the effect of interface thermal 

resistance on the inverse solution: 5105 −×=κ , 4101 −×=κ , and ∞→κ  (without 

interface thermal resistance). Fig. 6.4(a) depicts the exact and estimated temperature 

distributions within the medium at 3.0=τ , with the first sensor located at 75.0=rξ . 

It can be seen that the differences between exact and estimated values decrease as κ  

increases. In other words, the accuracy of the inverse estimation increases as the 

interface thermal resistance decreases. Furthermore, it is interesting to note that the 

differences between the exact and estimated values trend toward diminution as the 

calculation marches through the interface to the left surface ( 0=ξ ). For example, the 

difference between the exact and estimated temperatures at 4.0=ξ , 3.0=ξ , and 

2.0=ξ  are 0.005216, 0.004617, and 0.003221, respectively, for 5105 −×=κ . The 

discrepancy between the estimated and exact temperatures seems to recover as the 

estimated solution moves to the surface. In order to investigate this phenomenon, 

another case was selected to be tested. The results of the case with 1012 =kk  were 
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plotted in Fig. 6.4(b). From Fig. 6.4(b), the results show that the discrepancy between 

the estimated and exact temperatures was slightly diverged as the estimated solution 

moves to the surface. However, all of these cases show that the error of inverse 

estimation of surface temperature is less than 1.3%. 

 Fig. 6.5 presents the exact and estimated surface temperature histories for 

5105 −×=κ , 3101 −×=κ , and ∞→κ , with 75.0=rξ . The inverse estimation 

solution is not good for the first few time steps, as mentioned above, however, after 

about 10 time steps ( 1.0=τ ), the estimated values approach to the exact values as 

time elapses. In other words, the relative error decreases when the time increases. The 

maximum relative error is about 1% at 1.0=τ . Furthermore, the accuracy of the 

inverse method slightly increases as the interface thermal resistance decreases. 

However, in this case, the error is so small that it is generally not significant. 

 Fig. 6.6 shows the exact and estimated histories of the temperature difference 

( θ∆ ) at the interface for 4101 −×=κ , 4105 −×=κ , and 3101 −×=κ , with 

75.0=rξ . As time elapses, the temperature difference at the interface initially 

increases until reaching maximum then decreases to a fixed value. Thus, the steady 

state is reached. The small value of κ  represents high interface thermal resistance 

that prevents heat from propagating from one material to the other, so the temperature 

difference at the interface decreases as κ  increases. Furthermore, the moment that 

the maximum temperature difference appears tends to shift toward short time as κ  

decreases. Inverse estimation predicts this phenomenon accurately after a few time 

steps. 

 Fig. 6.7 illustrates the exact and estimated temperature distributions for various 

sensor locations, with 4101 −×=κ . At 2.0=τ , the accuracy of the inverse estimation 

with 60.0=rξ  is better than that of the other two cases. The small value of rξ  
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means that the sensor was located near the unknown boundary. Thus, the best inverse 

solution is obtained with the sensor closest to the unknown boundary. However, this 

phenomenon is not significant as time elapses. At 6.0=τ , 60.0=rξ , 75.0=rξ , 

and 90.0=rξ  predict almost the same temperature distribution and they match the 

exact value reasonably well. The relative errors are less than 0.1% for these three 

cases at 6.0=τ . 

 The maximum inverse estimation error occurs at the interface for our 

demonstrated case. Thus, the inverse estimation error at the interface must be 

thoroughly examined. intE  is the absolute value of the relative error at the interface. 

It is chosen as an index of the inverse estimation error. Fig. 6.8 shows the inverse 

estimation error at the interface for 5105 −×=κ , 4101 −×=κ , 4105 −×=κ , and 

∞→κ  with 75.0=rξ . For the first few time steps such as 1.0<τ , intE  varies 

sharply with time. As mentioned before, an abrupt temperature jump could not be 

predicted accurately using a numerical method so that the estimation accuracy is not 

good for the first few time steps. Furthermore, the existence of interface thermal 

resistance will make the estimation less accurate. Therefore, intE  is affected by both 

κ  and τ . There is no general trend for intE  when τ  is less than 0.1. However, the 

results show that intE  decreases as κ  increases after 1.0=τ , i.e. less interface 

thermal resistance results in more accurate prediction. Besides, the figure 

demonstrates again that the inverse estimation error decreases as time elapses. 

In order to examine the influence of sensor locations on the inverse estimation 

error at the interface, three different sensor location, 60.0=rξ , 75.0=rξ , and 

90.0=rξ  were designated as sample cases. Fig. 6.9 depicts inverse estimation error 

at the interface for various sensor locations with ∞→κ . It is obvious that intE  
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decreases as rξ  increases. Thus, the inverse estimation predicts more accurately 

while the sensor is close to the unknown boundary.  

 The discussion above shows that the inverse method provides a good estimation 

with exact input data. However, in practical engineering applications, measurement 

errors are unavoidable. Thus, the effect of measurement errors on the inverse method 

must be taken into account. The temperature data for the measurement locations were 

calculated from direct problems to simulate measurements. The simulated temperature 

measurements used in the inverse problems are considered to include measurement 

errors. In this study, random errors were added to the exact temperatures. The 

measured temperature measuredT  can be expressed as 

 exactexactmeasured TTT ϖ+= ,     σϖ < , (6-13) 

where exactT  is the exact temperature, ϖ  is the random error, and σ  is the bound 

of ϖ . 

 Fig. 6.10 depicts the exact and estimated surface temperature histories for 

various sensor locations, with 3101 −×=κ , when measurement errors are taken into 

account. It can be seen that large measurement errors make the estimation less 

accurate. Furthermore, the inaccuracy is amplified by large rξ  values. For the cases 

with exact input data (without measurement errors), sensor locations merely slightly 

affect the accuracy of the inverse estimation. However, the effect will be amplified if 

measurement errors are taken into account. Thus, for practical engineering problems 

in which measurement errors are unavoidable, sensors must be located as close to 

unknown boundaries as possible. Fig. 6.11 shows an estimated surface temperature 

history with (a) 4101 −×=κ  and (b) ∞→κ . Comparing Figs. 6.11(a) and 6.11(b), it is 

clear that the differences between exact and estimated values are amplified when 
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thermal resistance exists at the interface. 
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Fig. 6.1 Schematic diagram of a two-layer medium 
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Fig. 6.2 Space-time grid for numerical calculations [104];  : temperatures estimated 

by Raynaud and Bransier method [84],  : temperatures estimated by 

D’Souza method [103],  : known temperatures 
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Fig. 6.3 Exact and estimated temperature distributions with 4105 −×=κ  over the 

time sequence. 
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Fig. 6.4(a) Exact and estimated temperature distributions at 3.0=τ  for various 

interface conditions with 1.012 =kk . 
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Fig. 6.4(b) Exact and estimated temperature distributions at 3.0=τ  for various 

interface conditions with 1012 =kk . 
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Fig. 6.5 Exact and estimated surface temperature histories for various interface 

conditions. 
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Fig. 6.6 Exact and estimated temperature-difference ( θ∆ ) histories at the interface 

for 4101 −×=κ , 4105 −×=κ , and 3101 −×=κ  with 75.0=rξ . 
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Fig. 6.7 Exact and estimated temperature distributions for various sensor locations 

with 4101 −×=κ . 
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Fig. 6.8 Inverse estimation error at the interface for 5105 −×=κ , 4101 −×=κ , 
4105 −×=κ , and ∞→κ  with 75.0=rξ . 
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Fig. 6.9 Inverse estimation error at the interface for various sensor locations with 

∞→κ . 
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Fig. 6.10 Exact and estimated surface temperature histories for measurement errors 

0.1%, 0.3%, and 0.5%, with 3101 −×=κ  with the first sensor located at 

(a) 60.0=rξ , (b) 75.0=rξ , (c) 90.0=rξ . 
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Fig. 6.11 Exact and estimated surface temperature histories for measurement errors 

0.1% and 0.5% with interface thermal resistance (a) 4101 −×=κ , (b) ∞→κ . 
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7. CONCLUSIONS AND RECOMMENDATION 

 

 This thesis discusses microscale heat transfer phenomena in solid-state 

multilayer structures. We examine the size, interface and geometry effects on the 

thermal conductivity of materials. This chapter draws some conclusions as well as 

directions for future work in this area. 

 The phonon radiative transfer model is partially ballistic, partially wavelike, and 

partially diffusive. EPRT approaches to Fourier limit (totally diffusive) when the 

thickness of the film is much greater than the phonon mean free path. However, EPRT 

reduces to Casimir limit (totally ballistic) when the thickness of the film is much less 

than the phonon mean free path. The study suggests a profile for engineers to apply 

conduction heat transfer models in different film thickness. When the ratio of film 

thickness to phonon mean free path is great than 100, Fourier law is a good 

approximation to deal with conduction heat transfer problem in dielectric thin film. 

 Extending the one-layer system to a two-layer system, the interface effect on the 

thermal conductivity must be considered. Microscale heat transport in a two-layer 

concentric circular cylinder with interface thermal resistance is examined in this study. 

The size and curvature effects on the effective thermal conductivity and the interface 

thermal resistance are examined in detail. The results show that the reduction of size 

will reduce the effective thermal conductivity. In addition, the effective thermal 

conductivity increases as the curvature increases. However, the size and curvature 

effects on interface thermal resistance are not significant when the DMM is employed 

to describe the interface condition. 

 Microscale heat transfer in two-dimensional micro tubes is also examined. The 

results show that the curvature effect on the effective thermal conductivity is not 
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significant. However, the reduction of thickness or height will reduce the effective 

thermal conductivity. Thus, the miniaturization of microelectronic devices will reduce 

the ability of heat transfer and may cause the failure of devices if the size effect is 

ignored. 

 Extending the foregoing analysis on microscale heat transfer, size effects on the 

performance of thermoelectric micro coolers are explored in detail. Thin film, nano 

wire and nano tube superlattices are utilized to make thermoelectric micro coolers and 

EPRT as well as DMM are used to model the microscale heat transfer in the micro 

cooler. The results show that the layer thickness has significant influence on the 

effective thermal conductivity of thermoelectric materials in superlattice structures. 

The reduction of the layer thickness will reduce the thermal conductivity of 

superlattices and thus enhance their thermoelectric performance. For a fixed total film 

thickness, increasing number of periods means decreasing layer thickness of each 

layer and increasing number of interfaces. Thus, the thermal conductivity decreases 

with increasing number of periods. In addition, low-dimensionality offers more 

boundary scattering and causes further reduction in thermal conductivity of 

low-dimensional thermoelectric materials. Nano wire or nano tube superlattices are 

potential materials for high performance thermoelectric devices. 

 After knowing what parameters affecting the effective thermal conductivity and 

how they influencing, the thermophysical properties of materials can be properly 

defined. The effective thermal conductivity and the temperature histories in the 

interior points are used to estimate the surface temperature in thin-film/substrate 

systems. This study presents a numerical analysis of estimating transient behavior of 

surface temperatures for thin-film/substrate system using an inverse method. The 

acoustic mismatch model was employed to model the interface thermal resistance 
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between thin-film and substrate. The space-marching technique is adopted for the 

analysis of the inverse heat conduction problem. Numerical results show that the 

inverse method accurately estimated the surface conditions and temperature 

distributions in a two-layer system even with an abrupt temperature drop in the 

interface. Sensor locations and interface thermal resistance just slightly affected the 

accuracy of the inverse estimation during the transient process when exact input data 

(without measurement errors) were applied. However, inaccuracy might be amplified 

by interface thermal resistance and sensor locations if measurement errors exist. 

 Thermal transport theory based on Boltzmann equation successfully describes 

the microscale heat transfer phenomena in solids. This study closely examines the size 

effects on the thermal conductivity of solid-state devices with multilayer structures. In 

addition, the study of size effects on the electrical conductivity can be found 

elsewhere. However, there are rare studies that simultaneously deal with heat and 

electron transport in solids. It would be more valuable to simultaneously predict the 

thermal and electrical conductivity of a miniaturized thermoelectric device since heat 

transfer and electron transfer are not independent. Besides, we need more 

experimental results to demonstrate the validity of the microscale heat transfer theory. 

Unfortunately, the reported thermophysical properties of materials in small scale are 

very few. It is difficult to fabricate perfect micro structures and measurements of 

thermophysical properties are not easy. Future work should be emphasized in 

experimental researches, particularly in developing the measurement method that 

simultaneously measures the thermal conductivity, the electrical conductivity and the 

Seebeck coefficient of thermoelectric materials. 
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