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ABSTRACT 
In this thesis, we conduct the analysis of noncoherent cooperative space-

frequency coded (SFC) systems operating under the decode-and-forward 

(DAF) protocol in a two-hop relaying network, where neither the transmitter 

nor the receiver knows the channel. We assume practically that each of the 

intermediate relay nodes may fail to decode the message from the source. 

Each relay use an error detection method to determine whether or not it has 

reliably decoded the message, and only those relays who think they decode 

successfully will forward the message to the destination. We investigate the 

system under both perfect and imperfect error detection. Under perfect error 

detection, we develop the maximum likelihood (ML) decoding rule, derive 

the average pairwise error probability (PEP) and establish the code design 

criteria for achieving full diversity. We conclude that the diversity gain of the 

non-coherent cooperative SFC under perfect relay error detection is on the 

average equal to the product of the total number of relays and the channel 

order in the relay-destination link. Furthermore, we investigate the impact of 

imperfect relay error detection and find the significance of error detection on 

relay nodes. 
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Chapter 1

Introduction

1.1 Motivation and Related Work

It has been shown that the multiple-input-multiple-output (MIMO) systems employing

multiple transmit and receive antennas can offer a significant increase in capacity and

mitigate the detrimental effects of the channel fading in wireless communication sys-

tems. However, in the uplink of a cellular system, the size of mobile handsets makes it

impractical to be quipped with geographically separated multiple antennas for ensuring

independent fading on the transmit side. Addressing this problem, the strategy built upon

the relay channel model, where the source broadcasts a message to several intermediate

relays and subsequently these relay nodes forward the message they received to the des-

tination, is considered as one of the promising methods to exploit spatial diversity using

a collection of distributed antennas from different users in the network. This form of di-

versity is referred to as the cooperative diversity [6, 13], in the sense that the relay nodes

cooperating with the source node creates a virtual antenna array, or virtual MIMO system,

to facilitate the ultimate transmission between the source and the destination.

In conventional MIMO systems, the design of space-time codes have been well inves-

tigated and shown to be a very efficient approach to invoking the diversity. An important

attribute of the space-time codes is that, for achieving full diversity, the transmitter actu-
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ally needs to conducts encoding across antennas. That means we need to transmit quite

different signals over independent channels. However, for a virtual MIMO system created

by relay nodes, it is more difficult to have the relay cooperate. For a practical concern,

it is usually assumed that the relay nodes cannot have instantaneous message exchanges

between each other. Still, they may cooperate to a level in a way that we pre-assign dif-

ferent coding rule to each relay by a controlling center so that they can form a distributed

space-time code cooperatively as suggested in [5, 12]. Such considerations let us exploit

the cooperative diversity easier at the cost of lower scalability. We will follow that spirit

of partial cooperation in this thesis. On the other hand, there is another interesting mech-

anism using randomized space-time codes [9]. Randomization allows all relay to encode

with a common randomization rule but transmit different and independent signals. Hence,

it has good scalability with other problems such as instantaneous power control on each

individual relay. A more general consideration on the randomized space-time codes can

also be found in [2].

For frequency non-selective flat fading channels, distributed space-time codes have

been proposed to effectively exploit the spatial and temporal diversity offered by the vir-

tual antenna array in the cooperative relaying network [5, 7]. On the other hand, when

in the frequency-selective channel environment, the presence of multipath channel fad-

ing offers another dimension of diversity, i.e. the frequency diversity, that the system can

further exploit. Combined with the technique of orthogonal frequency-division multiplex-

ing (OFDM) modulation, the design of distributed space-frequency codes with coherent

decoding is considered in [8], where the authors employ the decode-and-forward (DAF)

protocol and assume that all relays decode correctly. A more realistic scheme which takes

into account the condition that all the relays do not always decode reliably is proposed and

analyzed in [12], where the authors assume that each relay knows whether or not it has

decoded reliably, i.e., an assumption of perfect censoring in each relay. This assumption

is reasonable since the censoring method, such as using the cyclic redundancy check, can
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be quite accurate. However, for the purpose of diversity achieving, we need the error rate

of the system vanishing rapidly as the signal-to-noise ratio (SNR) goes to infinity. The

main focus is on the high SNR regime and arbitrarily small error rate. In such case, a

fixed error probability of censoring could be a decisive factor and should be treated cau-

tiously. To the best of our knowledge, only on work [14] considers the practical scenario

that some relays may fail in censoring and forward incorrect signals to the destination.

Specifically, in [14], the approach to mitigating the effect of error propagation needs the

relay nodes know the instantaneous channel gains.

In the aforementioned work, perfect channel state information (CSI) is assumed to en-

able coherent detection at the end receiver [2,5,7–9,12,14]. However, performing channel

estimation can be costly and very challenging in multiple-hop wireless links and/or in fast-

fading environments. Therefore, noncoherent communications not requiring the CSI is of

particular interests. An early work [3] of noncoherent communications on MIMO space-

time systems suggests the use of unitary modulation, or the unitary space-time code. Such

unitary constellation is then generally used in noncoherent MIMO systems. The existence

and construction of the unitary space-time codes have been investigated in [15], which

presents a very elegant geometric thought for the maximum-likelihood (ML) decoding

with unitary modulation and a good interpretation of the diversity as the dimension of the

column space of the codeword matrix. On the other hand, the analysis and design for non-

coherent space-frequency coded MIMO systems has also been considered in [1], where

the authors prove that the maximum achievable diversity gain is given by the product of

the number of transmit antennas, the number of receive antennas, and the channel order,

which is the same as the diversity gain that can be provided in coherent communications.

For cooperative networks, noncoherent communications have also been studied over fre-

quency flat fading channel. For example, noncoherent decoding in amplify-and-forward

(AF) relaying scheme is explored in [17].
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1.2 Contribution

In this thesis, we focus on the analysis of noncoherent space-frequency coded cooperative

OFDM-based relaying systems, which consists of a source node, a destination node and

multiple relaying nodes. The channel between each node pair is assumed to be frequency-

selective. The DAF protocol at the relays is considered and CSI is unknown to all nodes in

the network. Perfect timing synchronization is assumed in this work. In practice, perfect

timing synchronization is difficult to achieve. However, with OFDM signaling, timing

mismatches can be mitigated by adding appropriate cyclic prefix. An interesting work ad-

dressing the issue of timing asynchronism in cooperative relaying networks can be found

in [11]. We further assume that there is no direct link from the source node to the des-

tination node, and that each of the relay nodes may fail to decode the message from the

source. The relay will first employ a censoring method to determine whether or not it re-

ceives informative messages. Only those relays who pass the censoring will they decode

and forward the messages to the destination. We investigate the system under both perfect

and imperfect relay censoring. For perfect censoring, we assume that each relay can know

if it has decoded reliably and thus perfectly prevent error propagations. Such assumption

has been made in several studies with DAF protocol [9,12]. The case of perfect censoring

not only yields neat analytic results but also provides insight to the maximum achievable

diversity with noncoherent cooperative space-frequency system. For a more realistic sce-

nario, on the other hand, we also investigate the impact of imperfect censoring on the

diversity order. That is, we deal with the case when some relays may decode incorrectly

but still transmit to destination.

With the assumption of perfect censoring, we first consider the case that the receiver

does not have instantaneous CSI, but knows the long-term channel statistics and the in-

stantaneous decoding status of the relays for obtaining the ML decoding rule. Know-

ing the relay decoding status requires signaling overhead sent by the relays, but yields a

simpler decoding rule and thus simplify the analysis. We refer to this case as a partial
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knowledge receiver or the ML decoder. In condition to that, we also consider a com-

pletely noncoherent receiver which needs neither long-term CSI nor the decoding status

of the relays. We refer to it as the suboptimum decoder or simply the correlator decoder

since it exploit the correlation structure of the codewords. We analyze the PEP under

both receiver. The code design criteria is provided based on the derived pairwise error

probability (PEP) in high SNR regimes. We conclude that under perfect error detection,

the proposed non-coherent cooperative SFC can achieve a diversity of order RL for both

the ML decoder and correlator-like decoder, where R is the total number of cooperating

relays, regardless whether they can decode correctly or not, and L is the channel order

between the relay and destination pair. On the other hand, for the case of imperfect er-

ror detection, we find that its impact on maximum diversity is significant. And in such

case, there is a large gap on error rate between ML decoder and correlator-like decoder.

Simulation results also justify the correctness of our analysis. This demonstrates that the

non-coherent cooperative virtual MIMO networks can potentially offer as good perfor-

mance as that in the conventional MIMO networks in terms of diversity order, while the

relay error detection and the error propagation effect should be concerned and controlled

carefully.

Notation: Boldface capital letter for matrices, boldface lowercase letter for vectors.

(.)T and (.)H denote transpose and hermitian respectively. The notation f(P)
.
= g(P)

denote that f and g has same exponent, i.e.,

lim
P→∞

log f(P)

logP = lim
P→∞

log g(P)

logP ,

which may be referred to as diversity equivalence. A bound f(P) < g(P) is said to be a

diversity preserving bound if f(P)
.
= g(P).
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Chapter 2

Relay Transmission Model

Consider a two-hop wireless relay network consisting of a source node, a destination

node, and R relay nodes as shown in Fig. 2.1. Each of the R+2 nodes has a single antenna.

We assume the transmission is accomplished by a two-phase cooperative communication

strategy with the decode-and-forward protocol. In Phase I, the source node broadcasts the

information message to the R relays, which cooperate for the transmission from the the

source to the destination. In Phase II, each relay decodes the message and uses an error

detection such as CRC or SNR method to decide whether itself participates in the second

phase transmission as suggest in [10]. Then, there are four situations that would happen

on each relay.

1. Useful relay

the relay decodes correctly and decide to participate

2. Useless relay

the relay decodes correctly but decide not to participate

3. Controlled relay

the relay decodes incorrectly and decide not to participate

4. Harmful relay

the relay decodes incorrectly but decide to participate
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The probabilities of these four events could be determined by the decoding error rate and

the accuracy of error detection on each relay. We denote the error rate on each relay by

ps. And the accuracy of error detection on each relay consist of two types of error. The

probability of type I and type II error is denoted by

P(not to participate | decode correctly) = p1|0,

P(participate | decode incorrectly) = p0|1,

where we think decoding error as hypothesis 1. We assume a symmetric case that all

relays have the same ps, p1|0, and p0|1. The scale of ps could be decided by the coding

scheme and power used at the source node. While p1|0 and p0|1 depend on the CRC or the

SNR method at each relay (Note that CRC can allow us to do the error detection as good

as we require by sacrificing the data rate, while SNR method won’t affect the date rate but

has limited detection performance). Using these three, we can obtain the previous four

cases’ probabilities. For example,

P(Useful relay) = (1 − ps)(1 − p1|0).

If the relay participates, then we called it an active node(case 1,4). Otherwise it would

be a silent node(case 2,3). Since source to each relay could be viewed a SISO system

whose behavior has been well investigated, we can simply use above model with the

parameters ps, p1|0, and p0|1 to characterize Phase I transmission which allow us abbrevi-

ating the channel/noise modeling. Thus, in the following analysis, we will focus on the

non-coherent space-frequency codes applied in Phase II of the communication.

The system is based on OFDM modulation with N subcarriers. Under perfect syn-

chronization, we assume that the baseband frequency-selective fading channel between

rth relay and destination has L independent delay paths, written as hr(l), l = 0, 2, ..., L−1.

The channel delay path gain hr(l) is modeled as independent complex Gaussian random

variable (independent cross both r and l) with zero mean and covariance σ2
r,l. We assume

a normalized power on each channel between relay to destination with
∑L−1

l=0 σ2
r,l = 1 for

all r = 1, ..., R.
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Figure 2.1: The two-hop wireless relay system with R relays.

In Phase II transmission, an active node will re-encode its decoded message using an

mapping. Specifically, let the codebook used in phase I be S = {s0 s1 · · · sK−1},

containing K codewords with each an N × 1 OFDM symbol vector. Suppose that the

rth relay decode the message as ŝ = sk, then it will re-encode the message by sk �→ cr
k

and transmit the new N × 1 coded OFDM symbol vector cr
k to the destination node. The

subscript r indicates that different relay would re-encode same message differently. After

the channel from relay nodes to destination, the receiver end will then receive the sum

of signals from all active relays. Addition by the additive noise, the received signal at

destination node after IDFT could be expressed as

rd =
√
P

∑
r: active

Hrcr + n, (2.1)

where P is each relay’s power scaling factor (we assume a uniform power over all re-

lays) relative to the normalized complex Gaussian noise vector n ∼ CN (0, IN), cr is the
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transmitted codeword from rth relay, and Hr is a diagonal matrix with the diagonal term

(Hr)nn representing the frequency channel gain from rth relay to destination on nth sub-

carrier. This frequency channel gain matrix Hr and the channel delay path gain is related

by

Hr =
L∑

l=0

hr(l)Dl, (2.2)

where

D = diagN−1
k=0 {e−2π k

N }.

Substitute (2.2) into (2.1) and reorder the summation, we have

rd =
√
P

L∑
l=0

Dl
∑

r: active

hr(l)cr + n, (2.3)

Now suppose that source transmitted the message si. We categorize the status of relay by

using relay status matrices Sm = diagR
r=1{Sm,r}, with Sm,r signifying the state of the rth

relay w.r.t mth codeword. More specifically,

Sm,r =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if rth relay decoded as ŝ = sm and

participated in phase II

0, o.w.

Using this convention, together with rewriting the r-summation into matrix multiplica-

tion, we have

rd =
√
P

L∑
l=0

Dl
(
CiSih(l) +

K∑
m�=i

CmSmh(l)
)

+ n,

where Ci =
(

c1
i c2

i · · · cR
i

)
is the codeword matrix constructed when all relays de-

code the message to be si, and h(l) = [h1(l) h2(l) · · · hR(l)]T is the channel vector of lth

delay path. Note that the status matrix Si nulls out those relays which didn’t participate

or didn’t decode the message to be si.

Next, we further rewrite the l-summation in to matrix multiplication, arriving at

rd =
√
PEiŜih +

√
P

K∑
j �=i

EjŜjh + n. (2.4)

9



where Ei =
(

Ci DCi · · · DL−1Ci

)
is the pseudocodeword matrix of message i, as

named in [1]. Ŝi = IL ⊗ Si is the stacked relay status matrix with ⊗ being the Kronecker

product operation, and h = [hT (0) hT (1) · · · hT (L− 1)]T is the RL× 1 stacked channel

vector.

As we can see, the harmful relays, which causing an error propagation and resulting to

the second term in (2.4), will play the role of interference in the system.
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Chapter 3

Error Probability and Diversity

Analysis

3.1 Performance Analysis under Perfect Relay Error De-

tection

In this section, we analyze the maximum achievable diversity of the system under per-

fect relay error detection. That is, under the assumption that each relay knows perfectly

whether or not it has decoded correctly, as the same assumption suggested in [9,12]. This

corresponds to p1|0 = 0 and p0|1 = 0, which avoid any harmful relay and useless relay

perfectly. Though unrealistic, such assumption could simplify the analysis largely and let

us catch a glimpse of the system behavior. By the assumption, we have Ŝm = 0 ∀ m �= i,

for which transmitted message from source is si. Then, we can simplify equation (2.4) as

rd =
√
PEiŜh + n,

where we abbreviated Ŝi = Ŝ without ambiguity here.

To analyze the system, we first considered in Sec. 3.1.1 the case that destination has

the knowledge about the channel statistic and the relay decoding status. Such knowledge

might be acquired by having all relays send additional information to destination in the
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signaling overhead. To overcome this overhead, in Sec. 3.1.2, we then investigate the

ability of a completely noncoherent receiver, i.e., the destination decodes with neither

channel statistic nor relay decoding status.

3.1.1 Some Knowledge Known at Receiver

Maximum-Likelihood Decoding

In order to find the maximum achievable diversity, we first need to find out the min-

imum achievable error probability, which resorting to maximum-likelihood decoding.

With channel statistic and relay decoding status, the likelihood function p(rd|Ci, Ŝ) is

simply a multivariate complex gaussian with mean zero. The covariance matrix of rd

could be calculated as

Λ(Ci|Ŝ) = IN + PEiŜΣ2EH
i , (3.1)

where Σ2 = E[hhH ] = diagL−1
l=0 {diagR

r=1{σ2
r,l}} is the covariance matrix of the stacked

channel vector h. Note that we have exploited the fact that Ŝ is idempotent, i.e. Ŝ2 = Ŝ,

and that Σ2 is diagonal in representing (3.1). The conditional density of the received

signal is then given by

p(rd|Ci, Ŝ) =
exp

(−rH
d Λ−1(Ci|Ŝ)rd

)
πN

(
det Λ(Cr|Ŝ)

) .

Consequently, we have the ML decoding rule

ĈML = arg min
Ci∈C

(
rH

d Λ−1

i,Ŝ
rd + ln detΛi,Ŝ

)
,

where we let Λ(Ci|Ŝ) = Λi,Ŝ for notational convenience.

In this work, we restrict ourselves to the case of unitary codebook, i.e. EH
i Ei =

IRL, for i = 0, . . . , K − 1, which also allows the analysis more tractable. This unitary

constellation originated from [3] and is commonly used in noncoherent system. The ML

decoding rule is therefore simplified to

ĈML = arg max
Ci∈C

(
rH

d EiŜΣ2
(
IRL + PŜΣ2

)−1EH
i rd

)
(3.2)
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by applying the matrix inversion lemma to Λ−1

i,Ŝ
. It is worthwhile to emphasize that the

proposed ML decoding rule indeed requires the destination node knowing the matrix Ŝ,

i.e. the relay decoding status.

Conditional Pairwise Error Probability

According to this ML decoding rule, we derive the pairwise error probability (PEP) of

deciding in favor of Cj at the receiver while Ci is the true transmitted codeword. Condi-

tioned on the relay status matrix Ŝ, we have

P(Ci → Cj|Ci, Ŝ) = P(v > 0|Ci, Ŝ) (3.3)

where v = rH
d (EjŜΣ2T−1EH

j − EiŜΣ2T−1EH
i )rd with T = IRL + PŜΣ2. It follows by

the Chernoff bound that

P(v ≥ 0|Ci, Ŝ)leqE[esv|Ci, Ŝ]
def
= φ(s),∀s > 0 (3.4)

where φ(s) is the moment generating function (MGF) of v.

Following the algebraic approach in [1], the MGF φ(s) is given by

φ(s) = det−1(IRL + sŜΣ2) · det−1
(

IRL − sŜΣ2T−1−

s(P − s)ŜΣ2T−1EH
j EiŜΣ2

(
IRL + sŜΣ2

)−1EH
i Ej

)
.

(3.5)

We next establish a further upper bound on the above Chernoff bound.

With some algebraic manipulations, the MGF φ(s) can be decomposed into

φ(s) = φ1(s)φ2(s) (3.6)

where
φ1(s) = det−1(IRL + sŜΣ2) det(IRL + PŜΣ2)

φ2(s) = det−1
(
IRL + (P − s)ŜΣ2Ψ

)
with

Ψ = IRL − sEH
j EiŜΣ2(IRL + sŜΣ2)−1EH

i Ej

= IRL − EH
j Ei

(
IRL − (IRL + sŜΣ2)−1

)
EH

i Ej

= IRL − EH
j EiEH

i Ej + EH
j Ei(IRL + sŜΣ2)−1EH

i Ej.

(3.7)
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Then, to give bounds, we first assume that the s we used is a function of P and s < P ,

furthermore, s = Θ(P), i.e., limP→∞ s
P = c > 0. We will show the validity of these

assumptions when the minimizer s∗ is found. Let nS =
∑R

r=1 Si,r be the number of active

relays. We thus arrive at

φ1(s) <
(P

s

)nSL

. (3.8)

Next, we evaluate φ2(s) in terms of the eigenvalues of ŜΣ2Ψ as

φ2(s) =
RL−1∏
r=0

(
1 + (P − s)λr

(
ŜΣ2Ψ

))−1

=
RL−1∏
r=0

(
1 + (P − s)λr

(
ŜΣΨΣŜ

))−1

(3.9)

where the fact that Ŝ is idempotent is used in deriving (3.9). Substituting (3.7) into (3.9)

gives

φ2(s) =
RL−1∏
r=0

(
1 + (P − s)λr

(
ŜΣQΣŜ + P

))−1

,

where

Q = IRL − EH
j EiEH

i Ej

P = ŜΣEH
j Ei(IRL + sŜΣ2)−1EH

i EjΣŜ. (3.10)

The case that all relays have decoded correctly, i.e. Ŝ = IRL, is identical to a MISO

system, which has been elaborated in [1]. Thus, we shall preconceive that there exists at

least one inactive relay node, which results in λmin(P) = 0. Further, observe that both

ŜΣQΣŜ and P are Hermitian matrices. Hence, by assumption that s < P , applying

Weyl’s inequality [4], theorem 4.3.1, to bound the eigenvalues in (3.10), yielding

φ2(s) ≤
RL−1∏
r=0

(
1 + (P − s)λr(ŜΣ2Q)

)−1
. (3.11)

It follows, by combining (3.8) and (3.11), that

φ(s) <

(P
s

)nSL

(P − s)−dij

dij−1∏
r=0

λ−1
r (ŜΣ2Q), (3.12)
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where dij = rank(ŜΣ2Q) with the subscripts corresponding to the codewords Ci and Ci

contained in P and Q. Note that the two bounds in (3.8) and (3.11) could be shown to

be diversity preserving by using the assumption that s = Θ(P). This means the bound

(3.12) could reflect the exponent of P , i.e., the diversity order, correctly.

Performing the minimization over s in (3.12), we obtain s∗ = PnSL/(di,j + nSL) <

P , which validates the initial assumptions on s. Specifically, s∗ = P/2 if Q is nonsingular

(which guarantees dij = nSL). The bound then is simplified to

P(Ci → Cj|Ci, Ŝ) <

(P
4

)−nSL nSL−1∏
r=0

λ−1
r (ŜΣ2Q). (3.13)

Therefore, restricting that Q is of full-rank will guarantee the decay rate of the conditional

PEP as P−nSL at high SNR.

Average Pairwise Error Probability

Based on the results established so far, we can derive the average PEP at the destination

node by averaging over Ŝ. By the model in Sec. 2, the state of the rth relay node Si,r is a

Bernoulli random variable with a probability mass function as

Si,r =

⎧⎨
⎩

0, with probability ps

1, with probability 1 − ps,
(3.14)

where the error rate ps depends on the transmit power and the coding scheme at source

node in phase I transmission. It can be viewed as error rate of a SISO system. Hence we

have ps ≤ β × P−L achievable with a constant β at each relay node through adequate

source node coding. Therefore, nS follows the binomial distribution

P(nS = k) =

(
R

k

)
(1 − ps)

kpR−k
s . (3.15)
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Thus, the destination average PEP is given by

P(Ci → Cj|Ci)

=
∑

Ŝ

P(Ŝ)P(Ci → Cj|Ci, Ŝ)

=
R∑

k=0

P(nS = k)
∑

Ŝ:nS=k

P(Ci → Cj|Ci, Ŝ)

=
R∑

k=0

(
R

k

)
(1 − ps)

kpR−k
s

∑
Ŝ:nS=k

P(Ci → Cj|Ci, Ŝ)

<

R∑
k=0

(
R

k

)
P−L(R−k)

∑
Ŝ:nS=k

(P
4

)−nSL nSL−1∏
r=0

λ−1
r (ŜΣ2Q)

= P−RL ·
R∑

k=0

(
R

k

) ∑
Ŝ:nS=k

4nSL

nSL−1∏
r=0

λ−1
r (ŜΣ2Q)

︸ ︷︷ ︸
�η1

,

(3.16)

where we simply upper bound (1 − ps) by 1. Summarizing, we have the unconditional

PEP

P(Ci → Cj|Ci) < η1 × P−RL, (3.17)

with η1 representing the component in (3.16) that is independent with P . The bound used

in equation (3.16) is obviously diversity preserving. Combining with the discussion about

the bounds in previous section, we actually have

P(Ci → Cj|Ci)
.
= η1 × P−RL, (3.18)

i.e., the maximum achievable diversity under the assumption of perfect relay error detec-

tion is exactly RL when the receiver has the knowledge of long-term channel statistics

and instantaneous decoding status of all relays.

3.1.2 Completely Noncoherent Decoder

Now we show that receiver can still retrieve full diversity even without the knowledge of

channel statistics and relay decoding status.
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Maximum-Likelihood Decoding

Without conditioning on Ŝ, obtaining the likelihood function involves an average over all

possible Ŝ. That is, receiver needs to test all possible relay decoding state and take all of

them into account. The likelihood function then becomes a gaussian mixture

p(rd|Ci) =
∑
Ŝ∈2R

P(Ŝ)p(rd|Ci, Ŝ)

=
∑
Ŝ∈2R

pnS
s (1 − ps)

R−nS

exp
(−rH

d Λ−1

i,Ŝ
rd

)
πN

(
det Λi,Ŝ

) .

Hence without knowledge of relay decoding status, the optimum ML decoding at receiver

can be written as

ĈML = arg max
Ci∈C

∑
Ŝ∈2R

pnS
s (1 − ps)

R−nS

exp
(−rH

d Λ−1

i,Ŝ
rd

)
πN

(
det Λi,Ŝ

) (3.19)

Due to the summation of exponential, this optimum decision rule is hard to be simpli-

fied. And the error probability analysis based on (3.19) directly will be mathematically

intractable. Thus, we approximate (3.19) using the dominated term in the summand. This

will result in a suboptimum decoder. However, for investigating the maximum achievable

diversity, we approximate (3.19) tightly such that

Psubopt(error) ≤ η2 × P−RL (3.20)

and then we can establish

η1 × P−RL .
= PML A(error)

≤ PML B(error) ≤ Psubopt(error)

≤ η2 × P−RL,

(3.21)

where PML A(error) and PML A(error) represent the error probability under the ML deci-

sion rule in Sec. 3.1.1, equation (3.2) and Sec. 3.1.2, equation (3.19) respectively. The

RHS in (3.21) indicate that diversity RL is achievable, and the LHS provides the converse,

i.e., the maximum diversity do not exceed RL. Hence, by (3.21), we have the maximum
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achievable diversity be still RL even without knowledge of relay decoding status for both

optimum ML decoder and our suboptimum decoder.

In equation (3.21), the first diversity equivalence has been shown in Sec. 3.1.1. And

in second line, the first inequality follows from that the decoder in section 3.1.1 has an

additional information, the relay decoding status. Moreover, optimality of ML decoder

gives the second inequality. Therefore, in the following, we only focus on describing sub-

optimum decoder and the corresponding error probability to obtain equation (3.20) for

completing the proof.

Suboptimum Decoder

As mentioned, we use the dominated term in the summand of (3.19). Diversity is an SNR

asymptotic quantity. Instead of having the receiver compute the largest term exactly, we

simply select the one that Ŝ = IRL in the summand, which has the largest probability in

high SNR, to approximate (3.19) for providing a maximum diversity achieving decoder.

And then we have the following,

Ĉsubopt* = arg max
Ci∈C

exp
(−rH

d Λi,Ŝ=IRL
rd

)
πN

(
det Λi,Ŝ=IRL

)
= arg max

Ci∈C

(
rH

d EiΣ
2
(
IRL + PΣ2

)−1EH
i rd

)
.

(3.22)

The decoder in (3.22) could do without the relay decoding status but it still need the

channel statistic Σ2. To have a completely noncoherent decoder, we further simplified

(3.22) by substituting Σ2 = IRL and scaling with 1 + P , resulting to

Ĉsubopt = arg max
Ci∈C

(
rH

d EiEH
i rd

)
, (3.23)

which only exploits the correlation structure of codeword matrices to distinguish them.

Next, we use the suboptimum decoder in (3.23), which needs neither the instantaneous

CSI nor the long-term channel statistic nor the relay decoding status, to carry out equation

(3.20).
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Conditional Pairwise Error Probability

Similarly as in section 3.1.1, we analyze the PEP. The pairwise error event that the decoder

(3.23) decides in favor of Cj than Ci while Ci is truly transmitted can be written as

{rH
d EjEH

j rd − rH
d EiEH

i rd > 0}. (3.24)

Using Chernoff bound, the conditional pairwise error probability could be upper bounded

by

P(Ci → Cj|Ci, Ŝ) = P(w > 0|Ci, Ŝ)

≤ E[esw|Ci, Ŝ], ∀s ≥ 0
(3.25)

where w = rH
d EjEH

j rd − rH
d EiEH

i rd . Unlike in section 3.1.1, applying the algebraic

method in [1] here to establish a series of diversity preserving upper bounds would be

too involved to manipulate. However, we didn’t need to certify the tightness on each

individual bound. We could use any upper bound to bound equation (3.25) as long as we

could establish (3.20) in the end, which would guarantee the diversity preserved on every

bound we had used automatically, as mentioned in (3.21). We start with expanding w by

using rd =
√PEiŜh + nd

w = rH
d EjEH

j rd − rH
d EiEH

i rd

= PhHŜEH
i EjEH

j EiŜh − PhHŜŜh

+ 2Re{
√
PhHŜEH

i EjEH
j nd} − 2Re{

√
PhHŜEH

i nd}

+ nH
d EjEH

j nd − nH
d EiEH

i nd.

To evaluate the conditional expectation in (3.25), we first further conditioned on the chan-

nel. Substituting w in, we have
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E[esw|Ci, Ŝ, h]

= exp
(
sPhHŜ(EH

i EjEH
j Ei − IRL)Ŝh

)
·E[

exp
(
2sRe{

√
PhHŜEH

i (EjEH
j − IN)nd}

)
exp

(
snH

d (EjEH
j − EiEH

i )nd

) ∣∣ Ci, Ŝ, h
]

≤ exp
(
sPhHŜ(EH

i EjEH
j Ei − IRL)Ŝh

)
·(E[

exp
(
4sRe{

√
PhHŜEH

i (EjEH
j − IN)nd}

)
∣∣ Ci, Ŝ, h

]) 1
2

·(E[
exp

(
2snH

d (EjEH
j − EiEH

i )nd

) ∣∣ Ci, Ŝ, h
]) 1

2 (3.26)

where the last bound followed from cauchy-schwarz inequality. The first expectation

in equation (3.26) could be evaluated by using MGF of Gaussian random variable. And

the second expectation is related to the MGF of Hermitian quadratic form in complex

Gaussian, for which the closed form solution could be found in [16]. Carrying out the

two, we have

E[esw|Ci, Ŝ, h]

≤ exp
(
sPhHŜ(EH

i EjEH
j Ei − IRL)Ŝh

)
· exp

(
2s2PhHŜEH

i (EjEH
j − IN)(EjEH

j − IN)EiŜh
)

· det−
1
2

(
IN − 2s(EjEH

j − EiEH
i )

)
= exp

(
(s − 2s2)PhHŜ(EH

i EjEH
j Ei − IRL)Ŝh

)
· det−

1
2

(
IN − 2s(EjEH

j − EiEH
i )

)
.

(3.27)

This bound holds for all s > 0. Instead of finding the optimum s to minimize the bound,

we simply use s = 1
3

as it is neat and enough for providing the bound (3.20). In such case,

the determinant term in equation (3.27) could be bounded as

det−
1
2

(
IN − 2

3
(EjEH

j − EiEH
i )

) ≤ (
1

3
)−

1
2N ,
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where we have used Weyl’s inequality [4], theorem 4.3.1, that

λ(EjEH
j − EiEH

i ) ≤ λmax(EjEH
j ) − λmin(EiEH

i ) = 1.

Consequently, we now have

P(w > 0|Ci, Ŝ, h)

≤ (
1

3
)−

1
2N exp

(P
9

hHŜ(EH
i EjEH

j Ei − IRL)Ŝh
)
.

Taking expectation over h on both side, and using the MGF formula in [16] again, it yields

P(w > 0|Ci, Ŝ)

≤ (
1

3
)−

1
2N det−1

(
IRL +

P
9

ŜΣ2(IRL − EH
i EjEH

j Ei)
)

= (
1

3
)−

1
2N

di,j∏
k=1

(
1 +

P
9

ŜΣ2Q
)−1

≤ (
1

3
)−

1
2N (

P
9

)−di,j

di,j∏
k=1

λ−1
k (ŜΣ2Q),

(3.28)

where Q = IRL − EH
i EjEH

j Ei is the same matrix as in section 3.1.1. From (3.28), we

know that assuring nonsingularity of Q will guarantee the diversity being nSL, which is

an identical result as section 3.1.1, equation (3.13).

Average Pairwise Error Probability

Using a similar argument as in 3.1.1, we could obtain

P(Ci → Cj|Ci) < η2 × P−RL

with

η2 = (
1

3
)−

1
2N

R∑
k=0

(
R

k

) ∑
Ŝ:nS=k

9nSL

nSL−1∏
r=0

λ−1
r (ŜΣ2Q),

which provides equation (3.20). Therefore, we can conclude the result.

3.1.3 Code Design Criteria

It follows from (3.13) and (3.28) that, by ensuring the matrix Q to be nonsingular for any

pair of distinct pseudocodeword matrices, the error probability could show a decaying rate
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scaling with P−RL no matter whether the receiver has the knowledge of channel statistic

and/or the relay decoding status.

The requirement on pseudocodeword matrices resembles that of non-coherent SFC

in [1] with identical diversity gain. It follows that using codeword matrices constructed by

the same coding criteria as in [1] can also invoke full diversity that resides in a distributed

channel. Thus, as in [1], define the diversity product

γ = min
0≤i≤j≤K−1

RL−1∏
r=0

(
1 − ρ2

r(i, j)
)

(3.29)

where ρ2
r(i, j), r = 0, 1, . . . , RL − 1, are the singular values of the matrix EH

j Ei. Then,

the design criteria for achieving full diversity is to find the pseudocodeword matrices

satisfying γ > 0.

3.2 Performance Analysis under Imperfect Relay Error

Detection

In this section, we investigate the impact of imperfect relay error detection. Assume the

source transmit message si, recall that the received signal can be written as

rd =
√
PEiŜih +

√
P

K∑
j �=i

EjŜjh + n.

We start the analysis with an observation about following equation

P(Ci → Cj|Ci) =
∑
ŜK

1

P(ŜK
1 )P(Ci → Cj|Ci, Ŝ

K
1 ), (3.30)

where we abbreviate Ŝ1, Ŝ2, · · · , ŜK as ŜK
1 , and the summation is taken over all possible

ŜK
1 .

We can see that the diversity, the exponent of LHS, will be dominated by the one

with worst exponent in the summand of RHS Thus, we should calculate the worst one of

P(ŜK
1 )P(Ci → Cj|Ci, Ŝ

K
1 ) in exponent for different realization of ŜK

1 . Now, we express
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P(ŜK
1 ) as

P(ŜK
1 ) =

[
(1 − ps)(1 − p1|0)

]nSi

∏
m�=i

(
p0|1ps

K − 1
)nSm

· [(1 − ps)p1|0 + ps(1 − p0|1)
]nS0

(3.31)

where nSm =
∑R

r=1 Sm,r is the number of active relay that transmit mth message and

nS0 = R − ∑K
m=1 nSm is the number of silent relay nodes.

For obtaining equation (3.31), aside from the model of detection accuracy in section 2,

we further need an assumption that if a relay decode incorrectly, then it decoded message

would be uniformly distributed over {1, 2, · · · , K} \ {i}, i.e., 1
K−1

for each. Such as-

sumption rely on a symmetric design of the codebook used in phase I transmission which

is consist of many SISO systems and is not of our focus. In more rigorous words, this

assumption would not affect the exponent as long as there is no pair of codeword used in

phase I has a different SNR-exponent of PEP than others.

To catch the diversity, we simplify (3.31) to

P(ŜK
1 )

.
= (p0|1ps)

∑
m�=i nSm (p1|0 + ps)

nS0 . (3.32)

As we can see, the parameters of detection accuracy p0|1 and p1|0 will affect the exponent

in different manners. Next, to have a thorough analysis, we need to evaluate P(Ci →
Cj|Ci, Ŝ

K
1 ) for all possible ŜK

1 . Unfortunately, the math structure is too complicated and

we failed to carry it out. Thus, we only investigate the impact of imperfect error detection

on the system diversity by following two facts and one proposition.

Fact1 Even with ML decoding at receiver, fixed positive p1|0 leads to zero diversity.

Fact2 Diversity order under fixed positive p0|1 do not exceed �R
2
�L for any decoder.

Proposition3 Correlator-like decoder proposed in section 3.1.2 can only retrieve di-

versity of order min{L + L01, RL10, RL} under detection accuracy p0|1
.
= P−L01 and

p1|0
.
= P−L10 .

Proposition3 indicates that correlator-like decoder might not attain diversity of order

RL, especially when L01 is small. It would turn out that the argument of (3.21) won’t
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work here. ML decoder would probably do better in diversity. Actually, the one that we

are incapable to treat its involved math is the PEP using ML decoder under existence of

harmful relays. Hence, unlike the case of correlator-like decoder, we are incapable to give

a complete analysis for an ML decoder. For example, in Fact2, we do not know whether

or not using ML decoder can achieve the diversity �R
2
�L under fixed positive p0|1. ML

decoder takes the form

ĈML = arg max
Ci∈C

∑
all possible ŜK

1

P(ŜK
1 )

exp
(−rH

d Λ−1

i,ŜK
1

rd

)
πN

(
det Λi,ŜK

1

) . (3.33)

It is again a gaussian mixture and need to do the summation over all possible ŜK
1 , which

we are not able to tackle with both analytically and practically. For this part, we simulate

it by computer and have some discussion in section 4.2. For the rest of this section, we

give brief arguments about the two facts and one proposition.

Fixed positive p1|0 leads to zero diversity

We aims to prove

P(Ci → Cj|Ci)
.
= ζ1 (3.34)

for some constant ζ1 irrelevant to SNR, which implies the zero diversity. To see this, con-

sider the particular summand in (3.30) that ŜK
1 = (0RL, 0RL, · · · , 0RL)

def
= O in equation

(3.30), which means that Ŝ0 = IRL and nS0 = RL, i.e., no relay transmit to destination.

In this case, since the receiver receives only additive noise, we have

P(Ci → Cj|Ci, O)
.
= ζa

for some constant ζa for any type of decoder used in receiver end. Combing with equation

(3.32), we reach

P(ŜK
1 = O)P(Ci → Cj|Ci, O)

.
= (p1|0 + ps)

RLζa

.
= (p1|0)RLζa (3.35)

def
= ζb,
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where (3.35) follows from ps
.
= P−L and p1|0 is a constant. And as mentioned, the

diversity will be dominated by the worst exponent one summand of (3.30), hence equation

(3.34) holds.

This fact demonstrate a result: we do a quite accurate error detection at each relay

and have a very small probability of existence of useless relay. Even though, if we have

fixed positive p1|0, it will be significant on the behavior of error probability at high SNR

since the decoding error will be dominated by the event that all relays are useless relay in

high SNR regime. And a simple conclusion can be made from equation (3.32) is that, to

illuminate such effect, we need at least p1|0
.
= P−L of error detection accuracy.

Diversity under fixed positive p0|1 do not exceed �R
2
�L

In this part, we consider the summand in (3.30) that

Ŝi = IL ⊗ diag{1, · · · , 1︸ ︷︷ ︸
�R

2
	

, 0, · · · , 0}

Ŝj = IL ⊗ diag{0, · · · , 0, 1, · · · , 1︸ ︷︷ ︸
�R

2
	

}

Ŝm = 0RL ∀ m �= i, j,

and for convenience, we abbreviate such case as ŜK
1 = Vij . By symmetry, the receiver

will have same favor of Ci and Cj . Hence we have

P(Ci → Cj|Ci, Vij) =
1

2
.

And again together with the probability of such relay status from equation (3.32), we can

obtain

P(ŜK
1 = Vij)P(Ci → Cj|Ci, Vij)

.
=

1

2
(p0|1ps)

�R
2
	L(p1|0 + ps)

RL−2�R
2
	L

≥ 1

2
(p0|1ps)

�R
2
	Lp

RL−2�R
2
	L

s

.
= PRL−�R

2
	L = P
R

2
�L, (3.36)
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where the dot equal in (3.36) follows from ps
.
= P−L and p0|1 > 0 is a constant. Similarly,

since diversity is dominated by worst one summand, we conclude that diversity do not

exceed �R
2
L� under fixed positive p0|1, the possibility for existence of harmful relay.

Correlator-like decoder proposed in section 3.1.2 can only retrieve diversity of order

min{L + L01, RL10, RL} under detection accuracy p0|1
.
= P−L01 and p1|0

.
= P−L10

Recall the correlator-like decoder proposed in Sec. 3.1.2,

Ĉsubopt = arg max
Ci∈C

(
rH

d EiEH
i rd

)
.

And the corresponding pairwise error event,

{rH
d EjEH

j rd − rH
d EiEH

i rd > 0}.

We consider the summand in (3.30) such that Ŝi, Ŝj �= 0RL and Ŝm = 0RL for all

m �= i, j, abbreviated as ŜK
1 = Uj . In such case, the received signal can be written as

rd =
√
PEiŜih +

√
PEjŜjh + n.

Claim:

P(Ci → Cj|Ci, Uj)
.
= ζ3.

Proof: We write the PEP as

P(Ci →Cj|Ci, Uj)

= P(rH
d EjEH

j rd − rH
d EiEH

i rd > 0|Ci, Uj)

= P(
1

P (rH
d EjEH

j rd − rH
d EiEH

i rd) > 0|Ci, Uj)

= P(wP > 0|Ci, Uj),

where wP = r̄H
d EjEH

j r̄d − r̄H
d EiEH

i r̄d with

r̄d =
rd√P = EiŜih + EjŜjh +

n√P .

Then, the claim is equivalent to

lim
P→∞

P(wP > 0|Ci, Uj) > 0
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Define w∞ = r̃H
d EjEH

j r̃d − r̃H
d EiEH

i r̃d, where r̃d = EiŜih + EjŜjh. Then obviously,

wP −→ w∞ almost surely as P −→ ∞.

Thus, we can prove the claim by showing

P(w∞ > 0|Ci, Uj) > 0.

Expand w∞ by using r̃d = EiŜih + EjŜjh, through some manipulation,

w∞ = r̃H
d EjEH

j r̃d − r̃H
d EiEH

i r̃d

= hHŜj(I − EH
j EiEH

i Ej)Ŝjh

− hHŜi(I − EH
i EjEH

j Ei)Ŝih

� X − Y,

where X � hHŜj(IRL − EH
j EiEH

i Ej)Ŝjh and Y � hHŜi(IRL − EH
i EjEH

j Ei)Ŝih.

Without loss of generality, we assume Ei �= Ej . (Otherwise, codewords i and j cannot

be distinguished by receiver.) Then we have IRL − EH
j EiEH

i Ej being positive definite.

As we can see, X and Y both follow a generalized chi-square distribution with support

[0,∞). Further note that X and Y are independent, we obtain

P(w∞ > 0|Ci, Uj) = P(X − Y > 0|Ci, Uj)

≥ P({X > 1} ∩ {Y < 1} |Ci, Uj)

= P(X > 1|Ci, Uj) P(Y < 1|Ci, Uj)

> 0

Hence the claim is proved.

This claim indicate that under any existence of harmful relay, an error floor occur

when employing correlator-like decoder. When there does not exist harmful relay, on the

other hand, by the result established in Sec. 3.1.2, the diversity order will equal to the

number of useful relays in the system. Again, reexamining (3.30) and using (3.32), the

worst summand of (3.30) could be found as

min{L + L + 01, min
1≤k≤R

(R − k)L + kL10}.
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Solve the minimization, we can conclude that correlator-like decoder can only retrieve

diversity of order min{L + L01, RL10, RL} under detection accuracy p0|1
.
= P−L01 and

p1|0
.
= P−L10 . Note that when L + L01 dominate, the diversity do not scale with R, the

number of relays. This gives us some clue how p0|1 and p1|0 affect the diversity order

differently.
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Chapter 4

Simulations

4.1 Simulation Setup

We present simulation results in this section. We simulated the system with channel taps

L = 2 and number of subcarriers N = 16. And we assume a symmetry power delay

profile between relays, i.e., σ2
r,l = σ2

r′,l for l = 0, 1 and for all r �= r′. Setting the

noise power to one, we define the SNR as the total transmit power from R relays per unit

frequency, i.e. SNR = PR/N . Since our analysis excludes the source node coding, we

give the source node an extra power equal to that of each relay in the simulation in order

to determine the probability ps at relay nodes. Accordingly, we assume ps = β×P−L and

the constant β is irrelevant to the diversity order. Hence we just set it a particular number

that ensures 0 < ps < 1.

4.2 Simulation Results

4.2.1 Perfect error detection on each relay

We first simulate the system with perfect error detection, which corresponds to p1|0 = 0

and p0|1 = 0. We have seen in Sec. 3.1.3 that the diversity achieving code design criteria

for the non-coherent cooperative SFC in wireless relay networks are consistent with that
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of the non-coherent SFC in MIMO-OFDM systems discussed in [1]. Therefore, we follow

a similar procedure to construct a code, which is shown in Table 4.1, in our simulation.

Some knowledge known at receiver

Performance curves of four cases with receiver having knowledge of relay decoding status

and channel statistics discussed in Sec. 3.1.1 are presented in Fig. 2, where each set of

curves corresponds to a combination of the number of relays R = 2, 4 and the codebook

size K = 8, 16. The channel PDP is set to be uniform, i.e., [σ2
r,1 σ2

r,2] = [0.5 0.5], in

simulating Fig. 2. The results show that the diversity order of 4 and 8 are achieved for

R = 2 and R = 4, respectively. It implies that the potential diversity of relay network

indeed resembles that of MIMO system in a noncoherent space-frequency environment.

Fig. 3 plot the curves under different power delay profile for number of relays R = 2.

In the figure, 50%, 10%, 5% and 1% represent the PDP being [σ2
r,1 σ2

r,2] = [0.5 0.5], [0.9 0.1], [0.95 0.05]

and [0.99 0.01], respectively. As we can see, all of them have same diversity of order 4

although it get worse when we have a more asymmetric PDP. Such phenomenon could

be viewed by equation (3.16). Roughly speaking, the magnitude of the term λ−1(ŜΣ2Q)

is close to λ−1(Σ2) =
∏R

r=1(σ
2
r,1σ

2
r,2). Since we fixed the total power

∑L−1
l=0 σ2

r,l = 1,

the term σ2
r,1σ

2
r,2 is larger for a more symmetric PDP by A-G inequality. Intuitively, we

need more power for an asymmetric channel for invoking the particular weak one into

Table 4.1: Table of code Constructions. Φ = diagN−1
k=0 {ej 2π

K
uk} and fi represents the ith

column of the N × N DFT matrix.

R K Codeword Ci [u0, u2, · · · , u15]

2 8 Φi[f1f3] [1 0 3 4 1 0 3 4 1 0 3 4 1 0 3 4]

2 16 Φi[f1f3] [1 4 3 0 1 8 3 12 1 4 3 0 1 8 3 12]

4 8 Φi[f1f3f5f7] [1 0 3 4 1 0 3 4 1 0 3 4 1 0 3 4]

4 16 Φi[f1f3f5f7] [1 4 3 0 1 8 3 12 1 4 3 0 1 8 3 12]
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Figure 4.1: The block error rate versus SNR of the non-coherent distributed SFC with

N = 16 and L = 2.

contribution of diversity. As we can see in Fig. 3, the slope of “1%” do not achieve 4 until

SNR > 20 dB.

Completely noncoherent receiver

We further simulate the system which use the suboptimum decoder proposed in Sec. 3.1.2

and do some comparison with the ML decoding of Sec. 3.1.1 under different channel

power delay profiles. In Fig. 4, we use “ML” for the ML decoding which requires the relay

status information as indicated in Sec. 3.1.1, and “subopt” for the completely noncoherent

correlator-like decoder proposed in Sec. 3.1.2. Observe that the two decoder have almost

the same performance. We can also see that the gap between the two decoder is a little
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Figure 4.2: The block error rate versus SNR for different PDP.

bit larger at low SNR particularly when the PDP is more asymmetry. This follows from

the correlator-like decoder actually assumes a uniform PDP as indicated in the description

between equation (3.22) and (3.23). However, they performed almost the same in the high

SNR regime. This shows that the suboptimum decoder is good enough for capturing the

system under perfect relay error detection.

4.2.2 Imperfect relay error detection

In this subsection, we use simulation to investigate performance of the system under im-

perfect relay error detection, including the PEP with ML decoder when there exist some

harmful relays, for which we are incapable of carrying out an analytical solution. In Fig.

5, we present the block error rate under p0|1 = 0 and different positive p1|0. We can see
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Figure 4.3: The block error rate versus SNR of different PDP under different decoders.

that even with p0|1 = 0, it still has error floor for all cases, which corresponds to Fact

1, fixed positive p1|0 leads to zero diversity. However, we may observe that increase the

relay number can lower the error floor efficiently. It directly comes from BER −→ pR
1|0

as SNR −→ ∞.

Then, in Fig. 6, we present the block error rate under some particular relay status

with two different decoders used in receiver. The number of relay is set to be R = 4.

In the legend, the status of relays is indicated as “1” for useful relay, “0” for useless

relay and “2” for harmful relay. For example, “ML1112” represent that three relays are

useful and one is harmful with receiver employing ML decoder of equation (3.33). And

“subopt1102” stands for two useful relays, one useless and one harmful with receiver use

the suboptimum correlator-like decoder. As we can see in Fig. 6, no matter how many

useful relays is currently in the system, the suboptimum receiver has a severe error floor
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Figure 4.4: The block error rate versus SNR of two decoder under existence of harmful

relay.

when there exist any harmful relay. While for ML decoder, there is no error floor for both

“1102” and “1112”. And from the figure, we see the diversity that ML decoder could

retrieve is of order 2 for “1102” and of order 4 for “1112”. We might guess that the

diversity would be

L × (#(useful relay) − #(harmful relay)) (4.1)

for using ML decoder at receiver. And we can also see that the BER of the two decoders

has only minor gap at low SNR but it turn to be significant very soon when we increase

the SNR. This again demonstrate the importance of the diversity.

To have a realistic scenario, we further simulate the system for the relay employing
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Figure 4.5: The block error rate versus SNR of two decoder under existence of harmful

relay.

no error detection, i.e., all relays are always active. This scenario is simpler in imple-

mentation since the relay do not need any control protocol. It corresponds to p1|0 = 0

and p0|1 = 1 in our model. We simulate it under both number of relay R = 4 and

R = 2. In Fig. 6, “R2nocontrolsubopt” stands for R = 2 and that suboptimum cor-

relator decoder is used. Similar for other legend. From the figure, we can observe that

the achieved diversity order is 2 for suboptimum decoder for both R = 2 and R = 4.

It verified Proposition 3 given in Sec. 3.2, i.e., correlator-like decoder can retrieve

only diversity of order min{L + L01, RL10, RL} = L = 2 under detection accuracy

p0|1 = positive constant .
= P−0 and p1|0 = 0

.
= P−∞. In such case, as we can see, in-

creasing number of relay has only limited help and has no increase in diversity if we em-
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ploying the correlator-like decoder at receiver. On the other hand, ML decoder achieves

diversity 2 and 4 for R = 2 and R = 4 respectively, as presented in Fig. 7. Comparing

with Fact 2 in Sec. 3.2, diversity under fixed positive p0|1 do not exceed �R
2
�L, we can

see that ML decoder achieves �R
2
�L in the presented cases. It could be guessed that the

maximum diversity under fixed positive p0|1 and p1|0 = 0 would indeed achieve �R
2
�L by

an ML decoder. Actually, we have following conjecture,

Conjecture 4 For p0|1
.
= P−L01 and p1|0

.
= P−L10 , the diversity d achieved by an ML

decoder is

d =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1 = �R
2
�(L + min{L, L01})

+(�R
2
� − �R

2
�)L10, for L01 < L10

d2 = R min{L10, L}, for L01 > L10

min{d1, d2}, for L01 = L10

This conjecture can be proved by a similar argument of finding the worst diversity in

summand of (3.30) and solving the minimization, which is

min
k10+k01≤R
k10≥0,k01≥0

k10L10 + k01(L + L01) + max{R − k10 − 2k01, 0}L,

provided the guess (4.1) is true. Finally note that Conjecture 4 covers both Fact 1 and

Fact 2, and as mentioned, the result of ML decoder in Fig. 7 also conforms to it.
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Chapter 5

Conclusion and Future Work

5.1 Concluding Remarks

In this work, we analyzed the diversity order of noncoherent cooperative SFC in a two-

hop wireless relay network with the DAF protocol. We considered a realistic scenario

that each relay node may fail to correctly decode the message from the source node, thus

modeling the uncertainty naturally arisen in wireless relay networks. We first analyzed the

system under a usual assumption of perfect relay censoring and discussed partial knowl-

edge receiver and completely noncoherent receiver. For partial knowledge receiver, we

analyzed the PEP based on the ML decoding rule and establish the code design crite-

ria. For completely noncoherent receiver, we proposed a maximum diversity achieving

suboptimum correlator-like decoder, and showed that the maximum achievable diversity

using the suboptimum decoder is the same as that of the partial knowledge ML decoder.

We justified that the diversity gain of the non-coherent cooperative SFC in the relay net-

work under perfect relay error detection is, on the average, equal to the product of the

total number of cooperating relays and the channel order in the relay-destination link, a

result identical to that of the non-coherent SFC in MIMO-OFDM systems. This provided

us with the insight that the noncoherent virtual MIMO networks could potentially offer

as good performance, in terms of diversity order, as that promised by the conventional
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noncoherent MIMO networks. Furthermore, we explored the impact of imperfect cen-

soring and showed that it has significant influence on the achievable diversity, especially

when there exists any “harmful” relays. We concluded that, in a DAF relay system, it is

crucial to carefully design the relay censoring schemes in order to maintain the achievable

diversity that potentially existed in the system.

5.2 Future work

The mathematical analyses on the system under imperfect censoring employing the ML

decoder at the receiving end has not completely unveiled. In general, how to accurately

analyze the PEP of the ML decoder with mixture gaussian likelihood is an important and

interesting problem that is worthwhile probed into. In some cases, for example, the case

we considered in Sec. 3.1.2, we can simplify it and have a closed-form solution. However,

as the suboptimum decoder fails to achieve the maximum diversity order as indicated in

Sec. 3.2, we still need to tackle it in a more general scenario.
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