B 3R B RRBALQLT R L AR P IR

FFT Based on Mixed-Radix and
Interpolation for Mixed-Signal Testing

—

SRR R4

oy o2 mAP

PEAR 4 te 2 3

Bt SR TRBREZ AP REARBPNFEE
i & 2 @
FFT Based on Mixed-Radix and Interpolation
for Mixed-Signal Testing

A'Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
n
Electronic Engineering
June 2005
Hsinchu, Taiwan, Republic of China

PEAR {te B & ¥

FyAmamy ;}ﬂ ke 2 4o 1

BORHCR BRR o pad e AR LR ok PRI B A R S BE L P i
FRIR BBy Sl SR S PN RS s 0t 8 o e 0 BB R

LA BAER X T PP R F A2 PR -

r
o)
)
X

- BT RS AR 2/43 %2 5 enpek & 2 i RF

"S‘H

L‘LJ} i)

HAcFTEFRE DB AT PP REEL 223 2 5 RS Es o S EHIE

el (6 P 3B i B A 5 Lo B 4 AT - R R bt 2 A
*&-%“ﬂ :""‘/ﬁﬁ/f%/bi'“bbé@ o — T j\ﬁ-’-g"’f‘fﬁi-f}%\i—‘??#'z FernE B E AT O %k i
R S M VAR RE RS P VT s G

¥

BXERERSE RAGARDEEE 2 FRBELF T LT LRI BEH 2

AEIRE B VA PR T EE R E RV R o RS ZAKIS B

Bl T L] - BEM S FMESE V- BAS AR FHREEE T AN
JLAE

ERC R

“%i

F TR —1;}3‘)"?”@[]\ R EEFET G }iFm]ﬁ.é‘co

FFT Based on Mixed-Radix and Interpolation for

Mixed-Signal Testing

Student: Jian-Ming Chen Advisor: Dr. Chung-Len Lee

Department of Electronics Engineering
& Institute of Electronics

National Chiao Tung University

Abstract

In mixed-signal testing, FFT (fast Fourier transformation) is used widely to transform the
time domain signal into the frequency domain signal to obtain the transmission parameters
such as frequency response, phase response, signal to noise ratio (S/N), etc, for the circuit
under test (CUT). However, the process is involved with large computation efforts and the
limitation on the number of sampling points which need to be of the power of 2.

In this thesis, we propose a FFT algorithm based on the mixed radixes of 2/4, 3 and 5 to
increase the computation speed and to increase the applicable number of sampling points to
the power of 2, 3 and 5, and furthermore to any number of sampling points by using an
interpolation technique to interpolate the sampled data. We first discuss the single-radix FFT
and then expand the algorithm to mixed-radix FFT. A re-ordering algorithm for the sampled

data is found which makes the mixed-radix FFT possible. We then bring out the concept of

II

interpolation to be in conjunction with the mixed-radix FFT to make the mixed-radix FFT
algorithm be able to be applied to any number of sampling points. We compare the
computation speed and the numbers of sampling points for different algorithms both
theoretically and experimentally via simulation. Finally, experimental results on two examples,
one is a multi-tone signal and the other is a square wave signal, are presented. They show that
the algorithm can really demonstrate the speed advantage with acceptable degradation on S/N

introduced by the interpolation process.

I

,/

'FT' » ?\i"}i};&j‘:}ﬁ%ﬁa* A= EZEF oo %“ngﬂv‘m;f %ﬁg};&, AEY I b
PRI -B-FEANREDERE > TRANATL L F e HEpdE o &a fRAa

oy 2 XEFREAJeER T BALF A4 G5 AL Fla @I EE S FR

~

A K- P ER R EASERL S ERARLIEN BFLL DB o

Hkoo AL R Htestinggroupsn = f o H - EFEEAFIFROLAL PSS

E N RFBPEI L TELEARBER AABERE RE KD CHmER RO

£ g

Botd o RIRR AR O RA A Mk K d TR R ST G AL o

v

Contents

Chinese ADSLIACE ...cccoveiiiiiiiiiiiiiiniiniticnintecsssticsssnecsssnesssssscssssssssssesssssessssnsssssnssssssessssnsssssnes |
English aDStractcccoceiiiiviiiiisiininiinnsnicnsnisssnisssnsissssnsssnsses 1|
ACKNOWICAZGIMENTS .cocouveriiiinnrinisnnicsssnricssnnesssssncssssscssssnssnsnes v
COMLEINLS coeeeeenreiiiinrnissnnessssnicsssnecsssseesssnessssssessssssssssssssssssessssssesssssessssssssssssssssssssssssssssssssasss A%
LiSt Of FIGUIES cuueeiriniiiiiteiitinstiisniinecnnicsnessssessssssssesssssssnssssssssesssssssssssssssssassssssssssssassnss VI
LiSt 0f TADIES ccoveeeiieiniiniinitiniiecininntensnecseessanssssesssecsssecssnssssesssasssssssssssssssssassssesssssssassssasssns X
Chapter 1 INEroductioncccceiciciicniencnsnicssnicsssnecsssnesssssesssssessssesssssssssssssssssssssssssssssses 1
Ll MOLIVATION coiiiiiiiieiieiiiesite ettt sttt ettt e 1

1.2 Review of Previous WOrks —....c.cooioiiiiiiiiieeeecee e 3

1.3 Outline of This Thesismmmati. . il oviiiieiieeeee e 4

Chapter 2 Single-Radix FFT iiiiiniiiiiinniiiiiiiinmeiicninnniisinsssecsssssssessssssssssssssssssssssssssssass 5
2.1 Decimation-In-Time Algorithm =cc.cocoiiiiiiie 5

2.2 L-point FET L e e e 9

22,1 3-point FET oot 10

222 A-point FET e 11

223 5-point FET oot 12

2.3 Re-Ordering Algorithm for Input Sequenceccccevieviiiinienienennns 14

2.4 Speed Ratio of Radix-L FFT to Rarix-2 FFTccccociiiiniiiiiicnee 15

2.5 Numbers of Sampling Pointscccccciieiiiieiiieeeeee e 16

Chapter 3 Mixed-Radix FFT ...iiiiiiiiiiiinniiininnnicssssnnicssssssssssssssssessssssssssssssssssssssssssss 18
3.1 Radix-A/B FET e e 18

3.1.1 Decimation-In-Time Algorithmccccoeviiiiviiiieieeeieeee 18

3.1.2 Re-Ordering Algorithm for Input Sequencecccccceevervennnene 20

\Y%

3.2 Radix-A/B/C FET ettt 22

3.2.1 Decimation-In-time Algorithmccccocoieviieiiiniiiiieeieeee 22

3.2.2 Re-Ordering Algorithm for Input Sequenceccccoceeveriennnee 24

Chapter 4 Radix-2/4/3/5 FFT and Interpolation 25
4.1 Radix-2/4/3/5 FFT AIZorithmcccooeviiiiiiiiiiiieieeeeee e 25

4.2 Interpolation Algorithmccccooiiiiiiiiiiiii e 26

4.3 Simulation Resultsccccooiiiiiiiiiiii e 27

4.4 EXAMPIES .ooiiiiieiiiiiiecie ettt et enes 34

4.4.1 Multi-tone Signalcocccoeviiiiiiiieeeee e 34

4.42 SQUAre Wave ..cooiiiiiiieeee e 39

Chapter S Conclusion 44
RECIENCES oueeeeeneieiiniieiinieiineeisoteicenee isss8uss0sb0 e cosaiosessssesssssnsssssassssssesssssassssasesssssassssssssssssases 45
Vita cecccirccinncnnncnnscnnscnnescnnece. Sl L NERERIC NNoooecnnecsssessssassssesssasessasessasessaness 47

VI

Figure 1.1
Figure 1.2
Figure 1.3
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7

Figure 4.1

List of Figures

The DSP testing for a mixed-signal circuit under test.cccceveveeevieercieeennnnn. 1
A comparison of computation complexity between DFT and FFT. 1
A method that combines interpolation with mixed-radix FFT.c...cccooc.e. 3
The first step in the decimation-in-time algorithm.cccooiiiiiiiiiiniiee 7
The second step in the decimation-in-time algorithm.ccccoeevvieiiieennnens 8
The last step in the decimation-in-time algorithm.c.ccccoeiiiniiiinieiiiee, 9
The visual representation of the 3-point DFT.cccooiiiiiiiniiiinieciee 10
The visual representation of the 3-point FFT (butterfly structure). 11
The visual representatioh of the 4=point DFT. ... 11
The visual representation of the'4-point FFT (butterfly structure). 12
The visual representation-of the S-point DFT.ccoociiiiiiiniiiiiiiie 12
The visual representation of the 5=point FFT (butterfly structure). 13
The process of re-ordering the input samples for radix-3 FFT. 14
9-point decimation-in-time FFT algorithm.ccocooeviiiiiiiiecee, 14
The radix-A/B FFT decimation.cccccocevieieriieniiiieieceeieeeseeie e 19
The 6-point FFT computed by the radix-2/3 algorithm.cccccoeiiiiiiiinn, 19
The 6-point FFT computed by the radix/3/2 algorithm.ccccceeveiiiinnennnne. 20
The 6-point radix-2/3 re-ordering algorithm.cccooceiviiiiiieiieieciec, 21
The Radix-A/B/C FFT decimation.ccccoeveeveriiinieniinienieieneenceie e 22
The 30-point FFT computed by the radix-2/3/5 algorithm.c..cceceeiiies 23
The illustration of a 30-point radix-2/3/5 re-ordering algorithm. 24
The radix-2/4/3/5 FFT decimation.ccccceeeieneeiiinienieeieeieieeee e 25

VIl

Figure 4.2
Figure 4.3
Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16

Figure 4.17

Figure 4.18

Figure 4.19

Figure 4.20

The 30-point radix-2/4/3/5 re-ordering algorithm.

The illustration of linear interpolation.

The flow chart of N-point FFT operated by the new algorithm.

The comparison of applicable number (Ni) of sampling points which

can be applied by the single-radix FFT’s.

The comparison of applicable number (Ni) of sampling points which

can be applied by the mixed-radix FFT’s.

The visual representation of AN (Ni - Ns) for different mixed-radix FFT’s.

The comparison of 1 - |AN/Ns| for different mixed-radix FFT’s.

The comparison of run-times of radix-2 FFT and radix-2/4 FFT.

The comparison of run-times of radix-2,3,5 FFT and radix-2/4,3,5 FFT.

The comparison of run=times of radix-2,3 FFT, radix-2,5 FFT and
radix-2,3,5 FFT.

The comparison ofrun-times of radix-2,3 FFT, radix-2,5 FFT and
radix-2/4,3,5 FFT.

The waveform of the multi-tone signal.

The comparison of applicable number (Ni) of sampling points which
can be applied by the FFT’s.

The comparison of run-times of different FFT algorithms.

4.15: The comparisons of magnitudes of each tone of different FFT
algorithms (a) 1* tone, (b) 2™ tone, (c) 3™ tone, and (d) 4™ tone.

The comparison of magnitudes of signal of different FFT algorithms.

The comparisons of magnitudes of noise of different FFT algorithms
(a) with DFT value as a reference, and (b) without DFT value.

The comparisons of S/N’s of each tone of different FFT algorithms
(a) 1* tone, (b) 2™ tone, (c) 3" tone, and (d) 4™ tone.

The comparison of S/N’s of signal of different FFT algorithms.

VI

Figure 4.21

Figure 4.22

Figure 4.23
Figure 4.24

Figure 4.25

Figure 4.26

The waveform of the squUAre Wave.coccoeiiiiiiiiiienieeeeee e 40

The comparison of applicable number (Ni) of sampling points which

can be applied by the FFTS. oo 41
The comparison of run-times of different FFT algorithms.ccocceeenee. 41
The comparison of magnitudes of signal of different FFT algorithms. 42

The comparisons of magnitudes of noise of different FFT algorithms
(a) with DFT value as a reference, and (b) without DFT value. 42

The comparison of S/N’s of signal of different FFT algorithms. 43

IX

Table 1.1

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 3.1

List of Tables

The numbers of sampling points which can be applied by the radix-2

FFT under the value 10000.cooiiiiiii e 2
The comparison of computation complexity of different FFT algorithms. 13
The computation time of a butterfly structure for each algorithm. 16
The speed ratio of radix-L FFT to radix-2 FFT. ... 16

The numbers of sampling points which can be applied by the radix-3
FFT under the value 10000. ..o 17

A comparison of the radix-A/B FFT and the radix-B/A FFT.ccccoiienne. 21

Chapter 1 Introduction

1.1 Motivation

Mixed-signal circuits are widely used in the present electronic system, especially, in SoC.
To test mixed-signal circuits [1], Digital Signal Processing approach is usually adopted, which
is shown in Figure 1.1. An appropriately selected test patterns are applied the mixed signal
circuit under test (CUT) and its response is transformed into the frequency domain by using
the discrete Fourier transform (DFT) technique. The transformed spectrum is analyzed to
deduce the transmission parameters such as frequency response, S/N, etc, for the CUT. It can

then analyze the obtained parameters by comparator to mark the CUT as good or faulty.

AWG |—y| cut |y Digitizer ([T—y| DFT |y |uully

spectrum

Figure 1.1: The DSP testing for-a-mixed-signal circuit under test.

In the above, the DFT is a computation-intensive process which is proportional to N2,
where N is the number of sample points of the output response of the CUT. In 1965, a much
faster algorithm was developed by Cooley and Tukey [2], which is called the fast Fourier
transform (FFT) algorithm [3]-[7]. The computation complexity for the algorithm (radix-2

FFT) is proportional to Nlog,N.

cotputation
recquired

FET (a Mog,M)

number of sampling points {3

Figure 1.2: A comparison of computation complexity between DFT and FFT.

Figure 1.2 plots the comparison of computation complexity of the DFT and FFT

algorithms.

However, radix-2 FFT has an important limitation, that is, the number of sampling points
must be of the power of 2, i.e., 2k, where K is a natural number. This means that the numbers
of sampling points to be able to be applied by using the FFT algorithm are very limited. For
example as shown in Table 1.1, for a sampling system which can hold 10000 data points,
there are only 13 numbers of sampling points can be used the FFT.

k£ 1 2 3 4 5 6 7 8 9 10 11 12 13

2 2 4 8 16 32 64 128 256 512 1024 2048 4096 8196
distance - 2 4 8 16 32 64 128 256 512 1024 2048 4096

Table 1.1: The numbers of sampling points which can be applied by the radix-2 FFT

under the value.10000.

In this thesis work, it is to mvestigate to apply the FFT algorithm to, in addition to the
number of sampling points that is.of radix 2, other numbers which could be of other radixes
such as 3, 4, and 5 and a mixed of the 'above numbers. This will increase the range of
application of FFT. In addition, to apply the FFT in a mixed-radix fashion may have a faster
computation speed since its number of computation stages is fewer than that of the radix-2

FFT when their numbers of sampling points are similar.

Furthermore, although mixed-radix FFT can increase the numbers of sampling, which can
be applied by the FFT algorithm, significantly, the numbers are still too few. Hence we will
investigate a technique to use interpolation to adjust the sampling points to be able to be

applied the mixed-radix FFT, as shown in Figure 1.3, to further increase the FFT efficiency.

sampled . . mixed-radix mixed-signal
signal I:> interpolation I:> FFT I:> testing

adjust the number of
sampling points

transform the
domain of signal

Figure 1.3: A method that combines interpolation with mixed-radix FFT.

However, by using the interpolation to the number of sampling points to match up the
mixed-radix FFT, we will introduce errors to the final computation results, which are
expressed in worse S/N’s. When the distribution of the numbers of sampling points is even
enough, the difference between the original number and the interpolated number will be small.
However, this will usually lead to a more complicated mixed-radix FFT. So we will study the

trade-off between the decreased S/N and the increased computation complexity.

1.2 Review of Previous Works

To speed up the FFT operation, there were seéveral algorithms proposed. An FFT using
radix-3, 6, and 12 algorithms was used in an ordinary complex plane and the numbers of
additions and multiplications were shown to have significantly reduced [8]. Radix-2/8 FFT
algorithm was also demonstrated to be able to save real multiplications and have much lower
arithmetic complexity than the radix-2/4 FET algorithm [9]. The form of radix-p/p® algorithm
is called a split-radix algorithm, which is better than radix-p algorithm on length-p™ DFT’s. It
was shown that whenever a radix-p outperforms a radix-p algorithm, then a radix-p/p’
algorithm will outperform both of them [10][11]. As to the limitation of numbers of sampling
points, there were two algorithms that can do the FFT for any number of sampling points
[12]{13]. The proposed algorithms can flexibly compute the discrete Fourier transforms of

length qx2™ where (is an odd integer. Comparisons with previously reported algorithms show

that substantial savings on arithmetic operations can be made. Furthermore, a wider range of

choices on different sequence lengths is naturally provided.

In this thesis, we propose a mixed radixes FFT based on mixed radixes 2/4,3,5
incorporating with an interpolation technique to speed up the FFT while still maintaining a

good S/N.

1.3 Outline of This Thesis

This thesis is organized as follows. Chapter 2 presents the research on single-radix FFT.
Chapter 3 presents the research on mixed-radix FFT. Chapter 4 presents the radix-2/4/3/5 FFT

and interpolation. In chapter 5, conclusions are given.

Chapter 2 Single-Radix FFT

Before deriving the mixed-radix FFT algorithm, we first study the single-radix FFT
algorithm. We first study the decimation-in-time algorithm for the general case and then apply
it to radix-3 FFT, radix-4 FFT and radix-5 FFT. As for the radix-2 FFT [6][7], since it is well

known in the general literature, we will not mention it here in detail.

2.1 Decimation-In-Time Algorithm

Decimation is the process of breaking down a group of data into several of its constituents.
Decimation-in-time involves breaking down a signal which is a set of discrete time data into

several smaller set of discrete time data:which tepresent the same signal.

Let us consider N (= LS)—point DET where N is the,number of total sampled data points, L
is a decimating factor and S is the cortespondmmg-exponent. We split the N-point data sequence

X(n) into L data sequences, fi(n), f2(n),..; fu(n),; with N/L points for each sequence. That is,

fi(n)=x(Ln)
f,(n)=x(Ln+1)

fum=x(tn+L-1, n=0,1...N/-1
fi(n), f2(n),..., fL(n) are the decimated sub-sequences of x(n) by the factor L.

Now the N-point DFT can be expressed in terms of the DFT’s of the decimated

sub-sequences as follows:

X (k) :ZX(n)W"” k=0,1,...N -1

n=0

N/L-1 N/L-1 N/L-1
— (Lm)W Lmk + z X(Lm+1)W(Lm+1)k T+t Z X(Lm+|_ I)W(Lm+L Dk
m=0 m=0 m=0

Where WN" = Wy,L. With this substitution, the equation can be expressed as

N/L-1 N/L-1 N/L-1
X (k) = Z fL (MWL +W Z £ (MWL +--+ W z f (MW
m=0

=F (k) + W, |:2(|<)+---+WN<L YF (k), k=0,1,..,N-1

Where F(k), Fa(K),..., FL(K) are the N/L-point DFT’s of the sequences f;(m), fo(m),...,
fu(m), respectively. Since F;(k), Fx(K),..., FL(K) are periodic with period N/L, we have
Fi(k+N/L) = Fi(k), Fa(k+N/L) = Fy(K),..., FL(k+N/L) = F. (k). Hence the equation may be
expressed as

X (k) = F (k) +W\F, (k)+--~+WN(L‘“" F (k)

(L-1)27

X(k+'\%_) F(k)+e Lw RROEE e & WEYE (k)

j(L=h27r = 1?27

X (k+(E— D'V) FK+e . WE(K)+-+e - WEDRE (k)

k=0,1,...,’\%_—1

We can observe that the direct computation of Fi(k) requires approx (N/L)* complex
multiplications. The same applies to other N/L-point DFT’s. Furthermore, there are (L-1)N
additional complex multiplications required to compute other parts. Hence the entire
computation of X(k) requires L(N/L)* + (L-)N = N %L + LN complex multiplications. The
first step results in a reduction of the number of complex multiplications from approximate N

*to N %/L + LN, which is about a factor of L for a large N.

This process of decimating the signal can easily be visualized. The first breakup into

several N/L-point DFT’s can be shown as Figure 2.1.

£(0) £(L) X(2L) cevvneene- X(N-I)

N/L-pomt

(1) x(L+1) i

FO)F(D)FY(2) cevvvn a0 Fi(/I-1)

F(0)F(1)

x(Z-1)x(2L-1)
H(O) X(L) X{2)rvrvernnnrrnness X(BIL-1)
: . 4 !)
: L-point 3 n Ty RTEAL) e b eeee e YOMNI-1
FOFLDFL2) | HNID)XNLHL) QN/L-1)
: recombine
algebra
4 b 3
N(N-INID) X(MNNIEAL Y eee e e e e X(-1)

Figure 2.1: The first step in-the-decimation-in-time algorithm.

We can continue to split the N/L-point data sequence fi(n) into L data sequences with N/L*

points for each sequence gi;(n), gio(N),..., giL(n), that is,

gn(n) = fi(Ln)
9i,(n)= fi(Ln+1)

g, (M= f(Ln+L-1), i=L2..L n=0,L.. '\%_2 -1

By computing N/L*-point DFT’s, we obtain the N/L-point DFT’s F(k), F2(K),..., FL(k)

from the relationship:

F.(K) =G, (K)+ W, G, (k) +---+ W "G, (k)

2
Fi(k+l\%_2)=G“(k)+e : LWI\'I</LGi2(k)+"'+e !

R+ =6, 00 +e

The decimation process is taken another stage by breaking down the N/L-point DFT’s into

(L-1)27

N/L2-point DFT’s as shown in Figure 2.2.

x(0) O——

Nsz-point
DFT

x(N-L) O—vi

Nsz-point
DFT

(1) O

N/L-point
DFT

(V=LA) Ot

Nsz-pmint
DFT

x(L-1) O—ri

Nsz-point

DFT

x(M-1) O—vi

Nsz-point
DFT

N/L-point
recombine

I
1
1
1
1
1 algebra
1
I
1

]

. —
1 WiL-point | i
I . |
, recombine : |
1 "
1 algebra |]
1 1 1
]
1

N/L-point
recombine

|
1
1
1
algebra |
1

o —— - - - —

WG

1,2,.,L; k=0,1,.. '\%_2 -1

_(L-D)2x

L WG (k)

(LD 2x

Mepoint
recombine

algebra

—

- WG, ()

——CQX(M/L-1)
—C (ML)
1

X(VIT+1)

X(2M/L-1)

——QX(N-I/L)
—— QX (M-I +1)

X(M-1)

Figure 2.2: The second step in the decimation-in-time algorithm.

The decimation of the data sequence can be repeated again and again until a series of

L-point DFT’s as shown in Figure 2.3 is reached.

20)O=—— IL-point [T = N/L*-point ;—: — —0x(0)
= Ieembne | L L zpoint £ o
Lpoint [. R | recombine . : Vo
) . I’- -_—_—— T - 1 - 1
L FT :) N/LZ-po_mt ! 1 algebra : 1 :
, recombine | ;1 '] !
—_dlgebra_—— | _— ——CX(NI-1)
—_———— . —_—-———- .) !)
) N/ -point T i 1 ' QA(ML)
'llea(igé{ngle I N/L-point | _ v Nepoint :__OX(NL b
"""" © 77T 5| recombine P | : :
e B sy .
yM/L*point T I 1 algebra | : , tecombine '
; recombine | ;o o o
—_algebra S /1 algebra L(2NVIL-1)
5 i t= : 5
........ : 1 |
: : Do Lo
e e N —_————— R : 1 "
- Nfﬁz-pc:r_int -) | f QXD N'_L)
recombine |2 L -point [T OXQENIHD
L-point o U e e o .o : i
DFT ... : : S recombine i i 1
— el ettt R I
- | y W/Lpoint ' 1 1 algebra ! i
: L-point : ; recombine | I ! ' : v
*(0F1)O—— DFT [~ — _algebra —— . _ X(-1)

Figure 2.3: The last step in the decimation-in-time algorithm.

Since each stage takes approx LZX'(N/L).= LN complex multiplications and there are
log N (= S) stages, the total number of complex multiplications is LNlog; N. This means that
this decimation approach has reduced the-aumber of €omplex multiplications from approx N
to LNIog N. In section 2.2 we will derive the L=point FFT which can reduce a little more

complex multiplications and then replace the L-point DFT with the L-point FFT.

Another important observation is on the order of the input sequence after it is decimated
(S-1) times. For example, if we consider the case where N = 9 and L = 3, we know that the
decimation yields the sequence in the order of: {X(0), X(3), X(6), X(1), X(4), X(7), X(2), X(5),
X(8)}. An algorithm which can re-order the input data sequence will be discussed in section

2.3.

2.2 L-point FFT

We have derived the decimation-in-time algorithm which can reduce the amount of

computation significantly for any single-radix FFT. But the decimated result is not the

simplest since the equation of the L-point DFT has conjugate pairs that can be simplified.

Here we will show the process of deriving the 3-point FFT from the equation of the
3-point DFT as an example and then show the 4-point FFT and 5-point FFT. Finally, we will
have a table to compare the amount of computation of these three algorithms with that of the

radix-2 FFT.

2.2.1 3-point FFT

Let us consider the case of the 3-point DFT. According to equations:

X (0) = X(0) + X(1) + X(2)

X(1)=x(O0)+e 2 x(D)+e * x(2)
27 2

X (2) = x(0) e 3 x(1)+e 2 x(2)

We can obtain the visual representation of the 3-point DFT as shown in Figure 2.4.

() X0

z(1) X

z(2) X2

Figure 2.4: The visual representation of the 3-point DFT.

The 3-point DFT requires 4 complex multiplications and 6 complex additions. Thus if we
consider the computation of the N3 (= 38)-point DFT, the decimation approach will require

(4N3/3)logzN; complex multiplications and 2Nslogz;N; complex additions.

Let us pay attention to the equations of 3-point DFT, and then we can find that there are
only two multiplications, exp(j2n/3) and exp(-j2n/3). Since these two complex values are

conjugate, they have equal real-part and inverse imaginary-part. Hence we can rewrite the

10

equations as follows:

X (0) = X (0)+W.X (1) + WX (2)

X (1)= X (0)+ cos(z?”) (WYX 1)+ WX (2)]~] sin(z?ﬂ) (WX (1) =W X (2)]

X(2)= X (0)+ cos(%”) (WX (1) + WX (2)]+] sin(zTﬂ) (WX (1) -Wi X (2)]

According to these new equations, we can obtain the visual representation of the 3-point

FFT as shown in Figure 2.5. We call this a “Butterfly Structure” of the radix-3 FFT.

=) - b))

2,
0 skl
W; [:1 8 = y)

1)

Y. o
20 il
W3 Jem 3)

1 X

Figure 2.5: The visual représentation of the 3-point FFT (Butterfly structure).

The 3-point FFT requires 3 complex (2 complex + 2 real) multiplications and 6 complex
additions. Thus if we consider the computation of the N3-point FFT, the decimation approach

will require N3logzN3; complex multiplications and 2NslogsN3; complex additions.

2.2.2 4-point FFT

We directly consider the visual representation of the 4-point DFT as shown in Figure 2.6.

x(0) X(0)
x(1) X(1)
x(2) X(2)
x(3) X(3)

Figure 2.6: The visual representation of the 4-point DFT.

11

The 4-point DFT requires 9 complex multiplications and 12 complex additions. Thus if we
consider the computation of the N4 (= 48)-point DFT, the decimation approach will require

(9N4/4)logaN4 complex multiplications and 3N4logsN4 complex additions.

And then we consider the visual representation of the 4-point FFT as shown in Figure 2.7.

We call this a “Butterfly Structure” of the radix-4 FFT.

x(0) \/\ / X(0)
x(1) W) X(1)

2.0

x(2) W, X2

30

x(3) .

X(3)

Figure 2.7: The visual representation of the 4-point FFT (Butterfly Structure).

The 4-point FFT requires 3 complex multiplications and 8 complex additions, thus if we
consider the computation of the Ns-point FFT, the decimation approach will require

(3N4/4)logsN4 complex multiplications and 2N4logsN4 complex additions.

2.2.3 S5-point FFT

We directly give the visual representation of the 5-point DFT as shown in Figure 2.8.

x(0) X(0)
x(1) X(1)
X(2) X(2)
x(3) X(3)
x(4) X(4)

Figure 2.8: The visual representation of the 5-point DFT.

The 5-point DFT requires 16 complex multiplications and 20 complex additions, thus if

12

we consider the computation of the Ns (= SS)-point DFT, the decimation approach will require

(16Ns/5)logsNs complex multiplications and 4NslogsNs complex additions.

And then we give the “Butterfly Structure” of the 5-point FFT as shown in Figure 2.9.

x(0) X(0)

x(1)

X(1)

x(2)

x(3)

X(3)

x(4)

X(4)

Figure 2.9: The visual representation of the 5-point FFT (Butterfly Structure).

The 5-point FFT requires 8 complex (4 complex + 8 real) and 16 complex additions. Thus
if we consider the computation of the Ns-point FET, the decimation approach will require

(8Ns/5)logsNs complex multiplications and (16Ns/5)logsNs complex additions.

Obviously, the number of complex multiplications is reduced again by replacing L-point

DFT with L -point FFT. We have final comparison as shown in Table 2.1.

algorithm radix-2 FFT = radix-3 FFT radix-4 FFT radix-5 FFT
complex multiplication (N2))log:N MogsN GBNDHlog:N (8NIS)logsN
complex addition Mog:N 2Mog:N 2Mog:N (16NI5)logsNV

Table 2.1: The comparison of computation complexity of different FFT algorithms.

Although radix-2 FFT has the minimum number of complex multiplication (N/2) for each
stage, however other single-radix FFT’s have fewer number of computation stages. Thus other
algorithms could have better performance in speed than radix-2 FFT in certain circumstances.

This will be discussed further in section 2.4.

2.3 Re-Ordering Algorithm for Input Sequence

13

The process of decimating the signal in the time domain has made input samples need to
be re-ordered. For a 9-point signal, the original order of the samples is 0, 1, 2, 3, 4, 5, 6, 7 and
8. But after decimating by radix-3 FFT the order becomes 0, 3, 6, 1,4, 7, 2, 5 and 8. The order
can be obtained by representing the number in the ternary form as follows in Figure 2.10. In
the figure, once the numbers are represented in the ternary form, the digits of the representing
ternary bits are reversed. The new numbers represented by the reversed digits are the new

sequence which is to be applied to the decimated FFT.

ORIGINAL INPUT RE-ORDERED INPUT
Decimal Temary Ternary Decimal
0 00 00 0
1 01 10 3
2 02 20 6
3 10 o1 1
4 11 - 11 4
5 12 pit-reversal 21 7
6 20 02 2
7 21 12 5
8 22 22 8

Figure 2.10: The process of re-ordering the input samples for radix-3 FFT.

| stage 1 stage 2 |

2(0) .
< 7
26— >§J'sin<2ﬂf3)‘><_ \></ X2)
%(1) i m %(3)
AN/ NN
/ SNKZ
\

_; snf 23

FA)]

Xl

§<
:
]
5
S|

%Ség\

z(4)

Wﬂ
X -1
i Jsin(2a /%)
z(7) <o »
w0

25— >< Cel; _><1j Wy
2(8)—% F L) .

Figure 2.11: 9-point decimation-in-time FFT algorithm.

HE)

14

For the illustrative purpose, we depict the computation of 9-point FFT in Figure 2.11. The
computation is performed in two stages, beginning with the computations of three 3-point

FFT’s, and finally one 9-point recombine algebra.

As for the radix-4 FFT or radix-5 FFT, we can also apply the same bit-reversal procedure
to re-order the in put sequence. In the process, we have to remember to first represent the

numbers in the quaternary and quinary form respectively.

2.4 Speed Ratio of Radix-L FFT to Radix-2 FFT

In section 2.2, we have a table to compare the computation complexity of different
single-radix FFT’s. In this section, however we will use the idea of butterfly structure to
obtain the same result. We will count how many butterfly structures are used for an algorithm.
We have an equation to obtain th¢ amount of butterfly structures for each algorithm, that is,

radix-L FFT: (N /E)og N5~ N, is of the power of L
L=2,3,4,5

Where N /L is the number of butterfly structures at each stage and log; N is the number of

stages for an algorithm. The computation time of a butterfly structure (T) is:

total run-time Toin

radix-L FFT:T, = =
amount of butterfly structures (N, /L)log, N,

Because the computation time of the process of re-ordering is very small and can be

ignored, so we can directly use the total run-time of the radix-L FFT to calculate T,.

We use MATLAB to run the radix-L FFT, record the total run-time and the amount of

butterfly structures for each algorithm, and then we can obtain T for each algorithm as shown

in Table 2.2.

15

I P T 7i T;
us 1.76 2.59 3.47 4.69

Table 2.2: The computation time of a butterfly structure for each algorithm.

After obtaining T, for each algorithm, we can start to calculate the speed ratio. Let us
assume the numbers of sampling points N, is very close to N3, N4y and Ns in value, then

according to the following equation,

(A
zfrun—L _ lTL(NL/L)IOgLNL %-_Il:zxz'logzL
X
ﬁrun—z ﬁz (N,/2)log, N, :

when N, =~ N

speed ratio (L to 2)

We can easily calculate the speed ratio of radix-L FFT to radix-2 FFT as shown in Table

2.3.

algorithm radix-2 FFT radix<3 FFT - radix-4 FFT radix-5 FFT
speed ratio 1 102 - log3 = 1.01 - log4 0.94 - log:5

Table 2.3: The speed ratio of radix-L FFT to radix-2 FFT.

Obviously, the computation speed ratio of radix-L FFT to radix-2 FFT is very close to
log,L which is larger than one. So, radix-3 FFT, radix-4 FFT and radix-5 FFT have a better

performance than does the radix-2 FFT.

2.5 Numbers of Sampling Points

As discussed, radix-L FFT’s have a speed performance improvement over the radix-2 FFT,
there is another issue which needs to be considered. That is the number of numbers of

sampling points which can be applied by FFT’s. In the following, we will discuss this issue.

For the radix-2 FFT, the number of sampling points which can be applied by the FFT must

16

be a number equal to 2% where k is a natural number. Similarly for the radix-3 FFT, the
number of sampling points must be one of the series 3% Table 2.4 lists the numbers of
sampling points that can be applied by the radix-3 FFT under the value 10000. There are only
8 numbers of sampling points. This is fewer than that of the radix-2 FFT, which is 13. The
higher radix FFT, the fewer this number. For radix-4 and radix-5 FFT, the number becomes 6
and 5 respectively. This is a drawback for using a higher radix FFT.

Vg 1 2 3 4 5 6 7 8

3¢ 3 9 27 81 243 729 2187 6561
distance - 6 18 54 162 436 1458 4374

Table 2.4: The numbers of sampling points which can be applied by the radix-3 FFT

under the value 10000.

Chapter 3 Mixed-Radix FFT

17

As we have discussed in the previous chapter, the FFT’s other than radix-2 have the
advantages of speed improvement but have the drawback that the numbers of sampling points
become less. A good solution for bypassing the drawback is that we can apply FFT’s for a set
of sampling points by dividing the computation stages into several groups and apply the FFT
of different radix for each group of computation stages. We call this the “mixed radix-FFT”

algorithm.

In this chapter, we will derive the mixed-radix FFT based on the results obtained in the
previous chapter. First we will discuss the case of two radixes, i.e., radix-A/B FFT, and then

the case of three radixes, i.e., radix-A/B/C FFT.

3.1 Radix-A/B FFT

Radix-A/B FFT has two factors A and B. According to the order of permutation of these
two factors, there will be several formis of algorithm that can be used to decimate the data

sequence. For example, if the data sequence has N'(= A’xB) points, there will be three forms

of permutation of A and B, i.e., AAB, ABA and BAA. We only consider the permutation

AA...ABB...B since all other permutations can be applied the same analysis.

3.1.1 Decimation-In-Time Algorithm
Let us consider the data sequence x(n) with N (= A™xB™) sampling points. First we

decimate the data sequence by a factor of A repeatedly until the data sequence is split into A™
data sequences of which each has B™ sampling points. And then we decimate each of these
data sequences further by a factor of B repeatedly until these data sequences each is a series of

B-point FFT’s. This process can be shown as in Figure 3.1.

18

20— — X(0)
: mB-stage md-stage [(1)
: . —— X(2)
Amd-block : Mopoint .
BB _point recombine
: FFT algebra :
21— — H(N-1)

decimated by radiz-B || decimated by radiz-A |

Figure 3.1: The radix-A/B FFT decimation.

In the figure, ‘mA-stage’ means the data sequence is decimated by the radix-A algorithm
(mA-1) times, ‘mB-stage’ means the data sequences are decimated by the radix-B algorithm
(MB-1) times, and ‘A™-block and B™-point’ means there are A™ data sequences with B™

sampling points for each sequence.

70— . — (0
, A-poitit ()

%) FFT .

X(4:I] 5—pomt - :}{:(2)

recombine

=) . algebra L0

%(3) ——| A-poitit I 7

w5— | FFT I 7

B |
" decimated by radiz-3 | decimated by radiz-2 |

Figure 3.2: The 6-point FFT computed by the radix-2/3 algorithm.

For an example, Figure 3.2 depicts the 6-point FFT computed by the radix-2/3 algorithm
which is stated above. We observe that the data sequence is finally decimated into two 3-point
FFT’s. Besides using the radix-2/3 algorithm, we can also use the radix-3/2 algorithm to do
the same 6-point FFT. For this case, the data sequence is finally decimated into three 2-point

FFT’s as shown in Figure 3.3.

19

HO— 2 point —*O0
“3__ | FFT I
S P reciﬁ; —
x4y —— FFT algebra [——U3)
22— 2_point —X&)
x5 | FFT)

0 I |
decirnated by radix-2 || decirated by radiz-3 |

Figure 3.3: The 6-point FFT computed by the radix-3/2 algorithm.

3.1.2 Re-Ordering Algorithm for Input Sequence

The re-ordering algorithm used for the radix-A/B FFT is very different from that used for
the single-radix FFT. Since there are.two factots in the algorithm, the previous bit-reversal

procedure can not be used directly.

Here we consider the process;of the deecimation-in-time algorithm. We first use the radix-A
to decimate the data sequence to reach-several blocks. We observe the order of the data
sequence in every block and try to find a mathematical relation to describe such result. And
then we use the radix-B to decimate each block which has B™ sampling points. Before
decimating, we re-assign numbers beginning from 0 to the data sequences in each block and
record the true order and the new number of each data. After this, we use the bit-reversal
(radix-B re-ordering) procedure to re-order the data in each block. Finally, we can obtain the

input order according to the previous record.

However the above method is a little bit complicated. We can directly find a mathematical
relation to describe the input order. The following Figure 3.4 depicts the 6-point radix-2/3

re-ordering algorithm. This algorithm can be extended to radix-A/B.

20

<
I
=
1
12
-]

N, -point radiz-2 re-ordering

2

1 2 =2 +|0

7 4 4
—

3 1

4 3 =4+ |1

5 5

l

(My-point radiz-3 reordering) < M

Figure 3.4: The 6-point radix-2/3 re-ordering algorithm.

In the figure, ‘0, 1, 2, 3, 4, 5° means the original order, ‘0, 2, 4, 1, 3, 5’ means the
decimated order and the part written on the right of the equal sign is the re-ordering algorithm.
‘N;-point radix-2 re-ordering’ means using bit-reversal (radix-2 re-ordering) to re-order the
sequence of numbers 0...N;-1 where Ny is of the power of 2. ‘(N,-point radix-3 re-ordering) x
N;’ means using bit-reversal (tadix:3 tc-ordering) -to re-order the sequence of numbers

0...N,-1 where N; is of the power of 3, and thensmultiplied by the sequence N;.

One thing to be noted is that: For applying the radix-A/B FFT or the radix-B/A FFT, the
order of A and B will give different run-time. Table 3.1 compares the computation speed for

the radix-A/B FFT and the radix-B/A FFT under the different conditions.

A > B% B¥ > 4
radix-A/B FFT slow fast

radix-B/A FFT fast slow

Table 3.1: A comparison of the radix-A/B FFT and the radix-B/A FFT.

3.2 Radix-A/B/C FFT

21

For the three radixes A, B and C, there are permutations of radix-A/B/C FFT, radix-A/C/B
FFT, radix-B/A/C FFT, radix-B/C/A FFT, radix-C/A/B FFT and radix-C/B/A FFT. Here we
only discuss for the case of the radix-A/B/C FFT, and all other permutations of radix order are

the same.

3.2.1 Decimation-In-Time Algorithm
Let us consider the data sequence x(n) with N (= A™xB™xC™®) sampling points. First the

data sequence is decimated by a factor of A repeatedly until the data sequence is split into A™

data sequences for which each sequence has (B™xC™) sampling points. And then each of

these data sequences is decimated by the factor of B repeatedly until each sequence is split
into B™ data sequences for which each sequence has cme sampling points. Hence, now we
have altogether (A™xB™®) data sequeices for which each sequence has C™ sampling points.
Finally, each of these sequences-is decimated by the factor of C repeatedly until it reaches a
series of C-point FFT’s. In other-words; the-radix-A/B/C FFT uses the radix-A algorithm, the
radix-B algorithm and the radix-C"algorithm in turn to decimate the DFT computation as

shown in Figure 3.5.

() —— mH-stage — 240)
. m-stage prd-stage [2 1)
- | Amiblock | — (2
Amde fmE block| - : Apomt .
v BT point | :
e opeint : _ ;| recombine
c recombine :
: FET c : algebra :
2(V-1)—— dlgebra —— X(-1)
le Il IL. |

Wecimated by radiz-C7 decimated by radiz-B | decimated by radiz-4

Figure 3.5: The Radix-A/B/C FFT decimation.

In the figure, ‘mA-stage’ means the data sequence is decimated by the radix-A algorithm

22

(mA-1) times, ‘mB-stage’ means the data sequences are decimated by the radix-B algorithm
(mB-1) times, ‘mC-stage’ means the data sequences are decimated by the radix-C algorithm

(MC-1) times, ‘A™xB™-block and C™ -point’ means there are (A™xB™) data sequences with
C™ sampling points for each sequence and ‘A™-block and (B™xC™)-point’ means there are

A™ data sequences with (B™xC™) data points for each sequence.

For example, Figure 3.6 depicts the 30-point FFT computed by the radix-2/3/5 algorithm.
We observe that the data sequence is decimated into two 15-point FFT’s first and then these

two 15-point FFT’s are decimated into three 5-point FFT’s, respectively.

E} J-point [b
5FF'T1; 15-point
-poin
IZ:} FpFT [:; recotbine E:J‘
5 pomt algebra
IZ:} ET IZ:’ 30-point
%) = 5 pomt q m:mf n
gebra
;pit 15-point
IZ:’ EET [:; recombine E}
5 pomt algebra
E:? FFT E:J

Figure 3.6: The 30-point FFT computed by the radix-2/3/5 algorithm.

This 30-point FFT can also be done by using other five algorithms of different order of 2,
3 and 5. Although the structures of computation and the order of input sequences are different,

the obtained results are still the same.

3.2.2 Re-Ordering Algorithm for Input Sequence

23

Similar to section 3.1.2, here again we will find a mathematical relationship to describe
the input order directly. We use radix-2/3/5 as an example to re-order a 30-point sequence in

Figure 3.7. The procedure can be extended to the general case of the radix-A/B/C.

N =30=[2]{3] 5]
111
.-."\'rl 3_.'2 J\-’} Jﬂf = .-.?\-'rl ’ ;.7-_.'2
01234567 8% 1011121314 15 16 17 18 1% 20 21 22 25 24 25 26 27 28 29

061218 24 2 8 14 20 26 4 10 16 22 2817 13 1% 25 5 % 15 21 27 5 11 17 23 28
I 1 I 1 I 1

061218 24|06 12 18 24|10 6 12 18 24|06 12 18 24|06 12 18 240 & 12 15 24

+ + + + + +

B 2 | 4 0 2 4

+ + + + + +
™o 1

N -point radiz-2 re-ordering
(Ay-point radiz-3 re-ordering) X A
(My-point radiz-5 re-ordering) = A

Figure 3.7: The illustrationof a 30-point radix-2/3/5 re-ordering algorithm.

In the figure, the first sequence is.in the original order, the second sequence is in the
decimated order and the part written under the equal sign is the re-ordering algorithm.
‘N;-point radix-2 re-ordering’ means using bit-reversal (radix-2 re-ordering) to re-order the
sequence of numbers 0...N;-1 where N; is of the power of 2, and ‘(N,-point radix-3
re-ordering) x N;’ and ‘(N3-point radix-5 re-ordering) x A/ are similar to those discussed in

section 3.1.2.

Chapter 4 Radix-2/4/3/5 FFT and Interpolation

24

Now we can use the radix-2/3/5 FFT to replace the radix-2 FFT, but we still want to speed
up the radix-2/3/5 FFT and extend the numbers of sampling points to more numbers. To do
this, we will replace the radix-2 algorithm in the radix-2/3/5 FFT with the radix-2/4 algorithm,
thus we will obtain the radix-2/4/3/5 FFT. Furthermore, we will add the concept of

interpolation to extend the applicable numbers of sampling points to any number.

4.1 Radix-2/4/3/5 FFT Algorithm

For a data sequence X(n) with N (= 2™ x3™x5™) sampling points, we replace the radix-2

algorithm with the radix-2/4 algorithm, in other words, we consider the data sequence X(n) to

be N (= 2™x4™x3™x5™) sampling points. This reduces the number of computation stages

since m2’ is larger than (M2 + m4).

The computation of the radix-2/4/3/5 FET is shown in Figure 4.1.

20— 1 mi3-stage] wd-stage (0
: m3-stage — — — m2-stage — X(1)
0 amdydmt _bloclk 0 2m2 block 0] — ()
Zrdydmby 3wE hlock | s : . Aopoint .
0 3By mipoint v dmbGrEc i omt|)
Sm3_poimnt : E : recombine
E recombine : recombing :
0 FFT : : : algebra :
=(V-1) —— | oalgebra L | algebra L | 7 A

| | | | |
ldecimated by radiz-5 | | decimated by radiz-3 | | decimated by radiz-4 | | decimated by radiz-2 |

Figure 4.1: The radix-2/4/3/5 FFT decimation.

As for the re-ordering algorithm, it is the same as that of Figure 3.8, except that the
N;-point radix-2 re-ordering must be replaced with the N;-point radix-2/4 re-ordering as

shown in Figure 4.2.

25

N=30=[2]3][s]:
;',\-"1 .-.hﬁ"z 3‘\-"3 ‘1.;'.(- .-.'\"1 : .-.'\"2
D1234567885 1011121314 15 16 17 18 1% 20 21 22 23 24 25 26 27 28 29

06 12 18 24 2 8 14 20 264 10 16 22 28 1 7 13 19 25 3 9 15 21 27 5 11 17 23 28
I 1 I I I I

06 12 18 24|10 6 12 18 240 & 12 18 240 6 12 18 24|10 & 12 18 2410 & 12 18 24

+ + + + + +

K 2 | 4 0 2 4

+ + + + + +
=lo 1

N -point radiz-2/4 re-ordering
(A -point radiz-3 re-ordering) »)
(My-point radiz-5 re-ordering) < A

Figure 4.2: The 30-point radix-2/4/3/5 re-ordering algorithm.

In the figure, the ‘radix-2/4 re-ordering’.is_the radix-A/B re-ordering algorithm discussed

in section 3.1.2.

4.2 Interpolation Algorithm

The purpose of this algorithm is that it is to re-sample the sampled data so that the number
of sampling points can be applied by the radix-2/4/3/5 FFT. For example, if there is a data
sequence X(n) for a signal with N (= any number) sampling points, interpolation can re-sample
X(n) and then we can obtain another similar sequence X’(n), which expresses the same signal,

with N” (= 2™x4™x3™x5™) sampling points. In order to shorten the run-time of interpolation

and reduce the difference between X(n) and X’(n), we use the linear interpolation which is
shown in Figure 4.3. In the figure, there is a data sequence X(n) with 6 sampling points in (a).
We use a straight line passing through two points of X(n) to approximate the actual curve and
then represent the interpolated signal with a new set of sequence X’(n) with 10 sampling

points placed in equal time interval as shown in (c).

26

T t 1 I R Sy

(b)

TTTTTIITTTX'(H}INE'IU

(c)

Figure 4.3: The illustration of linear interpolation.

The following Figure 4.4 depicts the flow chart of an N-point FFT operated by the new

algorithm.

N-point find a number N |- . 5 4 mn s
sampled data to approximate N N =2 T5A™ 3™ 5™

N is any number

h 4

transform the

_ | N’-point data from
"| time domain into
frequency domain

interpolate the N-point
sampled data to obtain
another N’-point data

radix-2/4,3,5
FFT
algorithm

linear interpolation
algorithm

v
N’-point
spectrum

Figure 4.4: The flow chart of N-point FFT operated by the new algorithm.

4.3 Simulation Results

To illustrate the advantage of the radix-2/4/3/5 FFT on the applicable number of sampling
points, we do the following experiment: Within the range from 1 to 10000, we choose 50

groups of Ns evenly. The numbers of sampling points (Ns) and the data sequences are

27

obtained from the procedure as follows:

for (1i=1:50)
Ns(1)=111+(i-1)*200;
for (j=1:Ns(1))
x(i)=;
end

end

We plot the required numbers of sampling points for which the FFT algorithms can be
applied in terms of the number of sampling points for the single-radix FFT’s in Figure 4.5 and

for the mixed-radix FFT’s in Figure 4.6.

15000
14000 - g
12000 - .

= —— DFT

E’ 10000 - radix-2 FFT +’“’F

= —&— radix-3 FFT

£ —e radixd FFT et

£ 8000+ radix-5 FFT el 4

E)&M

2 o0} i -

1]

E

4000 f M"j ;
2000 - i el) 4
o
s 1 1

D 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 BODO 7000 8000 S000 10000
number of sampling points (Ms)

Figure 4.5: The comparison of applicable number (Ni) of sampling points which can be

applied by the single-radix FFT’s.

In the figure, ‘DFT’ means using discrete Fourier transform which can be applied with any
number of sampling points. Thus ‘DFT’ is a straight line. The radix-2 FFT has the most
numbers of sampling points than any other single-radix FFT as discussed in section 2.5 since

it has the minimum step-level in the figure. The larger the decimating factor is, the larger the

28

step-level is. Hence, it is not a good idea to use the single-radix FFT’s.

12000 T T T T T T T T T
10000 -
2 6000f —— DFT
g —& radix-2,3 FFT
= radix-2 5 FFT
= .
_; Go00 = radix-2 ,3,5 FFT i
=
<
=3 e
£ 4000 E
2000 4

0 - 1 1 1 1 I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 S000 10000
number of sampling points (Ms)

Figure 4.6: The comparison of applicable.number (Ni) of sampling points which can be

applied by the mixed-radix FFT’s.

Figure 4.6 shows the similar plots for the mixed-radix FFT’s. In the figure, ‘radix-2,3
FFT’ includes two algorithms, i.e., radix-2/3 FET and radix-3/2 FFT, since they have the same
number of re-sampled points. And so does for the ‘radix-2,5 FFT’ and ‘radix-2,3,5 FFT".
From the figure, we can find that ‘radix-2,3 FFT’, ‘radix-2,5 FFT” and ‘radix-2,3,5 FFT’ all
follow the straight line of ‘DFT’, and as Ns is larger, the step-levels of ‘radix-2,3 FFT’ and
‘radix-2,5 FFT’ are larger too. As for the ‘radix-2,3,5 FFT’, it has the smallest step-level and

approaches that of the ‘DFT’.

29

1000 T T T T T T T T T

800 1

500 —& radix-2,3 FFT
radiz-2 5 FFT
400+ - radix-235FFT

200

AN (M- Ms)

-200

-400

500 1

_BDD 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 G000 92000 10000

number of sampling points (Ms)

Figure 4.7: The comparison of AN (Ni - Ns) for different mixed-radix FFT’s.

Figure 4.7 shows the AN (Ni - Ns) plots.which are derived from data from Figure 4.6 for
each mixed-radix FFT. Obviously,. ‘radix-2;5. FET’ has the maximum amplitude and
‘radix-2,3,5 FFT’ has the minimum amplitude: To further demonstrate the above property is to
plot the data in the form of 1 - JAN/Ns| versus the number of sampling points as shown in

Figure 4.8.

- AN £ Ns|

1

08y & radix23 FFT 7
radix-2,5 FFT
& radix-2,35 FFT
0.65

0 1000 2000 3000 4000 5000 6000 7OOO 8000 5000 10000
number of sampling points (Ms)

Figure 4.8: The comparison of 1 - |AN/Ns| for different mixed-radix FFT’s.

30

Since interpolation modifies the original signal and introduces effectively noise to the
signal, it is interesting to investigate how the S/N of the signal will be affected by the
interpolation process. The 1 - |[AN/Ns| figure reflects indirectly the S/N of the processed signal.
In the figure, it can be seen that the radix-2,3,5 FFT has the best S/N than other two
algorithms. However, as for other two algorithms, their S/N’s are not too bad since their

values of 1 - |AN/Ns| are all larger than 0.9.

Next, we will compare the run-time for different FFT algorithms. First we compare the
run-times of the radix-2 FFT and the radix-2/4 FFT as shown in Figure 4.9 and then compare
the run-times of the radix-2,3,5 FFT and the radix-2/4,3,5 FFT as shown in Figure 4.10 since

they have the same numbers of re-sampled points, respectively.

- 0.06 —&~ radix-2 FFT
—— radix-2/4 FFT

pE i I I I I I 1 I I 1
1] 1000 2000 3000 4000 5000 GOOO 7000 S000 5000 10000
number of sampling points (Ms)

Figure 4.9: The comparison of run-times of radix-2 FFT and radix-2/4 FFT.

Obviously, the radix-2/4 FFT is faster than radix-2 FFT and the run-time of radix-2/4 FFT
is almost half of that of radix-2 FFT. This result is consistent with that of Table 2.3. In this
experiment, for the radix-2/4 FFT, only the first stage is decimated by the factor 2, and all

other stages are decimated by the factor 4. So, the radix-2/4 FFT is almost the same as the

31

radix-4 FFT, except that the number of sampling points that can be applied to radix-2/4 FFT is

of the power of 2, not of the power of 4.

.09 T T T T T T T T T

0.03 -

0.07 -

0.08 -

0.05r —& radix-2,35 FFT
—&— radix-2/4 35 FFT

0.04 -

rur-time (sec)

003

002

001 r

] i 1 | | 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 GBOOD 7OOO 8000 9000 10000
number of sampling points (Ms)

Figure 4.10: The comparison of run-times of radix-2,3,5 FFT and radix-2/4,3,5 FFT.

In this experiment, the radix=2/4,3,5 FFT was obtained by replacing the radix-2 algorithm
of the radix-2,3,5 FFT with the radix-2/4 algorithm. From this figure, we can see that the
radix-2/4,3,5 FFT is faster than the radix-2,3,5 FFT, but there are some positions that these

two algorithms overlap. This is because the numbers of re-sampled points are (2x3™x5™)

where the radix-2/4,3,5 FFT is the same as the radix-2,3,5 FFT.

The comparison of run-times of radix-2,3 FFT, radix-2,5 FFT and radix-2,3,5 FFT that
have similar numbers of re-sampled points is shown in Figure 4.11 . Obviously, radix-2,3 FFT
and radix-2,5 FFT have similar performance of computation speed but the radix-2,3,5 FFT has

a better computation speed performance than the above two algorithms generally.

32

0.1 T T T T T

0.09 -

0.05 -

0.07 -

B —&— radix-2,3 FFT
0.08 radix-2,5 FFT
—= radix-2,35FFT

run-tirme [sec)
(o]
—_
(]

number of sampling points (Ms)

Figure 4.11: The comparison of run-times of radix-2,3 FFT, radix-2,5 FFT and

radix-2,3,5 FFT.

And the comparison of run-times of radix-2,3 FFT, radix-2,5 FFT and radix-2/4,3,5 FFT is

shown in Figure 4.12. Obviously; radix-2/4,3,5 FFT is much better than other two algorithms.

0.1 : : : : : : : : :
0.08 - -
ﬁ;d{'\!'
005+ | \, |' -
o.o7 b Lol §
% ;
005 —2 radix-2,3 FFT f’
: radix-2 .5 FFT
0.05 —&— radix-2/4 35 FFT

run-time (sec)

0.04

0.03

0.02

0.m

number of sampling points (Ms)

Figure 4.12: The comparison of run-times of radix-2,3 FFT, radix-2,5 FFT and

radix-2/4,3,5 FFT.

33

As a conclusion, based on results of Figures 4.6, 4.7, 4.8 and 4.12, we can conclude that
the radix-2/4,3,5 FFT cooperating with interpolation is the best algorithm in doing FFT which
satisfy both the requirements of the performance of computation speed and the applicable

numbers of sampling points.

4.4 Examples

In this section we further use two examples applied with the above developed FFT
algorithms to show their effectiveness. One example is to transform a multi-tone signal which
is often used as a test input for a mixed signal testing, and the other is a square wave signal
applied with the algorithm. The results are also shown in terms of the applicable number of
sampling points, the run-time, and the introduced noise due to the interpolating the data points

on the signal.

4.4.1 Multi-tone Signal

_3 1 1 1 1 1 1 1 1 1
1] 100 200 300 400 500 GO0 700 800 500 1000
sample, n

Figure 4.13: The waveform of the multi-tone signal.

This signal contains 4 tones, the frequency and magnitude of each tone and the sampling

34

frequency are shown as follows and the signal is plotted in Figure 4.13. The frequencies are

described in the form of bin number.

f=[13 5 7]*115;

m=[1111];

nyquist=max(f)*2;

for (1=1:50)
fs(i)=nyquist+1-+(i-1)*200;

end

We plot the required numbers of sampling points for which the FFT algorithms can be
applied in terms of the number of sampling points for the FFT’s in Figure 4.14. Still, we can
see that the radix-2/4,3,5 algorithm is the best algorithm which can take the most of number
of applicable data points while othersalgorithnis all have limited number of applicable data

points.

14000 : : . . .
12000 F -
10000 | — DFT .

= radiz-2/4 FFT

= e radin2 3 FFT

= I radix-25 FFT]

£ 8000 radix-2/4 3,5 FFT

=

=]

I

& GO0t i

(=)

o

=

=

= dooof .

2000} -
EI 1 1 1 1 1
0 2000 4000 000 5000 10000 12000

number of sampling points (Ms)

Figure 4.14: The comparison of applicable number (Ni) of sampling points which can be

applied by the FFT’s.

Next, we will compare the run-time for different FFT algorithms as shown in Figure 4.15.

35

0.1

003 -

0.08 -

0.08 -

rur-time (sec)

0.05r

0.03 -

002

0.01

radix-2f4 FFT
—&- radix-2 3 FFT

radix-2 5 FFT
—&— radix-2/4 35 FFT

1]

1 1 1 1
4000 FO00 a0o0 10000 12000
number of sampling points (Ms)

2000

Figure 4.15: The comparison of run-times of different FFT algorithms.

In the figure, we can see that the radix-2/4,3.5.algorithm has the best run-time among all the

algorithms except the radix-2/4 algorithm. The radix-2/4 algorithm has the least run-time

because the number of data points are less than that of the radix-2/4,3,5 algorithm.

E S
= =
D 305)
= = o7 £ a8 |
o radin-2/4 FFT . ke A R
3 A —& radin-2 3 FFT 3 —&- radic2 3FFT
B radix-2 5 FFT = radin2 5 FFT
g —& radix2/4 35 FFT g, —6 radic24.35 FFT
T 315 z
= =
@ @
32 \ \ \ \ \ 45 \ . \ \ \
1] 2000 4000 6000 8000 10000 12000 1] 2000 4000 6000 8000 10000 12000
number of sampling points (Ns) number of sampling points (Ns)
(a) (b}
-3
-4
= =
i} o 5
= =
@ = i
< A5 — DFT s B T DFT
2 radin-2/4 FFT 2 radix-2f4 FFT
s ks — radi-2,3 FFT 2 7 —& radiv-2,3 FFT
S . radix-2,5 FFT 5 g ‘ radix-2,5 FFT
£ : —&— radix-2/4 35 FFT £ —&— radix-2/435 FFT
g & z 9
= =
@ @
-68.5 -10
A &
7 \ \ \ \ \ A1 T, . \ \ \
1] 2000 4000 6000 8000 10000 12000 1] 2000 4000 6000 8000 10000 12000
number of sampling points (Ns) number of sampling points (Ne)
(c) (d

Figure 4.16: The comparisons of magnitudes of each tone of different FFT algorithms

(a) 1** tone, (b) 2™ tone, (c) 3" tone, and (d) 4™ tone.

36

Figure 4.16 plots the obtained magnitudes of each tone in terms of the number of data
points for each algorithm. For reference, the magnitudes obtained by using the DFT, which
can be considered to be the ideal case transformation, are also plotted. It is seen that the
magnitudes of the tones obtained through all FFT algorithms increase with the number of data
points since more data points more accurate the obtained values. Figure 4.17 shows the

combined magnitude of the four tones where we see the same trend.

35
at 4
%‘ 25+ i
=
[
=
T 2t |
&
£
£ —— DFT
= 15| radin-2/4 FFT 1
& radiz-2 3 FFT
tadiz-25 FFT
1r y —&— radix-24 35 FFT i
05) 1 | 1 1
o 2000 4000 000 000 10000 12000

number of sampling points (Ms)

Figure 4.17: The comparison of magnitudes of signal of different FFT algorithms.

Figure 4.18 plots the introduced noises in terms of the number of data points due to
interpolating process for each algorithm. Figure 4.18 (a) also includes the noise obtained for
the original four-tone signal if the DFT algorithm is used as the transforming algorithm. It is
seen that for all FFT algorithms, much noises are introduced on the transformed spectrums
due to the interpolating process which makes the interpolated signal different from the
original signal. Figure 4.18 (b) shows the expanded plot of the Figure 4.18 (a)’s plot to show
the noise introduced for each FFT algorithm. It is seen that for all algorithms, except the

radix-2/4,3,5 one, the noises oscillate with the number of data points since the number of

37

interpolating data points increase periodically with respect to the number of interpolated data
points. The introduced noise for the radix-2/4,3,5 algorithm decreases monotonically with

respect to the number of interpolated data points.

A0 F

radix-2/4 FFT
i —&— radin-2,3 FFT
=5 g i radix-2,5 FFT -
—&— radix-2/43 5 FFT

-100+ 1
20F

DFT

radix-2/4 FFT
radix-2,3 FFT
radix-2,5 FFT
radix-2/4 35 FFT

2m | 4

-1680 F -2

kot

noise magnitude (dBY)

¢

S0 F

noise magnitude (dBY)

35

=250}
4ok

e

o
L 45 L
0 2000 4000 G000 8000 10000 12000 0 2000 4000 G000 8000 10000 12000
number of sampling points (Ns) number of sampling points (Ns)

)])

-300

Figure 4.18: The comparisons of magnitudes of noise of different FFT algorithms

(a) with DFT valué.as a reference, and (b) without DFT value.

If we express the above in terms of S/N of the signal with respect to the noise induced by
the interpolation process, the difference between different algorithms can be more clearly seen.
Figure 4.19 plots the S/N of each tone and Figure 4.20 plots the S/N for the combined

waveform of tones. It is seen that the radix 2/4,3,5 algorithm has the largest S/N.

38

radiz-2/4 FFT
—& radix-2 3 FFT
i 35 radix-2,5 FFT
—&— radix-2/4 35 FFT

radix-2/4 FFT
—&- radiz-2,3 FFT
35 radix-2,5 FFT
—&— radix-2/4 35 FFT

SIN of 11 (dB)
]

S/N of 12 (dB)
o]

20 b 20 4
15 b 158 4
10 b 10 b

i

izl n n n n 5 &
0 2000 4000 G000 #3000 10000 12000 0 2000 4000 G000 8000 10000 12000

nurnber of sampling paints (Ms) nurnber of sampling paints (Ms)
(@) 0]
50 a0
radix-2/4 FFT radix-24 FFT
—&- radix-2 3 FFT op 40} | =& radix-2 3 FFT 4
40 radin2 5 FFT = radix-2,5 FFT
—4— radin-2/4 35 FFT - —& radin-2/4 35 FFT
=30 i = ‘.
2 Fulie] 1
5 5
= 1 =
(5] (1) 10 4
10 E . i
ke

0 i i i i i 10 L L L L L
0 2000 4000 G000 8000 10000 12000 0 2000 4000 G000 8000 10000 12000
nurber of sampling paoints (Ms) number of sampling paints (Ms)
(&) of

Figure 4.19: The comparisons of S/N’s of each tone of different FFT algorithms

(a) 1* tone, (b) 2" tone, (c) 3" tone, and (d) 4™ tone.

50 T T T T T

45 radix-2/4 FFT -
—& radix-2 3 FFT

alk radix-2,5 FFT |
—& radix-24 35 FFT

35

25

/M of rmultitone signal (dB)
(4]
_

15

10 L 1 1 1 1
1] 2000 4000 6000 8000 10000 12000
number of sampling points (Ms)

Figure 4.20: The comparison of S/N’s of signal of different FFT algorithms.

4.4.2 Square Wave

A square wave signal is a signal composed of infinite number of frequencies and is a good

signal for making the experiment of applying the developed algorithms. Here we use ten tones

39

to approximate the square wave. Figure 4.21 shows the magnitude of each tone, the DC value,

and the sampling frequency for the signal analyzed.
12
1 M M .

0.6+ -

0.4 -

0.2

S T .

0.2

1 1 1 1 1 1 1 1 1
1] 100 200 300 400 500 GO0 700 800 500 1000
sample, n

Figure 4.21: The waveform of the square wave.

=[1357911131517,191*42;
m=[0.637 0.212 0.127:0.091 0.071-:0.058 0.049 0.043 0.038 0.034];
DC=0.5;
nyquist=max(f)*2;
for (1i=1:50)
fs(i)=nyquist+1+(i-1)*200;

end

Figures 4.22, 23, 24, 25, and 26 are the corresponding respective figures of this example
as the Figures 4.14, 15, 17, 18, and 20 of the previous example. We can see the similar
phenomena as those observed in the Figures 4.14, 15, 17, 18, and 20. The only difference is
that since for the square wave, its waveform is mainly determined by the first several
fundamental and harmonics frequency components, the sampling frequency selected for this

wave is the Nyquist frequency of the last tone of this square wave. This makes the sampling

40

frequency far above than the fundamental tone of this wave and the sampling points are much
more than the case of the previous example. This consequently makes the noise introduced

due to interpolation less.

14000 . T . T T
12000 - L
. 1oooa - — DFT 1
= radiz-2/44 FFT
5 —& radix2,3 FFT
= 5000 R radiz-2 5 FFT -
2 radix-2/4 35 FFT
e
[ii]
B G000 i
(=]
=3
[ii]
2
= 4000} -
2000 | -
D 1 1 1 1 1
0 2000 4000 5000 8000 10000 12000

number of sampling points (Ms)

Figure 4.22: The comparison of applicable number (Ni) of sampling points which can be

applied by the FFT’s.
012 T T T T T
gé
01} &f% 1
|
e radix-2/4 FFT RN
T —& radin-2,3 FFT
@ radiz-2 5 FFT
2 006r —&— radix-2/4,35 FFT i
T
=
0.04 .
0.0z f .
D 1 1 1 1 1
i 2000 4000 R000 8000 10000 12000

number of sampling points (Ms)

Figure 4.23: The comparison of run-times of different FFT algorithms.

41

-B.1 T T T T T

B2} -
B.14 -
=
B 66+ .
]
sl
=
E 518} -
=
£ —— DFT
= B2t .. radixz-2/4 FFT i
= —2 radix-23 FFT
@ / radiz-2 5 FFT
B2t § —&— radin-2/435 FFT .
524 4 i
_626 1 1 1 1 1
0 2000 4000 5000 8000 10000 12000

number of sampling points (Ms)

Figure 4.24: The comparison of magnitudes of signal of different FFT algorithms.

0 . . . -30
35 4 radin-2/4 FFT p
sk —2- radix-2 3 FFT
radix-2 5 FFT
—5— radin-2/435 FFT
A0t
0ot 4
= = 5|
o o
= =
© @
z —— DFT 2
= radix-244 FFT =
£ —&c radix-2.3 FFT £
9 radiz-25 FFT @
E —&— radix-2/435 FFT =y
-200 -
-0+
250+ 4
B5
HHHHHHH- -
i
7300 L L 1 1 1 7?0 L 1 1 1 1
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000

number of sampling points (Ms) number af sampling points (Ns)

(@

Figure 4.25: The comparisons of magnitudes of noise of different FFT algorithms

(a) with DFT value as a reference, and (b) without DFT value.

42

G5 T T T T T

RO - radiz-2/4 FFT |
—&— radix-2 3 FFT
tadix-2 5 FFT

55 | —&— radix-2/d 35 FFT -

a0 -

S of square wave (dB)
o
m

35

a0+

25

1 1 1 1 1
1] 2000 4000 FO00 a0o0 10000 12000
number of sampling points (Ms)

Figure 4.26: The comparison of S/N’s of signal of different FFT algorithms.

In summary, from the experiment results. on these two examples, the radix-2/4,3,5 FFT
exhibits the best performance on:the run-time and the S/N over the radix-2,3 FFT and the
radix-2,5 FFT algorithms. For the radix-2/4 algorithm; it has a good performance on the run
time due to its less number of sampling points, however, it produces too much noise when

interpolation is used.

43

Chapter S Conclusion

In this thesis, we have proposed and studied the mixed-radix FFT algorithm to speed up
the conventional radix-2 FFT algorithm. In the work, we first studied the single-radix FFT and
derived the decimation-in-time algorithm, the process of re-ordering the data sequence, and
discussed the applicable numbers of sampling points which can be applied by the FFT
algorithm. Then based on this, we further studied the mixed-radix FFT algorithm. We first
derived the algorithm with two radixes, i.e., radix-A/B FFT, by directly applying the
decimation-in-time algorithm and deriving a mathematical relationship for the decimated
order. And then, we derived the radix-A/B/C FFT which is much faster than the conventional
radix-2 FFT algorithm. An additional advantage of the algorithm is that the numbers of

sampling points which can be applied by the FFT algorithm have been increased a lot.

To further extend the use of the mixed-radix FFT, we adopt the interpolation technique to
re-sample the original signal to make the number:of sampling points to be applicable by the
mixed-radix algorithm. We studied interpolation for the radix-2,3 FFT, the radix-2/4 FFT, the
radix-2,5 FFT and the radix-2,3,5 FFT and found that the radix-2,3,5 FFT cooperates with
interpolation has the best performance. Furthermore, we extended it to the radix-2/4,3,5 FFT

to further improve the computation speed of the algorithm.

44

2]

[3]

[4]

[8]

[9]

[10]

[11]

References

Mark Burns and Gordon W. Roberts, “An Introduction to Mixed-Signal IC Test and

Measurement,” New York Oxford University Press, 2001, ISBN: 0195140168.

J. W. Cooley and J. W. Tukey, “An Algorithm for Machine Computation of Complex

Fourier Series,” Math. Comput., vol. 9, pp. 297-301, 1965.

Duhamel P. and Vetterli M., “Fast Fourier Transforms: A Tutorial Review,” Signal

Processing 19, pp. 259-299, 1990.

Robert W. Ramirez, “The FFT Fundamentals and Concepts,” Prentice Hall, Englewood

Cliffs, NJ 07632, January 1985, ISBN: 0133143864.

Paul Bourke, “DFT (Discrete:Fourier Transform) FFT (Fast Fourier Transform),” June

1993, http://astronomy.swin.edu.au/~pbourke/analysis/dft/.

“Fast Fourier Transform (EET),”

http://www.cmlab.csie.ntu.edu.tw/cml/dsp/traning/coding/transform/fft.html.
“Fast Fourier Transform Tutorial,” http://astron.berkely.edu/~jrg/ngst/ftt/fft.html.

Y. Suzuki, T. Sone, and K. Kido, “A New Algorithm of Radix 3, 6, and 12,” IEEE

Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, pp. 380-383, Feb. 1986.

Soo-Chang Pei and Wei-Yu Chen, “Split Vector-Radix-2/8 2-D Fast Fourier

Transform,” IEEE Signal Processing Lett., vol.11, pp. 459-462, May 2004.

S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “An Efficient Split-Radix FFT
Algorithm,” in Proc. IEEE Int. Symp. on Circuits and Systems Bangkok, Thailand, vol.

4, pp. 65-68, May 2003.

M. Vetterli and P. Duhamel, “Split-Radix Algorithms for Length-p™ DFT’s,” IEEE

45

Trans. Acoust., Speech, Signal Processing, vol. ASSP-37, pp. 57-64, Jan. 1989.

[12] G. BiandY. Q. Chen, “Fast DFT Algorithms for Length N = g*2",” IEEE Trans.

Circuits Syst. I, vol. 45, pp. 685-690, June 1998.

[13] Bouguezel S., Ahmad M.O., and Swamy M.N.S, “A New Radix-2/8 FFT Algorithm for

Length-gqx2™ DFTs,” IEEE Trans. Circuits Syst. I, vol. 51, pp. 1723-1732, Sept. 2004.

46

B
e

'I“’L \g] :

|
-

R
b

v AL

L

%1\35’],:_1._’&_1.);:_1.‘2:5

£ AT B

LY A ARSLAZEIT-1 8 TF 2 8

EN R A S N - R AR I

REASEIRE & § S i ke

TRALANEL R R T

Rz? 2~ 3185 %

B >R T RPN REAKREPNTEZ DR S > g

FFT Based on Mixed-Radix and Interpolation for Mixed-Signal Testing

47

