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Abstract

In this dissertation, we investigate two novel non-volatile flash memory
architectures named PHINES (Programming by hot Hole Injection Nitride Electron
Storage) and PREM (Programmable Resistor with Erase-less Memory). We also study
a novel Silicon-Nitride Based Light Emitting Transistor (SINLET). The cell structures,
operation principles, and deviceperformances are introduced and discussed.

In chapter 2, we construct a novel PHINES memory cell. PHINES uses a nitride
trapping storage cell structure. Eowler-Nordheim injection is performed to raise Vt in
erase while programming is done® by lowering a local Vt through band-to-band
tunneling induced hot-hole injection. Two-bits-per-cell feasibility, low power
program/erase, good endurance, and good data retention are demonstrated. PHINES
cells can be arranged in NOR-type and NAND-type array for both code and data flash
applications. In chapter 3, a novel BTB sensing scheme and a modified NAND-type
array are introduced. PHINES cell with BTB sensing scheme can eliminate the issue
of 2-bit interaction, and a large operation can be obtained in 2-bits-per-cell operation.
In chapter 4, the scaling challenges of PHINES cell are discussed. PHINES memory
cell shows high scalability, and 15nm generation for 1-bit-per-cell storage and 30nm
generation for 2-bit-per-cell storage are feasible in NAND-type array architecture.

In chapter 5, a novel non-volatile memory cell named PREM is proposed for

ii



SOC applications. PREM combines a novel ierase-lessi algorithm and the
progressive breakdown of ultra-thin oxide. No extra mask is needed with CMOS
standard process. MTP (multi-time programming), MLC (multi-level cell),
non-volatility, and low voltage operation are realized. Good reliability is
demonstrated.

In chapter 6, a novel silicon-nitride based light-emitting transistor (SiNLET) is
investigated. This three-terminal electroluminescence device uses a SONOS-type
structure, and its process is compatible to standard CMOS devices. Photons are
generated by Fowler-Nordheim electron tunnel-injection, band-to-band tunneling
induced hot-hole injection, and carrier trapping/recombination via nitride traps.
SiNLET with an effective device area of 0.616 pm’ is demonstrated for display and

optical communication purposes,
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Chapter 1

Introduction

1.1 An Overview of Mass Storage Flash Memory Technologies

Today, flash memory has come of age as a mainstream memory product, and its
technologies and markets will become more diversified. It can be classified into two
major markets: code storage application and data storage application (see Fig.1.1).
NOR-type flash memory [1.1] is most suitable for code storage application, such as
cellular phone, PC bios, and DVD player. NAND-type flash memory [1.2] has been
targeted at data storage market, which is an emerging application such as PDA,
memory cards, multi-media audio, and digital still camera. Fig.1.2 discloses the
memory market, and flash memory share increased rapidly in the last few years.

Conventional NOR-type and NAND-type flash memories use the same floating
gate structure as shown in Fig.1.3. Table 1.1 shows the ITRS roadmap [1.3] for flash
memory cells. NOR-type flash memory cell has good visibility into 90nm and 65nm
generation. Current projection shows thatssealing' continues at 45nm node but is
challenged to meet the goal of 50% cell size'shrinkage [1.1,1.4]. NOR-type flash
memory has two scaling limiters. One .iS the non-scalability of tunnel oxide and
inter-poly ONO due to reliability. concernsi-The other is caused by the channel hot
electron programming, which requires an internal voltage of more than 8V, and
imposes the limit of the cell gate length /[1.4]. Besides, the process complexity
increases dramatically to shrink the memory cell size, which makes the cost
ineffective. NAND-type flash memory cell meets another scaling limitation caused by
floating gate interference. Vt shift is caused by the Vt change and capacitive coupling
of the adjacent cells. It is very likely that the practical limit of NAND-type flash
memory is at 30nm technology node [1.5].

Instead of the process scaling, one important innovation in cost reduction is
multi-level cell (MLC) operation. Although MLC operation can double the memory
density [1.6], scaling limitations of conventional floating gate memory cell mentioned
above are coming in the near future. Accordingly, several new memory concepts are
under investigating to maintain Mooreis law as shown in Table 1.2. Nitride trapping
storage flash memory [1.7] and nano-crystal flash memory [1.8] are evolutionary
approaches, and their processes are compatible to the standard CMOS process.
FeRAM [1.9], MRAM [1.10], PRAM [1.11], and Polymer [1.12] memory
architectures are revolutionary approaches with new materials. Although many efforts

and resources have been devoted to develop these memory cells, most emerging



memories still have reliability problems, and are not commercially available for

fabricating yet except for the nitride trapping flash memory.

1.2 Introduction of SONOS Flash Memory Cell

SONOS flash memory cell (Fowler-Nordheim tunnel program by electron and
direct tunnel erase by hole [1.7]) has been proposed for years. As shown in Fig.1.4,
the carriers are stored in the traps of the nitride layer between the top and the bottom
oxides. SONOS cell offers several advantages over conventional floating gate
memory cells: simple process, ease of manufacturing, no erratic bit, not sensitive to
oxide defects, and no floating gate coupling effect. However, the cell retention is an
issue due to the thin bottom oxide. Besides, its large cell size (6F2) and slow
program/erase speed limit its applications. Recently, SONOS cell has evolved into a
2-bits-per-cell storage architecture (NROM [1.13]) by utilizing the localized charge
trapping effect of nitride. Localized trapping nitride trapping storage memory cell
enables a memory cell to hold twice as much data as the standard memory cell,
without compromising device endurance, performance or reliability.

NROM flash memory cell structure is'sshown in Fig.1.5, and the operation
principle is shown in Table 1.3:% NROMguprograms its memory cell by channel hot
electron injection as conventional NOR=type. floating gate memory does, which is
suitable for code storage applications. Erase is done by band-to-band tunneling
induced hot-hole injection. A ‘novel ireverse read schemei [1.13] is introduced to
realize physically 2-bits-per-cell ‘operation. NROM holds 2 physical bits in one cell
above the source and drain junction, ‘which is more reliable alternative to MLC
solutions in the floating gate memory cell. MLC products suffer from performance
and reliability concerns when detecting between multiple charge levels. Although
NROM cell has many advantages over conventional floating gate memory cells, it can
only be applied to code storage application due to its high power consumption and
slow program speed in program operation. Previous works [1.14-1.15] reveal that
reliability issues including read disturb, over erasure and cell retention after cycling
are major challenges. Besides, 2-bit interaction effect resulted from the reverse read
scheme also limits the device scalability [1.16]. In this dissertation, we construct a
novel nitride trapping storage memory cell. The memory cell does not suffer 2-bit
interaction issue and shows great performance for the candidate of next generation

flash memory technology.

1.3 Introduction of Embedded Flash Memory Technologies
The requests for high performance system combining CMOS devices and

embedded flash memories have increased for SOC applications (smart cards, cellular



communications, automotiveO ). However, the integration of CMOS devices and
conventional floating gate flash memories shows difficulties in terms of complex
process and high cost. Besides, high periphery voltages, large current pumper, and
high voltage transistors are necessary to operation the memory cell, which will
consume active area, complicate the process, and increase die cost as shown in Fig.1.6.
Although several memory cells [1.17-1.19] have been proposed for embedded
applications, the device scalability and/or cell reliability are still issues. These
memory devices also face scaling challenges due to the non-scalable gate stack for the
consideration of cell retention. Therefore, the development of a high performance
memory cell with non-volatility, low voltage operation, good reliability, high-density
storage, good scalability, and simple process (CMOS compatible) is essential for
embedded markets. In this dissertation, we report a novel embedded flash memory
cell and its process is compatible to CMOS devices. The memory performance and

array architecture are discussed.

1.4 Introduction of Light Emitting Devices

Electrical wires meet a fundamiental limitation of aspect ratio, and capacitive
coupling, which reduces the bit rate. Below:0.13um, interconnect delay starts to
dominate over gate delay in Si.CMQOS. The scaling limitations of electrical wires give
an opportunity for optical intérconnects. Optical interconnection avoids the issue of
aspect ratio. They can replace.global -wires-toprovide high data rates. III-V based
optical devices are widely accepted due to its.direct bandgap and high photon
emission efficiency. Silicon is not consideredas a good light-emitting source due to its
indirect bandgap induced low emission efficiency.

Although silicon optical devices suffer lower light emission efficiency, their
applications are numerous (see Fig.1.7) due to the ease of integration in CMOS-based
ultralarge scale integrated circuit (ULSI) as shown in Fig.1.8. Silicon light emitting
devices can also be used in massively parallel optical interconnects and cross connects
for microprocessor and digital-signal processor applications. Traditionally, silicon
LEDs have been regarded as a difficult candidate for light emission since they suffer
low light emitting efficiency due to the indirect band-gap of silicon. Recently, many
attempts including p-n diodes [1.21], MIS diodes [1.22], and nanocrystal LEDs [1.23]

have shown that light emission from silicon materials is readily obtained.

1.5 Organization of this Dissertation

In this dissertation, a novel PHINES (Programming by hot Hole Injection Nitride
Electron Storage) flash memory cell is investigated. PHINES uses the nitride storage
cell structure. PHINES cell, with its superior reliability, 2 bits-per-cell storage and low



power operation, can meet the need of both code and data storage applications.
Chapter 2 will discuss the cell structure, operation principles, array architecture, and
reliability characteristics. In chapter 3, a novel BTB sensing scheme and a new
modified NAND-type array are introduced to eliminate the issue of 2-bit interaction.
Chapter 4 discusses the scaling challenges of PHINES memory cell.

In chapter 5, we construct another novel non-volatile flash memory cell named
Programmable Resistor with Erase-less Non-Volatile Memory (PREM). PREM can
realize multi-time programming, multi-level cell operation, non-volatility, and low
voltage operation, and can meet some applications in SOC and embedded areas.

In chapter 6, we develop a novel Silicon-Nitride based Light-Emitting Transistor
(SINLET) with high light emission efficiency, low current consumption and a small
device area. The fabrication process of SINLET is compatible to CMOS technology.
SINLET demonstrates its high feasibility for the application of optical interconnects in
ULSL

Finally, a conclusion will be given in chapter 7.
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Table 1.2 Summary of emerging non-volatile memories.
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Table 1.3 Operation bias conditions of a NROM cell.
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Vg 11V 3V 2.5V

Bit1| vd 5V 8V (1\Y
Vs (1\% (1\% >1.5V

Vg 11V 3V 2.5V

Bit2| vd (1Y 1\ >1.5V
Vs 5V 8V v




Flash
Memory

Array

HYV periphery

LV logic/SRAM

Fig.1.6 Schematic representation of the chip architecture with embedded

flash memory array, high volt iphery control circuit, and low voltage

logic circuit.

Chip to system
I optical interconnects

Chip to system
optical interconnects

iSensor iInterface

iDetector THuman

IReceiver iMachine
|

I Processor 1 Processor 2

i i
‘ Denotes potential paths of optical interconnects.

Fig.1.7 Illustration of applications and insertion of optical interconnections.



10



Chapter 2

PHINES Flash Memory Cell with Low Power Program/Erase, Backward-Read
Scheme and 2-bit-per-cell Storage

2.1 Introduction

Interest in nitride based localized trapping storage flash memory cells has
revived for 2-bits-per-cell operation, which can double the memory density [2.1-2.3].
Besides, they also show better scalability since charges are stored in the nitride traps
rather than a poly-silicon floating gate in conventional flash memory cells. Nitride
storage memories do not have floating gate induced drain turn-on and coupling issues
that are believed to be the scaling limitations of conventional floating gate memories
[2.4,2.5]. Various operation schemes were proposed based on the nitride-storage cell
structure.  SONOS flash memory with modified Fowler-Nordheim-tunneling
programming by electrons and direct-tunneling erasing by holes was proposed long
time ago [2.6]. The absence of errati¢ bits-and:low power operation make SONOS a
good candidate for next generation flashytechnology. However, the cell retention is
still an issue now [2.7]. Besides,|its large .cell size (6F2 per bit [6]) and slow
program/erase speed limits® | its  applications. 'Recentlyy, NROM cell with
channel-hot-electron (CHE) programming=jand band-to-band tunneling induced
hot-hole (BTBT HH) erasing #[2.2] has demonstrated excellent intrinsic cell
performance. NROM cell is suitable ifor" code flash applications, and CHE
programming is widely accepted in NOR-type architecture. In spite of many
advantages, previous works [2.8-2.13] reveal that reliability issues including read
disturb, over erase, and cell retention after cycling are major challenges of NROM
cell. C.T. Swift et al proposed to use uniform tunneling for erasing [2.3] instead of the
hot-hole injection to reduce the stress of high energetic holes in the erase operation.
However, for mass storage and data flash applications, CHE programming is still not
suitable due to its high power consumption.

Here, a novel flash memory cell named PHINES (Programming by hot Hole
Injection Nitride Electron Storage) [2.1] is investigated. PHINES uses the nitride
storage cell structure and can be arranged in both NOR-type and NAND-type array
for code and data flash applications. The operation principles, cell characteristics, and

cell reliability will be studied and characterized in this chapter.

2.2 PHINES Cell Structure
PHINES memory cell is a NMOSFET with an ONO stack as the gate dielectric
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(Fig.2.1). The test single cell is arranged in a virtual-ground array as shown in Fig.2.2,
which is free of field isolation. The key cell parameters are listed in Table 2.1. The
gate length and gate width are 0.19um and 0.14pm, respectively. The thickness of
each ONO layer is 9nm, 6nm, and 6nm from top to bottom. The top oxide and bottom
oxide are formed by thermal oxidation while nitride is performed by CVD deposition.
A double poly technology, novel low-temperature dielectric film fill-in and
planarization process is introduced to form a sufficiently thick insulating layer
between the local buried-diffusion (BD) bit-lines and the word-lines (WLs) [2.14].
Figure 2.3 (a) and (b) show the TEM pictures of the cell, in which the X-pitch and
Y-pitch are 0.33um and 0.28um, respectively.

2.3 PHINES Cell Operation Condition, and Cell Characteristics

2.3.1 PHINES Cell Operation Condition

PHINES cell uses gate FN electron injection (negative gate-to-substrate bias)
and BTBT HH injection as the erase and program methods, respectively. Schematic
representations of PHINES cell operation-aré shown in Fig.2.4. The bias conditions
are given in Table.2.2. Figures2.5 showssthe erasing characteristics and the Vt
saturates after Ims. As shown.in Fig.2.6°(a), electrons are injected from the gate via
tunneling through the top oxide (path 1)-in the erase operation. Some of the tunnel
electrons are captured by the nitride trapsi(path2, either deep traps or shallow traps),
while the others will inject into the substrate (path’3). Electrons in the shallow traps
will easily be drawn out due to the high electric field (path 4) and only electrons in
deep traps remain in the nitride. Accordingly, the erase saturation may be caused by
the limited amount of deep nitride traps, and cell Vt will saturate while all deep traps
are filled with electrons. PHINES cell does not have an over-erasure problem due to
the self-convergent behavior of FN injection, which can improve the uniformity and
tighten the Vt distribution of the erased cells.

The program of a PHINES cell is done by lowering the local Vt through edge
BTBT HH injection. Fig.2.6 (b) shows the band structure of PHINES cell during
program operation. Figure 2.7 shows the program characteristics of the two bits. In
Fig.2.7 (a), bit-1 is programmed to a low Vt, while bit-2 is in the erased state. Bit-2 is
subsequently programmed in Fig.2.7 (b). Since the program is performed by bit-by-bit
and shot-by-shot tracking, a verification step is applied after each program shot to
well control the program behavior of each bit. The program of each bit stops as its Vt
or current passes the program verification. Over-program induced leakage current in
the low Vt state between two columns can be suppressed, and a narrow Vt distribution

of the program cells can be achieved. Read of PHINES cell is performed by a
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backward-read scheme as shown in Table 2.2. To read bit-1 (bit-2), a source (drain)
bias is applied to reduce the channel potential near bit-2 (bit-1). The IV characteristics

of each state are shown in Fig.2.8.

2.3.2 The Charge Distribution

In Fig.2.9, the charge pumping technique [2.15] is utilized to monitor the charge
variation in the nitride. The open circles and solid circles represent the initial and
erased conditions. The Vt shift after erase is around 2.5V. The solid up-triangles and
down-triangles represent the charge distribution in nitride after 1ps and 200ps
programming. After FN electron erasing and hot-hole programming, a tail of charge
pumping current (Icp) is observed. The turn-on Vt (Vgh) of the Icp tail is proportional
to the number of storage holes in a programmed bit while the amount of the Icp tail is
proportional to the length of the programmed holes in the channel region. As program
time increases, the increase of Icp in the portion of 1V<Vgh<3.5V represents that hot
holes are injected into the nitride from junction edge toward channel wherein a bit is

programmed.

2.3.3 2-bit Interaction Effect

Two-bit interaction effect is a unique phenomenon in physical 2-bit storage
memory cell, which is causéd by the interaction between bit-1 and bit-2 during
backward read operation. Similar to NROM;cell [2.16], PHINES cell suffers 2-bit
interaction effect and operation“Vt. window reduction due to the channel current
sensing and the backward read scheme: Fig/2:10 (a) shows the program characteristics.
In the initial state (condition A), two bits are in high Vt states. Figure 2.10 (b) and (c)
illustrate the channel potential of condition A during read operation. As bit-1 is
intentionally programmed to a low Vt state, a slight Vt decrease is observed in bit-2
(condition B in Fig.2.10 (a)), which induces Vt window reduction. Fig.2.10 (d) and (e)
illustrate the channel potential of condition B (bit-1 is in a low Vt state while bit-2 is
in a high Vt state). In condition B, as bit-1 is read (see Fig.2.10 (d)), a high read Vd is
used to pull down the channel potential near bit-2, and a low Vt of bit-1 is thus sensed.
To read bit-2 (see Fig.2.10 (e)), the high read Vd and the local/narrow electron
distribution of bit-2 after bit-1 programming will enhance the Drain-Induced-Barrier-
Lowering (DIBL) effect and lower the channel potential. Compared to the condition A
(Fig.2.10 (c)), a lower Vt of bit-2 is obtained, and a reduced Vt operation window is
caused. Since the Vt of bit-2 is very sensitive to the programmed condition of bit-1,
we name this phenomenon i 2-bit interaction effecti.

Device simulation is used to characterize the effects of cell parameters on the Vt

operation window. The definitions of the simulated cell parameters are descried in
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Fig.2.11. As shown in Fig.2.12 and Fig.2.13, three parameters will dominate the Vt
window of a PHINES cell: read Vd, the length of the residual electron distribution,
and the density of the stored electrons. In Fig.2.12, as the length of the residual
electron distribution decreases (the length of the programmed hole distribution
increases), Vt window increases under a fixed read Vd and, in other words, read Vd
can be reduced to maintain a constant Vt window. Besides, higher stored electron
density can also increase Vt window without increasing the read bias as shown in
Fig.2.13. A narrower electron distribution, a higher electron density, and a lower read
Vd could suppress the DIBL effect enhanced Vt reduction and enlarge the Vt window.

Accordingly, 2-bit interaction effect can be suppressed by optimizing the charge
profiles and the operation schemes. As mentioned in Section 2.3.1, PHINES can
determine the stored electrons via erase operation and well control the injected
amount of holes to modulate the length of residual electrons via program and program
verification, separately. Although we can suppress Vt window reduction via better
operation algorithms and carrier injection processes to manage the charge distribution,
the 2-bit interaction effect cannot be eliminated completely in the backward read
scheme. Besides, 2-bit interaction effect-will ‘get worse in the next generation due to
the enhanced DIBL in a scaled device. Inchapter 3, a novel BTB-PHINES memory
cell and BTB-sensing (band-tozband sensing) scheme are developed to solve this issue

completely.

2.3.4 PHINES Cell Endurance and.Vt Operation'Window

Figure 2.14 and Fig. 2.15 show the P/E ‘cycling endurance of 1-bit-per-cell and
2-bits-per-cell operation, respectively. The Vt window is almost unchanged up to 10K
P/E cycles. A slight window closure is observed after 100K cycles. This phenomenon
is widely observed in flash memory cells, which should result from the stress-induced
bottom/top oxide degradation [2.17]. The Vt operation window of 1-bit-per-cell and
2-bit-per-cell operation is around 2V and 1.2V, respectively.

2.3.4 PHINES Cell Performance

The electrical performance of a PHINES cell is summarized in Table 2.3.
Program can be finished within 200ps and erase can be done in 2ms. Vt-windows of
2V and 1.2V are obtained for 1-bit-per-cell and 2-bits-per-cell operation. Since the
program current is less than 50nA/bit, high programming rate can be achieved by
parallel programming. Besides, FN-erase also consumes extremely low current
(10fA/cell). Both program and erase are low power operations, which makes it

suitable for mass storage (data flash) applications.
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2.4 PHINES Cell Reliability

2.4.1 Data Retention

Fig.2.16 shows the data retention characteristics of three program/erase states. Vt
loss is less than 0.5V and 0.2V for high-Vt bits and low-Vt bits, respectively, after
150C, 168 hours bake in 10K P/E cycled cells. Fig.2.17 shows the temperature effect
on data retention in a high Vt state. Three storage temperatures are compared: 25C,
85C, and 150C. Excellent data retention is observed. In previous studies [2.18], hot
electron injection tends to fill traps with shallower energy in a stressed oxide film. We
also use this characterization method to monitor the characteristics of electrons in the
nitride traps. High Vt state charge loss behavior of two electron injection techniques
(FN injection and substrate hot electron injection) is compared in Fig.2.18. Two
devices are stressed by constant voltage stress (Vg=-24V, Vd=Vs=Vb=0V) for 1000s.
After stress, hot-hole injection is performed to lower the Vt of the devices. Finally, FN
injection and substrate hot electron (SHE) injection are used to inject electrons into
two devices to raise Vt to 5V, respectively. Vt shift is measured in the high
temperature condition (150C). As_shown in"Fig.2.18, the device with FN electron
injection shows less charge loss than the device.with SHE injection. It is surmised that
hot electrons in SHE will jump over the ‘oxide barrier and are randomly captured by
deep and shallow traps of nitride as shown in Fig.2.19 (a). Electrons in shallower
traps will easily escape during'a storage periodand charge loss is observed as shown
in Fig.2.19 (b). However, tunnel electrons by FN-injection tend to stay in deep traps of
nitride since electrons in shallow traps will be drawn out by high electric field as
shown in Fig.2.20 (a). According to the Frenkel-Poole model, electrons in deeper
traps have longer emission time and good data retention is obtained accordingly as
shown in Fig.2.20 (b).

2.4.2 Read Disturbance

Read disturbance is another reliability issue of flash memory devices. As the
device is in a low Vt state, continuously reading the device will induce disturbance
due to the high channel current and hot electron injection. Vt will increase and the
read current will degrade accordingly. We also evaluate the read disturbance
characteristics of a PHINES cell. As shown in Fig.2.21, the read condition (Vg=3V,
Vd=1.6V, and Vs=0V to read Bit-2) is applied to the device while two bits are both at
low Vt states (Vt is around 2V). The Vt shifts of both bits are measured. Vt drift of
0.2V is observed in Bit-1 by continuous read of 10000s while there is almost no
disturbance in Bit-2. The reason is that a high voltage is applied on the drain, which

induces hot electron injection at the drain side. Accordingly, the Vt of Bit-1 increases
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due to hot electron injection and no Vt shift is observed in Bit-2. Likewise,
continuously reading Bit-1 (Vg=3, Vd=0, and Vs=1.6V) will cause hot electron
injection at the source side, which will cause read disturbance in Bit-2.

Read disturbance is a potential scaling issue due to enhanced hot carrier effect in
a scaled device [2.19]. Higher substrate doping concentration, shorter channel length
and cycling induced damages will degrade read disturbance and the only solution is to
reduce read Vd. In section 2.3.3, the effects of read Vd, length of residual electron
distribution and density of stored electrons have been discussed. As shown in Fig.2.12,
read Vd can be reduced without degrading the Vt window by optimizing the length of
the residual electron distribution. PHINES can determine the stored electrons via
erase verify step and well control the injected amount of holes to modulate the length
of residual electrons via program verify step, separately. Accordingly, by managing
electron profile, hole profile and stored electron density, a large Vt window and
reduced read disturbance (by lowering read Vd) can be realized in future scaled

devices.

2.5 PHINES Array Architecture

2.5.1 PHINES Operation in Virtual Ground Array (NOR-type) Architecture
PHINES cells can be arranged in the virtual ground array (NOR-type) as shown
in Fig.2.22. In NOR-type array architecture;the cells are connected in parallel. Fig.
2.22 (a), (b) and (c) show the array erase, program’ and read operations, respectively.
In array erase operation, a negative bias'(-9V) and a positive bias (10V) are applied on
the selected WLs and P-well, respectively. Electron injection via Fowler-Nordheim
tunneling from the gate is used to erase the selected cells to high Vt states. In order to
program PHINES cells in a high-density virtual ground array, a technique to inhibit
the program disturbance in the adjacent cell is necessary. As shown in Fig.2.22 (b), to
program the bit-1 in cell-A, a positive bias (5V), a grounded bias, and a negative bias
(-7V) is applied on the BL2, BL1, and the selected WL, respectively. The program
disturbance of the adjacent cell-B sharing the same bit-line (BL) and word-line (WL)
is inhibited by properly biasing the unselected BL3 (ex: 3V). The programming
behavior of cell-A and disturbance behavior of cell-B and cell-C are shown in
Fig.2.23. The channel potential of cell-A and cell-B are plotted in Fig.2.24. Dramatic
reduction of hot-hole injection by an inhibitive BL bias is due to a less lateral electric
field [2.20]. Likewise, in cell-C sharing the same BL, but a different WL, grounding
the unselected WL reduces the program disturbance because of the less vertical field.
Fig.2.22 (c) shows the operation condition of the backward read scheme in array

operation. To read the bit-1 in cell-A, a positive bias (3V) is applied on the selected
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WL. Another positive bias (1.6) is applied on BL1 with grounded BL2. The channel
current of the selected cell is sensed to determine the storage state of bit-1. To
program and read the storage state of bit-2, similar operations can be applied by
interchanging the role of BL1 and BL2.

2.5.2 PHINES Operation in NAND-type Array Architecture

PHINES cells can be also arranged in NAND-type array. In NAND-type array
architecture, one NAND string contains 32 memory cells and 2 select-transistors
(SLG1 and SLG2) that are arranged in series as shown in Fig.2.25 [2.21]. Fig.2.25 (a),
(b) and (c) show the array erase, program, and read operations, respectively. In array
erase operation as shown in Fig.2.25 (a), a negative bias (-9V) and a positive bias
(10V) are applied on the selected WLs and P-well, respectively. Electron injection via
Fowler-Nordheim tunneling from the gate is used to erase the selected cells to high Vt
states. Fig.2.25 (b) shows the array program operation. To program bit-1 of the
selected WL (WL3), a positive bias (5V), a grounded bias, and a negative bias (-7V)
are applied on the drain, source, and the selected WL, respectively. The non-selected
WLs are turned on (10V), which serves as‘passitransistors to pass the drain and source
voltages. To read bit-1 of the selected Wiz (WE4) as shown in Fig.2.25 (c), a positive
bias (1.6V), a grounded bias, and another"positive:bias (3V) are applied on the source,
drain, and the selected WL, respectively. The non-seélected WLs also serve as pass
transistors to pass the read current; and the storage state of bit-1 is determined
accordingly. To program and read the storage state of bit-2, similar operations can be

applied by interchanging the role of the source and the drain.

2.6 Conclusion

A novel flash memory cell named PHINES (Programming by hot Hole Injection
Nitride Electron Storage) is investigated. PHINES uses a nitride trapping storage cell
structure. Channel FN erasing is performed to raise Vt while programming is done by
lowering local Vt through band-to-band hot-hole injection. PHINES cell uses
backward read scheme with low power program/erase operation, and physically 2-bits
storage is achieved. The 2-bit interaction effect and the effects of charge profile on Vt
operation window are also studied and characterized. PHINES cell also shows good
retention, and cell reliability can be arranged in both NOR-type and NAND-type array
architectures for code flash and data flash applications. PHINES can be a promising
candidate for future flash EEPROM technology.
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Table 2.1 Key PHINES cell parameters.

Design rule 0.13um
Gate Length 0.19um
WL Width 0.14um
BL Width 0.14um
Unit Cell Area]  0.092um?
Unit Bit Area 0.046um?2

Bottom Oxide 6nm
Nitride onm
Top Oxide _9nm
i along Y-Yi (a)- i along X-Xi (b)

low-temp fill-in
dielectric film

Fig.2.3 TEM pictures of a PHINES cell along (a) Y-Yi and (b) X-Xi (refer
to Fig.2.2).
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Fig.2.4 Schematic representation of the storage charges in a PHINES cell (top)
and the channel surface potential (bottom) with two-bits storage. (a) Bit-1 and
Bit-2 in erased states. (b) Bit-1 in a programmed state and Bit-2 in an erased
state. (c) Bit-1 in an erased state and Bit-2 in a programmed state. (d) Bit-1 and
Bit-2 in programmed states.
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Table 2.2 Physical mechanisms and bias conditions of PHINES
operation. Please refer to Fig.2.1 for the corresponding terminals

and Bit-1 and Bit-2 in a PHINES cell.

Program Erase Read
(BTBT HH) | (-Vg FN) |(Backward)
Vg -7V -9V 3V
Bit-1 vd 5V F ov
Vs ov F 1.6V
Vb ov 10V ov
Vg -7V -9V 3V
Bit.2 vd oV F 1.6V
Vs 5V F ov
Vb oV 10V ov
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Table 2.3 The electrical performance of a PHINES cell. The Vt
window in the table denotes the initial operation window, which
does not include the charge loss, read disturbance, and other

reliability margins.

Program Current < 5x10°A/bit
Erase Current <10 A/bit
Program Time 200ps/page

Erase Time 2 ms/sector
Vt Window - 1 Bit 2 Volts
Vt Window - 2 Bit 1.2 Volts
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Fig.2.16 Data retention (Vt loss) of three program/erase states. The
storage temperature is 150C. The cells are 10K P/E cycled.
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Fig.2.18 Effects of electron injection methods on the charge loss at the
storage temperature of 150C. After stress of Vg=-24V for 1000s, two
devices are conditioned to high Vt states (Vt=5V) by two electron injection
methods and Vt shift is measured. Two electron injection methods are FN
(Vg=-8V, Vb=10V) injection and SHE injection (Vg=2V, Vs=Vd=0V,
VeweLL=-6V, VnweLL=-7V).
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Chapter 3

A novel BTB-PHINES Flash Memory Cell with BTB Sensing Scheme and
modified NAND-type Architecture

3.1 Introduction

Recently, the market of NAND-type flash memory [3.1-3.4] has been growing
rapidly due to the applications of digital still cameras, personal digital assistants, and
portable videos/audios. However, conventional NAND-type floating gate memory
meets a scaling limitation of floating gate capacitance interference [3.2, 3.3], and the
scaling limitation is at around 30nm CMOS generation [3.3]. SONOS-type nitride
trapping storage flash memory cell (FN tunnel program by electrons and direct tunnel
erase by holes) arranged in NAND array [3.3, 3.4] is proposed to overcome the issue
of floating gate coupling. Besides, SONOS cell reduces the stack height due to the
absence of floating gate and inter-poly dielectric, and provides nearly planar cell array.
However, conventional SONOS cell. can only perform 1-bit-per-cell storage, and the
bad cell retention, the slow program speeds;sand the slow erase speeds are still issues
until now [3.4].

As mentioned in chapter 2, we propose a PHINES nitride storage flash memory
cell [3.5] with physically 2-bits-per-cellrstorage; good reliability, simple process, and
low power operation for mass storage applications. PHINES can be operated in both
NOR-type and NAND-type array.” "Although NAND-type PHINES memory
architecture can target the growing data flash market, it suffers 2-bit interaction effect
and operation window reduction due to the backward read scheme. In this chapter, we
construct a novel BTB-PHINES memory architecture based on conventional PHINES
program and erase operation. Better cell retention, no 2-bit interaction, large operation
window, and a high programming throughput (>10MB/s) can be realized. The main
features of BTB-PHINES memory cell are: (1) BTB current sensing scheme, and (2) a
modified NAND-type array architecture.

3.2 PHINES Operation with BTB Sensing Scheme

3.2.1 BTB-PHINES Memory Operation

Fig.3.1 illustrates BTB-PHINES cell structure and the erase/program/read
operations. BTB-PHINES utilizes an oxide/nitride/oxide trapping storage structure
similar to the conventional PHINES introduced in chapter 2. In this chapter, the gate
length/width of the test pattern is 0.14/0.14pm. The ONO thickness is 9, 6, and 6nm
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from top to down. Fig.3.2 shows the characteristics of 2-bits erase that is done by FN
electron injection from the gate (see Fig.1 (a)). Fig.3.3 shows the characteristics of
2-bits program that is done by local BTBT HH injection from the source (or drain)
junction (see Fig.3.1 (b)). Read utilizes a novel technology of BTB current sensing
scheme (see Fig.3.1 (c)). Program and read use the same mechanism and the band
structures are compared in Fig.3.4. In the program operation as shown in Fig.3.4 (a), a
higher junction bias (>4V) provides a higher lateral field and high energetic holes for
hot-hole injection. In read operation as shown in Fig.3.4 (b), a lower junction bias
(lower lateral field) and a higher gate bias are adopted to provide sufficient sensing
current. A lower junction bias and lateral field will not accelerate the holes, and the
BTB current is generated without hot-hole injection. BTB-PHINES cell also performs
physically 2-bits-per-cell operation via hole/electron trapping storage above source

and drain junctions.

3.2.2 Two-Bit Interaction Effect

In the conventional channel current sensing (backward read scheme), the storage
states of two bits will affect the channel curfent as discussed in chapter 2. Two bits
will interact to each other and operation-window is degraded (see Fig.2.7 and
Fig.2.10). To overcome this issue, we introduce ‘a novel technology of BTB current
sensing scheme. As shown i Fig.3.3 (a); the sensing current of bit-2 will not be
affected by the programmed state of bit=17"Two bits-will not affect each other in the
BTB sensing scheme, since BTBcurrent is generated locally between the source (or
drain) junction, and P-well as shown in"Fig.3.1 (c). By using BTB-sensing scheme, a
large operation window is obtained and a high on/off current ratio is maintained as the
channel length scales (see Fig.3.5). Although BTB-sensing scheme provides lower
sensing current (~100nA/bit) than the channel current sensing scheme (>1uA/bit as
shown in Fig.2.8), the sensing current and the cell performance can still be compatible
to the NAND-type floating gate memory cell with MLC (multi-level cell) operation
and data flash specifications [3.6].

3.3 Modified NAND-type Array Architecture with BTB-PHINES Memory
Operation and BTB Sensing Scheme

Different to the channel current sensing scheme, BTB-sensing scheme cannot be
performed in the virtual ground array. As shown in Fig.3.6, the bit-2 of cell-A and the
bit-1 of cell-B will be selected and sensed at the same time if the sensing biases are
applied on BL3 (2V) and WL2 (-10V). Therefore, BTB-sensing scheme in the virtual
ground array will lose the capability of 2-bits-per-cell storage and the advantage of

ultra-high storage density. To realize BTB-sensing scheme, BTB-PHINES memory
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operation, and 2-bits-per-cell storage, we construct a novel modified NAND-type
array as shown in Fig.3.7 (a). Fig.3.7 (b), (c), and (d) show the cross sectional
schematics of the array erase, program, and read operation. In the modified
NAND-type array, there are 32 cells arranged in series with 2 select-transistors (SLG1
and SLG2). The key feature of the modified NAND-type array is that the source of
SLG1 and the drain of SLG2 are shorted to the same metal bit-line (BL). Sector
erasing, page programming, and parallel sensing are introduced. To program/read
Bit-1 of the selected word-line (WL), a negative bias is applied on the selected WL
and a positive bias is applied on the selected BL. SLG1 and SLG2 are turned on and
off, respectively. The WLs between SLG1 and the selected WL are applied with a pass
voltage (10V) to serve as pass gates while the others are grounded. Accordingly, Bit-1
can be simultaneously read and programmed by BTB current sensing, and BTB-HH
injection, respectively. Similarly, Bit-2 can be read/programmed by interchanging the
role of SLG1 and SLG2.

3.4 Cell Performances and Reliability

3.4.1 Cell Performances

Fig.3.8 and Fig.3.9 compare the program’speed and IV curves in various gate
lengths (Lg). The gate Length shows no"influence on the program speed and IV
curves due to the local effects of HH injectiomand BTB current sensing, which means
that BTB-PHINES memory can sustain larger process induced Lg variations. Besides,
a high programming speed (<60ps) and'a low programming current (= 100nA/cell)
are realized because only around 200 holes are needed to change the storage state of
each bit. Fig.3.10 shows the temperature dependence of sensing current. Weak
dependence is observed due to that the dominant mechanism of BTB current is
tunneling as shown in Fig.3.4 (b). Besides, fresh cells and cycled cells show similar

temperature dependence.

3.4.2 Cell Endurance, Retention, and Disturbances

Fig.3.11 shows the cell endurance of 2-bits-per-cell operation. A large operation
window is maintained until 10K cycles. Fig.3.12 shows the cell retention, and the
storage temperature is 150C. Almost no charge loss and charge gain can be obtained
in a 1-cycled cell. Although a slight charge loss and charge gain are observed in the
erased and the programmed cells after 10K cycles, respectively, the large operation
window guarantees good cell retentivity. Fig.3.13 shows the characteristics of read
disturbance in the non-selected cells (pass transistors). The dominant disturbance is
the gate stress (Vg=10V or 12V with Vd=Vs=Vb=0V). Almost no disturbance is
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observed in the non-selected cells. Fig.3.14 shows the characteristics of read
disturbance in the selected cells (Vg/Vd/Vs=-10/2/F). Although a little current
degradation is observed in the erased states, the performance is 1 to 2 orders of
magnitude better than the required product specification. Compared to 1-cycled cells,

10K-cycled cells show more degradation in the erased state.

3.5 Conclusion

We propose a novel NAND-type BTB-PHINES nitride trapping storage flash
memory cell featuring physically 2-bits-per-cell storage, high-density storage, low
power operation, and simple process. BTB-PHINES memory cell eliminates the 2-bit
interaction effect by using the local BTB-sensing scheme. Accordingly, a large
memory operation window and good cell performance can be obtained. Besides, a
novel modified NAND-type array architecture is designed for BTB-PHINES
operation. Fast cell programming (= 60ps) can be achieved by a low programming
current (= 100nA/cell), which realizes a high programming throughput. The sensing
current shows weak temperature dependence, and good cell reliability is demonstrated.
These characteristics make BTB-PHINES miemory cell suit mass storage and data

flash applications.
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Chapter 4

Evaluation of Device Scalability of PHINES Flash Memory Cell

4.1 Introduction

According to the previous studies [4.1], conventional floating gate memories
cannot maintain Moore’s Law (the memory density has doubled every generation) and
face scaling challenges at around 30nm CMOS generation. NOR-type floating gate
memory cell suffers several critical limitations [4.2] including active area reduction,
junction breakdown, cell punch, maintaining narrow Vt distribution in MLC, and
non-scalable tunnel oxide and inter-poly dielectric layer. NAND-type floating gate
memory cell faces the scaling challenges of floating gate interference, a lower GCR
coupling ratio, few storage carriers, and less tolerant charge loss in MLC operation.
Although several approaches using non-floating gate structure including SONOS
memory cell [4.3], PRAM [4.4], MRAM [4.5], and FRAM [4.6] are proposed for
future scaling, they uses new materials;andithe reliability and the uniformity are still
issues until now.

In chapter 2 and chapter 3;we propose a novel:PHINES memory cell. PHINES
memory uses nitride traps for carrier storage and does not suffer floating gate
interference. In this chapter, the scaling challenges-of 1-bit and 2-bit PHINES cells
will be discussed.

4.2 Scaling Limitation of a 1-Bit PHINES Cell with Backward Read Scheme

In 1-bit PHINES memory architecture, channel current sensing and backward read
scheme are adopted due to its higher sensing current (see chapter 2). Fig.4.1 shows the
storage conditions of a 1-bit PHINES cell. Fig.4.2 shows the NAND array architecture
and the bias conditions of 1-bit PHINES operation. One string contains 32 memory
cells and 2 select-transistors (SLG1 and SLG2) that are arranged in series. The source
of each memory string is connected to Vs and the drain of each memory string is
shorted to its own metal bit-line (BL).

Although 1-bit PHINES cell does not have the scaling issue of floating gate
interference, it still faces several scaling challenges. The first one is that the reduced
number of storage carriers in a scaled device as shown in Fig.4.3. In 10nm CMOS
generation, less than 10 storage carriers may be obtained (Vt window=2.5V, storage
electron density=1x10"° cm™), which induces distribution, variation, and reliability
issues. Although thinner ONO thickness and larger operation window can be used to
increase the storage carriers, worse cell retention is still suffered. Another scaling
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challenge is the issue of inter-WL leakage/breakdown. As shown in Fig.4.4, a negative
bias on the selected WL and a positive bias on the pass WL are essential for PHINES
program and read operations. The high voltage drop between the selected and
non-selected WLs may induce the inter-WL leakage/breakdown as the WL spacing
scales. Although a thinner ONO thickness, lower cell Vt, and a smaller operation
window can be used to suppress this issue, it will be a problem after 15nm generation.
The other scaling challenge is the degraded cell punch and junction breakdown in a
scaled device, which reduces the injection efficiency of hot holes. Fig.4.5 (a) and (b)
compare the paths of punch leakage current in a NOR-type and a NAND type array
during the program operation, respectively. Since the cells are arranged in parallel in
NOR-type array, the dominant leakage current is the punch current in the non-selected
WLs (Vg/Vd/Vs=0/5/0). In the NAND-type array with series cells, the punch leakage
current is dominated by the selected string itself (Vg/Vd/Vs=-5/5/0). Fig.4.6 compares
the cell punch current in a NOR-type and a NAND-type array. NAND-type PHINES
memory cell shows better scalability and can reduce the punch current by the high
negative bias on the selected WL. NOR-type PHINES cell suffers tough scaling
challenges due to plenty of leakage, paths:without the suppression of negative gate
voltages. Fig.4.7 shows the punchcurrent.of NAND-type PHINES in various channel
lengths. A shallower junction depth, a higher gate veltage on the selected WL, and a
lower BL voltage can suppress the cell ‘punch without degrading the junction
breakdown. The requirement of-programming-at 15nm generation without cell punch
and reduced carrier injection efficiency can be achieved by an optimized operation
condition and substrate/junction doping. As a result, 1-bit PHINES suffers the scaling
challenges of few storage carriers, inter-WL leakage/breakdown, and cell punch
beyond 15nm generation.

4.3 Scaling Limitation of a 2-Bit PHINES Cell with BTB Sensing Scheme
Although backward read scheme and BTB sensing scheme can both realize
2-bits-per-cell storage, we adopt BTB current sensing scheme in 2-bit-per-cell
operation since it does not have severe 2-bit interaction effect, and its larger operation
window can serve high performance and good reliability. Fig.3.7 shows the proposed
modified NAND-type array architecture and array operation for 2-bit PHINES
operation. Compared to 1-bit PHINES architecture (NAND-type), the key feature of
2-bit PHINES is that the source of SLG1 and the drain of SLG2 are shorted to the
same metal BL.
The first scaling challenge of 2-bit PHINES memory cell is the charge
distribution of a programmed bit as shown in Fig.4.8. Two-bits-per-cell operation will
fail, as the charge distribution is wider than half of the effective channel length. In
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Fig.4.9, we use charge-pumping technique [4.7] to profile a programmed bit. The
characterized device is ECD=0.17um with an effective channel length of 0.095um
extracted from the TSUPREME-4 simulation. After FN electron erasing and hot-hole
programming, a tail of charge pumping current (Icp) is observed. The turn on Vt (Vgh)
of the Icp tail is proportional to the number of storage holes in a programmed bit
while the amount of the Icp tail is proportional to the length of the programmed holes
in the channel region. As shown in Fig.4.9, the Icp of the tail is around 1.3pA and the
total Icp is around 11pA. Accordingly, the length of a programmed bit should be
around 11nm ((1.3pAx0.095um)/11pA=0.011um). Therefore, the scaling limit of the
effective channel length is around 20nm with 2-bit operation. The other scaling
challenge of 2-bit PHINES is the 2-bit interaction effect. Although BTB sensing
scheme shows less 2-bit interaction effect than channel current sensing scheme in
long channel devices, we still observe that the electrons in an erased bit will affect the
BTB current of the adjacent programmed bit in a scaled device. The 2-bit interaction
ratio is shown in Fig.4.10 (a). Fig.10 (b) shows the illustration of 2-bit interaction in
BTB sensing scheme. The 2-bit interaction effect increases dramatically beyond 30nm
generation (effective channel length=20nm):.Fig.4.11 shows the storage carriers per
bit in 2-bits-per-cell operation. Less than.10, storage carriers per bit may be obtained
in 15nm CMOS generation. As-a result, 2-bit PHINES suffers scaling challenges of
the distribution of a programmed bit, 2-bitiinteraction effect, and few storage carriers
beyond 30nm generation.

4.4 Conclusion

Table 4.1 compares PHINES and floating gate technologies. PHINES technology
can achieve compatible performance and bit size to floating gate technologies for
most data flash memory applications. PHINES memory cell shows high scalability,
and 15nm generation for 1-bit-per-cell storage and 30nm generation for 2-bit-per- cell
storage are feasible in NAND-type array architecture.
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Fig.4.1 The storage conditions of a 1-bit PHINES memory cell: (a) erased
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Fig.4.2 The NAND-type array architecture and bias conditions of 1-bit
PHINES operation with channel current sensing scheme.
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Fig.4.5 The paths of punch leakage current in (a) a NOR-type and (b) a
NAND type array during the program operation.
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symbols represent the junction depth of 0.1um and 0.03um, respectively.
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Table 4.1 The comparison table of PHINES and
floating gate technologies.
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Chapter 5

Programmable Resistor with Erase-less Non-Volatile Memory (PREM) for SOC
and Embedded Flash Applications

5.1 Introduction

The stand-alone Diode Programmable Read Only Memory (DPROM) has been
proposed as an economical one-time programmable memory device [5.1]. DPROM
uses antifuse cell structure with gate oxide between n+ polysilicon gate and p+
diffusions. The oxide breakdown serves as the storage node. The cell is
unprogrammed when the gate oxide is intact and the cell is programmed when the
applied stress voltages break down the gate oxide. In addition, three-dimensional
one-time-programmable (3D-OTP) memory technology [5.2-5.3] is demonstrated for
high density and low cost ROM applications. The memory cell utilizes vertical
polysilicon diodes with an antifuse [5.1]. The cells can be stacked above read/write
transistors and above another, and.its"3D- architecture enables very high packing
density. However, the applications of thejeonventional antifuse memory are limitied
since it can perform only one-time programming and it also suffers testing issues.

In advanced CMOS devices, oxide bréakdown behavior of an ultra-thin oxide
(<2nm) is quite different from.that in-athicker one: [5.4-5.7]. Fig.5.1 compares the
breakdown evolutions in a 1.4nmoxide MIS diode.and a 2.2nm oxide MIS diode. The
breakdown in the 1.4nm oxide MIS diode (Fig.5.1 (b)) is evolved in a progressive way,
and the leakage current increases gradually with stress time.

Here, we construct a novel non-volatile memory cell named Programmable
Resistor with Erase-less Non-Volatile Memory (PREM). PREM is arranged in
antifuse structure and utilizes the progressive breakdown of an ultra-thin oxide layer
for memory storage. Compared to the conventional OTP antifuse memory, PREM can
realize MTP (multi-time programming), MLC (multi-level cell), non-volatility, and
low voltage operation. Only one extra or none mask is needed with CMOS standard
process. PREM is proposed and studied for SOC applications.

5.2 Cell Structure and Characteristics
5.2.1 PREM Cell Structure
As shown in Fig.5.2, PREM utilizes an anti-fuse cell structure [5.1] and the novel

mechanism of progressive breakdown in an ultra-thin oxide for memory storage and

operation. Fig.5.3 shows typical IV characteristics of a fresh and a stressed cell. The
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cells are stressed at a high program voltage while the read current are measured at a
low read voltage of 1.3V. The program voltage will itriggeri the progressive oxide
breakdown, and the read current between the gate and the n+ diffusion increases. The
diode formed between the gate and the n+ diffusion can sustain high reverse bias,
which eliminates the leakage current in the negative gate voltage (Vg). Fig.5.4 shows
the program voltage dependence of the read current evolution in PREM cells. The
breakdown evolution rate shows strong dependence of stress biases, which means that
the program speed and the current evolution can be well controlled by the stress
voltage and the stress time interval.

Table 4.1 discloses the PREM operation parameters. Only one extra or none
mask is needed with CMOS standard process to realize PREM cell. The operation
voltages of PREM are less than +3V, which does not need high-voltage transistors and

high-voltage processes. General I/O devices can serve the operation requirements.

5.2.2 MLC Operation Principles

PREM can realize MLC to increase the memory density. Fig.5.5 shows the
program algorithm of MLC. Since_the oxide breakdown is evolved in a progressive
way, the read current can be programmed: to any desired level by repeating the
program and program verification. Fig:5.6'(a) shows an example of 2-bits-per-cell
storage with 3 reference current levels and 4 storage levels. Fig.5.6 (b) shows an
example of 3-bits-per-cell storage with-7 reference current levels and 8 storage levels.
Fig.5.6 (c) shows an example of 4-bits-per-cell :storage with 15 reference current
levels and 16 storage levels. MLC operation demands precise control of program
speed and current evolution, which can be optimized by the stress voltage and stress
time interval since the breakdown evolution rate shows strong dependence of stress

biases as show in Fig.5.4.

5.2.3 MTP Operation Principles

Fig.5.7 shows the program algorithm of PREM to realize MLC. According to the
designed set of reference currents, the cell is repeated by the programming and
program verification until the read current reaches the desired level. Fig.5.8 shows the
exemplary illustrations of cell distributions and Fig.5.9 shows the behavior of a
PREM cell to realize MTP operation. For the 1% program operation with reference
current ref-1, the read current is stressed to the desired level (higher than ref-1) where
a bit is stored in (Fig.5.8 (a) and Fig.5.9 (a)). To perform the 2 programming step
(Fig.5.8 (b) and Fig.5.9 (b)), the reference level is switched to ref-2 that is higher than
the read current of all cells. The data are reset by changing the reference level without

an ieraseil in conventional operation of flash memories. Following, program voltages
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are applied to program the selected cells to another specific level (higher than ref-2)
where the data of i1i are programmed while the others are remained at i0i state.
Fig.5.8 (c), and Fig.5.9 (c) show the 31 programming. No erase is performed in the
operation. Instead, PREM switches reference level to reset the stored data, and we
name this operation scheme i Erase-less Algorithmi. Although PREM can only realize
MTP due to the limited increase of the read current, the cell performance is much
better than the conventional antifuse memory that can only achieve one-time

programming.

5.2.4 MLC+MTP Operation Principles

PREM can also combine the algorithms of MTP and MLC to meet the required
applications. In Fig.5.10, 2-bits-per-cell storage is demonstrated with at least 5
programming times. However, it is a tradeoff between the number of allowed
programming times and the number of stored bits. If a higher memory density (more
storage bits) is performed, it will reduce the number of allowed programming times.

The choice of MTP or MLC depends on the required applications.

5.3 PREM Array Architecture

Fig.5.11 (a) and Fig.5.11 (b) illustrate the array architecture for PREM operation
and anti-fuse cell structure. The word-linés (WLs) ate P+-polysilicon. The bit-lines
(BLs) are n-type diffusions separated by deepitrenches. N/N" diffusions are chosen
for BLs where N is utilized to teduce the junction leakage and the N is used to
decrease the bit-line resistance. An ultra-thin‘oxide of 15nm isolates the BLs and WLs.
Only one extra or none mask is needed with CMOS standard process to realize PREM
cells. Besides, the area of the crossing point cell of 4F is feasible and less than 2F?/bit
can be achieved by using MLC operation.

The array program operation is shown in Fig.5.12. Device A is the selected cell
for programming, and device B and device C are non-selected cells. In device A,
programming is done by applying a high positive voltage (2.5V) to the selected WL
(WL2) and a high negative voltage (-2.5V) to the selected BL (BL2). The high oxide
field and stress current will trigger the progressive breakdown and device A is
programmed accordingly. In unselected cells, an inhibit WL bias (-2.5V) and an
inhibit BL bias (2.5V) are applied on the non-selected BLs and WLs, respectively. No
tunnel current will flow through device B (low oxide field) and device C (reverse
biased) to trigger programming and progressive breakdown.

The array read operation is shown in Fig.5.13. Device A is the selected cell

for reading, and device B and device C are non-selected cells. In device A, read is

done by applying a positive voltage (1.3V) to the selected WL (WL2) and grounding
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the selected BL (BL2). Accordingly, Device A is forward biased, and the BL current is
sensed to verify the storage state. In the unselected cells, an inhibit WL bias (0V) and
an inhibit BL bias (1.3V) are applied on the non-selected BLs and WLs, respectively.
No sensing current will flow through device B (low oxide field) and device C (reverse
biased).

5.4 Disturbances and Cell Retention

Fig.5.12 shows the distribution of the disturbed cells (device C) during device A
programming. Fig.5.14 (a) and (b) show the disturbance behavior of device B and
device C, respectively, and no program disturbance is observed for 1000 seconds
(~100x programming time). The characteristics of read disturbance in 4
programmed-levels are shown in Fig.5.15 and no read disturbance is observed for 10
seconds. Fig.5.16 shows the cell retention of PREM at a high temperature of 150C.
No retention degradation is observed in 3 programmed-levels. PREM shows excellent

reliability characteristics, and retention results without program and read disturbance.

5.5 Scalability and Applications

PREM also shows high sscalabilitymas shown in Fig.5.17. The program
characteristics of 1.4nm and 1l.2nm oxide are’ compared. The current evolution of
thinner film shows less noisy and better controllability. As shown in Fig.5.18, PREM
can be easily integrated with advanced logicicircuits and SRAM for SOC applications.
Besides, PREM can be also as a.standalone high-density storage device. Table 4.2
compares PREM and other embedded memories. PREM can meet some applications

in SOC, embedded flash memory, and high-density storage areas.

5.6 Conclusion

A novel non-volatile memory cell named PREM (Programmable Resistor with
Erase-less Memory) is proposed and characterized. Instead of the conventional
ierasel operation, PREM adjusts the reference level to reset the data. By utilizing the
progressive breakdown of ultra-thin oxide and the new i Erase-lessi operation, PREM
can realize MTP and/or MLC. Only one extra or none mask is needed with CMOS
standard process. No degradation of cell retention, no program disturbance, and no
read disturbance are observed, and the cell reliability is guaranteed. PREMis low
voltage operation, high scalability, and simple process are superior for SOC or very

low cost and high-density storage applications.
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Table 5.1 PREM cell parameters and program/read bias conditions.

Test pattern

P-poly/oxide/N-diffusion

MIS diode
Dielectric Oxide
Physical thickness 1.4nm
Cell area 2pm’
Selected Word-line (WL) +Vpoum (<+2.5V)
Program Selected Bit-ling (BL) -Vpgm (>-2.5V)
Un-selected Word-lines -2.5V
Un-selected Bit-lines 2.5V
Selected Word-line (WL) 1.3V
Read Selected Bit-line (BL) ov
Un-selected Word-lines ov
Un-selected Bit-lines 1.3V
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Fig.5.11 (a) Schematic representation of PREM array architecture. (b) Schematic
representation of PREM cell structure. As small as 4F/cell is feasible.
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Fig.5.12 (a) The array program condition and distribution of selected device
A, non-selected device B and non-selected device C. The single cell bias

condition of (b) device A, (¢) device B, and (d) device C.
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(d) Device C
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Fig.5.13 (a) The array read condition and distribution of selected device A,
non-selected device B and non-selected device C. The single cell bias
condition of (b) device A, (c) device B, and (d) device C.
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Fig.5.14 The program disturbance characteristics of (a) device B, and (b)
device C at the temperature of 25C.
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Fig.5.15 The read disturbance characteristics of four programmed levels.
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Fig.5.16 The cell retention characteristics of three programmed levels.
The bake temperature is 150C.

93



n
—

—e— 1.4nm
é 40+ —°— 1.2nm
~—
S 30f
t o.“"&'
- ..\..‘.()()()()O:
O 20+ - /..O.....’%/ >
=) o%e®
g o
o 108 %

-

0 p | | | |

0 1 2 3 4 5
Program Time (sec.)

Fig.5.17 The program behavior of two PREM cells with 1.4nm and 1.2nm
oxide films.

94



Logic

SRAM

PREM

Fig.5.18 The illustration of logic circuits with embedded SRAM and
PREM for SOC applications.

Table 5.2 Summary of embedded memory cells.

Floating gate -
Memory memory Ox(l)dTei,BD SRAM PREM
(embedded)
Complex Simple Simple Simple
Process [ NotcMOS [T 'CMOS CMOS CMOS
compatible | compatible | compatible | compatible
Volatility | Non-volatile [ Non-volatile | Volatile | Non-volatile
) High Low Low Low
Operation
Voltage Need HV | General I/O CMOS General I/O
transistors transistors transistors transistors
Program 100k 1 0 10~100
cycles
Cell size IT 1T 4~6T 1T
Bit/cell 1~2 1 1 1~4
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Chapter 6

A novel Silicon-Nitride based Light-Emitting Transistor (SINLET) for Display

and Optical Communications

6.1 Introduction

Recently, light emission from heterojunction bipolar light-emitting transistors
(HBLET) has received much attention for optical interconnects [6.1-6.2]. HBLET
uses the graded base layer of InGaP/GaAs heterojunction for the radiative
recombination, and the modulations of light emission in phase with the base current
modulated in transistor operation at IMHz are demonstrated. HBLET can possibly
overcome the speed limitation of conventional electrical interconnects; however, its
process is incompatible to standard CMOS devices, which narrows the applications.
Although silicon-based light-emitting devices suffer lower light emission efficiency
due to the in-direct band-gap of silicon, their applications are numerous due to the
ease of integration in silicon-based .ultralarge scale integrated circuit (ULSI). Many
attempts including p-n diodes [6.3], MIS;diodes [6.4-6.6], porous silicon [6.7], and
nanocrystal LEDs [6.8-6.10] have been teported for electro-optics applications based
on silicon technologies.

In this chapter, we develop a' novel-silicon: light-emitting transistor called
SINLET (Silicon-Nitride based? Light-Emitting . Transistor), which is based on
standard silicon process, triple-well technology and a SONOS-type device structure.
The optical and electrical properties are characterized. Here, we only demonstrate the
main idea of SINLET. The ONO thickness, device size, operation condition, and

manufacturing process have not been optimized.
6.2 SINLET Device Structure and Operation Principles

6.2.1 SINLET Device Structure

As shown in Fig.6.1, SINLET wuses a poly-silicon/oxide/nitride/oxide/
silicon-substrate structure for light emission and contains three terminals: poly, n”
junction, and p-well. The ONO thickness is 9nm, 7nm and 6nm from top to down.
Bottom oxide and top oxide use thermal oxidation and nitride uses CVD deposition.
The layout of the test device is shown in Fig.6.2 and the effective device area of light

emission is around 0.616pm?.

6.2.2 SINLET Operation Principles
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The bias condition of SiINLET is shown in Fig.6.1, and the band diagram is
illustrated in Fig.6.3. As we apply a negative bias (Ve=-16V) on the poly and a
positive bias (Vh=5.8V) on the n" junction with a grounded P-well (Vc=0), electrons
(FN-E) will inject into the nitride from the poly via Fowler-Nordheim tunneling.
Meanwhile, band-to-band tunneling induced hot holes (BTBT-HH) from the n"
junction will also inject into the nitride via jumping over the bottom oxide barrier. As
shown in Fig.6.3, FN-E and BTBT-HH will be captured by nitride traps or recombine
with the trapped carriers. Photons will be emitted by the energy relaxation process via

carrier scattering, carrier trapping and carrier recombination [6.5].

6.2.3 Light Spectrum and CCD Image

Fig.6.4 (a) and (b) show the light spectrum and CCD image of SiNLET,
respectively. SINLET shows peak intensity at the wavelength of around 700nm
(~1.8eV), and its light spectrum contains infrared ray and visible ray (1100nm ~
400nm). To further investigate the detail of SINLET, the light spectrums of several
bias conditions and device structures are compared. As shown in Fig.6.4, if we just
apply a negative bias on the poly.With-EN=E_supply only, no light emission is
observed. Similar result is obtained as wesonly supply BTBT HH without electron
injection. When a MOS structure without nitride traps is used to replace the SONOS
structure, we still donit observe light emission (see Fig.6.4 (a) and (¢)).

Fig.6.5 compares the light spectrumsirof a .reverse-biased junction and a
forward-biased junction. In the ‘teverse-biased junction, a shorter wavelength and
lower current consumption are obtained, which results from the scattering, trapping,
and recombination of high energetic electrons and holes via nitride traps. In contrast,
the forward-biased junction functions as a pure p-n-junction LED, and shows peak
intensity at around 1000nm. The photon energy is around 1.2eV, which should be
caused by the electron/hole pair recombination in the bulk substrate via silicon
band-gap. Table 5.1 summarizes the results of light emission in various bias
conditions and device structures. High energetic electrons, hot holes and nitride traps
(quantum dots for carrier scattering, trapping and recombination) are essential for

SiNLET to emit high energetic photons.

6.3 Electrical and Optical Properties

Fig.6.6 (a) and Fig.6.7 (a) show the light spectrum of SINLET operated in
different Ve and Vh. Higher Ve or Vh shows larger output light intensity due to the
increased input vertical and lateral electrical field. Fig.6.6 (b) and Fig.6.7 (b) show the
supply current from the n” junction to the p-well (Ih=-Ic), which is induced by

band-to-band tunneling. In the normal operation condition, the current from the poly
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is negligible (Ie<10™" A/pm?). High light emission efficiency can be achieved by a
low supply current (<10” A/pum, compare to p-n junction in Fig.6.5) in SINLET.
SINLET can function as a three-terminal light-emitting transistor as shown in
Fig.6.8. The poly (Ve) and n" junction (Vh) serves as the Source and the Drain to
supply electrons and holes, respectively. The control voltage (Vc) in the p-well can
control the lateral electrical field to modulate the output light intensity, which serves
as the Gate. Fig.6.9 shows the output light intensity versus the supply current, and
they have nearly linearly dependence. Fig.6.10 shows the output light intensity as a
function of Vc. Fig.6.11 demonstrates the characteristics of output light intensity as a
function of input Ve and Vh. The threshold voltage of Vc is around 2V to switch
SINLET. Fig.6.12 shows the voltage stress effect on SINLET. After continuously
stress for 10 hours, a little degradation of light intensity is observed, which should
result from the stress induced deterioration of the ONO film. The wavelength of peak

intensity after electrical stress is still 700nm.

6.4 Conclusion

We have reported a novel SINLET ‘with"high light emission efficiency and low
current consumption (<10~ A/um)'in a small:devicerarea (~0.616pm?), and its process
is compatible to standard CMQS. SiNLET|shows peak intensity at around 700nm, and
its light spectrum contains infrared and visible light. SINLET can modulate the output
light intensity by controlling the input-voltages, and functions as a light-emitting
transistor. SINLET can be integrated with CMQOS devices easily as shown in Fig.6.13
and has demonstrated its high feasibility for the application of optical interconnects in
ULSL
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Fig.6.1 The device structure of SiINLET: ONO: thickness is 9, 7, and 6nm
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Fig.6.2 Layout of SiNLET test device.
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Fig.6.3 Schematic representation of the band diagram of SINLET in the

operation condition of light emission.

100



(a) SONOS structure

—m— Ve=-16, Vh=5.8 (normal condition)
—eo—Ve=-23, Vh=0 (FN-E only)

—A—Ve=0, Vh=5.8 (BTBT-HH only) MOS structure
—v— Ve=-16, Vh=5.8 (without nitride traps)
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Fig.6.4 (a) Light spectrum of various bias conditions and device structures.
Squares represent the spectrum of the normal operation condition of SiNLET.
Circles and up-triangles represent the spectrum with FN-E supply only and
BTBT-HH supply only in SONOS structure, respectively. Down-triangles
represent the spectrum of the normal operation condition in MOS structure
(oxide thickness is 18nm). (b) CCD image of SiNLET in the normal operation
condition. (¢) CCD image of MOS structure in the normal operation condition
(Ve/Ve/Vh=0/-16/5.8).
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Fig.6.5 Light spectrum of SINLET in the operation condition of
forward-biased junction (circles) and reverse-biased junction (squares).
Reverse-biased junction shows shorter wavelength and higher photon energy,
and the supply current is 3 orders less than the forward-biased junction.
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Table 6.1 Summary of various test-bias conditions and test-device

structures in Fig.5.4 and Fig.5.5.

Normal Electron | Hothole | Without | Forward
condition only only nitride junction
Vh 5.8 0 5.8 5.8 -0.85
Ve -16 -23 0 -16 -16 or 0
Ve 0 0 0 0 0
Structure SONOS SONOS SONOS MOS SONOS
Emisgon | © 3 X X 0
Peak intensity| 700nm 1000nm
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Fig.6.6 (a) Light spectrum of SINLET in various Ve (Vh=5.8V). Higher Ve
shows larger intensity. The peak intensity is at 700~800nm in all conditions.
(b) The supply current (Ih) versus the operation voltage of poly (Ve) with a
constant Vh of 5.8V. In all bias conditions, the current at n" junction is equal

to p-well (Ih=Ic) and the current at the poly (Ie) is negligible.
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Fig.6.7 (a) Light spectrum of SiNLET in various Vh (Ve=-16V). Higher Vh
shows larger intensity. The peak intensity is at 600~700nm in all conditions.
(b) The supply current (Th) versus the operation voltage of n" junction (Vh)
with a constant Ve of -16V. In all bias conditions, the current at n” junction
is equal to p-well (Ih=Ic) and the current at the poly (Ie) is negligible.
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ho = *Serve as “Source”
T *Supply electron (Ie)

i
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Fig.6.8 Schematic illustration of SiNLET to function as a three-terminal
transistor. The poly supplying electrons serves as the Drain. The n" junction
supplying holes serves as the Source. The p-well controlling the lateral field
serves as the Gate. The nitride traps serve as quantum dots for carrier trapping
and recombination.
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Fig.6.9 The supply current density versus output light intensity. The data are
extracted from Fig.5.6 and Fig.5.7.
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Fig.6.10 The light intensity as a function of Vc (Vh=5.8V, Ve=-16V). The
threshold voltage of Vc is around 2V to switch SINLET.
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Fig.6.11 The light intensity as a function of Ve and Vh (Vc=0V).
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Fig.6.12 The light spectrum before and after stress. The stress
condition and light emission measurement condition are both
Vc/Ve/Vh=0/-16/5.8V.
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Chapter 7

Conclusion

We investigated a novel flash memory cell named PHINES (Programming by hot
Hole Injection Nitride Electron Storage). PHINES uses a nitride trapping storage cell
structure. Channel FN erasing is performed to raise Vt while programming is done by
lowering local Vt through band-to-band hot-hole injection. PHINES uses backward
read scheme with low power program/erase operation, and physically 2-bits-per-cell
storage is achieved. PHINES cell also shows good retention and cell reliability and
can be arranged in both NOR-type and NAND-type array architectures for code flash
and data flash applications.

However, PHINES cell suffers the issue of 2-bit interaction due to the backward
read scheme. Two-bit interaction effect caused by the local storage carriers and the
DIBL will result in the reduction of the Vt operation window. The effects of the
charge profile on the Vt operationt'window:.are also studied and characterized.
Although a narrower electron distributiony higher electron storage density, better
program/erase algorithms, and;a lower réad-Vd can'be used to increase the operation
window, 2-bit interaction effect can not be eliminated completely and will get worse
in a scaled device. To overcome this issue;7arnovel BTB sensing scheme and a new
modified NAND-type array are’ introduced in' chapter 3. Since BTB current is
generated locally between the drain (or‘source) and P-well, the sensing currents of
two bits are independent and will not affect each other. BTB-PHINES eliminates the
2-bit interaction effect and a large operation window can be obtained by BTB sensing
scheme. We also construct a novel modified NAND-type array to realize
2-bits-per-cell operation and high-density storage. BTB-PHINES memory cell
demonstrates a fast cell programming speed (= 60ps) with a low programming
current (= 100nA/cell), and a high programming throughput can be achieved. Besides,
the sensing current shows weak temperature dependence, and good cell reliability is
demonstrated.

In chapter 4, we compare the scaling challenges of PHINES and floating gate
technologies. PHINES technology can achieve compatible performance and bit size to
floating gate technologies for most data flash memory applications. According to our
evaluations, 1-bit PHINES suffers the scaling challenges of few storage carriers,
inter-WL leakage/breakdown, and cell punch beyond 15nm CMOS generation.
Two-bit PHINES suffers scaling challenges of the distribution of a programmed bit,
2-bit interaction effect, and few storage carriers beyond 30nm generation. Compared
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to the conventional floating gate memory cells, PHINES memory cell shows high
scalability, and 15nm generation for 1-bit-per-cell storage and 30nm generation for
2-bits-per-cell storage are feasible in NAND-type array architecture.

In chapter 5, a novel non-volatile memory cell named PREM (Programmable
Resistor with Erase-less Memory) is constructed for SOC and embedded flash
memory applications. Instead of the conventional ierasei operation, PREM adjusts
the reference level to reset the data. By utilizing the progressive breakdown of
ultra-thin oxide and the new i Erase-lessi operation, PREM can realize MTP and/or
MLC. Only one extra or none mask is needed with CMOS standard process. No
degradation of cell retention, no program disturbance, and no read disturbance are
observed, and the cell reliability is guaranteed. PREMis low voltage operation, high
scalability and simple process are superior for SOC or very low cost and high-density
storage applications.

In chapter 6, we reported a novel SINLET (Silicon-Nitride based Light-Emitting
Transistor) with high light emission efficiency and low current consumption
(<107A/um) in a small device area (~0.616um®). This three-terminal
electroluminescence device uses a_SONOS=type, device structure, and its process is
compatible to standard CMOS devices. ;Photons are generated by Fowler-Nordheim
electron tunnel-injection, band-to-band “tunneling 'induced hot-hole injection, and
carrier scattering/trapping/recombination “via nitridé traps. SINLET shows peak
intensity at around 700nm, and its light'spectrum contains infrared and visible light.
SINLET can modulate the outputilight intensity by controlling the input voltages, and
functions as a light-emitting transistor. 'SINLET has demonstrated its high feasibility
for the application of optical interconnects in ULSI.
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