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研究生: 鄭寬豪            指導教授: 陳明哲 博士 

 

國立交通大學 

電子工程學系 電子研究所碩士班 

 

摘要 

 

 在 N 型金屬氧化物場效電晶體，非均勻的運算格子間距中，透過牛頓-里曼

的疊帶法來解薛丁格和波松方程式自洽。這目的是為了在奈米元件中，模擬比三

角位能井近似來的更真實的物理環境，而模擬顯示與 Schred 軟體的結果是非常

相近的。然而在 P 型金屬氧化物場效電晶體中，六層的 kp 模型在過去已經常被

用在計算電洞的能帶與遷移率，包括應力與不同的晶向的效應。在此篇論文的研

究中，我們介紹了一種新的模擬方法，透過 kp 的哈密爾敦矩陣來快速得到電洞

的能帶結構。而為了確保我們研究的準確性，所以我們也建立了一個在反轉層中

的簡單的遷移率模型，再進行在不同溫度下此模擬結果與實驗值比較。在這模型

中我們考慮的機制有:聲學聲子散射、光學聲子散射與表面粗糙度散射。至於因

為摻入雜質所產生的庫倫散射不在我們討論中。此外，我們也透過有效質量的方

法，來萃取量子化的等效質量，至於能態密度的等效質量也將會與低溫

Shubnikov-de Haas 震盪實驗的數據互相比較。 
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Abstract 

 Self-consistent solving of Schrődinger and Poisson equations in n-channel 

MOSFETs (metal-oxide-semiconductor field-effect transistors) is obtained by using 

Newton-Raphson iteration technique with the non-uniform mesh arrangement. The 

method is applied to simulate more realistic physical environment than triangular 

potential well approximation in nano devices. The simulation results show excellent 

agreements with Schred’s. However, in p-channel MOSFETs, a six-band k p  model 

has been used to calculate hole subband structure and mobility for different surface 

orientations and different strains. In this work, we introduce a new efficient model 

based on six-band k p  Hamiltonian to rapidly obtain accurate hole properties. In 

order to ensure the validity of our work, we build an effective mobility model in the 

hole inversion layer and compare the results with the experimental data concerning 

the universal curves at different temperatures. The different scattering mechanisms 

are included in this study: acoustic phonon scattering, optical phonon scattering and 

surface roughness scattering. To focus on the high surface field region, Coulomb 

scattering due to ionized impurities will be ignored. In addition, with the use of an 

equivalent effective mass model, the extracted quantization effective mass and density 

of states effective mass will be compared with low temperature (2 K) Shubnikov-de 

Haas oscillation experiment results published in the literature. 
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Chapter 1 

Introduction 
 In more recent years, the MOSFETs (metal-oxide-semiconductor field-effect 

transistors) technology has undergone a scaling-down strategy. When the device gate 

length shrinks towards about nanometers or below, the MOSFET scaling rule is 

rapidly invalid. The reasons are that the quantum effect plays an important role in 

nano device, and must be taken into account. 

 Firstly, this work demonstrates the full self-consistent method for solving 

Schrodinger equation and Poisson equations in n-channel MOSFET. The simulation 

results have been compared well with Schred [1]. On the other hand, more 

challenging issues have been devotes to the pMOS transistors in terms of the mobility 

and its dependent on wafer orientation and strain engineering. Several researchers 

have significantly addressed the two dimensional hole behaviors (See Figure 1.1), 

such as Tompson’s group [2] and Fischetti, et al. [3], [4], along with the other theories, 

for example, the pseudo potential method, 4 4  k p  method, Monte Carlo 

simulation and full self consistent method. Figure 1.2 is highlighted to describe the 

efficiency and accuracy for above cases. We introduce the two methods to deal with 

the hole gas in the inversion layer; one is to utilize the triangular potential 

approximation based on Fischetti’s skill and the other, Nano Electronics Physics (NEP) 

simulator, is the proposed new and computational efficient technique with two 

motivations: to avoid spending too much calculation time through the self-consistent 

method and to simulate the operation conditions under very low temperature. Finally, 

we extract the density of states effective mass and compare it with cyclotron effective 

mass at 2 K [5], as well as and building a correct hole effective mobility model along 

with comparing with experimental data [6] at different temperatures. 
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Chapter 2 

Numerical Technique and Physical Theory 

 

2.1 Time-independent Schrödinger Equation: Matrix Techniques 

 

It is well-recognized that the time-independent Schrödinger equation in the 

quantum mechanics can be expressed in terms of a matrix equation: 
2

2

2
V E

m
      
  .                                      (2.1.1) 

This approach is widely adopted in the band-structure simulation when it is focused 

on bound or quasi-bound states in a spatially varying potential V inside the highly 

scaled semiconductor devices. Let us assume that the wave-function   is confined 

in a small region of W. We divide this region into   intervals of the equal-distance 

/x W   . The ith mesh point is indexed as xi. In general, the wave-function   we 

are looking for can be expanded by an orthogonal basis set  n      

     n n
n

a   ,                                               (2.1.2) 

where the n  is the normalized wave-function at the mesh point xn and the existing 

probability of n  is exactly zero outside the interval n. According to Eq. (2.1.1), the 

Schrödinger equation in the confined direct can be written numerically as 

    
2

2

( ) 2 ( ) ( )[ ] ( ) ( ) ( )
2

x x x x x V x x E x
m x

      
    


 .          (2.1.3) 

Substituting Eq. (2.1.2) into Eq. (2.1.3), we get a set of   equations (we are 

assuming 0 1 0a a   , i.e., the wave-function is localized in the space W). After 

taking the outer product of 1 2 3, , , ...       , the matrix form of the one 
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dimensional Schrödinger equation is presented by   

1

2

3

(x )
1 1

(x ) 2 2

(x )

(x ) 1

0 0

0

  00

0
0 0 n

A B a
B A B a

B A B

aB A







   
   
   
       
   
      

 



 
 



                   (2.1.4) 

with  

i

2

( ) 2 ( )
( )x iA V x E

m x
  


 ,                                      (2.1.5)      

2

2     .                                                                                        (2.1.6)
2 ( )

B
m x

 



                                               

Obviously, Eq. (2.1.4) turns the complex differential Schrödinger equation into a 

common eigen-value problem and we will get the   eigen-values corresponding to 

the   eigen-function. The smallest eigen-value refers to the ground state while the 

others refer to the excited states.    

 

2.2 Six-band k‧p Calculation for the Hole Subband Structure in 

p-channel MOSFETs: Strain and Surface Orientation Effects   

 

2.2.1 Strained Quantum Simulation 

By following the theoretical work by Fischetti, et al. [3], a six-band silicon 

k‧p method, along with the solving of Schrödinger equation in a triangular potential 

well beneath the gate oxide of bulk p-MOSFET, will be employed here. In this 

simulation framework, we solve the wave equation: 

kp , ,( , , ) ( ) ( ) ( , ) ( ).
x y x yx y z k k x y k k

dH k k k i qV z z E k k z
dz

         
      (2.2.1.1) 

Here, the surface potential V(z) is equal to the minus of the surface electric field Fs 
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times the depth from the silicon surface z; and the k‧p Hamiltonian Hkp is the 

Luttinger-Kohn Hamiltonian HLK plus the strain Hamiltonian Hstrain. Those 

expressions are given in [2]. Therefore, the 6 6  Hamiltonian is given by  

10 2
2

30 2
2

30 2
2

10 2
2

1 32 2 0
22

3 12 2 0
2 2

kp LK strain

P Q L M L M

L P Q M Q L

M P Q L L Q
H H H

M L P Q M L

L Q L M P

M L Q L P



 

   

 

  

 
    

 
 

    
 
 
      

     
    
 
 
    
 
 
      
  

,  (2.2.1.2) 

where 

      
k

k

k

k

P P P
Q Q Q
L L L
M M M









 

 
 
 

,                                             (2.2.1.3) 

 

 

 

 

2
2 2 2

1
0

2
2 2 2

2
0

2

3
0

2
2 2

2 3
0

2

2
2

3

3 2
2

k x y z

k x y z

k x y z

k x y x y

P k k k
m

Q k k k
m

L k ik k
m

M k k i k k
m







 

  

  

 

     









;   

 
 
 

 

2
2

3
2

v xx yy zz

xx yy zz

xz yz

xx yy xy

P a

bQ

L d i

M b id









  

  

 

  

   

   

  

  

.        (2.2.1.4) 

the kP , kQ , kL  and kM  are the k p  terms and the P , Q , L  and M  are 

the strain terms and   is the split-off energy. The Luttinger parameters 1 , 2 , 3  

and strain deformation potentials va , b , d  are both listed in Table I.  

In the numerical calculation, the wave vector, ,zk  is replaced by the operator, 
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,di
dz

  and the quantization z-direction length in the simulation is divided into a 

mesh of zN  points ( zN =101 in this work). Thus, Eq. (2.2.1.1) becomes the 

6 6z zN N  eigenvalue problem. Precisely speaking, this 6 6z zN N  eigenvalue 

matrix can be expressed as the tridiagonal block form  

1 1
0 , ,

1
0

, ,
0 1 1

1 , ,

0 0
( , )0 0

0 0

x y x y

x y x y

x y x y

l l
k k k k

l
l l
k k k kx yl
l l

l k k k k

D D D
E k kD D D

D D D

 

 

 

 
 


 

   


                                                            

,       (2.2.1.5) 

where each ,x yk k  is a six-component column vector. D , 0D  and D  are 6 6  

block-diagonal difference operators expressed as below 

2
0 1 2= + +kp z zH H H k H k  ,      

1 2
22 ( )

H HD
i z z

  
 

,                                               

0 2
0 2

2
( )

HD H
z

 


,                                          (2.2.1.6) 

1 2
22 ( )

H HD
i z z

   
 

.  

The solving of Eq. (2.2.1.5) yields the same number of the eigenvalue matrices, 

E(kx,ky), as well as the wave function kx,ky(z).  

 

2.2.2 Surface Orientation Effect 

It is understood that in the k p  Hamiltonian, the appropriate rotations in k  

space is adopted to deal with (001), (110), and (111) surfaces [8] while z
ik
z

 



. 

For (110) surface, a rotation from the original (001) k  space to (110) 'k  is 

required:   
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'

'

'

1 ( )
2

1 ( )
2

x z

y x y

z x y

k k

k k k

k k k

 

 

 

,                                         (2.2.2.1) 

 

 and similarly for (111) surface: 

      

'

'

'

2
6 6 6

1 ( )
2

3 3 3

x z
x

y x y

yx z
z

k kkyk

k k k

kk kk

  

  

  

.                                        (2.2.2.2) 

The coordinate rotations in k  space as revealed by Eq. (2.2.2.1) and Eq. (2.2.2.2) 

revealing are shown in Figure 2.2.2.1.   

 

2.2.3 Newton-Raphson Method 

It is a well-known numerical analysis of the Newton-Raphson method (or 

Newton-Fourier method) for finding successively better approximations to the zeros 

(or roots) of a real-value function. Newton’s method can converge remarkably quickly; 

especially if the iteration begins “sufficiently near” the desired root. First, see Figure 

2.2.3.1, we start with an initial value, for example v0, and look for the corresponding 

function of R. And then, the function is approximated by its sloped line, and one 

computes the V-intercept of this tangent line (which is easily done with elementary 

algebra). This V-intercept will typically be a better approximation to the function’s 

root than the original guess, and the method can be iterated. This iteration process can 

be expressed as 

1n nV V V                                                    (2.2.3.1) 
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=
( )

RV R
V





                                                     (2.2.3.2) 

Now, we write the 1D Poisson’s equation for N N matrix case as below: 
2

2

V
z





 


                                                      

(2.2.3.3)

 

2 2

1 1

2 2 2
2 2

2 2 2

1 1

2 2

2 1 0 0

1 2 1 0

1 2 10

0
1 20 0

N NN N

N N

z z
V
Vz z z

z z z
V

z z





 



   
                                            
 
   



 
 

 



            

(2.2.3.4) and let AV  , where A is second-order differential matrix,   is carrier 

charge density: 

 

2 2

2 2 2

2 2 2

2 2

2 1 0 0

1 2 1 0

1 2 10

0
1 20 0

N N

z z

z z z
A

z z z

z z 

   
 
 
   
 
 

   
 
 
 
   





 



                        (2.2.3.5)

 

1

2

1N N

V
V

V

V


 
 
 

  
 
 
  




                                                     (2.2.3.6)
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1

2

1N N









 
 
 

  
 
 
  




.                                                    (2.2.3.7) 

Finally, we apply Newton-Raphson method to solve Poisson and Schrődinger 

equations self-consistently. Therefore, we can hence express the Poisson equation as 

follows: 

 

AV R                                                    (2.2.3.8) 

and differentiate the Eq. (2.2.3.7) by V , we can obtain the following: 

RA NR
V V
 

  
 

                                              (2.2.3.9) 

and Eq. (2.2.3.2) can be rewritten as  

R RV R NR
V

  



                                               (2.2.3.10)                                                    

 

2.4 Effective Mass Approximation (EMA) Algorithm 

 

2.4.1 Introduction 

It has been well recognized that in the context of the effective mass 

approximation (EMA), the motion of carriers in a crystal can be visualized and 

described in a quasi-classical manner. Considering the case in which one electron 

moves in a periodic potential firstly, the solutions of wave-functions can be written in 

the Bloch form ( ) ( )iKx
k kx e u x   with the corresponding energy ( )E k . In order to 

describe localized electrons, one may build a wave packet by linearly combining the 

group of Bloch wave-functions    
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( )

( )

( , ) ( ) ( , )

           ( ) ( )

           ( ) ( ) .

k
k

E ki t

k
k

E ki kx t

k
k

x t A k x t

A k x e

A k u x e






  
 

 















                              (2.4.1.1) 

We expand the wave packet   at 0k  with a small range k  which is assumed to 

be sufficiently small than first Brillouin zone so that  

      
0

0 0
( )( ) ( ) ( )

k k

dE kE k E k k k
dk 

    ,                                     

      
0

0 0
( )( ) ( ) ( ) k

k k
k k

du xu x u x k k
dk 

    .                        (2.4.1.2) 

( )E k  is expanded to the first-order term and ( )ku x  is expanded to the zero-order 

term because the significant alteration appears in the exponential function. Thus, with 

the Taylor expansions in Eq. (2.4.1.2) substituted into Eq. (2.4.1.1), ( , )x t  can be 

approximated as 

      
'

0
0

( )
( )[ ]

0( , ) ( , ) ( )
E ki k k x t

k
k

x t x t A k e
 

     ,                       (2.4.1.3)      

0
0

( )

0 0( , ) ( )
E ki k x t

k kx t u x e
  
   . 

The group velocity at 0k  can be obtained from the motion of the slowly varying 

envelope function of the wave packet ( , )x t  in Eq. (2.4.1.3), so that  

      
'

0( ) constantE kx t 


,                                      (2.4.1.4) 

and differentially both side, we have  

      
'

0( )( ) 0E kd x t
dt

 


,   
0

0

1 ( )( )g k
k

d dE kv x t
dt dk

 


.               (2.4.1.5) 

Then, taking the time-varying wave vector ( )k t  into account, we have  
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      0
1( )k t eFt k 


,                                           (2.4.1.6) 

where F is an additional external field and k0 is the initial state at t=0. Furthermore, 

the acceleration rate is obtained by combining together with the group velocity gv  

and time-varying wave vector ( )k t    

      


2

2 2

force

( ) 1 ( ) 1 ( )gdv k d dE k d E k d ka
dt dt dk dk dt

  


 
,                     (2.4.1.7) 

with the effective mass  

      
12

*
2 2

1 ( )d E km
dk


 

  
 

.                                        (2.4.1.8) 

It is noticed that the assumption of ( )ga dv k dt  is only valid in the classical 

approximation. However, owing to the anisotropic and non-parabolic properties of the 

valence-band structure, the classical approximation fails and the ability to 

quantitatively deal with the hole effective masses as depicted in Eq. (2.4.1.8) is no 

longer available. Therefore, the reversely extracted hole effective masses will be 

introduced in the next section.    

2.4.2 Density-of-States Effective Mass and Quantization Effective Mass 

      With our six-band k‧p calculation for the hole subband structure in p-channel 

MOSFETs, the corresponding density-of-states (DOS) functions are determined in the 

Cartesian coordinate system by  

      
k-space k-space

2

( ) ( )1( ) ( )
(2 )

j j
j j

Area E dE Area E
DOS E U E E

dE
 

      (2.4.2.1) 

or in the polar coordinate system [3] by  

      
2

2 0

( , )

( , )1( ) ( )
(2 )

j

j
j j

K E

K E
DOS E U E E d

dE
dK









   ,                   (2.4.2.2) 

where the index j means the subband order up to the sixth lowest subband in this work 
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and ( )U E  means the unit step function of energy. Then, the total DOS function is 

given by   

      ( ) ( )total j
j

DOS E DOS E .                                  (2.4.2.3) 

In this sense, the energy dependent DOS effective mass of each subband, ( )j
DOSm E  , 

can be extracted reversely from the simulated DOSj(E):  

      2( ) 2 ( )j
DOS jm E DOS E  .                                 (2.4.2.4) 

The resulted DOS effective mass of each subband is seen in Figure 2.4.2.1 and it is 

shown that the constant-like effective mass does not exist in this case. However, the 

averaged DOS effective mass can be obtained if we choose the correct average 

method. Consequently, the averaged DOS effective mass j
DOSm  is dependent on the 

carrier concentration, and our method to average the j
DOSm  is as follows: 

      
( ) ( ) ( )

( ) ( )

j
DOS jj

DOS
j

m E f E DOS E dE
m

f E DOS E dE








.                        (2.4.2.5)      

In addition, the quantization effective mass, j
QNm , can also be analytically assessed in 

the triangular potential approximation [9] :  

      
1/ 3 2 / 32

(0) 3 3( )
2 2 4j sj

QN

E eF i
m


           

 ,                           (2.4.2.6) 

where (0)
jE  represents the energy minimum of subband j and i is the states of the 

wave function (the ground state, the first excited state, or etc.). In summary, the 

averaged DOS effective mass j
DOSm

 
and the quantization effective mass j

QNm  

both are the most important factors in our novel quantum simulation algorithm which 

will be discussed in Chapter 3. 
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Chapter 3  

Quantum Simulator NEP for the Two-dimensional 

Inversion-layers 
 

3.1 Schrődinger and Poisson Self-consistent NEP in n-MOSFETs 

 

In this section, we introduce the fully Schrődinger and Poisson self-consistent 

solver in n-channel MOSFETs [10]. The schematic band diagram and physical 

environmental setup are given in Figure 3.1.1. We divide the band diagram of silicon 

substrate along the out-of-plane direction into two regions: one is the surface quantum 

confinement region (60 nm) and the other is the bulk classical region (200 nm). In the 

former region, the carriers are confined in this shallow region and we can mesh 300 

intervals of width 0 0.2dz   nm to ensure simulation accuracy; in the later region, 

we adopt the conventional skill to deal with and it is divided into 50 intervals with 

width of 1 4dz   nm. It can significantly reduce the computational time but not 

losing the accuracy. Besides, the conduction band edge at the interface is set to be the 

zero of energy in n-MOSFETs. 

Figure 3.1.2 is the flow-chart illustrating the common self-consistent procedure. 

First of all, we guess the surface band bending Vs into the Poisson equation subject to 

the boundary conditions V(z=0)=Vs and V(z=bulk)=0. It would obtain the corresponding 

initial potential profile V(z), and we start with the 1D Schrődinger equation, as 

revealed in Eq. (2.2.1), along with V(z). As mentioned in Section 2.2, we would obtain 

the eigenvalues and the eigenfunction. Besides, we summarize the basic formulation 

and the iteration that we use for perform a self-consistent solution. In the surface 



13 

quantum confinement region, the three-dimensional carriers (both electrons and holes) 

density can be described by 

,

2

, 2 ,
,

( ) ( ) ( ) ( )
i j

i j D i j
i j E

n z DOS E f E dE z


     

, 2

,2
,

ln 1+e ( )
f i jE Ei

DOS kT
i B i j

i j

mg k T z


 
    

 
 

                     (3.1.1)  

,
2

, 2 ,
,

( ) ( ) (1 ( )) ( )
v jE

v j D v j
v j

p z DOS E f E dE z


      

,( ) 2

,2
,

ln 1+e ( )
v j fE Ev

DOS kT
v B v j

v j

mg k T z


 
    

 
 

                  (3.1.2)  

where i and v are the electron valley index and the hole type index, respectively. j is 

the subband index, and gi and gv are the degeneracy of the ith valley and vth type, 

respectively; i
DOSm  and v

DOSm  are the density of states electron and hole effective 

mass, respectively, and Ei,j and Ev,j are the electron and hole energy levels, . The 

corresponding wave-functions ,i j  and ,v j  are all normalized. In the bulk 

classical region, the carrier density is given by: 

0
( )( ) exp( )
B

V zn z n
k T

                                          (3.1.3) 

 0
( )( ) exp( )

B

V zp z p
k T


  ,                                      (3.1.4)  

where p0 and n0 are the carrier concentration under the thermal equilibrium. 

Substituting the above concentration in the 1D Poisson equation, we have 

2
0 [ ( ) ( ) ( )]( ) d

si

q N z n z p zd V z
dz 

    
  ,                         (3.1.5)  

where ( )dN z is the ionized donor density. Finally, we can obtain a new potential V(z) 

to satisfy Eq. (3.1.5) and continuously iterate the procedure until the potential profile 
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V(z) is equal for successive iterations, within a tolerable error range. The 

two-dimensional electron density can be written as 

,

, 2 ln 1+e
f i jE Ei

DOS kT
i j i B

mn g k T


 
   

 
                                (3.1.6) 

and the total inversion layer charge density is thus given by 

,
,

s i j
i j

N n .                                               (3.1.7) 

The average inversion layer thickness Zav is described as 

2,
,

, 0

( )
bulk

i j
av i j

i j s

n
Z z z dz

N
 

    
 

  .                               (3.1.8) 

There are two kinds of the gate materials to be chosen in NEP: one is the high doping 

poly-silicon; the other is the metal. Here, we demonstrate the potential calculation for 

the high doping poly-silicon gate situation:    

 

2ln( )ploy d
fb B

i

N N
V k T

n
  ,                                      (3.1.9) 

where Vfb is the flat band voltage, Npoly and Nd are the poly gate concentration and the 

substrate doping concentration, ni is the intrinsic concentration and kB is the 

Boltzmann’s constant. The poly gate voltage and oxide voltage are the following: 

2

2
Si s

poly
poly

FV
eN


  ,                                           (3.1.10) 

ox Si s
ox

ox

t FV 


 ,                                              (3.1.11) 

where oxt is the oxide thickness, si  and ox  are the dielectric constant of the 

silicon and oxide, respectively, and the surface electric field is given by 

( 1) ( 2)z z
s

V V
F

z
 




. The total gate voltage can be expressed as  
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g s ox poly fbV V V V V    ,                                     

(3.1.12) 

where sV  indicates the surface band bending determined by the potential profile in 

the silicon substrate. Besides, we also examine the metal gate effect with the 

workfunction, (Фm = 4.05 eV), and the electron affinity, (  = 4.05  eV), in our work. 

the Eq. (3.1.9) and (3.1.12) can be rewriten as: 

ln( )V
fb m g

d

NV E kT
N

                                  (3.1.13) 

g ox s fbV V V V   .                                        (3.1.14) 

where Eg is the energy band gap and Nv is the effective density of states in valence 

band. Figure 3.1.3. shows the energy band diagram for the metal/SiO2/p-Si system. 

 

3.2 Triangular Potential Well Approximation NEP in p-MOSFETs 

 

Because of demanded computational time to calculate the hole subband 

structures with the six-band k‧p method, the researchers usually use the triangular 

potential well approximation to solve the Schrődinger equation [3] instead of the fully 

Schrődinger and Poisson self-consistent method mentioned in the n-MOSFET NEP. 

   Firstly, we employ Nz＝200 points along the z axis in the range of the potential 

well [0, Zmax] with max
0

1.2

s

Z
q F

 , energy points in the interval [E0, E0+0.2 eV]. Both 

Cartesian coordinate and polar coordinate are established in our simulator but the 

former one is adopted through the whole thesis. In order to keep the completeness of 

the work, we show the detailed polar and Cartesian coordinate systems for the 

comparison in Figure 3.2.1. Secondly, we start with 1D Schrődinger equation based 

on the six-band k p  Hamiltonian along with the potential profile V(z) which can be 
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obtained from the surface field Fs as: 

( ) sV z F z                                                  (3.2.1) 

and then we would get the hole subband structures E(kx,ky) and corresponding wave 

functions according to the procedure of Section 2.2.1. The sixth lowest subbands are 

considered and for the convenience, we take j as the subband index in this section.     

Thirdly, we determine the Fermi level location if the surface field outputs 

match with the input ones. The process is shown as below:   
1

1

0.2 1( )                                               (3.2.2)
1 exp( )

E

j j
jE

B

p DOS E dEE Ef
k T



 



  

6

  .                                                                                           (3.2.3)inv j
j

P p                                                

The average inversion layer thickness zav and band bending by the inversion layer are 

defined as 

max6 2

0

( )
Z

i
av j

j inv

pz z z dz
P
 

    
  

                                  (3.2.4) 

   .                                                                                      (3.2.5)inv av
inv

Si

e P zV


 
  

Therefore, the surface band bending can be extracted by 

( )s g c f Bulk fV E E E E                                       (3.2.6)  

where Eg is the band gap of the semiconductor. The band bending by the depletion 

layer, Vdep, is described by 

dep s inv BV V V k T   .                                         (3.2.7)  

The sheet charge density of depletion layer is written as 

2 Si dep d
dep

V N
p

e


 .                                        (3.2.8) 

Finally, according to above results, the surface field is given by 
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 output inv dep

s
si

e P P
F



 
 .                                       (3.2.9) 

The best solution of Fermi level location is found if the surface field is equal to the 

input one. We also represent the above process with the flow chart as shown in Figure 

3.2.2. 

 

3.3 Efficiently Improved NEP in p-MOSFETs 

 

Here, the novel method rather than using the triangular potential well 

approximation is introduced to directly reduce the heavy computational burden from 

the full Schrődinger and Poisson self-consistent iteration in p-channel MOSFETs. The 

inspiration of this method is from the EMA algorithm in Section 2.4. The extracted 

DOS and quantization effective masses can be applied to enhance the converging 

speed. The first-order modification can provide the enough accuracy within the 1% 

error of the surface field and 10-6 V maximum error of the potential profile. The 

detailed procedure is discussed as following.   

Firstly, in terms of the triangular potential approximation in the previous 

section, we solve the Schrődinger equation with six-band k p  Hamiltonian and 

would obtain corresponding zero-order DOS mass 0
DOSm , zero-order quantization 

mass 0
QMm , and zero-order surface band bending 0

sV . Secondly, we input these 

zero-order terms as the parameters of the n-MOS-like NEP appearing in Section 3.1, 

of course, the other parameters are all treated properly to satisfy the p-MOSFET 

condition. And then, we can get the zero-order surface potential profile 0( )sV z  as the 

potential well shape (it can be seen as the more realistic potential profile than the 

triangular one) to solve the Schrődinger equation with six-band k p  Hamiltonian 
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again. Basically, the whole procedure follows the Section 3.2. Consequently, we 

would bring the first-order properties, such as first-order subband level (0) 1stE , 

first-order wave-function 1st , the determined first-order Fermi-level 1st
fE , 

first-order inversion layer density 1st
invp , first-order sheet density of depletion 1st

depp , 

and first-order surface band bending 1st
sV . Finally, we use the above first-order 

physical properties along with Poisson equation to yield the first-order surface 

potential profile 1 ( )st
sV z  and the second-order surface band bending 2nd

sV  in order 

to check whether surface potential profile converges or not. For the sake of providing 

a visual picture of above procedures, consider the flow-chart representation in Figure 

3.3.1. 

 

3.4 Low Temperature Effect: Impurity Ionization Rate    

 

It is well known that for a semiconductor doped with donor or acceptor 

impurities, impurity energy levels are introduced [11]. When impurity atoms are 

introduced, the Fermi level must adjust itself to maintain charge neutrality. Consider 

the concentration of the donor impurities, Nd , are added to the crystal. In order to 

preserve electrical neutrality, the total negative charges (electrons and ionized 

acceptors) must be equal to the total positive charges (holes and ionized donors) as 

below 

dn N p                                                        (3.4.1) 

where n  is the electron density in the conduction band, p  is the hole density in the 

valence band, and ( )dN z  is the ionized donors distribution as given by  
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( )

1( )

1 2
D f

B

d d E z E
k T

N z N

e


 

 
 

 



 .                                      (3.4.2) 

  

Rewriting the neutrality condition Eq. (3.4.1), we can obtain 

, ,

, ,1exp( ) exp( )

1 2
D Bulk f Bulk
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For a set of given correlated parameter with Eq. (3.4.3), the Fermi level, fE , can be 

uniquely determined. From Eq. (3.4.3) we also know that the temperature condition 

alert the Fermi-level location strongly, so that the ionization rate must be taken into 

account at low temperature condition. Figure (3.4.1) shows that impurity ionization 

rate and band diagram at low temperature about 2 K. Therefore, at such low 

temperature, we have to face meaningless value and inaccurate approximation from 

simulator. Intrinsic carrier density, ni ≈ 0 and the ionization rate is almost 0% at 2 K. 

These will lead to the possibility of divergent calculations. So the net charges, at low 

temperature, via Eq. (3.4.1) have to use Fermi-Dirac integral 1
2

E  rather than 

Boltzmann statistics case as below: 

1/ 2 1/ 2

( ) ( )2 2( ) ( ) +C f f V
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      (3.4.4) 

and 

0 0

( ) ( )
f C V f

B B

E E E E
k T k T

net D C VQ z N z N e N e
 

 
                                 (3.4.5) 

where Eq. (3.4.4) focus to non-neutral region and Eq. (3.4.5) is used in electrical 

neutral region. Above formula is to avoid the ni to appear in the simulation process. 
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Chapter 4  

Hole Mobility Model and Theory 
 

Introduction 

In this section, we calculate the hole mobility under the relaxation time 

approximation which uses the subband energy and the wavefunction provided by our 

new fast method. And we discuss the momentum relation rates caused by scattering 

with phonons and surface roughness. In this work, we will ignore the Coulomb 

scattering with ionized impurities in substrate. All the scattering parameters used in 

this work are listed on Table II. 

 

4.1 Phonon Scattering 

 

 It is well known that at room temperature the vibrating atoms create pressure 

waves in crystal, thus bringing two types of phonon scattering that are important to 

describe Si mobility. Phonon scattering can be described in terms of the acoustic 

phonon scattering and optical phonon scattering, based on the phase of the vibration 

of the two different atoms in one primitive cell. Acoustic phonon energy is smaller 

than carrier energy, while optical phonon energy is about 61.2 meV for silicon. Using 

the phonon mobility formulation underlying the isotropic momentum approximation 

is derived from [3]. More precisely, for the acoustic phonons, the isotropic relaxation 

time in the subband μ to ν is gives by: 

2

( ) 2
1 2 [ ( )]
( )

B ac
v v

vac l

k T D F DOS E K
K u  


 

   
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where  Dac  denotes the deformation potential due to acoustic phonon,   is the 

crystal density, lu  is the longitudinal sound velocity,  vF  is the form factor 

determined by the wavefunctions of the ߤ-th subband and the ߥ-th subbands,   is 

the Planck constant divided by 2π, and kB is the Boltzmann constant. For the optical 

phonons, the scattering rate can be described as 
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     (4.1.3) 

where  “+”  means phonon emission and  “－”  means phonon absorption. Dop 

and EK are the deformation potential and the optical phonon energy, respectively. nop 

is the occupation number given by  

1  .                                                                                            (4.1.4)
[exp( ) 1]

op
K

B

n E
k T




                                              

4.2 Surface Roughness Scattering 

 

At high effective field, the roughness scattering between Si and SiO2 plays a very 

important role and this reduces the mobility in the inversion layer of a MOSFET 

device. Analysis of such mobility component usually involves two kinds of 

assumptions, one is the Gaussian autocovariance function and the other is exponential 

autovariance function. In this work, we prefer use of Gaussian autocovariance 
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function because the exponential model to calculate the scattering rate of inversion 

layer holes due to surface roughness needs larger values of the rms height Δ required 

to fit experimental mobility data than the Gaussian model for the autocovariance. 

Besides, we have to make an important assumption that the single subband 

approximation is quite accurate. Since surface roughness is anisotropic scattering, we 

only consider the intrasubband scattering. Under Yamakawa’s surface roughness 

model [12], the scattering rate for a Gaussian function is written as 
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2 2=2 (1 cos ) q k                                                  (4.2.2)
 

,2
2

2 (E-E )
 =  DOS j jm

k



                                             (4.2.3) 

where  mDOS,j  is the density of states effective mass in the j-th subband, Ej is the 

hole subband energy and  Eeff  is the hole effective field by 

1( )
3  .                                                                                       (4.2.4)

dep inv

eff
si

e P P
E



 
   

                                          

4.3 Derivation of Two-Dimensional Mobility 

 

 The mobility calculation method in this work originates from the linearization of 

the Boltzmann transport equation where the total scattering rate can be expressed in 

terms of the phonon scattering and surface roughness scattering ones [4], [13]: 

1 1 1
( ) ( ) ( )total phonon SRE E E  

  .                                      (4.3.1) 

It is important that we avoid Matthiessen’s rule to calculate inaccurate total mobility 
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which may cause scattering parameter shift. The reasons are as follow: 

1 1 1 1 1

total phonon SR phonon SR    

 
         

  
                       (4.3.2) 

Therefore, we have to sum up the total scattering rate and then to calculate mobility. It 

would lead to the accurate mobility. Besides, the inversion layer carriers in the MOS 

system are quantized along the z (out-of-plane) direction, and we have to consider the 

quasi-2D case when calculating the hole mobility of the MOS system. Now we 

derivate the two-dimensional mobility excluding the spin degeneracy (g=1). Starting 

with the Boltzmann equation and n carrier concentration, we can write 
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where  f0  is the Fermi-Dirac distribution function under equilibrium and  f  is the 

first-order Taylor series expansion with respect to energy E, i.e.,  f0  is the 

Fermi-Dirac distribution function under applied electric field  ε  . And then we use 

the current density per unit length J (J=I/W): 
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where 
3

0 38
d ke f
 iv  term is zero since no current under equilibrium and i and j are the 

carrier transport direction. Using the concept of conductivity   , the current density 

can be expressed as follows: 

i ji jJ ε  
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Now we only focus on 2D case with the spin degeneracy factor of unity along xx 

direction can be rewritten as: 
2
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where  ns  is the total hole density per unit area and ( )v E  is the energy dependent 

total scattering rate for subband v. In this work, the detailed expressions above are 

derived in the polar coordinate, and we have used the definition in Section 2.4 (Eq. 

(2.4.1.5) and Eq. (2.4.2.2)) as a result, Eq. (4.3.12) can be rewritten as below: 
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That is the first formalism for the hole mobility calculation, derived in the EMA 

picture and expressed as functions of a handful of accessible parameters: the inversion 

layer carrier density, the subband level and DOS effective masses, the energy 

dependent total scattering rate, and the Fermi-Dirac distribution function. In next 

chapters, we use above formula to calculate the hole mobility. 
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Chapter 5  

Simulation Results and Discussion 
 

In this section, the simulation results in n-MOSFETs, which are mentioned in 

section 3.1, are compared with these of Schred’s [1] in Figure 5.1 to Figure 5.4. The 

model parameters are shown as follows: temperature is 300K, oxide thickness is 

2.8nm, n+ ploy gate doping concentration is 2.2 1020 cm-3 and p-substrate doping 

concentration is 2  1016 cm-3. We also examine the metal gate effect with a 

work-function 4.05 eV as shown in Figure 5.5 to Figure 5.8. Based on these results, 

our model come to be reasonable for calculating properties in n-MOSFETs. In the 

future work, we will use this simulator to calculate strain effect on the electron 

mobility. Besides, in p-MOSFETs, we also present calculations using the 

approximation of triangular potential well for the (001), (110) and (111) surface and 

strain effect along with comparing with Fischetti’s [3] as are shown in Figure 5.9 to 

Figure 5.13. The model parameters are shown as follows: Temperature is 300K and 

substrate doping is 1 1017 cm-3. Figures for 5.14 to 5.16 show the simulation results 

of subband level and density of states comparing with Li’s [14] and Michielis’s [15]. 

Furthermore, it is clarified that subband level is defined at subband minimum in this 

work rather than at gamma point. Figure 5.17 and Figure 5.18 can summarize the 

subband energy and calculation time compared with three techniques (triangular 

potential approximation, conventional self-consistent method, and fast self-consistent 

method in this work). Because of strong confinement with the triangular potential 

well, the subbands are higher than others. According to above simulated results, they 

point out that subband structure through our new model is more efficienct and correct. 

Based on the simulation results, the equivalent effective mass, i.e., quantization 
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effective mass (mz) and density of states effective mass (mDOS) for different 

temperatures and strains can all be extracted as shown in Figure 5.19 to Figure 5.20. 

They show that quantization effective mass is independent on temperature while 

density of states effective mass exhibits a strong dependent. It is also verified in 

Figure 5.21 that the simulation results of density of states effective mass reasonably 

match the cyclotron effective mass (mc) by Shubnikov-de Haas (SdH) oscillation 

expect [5] under extremely low temperature, 2K, in Figure 5.21. 

 According to the assumptions, when calculating the hole subband level and 

effective mass of p-MOSFETs, we further present a simplified physics based model to 

describe the hole mobility, which mainly consists of the phonon-limited mobility, ph , 

[13] and the surface roughness limited mobility, SR , [12]. Figure 22 shows the 

scattering rate of phonon and surface roughness at different temperatures. This study 

also compares the simulation results by EMA with the experimental data [6] in three 

different temperatures of 77 K, 153 K and 300 K in Figure 23. We adjust the model 

parameters by the best fitting those curves. All the parameters are shown in Table 2. 

At extremely low temperature and high effective electric field region, the surface 

roughness scattering would dominate the scattering mechanisms, so we can determine 

the surface roughness parameters. However, at low electric field, the phonon 

scattering mechanisms become a dominative feature. It is noticeable that there is a 

considerable deviation between simulation results and experimental data at 153 K. A 

reasonable physical explanation of this discrepancy is that we have eliminated 

Coulomb scattering mechanisms in our model and the experimental data is not 

universal curve at 153 K. 
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Chapter 6 

Conclusion 

 
 In summary, we have presented the self-consistent for solving Schrődinger and 

Poisson equations in n-channel MOSFETs which were applied us to simulate more 

realistic physical environment in nano devices. The simulation results show excellent 

agreements with Schred’s [1]. However, we also have introduced a new technique 

based on six-band k p  Hamiltonian to avoid spending too much calculation time 

through the self-consistent method and to simulate the operation conditions under 

very low temperature. In order to ensure the validity of our work, we as well as have 

built a simplified effective model for the hole mobility in the inversion layer of 

p-MOSFETs. In fact, the parameters are extracted by best curve-fitting to the 

experimental data as cited in Takagi’s paper [6]. It is noticeable that the Coulomb 

scattering was not included in our model. In addition, we extract the density of states 

effective mass and compare it well with cyclotron effective mass at 2 K [5] 

 For the further research in the future, the important issues could be listed as 

follows: The strain-induced enhancement of the mobility in p-channel MOSFETs 

[16]-[20], gate direct tunneling current [21], [22] and mobility enhancement in 

one-dimensional silicon nanowires, specially, the physical fluctuations (like surface 

roughness) may have a strong impact on the transport of silicon nanowires. 
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 To compensate inaccuracy at the interface between oxide layer 
and substrate  caused by triangular potential well 
approximation.

 Use self-consistent method to simulate more realistic 
environment at the interface.
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Solving Schrödinger 
Equation with Six-

band k･p

1. Subband Levels  E0
2. Wave-functions  ζ(z)
3. Fermi Level  Ef
4. Inversion Layer Density  
pinv

5. Depletion Layer Density  
pdep

Solving Poisson 
Equation

1. Potential Profile V(z)
2. Electrical Field Profile  
F(z)

EV

EC

Calculation range

Give the Surface bending Vo
Then, initial V(z)= Vo/zrange * z

The heaviest burden overall 
calculations  (3 hrs for 1 cycle)

Recent Previous

6

Converging Condition:

max( ( ) ( ) )

            10

V z V z

eV





• The Schrödinger and Poisson self-consistent procedure will lead   
to the intolerable computation time in pMOS. 

Motivation II
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By following the theoretical work by Fischetti, et al. [3]
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Effective Mass Approximation

46

Considering the case in which one electron moves in a periodic potential:
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Density-of-states (DOS) function:[3]
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Schrödinger and Poisson Self-consistent NEP 
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START

Setting the  parameters of  Poisson equation such 
likes initial potential and boundary conditions

Use initial potential to solve 
Schrödinger equation to 
get new wave functions.

Use new wave function and subband
to get new concentration.

Use concentration to get 
new potential profile 
by Poisson equation.

IF |Vn+1-Vn|<10-12 eV

Get correct wave function, subband
energy and potential profile.

END

YES
NO
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Quantum Confinement Region:
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Poisson Equation:
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The two-dimensional electron density:
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The surface and depletion band bending:
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Efficiently Boosted NEP 
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Solving Schrödinger Equation with 
Six-band k･p

EV

EC

Calculation range

Guess a Surface Field  Fs 
Then, initial V(z)= Fs * z

1. Zeroth-order DOS Mass  m0
DOS

2. Zeroth-order QN Mass  m0
QN

3. Zeroth-order  Surface Bending  
V0s

Solving Schrödinger-Poisson 
Iterations with above Effective 
Masses and Surface Bending

1. Zeroth-order Potential Profile  
V0(z)

Solving Schrödinger Equation 
with Six-band k･p

1. Subband Levels  E01st

2. Wave-functions  ζ(z)1st

3. Fermi Level  Ef1st

4. Inversion Layer Density  pinv
1st

5. Depletion Layer Density  
pdep

1st

8. Surface Bending  V1sts

1. Potential Profile  V1st(z)

|Vn+1-Vn|<10-6 eV

Surface bending, Vs, is determined by the 
satisfaction with Fermi-level-related

Fs = q(pinv+pdep)/εSi

Accelerator

Solving Poisson 
Equation
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Solving Schrödinger Equation 
with Six-band k･p

1. Subband Levels  E01st

2. Wave-functions  ζ(z)1st

3. Fermi Level  Ef1st

4. Inversion Layer Density  pinv
1st

5. Depletion Layer Density  
pdep

1st

8. Surface Bending  V1sts

1. Potential Profile  V1st(z)

|Vn+1-Vn|<10-6 eV

Solving Poisson 
Equation

End

NO

Efficiently Boosted NEP 
in p-MOSFETs

Nano Electronics Physics Lab @ NCTU

For 1 cycle condition:

Fs  (MV/cm)
0.1 1.5

Calculation time for 1 cycle:

Time Fs

T
Stress
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Electrical neutrality:
                                     (1)

The ionized donors distribution:
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1 2
Therefore, Eq. (1) can be rewirtten as:
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,exp( )

2
we have to face meaningless value and inaccurate approximation from simulator.
So  we use Fermi-Dirac integral rather than Boltzmann statistics case as be
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E E
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k T
e

 
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Low Temperature Effect: 
Impurity Ionization Rate
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In non-neutral region:

1/ 2 1/ 2

( ) ( )2 2( ) ( ) +C f f V
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E z E E E z
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     

     
   

Electrical neutral region:

0 0
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f C V f

B B

E E E E
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net D C VQ z N z N e N e
 

 
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0 0

0

 is the form factor determined by the wavefunctions of the -th subband and the -th subbands

( ) ( )

 is the occupation number
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Phonon Scattering Rate
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For the acoustic phonon, the isotropic relaxation time in the subband μ to ν [3]:
2
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For the optical phonon, the scattering rate [3]:
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Assumption that the single subband approximation [12]:
2 2
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Derivation of Two-Dimensional Mobility from Fischetti’s [3]:

It is important that we avoid using Matthiessen’s rule to calculate inaccurate total mobility 
which may cause scattering parameter shift.

Nano Electronics Physics Lab @ NCTU



Outline

66

 Introduction
 Numerical Technique and Physical Theory
 Quantum Simulator NEP for the Two-dimensional Inversion-layers
 Hole Mobility
 Simulation Results and Discussion
 n-MOSFETs
 p-MOSFETs with Triangular Potential Well Approximation
 Efficiently Boosted Model in p-MOSFETs
 Density-of-States and Quantization Effective Mass
 Mobility

 Conclusion

Nano Electronics Physics Lab @ NCTU



Outline

67

 Introduction
 Numerical Technique and Physical Theory
 Quantum Simulator NEP for the Two-dimensional Inversion-layers
 Hole Mobility
 Simulation Results and Discussion
 n-MOSFETs
 p-MOSFETs with Triangular Potential Well Approximation
 Efficiently Boosted Model in p-MOSFETs
 Density-of-States and Quantization Effective Mass
 Mobility

 Conclusion

Nano Electronics Physics Lab @ NCTU



n-MOSFETs comparison with Schred[1]

68

0 1 2 3 4 5 6
-0.5

0.0

0.5

1.0

Temp.=300 K
T

ox
= 2.8 nm

Npoly= 2.2x1020cm-3

Nwell= 2x1016cm-3

 
Su

bb
an

d 
En

er
gy

(e
V)

Gate Voltage (V)

(001) nMOS
Open symbols:  This Work
Line & Dashed:  Schred

-0.5

0.0

0.5

1.0

 

0 1 2 3 4 5 6 7 8

0

2x1013

4x1013

6x1013

Open symbols : This Work
Line : Schred

 

 

In
ve

rs
io

n 
D

en
si

ty
 (c

m
-2
)

Gate Voltage (V)

(100) nMOS

Temp. = 300K
Tox= 2.8nm

Npoly = 2.2x1020 cm-3

Nwell = 2x1016 cm-3

0 2 4 6 8 10
0

1

2

3

4

5

6

Temp. = 300 K
T

ox
 = 2.8nm

Npoly = 2.2x1020 cm-3

NWell = 2x1016 cm-3
 

 

A
ve

ra
ge

 in
ve

rs
io

n 
la

ye
r t

hi
ck

ne
ss

 (n
m

)

Gate Voltage (V)

Open Symbols : This Work
Line : Schred

(001) nMOS

0 2 4 6 8 10 12 14
0.5

1.0

1.5

2.0

2.5

Temp. = 300K
Tox = 2.8nm

Npoly = 2.2x1020 cm-3

N
well

 = 2x1016 cm-3

 

 

Su
rf

ac
e 

Po
te

nt
ia

l (
V)

Gate Voltage (V)

(001) nMOS
Open Symbols : This Work
Line : Schred

Nano Electronics Physics Lab @ NCTU



0 2 4 6 8 10
0

1

2

3

4

5

6

A
ve

ra
ge

 in
ve

rs
io

n 
la

ye
r t

hi
ck

ne
ss

 (n
m

)

Gate Voltage (V)

(001) nMOS Temp.= 300K
N

well
= 2x1016cm-3

Tox= 2.8nm
Metal WorkFunction = 4.05eV

Open symbols : This Work
Line : Shred

Metal/SiO2/p-Si comparison with Schred[1]

69

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 
Su

bb
an

d 
En

er
gy

(e
V)

Gate Voltage (V)

(001) nMOS

Line & Dash  : Schred
Open symbols : This Work

Metal WorkFunction = 4.05eV
Temp. = 300 K
Nwell = 2x1016 cm-3

Tox= 2.8 nm

-2 0 2 4 6 8 10 12 14

0

2x1013

4x1013

6x1013

8x1013

1x1014

In
ve

rs
io

n 
D

en
si

ty
 (c

m
-2
)

Gate Voltage (V)

(001) nMOS

Temp. = 300 K
Nwell= 2x1016cm-3

Tox= 2.8nm
Metal WorkFunction = 4.05eV

Open Symbols:This Work
Line: Shred

0 2 4 6 8 10
0.5

1.0

1.5

2.0

2.5

Su
rf

ac
e 

Po
te

nt
ia

l (
V)

Gate Voltage (V)

(001) nMOS

Temp. = 300K
Nwell = 2x1016 cm-3

Tox = 2.8nm
Metal WorkFunction = 4.05eV

Open Symbols : This Work
Line : Shred

Nano Electronics Physics Lab @ NCTU



Outline

70

 Introduction
 Numerical Technique and Physical Theory
 Quantum Simulator NEP for the Two-dimensional Inversion-layers
 Hole Mobility
 Simulation Results and Discussion
 n-MOSFETs
 p-MOSFETs with Triangular Potential Well Approximation
 Efficiently Boosted Model in p-MOSFETs
 Density-of-States and Quantization Effective Mass
 Mobility

 Conclusion

Nano Electronics Physics Lab @ NCTU



-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0
Fs=1MV/cm(001) pMOS

E-E0=25meV

K
y (1

07  c
m

-1
)

Kx (107 cm-1)

LH subband
 Fischett's
 This Work

(001) p-MOSFETs 

71

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

Line & Dashed : Fischetti's
Open symbols : This work

Ef

n=1

n=2

 
S

ub
ba

nd
 E

ne
rg

y 
(e

V)

Es (MV/cm)

(001) pMOS

N
well

=1x1017 cm-3

Temp.= 300 K
Energy shift : 15meV

n=3

0.1

0.2

0.3

0.4

0.5

 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

E-E0=25meV

 

 

K
y (1

07  c
m

-1
)

Kx (107 cm-1)

(001) pMOS

HH subband
 Fischetti's
 This Work

Fs=1MV/cm

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

Fs=1MV/cm
(001) pMOS

K
y (1

07  c
m

-1
)

Kx (107 cm-1)

SO subband
 Fischetti's
 This Work E-E0=25meV

Nano Electronics Physics Lab @ NCTU



-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

E-E0=25meV

(011) pMOS

Fs=1MV/cm

K
y (1

07  c
m

-1
)

Kx (107 cm-1)

LH subband
 Fischett's 
 This Work

(011) p-MOSFETs

72

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5
 

Ef

n=1

n=2

n=3Line & Dashed : Fischetti's
Open symbols : This work

Su
bb

an
d 

En
er

gy
 (e

V)

Fs (MV/cm)

(110) pMOS

Nwell=1x1017 cm-3

Temp. = 300K
Energy shift : 0 meV

0.0

0.1

0.2

0.3

0.4

0.5

 

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0
Fs=1MV/cm

K
y (1

07  c
m

-1
)

Kx (107 cm-1)

HH subband
 Fischett's
 This Work

E-E0=25meV

(011) pMOS

Nano Electronics Physics Lab @ NCTU



-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

Fs=1MV/cm

E-E
0
=25meV

(111) pMOS

K
y (1

07  c
m

-1
)

Kx (107 cm-1)

LH subband
 Fischett's
 This Work

(111) p-MOSFETs

73

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

Line & Dashed : Fischetti's
Open symbols : This work

 

Nwell=1x1017 cm-3

Temp. = 300K
Energy shift : 10 meVE

f

n=1

n=2

n=3

Su
bb

an
d 

En
er

gy
 (e

V
)

Es (MV/cm)

(111) pMOS

0.1

0.2

0.3

0.4

0.5

 

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

Fs=1MV/cm

E-E0=25meV

K
y (1

07  c
m

-1
)

Kx (107 cm-1)

HH subband
 Fischett's
 This Work

(111) pMOS

Nano Electronics Physics Lab @ NCTU



(001) p-MOSFETs

74

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5
 

Su
bb

an
d 

En
er

gy
 (e

V)

Fs (MV/cm)

0.1

0.2

0.3

0.4

0.5

Ef

n=1

n=2

 

(001) pMOS

Line & Dashed : Fischetti's
Open symbol : Tish Work 
Energy shift : 0.02 eV
1% in-plane tensile stress

n=3

-2 -1 0 1 2
-2

-1

0

1

2

LH

HH

 

K
y (1

07  c
m

- 1)
Kx (107 cm-1)

(001) Wafer

SO

-2

-1

0

1

2

 

Line : Fischetti's
Open Symbol: This Work
1% tensile in-plane stress

Nano Electronics Physics Lab @ NCTU

1% in-plane tensile stress



(001) p-MOSFETs

75
Nano Electronics Physics Lab @ NCTU

1% in-plane compressive stress

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5
 

Su
bb

an
d 

En
er

gy
 (e

V)

Fs (MV/cm)

(001) pMOS

Line & Dashed: Fischetti's
Open symbols: This Work
Energy shift: 0.025 eV
1% compressive in-plane stress
Nwell=1x1017 cm-3

0.1

0.2

0.3

0.4

0.5

Ef

n=1

n=3

 

n=2

-2 -1 0 1 2
-2

-1

0

1

2

LH
SO

 

K
y (1

07  c
m

-1
)

kx (107 cm-1)

(100) pMOS

Line : Fischetti's
Open symbols: This Work
1% compressive in-plane stress E-E0=25meV

Fs=1MV/cm

HH

-2

-1

0

1

2

 



Outline

76

 Introduction
 Numerical Technique and Physical Theory
 Quantum Simulator NEP for the Two-dimensional Inversion-layers
 Hole Mobility
 Simulation Results and Discussion
 n-MOSFETs
 p-MOSFETs with Triangular Potential Well Approximation
 Efficiently Boosted Model in p-MOSFETs
 Density-of-States and Quantization Effective Mass
 Mobility

 Conclusion

Nano Electronics Physics Lab @ NCTU



0 50 100 150 200
0.0

0.5

1.0

1.5

2.0 (011) pM OS
 T h is W ork
 M ich ie lis 's S im . (k*p )

T em p. =  300 k

D
O

S 
(1

015
 e

V-1
 c

m
-2
)

E -E0 (m eV)

P inv=6.2x10 12 cm -2

N +
D
=1.5x10 18cm -3

40 50 60 70
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

k Elements (-1.6e7 ~ 1.6e7 cm-1)

En
er

gy
 (e

V)
 

 

1st
2nd
3rd
4th
5th
6th

p-MOSFETs for (001) and (011)

77

0.0 2 .0x10 12 4.0x10 12 6.0x10 12 8.0x1 0 12 1.0x10 13
0.1

0.2

0.3

0.4

0.5

n=2

n=3

 

 
Su

bb
an

d 
En

er
gy

 (e
V)

P inv (cm -2)

n=1

(001) pMOS

  : T h is W ork
  : M ich ie lis 's S im .

N +
D= 1.5x10 18 cm -3

T em p.= 300k

Nano Electronics Physics Lab @ NCTU





0.00 0.05 0.10
0

2

4

6

8

10

12

1st subband
 

 

D
.O

.S
 (1

015
 m

eV
-1
m

-2
)

Energy (eV)

 This Work
 Li's  Sim.

Temp.=300K
N

well
=1x1017 cm-3

(001) pMOS

p-MOSFETs for (001)

78

0 1x106 2x106 3x106
0.0

0.1

0.2

0.3

0.4

0.5

0.6
(001) pMOS

En
er

gy
 S

ub
ba

nd
 (e

V)

Fs (V/cm)

Line               : Li's Sim. (k=0)
Open symbols :This Work

Nwell = 1x1017 cm-3

Temp. = 300 K

0 1x106 2x106 3x106
1.6

1.4

1.2

1.0

0.8

0.6

0.4

N
well

 = 1x1017 cm-3

Temp. = 300 k

Line               : Li's Sim. (k=0)
Open symbols :This Work

(001) pMOS

Su
rf

ac
e 

Po
te

nt
ia

l (
V)

Fs (V/cm)Nano Electronics Physics Lab @ NCTU



Subband and mDOS Comparison

79

0 1x106 2x106 3x106
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Nwell = 1x1017 cm-3

Temp. = 300 k

Open symbol :This Work
Line               : Li's Sim. (k=0)
Short Dot       : Fischettt's Sim. (k=0)

(001) pMOS

En
er

gy
 S

ub
ba

nd
 (e

V)

Fs (V/cm)

Nano Electronics Physics Lab @ NCTU

0.0 0.5 1.0 1.5 2.0 2.5
1.00

1.25

1.50

1.75

 

 

m
D

O
S (m

0)

Fs (MV/cm)

(001) pMOS

 This Work
 Triangular Potential Well Approximation

Temp. = 300 K
Nd=1x1017 cm-3

1st subband



CPU Calculation Time

80
Nano Electronics Physics Lab @ NCTU

0

50

100

150

Self-consistent

 

 

 

C
al

cu
la

tio
n 

Ti
m

e 
(H

ou
rs

)

This Work

Nd = 1x1017 cm-3

Temp. = 300 K
Vs = 1.2 VSoftware: Matlab

CPU: Intel(R) core(TM) i7 2.8 GHz
RAM: 4 GHz
OS: Windows 7

Equipment:

0 50 100 150 200 250
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

Su
rf

av
e 

Po
te

nt
ia

l P
ro

fil
e 

(V
)

zscale (nm)

 Self-consistent
 NEPThis Work

(001) pMOS

Vs = 1.2 V
Temp.=300K
Nd=1x1017 cm-3



Outline

81

 Introduction
 Numerical Technique and Physical Theory
 Quantum Simulator NEP for the Two-dimensional Inversion-layers
 Hole Mobility
 Simulation Results and Discussion
 n-MOSFETs
 p-MOSFETs with Triangular Potential Well Approximation
 Efficiently Boosted Model in p-MOSFETs
 Density-of-States and Quantization Effective Mass
 Mobility

 Conclusion

Nano Electronics Physics Lab @ NCTU



Density-of-States and Quantization Effective Mass 
in different temperatures (30, 77, 153, 300 K)
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Density-of-States and Quantization Effective Mass 
with strained effect (Biaxial tensile, Uniaxial compressive)
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Phonon and Surface Roughness scattering rate
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Mobility comparison with Experiments.
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Table I: 
Band parameters and Deformation potential
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Parameter This Work Thompson[2] Fischetti[4] Li[7]

γ1 4.22 4.22 4.285

γ2 0.39 0.39 0.339

γ3 1.44 1.44 1.446

a (eV) 2.46 2.46 2.1

b (eV) -2.1 -2.1 -2.33

d (eV) -4.8 -4.8 -4.75

Δ (eV) 0.044 0.044 0.044
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Table II: 
Scattering and Physical parameters
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Parameter This work
(001)

Fischetti[3],[4]

(001) ( 011) (111)
Michielis[15]

(001)
Oberhuber[20]

(001)
Optical energy                 

ħω (meV) 61.2 61.2 61.2 61.2
Crystal density                       

ρ ( g/cm3) 2.329 2.33
Sound velocity                        

ul (m/s) 9040 9000
Optical  phonons
Dop (108 eV/cm) 6 13.24 11.5 7.63

Acoustic phonons        
Dac (eV) 4.5 7.12 5.6 5

Surface Roughness 
Λ (nm) 2.6 2.6 2.6 0.2

Surface Roughness               
Δ (nm) 0.5 0.4 0.55 0.5
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Conclusion
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 We have completed the self-consistent method for
solving Schrödinger and Poisson equations to simulate
a more realistic environment in n/ p-MOSFETs.

 Efficiently boosted NEP in p-MOSFETs to avoid
intolerable calculation time.

 The ionization rate has been taken into account for low
temperature condition (~ 2 K).

 The hole mobility parameters can be extracted by the
best curve-fitting in the experimental data.
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Figure 1.1. Categorizing the researches to date for exploring the two 
dimensional hole gas behaviors. 
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Figure 1.2. Efficiency and calculation time comparison. 
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Figure 2.2.2.1. Symmetry-adapted coordinate systems that are used in this 
work. 

 
 
 
 
 
 
 
 
 
 
 
 
 



99 

 
 
 
 
 

 
 

 
Figure 2.2.3.1. The concept of performing the Newton-Raphson method. 
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Figure 2.4.2.1. Density of states effective mass of each subband by 
triangular potential approximation. 
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Figure 3.1.1. The schematic band diagram in a poly 

gate/SiO2/p-substrate system. 
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Figure 3.1.2. The flow chart of the self-consistent procedure. 
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Figure 3.1.3. The energy band diagram in a metal/SiO2/p-Si system. 
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Figure 3.2.1. Meshes for the polar coordinate and Cartesian coordinate. 
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Figure 3.2.2. The flow chart for this work by triangular potential 

approximation. 
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Figure 3.3.1 The flow chart of new technique. ( The First-order 

Modification) 
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Figure 3.4.1 Impurity ionization rate and band diagram at extremely low 

temperature about 2 K. 

 

 

 

 

0 1x10-5 2x10-5
0

5x1016

1x1017

 

 300 K
 2 K

N+
D (cm-3) 

Position (cm) 



108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.  Subband level versus gate voltage in n-MOSFETs. 
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Figure 5.2. Inversion density versus gate voltage in n-MOSFETs. 
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Figure 5.3. Average inversion layer thickness versus gate voltage in 

n-MOSFETs. 
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Figure 5.4. Surface potential versus gate voltage in nMOSFET. 
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Figure 5.5. Subband energy versus gate voltage in metal gate 

n-MOSFETs. 
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Figure 5.6. Inversion density versus gate voltage in metal gate 

n-MOSFETs. 
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Figure 5.7. Average inversion layer thickness versus gate voltage in metal 

gate n-MOSFETs. 
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Figure 5.8. Surface potential versus gate voltage in metal gate nMOSFET. 
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Figure 5.9. Subband energy (a) and equienergy lines (b)-(d) in the 

lowest–lying HH, LH and SO subbands for the (001) surface compared 

with Fischetti’s [3]. The doping concentration is 1  1017 cm-3 and 

temperature is 300 K. It is noticd that our subband energy is higher than 

Fischetti’s about 15meV. 
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Figure 5.10. Subband energy (a) and equienergy lines (b) and (c) in the 

lowest–lying HH and LH subbands for the (011) surface compared with 

Fischetti’s [3]. The doping concentration is 1 1017 cm-3 and temperature is 300 

K. 
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Figure 5.11. Subband energy (a) and equienergy lines (b) and (c) in the lowest –lying 

HH and SO subbands for the (111) surface compared with Fischetti’s [3]. The doping 

concentration is 1 1017 cm-3 and temperature is 300 K. It notices that our subband 

energy is higher than Fischetti’s [3] about 10meV. 
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Figure 5.12. Energy of the subbands (a) and equienergu lines (b) in the 

lowest-lying HH, LH and SO subbands for the (100) surface with 1% of 

tensile in-plane stress applied on the (x,y) plane. It notices that our 

subband energy is higher than Fischetti’s [3] about 20meV. 
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Figure 5.13. Energy of the subbands (a) and equienergu lines (b) in the 

lowest-lying HH, LH and SO subbands for the (100) surface with 1% of 

compressive in-plane stress applied on the (x,y) plane. It notices that our 

subband energy is higher than Fischetti’s [3] about 25meV. 
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Figure 5.14. Energy of the subbands for the (001) surface by our new 

model compared with Michielis’s simulation results [15]. 
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Figure 5.15. Subband energy (a) and surface potential versus electric field 

(b) for (001) surface in our new model compared with Li’s simulated 

results [14]. 
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Figure 5.16. Density of states distribution for (a) (001) surface with 1st 

subband and (b) (110) surface. The former result is compared with Li’s 

[14] and the latter is compared with Michielis’s [15]. 
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Figure 5.17. Comparison subband levels for three techniques: triangular 

potential approximation, self-consistent method, and this work. 
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Figure 5.18. The calculation time compare this work with conventional 
self-consistent method. 
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Figure 5.19.  Density of states effective mass (a) and quantization 

effective mass (b) at different temperatures for the 1st subband. Substrate 

doping is 11017 cm-3. 
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Figure 5.20.  Density of states effective mass (a) and quantization 

effective mass (b) with biaxial tensile 1 GPa and uniaxial compressive 1G 

Pa for the 1st subband. Substrate doping is 11017 cm-3 and temperature is 

300 K. 
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Figure 5.21. The simulation results and comparison with the experimental 

values by SdH oscillation analysis [5]. The temperature is 2 K, the 

substrate doping is 3  1016 cm-3 and the metal work function for 

aluminum is 4.26 eV. 
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Figure 22. The phonon (a) and surface roughness (b) scattering rate for 

the 1st subband at different temperatures and the effective field is 0.5 

MV/cm. 
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Figure 5.23. The simulation results by EMA and comparing with the 

experimental data of Takagi [6] for three different temperatures of 77K, 

153K and 300K 
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Parameter This Work Thompson[2] Fischetti[4] Li[7] 

γଵ  4.22 4.22  4.285 

γଶ 0.39 0.39  0.339 

γଷ 1.44 1.44  1.446 

a (eV) 2.46 2.46 2.1  

b (eV) -2.1 -2.1 -2.33  

d (eV) -4.8 -4.8 -4.75  

Δ (eV) 0.044 0.044  0.044 
 

Table I. Comparison of the used hole band parameters and 

deformation potentials for silicon. 
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Parameter This work 
(001) 

Fischetti[3],[4] 
(001) ( 011) (111) 

Michielis[15] 
(001) 

Oberhuber[20] 
(001) 

Optical energy                
  (meV) 61.2 61.2 61.2 61.2 

Crystal density                      

  ( 3/g cm ) 2.329 2.33   

Sound velocity                        
ul (m/s) 9040 9000   

Optical  phonons 
Dop (108 eV/cm) 6 13.24 11.5 7.63 

Acoustic phonons        
Dac (eV) 4.5 7.12 5.6 5 

Surface Roughness             
  (nm) 2.6 2.6 2.6 0.2 

Surface Roughness              
  (nm) 0.5 0.4 0.55 0.5 

 
 

Table II. Hole scattering and physical parameters for Si used in 

this work, along with the comparison with the values recently 

reported in the literature. 

 


