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Program Charge Effect on Random Telegraph
Noise Amplitude and Its Device Structural

Dependence in SONOS Flash Memory

Student : Steven Lin Advisor : Dr. Tahui Wang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

ABSTRACT

Nitride program charge effect on the amplitude of random telegraph noise (RTN)
in SONOS flash cells is investigated. We measure and simulate RTN amplitudes in
floating gate flash, planar SONOS, and FinFET SONOS cells. We find that a planar
SONOS has a wide spread in RTN amplitudes after programming while a floating
gate flash cell has identical RTN amplitudes in erase and program states. The spread
of program-state RTN in a planar SONOS is attributed to a current-path percolation
effect caused by random discrete nitride charges. Consequently, program charge effect
has to be taken into consideration while establishing RTN model in SONOS.

The RTN amplitude spread can be significantly reduced in a surrounding gate
structure, such as FInNFET SONOS, due to a higher degree of symmetry in a program

charge distribution.
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window : 0.8V, 1.5V. The drain voltage in measurement is 0.7V and the gate
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Measured program-state RTN amplitude versus erase-state RTN amplitude
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Measured program-state RTN amplitude versus erase-state RTN amplitude
in 60 planar SONOS cells. The RTN amplitude is measured at [;=500nA
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The Vi window is 1V. The drain voltage in measurement is 0.7V and the
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and 1* and 2™ program-state.

Fig. 3.10 Simulation flow chart of our 3D atomistic simulation for RTN amplitude at

program state and erase state for both FG flash and planar SONOS flash.
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Fig. 3.11 Simulated RTN amplitude versus drain current in a FG flash cell.

Program-state and erase-state have the same placement of substrate random

dopants. The RTN trap is placed in the middle of the device.

Fig. 3.12 Simulated RTN amplitude versus drain current in a planar SONOS cell.
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doping and program charges.
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In a planar SONOS, percolation paths are widely distributed in the gate
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Measurement of the correlation factor in FinFET SONOS with two different
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nanometer.
Fig. 4.7 A 3D RTN simulation in planar SONOS with different channel width. The
correlation factor is calculated based on a sample size of 40 devices.

Fig. 4.8 An illustration of three different structures in SONOS flash: planar, FinFET

and surrounding gate.
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Chapter 1

Introduction

Flash memory is a non-volatile computer data storage technology that can be
electrically programmed, erased and read for so many times and won’t be lost after
cutting off the power. It is primarily used in memory cards, USB flash drives, and
solid-state drives for general storage and transfer of data between computers and other
digital products. Nevertheless, with the advanced VLSI processing, the effect of a
single electron on a typical device can be quite significant. Such effects will

eventually cause fundamental scaling and reliability problems.

Random Telegraph Noise (RTN) phenomenon arising from electron emission
and capture at an interface trap -site [1-3] has been recognized as a new scaling
concern in flash memory[4-8]. V, fluctuations originated from a large-amplitude RTN
tail will cause a read error and become a prominent issue in designing a
multilevel-cell (MLC) flash memory in 45nm technology node and beyond as shown
in Fig. 1.1[6]. Fig. 1.2(a) shows that the worst case of RTN induced Vt shift is over
0.3V in 50 nanometer technology node [7]. Fig. 1.2(b) tells us that such large RTN tail
may cause a read error in multilevel-cell flash memory application and requires the

use of error code correction.

This thesis is composed of five chapters. After a review of RTN induced
threshold voltage shift and read failure in flash memory in Chapter 1, we will
introduce a technique of trap position extraction [9] and the concept of percolation

effect in Chapter 2. In chapter 3, we will show you how program charges affect the
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current path percolation in both floating gate and planar SONOS flash. In Chapter 4,
we will discuss device structure dependence of RTN in SONOS flash. we will
compare RTN measurement and simulation results in planar SONOS and FinFET

SONOS. Finally in chapter 5, the conclusions will be presented.
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Fig. 1.1 Estimation of threshold voltage shift as a function of process node



Normal Quantile

AwT9.99%
3 Locmo et LaabadtT +99.9%
., i S +99%
—95%
I S O S 185%
0 - +50%
- +15%
Py / ! —90nm simulation _T°%
— 00
j | —70nm simulation T
------- L i 20 1%
I —50nm simulation ~ T
! . <0.01%
_d 1 L J
0 100 200 300

Noise Amplitude AVtcell (mV)

(@)

S Egﬁ

=
-

=

s

=
-l

Cumulative distribution function (%) Cumulative distribution function (%)

Levell| Lavel2 [ Level2 Leve4

Threshold Voltage (aw)

I

Threshold Voltage (a.u.)

(b)

Fig. 1.2 (a)Noise distributions of 90nm, 70nm, 50nm flash memory technologies
and (b)Measured Vy, distribution of a 4-level MLC with level2 enlarged.




Chapter 2
Trap Position Extraction and Relation between

RTN Amplitude and Percolation Effect

2.1 Introduction

The origin of RTN is that single charge effect become more and more severe as
device scaling down. As shown in Fig. 2.1(a), Trapping/detrapping of a single carrier
charge in defect states near the Si/gate dielectric interface may lead current (or
threshold voltage) to fluctuate and RTN amplitude will be even bigger in the coming
technology node [6]. It will become a serious issue, not only in analog circuits, but
also in dynamic random access memory, Static random access memory and other

digital application.

Fig. 2.2 is a typical time domain trace of RTN in drain current illustrating the
three main RTS parameters: <t.>, <t.> and Al4 representing the average of the high
and low time constants and the magnitude of the current fluctuation. There is a

formula concerning the relation between <t.> and <t.>:

<T. >

C

Et_EF
= gexp(———
<7 > g exp( kT )

e

RTN which makes current fluctuation occurs only when trap energy level (E;) close
enough to Fermi level. Traps with energy levels several kT below the Fermi level

would be permanently filled where k and T are the Boltzmann’s constant and
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equilibrium temperature, respectively (Fig. 2.1(b)). While traps with energy levels
several kT above the Fermi level would be permanently empty. Both of the two cases

have no contribution to RTN.

2-2 Measurement of RTN

The measurement setup is shown in Fig. 2.3. Agilent 4155C was used for our
measurements on RTN. The sampling mode was selected, and the gate and drain bias
were well controlled so that the trap energy level may close enough to Fermi level.
With an appropriate sampling rate, the current fluctuation would be extracted and

shown on the screen of 4155C.

2-3 Extraction of the Trap-Position

A convenient method based on 1D model proposed by IBM[9] can extract the
lateral trap position in a cell. With linear region operation, the applied drain voltage
(Vgs) affects the trap linearly depending on its position in the device. Therefore, we
can apply different gate/drain bias to change the local potential at the trap site and
sense the variation of <t.> and <t>. As a result, the extraction of trap position along

the channel can be attained with the equation:

AV L

ts — ts

AV, L

g

where Vs denotes the voltage raised at the trap position by the drain voltage and L, is
the channel length and Ly is the distance of the trap to the source (Fig. 2.4). Fig. 2.5 is
the profile of trap position along the channel. According the the experiment result,

oxide trap are more likely to be located near the source/drain edge.
_6-



2-4 Current Percolation Effect and RTN Amplitude

In an advanced device, number of substrate dopants is so small that cannot be
regarded as an uniform doping concentration but a random and discrete distribution.
Such discrete dopants may produce discrete potential barriers in channel surface (Fig.
2.6 [10]. Conducting carriers find a smoothest path to avoid these potential barriers as
flowing from source to drain. This phenomenon is called current path percolation

effect and more precisely in this case - random dopants induced percolation effect.

Random discrete dopant effects may vary RTN’s amplitude [11]. The illustration
in Fig.2.7 exhibits two different random'dopant distribution with two different current
percolation pattern correspondingly. One the interface state trap an electron, the
current flow will be affected at the same time. If the interface trapped-charge is
located at the key spot for current percolation path, the RTN amplitude is relatively
large (large Alp). On the other hand, smaller RTN amplitude implies that
trapped-charge might be located at a minor spot for current percolation path, as shown

in the lower case in Fig. 2.7.

2-5 Percolation Effect Induced RTN V; Distribution

Recently, it has been reported that single-trap RTN amplitudes and thus V;
fluctuations exhibit an exponential distribution experimentally and a statistical model
based on a three-dimensional Monte Carlo simulation with the same consequence can

be described as [12-14]: (Fig. 2.8)



AK)
o

FAV) == exp(-
In a FG flash memory for instance, the RTN tail is attributed to random dopant
induced current-path percolation effects and ¢ is dependent on a substrate doping
concentration, cell size and oxide thickness. The RTN amplitude distribution has a

larger tail at a shorter gate length.

We also perform an experiment and 3D atomistic simulation on 45nm node
planar SONOS flash cells to evaluate the distribution of V. Fig. 2.9 is the result with
200 simulations which also reveals the identical result that RTN induced V;
fluctuation follows an exponential distribution. We will give you a brief simulation

flow in the following Chapter 3.
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Chapter 3
Program Charge Effect on Random Telegraph Noise
Amplitude in Floating Gate and SONOS Flash

Memory

3-1 Introduction

In this chapter, I would like to introduce program charge effect on RTN in
floating gate flash and SONOS flash. In a floating gate flash, program charges are
stored in a conducting poly-silicon floating gate. The potential in the floating gate is
constant and does not affect the percolation paths caused by substrate dopants. Thus,
the program-state RTN amplitude is, identical to erase-state RTN amplitude in a
floating gate cell. In a SONOS flash' cell;-however, program charges are stored in
random and discrete nitride traps. Such random program charges may produce
additional discrete potential barriers in channel surface. The current percolation paths
are therefore affected by the placement of both substrate dopants and program charges
which may lead percolation path into a large change from erase-state to program-state
in a SONOS flash. The difference of program charge storage characteristics of FG

flash and SONOS flash are shown in Fig. 3.1.

3-2 Measurement of RTN Amplitude in MLC Flash

In order to identify the concept of program charge induced percolation effect,

first of all we measured single-trap RTN relative amplitudes (Alg4/l4) versus drain
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current in both FG flash cell (Fig. 3.2) and SONOS flash cell (Fig. 3.3) with different
program window for MLC application. The FG flash cell dimension is
W/L=0.11pm/0.09um. RTN amplitudes in erase-state and in two different
program-state are set at the same read current level of 500nA, drain voltage at 0.7V.
We find that program-state and erase-state RTN amplitude are identical, no matter
program AV is 1V or 2V. However as we measured single-trap RTN relative
amplitudes versus drain current in a SONOS flash cell (cell dimension:
W/L=0.09um/0.08um, a 2.8 nanometer tunnel oxide, a 6 nanometer silicon nitride
and a 6 nanometer top oxide) with program window 0.8V and 1.5V, the curve of
erase-state and program-state misalign. The result can be explained by the idea we
mentioned earlier: (i) The program charges in the FG flash is continuous distribution
and does not affect the percolation paths'caused by substrate dopants. (ii) The current
percolation paths are affected by the placement of both substrate dopants and random
program charges in SONOS flash. There is another information we can get: RTN
amplitude decreases as drain current increases indicating that number fluctuation
dominates at high current level and percolation effect plays a more important role at

low current level.

3-3 Statistics Result of Program-state and Erase-state RTN

We also measured single-trap RTN relative amplitudes (Aly/14) in 40 FG flash
cells and 60 SONOS flash cells, then we perform a bit-by-bit tracking plot of
program-state RTN amplitude versus erase-state RTN amplitude. Devices with RTN
amplitudes less than 3% are excluded to avoid possible measurement errors. In the
case of FG flash, we find that almost all the dots are lay on the straight line with

slope=1, which means program-state and erase-state RTN have identical amplitudes in
-19 -



each FG cell (Fig. 3.4). As a contrast, a distinctly different feature is obtained in
planar SONOS cells. The RTN amplitudes spread in a wide range after programming
and are almost independent of erase-state RTN (Fig. 3.5). One erase-state RTN
amplitude might have many possible program-state RTN amplitude after
programming. Therefore, we can deduce that program charge effect on RTN

amplitude is insignificant in FG flash but severe in SONOS flash.

3-4 Correlation Factor for Program-state and Erase-state RTN

To quantify program charge effect on RTN amplitude, a correlation factor, f,

for program-state and erase-state RTN is defined as [15]

fo_ 2G0T
e Y o-v)

where X and V denote RTN-amplitudes in erase-state and in program-state,

respectively,and X and ¥ are average values. A larger correlation factor suggests
a smaller program charge induced percolation effect. Table. 1. Shows the measured
correlation factor is 0.998 in FG flash, suggesting no program charge effect on RTN

while the correlation factor reduces to 0.286 in planar SONOS flash.

3-5 P/E Cycle Dependence of RTN

The RTN amplitude versus the drain current in the first three P/E cycles in FG
flash is shown in Fig. 3.6. The result shows program-state and erase-state have the
same RTN characteristics and implies that program charges in a FG do not alter
current percolation paths caused by substrate dopants and no P/E cycle dependence.

The first three P/E cycles in SONOS flash is shown in Fig. 3.7. The program-state
-20 -



RTN amplitude varies from cycle to cycle, suggesting that random program charges
play an important role in current percolation paths. The measured RTN waveforms
and the I;-V, for SONOS flash are shown in Fig. 3.8 and the waveforms of the first
two program-state are shown in Fig. 3.9. Two-level current switching is observed in
both erase and program-states, showing that RTN arises from a single interface trap
and no additional traps are created during P/E cycles. As a result, we affirm that the
variation of RTN amplitude from cycle to cycle is attributed to different program

charge percolation paths, not additional trap creation.

3-6 3D Atomistic Simulation of RTN

To evaluate percolation effect on. RTN, we performed a 3D atomistic simulation
[12] for FG and SONOS cells. The first step-is establishing a flash cell for both FG
and planar SONOS and then placing random discrete dopants in substrate and

defining a site of an interface trap inside bottom oxide layer.

We need to consider two individual states: trapping and detrapping when
simulating RTN amplitude. The first one with nothing is placed at the interface trap
standing for emission trap state in RTN phenomenon lets us extract an IV curve, and
the second on with an electron charge is put in the interface trap symbolizing
occupation trap state lets us extract another IV curve. Once we get the two IV curve,
we can simulate the relative RTN amplitude by calculating Al4/I4. So, the simulation

of erase state RTN amplitude can be achieved by following the procedure above.

-21-



When simulating program state RTN amplitude, two different program charge
storage characteristics in FG and SONOS flash have to be taken into account
respectively. In FG cell simulation, program charges have a continuous distribution
and an equi-potential condition in a FG is obtained in the simulation. Besides, in a
SONOS cell, nitride program charges are randomly placed. So again, the simulation
of program state RTN amplitude can also be accomplished by the same method. Fig.

3.10 is our simulation flow chart for reference.

Fig. 3.11 shows our simulated RTN amplitude versus the drain current in a FG
cell. The program and erase-state RTN are measured in three P/E cycles. The RTN
amplitudes are all the same in three P/E cycles, in agreement with our measured result.
Fig. 3.12 shows the simulation result.in‘a planar SONOS cell. Ten different sets of
random program charges with a similar program-state V. are simulated. In all
simulations no matter it is program-state or erase-state, a fixed placement of random
substrate dopants and interface trap is used. The simulation shows that program-state
RTN has a wide spread in amplitudes since each set of program charges results in a
different current percolation path, the large variation of program-state RTN amplitude

can be realized.
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Fig. 3.1 An illustration of two different program charge storage characteristic
resulting distinct outcome of percolation path. Continuous distribution in FG flash and

random discrete distribution in SONOS flash
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Fig. 3.2 RTN amplitude versus drain current in a FG flash cell at two program
window : 1V, 2V. The drain voltage in measurement is 0.7V and the gate voltage is

varied.
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Fig. 3.3 RTN amplitude versus drain current in a SONOS flash cell at two program
window : 0.8V, 1.5V. The drain voltage in measurement is 0.7V and the gate voltage

1s varied.
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40 Floating Gate cells

Id:5 00nA

® Prog. AVELV
® Prog. AV=2V
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Erase State RTN Amplitude, Al;/I; (%)

Prog. State RTN Amplitude, Alda/Ia (%)

Fig. 3.4 Measured program-state RTN amplitude versus erase-state RTN amplitude in
40 FG flash cells. The RTN amplitude is measured at [;=500nA @V4=0.7V. The
device dimension is W/L=0.11um/0.09um. The program window is 1V or 2V.
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60 Planar SONOS Cells

0 10 20 30 40

Erase State RTN Amplitude, Al;/I; (%)

Prog. State RTN Amplitude, Ala/Ia (%)

Fig. 3.5 Measured program-state RTN amplitude versus erase-state RTN amplitude in
60 planar SONOS cells. The RTN amplitude is measured at [=500nA @V ¢=0.7V.
The SONOS cells have W/L=0.09um /0.08um, a 2.8nm tunnel oxide, a 6nm SiN and
a 6nm top oxide.
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Fig. 3.6 RTN amplitude versus drain current in a FG flash cell in three P/E cycles.
The Vi window is 1V. The drain voltage in measurement is 0.7V and the gate voltage

1s varied.
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Planar SONOS
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Fig. 3.7 RTN amplitude versus drain current in a SONOS cell in three P/E cycles. The
Vi window is 1V. The drain voltage in measurement is 0.7V and the gate voltage is

varied.
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Fig. 3.8 Measured RTN waveform and I versus V, plot (a) in erase-state and (b) in

program-state of a SONOS cell. Electron trapping at an interface trap is manifested by
a current discontinuity in the 14-V, plot
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Fig. 3.9 The waveform of two-level RTN current switching is observed in erase-state
and 1* and 2™ program-state.
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Fig. 3.10 Simulation flow chart of our 3D atomistic simulation for RTN amplitude at

program state and erase state for both FG flash and planar SONOS flash.

-32 -



Floating Gate (simulation)

40 WM Erasestate
® Prog.state

RTN Amplitude, Alq/Ia (%)
W
(e

10° 10" 10°
Drain Current (Amp)

Fig. 3.11 Simulated RTN amplitude versus drain current in a FG flash cell.
Program-state and erase-state have the same placement of substrate random dopants.
The RTN trap is placed in the middle of the device.
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Fig. 3.12 Simulated RTN amplitude versus drain current in a planar SONOS cell.

Program-state and erase-state have a fixed placement of substrate dopants. Ten

different sets of random program charges are simulated. An RTN amplitude due to

number fluctuation is calculated with continuous substrate doping and program

charges.
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Chapter 4
Device Structural Dependence on Random Telegraph

Noise in SONOS Flash Memory

4-1 Introduction

Now, we are going to discuss a device structure effect on RTN in SONOS flash.
In a FinFET structure which conducting current is confined to the corners of a silicon
fin in weak inversion condition (Fig. 4.1). The percolation effect can be quite different

from a planar SONOS.

4-2 Program Charge Effect on RTN in FinFET SONOS

Fig. 4.2 shows our measured program-and erase-state RTN in FinFET SONOS
for two P/E cycles. The fin height (Hgn) is 40nm and the fin width (Wgy,) is 25 nm.
Unlike a planar SONOS, program-state and erase-state RTN are almost the same in a
FinFET SONOS. Fig. 4.3 shows the statistical result in 50 FinFET SONOS. It is
apparent that the program-state RTN amplitude spread is significantly reduced in the
FinFET SONOS (correlation factor f =0941 ) as compared to the planar
SONOS( /' =0286 ) which means that FinFET structure can substantially reduce
program charge induced percolation effect. The correlation factors can be found in

Table. 1.
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4-3 Degree of Inversion in FinFET SONOS

Degree of inversion may be one of the reasons that cause the reduction of
percolation effect in FinFET SONOS. As we mentioned earlier, in a condition of
stronger inversion, number fluctuation replaces percolation effect to become the
decisive factor in RTN amplitude. To clarify this point, we measured RTN at a smaller
drain current reduced from 500nA to 200nA. We still find a good correlation between
erase-state and program-state (Fig. 4.4). Stronger inversion does not seem to be the

cause of the high correlation factor in FinFET SONOS.

4-4 Channel Width Effect on Program Charge Induced Percolation
Effect

The second possible reason for the large correlation factor in FinFET SONOS is
the confinement of channel current. In a large-width planar SONOS, percolation paths
are widely distributed in the width direction. Program-state and erase-state may have
different percolation paths, as illustrated in Fig. 4.5. In a FinFET SONOS, however,
the channel current is confined in the small region in Silicon fin. There are seldom
choices for current percolation, so the program-state and erase-state have the same

conducting path. Thus, program charge effect on RTN is smaller.

Fig. 4.6 shows that the program-state RTN spread can be further reduced as a fin
width reduces from 25nm to 10nm. The measured correlation factor increases from
f=0817 in Wg,=25nm and / =0.941 in Wg,=10nm (Table. 1). We also perform a
3D RTN simulation in planar SONOS with different channel width (Fig. 4.7). Our

simulation indeed shows that the correlation factor increases with a decreasing gate
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width. The measurement and simulation reveal the same trend that smaller channel

width lead to smaller program charge induced percolation effect on RTN amplitude.

4-5 Symmetry of Program Charge Distribution in a Surrounding

Gate SONOS

The third reason for the reduction of program charge effect in FinFET SONOS is
the symmetry of program charge distribution. The illustration in Fig. 4.8 tells us that
in a planar SONOS, the location of program charges matters. For example, the site #4
in planar SONOS influence the conducting path the most while the other site barely
affect it. In a surrounding gate SONOS, however, all sites of program charge have the
same effect on conducting path, resulting a‘smaller percolation effect. The FinFET
structure lies in between planar and surrounding gate structure. Moreover in a real
FinFET device, the corners are rounded and the shape is like an arc. So we can deduce

that the FInFET has a smaller program charge effect due to structural symmetry.
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FINFET SONOS
Gate

Fig. 4.1 Cross-section of a FInFET SONOS and the electron concentration contour in
the FInFET SONOS obtained from a 2D simulation.
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Fig. 4.2 RTN amplitude versus drain current in a FinFET SONOS cell for two P/E

cycles.
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Fig. 4.3 Program-state RTN amplitude versus erase-state RTN amplitude in 50
FinFET SONOS cells. The RTN is measured at [;=500nA @V4=0.7V. The fin height
is 40nm and the fin width is 10nm. The channel length is 80nm. The program window
is I'V.
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60 Planar SONOS Cells
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Fig. 4.4 Program-state RTN amplitude versus erase-state RTN amplitude in FinFET
SONOS cells. The fin width is 10nm. (a) RTN is measured at [;=500nA and (b) RTN
1s measured at [;=200nA.
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Fig. 4.5 In a planar SONOS, percolation paths are widely distributed in the gate width
direction. In a FInFET SONOS, conducting paths are confined to a small region in the

corner of the Si fin.
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Fig. 4.6 Measurement of the correlation factor in FinFET SONOS with two different

fin width, 10 nanometer and 25 nanometer. The correlation factor increases from 0.82

to 0.94 as the fin width reduces from 25 nanometer to 10 nanometer.
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Simulation (Planar SONOS)
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Fig. 4.7 A 3D RTN simulation in planar SONOS with different channel width. The

correlation factor is calculated based on a sample size of 40 devices.
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Fig. 4.8 An illustration of three different structures in SONOS flash: planar, FInFET

and surrounding gate.
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Correlation Factor

Floating Gate | Planar SONOS FinFET SONOS
We =25 We =10
0.998 0.286 i b
0.817 0.941

Table. 1 Measured RTN correlation factors in ' FG flash, planar SONOS and FinFET
SONOS cells.
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Chapter 5

Conclusion

Read failure due to a RTN induced V; tail is an important issue in flash memory
scaling. With a simple trap position extraction technique, we can count the oxide trap
distribution along the channel. Oxide trap are more likely to be located near the

source/drain edge.

In a FG flash, RTN amplitudes are mainly determined by random dopant
induced percolation effect and identical in erase and program states. However, in a
planar MLC SONOS, we find that RTN amplitudes have a wide spread after program.
The program-state RTN distribution is affected by both random program charges and
substrate dopants. In addition, the RTN amplitude varies from P/E cycle to P/E cycle
due to program induced percolation effect. Therefore the program charge effect has to

be considered in RTN modeling in MLC SONOS.

According to our experiments and simulations, the program charge induced
percolation effect can be significantly reduced in a surrounding gate structure, such as

a FInFET SONOS.
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