
hapter 1

Motiva

Recently, la

Radio Fre

band pass

ems (ME

ally the m

circuit ch

mmunicatio

hout havin

arch topic

h ferromag

chip spiral

W
Comm

Ele

 Introd

ation 

arge dema

equency In

s filters [3

EMS) pass

most critica

hip area 

on devices

ng any in

cs in RFIC

gnetic cor

l inductors

Wireless 
munication 
ctronics 

C

Fig. 1-1-

duction

and for wi

ntegrated 

3] are wid

sives bas

al passive

which is 

s.  There

nductance 

Cs.  Previ

res can be

s.   

Transmiss
speed 

Combining 
indu

1: The deve

1

ireless com

Circuit (R

dely incorp

ed on CM

es in the R

the key 

fore, how

degradat

ious resea

e a promi

RF I
sion 

 

Ferromag
uctance enh

elopment of

mmunicati

RFIC) dev

porated wi

MOS pro

RFICs but 

factor to

w to reduce

tion in th

arches hav

sing cand

IC’S 

ap

netic mater
hancement

f ferromagn

ion device

vices such

ith micro-

ocess.  Sp

they wou

 determin

e the size 

he chip ha

e shown t

didate to r

O

IMajor 
plication 

rial for 

Sav
dec
valu

etic inducto

es is incre

h as LNA 

-electro-m

piral indu

uld occupy

ne the co

of spiral 

as becom

that spiral 

replace the

On-Chip 

Inductors 

ving area 
creasing in
ue 

or.   

easing and

[1], VCO

mechanical

uctors are

y most of

ost of the

inductors

me one of

inductors

e existing

without 
nductance 

d 

O 

l 

e 

f 

e 

s 

f 

s 

g 



F
m
 

However, t

rent loss (E

chanisms i

Due to the 

y current w

order to 

ments has 

approach f

rent is rest

wer loss of

is illustrat

f the time v

In

Fig. 1-1-2: T
material is in

this idea i

ECL) and 

in ferroma

generation

will be ind

reduce E

been a co

for the syn

tricted in 

f a cylindr

ted in Fig

varying m

nput Curr

Induced
curre

The first cas
n the shape 

is usually 

ferromagn

agnetic ma

n of time 

duced with

ECL, patte

onsiderabl

nthesis of 

a small ar

rical magn

. 1-1-2. 

magnetic fi

  rent 

d eddy 
ent 

se of the ed
of cylindric

(B

2

accompan

netic reso

aterial 

varying m

hin the sub

erning th

le choice [

ferromagn

area which

netic laye

ield gener

  

ddy current 
cal with r=a

B)t( 0=

nied with 

nance (FM

magnetic fi

bstrate an

e ferroma

[4].  Our 

netic and A

h is in an 

er with rad

ated by in

oxide

FM
Materia

loss, while
a 

tsin ω

two majo

MR) which

field in the

d the ferro

agnetic m

previous 

AAO [5], 

order of n

dius a is r

nductor itse

e

a

e the underly

or challen

h are two 

e on-chip i

omagnetic

material in

work has 

therefore

nm2.  Th

represente

elf is in th

lying ferrom

(1) 

nges; eddy

main loss

inductors,

c material.

nto small

proposed

, the eddy

he average

ed by Pr=a,

he form: 

magnetic 

y 

s 

, 

. 

l 

d 

y 

e 

, 



Fig.
mate

hen the e

x density a

o, the tota

Where r is 

ductivity o

et’s consid

well-isolate

 

∫== dP ar

 1-1-3: The
erial is in th

electromot

and is in th

al power lo

radius of 

of FM mat

der the ed

ed cylindri

V

∫= ddP

Input Cu

Induced 

e second ca
he shape of 

tive force 

he form: 

oss Pr=a of 

cylindrica

terial. 

ddy curren

ical with r

dt
dφ

==

)
R
V(d

2

urrent

eddy curre

ase of the 
N isolated c

3

is genera

f this case 

al FM mat

nt loss of a

r=b as illu

r ωπ 2=

ar

or

σ
8
1

=

= ∫
=

=

    

ent

eddy curren
cylindrical w

ated due t

can be de

terial, h is

another ca

ustrated in 

cosBω 0

ha

Br(

ωσπ

π
ωπ

4

2

2

ox
  

Ma

nt loss, wh
with r=b 

to the var

rived by th

s cylinder 

ase. If we p

Fig. 1-1-3

tω

cB

dh
r
cosB

ω

σ
π
ω

2
0

2

0

⋅

xide

FM 
aterial

hile the und

riation of 

the follow

height an

pattern the

3. 

(2) 

tcos

dr

)t

ω

ω

2

2

derlying fer

magnetic

ing: 

nd σ is the

e FM into

t (3) 

rromagnetic

c 

e 

o 

c 



 

4 
 

The power loss Pr=b in this case can be derived similarly as following: 

  

 

 

The relationship between these two cases is described by the following equation:                 

ararbr P
a
bP

a
bNP === ≅= 2

2

4

4

                 
 

It can be simplified if we make an assumption that the total conducting areas are 

the same for both two cases, i.e.Nπb2=πa2. It can be observed that the ECL is 

suppressed due to b<<a. 

  FMR is another limiting factor of ferromagnetic material application in RF 

range and it can be calculated by the following: 

)πM(HH
π
γf skkFMR 4

2
+≅

              (6) 

Where γ is gyromagnetic ratio, Hk is the effective anisotropy magnetic field, and 

MS is the saturation magnetization [6].  From this equation we can improve the 

FMR by choosing the material with high MS and large shape anisotropy to 

obtain high Hk.  The porous of AAO template is about 65nm in diameter and is 

1000nm in length, so a high aspect ratio can be easily achieved without being 

limited by the resolution of lithography process, with this advantage, we can 

satisfy the requirement of large shape anisotropy.   
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1.2Historical Review 

Besides, we also need to choose a material with high saturation magnetization. 

In the original scheme, we utilized Ni to fabricated the nanorod array by 

electroless deposition[6]. Nevertheless, large P content(~15%) inside the alloy 

will enlarge the inter-atomic distance and cause smaller saturation magnetization.  

Unfortunately, the inductance enhancement is not apparent(about 3%) as shown 

in Fig. 1-2-1. So NiFe permalloy here is chosen to substitute for 

electrolessplating Ni due to its high relative permeability(µr)  

  Previously, we demonstrated a spiral inductor using NiFe-AAO magnetic 

nancomposite core electroplated on a Ti seed-layer will end up with a large 

capacitance between inductor coil and the seed-layer[5].  Although the 

inductance can be successfully improved, smaller Q factor and resonance 

frequency are not expected. In order to resolve the issue, we utilized thermal 

treatment to anneal the nanocomposite core at 450oC in a vacuum ambient in 

order to transform the conductive Ti layer into a less conductive TiOx 

amorphous layer.  Experimental results have shown that the Q factor can truly 

be improved, but the resonance frequency still remains the same as shown in Fig 

1-2-2.  It could be resulted by the annealing period which is not long enough to 

consume the whole Ti layer.   
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2.2 The Synthesis of NiFe-AAO Nanocomposite  

The Porous anodic alumina oxide (AAO) template with self-organized 

hexagonal of uniform parallel nanopores has been widely utilized for the 

synthesis of one-dimensional nanostructures since 80’s.  Each cell contains 

cylindrical central pore normal to the substrate.  Due to it’s characteristic of 

deep pore, it is suitable for manufacturing the ferromagnetic nanorods within it.  

The magnetic nanorods of high aspect ratio provide large shape anisotropy so 

that the drawback of FMR can be diminished as we’ve mentioned before.  The 

AAO template can be prepared by anodic oxidation of aluminum in various acid 

solutions and various anodizing conditions, such as temperature, applied voltage, 

widening time and current are used to control the pore diameter and length [8, 9]. 

In this work, the one step anodization method[10] is sufficient to fabricate the 

AAO template on silicon substrate in 0.3 M oxalic acid solution at 2  with a ℃

constant voltage 40V.  During the period of anodic reaction, Pt film is chooed 

as the cathode, the total experiment setup is depicted in Fig.2-2-1.   

The basic concept of the formation of the porous alumina oxide is illustrated 

in Fig.2-2-2(a)[11].  At the Al/Electrolyte interface, the aluminum ion is 

dissociated from the aluminum atom. 

−+ +→ eAlAl )s( 33  

 Then the aluminum ion reacts with the hydroxide and transferred into alumina, 

so a thin aluminum oxide layer s formed between metal and electrolyte. 

              ++ +→+ HOAlOHAl _ 332 32
3  

 

 

(7) 

(8) 
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anode bias of 40V as shown in Fig.2-2-4 (b).  The low temperature anodization 

process can reduce excessive current flow and heat evolution to make the AAO 

with the characteristic of small-pore films[12].  The first step anodization takes 

about 26 min and then reduces the bias voltage from 40V to 0V by the rate of 

1V/min for creating some penetrating paths on the alumina oxide barrier layer as 

shown in Fig.2-2-4 (c)[13].  For further eliminating the barrier layer, adding a 

reverse-bias voltage (~-2.5V) to substrate in a 0.5M KCl solution at 2oC for 

15min as shown in Fig.2-2-4 (d)[12,14].  At this moment, KCl solution can go 

through the penetration paths so that it can react effectively.  Finally, 

immersing the AAO substrate in a 5% H3PO4 solution at 30oC for 25 min as 

shown in Gig.2-2-4 (e) and uniformly distributed nanopores with about 60nm in 

diameter can be obtained.  And each pore is directly opened to TiN layer to 

ensure NiFe nanorods can be filled with every pore successfully. 

  Embedding NiFe into AAO template is relied on electroplating process.  In 

this work, fixed direct current(DC) method is employed with the current density 

of 5mA/cm2.  The content of NiFe solution bath is presented in Table. 2-1.  

The temperature of the electrolyte is maintained at 30°C during the electroplating 

process and the schematic of depositing NiFe into AAO template is shown in 

Fig. 2-2-4 (f).  
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2.3 MEMS Strucrure Inductor Imcoporated with NiFe-AAO 

Nanocomposite 

Once the NiFe-AAO nanocomposite is prepared, then we can start to 

combine it with spiral inductors.  The spiral inductors of 3.5 turns are made 

of 5-um-thick electroplated Cu and designed with 100 um in inter diameter, 15 

um in line width, and 5 um in line space have been utilized for the 

investigation of inductance enhancement with NiFe nanorods as the magnetic 

core.  Fig. 2-3-1 is going to demonstrate the fabrication process of the on–

chip spiral inductors with NiFe-AAO nanocomposite and finally obtain a 

MEMS structure inductor for improving the performance.  It begins with 

NiFe-AAO template is fabricated using the aforementioned as mentioned 

before which is shown in Fig. 2-3-1 (a).  A layer of 0.2-um-thick-SiO2 is 

deposited on the top of the composite film by PECVD as an electrical 

insulation layer, and then followed by sputtering Cr/Cu (500Å/1000Å) 

adhesion/seed layer which is shown in Fig. 2-3-1(b).    So far we’ve done are 

the prior preparation for the fabrication of spiral inductor.  Moving to the 

inductor fabrication, first, a 1st 6-um thick AZ 4620 photo-resist is coated and 

patterned to define the region for inductor coil of spiral inductor, and a 

5-um-thick Cu coil is electroplated as shown in Fig. 2-3-1(c).  Then the 2nd 

10-um thick AZ 4620 is spin coated, patterned and defined the region of 

inductor via, 5-um-thick Cu via is formed by electroplating as shown in Fig. 

2-3-1(d).  Sputtered with 150nm Cu seed layer as shown in Fig. 2-3-1(e). Fig. 

2-3-1(f) shows the 3rd 6-um AZ 4620 is coated on top of Cu seed-layer and 

patterned to define the region of air bridge, and plated with 5um-thick Cu to 

define air bridge. Removing the sacrificial photo-resist and lifting off the 
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Chapter 3 Result and Discussion 

3.1 The Characterization of NiFe-AAO Nanocomposite 

  Magnetic property of NiFe-AAO nanocomposite measured by Vibrating 

Sample Magnetometer(VSM) is illustrated in Fig. 3-1-1 with two different 

direction of applied magnetic field, in-plane and out-plane.  The relative 

permeability is exhibited on the hysteresis loop and can be calculated by the 

following formula: 

o
r H

Mπμ 41 +=
 
 

Where M is magnetization and H0 is the applied magnetic field. The relative 

permeability in our case are 1.66 in out-plane applied field and 20.3 in in-plane 

applied field (at 100 Oe).  According to Sang-Geun Cho et al[15],  the critical 

length LC is defined by the following equation: 

2

3

36
2
r.
dLC
π

=  

Where d is the inter-pore distance and r is the pore diameter, and both of them 

are read from Fig. 2-2-5.  Taking these number into equation (11), the critical 

length LC is about 236.1nm which is shorter than the real length of the 

nanorod(1000nm).  This fact tells that the effective anisotropy field of the 

composite is negative and it also means that the easy axis of NiFe-AAO 

nanocomposite is in the direction of in-plane[15].  This result can explain the 

hysteresis loop in Fig. 3-1-1. 

  EDS analysis is also taken to see the composition of the nanocomposite, and 

the diagram is shown in Fig. 3-1-2.  The weight composition tells us that the 

(10) 

(11) 
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In addition, the anisotropy field Hk can be read from the hysteresis loop which 

is 5800 Oe and the saturation magnetization Ms is 400 emu/cm3 .  So the FMR 

frequency of ferromagnetic film can be roughly calculated by equation (6):  

 

 

In contrast with conventional NiFe magnetic film, the FMR of NiFe-AAO 

nanocomposite can be improved as high as 20.72 GHz due to large Hk.  
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3.2 The Performance Measurement of MEMS Inductor 

Combining NiFe-AAO Nanocomposite 

In the work, the two ports scattering parameters (S-parameters) of the 

inductors are measured up to 20GHz with on RF probe station using the high 

frequency probes (Cascade Microtech, Inc., INIFINITY-40-GSG-100μm) and 

Agilent E8364B PNA network analyzer.  After short-open-load-through (SOLT) 

calibration then measured the S-parameters.  Due to on wafer open doesn’t have 

good characteristic and accurate model for probe on the open, so the 

de-embedding on each device is important.  The de-embedded S parameters are 

then transformed into Y-parameter using Agilent ADS software.  The equivalent 

series inductance (L) and quality factor (Q) of the inductors are extracted from 

the Y-parameters base on the following equation [16], respectively: 

)Y/Re(/)Y/Im(Q
f/)Y/Im(L

1111

11

11
21

=
= π

 

where f is the signal frequency.  The frequency dependence inductance and 

Q-factor of the as-fabricated 3.5 turns spiral inductors with NiFe nanorods core 

as shown in Fig.3-2-1 and Fig.3-2-2, and the corresponding air-core inductor is 

also shown.  Fig. 3-2-1 and Fig. 3-2-2 only show the measurement report up to 

5GHz due to the performance of NiFe-AAO inductor is restricted by parasitic 

effect within this short operating bandwidth, and the parasitic effect is going to 

be discussed later on.  The result shows the inductance value is successfully 

improved up to 1 GHz with about 15% enhancement; nevertheless, this 

approach also accompanies two drawbacks including Q factor peak value 

decreased from 13 to 6(~55% reduction) and the self-resonance frequency also 

(12) 

(13) 
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Where LS represents the series inductance, RS is the series inductor resistance, 

CS represents the feed-through capacitance, Cox stands for the oxide capacitance 

between spiral coil and substrate. The parasitic substrate capacitance and 

resistance are modeled by CS and RS respectively.  And A Quality factor of 

spiral inductors can be calculated by the following[18]: 

SSSP

P

S

S

R])R/L[(R
R

R
LQ

12 ++
⋅=

ω
ω

 

)]CC(L
L

)CC(R[ PSS
S

PSS +−
+

−⋅ 2
2

1 ω  

Where      222

22

1
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subsubox
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ω
ω

 

Also, according to our measurement results, the value of these 

lumped-components can be extracted as shown in Table. 3-1. 

 

 

 

 

 

 

 

 

 

 

And a conventional nine elements π-model is applied for easily 

understanding the loss mechanism between these two kinds(NiFe-AAO inductor 

(14) 

(15) 

 Air-core 
inductor 

NiFe-AAO 
inductor 

Ls 3.3nH 3.75nH 
Rs 0.627Ω 0.83Ω 
Cs 25.88fF 27.4fF 
Cox 1.05pF 6.36pF 
Csub 13.28fF  
Rsub 180Ω  
CAAO  0.86pF 
RAAO  50Ω 

 
Table. 3-1: Extracted elements of the spiral inductor model with and without NiFe core.
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and Air-core inductor) which is shown in Fig. 3-2-6[19]. In comparison with the 

model stands for air-core inductor as in Fig. 3-2-6(a), the case of NiFe-AAO 

inductor doesn’t see the silicon substrate parasitic effect due to the continuous Ti 

seed-layer inhibits electromagnetic wave penetrating through it and the substrate 

parasitic effect is replaced by the capacitance (CAAO) and resistance (RAAO) 

generated within the nanocomposite.  Recall the simulation electric field 

pattern in Fig. 3-2-4, the magnitude of electric is strong around the inductor coil 

and suddenly decays when it approaches the surface of Ti, so we can’t see any 

electric field distribution in the underlying silicon substrate.  

  

 

 

 

 

 

 

 

 

 

 

In lower frequency (<1GHz) range, the right term of both numerator and 

denominator in equation (12) are less than 1, so the parasitic capacitance(CP) is 

almost dominate by oxide capacitance(Cox). The larger this capacitance is, the 

more energy dissipation it will take, so smaller Q factor can be estimated in the 

case of NiFe-AAO inductors from the information in Table. 3-1.  

RS 

CS 

LS 

Cox Cox 

Rsub Rsub Csub Csub CAAO 

RS 

CS 

LS 

Cox Cox 

RAAO RAAO CAAO 

Fig. 3-2-6: The π-model of (a) Air-core inductor and (b) NiFe-AAO inductor 

(a) (b) 
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When the operating frequency is much higher, e.g. near self-resonance 

frequency. The both right term of numerator and denominator in (15) are larger 

than 1,  

 

 

so CP is closely in the form like Cox and Csub are connecting in series. Due to Cox 

is at least 50 times larger than Csub, the value of CP is almost equal to Csub. The 

resonance occurs when the value Q factor is zero[7], so the resonance frequency 

can be obtained by setting equation(11) equal to zero as following: 

)C(CL
1

L
R

)CC(L
ω

PSSS

S

PSS
res +

≈−
+

= 2

21
 

Recall that, CP is almost Csub when the operating frequency is near resonance 

frequency, so the self-resonance frequency of a inductor is not only decided by 

it’s own intrinsic capacitance CS but also be affected by the parasitic capacitance 

Csub. Base on this conception, the substrate capacitance(CAAO) induced by TiN/Ti 

seed-layer is much bigger than it is in the case of air-core inductor, as the result, 

the self-resonance frequency is very small. Basing on these analysis, removing 

the TiN/Ti seed-layer is necessary to improve the whole performance.  

  The existence of TiN/Ti seed-layer forbids the electromagnetic wave passing 

through, and cause large power dissipation and parasitic capacitance to limit the 

operating bandwidth in high frequency range. Removing the TiN/Ti seed-layer 

totally is prior mission.    Fig. 3-2-7(a) shows the measurement inductance of 

MEMS NiFe-AAO inductor, fortunately, about 15% inductance enhancement 

still remains the same after removing the center part of magnetic nanocomposite 

which implies that the contribution of inductance enhancement is attributed to 

sub
subOX

subOX
P C

CC
CCC ≅
+

≅

(16) 
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The concept of how MEMS inductors help to reduce parasitic effect is simple. 

By removing the substrate under the coil, the magnitude of induced ECL can be 

diminished and also provide a small capacitance Cair connecting in series with 

Cox[2]. So a high Q inductor with high resonance frequency is achieved. In 

general, the Q factor of a MEMs inductor is at least 20, and the resonance 

frequency over 20GHz is easily accomplished. Even if we utilized the 

micromachining process on NiFe-AAO inductor to improve the performance, 

there is still a distinction on the performance behavior between this work and 

typical MEMS inductor. So there must be some parasitic effect owing to the 

existence of NiFe-AAO nanocomposite. The following is going to discuss the 

effect caused by the nanocomposite, and simulation software ANSOFT HFSS is 

used to help understanding the mechanism. 

The simulation set up is from 0.1GHz to 30GHz. The morphology of the 

simulation model is shown in Fig. 3-2-8(a), the spiral inductor here is in the 

same dimension as we use in the real case, for convenience, choosing Ni as the 

magnetic material in this simulation and is also surrounded by alumina oxide. 

The square Ni rods is designed due to soft wear can easily analyze than in the 

shape of cylindrical. The Ni array is arranged in the porous alumina oxide just 

like AAO but large amount of porous number requires large mesh of simulation, 

so the array is designed in three cases with different number of elements of the 

array, they are 26x26, 36x36, 46x46 in number of elements respectively. The 

spacing between element to element are 5-um, 2.5-um, 0.625um respectively. 

The results of these three cases are compared to typical MEMS inductor, both 

simulation results including Q factor and inductance are shown in Fig. 3-2-8(c), 

(b). In comparison with the typical MEMS inductor, the Q factor and resonance 
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From the results showed in Fig. 3-2-9, by removing the insulating silicon 

dioxide, the resonance frequency is improved from 16.1 GHz to 18 GHz, the 

oxide capacitance seems not to be the major parameter to effect the resonance. 

By removing the alumina oxide template, the resonance frequency is obviously 

improved from 16.1 GHz to 21 GHz, that is, the parasitic capacitance between 

nanorods(CAAO’) is the major contribution to the reduction of resonance 

frequency. Therefore, in the realistic case, there is also a capacitance connected 

the neighboring NiFe nanorods.  

The equivalent circuit that represents the whole system is too complicate to 

demonstrate here, so we just take one short piece for an example to investigate 

how it influents resonance frequency, the diagram is shown in Fig. 3-2-10(a)(b). 

According to Miller Theorem, the capacitance within AAO template(CAAO’), 

connecting two nodes with two nodal voltages V1 and V2, can be replaced by 

two branches connecting the corresponding nodes to ground with the 

capacitance respectively (1-K)CAAO and (1-K-1)CAAO, where K=V2/V1[20]. In 

order to compute the voltage ratio K, we also need to label to node voltage Vx 

and Vy. Assume the current flow in one port is I at that instant and flow out from 

the other port with the magnitude of I-dI. Applying Kirchhoff’s current law, 

every current flows through these four nodes are listing as following: 
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The purpose of equation (17), (18), (19) and (20) is to get the ratio between 

V1 and V2, so we don’t need to focus on solving these four node voltage. The 

Miller coefficient K can be calculated and its value is -1 by assuming dI is very 

small. So CAAO’ is replaced by two equal branches of capacitors, each of them is 

two times larger than CAAO’ and is shown in Fig. 3-2-10(c). These two branches 

of Miller capacitor are connected in parallel with the original shunt branch, the 

total parasitic capacitance(CP) is still enlarged, even though Cair is quiet small. 

And that’s the reason why combining the NiFe-AAO nanocomposite for 

inductance enhancement but still can’t catch up typical MEMS inductor on the 

aspect of Q factor and resonance frequency. 

 

 

 

 

Vy node:  

V1 node:  

V2 node:  

(18) 

(19) 

(20) 



Fig
in 
and
bra

(1
 

g. 3-2-10: T
a short piec
d V2 as lab
anches of ca

1-K)CAAO 

The diagram
ce, and the 
beled in (b
apacitor as s

(a
 

Cox 

C

Rsub 

m in (a) sho
Miller coef

b), applying
shown in (c

a) 

42

CS 

RS L

Cair C

Csub 

(c) 

ows the π-m
fficient can 
g Miller T
)  

R
s

I

LS Cox

Cair 

Rsub Csu

model of the
be calculat

heorem, CA

RC
ox

 

C
air

 

sub
 

Vx 

V1 

ub 

(1-K-1)C

e MEMS Ni
ted by two 
AAO’ can b

(b)

C
S
 

R
S
 L

S

C
AAO

’ 

R
sub

 C
sub

 

CAAO 

iFe-AAO in
nodal volta

be divided 

) 

S
 C

ox
 

C
air

 

C
su

Vy 

V2 

nductor 
ages V1 
in two 

ub
 

I-



 

43 
 

Chapter 4 Conclusion and Future Work 

4.1 Conclusion 

    The inductance enhancement of on-chip inductor have been successfully 

demonstrated up to 1GHz by integrating NiFe-AAO nanocomposite core, and 

can be further improved up to 4GHz after introducing a micromachining process 

to remove the TiN/Ti seed-layer.  Both Q factor and resonance frequency can 

be further improved simultaneously. Although the performance is not as perfect 

as the typical MEMS inductor due to the parasitic capacitance generated within 

the nanocomposite, some research efforts are still needed by applying high 

resistivity ferrite to replace the permalloy core for further eliminating the 

parasitic effects for high performance RFIC applications 
 

4.2 Future Work 

Recalling the simulation results in Fig. 3-2-9, the performance can be further 

improved by removing both insulating oxide layer and AAO template. If we 

want to achieve much excellent performance, the electrical insulating layer may 

be chosen like low-K dielectric material to reduce the capacitance within this 

dielectric layer. Moreover, the parasitic capacitance between nanorods can be 

eliminated by choosing some less conductive ferrite material for substitution, for 

example iron oxide may be a considerable choice[21]. 
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