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Abstract

Self-consistent solving of Schrédinger and Poisson equations in n-channel
MOSFETs (metal-oxide-semiconductor field-effect transistors) is obtained by using
Newton-Raphson iteration technique with the non-uniform mesh arrangement. The
method is applied to simulate more realistic physical environment than triangular
potential well approximation in nano devices. The simulation results show excellent
agreements with Schred’s. However, in p-channel MOSFETs, a six-band k- p model
has been used to calculate hole subband structure and mobility for different surface
orientations and different strains. In this work, we introduce a new efficient model
based on six-band k- p Hamiltonian to rapidly obtain accurate hole properties. In
order to ensure the validity of our work, we build an effective mobility model in the
hole inversion layer and compare the results with the experimental data concerning
the universal curves at different temperatures. The different scattering mechanisms
are included in this study: acoustic phonon scattering, optical phonon scattering and
surface roughness scattering. To focus on the high surface field region, Coulomb
scattering due to ionized impurities will be ignored. In addition, with the use of an
equivalent effective mass model, the extracted quantization effective mass and density
of states effective mass will be compared with low temperature (2 K) Shubnikov-de

Haas oscillation experiment results published in the literature.
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Chapter 1

Introduction

In more recent years, the MOSFETs (metal-oxide-semiconductor field-effect
transistors) technology has undergone a scaling-down strategy. When the device gate
length shrinks towards about nanometers or below, the MOSFET scaling rule is
rapidly invalid. The reasons are that the quantum effect plays an important role in
nano device, and must be taken into account.

Firstly, this work demonstrates the full self-consistent method for solving
Schrodinger equation and Poisson equations in n-channel MOSFET. The simulation
results have been compared well with Schred [I1]. On the other hand, more
challenging issues have been devotes to the pMOS transistors in terms of the mobility
and its dependent on wafer orientation and strain engineering. Several researchers
have significantly addressed the two dimensional hole behaviors (See Figure 1.1),
such as Tompson’s group [2] and Fischetti, et al. [3], [4], along with the other theories,
for example, the pseudo potential method, 4x4 k-p method, Monte Carlo
simulation and full self consistent method. Figure 1.2 is highlighted to describe the
efficiency and accuracy for above cases. We introduce the two methods to deal with
the hole gas in the inversion layer; one is to utilize the triangular potential
approximation based on Fischetti’s skill and the other, Nano Electronics Physics (NEP)
simulator, is the proposed new and computational efficient technique with two
motivations: to avoid spending too much calculation time through the self-consistent
method and to simulate the operation conditions under very low temperature. Finally,
we extract the density of states effective mass and compare it with cyclotron effective
mass at 2 K [5], as well as and building a correct hole effective mobility model along

with comparing with experimental data [6] at different temperatures.



Chapter 2

Numerical Technique and Physical Theory

2.1 Time-independent Schrodinger Equation: Matrix Techniques

It 1s well-recognized that the time-independent Schrédinger equation in the
quantum mechanics can be expressed in terms of a matrix equation:
hZ

—— VY4+V¥Y=EY . (2.1.1)
2m

This approach is widely adopted in the band-structure simulation when it is focused
on bound or quasi-bound states in a spatially varying potential ¥ inside the highly
scaled semiconductor devices. Let us assume that the wave-function ¥ is confined
in a small region of W. We divide this region into ¢ intervals of the equal-distance

Ax =W/ . The ithmesh point is indexed as x;. In general, the wave-function ¥ we

are looking for can be expanded by an orthogonal basis set {y/n}
Wy = Zan% ’ (2.1.2)

where the v, is the normalized wave-function at the mesh point x, and the existing

probability of v, 1is exactly zero outside the interval n. According to Eq. (2.1.1), the

Schrodinger equation in the confined direct can be written numerically as

_h_z[‘P(x - Ax)-2¥(x)+ ¥ (x + Ax)
2m Ax?

1+V(x)¥(x) = E¥Y(x). (2.1.3)
Substituting Eq. (2.1.2) into Eq. (2.1.3), we get a set of /¢ equations (we are

assuming a,=a,,, =0, ie., the wave-function is localized in the space W). After

taking the outer product of v, y,, v;, ..y, , the matrix form of the one



dimensional Schrodinger equation is presented by

4., B 0 ... 0] (ay,]
B A(Xz) B 0 ay,
0 B A(w B : ° : =0 (2.1.4)
: .0 :
L 0 0 B A(x,,)J —a"l///«J/,xl
with
h2
A = +V(x)-F, 2.1.5
() m(Ax)Z ( l) ( )
2
S (2.1.6)
2m(Ax)

Obviously, Eq. (2.1.4) turns the complex differential Schrodinger equation into a
common eigen-value problem and we will get the ¢ eigen-values corresponding to
the ¢ eigen-function. The smallest eigen-value refers to the ground state while the

others refer to the excited states.

2.2 Six-band k * p Calculation for the Hole Subband Structure in

p-channel MOSFETs: Strain and Surface Orientation Effects

2.2.1 Strained Quantum Simulation
By following the theoretical work by Fischetti, et al. [3], a six-band silicon

k + p method, along with the solving of Schrédinger equation in a triangular potential
well beneath the gate oxide of bulk p-MOSFET, will be employed here. In this

simulation framework, we solve the wave equation:
.d
H (k. k, k. =—i—)+qV(z) |- ‘):k,,k, (2)=E(k.k,)- gk,,k, (2). (2.2.1.1)
dz o o

Here, the surface potential V(z) is equal to the minus of the surface electric field Fj



times the depth from the silicon surface z; and the k * p Hamiltonian H}, is the
Luttinger-Kohn Hamiltonian H;x plus the strain Hamiltonian Hgyq,. Those

expressions are given in [2]. Therefore, the 6x6 Hamiltonian is given by

— 1 1
_p_ L -M 0 —L —2M
0 2 V2
I _p+Q 0 -M \/EQ - %L
22.1.2
Mt 0 -P+Q -L - §+ ~20 |’ ( )
Hkp :HLK+Hstrain =
1
0 -M* - -P- Mt =L
0 2 NS
1 3
nay ot - |21 2M  —-P-A 0
N A LR
3 1
oM -0 200 =L 0 -P-A
_ 2. 5 \/7Q Ng ]
where
P=P +P
0=0,+0, (2.2.1.3)
L=L +L,
M=M,+M,
2
P, = K +k+k
k mo 7/]( x Y Z) Rs:_aV(gxx+ng+gZZ)
Q _ hz 7/ (k2+k2_2k2) Q :—é(&‘ +& _28 )
k 2m, 2\ Ay TR, z : e g\ Ty = . (2.2.1.4)
) L :_d gv_igz
Lk Zh—\/gy3(kx_ikv)kz ' ( i y)
p )
0 72 M, :gb(‘g«‘x—g.vy)_idgxy
2 12 :
M= NE) [7/2 (k2 —k_v)—zznkxky]

0

the P, O,, L, and M, are the k-p terms and the P, O., L and M, are
the strain terms and A is the split-off energy. The Luttinger parameters y,, 7,, ¥,
and strain deformation potentials a,, b, d are both listed in Table I.

In the numerical calculation, the wave vector, k_, is replaced by the operator,



—i—, and the quantization z-direction length in the simulation is divided into a
z

mesh of N_ points (N, =101 in this work). Thus, Eq. (2.2.1.1) becomes the

6N_x6N_ eigenvalue problem. Precisely speaking, this 6N x6N_ eigenvalue

matrix can be expressed as the tridiagonal block form

-1 -1

D D)y D" 0 0 -5k ook,
0 D D' D" 0 -||& ., |=Eh.k)| &k | (2.2.1.5)
- 0 + + N
0 0 D DI + D . lix ]k‘ lix 1k ‘.

where each &, , is a six-component column vector. D*, D’ and D~ are 6x6

block-diagonal difference operators expressed as below
H, =H+H, -k +H, k.,

_ Hl _ Hz
2iNz  (Az)*’

D’ =H, +_2H22 )
(Az)

H H

- 1 2

T 2iAz (M)

+

(2.2.1.6)

The solving of Eq. (2.2.1.5) yields the same number of the eigenvalue matrices,

E(ky k), as well as the wave function &, 1(2).

2.2.2 Surface Orientation Effect

It is understood that in the k-p Hamiltonian, the appropriate rotations in k&
space 1s adopted to deal with (001), (110), and (111) surfaces [8] while k. _)—_16.

0z

For (110) surface, a rotation from the original (001) k space to (110) k is

required:



o
k=== k), 22.2.1)

NG

' 1
ko=——(k +k
=5 krk)

and similarly for (111) surface:

vk k2K

“ Vo Vo e

Co1

k=5 (h+k) (2.2.2.2)
k. kk

k':x+)’+z

BERNCIRRVE RG]

The coordinate rotations in k space as revealed by Eq. (2.2.2.1) and Eq. (2.2.2.2)

revealing are shown in Figure 2.2.2.1.

2.2.3 Newton-Raphson Method

It is a well-known numerical analysis of the Newton-Raphson method (or
Newton-Fourier method) for finding successively better approximations to the zeros
(or roots) of a real-value function. Newton’s method can converge remarkably quickly;
especially if the iteration begins “sufficiently near” the desired root. First, see Figure
2.2.3.1, we start with an initial value, for example vy, and look for the corresponding
function of R. And then, the function is approximated by its sloped line, and one
computes the V-intercept of this tangent line (which is easily done with elementary
algebra). This V-intercept will typically be a better approximation to the function’s
root than the original guess, and the method can be iterated. This iteration process can

be expressed as

V.=V _ AV (2.2.3.1)



R
oV

Now, we write the 1D Poisson’s equation for N x N matrix case as below:

oV _ P
0z* g
2 1 1
- A E 0 0
121 0 " P
AZ* AzZ* AL v, P>
(2.2.3.3) 1 2 1 . o : =
0 2 T2 2 : .
Az Az Az
0
| ) _VN_le _pN_le
0 0 = "
L ANXN

(2.2.3.4) and let AV = p, where A4 i1s second-order differential matrix, p 1is carrier

charge density:

2 1
T A 0 0
1 2 1
A AP AL 0
A= 12 1 : (2.2.3.5)
0 AZ? Az AZ? '
0
0 0 12 - 22
L AZ AZ ANxN
e
v,
V=|: (2.2.3.6)
_VN_le




o= 1] . (2.2.3.7)

_pN_le

Finally, we apply Newton-Raphson method to solve Poisson and Schrédinger
equations self-consistently. Therefore, we can hence express the Poisson equation as

follows:

AV -p=R (2.2.3.8)

and differentiate the Eq. (2.2.3.7) by V', we can obtain the following:
A— 9p _OR _ NR

= = 2239
oV oV ( )
and Eq. (2.2.3.2) can be rewritten as
R R
AV_E_W (2.2.3.10)
oV

2.4 Effective Mass Approximation (EMA) Algorithm

2.4.1 Introduction

It has been well recognized that in the context of the effective mass
approximation (EMA), the motion of carriers in a crystal can be visualized and
described in a quasi-classical manner. Considering the case in which one electron

moves in a periodic potential firstly, the solutions of wave-functions can be written in
the Bloch form v, (x)=e""u, (x) with the corresponding energy E(k). In order to

describe localized electrons, one may build a wave packet by linearly combining the

group of Bloch wave-functions



Y0 = Y A, (1)

E(k)

=3 Ak, (e " (2.4.1.1)

= Ak, (x)e{ "

£

We expand the wave packet ¥ at k, with a small range Ak which is assumed to

be sufficiently small than first Brillouin zone so that

E(k) ~ E(ky)+ (k- k)dE(")

k=k,

duk (x)

u (X)) = 1y (x) + (k= ky) (2.4.1.2)

k=k,
E(k) is expanded to the first-order term and u,(x) is expanded to the zero-order

term because the significant alteration appears in the exponential function. Thus, with

the Taylor expansions in Eq. (2.4.1.2) substituted into Eq. (2.4.1.1), W¥(x,¢) can be

approximated as

i(k—ko)[x—E (k‘))z]

W(x,0) =y, (x,0)- Y A(k)-e ne (2.4.1.3)

i[kox— Etky )t]
h

Wi (X, 0) =uy4(x)e
The group velocity at k, can be obtained from the motion of the slowly varying

envelope function of the wave packet W(x,¢) in Eq. (2.4.1.3), so that

—%t ~ constant , (2.4.1.4)

and differentially both side, we have

E(k)

_(t) Lo, | 24 1 dE(k)

x(t) =

- . (2.4.1.5)
bodio n dk |,

Then, taking the time-varying wave vector k(¢) into account, we have



1
k(t):%eFHkO, (2.4.1.6)
where F' is an additional external field and %y is the initial state at =0. Furthermore,
the acceleration rate is obtained by combining together with the group velocity v,

and time-varying wave vector k()

dv (k) _d 1dE(k) _ 1 d’E(k) dhk

a= , 2.4.1.7
dt dth dk w* dk* dt ( )
with the effective mass
. [ 1 PERT
=|— ) 24.1.8
" L—ﬁ di’ } (2418)

It is noticed that the assumption of a:dvg(k)/dt is only valid in the classical

approximation. However, owing to the anisotropic and non-parabolic properties of the
valence-band structure, the classical approximation fails and the ability to
quantitatively deal with the hole effective masses as depicted in Eq. (2.4.1.8) is no
longer available. Therefore, the reversely extracted hole effective masses will be
introduced in the next section.
2.4.2 Density-of-States Effective Mass and Quantization Effective Mass

With our six-band & « p calculation for the hole subband structure in p-channel
MOSFETs, the corresponding density-of-states (DOS) functions are determined in the

Cartesian coordinate system by

1 Ared ™ (E + dE) — Area“™™*(E)
DOS (E)=U(E-E)) =X / L (2.4.2.1)
/ " (2r) dE
or in the polar coordinate system [3] by
1 2 K.(E,0)
DOS (E)=U(E-E, L do, 2422
08 (E) =U(E~E)) o5 ) & (24.22)
dK K (E0)

where the index j means the subband order up to the sixth lowest subband in this work

10



and U(FE) means the unit step function of energy. Then, the total DOS function is
given by

DOS,,,(E)=>_DOS (E). (2.4.2.3)

In this sense, the energy dependent DOS effective mass of each subband, m),  (E) ,

can be extracted reversely from the simulated DOS;(E):
m oo (E)=2mh* x DOS (E). (2.4.2.4)
The resulted DOS effective mass of each subband is seen in Figure 2.4.2.1 and it is

shown that the constant-like effective mass does not exist in this case. However, the

averaged DOS effective mass can be obtained if we choose the correct average

method. Consequently, the averaged DOS effective mass <mgos> is dependent on the

carrier concentration, and our method to average the mj ; is as follows:

[ mbos(E)f(E)-DOS (E)DE

Mpos ) = . 4.2.

(mpos) (2.4.2.5)
j f(E)-DOS (E)dE

In addition, the quantization effective mass, méN , can also be analytically assessed in

the triangular potential approximation [9] :

52 1/3 3 3 273
E© _ ZreF (i+= , 2.4.2.6
A JEEY 2430

j
2mQN

where E;O) represents the energy minimum of subband j and i is the states of the

wave function (the ground state, the first excited state, or etc.). In summary, the

averaged DOS effective mass <mgos> and the quantization effective mass m),

both are the most important factors in our novel quantum simulation algorithm which

will be discussed in Chapter 3.

11



Chapter 3
Quantum Simulator NEP for the Two-dimensional

Inversion-layers

3.1 Schrédinger and Poisson Self-consistent NEP in n-MOSFETs

In this section, we introduce the fully Schrédinger and Poisson self-consistent
solver in n-channel MOSFETs [10]. The schematic band diagram and physical
environmental setup are given in Figure 3.1.1. We divide the band diagram of silicon
substrate along the out-of-plane direction into two regions: one is the surface quantum
confinement region (60 nm) and the other is the bulk classical region (200 nm). In the

former region, the carriers are confined in this shallow region and we can mesh 300

intervals of width dz, =0.2 nm to ensure simulation accuracy; in the later region,

we adopt the conventional skill to deal with and it is divided into 50 intervals with

width of dz, =4 nm. It can significantly reduce the computational time but not

losing the accuracy. Besides, the conduction band edge at the interface is set to be the
zero of energy in n-MOSFETs.

Figure 3.1.2 is the flow-chart illustrating the common self-consistent procedure.
First of all, we guess the surface band bending Vs into the Poisson equation subject to
the boundary conditions V,—0=V; and V(,=puiy=0. It would obtain the corresponding
initial potential profile ¥(z), and we start with the 1D Schrédinger equation, as
revealed in Eq. (2.2.1), along with /(z). As mentioned in Section 2.2, we would obtain
the eigenvalues and the eigenfunction. Besides, we summarize the basic formulation

and the iteration that we use for perform a self-consistent solution. In the surface

12



quantum confinement region, the three-dimensional carriers (both electrons and holes)
density can be described by
< 2
n(z)=3 [ DOS, (E),, [(E)E-|¥, ,(2)
Lj E;

E/ ~E,

i /T E
:zgimLOZSkBTln(1+ekT ]-“Pi’j(z)r (3.1.1)
;. 7h

p(2)= [ DOS, (B, (- FENE|¥, )

mj, (M) 2
=> g, 25k, Tin|1te 7 ||¥, (2) (3.1.2)
oo Th
where i and v are the electron valley index and the hole type index, respectively. j is

the subband index, and g; and g, are the degeneracy of the ith valley and vth type,
respectively; mj,,, and m),, are the density of states electron and hole effective

mass, respectively, and E;; and E,; are the electron and hole energy levels, . The

corresponding wave-functions ¥, and W, , are all normalized. In the bulk

classical region, the carrier density is given by:

n(z) = n, -exp(% (3.1.3)
—V(2)

k,T

p(z) = p, -exp( ) (3.1.4)
where po and ny are the carrier concentration under the thermal equilibrium.

Substituting the above concentration in the 1D Poisson equation, we have

d*V(z) _ =g, [-Nj(z)—n(z) + p(2)]
dz £ ’

(3.1.5)

where N, (z)is the ionized donor density. Finally, we can obtain a new potential V(z)

to satisfy Eq. (3.1.5) and continuously iterate the procedure until the potential profile
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V(z) i1s equal for successive iterations, within a tolerable error range. The

two-dimensional electron density can be written as

i E/-E,;
nij:gimLozskBTln(He i } (3.1.6)
’ nh

and the total inversion layer charge density is thus given by

No=>n,. (3.1.7)
iJ

The average inversion layer thickness Z,, is described as

ni ] bulk )
Z, = Z VJ [ 2% ) @z |. (3.1.8)
i,j s 0
There are two kinds of the gate materials to be chosen in NEP: one is the high doping

poly-silicon; the other is the metal. Here, we demonstrate the potential calculation for

the high doping poly-silicon gate situation:

N, N
V,, =—k,T In( ”Zg 4, (3.1.9)

i

where V7, 1s the flat band voltage, N,,;, and N, are the poly gate concentration and the
substrate doping concentration, n; is the intrinsic concentration and kp is the

Boltzmann’s constant. The poly gate voltage and oxide voltage are the following:

gS.F2
S 3.1.10
" 2eN G.1.10)
t e F
y =lafsls (3.1.11)
&

where f 1s the oxide thickness, &; and &, are the dielectric constant of the

St

silicon and oxide, respectively, and the surface electric field is given by

F = Vieay Vs

N

. The total gate voltage can be expressed as

14



Vo=V AV, 4V, +V ,

poly o

(3.1.12)

where V. indicates the surface band bending determined by the potential profile in

N

the silicon substrate. Besides, we also examine the metal gate effect with the

workfunction, (@, = 4.05 eV, and the electron affinity, (y =4.05 el), in our work.
the Eq. (3.1.9) and (3.1.12) can be rewriten as:

Vﬂ):CDm—%—Eg+len(%) (3.1.13)
d

V, =V, +V,+V,. (3.1.14)

where E, is the energy band gap and N, is the effective density of states in valence

band. Figure 3.1.3. shows the energy band diagram for the metal/SiO,/p-Si system.

3.2 Triangular Potential Well Approximation NEP in p-MOSFETs

Because of demanded computational time to calculate the hole subband
structures with the six-band & < p method, the researchers usually use the triangular
potential well approximation to solve the Schrédinger equation [3] instead of the fully
Schrédinger and Poisson self-consistent method mentioned in the n-MOSFET NEP.

Firstly, we employ N.=200 points along the z axis in the range of the potential

1.2 . .
well [0, Z,a] With Z :—F, energy points in the interval [Ey, E4+0.2 eV]. Both

0" s

Cartesian coordinate and polar coordinate are established in our simulator but the
former one is adopted through the whole thesis. In order to keep the completeness of
the work, we show the detailed polar and Cartesian coordinate systems for the

comparison in Figure 3.2.1. Secondly, we start with 1D Schrédinger equation based

on the six-band k- p Hamiltonian along with the potential profile V(z) which can be

15



obtained from the surface field F; as:
V(z)=-F, -z (3.2.1)

and then we would get the hole subband structures E(k,k,) and corresponding wave

functions according to the procedure of Section 2.2.1. The sixth lowest subbands are

considered and for the convenience, we take j as the subband index in this section.
Thirdly, we determine the Fermi level location if the surface field outputs

match with the input ones. The process is shown as below:

E+0.2

1
p;= [ DOS/(E)- Tz (3.2.2)
E 1+ exp(— )
o7
6
P,=>p; (3.2.3)
J

The average inversion layer thickness z,, and band bending by the inversion layer are

defined as
6 Zax
z, :z Pi J z-“}’j(z)‘2 dz:l (3.2.4)
J inv 0
= e (3.2.5)

Therefore, the surface band bending can be extracted by

V.=E,~(E.~E)pu+E, (3.2.6)
where E, is the band gap of the semiconductor. The band bending by the depletion
layer, Vaep, 1s described by

V. =V.~V, —k,T. (3.2.7)

dep s i

The sheet charge density of depletion layer is written as

/28 V. N
pdep = > gep < . (328)

Finally, according to above results, the surface field is given by
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Fvsoutput — —Q(an +Biep) . (329)
€

The best solution of Fermi level location is found if the surface field is equal to the
input one. We also represent the above process with the flow chart as shown in Figure

3.2.2.

3.3 Efficiently Improved NEP in p-MOSFETs

Here, the novel method rather than using the triangular potential well
approximation is introduced to directly reduce the heavy computational burden from
the full Schrédinger and Poisson self-consistent iteration in p-channel MOSFETs. The
inspiration of this method is from the EMA algorithm in Section 2.4. The extracted
DOS and quantization effective masses can be applied to enhance the converging
speed. The first-order modification can provide the enough accuracy within the 1%
error of the surface field and 10° V maximum error of the potential profile. The
detailed procedure is discussed as following.

Firstly, in terms of the triangular potential approximation in the previous

section, we solve the Schrddinger equation with six-band k-p Hamiltonian and

would obtain corresponding zero-order DOS mass m),,,, zero-order quantization

mass mgM, and zero-order surface band bending V. Secondly, we input these

zero-order terms as the parameters of the n-MOS-like NEP appearing in Section 3.1,

of course, the other parameters are all treated properly to satisfy the p-MOSFET
condition. And then, we can get the zero-order surface potential profile V. (z) as the

potential well shape (it can be seen as the more realistic potential profile than the

triangular one) to solve the Schrédinger equation with six-band k- p Hamiltonian
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again. Basically, the whole procedure follows the Section 3.2. Consequently, we

would bring the first-order properties, such as first-order subband level E® ™,

Lst

first-order wave-function & , the determined first-order Fermi-level E}:” ,

1st
dep >

first-order inversion layer density p.”, first-order sheet density of depletion p

and first-order surface band bending V. Finally, we use the above first-order
physical properties along with Poisson equation to yield the first-order surface
potential profile ¥*(z) and the second-order surface band bending V'’ in order

to check whether surface potential profile converges or not. For the sake of providing
a visual picture of above procedures, consider the flow-chart representation in Figure

3.3.1.

3.4 Low Temperature Effect: Impurity Ionization Rate

It is well known that for a semiconductor doped with donor or acceptor
impurities, impurity energy levels are introduced [11]. When impurity atoms are
introduced, the Fermi level must adjust itself to maintain charge neutrality. Consider
the concentration of the donor impurities, N;, are added to the crystal. In order to
preserve electrical neutrality, the total negative charges (electrons and ionized
acceptors) must be equal to the total positive charges (holes and ionized donors) as

below
n=N,+p (3.4.1)
where n is the electron density in the conduction band, p is the hole density in the

valence band, and N (z) is the ionized donors distribution as given by
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1

N;(z)=N, x [%(z)—E_,-] (3.4.2)
1+2e “F
Rewriting the neutrality condition Eq. (3.4.1), we can obtain
E -F, E -F,
N, exp(————L2%) = N x - ! - + N, exp(———2L24%) (3.4.3)
kB T [ 1),1;uzz _7- f,Bulk ] kB T
1+2e ’

For a set of given correlated parameter with Eq. (3.4.3), the Fermi level, E,, can be

uniquely determined. From Eq. (3.4.3) we also know that the temperature condition
alert the Fermi-level location strongly, so that the ionization rate must be taken into
account at low temperature condition. Figure (3.4.1) shows that impurity ionization
rate and band diagram at low temperature about 2 K. Therefore, at such low
temperature, we have to face meaningless value and inaccurate approximation from
simulator. Intrinsic carrier density, n; ® 0 and the ionization rate is almost 0% at 2 K.
These will lead to the possibility of divergent calculations. So the net charges, at low

temperature, via Eq. (3.4.1) have to use Fermi-Dirac integral E, rather than
2

Boltzmann statistics case as below:

0,,(5) = N}(2) =~ No—=F, (EC(Z)_Ef]JrN 2 (Ef‘EV(Z)] (3.4.4)

C\/; 1/2 kBT V\/; 1/2 kBT
and
E;—Eco Eyo-Es
Q.(2)=N;(z)-Ne.e ™ +Nye " (3.4.5)

where Eq. (3.4.4) focus to non-neutral region and Eq. (3.4.5) is used in electrical

neutral region. Above formula is to avoid the n; to appear in the simulation process.
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Chapter 4
Hole Mobility Model and Theory

Introduction

In this section, we calculate the hole mobility under the relaxation time
approximation which uses the subband energy and the wavefunction provided by our
new fast method. And we discuss the momentum relation rates caused by scattering
with phonons and surface roughness. In this work, we will ignore the Coulomb
scattering with ionized impurities in substrate. All the scattering parameters used in

this work are listed on Table II.

4.1 Phonon Scattering

It is well known that at room temperature the vibrating atoms create pressure
waves in crystal, thus bringing two types of phonon scattering that are important to
describe Si mobility. Phonon scattering can be described in terms of the acoustic
phonon scattering and optical phonon scattering, based on the phase of the vibration
of the two different atoms in one primitive cell. Acoustic phonon energy is smaller
than carrier energy, while optical phonon energy is about 61.2 meV for silicon. Using
the phonon mobility formulation underlying the isotropic momentum approximation
is derived from [3]. More precisely, for the acoustic phonons, the isotropic relaxation

time in the subband p to v is gives by:

1 27wk, TD’
~ Xy F «DOS [E (K
T(ét)(K) hpul2 Z oy v[ p( )]

a
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k,T-D.
- 1 pu’ Z V*Mposon [ E, (K] (4.1.1)

F,, = [|&" (). §<v>(z)\ dz (4.1.2)

Sty F

where D,. denotes the deformation potential due to acoustic phonon, p is the
crystal density, u, is the longitudinal sound velocity, F,, is the form factor
determined by the wavefunctions of the u-th subband and the v-th subbands, 7 is

the Planck constant divided by 2x, and 4z is the Boltzmann constant. For the optical

phonons, the scattering rate can be described as

1 7 D’ 1— E (K)FE
- S DOS,[E,(K)F Ex]x 2 OFEd 11
WW(K) pa, 4 1= f,[E,(K)] 272
1= flE,(K) T E] 11
E (K)TE “ —t+— 4.1.3
2h,0E Z +*Moas L Eu(R)F Exlx 1= f[E,(K)] 523 (1)
where “+” means phonon emission and “—” means phonon absorption. D,,

and Ey are the deformation potential and the optical phonon energy, respectively. n,,

is the occupation number given by

n —; (4.1.4)

" [exp( %, Ey <)-1]

B

4.2 Surface Roughness Scattering

At high effective field, the roughness scattering between Si and Si0O; plays a very
important role and this reduces the mobility in the inversion layer of a MOSFET
device. Analysis of such mobility component usually involves two kinds of
assumptions, one is the Gaussian autocovariance function and the other is exponential

autovariance function. In this work, we prefer use of Gaussian autocovariance
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function because the exponential model to calculate the scattering rate of inversion
layer holes due to surface roughness needs larger values of the rms height A required
to fit experimental mobility data than the Gaussian model for the autocovariance.
Besides, we have to make an important assumption that the single subband
approximation is quite accurate. Since surface roughness is anisotropic scattering, we
only consider the intrasubband scattering. Under Yamakawa’s surface roughness

model [12], the scattering rate for a Gaussian function is written as

Mpos(E)ee?sE2 o2 oA 28 0
L mpos(E) Car [e # «(1-cos0)do
7.(E) 2h

0

Mo (E)ee?sE2 eA2e\2 27 —a°A
= pos. ; 2h;ﬂ J.e 4 o(l-cosf)dO [excluding spin] (4.2.1)
X

0

q°=2k*(1—cos0) (4.2.2)

_2mpyg - (BE))

PE (4.2.3)

k2

where mpos; 1s the density of states effective mass in the j-th subband, E; is the

hole subband energy and E.; is the hole effective field by

1
e '(Bl'ep + anv)

E (4.2.4)

eff P

4.3 Derivation of Two-Dimensional Mobility

The mobility calculation method in this work originates from the linearization of
the Boltzmann transport equation where the total scattering rate can be expressed in

terms of the phonon scattering and surface roughness scattering ones [4], [13]:
1 1 1
= + .
Ttotal (E) Tphonon (E) TSR (E)

It is important that we avoid Matthiessen’s rule to calculate inaccurate total mobility

4.3.1)
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which may cause scattering parameter shift. The reasons are as follow:

1 1 1
< >=< +—>F (<
total T phonon TSR

> +<L>:| (4.3.2)

Tphonon TSR

Therefore, we have to sum up the total scattering rate and then to calculate mobility. It
would lead to the accurate mobility. Besides, the inversion layer carriers in the MOS
system are quantized along the z (out-of-plane) direction, and we have to consider the
quasi-2D case when calculating the hole mobility of the MOS system. Now we
derivate the two-dimensional mobility excluding the spin degeneracy (g=1). Starting

with the Boltzmann equation and » carrier concentration, we can write

. fd3k

) 2n2n 2x
(A
Xy z

jf d’k (4.3.3)
f=f+ fO( vIge) (4.3.4)

Jo=—FF (4.3.5)

kT

I+e
where fp is the Fermi-Dirac distribution function under equilibrium and f is the
first-order Taylor series expansion with respect to energy E, ie., fo is the
Fermi-Dirac distribution function under applied electric field € . And then we use

the current density per unit length J (J=I/W):

J, =env,

_ ej fd k

:ejﬁ)vi%+ej( fo)(z‘eVJSj)vl;3

—[ ‘323 | vlvlr(—%)d%]sl (4.3.6)
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3

d’k
where el f,v.—
Jfo ‘87

T term is zero since no current under equilibrium and i and j are the

carrier transport direction. Using the concept of conductivity o , the current density

can be expressed as follows:

J, = o, &

e’ ofo 13
=0, = - Jvivjr(—a—E)d k
O, =enp,

n,= J fO (excludlng spin)

B
K | vivjr(—aj;g)d%

qn sf . dk
s 8 —
" J.fo 87’

(4.3.7)

(4.3.8)

(4.3.9)

Now we only focus on 2D case with the spin degeneracy factor of unity along xx

direction can be rewritten as:

S RENCEO:
o L G A RN e
)
~ el Wl R G A 1)
; )
oy =—
enVS
T Gl R G B B ()
’ @&
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iN"xuxx
v=1
6

n
2Pt

v=I s
_ e (2ot o K (E ¢) O
_4ﬂ2h2kBTnHZIIo d%xd

(aK)

(—) T, (E)f(B)I-f(B)]  (4.3.12)

where n, is the total hole density per unit area and 7, (£) is the energy dependent

total scattering rate for subband v. In this work, the detailed expressions above are
derived in the polar coordinate, and we have used the definition in Section 2.4 (Eq.
(2.4.1.5) and Eq. (2.4.2.2)) as a result, Eq. (4.3.12) can be rewritten as below:

Let Velocity,(E)= D v2,(E)

k=states

Hu =7 Tné Z [ . dE-Velocity,(E)x DOS () x7,(E) fy(E)1 - f,(E)]
e
m j , dE - Velocity, (B) xmyos (E) <7, (E) [y E)1 = fy(E)] (4.3.13)

That is the first formalism for the hole mobility calculation, derived in the EMA
picture and expressed as functions of a handful of accessible parameters: the inversion
layer carrier density, the subband level and DOS effective masses, the energy
dependent total scattering rate, and the Fermi-Dirac distribution function. In next

chapters, we use above formula to calculate the hole mobility.
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Chapter 5

Simulation Results and Discussion

In this section, the simulation results in n-MOSFETSs, which are mentioned in
section 3.1, are compared with these of Schred’s [1] in Figure 5.1 to Figure 5.4. The
model parameters are shown as follows: temperature is 300K, oxide thickness is

3

2.8nm, n+ ploy gate doping concentration is 2.2x 10°° ¢cm™ and p-substrate doping

. . 1 -
concentration is 2 x 10'® cm™

. We also examine the metal gate effect with a
work-function 4.05 eV as shown in Figure 5.5 to Figure 5.8. Based on these results,
our model come to be reasonable for calculating properties in n-MOSFETs. In the
future work, we will use this simulator to calculate strain effect on the electron
mobility. Besides, in p-MOSFETs, we also present calculations using the
approximation of triangular potential well for the (001), (110) and (111) surface and
strain effect along with comparing with Fischetti’s [3] as are shown in Figure 5.9 to
Figure 5.13. The model parameters are shown as follows: Temperature is 300K and
substrate doping is 1x 10" cm™. Figures for 5.14 to 5.16 show the simulation results
of subband level and density of states comparing with Li’s [14] and Michielis’s [15].
Furthermore, it i1s clarified that subband level is defined at subband minimum in this
work rather than at gamma point. Figure 5.17 and Figure 5.18 can summarize the
subband energy and calculation time compared with three techniques (triangular
potential approximation, conventional self-consistent method, and fast self-consistent
method in this work). Because of strong confinement with the triangular potential
well, the subbands are higher than others. According to above simulated results, they

point out that subband structure through our new model is more efficienct and correct.

Based on the simulation results, the equivalent effective mass, i.e., quantization
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effective mass (m.;) and density of states effective mass (mpps) for different
temperatures and strains can all be extracted as shown in Figure 5.19 to Figure 5.20.
They show that quantization effective mass is independent on temperature while
density of states effective mass exhibits a strong dependent. It is also verified in
Figure 5.21 that the simulation results of density of states effective mass reasonably
match the cyclotron effective mass (m.) by Shubnikov-de Haas (SdH) oscillation
expect [5] under extremely low temperature, 2K, in Figure 5.21.

According to the assumptions, when calculating the hole subband level and

effective mass of p-MOSFETs, we further present a simplified physics based model to

describe the hole mobility, which mainly consists of the phonon-limited mobility, u,,,

[13] and the surface roughness limited mobility, ., [12]. Figure 22 shows the

scattering rate of phonon and surface roughness at different temperatures. This study
also compares the simulation results by EMA with the experimental data [6] in three
different temperatures of 77 K, 153 K and 300 K in Figure 23. We adjust the model
parameters by the best fitting those curves. All the parameters are shown in Table 2.
At extremely low temperature and high effective electric field region, the surface
roughness scattering would dominate the scattering mechanisms, so we can determine
the surface roughness parameters. However, at low electric field, the phonon
scattering mechanisms become a dominative feature. It is noticeable that there is a
considerable deviation between simulation results and experimental data at 153 K. A
reasonable physical explanation of this discrepancy is that we have eliminated
Coulomb scattering mechanisms in our model and the experimental data is not

universal curve at 153 K.

27



Chapter 6

Conclusion

In summary, we have presented the self-consistent for solving Schrédinger and
Poisson equations in n-channel MOSFETs which were applied us to simulate more
realistic physical environment in nano devices. The simulation results show excellent
agreements with Schred’s [1]. However, we also have introduced a new technique
based on six-band k-p Hamiltonian to avoid spending too much calculation time
through the self-consistent method and to simulate the operation conditions under
very low temperature. In order to ensure the validity of our work, we as well as have
built a simplified effective model for the hole mobility in the inversion layer of
p-MOSFETs. In fact, the parameters are extracted by best curve-fitting to the
experimental data as cited in Takagi’s paper [6]. It is noticeable that the Coulomb
scattering was not included in our model. In addition, we extract the density of states
effective mass and compare it well with cyclotron effective mass at 2 K [5]

For the further research in the future, the important issues could be listed as
follows: The strain-induced enhancement of the mobility in p-channel MOSFETSs
[16]-[20], gate direct tunneling current [21], [22] and mobility enhancement in
one-dimensional silicon nanowires, specially, the physical fluctuations (like surface

roughness) may have a strong impact on the transport of silicon nanowires.
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A Fast Quantum Simulator for
the Two-Dimensional Inversion Layers
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Motivation I

» To compensate 1naccuracy at the interface between oxide layer

and substrate caused by triangular potential well
approximation. /

TRP
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Poly-Gate ~~Oxide™~™
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p-Substrate

» Use self-consistent method to simulate more realistic

environment at the interface.
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Motivation 11

* The Schrodinger and Poisson self-consistent procedure will lead
to the intolerable computation time in pMOS.
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Time-independent Schrodinger Equation:
Matrix Techniques

Time independent Schrodinger equation:

HY = EY L R Wy WG Vo
X ex: 1=1 —>-2m[Ax2—2Ax2+Ax2]+V(l) Y
LT 2 v v
2m ='2—[0 _2§+A;22)]+V(” Y
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! i=2 :>-h2 [W(”—2w(2)+w(3)]+V 14
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v 2m Ox . v, Vi) VYa
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Time-independent Schrodinger Equation: Matrix
Techniques

2 JE— J—
L POr- A Z‘P(jc)+‘I’(x+Ax)]+V(x)\P(x)_E\P(x) o
2m Ax
4y B0 o 0] Tay
B A(Xz) B 0 ay,
O B A(x3) B : [ J = O
; .0 ;
| O o O B A(Xn)_ _anwn nx1
h2
A(x) = > +V(x,)-FE
7 m(Ax)
h2
2m(Axy

37
Nano Electronics Physics Lab @ NCTU



Outline

>
> Numerical Technique and Physical Theory

O

O Six-band k ° p Calculation for the Hole Subband Structure in
p-MOSFETs

O

O

Y V VYV VY

38
Nano Electronics Physics Lab @ NCTU



Quantum Simulation in p-MOSFETs

By following the theoretical work by Fischetti, et al. [
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Quantum Simulation in p-MOSFETs

Matrix Techniques:

D~ D), D" 0
0 D D D
0 0o D D’

[+1

H, ,=H,+H, -k .+H, -k
D H, H,

T2iAz (Az)
D’ =H,+ 2H Z
(Az)
D— S Hl _ HZ
2iAz  (Az)

40
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Surface Orientation Effect

[001]

Kz
J/ [-110]
| Ky’
yal
/
V, KZ’
Kx
[00-1] [110]
k. =—k
(011) Water |, _ L , _ (111) Wafer [ = L (& +#
ky_ﬁ(kx k,) , ﬁ( k)
K ==k, +k,) L .
Th "B B

4]
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Newton-Raphson Method

Derive . : .
| For Poisson equation
X, +&)= f(x)+ f(x)e+=f (x,)e" +-- _ _
f(o ) f(o) f(o) 2f(o) V-DIP—)V-EIB—)VZVZ—B
: £ £
S(xp+&)= f(x)+ [ (x)e For 1-D,
) 2y P o _p
Setting  f(x,+¢€)=0 \% V-—;—) P
g=—J ) V() =V () (V) =V (x,)
S (x0) oV _V.)-V) OV Ax Ax
X, =X, +€ =X, ——f'(xo) Ox Ax Ox* Ax
S/ (x,) _ V(x)=2V(x)+V(x,_)
- 2
Xpg1 = X — fv(XO) (Ax)
f (XO) L . ) p
f Therefore, the original equation V) = —-—
£
A
can be written in matrix form as
Ex: 3 x3 matrix
2 2
-2/(Ax)"  1/(Ax) 0 v,
1/(Ax)Y  =2/(Ax) 1/(ax) ||, |=-£
£
0 1/(Ax)" —2/(ax) |\
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Newton-Raphson Method

For initial conditions V(1)=Vs and V(N)=0

2 2
U(Ax) e (1) (VA7) Rho() R
1/(ax)” )\Fv) |0 Rho(N)
To get the initial VO
v\ (1/(ax) o) (Rho()
V,=|: = : - : :
Vv ), : 1/(Ax)2 Rho(N) -

For we have second-order differentail matrix A,
AV, = Rho, where Rho =—q,N,/g¢,and N, =-N,_, — N, + N, (For n-MOSFETs)
—> AV —Rho =0, LetlAV — Rho =R Set initial conditions for R(1)=0 and R(N)=0

R ORho R
e%—A— o ]—) VN—VN_1+W

oV
And NR is a matrix to realize 2—];, which is equal to 4 — ORho
R R
AV_a—R_ﬁ_)V_I/O_I_AV

44 ekl
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Effective Mass Approximation

Considering the case in which one electron moves in a periodic potential:

v, (x)=e™u,(x) with the corresponding energy E(k)
A wave packet by linear combination:

W(x,0) = Y AW, (6,0)

LE()

=X A (e

- ZA(k)uk(x)e{ »

Taylor expansions above equaitons:

E(k) = E(ky)+ (k -k )dE(k)
dk |,
1w, (x) ~ 1y (x) + (k= k )d“k(x) 4o
k=k,
Therefore :
i(k—ko)[x—E'(kO)t]

h

\P(X,l‘) = Wko(xat) . ZA(k) e

i(koxf Etky )tj
h

Wi (X, 1) = uy4(x)e

46

Y(x,0)
A /

Wave packet

"X

U\J \/‘lV

From the motion of the slowly varying envelope function of the wave packet ‘V:
_E(k)
h

t = constant

E(k)

yRlOk =0

_d
ko dt

1 dE(k)
nodk |,

Ve

x(t) =

The time-varying wave vector:

k(t) = %eFt +k,

_dv, (k) d 1dE(k) 1 d’E(k)dhk
Cdt dth dk B> dk* dt
——

force

e {1 dE(k)}
nodk’
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Density-of-States Effective Mass and
Quantization Effective Mass

Mesh area= AKy*AKx

Density-of-states (DOS) function:!”] Lx Mesh area=dK* K * ¢
Polar coordinate=>»
DOS(E) - -y KD Ly | |
j( )=U( j) (27_[)2 jo di -*:---;—--l:---i--
dK K, (E.0) .AKy
1000 x 1000 AKx
Cartesian coordinate=> Cartesian Coordinate Polar Coordinate

1 Area“™(E + dE) — Area" ™ (E)
DOS (E)=U(E-E)) =X f /
’ " (2m) dE

Therefore: mj,(E)=2xh* x DOS (E)
| \ [mbos(B)f(E)-DOS (E)dE
Average density-of-states effective mass: <mDOS> = J- 7(E)-DOS (E)dE

2 2
Quantization effective mass: miy = (El(o))s { % j ( % zeF (i + 3))
J

47
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O Low Temperature Effect: Impurity Ionization Rate
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Schrodinger and Poisson Self-consistent NEP
in n-MOSFETs

START

Setting the parameters of Poisson equation such
likes 1nitial potential and boundary conditions

Use initial potential to solve
Schrodinger equation to
get new wave functions.

Use new wave function and subband
to get new concentration.

Use concentration to get END
new potential profile
by Poisson equation.

NO \

YES Get correct wave function, subband
energy and potential profile.

IF V., -V.[<I0-12 eV

50
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Schrodinger and Poisson Self-consistent NEP
in n-MOSFETsSs

Quantum Confinement Region:

i Er-ki,;
n(z) =Zgi%k3nn(1+e kT J-\\Pi,j(z)\z
1,J
QugAtum Confinement ) B -E,
: : m () 2

region ( Classical R P(Z)=;gvﬁk3ﬂn(l+e “ } ¥, )

| region ’
Z/'( Ec Classical Region:

Eof/" !
|
T —_———=- Efp n(z) = n, - exp( V(Z))

/IK Ev kBT
| -V (z)
______ » p(z) = p, - exp( )
Efn EC : ’ kBT
~ | Poisson Equation:
P : | p-Substrate ;
Ev ~ o dV(z) _ =g, [-Ny(2)—n(2)+ p(2)]
Poly-Gate NOxide('.)ﬂ?P...J_ Y 5 7Zcde dz £,E,;
51
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Schrodinger and Poisson Self-consistent NEP
in n-MOSFETs

The two-dimensional electron density:

m' Ef -E;
n =g —k Tln(lJre kT ]
’ nh’

The total inversion layer charge density:

N, = Z”i,j
I

The total inversion layer charge density:

:Z b-kaz-“}’ (Z)‘de
av = NS - iI,j

52

The flat band voltage:

N, N,
V, =—k,T In(—2—)

i

The poly gate voltage and oxide voltage:

2
|14 —— gSiF;
poly
2€N oy Vimy ~Viem
{ e F where F, =
V — ongi S AZ

The gate voltage:

Vg:VS+V +V +V

poly
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Schrodinger and Poisson Self-consistent NEP

in n-MOSFETs
—— 1_ -
/[
/ ; The flat band voltage:
/ i
/ :
EV&C“““‘“—}"—/ X Vﬂ)=CDm—)(—Eg+kT1n(%)
' : d

The gate voltage:

o | "
i Eo
m; e T N A R A

Metal-Gate  ~ Oxide p-Substrate

53
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O
O
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Triangular Potential Well Approximation

NEP in p-M()SFE‘CEn —

Choose one F

@ V(z)=—F -z

f_ 6N _ N
H(YV =-F xz) |6N

\_ sy

( @ 2

€ ; »G;(z) and DOS(E) for the

6'h lowest subbands

 This method will
: avoid the huge
: calculation from

solving

eigen-problems

)

. J
55

1T

|

()

“q(N,, + N,
ek T

8Si

1r

200 meV

p:

Eg aHI)
200 meV.

Guess a range of E; location

which may satisfy
F e Q(Ninv i Ndep)

S

gSi

E; location refers to V.

Ef:>Ninv

\SO’ {VS — N,

o 4
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Triangular Potential Well Approximation
NEP in p-MOSFETs

e Ng
By _____
Efp
Reference
point
{ v
+
I
Vsi
\
+
|
Vox :
|
|
\l
56

The surface and depletion band bending:
V, :Eg _(Ec _Ef)Bulk +Ef
V., =V.-V —k,T

dep s inv

The depletion layer density:

2gSinede
pdep = e

The inversion band bending:

_ e ) Pinv ) Zav
inv
Esi
The electric field: grouput _ —e(an M Pdep)
N
g

Si
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O
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Surface bending, Vs, is determined by the

Efficiently Boosted NEP

in p-MOSFETSs

satisfaction with Fermi-level-related
Fs = q(Pinv+Pdep)/SSi

Accelerator

Solving Schrodinger Equation with
Six-band k -p

I. Zeroth-order DOS Mass m®;o¢
2. Zeroth-order QN Mass m%q
. Zeroth-order Surface Bending

Vs

Solving Schrodinger-Poisson
Iterations with above Effective
Masses and Surface Bending

Zeroth-order Potential Profile
VO(z)

Theh, initial V(z)=Fs * z
1

|I.Subband Levels EQ'st
2.Wave-functions {(z)'st
3.Fermi Level Ef'st

4.Inversion Layer Density p,,,'s

5.Depletion Layer Density

Ist
pdep

8. Surface Bending V'sts

Solving Schrodinger Equation
with Six-band k -p

Gueiss a Surface Field Fs

Solving Poisson
Equation

I. Potential Profile V'st¢(z)

Ivn+l-vn|< I 0-6 eV
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Efficiently Boosted NEP
in p-MOSFETSs

For 1 cycle condition:

|I.Subband Levels EQ'st
2.Wave-functions {(z)'st

H Ist
3.Fermi Level Ef Solving Poisson

sauation 0.1 < Fs oviem o

4.Inversion Layer Density p,,,'s
5.Depletion Layer Density

Ist

pdep

Calculation time for 1 cycle:

8. Surface Bending V'sts j/

T

. Potential Profile V'st(z) Tlme
Fs

A
Ivn+l-vn|< I 0-6 eV

Stress
T

\ 4
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Low Temperature Effect: Impurity Ionization Rate
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Low Temperature Effect:
Impurity Ionization Rate

Electrical neutrality:
Non-neutral Region

—> n=Ng;+p (1)
| Electrical Neutral The ionized donors distribution:
| Region 1
| N;(Z):Nd X (ED(Z)—E/-]
1+2e "
Therefore, Eq. (1) can be rewirtten as:
E —F E —-F
]\,C eXp(— c f,Bulk) — ND % El — + Nv eXp( 4 f,Bulk)
k,T (w] ke, T
1+2e ?

we have to face meaningless value and inaccurate approximation from simulator.

So we use Fermi-Dirac integral rather than Boltzmann statistics case as below:

In non-neutral region:
s 2 E.(z)-F 2 E. —-E,(z2)
5409 > 3Dk z)=N)(z)-N.——=F | <~~~ |+N,—F | L~
— 2K Qnet() D() C\/; 1/2 kBT V\/; 1/2 kBT
a Electrical neutral region:
0 | 1)I(ﬂ5 Zl(ﬂs _Ep—Ecg Eyo-Ey
Position (cm) 0,.(2)=Np(z)=Nee "' +Ne "

6l
Nano Electronics Physics Lab @ NCTU



>
>
>

Outline

> Hole Mobility

O Phonon Scattering

O Surface Roughness Scattering

O Derivation of Two-Dimensional Mobility
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Phonon Scattering Rate

For the acoustic phonon, the isotropic relaxation time in the subband p to v [l

1 27‘[0k T Dac ZFV.DOSV[E (K)]
Ttgf)(K) hpul v g

_k,TeD%
- h3pul Z mDOS(v)[Ey(K)]

For the optical phonon, the scattering rate 13!

1-f[E (K)FE
LDy ZFvoDOSv[EH(K)$EK]>< SlEOFEL L
) (K)  pw, 5 - f,[E,(K)] D)
D? S Fem (E (K)FE ]Xl—fo[Eu(K)$E ]x(n +l+l) +: phonon emission
2B ST : L= folE,(K)] “ 2 2" " -:phonon absorption

F,, is the form factor determined by the wavefunctions of the u-th subband and thev -th subbands

= [la (2r& ) dz

n,, is the occupation number
1

EK
63[eXp( kBT) —1]

n =

op
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Surface Roughness Scattering Rate

Assumption that the single subband approximation %I

1 mDOS(E) e °E2 Ao Azzf A2

. *(1-cos0)do
TG(E) 2n 0
E)e .Ez Ao A2 27 —q 22
_ Mpos,( ;eﬂf e @ «(1-cos6)d6  [excluding spin]
X

0
where
7=l PHk P21k Hk cos0=2k> (1~ cos 0)
2 s - (E-E )
hz
1
( dep )

&

k=
E2

off —

Si
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Two-Dimensional Mobility

Derivation of Two-Dimensional Mobility from Fischetti’s [*!:

V e K(E.$) OE _
= s e 991, 4E o, G T OAEBN = £(E)]

Let :Velocity(E)= Y Vi (E)

k=states

6
=2 N =,
v=l
K (E,) O

e 6 2r o0 ) B
=T o 9], 5, Ge) B EV B~ (B

k - j dE - Velocity . (E) x DOS (E) x1,(E) f,(E)[1- f,(E)]
ng -

N

H. = Z [ dE-Velocityo(B)xm o5 (E) x7,(E) fy(EY1 - fy(E)]

27zhan

It 1s important that we avoid using Matthiessen’s rule to calculate inaccurate total mobility
which may cause scattering parameter shift. SR SR
Ttotal (E) Tphonon (E) TSR (E)

65
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O n-MOSFETs

O p-MOSFETs with Triangular Potential Well Approximation
O Efficiently Boosted Model in p-MOSFETs

O

O

Density-of-States and Quantization Effective Mass
Mobility
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n-MOSFETs comparison with Schred!"

68

Subband Energy(eV)

1.0

o o
o (6)]

o
o

N w B ()] (o]

Average inversion layer thickness (nm)

] v ] v ]
(001) nMOS
o
Open symbols: This Work O
Line & Dashed: Schred

P P Temp.=300 K

/ T =2.8nm
/IA ox )
n N,,,= 2:2x10%cm”
A N, .= 2x10"°cm”
0 1 2 3 4 5 6
Gate Voltage (V)
1 1 1 1 1 1
(001) NMOS
| Temp. =300 K
0] T, =2.8nm
N, =2.2x10% cm®
= poly i
N,y = 2x10 cm®
© e PN
[T Open Symbols : This Work s O -
Line : Schred
1 1 1 1 1 1
0 2 4 6 8 10
Gate Voltage (V)

1.0

0.5

0.0

6x10"

2x10"

Inversion Density (cm'z)

25
2 20
©
=
[
Q5
o
o
]
o 1.0
=
=
n

o
o

4x10° F

(1I00) InMOI S

Open symbols : This Work
Line : Schred

Temp. = 300K
T,=2.8nm
Ny =22x10"cm” |
N, = 2x10° cm™
1 1 1 1 1 1 1 1

o 1 2 3 4 5 6 7 8
Gate Voltage (V)

] v ] v ] v ] v ] ] v ]
(001) N(MOS
Open Symbols : This Work
Line : Schred

Temp. = 300K

B T,=2.8nm ]
N =2.2x10"cm”
poly
N, = 2x10" cm™
M 1 M 1 M 1 M 1 1 M 1
0 2 4 6 8 10 12 14
Gate Voltage (V)
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Metal/SiO,/p-Si comparison with Schred!"!

1 2 T T T 1
(001) NMOS
’>" 10r Metal WorkFunction = 4.05eV
[} Temp. =300 K
= 08F N =2x10"cm®
o T, =2.8nm
@ 06}
c
w
o 04F
c
1)
g 0.2F Y Line & Dash : Schred ]
=] o Open symbols : This Work
» oo} 4
? 1 1 1 1 1
0 2 4 6 8 10
- Gate Voltage (V)
€
5 6 T T T T T
@ |(001) nMOS Temp.= 300K
o S N, .= 2x10"°cm™ .
% T,=2.8nm
= 4} Metal WorkFunction = 4.05eV
:
>3
73 .
c
Q2 2t -
n
S
(4]
Z 1tk ,
£ Open symbols : This Work
) Line : Shred
% o 1 1 1 1 1 1
] 0 2 4 6 8 10
>
69 < Gate Voltage (V)

Surface Potential (V)

(001) nMOS |

Open Symbols:This Work
Line: Shred

Temp. = 300 K
N,= 2x10"°cm”

ch 2.8nm
Metal WorkFunction = 4.05eV]|
1 1 1 1

25

n
o

N
a

N
o

o
o

0 2 4 6 8 10 12 14
Gate Voltage (V)
(001) NMOS
| | Open Symbols : This Work i
Line : Shred

Temp. = 300K

N, = 2x10" cm® i
oO T, =2.8nm
o) Metal WorkFunction = 4.05eV
1 1 " 1 " 1 " 1 "
0 2 4 6 8 10
Gate Voltage (V)
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O
O p-MOSFETs with Triangular Potential Well Approximation
O
O
O
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Subband Energy (eV)

71

0.5

(001) p-MOSFETs

T T v T v T v T i J0.5
(001) pMOS n=3
0.4 Line & Dashed : Fischetti's n=2
“* I Open symbols : This work . 0.4
n=
031 {03
0.2} Joo
0.1F I N,,=1x10"em® L 4
7 Temp.= 300 K
= Energy shift : 15meV
oo 1 " 1 " 1 " 1 "
0.0 0.5 1.0 1.5 2.0 25
E_(MV/cm)
s
1.0 T T
(001) pMOS Fs=1MV/cm
0.5} 4
0.0F 4
0.5} 4
LH subband
Fischett's
O This Work E-E =25meV
-1.0 I : -
-1.0 -0.5 0.0 0.5 1.0
7 -1
K (100 cm’)
X
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15 T T ] 1
(001) pMOS
1.0}k Fs=1MV/cm |
< 05} 4
£
© oo} .
N~
o
<«
‘; 05} .
X
-1.0 || HH subband -
e Fischetti's
O This Work E-E0=25meV
15 ¥ 1 1 1 1
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
7 -1
K (10" cm’)
X
10 T ] ]
(001) pMOS
fo) o Fs=1MVicm
05} 4
= o
O O00F o 4
~ (o) o
o
=
v 05} -
SO subband
Fischetti's o [e) ©
O This Work| E-E =25meV
40 = - L
-1.0 -0.5 0.0 0.5 1.0
7 -1
K (100 cm’)
X



(011) p-MOSFETs

0.5 . r . r . 0.5
(110) pMOS
< Line & Dashed : Fischetti's n=3
%_) 0.4 [~ Open symbols : This work 104
: n=2
o))
E 03F e 103
L
T 02F 40.2
C n=1
®
yol
5 01f N, =1x10"cm® 0.1
%2 Temp. = 300K
it Energy shift : 0 meV
0.0 b—— - i oo
0.0 0.5 1.0 1.5 2.0 2.5
F_(MVi/cm)
S
1.0 T T T 1.0 T T T
(011) pMOS (011) pMOS Fs=1MV/cm
05F Fs=1MV/cm - 05} J
£
0.0F - O 00F -
N~
=}
s
>
05| LH subband ' . X" 0.5 M ubband 1
F|§chett s Fischett's
o This Work E.E =25meV o This Work CE so5mey
1.0 - - - 1.0 . ' Nl
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
7 A 7 A
K (10 cm’) K (10 cm’)
X X
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(111) p-MOSFETs
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0.5 T T T = A7 40.5
(111) pMOS "=
—_ Line & Dashed : Fischetti's
> 04 Open symbols : This work 404
()
> -
o 03f "2 Jos
o n=1
LI
5 0.2} 40.2
[
8 _ 17 -3
o 01 N,,=1x10"" cm {04
> Temp. = 300K
w E Energy shift : 10 meV 1
oo " ! 1 " 1 1 " 1 "
0.0 0.5 1.0 1.5 2.0 25
E_(MV/cm)
s
1.0 T T T 1.0 T T T
111) pMOS 111) pMOS
( ) P Fs=1MV/cm ( ) P Fs=1MV/cm
0.5} e 0.5} e
£ £
O O00F = O O00F =
~ ~
o o
A A
> >
X" -05F M subband ] X" -05F HH ]
Fischett's subpand
O This Work Fischett's
s vor E-E,=25meV O This Work E-E,=25meV
-1.0 1 1 L -1.0 Y L 1
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Subband Energy (eV)

(001) p-MOSFETs

1% 1n-plane tensile stress

0.5 v T v T T T v 105
| (001) pMOS n=3
L n=2
0.4 doa
n=1
0.3} do3
0.2} doo
Line & Dashed : Fischetti's 1
0.1F Open symbol : Tish Work {5 4
’ Energy shift: 0.02 eV '
7o E, 1% in-plane tensile stress
00 [ [ 2 [ [
0.0 0.5 1.0 1.5 2.0 2.5
Fs (MV/cm)
74

K, (10" cm™)

(001) Wafer

o
T

1
—
)

Line : Fischetti's
Open Symbol: This Work
1% tensile in-plane stress

-2 -1 0
K (10" cm™)
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Subband Energy (eV)

(001) p-MOSFETs

1% 1n-plane compressive stress

0.5 v T r 0.5
[ (001) pMOS 1
n:
04}
n=1 04
03F
40.3
0.2}
Line & Dashed: Fischetti's 102
Open symbols: This Work
01F Energy shift: 0.025 eV
- 1% compressive in-plane stress - 0.1
5 N,,=1x10" cm®
00 [ [ 2 [ [
0.0 0.5 1.0 1.5 2.0 2.5
Fs (MV/cm)
75

) ! j T T T v 2
(100) pMOS
[ Fs=1MV/cm

41
40
{-1

Line : Fischetti's

Open symbols: This Work

1% compressive in-plane stress E-E =25meV ,

-1 0 1 2

k (10" cm”)
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p-MOSFETs for (001)

and (011)

1st
2nd

/

[

(001) pMOS s
S 0.55
> =1
(o))
) 0.5
c 03 4
1]
©
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Density-of-States and Quantization Effective Mass
in different temperatures (30, 77, 153, 300 K)
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Density-of-States and Quantization Effective Mass
with strained effect (Biaxial tensile, Uniaxial compressive)
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Effective Mass of
Density-of-States and Cyclotron
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Mobility comparison with Experiments.
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Table 1:
Band parameters and Deformation potential

Parameter | This Work | Thompson!? | Fischettil*! Lil7l
Y 4.22 4.22 4.285
Y, 0.39 0.39 0.339
Ys 1.44 1.44 1.446
a(eV) 2.46 2.46 2.1
b (eV) 2.1 2.1 -2.33
d (eV) 4.8 4.8 -4.75
A (eV) 0.044 0.044 0.044
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Table 11:

Scattering and Physical parameters

This work Fischettil3 1141 Michielis!’®! | Oberhuber!2!

Parameter | ~ o1, | ©oncoinain | oon (001)

e | 61.2 61.2 612 | 612

s e 12329 | 233

™ 1 9040 | 9000

oot |6 13.24 1.5 | 7.63
e ™ | as 7.12 5.6 5
T s ) 6 2.6 2.6 0.2
)5 0.4 0.55 0.5
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Conclusion

O

91

We have completed the self-consistent method for
solving Schrodinger and Poisson equations to simulate
a more realistic environment in n/ p-MOSFETSs.

Efficiently boosted NEP in p-MOSFETs to avoid
intolerable calculation time.

The 10ni1zation rate has been taken into account for low
temperature condition (~ 2 K).

The hole mobility parameters can be extracted by the
best curve-fitting in the experimental data.
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p-MOSFETs Simulation

2-D system k'p method
(k,is replaced by the

operatorid/dz)

pd

Prof. Fischetti’s

Prof. Thompson's group:
Bulk approximated k-p
method (k,=0) is used to
deal with the behaviors of
holes. The constant

Pseudopotential
Method

Detailed calculation with the

oSSR ‘grrou_pl.?Thfe Monte Carlo simulation or
; @) Ets Prof. MF Li's complete self-
introduced to :
Smplibyhe consistent qu.anmm
\_calculation load. Ealcalston
Analytical model originated from bulk This Work

approximated 4x4 k-p method (k,=0, HH, LH
only)

New technique!

Figure 1.1. Categorizing the researches to date for exploring the two

dimensional hole gas behaviors.

96



;7 DEtaed Calcaration With

he Monte Carlo
= & |uaEEE,
.E Pseudopot 7
L] ential
O
(]
| =9
o
This Work
Prof. Fis New technique!
group
V(@)=FZ1s
introduced to
simplify the

. calculationload. /

Analytical model
ariginated from bulk
approximated dxd kep
method (=0, HH, LH anly)

>

1 / Calculation Time

Figure 1.2. Efficiency and calculation time comparison.

97



/V [-110]

[100]

(100

'y

Kx
g 0

(110) Wafer (111) Wafer

Figure 2.2.2.1. Symmetry-adapted coordinate systems that are used in this
work.
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Figure 2.2.3.1. The concept of performing the Newton-Raphson method.
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Figure 5.9. Subband energy (a) and equienergy lines (b)-(d) in the
lowest-lying HH, LH and SO subbands for the (001) surface compared
with Fischetti’s [3]. The doping concentration is 1x 10" c¢cm” and
temperature is 300 K. It is noticd that our subband energy is higher than

Fischetti’s about 15meV.
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Figure 5.10. Subband energy (a) and equienergy lines (b) and (c) in the
lowest-lying HH and LH subbands for the (011) surface compared with
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concentration is 1x 10" ¢cm™ and temperature is 300 K. It notices that our subband

energy is higher than Fischetti’s [3] about 10meV.
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subband energy is higher than Fischetti’s [3] about 20meV.
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Parameter | This Work | Thompson'” | Fischetti | Li!"
Y, 4.22 4.22 4985
Y, 0.39 0.39 0.339
Vs 1.44 1.44 1.446
a(eV) 2.46 2.46 2.1
b (eV) 2.1 2.1 -2.33
d(eV) 4.8 4.8 4.75
A (eV) 0.044 0.044 0.044

Table I. Comparison of the used hole band parameters and

deformation potentials for silicon.
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Michielis !

Oberhuber'?’!

P This work Fischetti" "
arameter | o1y | o1 (o1 ain | (oon (001)
Optical energy
ho (meV) 61.2 61.2 61.2 61.2
Crystal density
; 2.329 2.33
p (glem’)
Sound velocity
s (05) 9040 9000
Optical phonons
D, (108 eV/cm) 6 13.24 t-5 763
Acoustic phonons
B.. (V) 4.5 7.12 5.6 5
Surface Roughness 26 76 726 02
A (nm)
Surface Roughness 0.5 0.4 0.55 0.5
A (nm)

Table II. Hole scattering and physical parameters for Si used in

this work, along with the comparison with the values recently

reported in the literature.
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