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即時的積分直方圖基準之聯合雙邊濾波演算法分析與

設計 

研究生: 許博雄                                  指導教授: 張添烜 博士 

國立交通大學 

電子工程學系電子研究所碩士班 

摘  要 

雙邊濾波演算法和聯合雙邊濾波演算法已經被廣泛運用在許多影像處理的

領域中，例如去除雜訊、色調處理、甚至是立體的相關應用和 MPEG 標準。它

雖然可以用快速演算法中的積分直方圖方法加速，但針對需要即時處理的應用，

仍然遭受高運算複雜度，高記憶體使用量的問題。要解決這些問題，VLSI 實現

是個必要的方法。本篇研究針對積分直方圖基準之(聯合)雙邊濾波演算法提出一

個有效率的硬體架構，其中包含三個自提的記憶體減量方法和可大量平行運算的

單元。 

這些自提的記憶體減量方法包含動態更新方法，條狀切割方法，和積分起點

位移方法。其中動態更新方法是在運算期間，利用演算法循序逐列掃描計算的特

性，移除不再使用的資料。而條狀切割方法則進一步將每一張畫面切割成許多縱

向的條狀區域並作為逐列掃描計算的單位；每個條狀區域的寬度比畫面寬度短得

多，因此逐列掃描計算只需通過較短的列長，使得資料暫存量大減，不再需要整

個畫面寬的記憶體空間。最後，積分起點位移方法利用循序 動態積分起點

的概念，協助原始直方圖演算法的積分過程減少對儲存資料的依賴，使得記憶體

使用量得以由整張畫面的尺度，減少至列的尺度。整體來說，這三個方法很容易
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結合起來，可以將記憶體使用量減少至原演算法的 0.003%。 

另一方面，自提的硬體架構利用延遲暫存資料共用方法和使用查表選擇器，

分別解決了積分直方圖運算上高頻寬需求和大量查表的問題;並且利用記憶體的

切割來提升內部頻寬的容量。除此之外，它也使用數值(在影像中則為亮度)空間

平行方法來有效率地執行大量積分直方圖單元運算，而達到高產出。另外，這個

硬體架構的運算模組佈局與參數的選擇無關，因此對於不同參數需求的應用，將

不需再重新設計。 

最後的硬體實現，在聯華電子 90 奈米製程下，使用 200 MHz 的工作時脈，

每秒可以執行 60 張 HD1080p (1920x1080)影像。晶片總共需要 355 K 個邏輯閘和

23 K 個晶片記憶體。  
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Abstract 

Bilateral filtering and joint bilateral filtering have been widely used in many 

image processing fields, such as de-noising, tone-management, and even the 3-D 

applications and MPEG standard. They can be accelerated by the associated fast 

algorithm, integral histogram, but still suffer from highly computational complexity 

and massive memory, especially for real-time applications. To conquer them, VLSI 

implementation becomes a necessary solution. In the thesis, we design an efficient 

hardware architecture, which consists of three proposed memory reduction methods, 

and highly parallel computational components for integral histogram based (joint) 

bilateral filtering.  

The proposed memory reduction methods include runtime updating method 

(RUM), stripe-based method (SBM), and sliding origin method (SOM). The RUM in 

runtime takes advantage of progressive raster-scan process of computation to discard 

unnecessary data. The SBM further divides each frame into vertical stripes and 

processes them one by one. These stripes are much narrower than a frame; therefore, 

the raster scan process can traverse along shorter rows and the original frame-wide 
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memory cost can be significantly reduced. Finally, the SOM uses the concept of 

progressive sliding integral origin to help the original histogram integration process 

lessen the dependency on storage data; therefore, the memory requirement can be 

reduced from frame-scale-magnitude to line-scale-magnitude. On the whole, the three 

methods can be easily combined to reduce the memory cost to 0.003% of the original 

requirement.  

On the other hand, the proposed hardware architecture solves the integral 

histogram computational high bandwidth and large table problem by using 

delay-buffer data-reuse method and table selector, respectively. And use memory 

banks to enlarge the capacity of internal memory bandwidth. Besides, it uses range 

(intensity, for image)-space-parallelism methods to process large amount of histogram 

bins simultaneously to achieve high throughput. What’s more, the function block 

layout of the hardware architecture is invariant to parameter selection; therefore, it 

doesn’t have to be redesigned for applications of different parameter demands. 

The final design implemented by UMC 90nm CMOS technology can achieve 60 

frames per second for HD1080p (1920x1080) resolution image under 200MHz clock 

rate. The chip consumes 355 K gate counts and 23 K Bytes on-chip memory. 
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1. Introduction 

1.1.  Background 

Bilateral filtering [1] is a special image smoother which can remove small-scale 

texture or noise while preserving large-scale structure or edges. The judgment to be 

noise or edge could be determined by an easy-tuning parameter. The ability of easily 

separating small-scale and large-scale contents makes bilateral filtering be more 

widely used than a typical smoother, such as joint bilateral filtering. Joint bilateral 

filtering, which is a variety of bilateral filtering combined with a guidance concept, is 

associated with more widely applications such as up-sampling [2], adaptive support 

weight [3], and even 3-D related processing [4] and MPEG standard [5]. 

The challenge of real time implementation for bilateral filtering is the high 

computational complexity of its window processing. Many algorithms have been 

proposed to reduce the complexity. In the thesis, we category them into two 

approaches: support-pixel-first approach and target-pixel-first approach. In previous 

work, the support-pixel-first approach was implemented through GPU programming, 

and achieved real-time speed. However, GPU hardware is general purpose platform 

and not a dedicated low-cost implementation for embedded applications. Therefore, 

VLSI hardware implementation is a better solution to minimize hardware cost and 

achieve real-time speed.  

For VLSI hardware implementation, the support-pixel-first approach requires a 

frame-scale-magnitude memory, but it can not be reduced because of its iterative 

process by frames. On the other hand, the target-pixel-first approach also suffers from 
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frame-scale-magnitude memory requirement. Nevertheless, the cost is likely to be 

reduced since its progressive process with pixel-by-pixel order. 

1.2. Motivation and contribution 

Motivated by the high memory cost in joint bilateral filtering, this thesis proposed 

efficient hardware architecture based on integral histogram algorithm of the 

target-pixel-first approach. The goal is to build a dedicated hardware for low memory 

cost real-time joint bilateral filtering.  

The major contributions of this thesis are three.  

1. Based on integral histogram based joint bilateral filtering, we proposed three 

memory reduction methods to significantly reduce the memory cost. This 

makes integral histogram based joint bilateral filtering suitable for simpler 

on-chip memory based implementation in ASIC. 

2. We propose an efficient hardware architecture which can efficiently process 

parallel operations and achieve high throughput. 

3. We implemented the low memory cost real-time hardware of the proposed 

architecture with the three proposed memory reduction methods.    

1.3. Thesis Organization 

Chapter 2 briefly introduces bilateral filtering and its applications. Chapter 3 

introduces the acceleration algorithms for bilateral filtering. Chapter 4 discusses the 

design challenges of integral histogram based joint bilateral filtering. To solve these 

challenges, Chapter 5 proposes three proposed memory reduction methods, and 

Chapter 6 proposes an efficient hardware architecture. Finally, Chapter 7 gives the 

conclusion of this thesis.  
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2. Introduction of Bilateral Filtering 

2.1.  Overview 

Bilateral filtering (BF) is primary adopted in image processing for de-noising. 

With BF’s de-noising (or smoothing), the object edges and borders of image are 

preserved. As a result, BF becomes popular because it can provide a no-blur clear 

result. Moreover, the edge-preserving capability enables us to adapt BF for many 

advanced applications such as texture editing, tone management, demosaicing, 

stylization, and optical flow estimation [6].  

2.2. Bilateral Filtering 

BF, originated by Tomasi and Manduchi [1], is defined as, 

( ) ( )
( ) ( )∑

∑
∈

∈

−−

−−
=

Sq qc

Sq qqc
c IIgqcf

IIIgqcf
IBF )( , (2.1) 

where c is the target pixel, and q is the support pixel surrounding to c. For ease of 

computing by typical row-column rectangular image file format, the support pixel q is 

usually taken from a square window S centered at c. Both the intensities of c and q, Ic 

and Iq, is in the range domain R from 0 to 255 for gray-level. In this equation, Iq are 

accumulated and normalized with two weighting kernels, the space kernel f and the 

range kernel g. Both f and g are usually chosen as low-pass functions with the 

arguments of space distance |c-q| and intensity difference |Ic-Iq|, respectively. 
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   (a) (b) 

 

 (c) (d) 
Fig. 2.1. Illustration of space kernel f and range kernel g of BF 

(a) 1-D space-color domain, (b) weighting by f, (c) weighting by g,(d) combined 
weighting by f and g 

Fig. 2.1 shows how kernel function f and g influent the weighting value for support 

pixel q. In Fig. 2.1 (a), for ease of show, we take one-dimension (1-D) image as spatial 

domain on x-axis and project intensity domain R onto the y-axis. Fig. 2.1 (b) shows 

that Gaussian function with argument space distance |c-q| is a low-pass filter; it gives 

higher weight on near-c support pixels and lower weight on farther ones. It is intuitive 

that the farther q is away from target pixel c, the smaller its impact should place on 

the final result. On the other hand, similar weighting mechanism is placed on the 

intensity difference of c and q. Fig. 2.1 (c) shows that Gaussian function with 

argument |Ic-Iq| gives support pixel higher weight if its intensity is similar to Ic. This is 

also intuitive to realistic situation: two nearby pixels with similar intensity are likely 
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belongs to the same object. To multiplying the two function’s effect as Fig. 2.1 (d) 

shows: the point A, B, C, D, and E are regarded as outliers with zero weighting. 

Especially notes that point B is an outlier regarded by kernel g though it is adjacent to 

c. Similarly, point C is an outlier regarded by kernel f though its intensity is Ic. That is 

to say, either q is far away from c or Iq is dissimilar to Ic, the impact of q will be 

negligible.  

 

 (a) 

 

 (b) 

Fig. 2.2. Smoothing Results 
(a) Gaussian filter, (b) Bilateral filter 

Before Tomasi [1] et al. proposed BF, the most typical smoother was Gaussian 

filtering (GF) or other low pass filtering. The typical smoothers suffered from 

blur-effect because they only considered space kernel. Many algorithms have 

proposed to eliminate this effect. Tomasi added a range kernel into GF to be BF; this 

is a simple but effective method. Fig. 2.2 compares BF with GF to show that the range 

kernel is the key component for edge-preserving. In Fig. 2.2 (a), GF is used to remove 

the chessboard-like noise in the dark area of the left image. The right image is its 
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result. It is obvious that GF produces smooth result on the pixel far from the edge (the 

area around the green pixel), whereas it produces blur effect near the edge. This 

because GF is blind to entirely different colors across the edge; it still mixes all colors 

within its window though the window steps across the edge. Therefore, in the output 

result, it appears a blur area at the both sides of the edge. Fig. 2.2  (b) shows that BF 

doesn’t produce blur effect because its window doesn’t step on the both sides of the 

edge to mix entirely different colors. As shown by the red window, the window of BF 

is trimmed by the edge because the bright-side pixels, which have entirely different 

color from the center color, are regarded as outliers by its range kernel. 

 
IcIc-3σr Ic+3σr3σr3σr

Outlier Outlier

g(|Ic-lq|)

Fig. 2.3. Gaussian kernel’s bandwidth 

There is a parameter σr determining the degree of edge-preserving. It is defined by 

the Gaussian function equation, 

2

2

2

||

|)(| r

qc II

qc AeIIg σ

−
−

=− , (2.2) 

where A is a constant. As shown in Fig. 2.3, the Gaussian kernel’s bandwidth extends 

by about 3 times of σr. Outside the bandwidth, the value of g drops to below 0.01 

which is negligible compare with the center weight. Any support pixel q with color 

outside the bandwidth will be regarded as the outlier. As a result, any edge with lager 

color difference will be reserved (As last paragraph illustrates, this kind of edge trims 

kernel.). On the other hand, any edge with smaller color difference is blurred or 

smoothed as the noise. 
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(a) (b) 

(c) (d) 

Fig. 2.4. Smoothing results of BF with different range parameter σr 
(a) noisy image, (b) σr=25, (c) σr=100, (d) σr= very large (GF). 

Fig. 2.4 shows smoothing results of BF with different parameter σr choices. For, the 

given noisy “Lina” shown by Fig. 2.4 (a), the value 25 is the best choice for σr to 

separate noise and edges. If σr becomes larger as Fig. 2.4 (c), more edges are also 

regarded as noise so that only the image structure is reserved. If σr is further set to a 

very large value, BF will be simplified to GF because the color kernel becomes a 

constant function. As shown in Fig. 2.4 (d), the blur effect is obvious. 
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2.3. Application  

We will recall applications of BF in this sub-chapter. They are mainly classified 

into de-noising, texture and illumination separation, and joint BF. 

2.3.1. De-noising 

De-noising or smoothing is the primary goal of BF. Other than being applied for 

2-D image smoothing, it is also adapted for video processing and 3-D mesh 

smoothing. And many de-noise-related applications, such as flash and no-flash Image 

correction, are constantly proposed. 

For video application, Bennett et al. [7] introduced BF into temporal smoothing. 

He assumes that the pixel variations in the temporal related same scene point over 

frames are affected by zero-mean noise. GF is used to reduce the noise level but it 

produces artifacts on moving object. Using BF instead can avoid these artifacts. For 

3-D mesh smoothing, Jones et al. [8] and Fleishman et al. [9] simultaneously 

presented two similar approaches to adapt BF in the higher-dimension space. In the 

higher-dimension space, window computations for both kernels become more 

complex. Geometry properties such as mesh normal, projection, etc., are considered 

carefully.  

On the other hand, in de-noise-related applications, Eisemann and Durand [10] 

used BF for flash and no-flash image correction. For a no-flash photo of a dark scene, 

although its illumination is correct, it has low signal-to-noise-ratio (SNR) that leads to 

inaccurate edge detection. However, a flash photo of the same scene has high SNR 

and higher discrimination of colors but it suffers from incorrect hard direct 

illumination. As shown in Fig. 2.5 [10], BF is used to smooth both photos for 

8 

 



  

de-noising and information extraction. BF helps departing their small-scale details 

and large-scale structure (This will be further discussed in 2.3.2). Finally, information 

from flash and no-flash photos is combined to form the final result without noise and 

with correct illumination and structure. Petschnigg et al. [11] also has proposed a 

similar correction algorithm based on this approach. 

 

Fig. 2.5. Flow of flash and no-flash image correction [10] 

2.3.2. Texture and illumination separation 

Oh et al. [12] used BF as a separation algorithm to extract image texture and 

illumination component. They are motivated by the fact that in typical image, the 

illumination variation typically occurs at a large scale structure than small scale 

texture patterns; therefore, they proposed an approach using BF with suitable range 

kernel g to remove small-scale texture and preserve the large-scale illumination 

component. Simultaneously, the removed small-scale texture can also be extracted by 
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subtracting the large-scale component from origin image.  

With the concept of above separation algorithm, Durand and Dorsey [13] isolated 

texture component from naïve intensity compression in tone mapping of 

high-dynamic range (HDR) image for low dynamic range display. This approach 

prevents the details in small scale texture being removed during compression. Other 

algorithms addressed in [14] and [15] also use the similar aspect. 

2.3.3. Joint Bilateral Filtering 

The BF used in the flash and no-flash image correction by Eisemann and 

Dorsey [10] is defined specially with the following equation, 

( ) ( )
( ) ( )∑

∑
∈

∈

−−

−−
=

Sq qc

Sq qqc

c IIgqcf

JIIgqcf
JJBF )(  , (2.3) 

where I is a guidance image, and J is another source image.  Through the range kernel 

g, the guidance image I could identify and suppress outliers for de-noising the source 

image J. To emphasize that it joints guidance image influence into target source image, 

this specially defined BF is renamed as joint bilateral filtering (JBF).With this 

characteristic, JBF has been adopted in another flash and no-flash algorithm [15], 

image de-nosing [16] and disparity-map fusion [17],[18].  

Further extending the applications of JBF, Kopf et al. [2] proposed the joint bilateral 

up-sampling that employed a high-resolution I to enlarge a low-resolution J for various 

image processing, such as tone mapping, colorization, disparity maps [19]-[21], 

demosaicing [22], texture synthesis [23]. A variety of JBF is the adaptive support 

weight (ADSW), a matching cost aggregation approach, proposed by Yoon and 

Kweon [3] for disparity estimation in 3D image processing. The disparity estimation is 
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based on matching corresponding pixels in different view frames. To increase 

matching correctness, disparity estimation uses filter-like convolution to aggregate 

support matching costs for target pixel. The ADSW employs the space and range 

kernels into aggregation to deliver better disparity maps than that produced by the 

traditional box filter. The concept of ADSW is further advanced in the disparity 

estimation algorithms of [24]-[28], and is also adopted by the developing MPEG 

standard, 3D Video Coding [5]. 

2.4.  Summary 

BF is an edge-preserving filter. Its parameter σr in range kernel can determine the 

discontinuity in images to be either large-scale structure or small-scale texture (noise). 

The characteristic makes its application more than the primary goal of de-noising such 

as illumination and texture separation and JBF. Furthermore, with the guidance 

concept of JBF, BF applicable algorithms can be extended to various fields, such as 

disparity estimation for stereo process, up-sampling, and even the MPEG standard. 
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3. Related Work 

Within BF applications, stereo processing is increasingly important in recent years. 

Many 3D-related entertainments, facilities, and industrials are pouring or on the 

horizon. Under this circumstance, BF and JBF must be ready for its potential 

real-time requirement of image and video processing.  However, the big challenge 

for BF is its computational complexity in window computation. By brute-force 

implementation, BF takes extremely long running time on huge operations.  

 
 (a) (b) 

Fig. 3.1. Classification of acceleration approaches 

Various acceleration approaches for BF have been proposed, and can be classified 

into two categories: target-pixel-first approach and support-pixel-first approach, 

according to their computational characteristics, as illustrated in Fig. 3.1. The 

target-pixel-first approach is an aggregation process that focuses on a target pixel c and 

accumulates its support pixels q. On the other hand, the support-pixel-first approach is a 

diffusion process that regards a support pixel q as a center to diffuse for its target pixels 

c. With the classification, the milestone algorithms are listed in TABLE. 3-1.  

 The computational complexity and memory cost of the milestone algorithms are 
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also compared in TABLE. 3-1. Note that the former is shown by amount per pixel and 

the latter is shown by amount per frame. With this table, it is easy to approximate real 

amount of computations and memory cost of these algorithms for any size of target 

image. Take the brute-force implementation for example, referring to (2.1), for each 

pixel result, BF aggregates support pixels in the window S; therefore, the 

computational complexity is O(|S|2) which is associated to window size. This means if 

it processes an HD1080p image with a 31-pixel window width, the amount of 

required computations should be at the order of 2 billion (312x1920x1080). By 

software, the computationally expensive implementation takes minutes for a frame. 

In the rest of chapter, we introduce the acceleration algorithms. In 3.1 and 3.2, 

support-pixel-first algorithms and target-pixel-first algorithms are introduced, 

respectively. Finally, in 3.3, we explain how we select algorithms from them for our 

proposed architecture design and implementation. 

TABLE. 3-1 Comparison of computational complexity and memory cost in related 
work 

Approach Computational Complexity 
(per pixel) 

Memory Cost
(per frame) 

 Brute-Force  All O(|S|2) 0 
Support 

Pixel 
First 

Basic  LUT Construction O(|R|) 4MN 2-D Conv. by FFT O(|S|log|S|) 
Durand and 
Dorsey [13] 

Piecewise-linear
Subsampling 

LUT Construction O(|R|/sr) 4MN/ss
2 2-D Conv. by FFT O(|S|/ss

2log(|S|/ss
2)) 

Yang et al.  
[29]  

Piecewise-linear LUT Construction O(|R|/sr) 
4MN 2-D Conv. by Approx. 

Gaussian 
O(1) 

Paris and 
Durand [30] 

Bilateral Grid LUT Construction O(|R|/sr) MN|R|/(srss
2)3-D Conv. by FFT O(|S||R|/(srss

2)log(|S||R|/(srss
2))) 

Target 
Pixel 
First 

Pham and Vliet  
[31] 

Separable 1-D Aggre. for Col. O(|S|) 0 1-D Aggre. for Row O(|S|) 
Basic Histogram Histogram Calculation O(|R||S|2) 0 1-D Conv. O(|R|) 
Huang  
[32] 

Extended 
Histogram 

Histogram Calculation O(|R||S|) |S||R| 1-D Conv. O(|R|) 
Weiss  
[33] 

Distributed 
Histogram 

Histogram Calculation O(|R|log|S|) |S||E||R| 1-D Conv. O(|R|) 
Porikli 

[34] 
Integral 
Histogram 

Histogram Calculation O(|R|/sr) MN|R|/sr 1-D Conv. O(|R|/sr) 
M: frame height, N: frame width, |S|: window width, |R|: intensity range 

ss: quantization factor for S, sr: quantization factor for R, E: extension pixel count 
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3.1. Support-pixel-first Approach 

Within support-pixel-first milestone algorithms, Durand and Dorsey’s piece-wise 

linear [13] is the first acceleration algorithm; Young’s algorithm [29] and Pairs’ 

algorithm [30] are partially related to it. Yong’s algorithm is boost of its constant time 

speed (independent of window width) and Paris’ algorithm proposes a brand-new 

spatial-intensity space. 

3.1.1. Piece-wise linear algorithm and Yong’s algorithm 

The range kernel makes BF nonlinear to spatial space; therefore, any spatial filter 

acceleration approach such as Fast Fourier Transform (FFT) doesn’t help to speed up 

BF. Instead of directly using the nonlinear equation of (2.1), Durand and Dorsey [13] 

approximate BF with a serial of frame-scale look-up tables (LUTs) defined as follows 

( ) ( )
( ) ( )
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∑
∑
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∈

∈

∈
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−
=

−−
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=
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Sq q

Sq qq
c

Gqcf

Hqcf

Ijgqcf

IIjgqcf
jLUT )(

 , (3.1) 

each of which associates to an intensity j that replaces the Ic of (2.1). The FFT can 

accelerate the computation of (3.1) since both its numerator and its denominator 

become linear Gaussian convolution. The overall process includes two steps; at first, 

for every full-scale intensity j, its LUT is computed; that is, for a typical 8-bit image, 

256 LUTs should be computed and stored. Second, for every pixel, its result is picked 

up from its intensity corresponded LUT by the following equation, 

jIifjLUTIBF ccc == ,)()(   (3.2) 

Besides, instead of using full-scale intensities, Durand and Dorsey [13] propose 
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piece-wise linear algorithm to reduce the number of LUT. With a quantization factor 

sr, it only computes the LUT corresponds to intensity equals sr or its multiples. And 

the result-picking function is rewritten as  

⎪
⎪

⎩

⎪
⎪

⎨

⎧

<<−

=

−
−−

+
−

=
jIsjif

jIif
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cr
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cr
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c
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c

c

c

,)(
)(

)(

,)(
)(  .  (3.3) 

With (3.3), for the pixel without intensity corresponded LUT, its result is computed by 

bilinear interpolation of two LUTs of the most similar intensities. 

Durand and Dorsey [13] further introduced a fast piecewise-linear algorithm with 

spatial space sub-sampling (quantization). The major computational complexity is 

O(|(S|/ss
2)log(|S|/ss

2)) per pixel in 2-D FFT, where ss is a spatial quantization factor. 

The memory requirement is huge with cost 4MN/ss
2 since at least four frame-scale 

data, H j, G j, partial result of LUT(j) and previous result LUT(j-sr), are required under 

the implementation of runtime updating LUT intensity by intensity [13]. 

Mostly based on piece-wise linear algorithm, Young et al. [29] used Deriche’s 

recursive method [35] to approximate Gaussian convolution of (3.1). They shows that 

this recursive method is able to run in constant time and the results are visually very 

similar to the exact. Therefore, the convolution process is reduced to O(1) complexity; 

and thus the major complexity of BF becomes O(|R|/sr) of LUT construction.  

3.1.2. Bilateral grid 

Paris and Durand [30] reformulated gray-level BF with a brand new 3-D space, 

bilateral grid. By their algorithm, it takes three steps to process BF; they are bilateral 

gird construction, 3-D Gaussian smoothing, and result extraction. 
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For bilateral grid construction, given a 2-D image, the first two dimensions of 

bilateral grid will correspond to the image spatial position (x,y) and the third 

dimension corresponds to the pixel intensity Ic. At the position (x,y,Ic), an non-zero 

element is constructed. With all elements are constructed, in the second step, BF is 

computed by a 3-D defined Gaussian smoothing to associate weights w with 

intensities I and finally store each element with a vector ( ∑∑ IwI , ). Because in 

bilateral grid the intensity is defined as an independent dimension, BF is linear for the 

3-D Gaussian smoothing. Finally, in the result extraction step, the first two 

dimensions of bilateral gird correspond back to the position of 2-D image and set 

intensity there with the value, ∑∑ IwI / . 

Paris and Durand further reduced the computational effort by down-sampling the 

three dimensions of bilateral grid with the spatial quantization factor ss for the first 

two dimensions (spatial position) and the range quantization factor sr for the third 

dimension (intensity). The computational complexity of the algorithm is 

O([|S||R|/(srss
2)][log(|S||R|/(srss

2))]) of Gaussian smoothing. The memory cost is 

MN|R|/(srss
2) for storing the whole bilateral grid structure. 

Following the bilateral grid scheme, Chen [36] further mapped this algorithm to 

GPU hardware, obtaining real-time processing for several megapixel images. In 

addition, Adams et al. [37] adopts the Gaussian KD-tree to improve its speed. 

3.2. Target-pixel-first Approach 

In TABLE. 3-1, the target-pixel-first algorithms can be mainly classified into two 

kinds of approaches: one is separable approach [31] and the other is histogram-based 

approach [32]-[34]. The separable approach uses two consequent 1-D BFs to speed up 
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the computation; Histogram-based approach uses range aggregation instead of spatial 

aggregation by histogram represented BF. Within its acceleration algorithms, integral 

histogram let the speed of BF implementation be independent of window width |S|. 

3.2.1. Separable algorithm 

Pham et al. [31] proposed this algorithm to approximate 2-D BF by two 

consequent 1-D BFs which computed by brute-force implementation: pixels within a 

row (column) are accumulated one by one and finally normalized. At first, by 

performing 1-D BF to all rows and their results make up a single column; and then, it 

performs 1-D BF again to the column for the final result. The computational 

complexity of separable algorithm is reduce to O(|S|) per pixel because 1-D window 

with length |S| is used for 1-D BF. Though it is significant faster than the brute-force 

implementation, the performance degrades linearly with window size. In addition, its 

axis-aligned 1-D BF makes it not suitable for the target image with complex patterns 

since its result suffers from the axis-aligned artifact. 

3.2.2. Histogram & Huang’s algorithm 

The histogram-based approach could reduce computation without significant 

quality degradation. The histogram representation of BF is defined as 
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where hc is the pixel count histogram of the window S centered by c as illustrated in Fig. 

3.2. The key point of these approaches is to convert its convolution from the space 

domain S to the range domain R, as shown in the summation index of (3.4). Thus, its 

computation includes two parts: histogram calculation and 1-D convolution. In the 

histogram calculation for hc, each support pixel q in S is classified by its intensity and 

accumulated into its corresponding bin b. In other words, hc(b) refers to the number of 

support pixels with the intensity b in S. Note that the number of bin Nb is 256 for the 

exact result of typical 8-bit gray-level. In the 1-D convolution, (3.4) can be calculated 

with the given hc.  For the basic histogram-based approach, the major computational 

complexity is O(|R||S|2) in the histogram calculation. 

 

Fig. 3.2. Concept of histogram-based approaches 

 

Fig. 3.3. Concept of Huang’s algorithm 

To speed up the histogram calculation, an early proposed Huang’s algorithm [32] 

can be applied. As shown in Fig. 3.3, windows of two consequently-processed pixels c 

and c’ are almost overlapped each other; therefore, the window histogram hc’ can be 

18 

 



  

updated from the processed window hc by two row histograms. The computational 

complexity associates to the row histogram is O(|R||S|) which is significantly faster 

than the basic histogram approach if |S| is large. However, it spends extra memory 

cost with size |S||R| to store row histograms on overlapped region. 

3.2.3. Weiss’ Distributed Histogram 

Based on Huang’s algorithm, Weiss [33] proposed a distributed histogram 

approach that reassembles the histogram calculation of each row. The approach not 

only reuses histograms in vertically process direction, but it also reuses data 

horizontally during processing many column pixels together. Fig. 3.4 (a) illustrates an 

example of 5-column-parallel process during which Weiss algorithm keeps nine 

distributed histograms: he , which associates to the window of pixel e, and column 

histograms h1-h8. Window histograms associate to targets c, d, f, g are computed from 

these nine histograms as shown by Fig. 3.4 (b). In horizontal, the approach can be 

extended for more parallel columns with different set of distributed histograms. On 

the other hand, in vertical, these distributed histograms update by Huang’s algorithm.  

Based on distributed histogram approach, Weiss further introduced hierarchical 

approach. Fig. 3.5 [33] shows an example of hierarchical distributed histogram which 

has yellow, orange, and red, totally three coarse-to-fine tiers. This hierarchical 

approach can reduce computational complexity to near O(|R|log|S|). For the memory 

cost, the approach uses Huang’s algorithm so that it also needs memory to store 

histograms. Furthermore, since histograms are distributed, the memory cost grows 

larger to |S||E||R|, where E associates to how many distributed histograms are used in 

parallel.  
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 (a) (b) 

Fig. 3.4. Concept of Weiss distributed Histogram: 
(a) distributed histograms, (b) computations of target histograms 

 

 

Fig. 3.5. Three-tier hierarchical distributed Histogram [33] 

3.2.4. Integral Histogram 

 

 (a) (b) (c) 

Fig. 3.6. Concept of integral histogram 
(a) Integral origin O and integral region (IR), (b) integration process, (c) an integral 

histogram of pixel X of the IH space  
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Porikli et al. [34] proposed this algorithm to make the computational complexity 

of histogram calculation independent of window size. The construction of integral 

histogram (IH) is like a space transformation process from a 2-D image space to a 2-D 

IH space. Prior to processing the transformation, we have to decide an integral origin 

O and an integral region (IR) as illustrated in Fig. 3.6 (a). Fig. 3.6 (b) shows that 

during the transformation with raster scan process from O to the end of IR, each pixel 

of 2-D IH space is given an IH. Fig. 3.6 (c) illustrates that the given IH at any pixel X 

is actually a quantized histogram (with quantized factor sr) for a 2-D image space 

region stretches from O to X. Porikli et al. showed that quantized histogram doesn’t 

suffer from severe quality degrading for BF result; therefore, the number of histogram 

bins can be less than the number of intensity levels. In overall, the integration process’ 

computational complexity is O(|R|/sr) of pure histogram operations. And other details 

will be further discussed in Chapter 4.1.  

In IH space, arbitrary window histogram (as long as the whole window is within 

the IR) is computed from linearly combination of its four corner integral 

histograms ;therefore, the computational complexity is reduced to O(|R|/sr) that is 

independent of window width |S|. The integral histogram approach can be faster than 

the brute-force approach when |R|/sr is smaller than |S|2. That implies this approach is 

suitable to be applied when BF has large window size. In term of computational 

complexity, this algorithm is the state-of-art of the target-pixel first approach. But its 

memory cost is large with amount MN|R|/sr because of the frame-scale-magnitude 

process, where MN is the area of the image. Other details of the extraction process are 

also discussed in Chapter 4.1.  
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3.3. Summary 

In comparison, the support-pixel-first algorithms are iterative processed by frames 

and the target-pixel-first algorithms are progressive processed pixel-by-pixel in raster 

scan. For computational complexity, Young’s algorithm of the former and Porikli’s 

algorithm of the latter achieve constant time of O(|R|/sr). They both suffer from high 

memory cost because of frame-scale-magnitude LUTs and histogram storage, 

respectively. In terms of implementation, the support-pixel-first approach is more 

suitable for multi-color-channel computing since they are defined by a 

multi-dimensional space. For the realization of gray level process, the 

support-pixel-first has achieved real time in GPU hardware and target-pixel-first 

approach is implemented by software program. However, we still choose 

target-pixel-first approach because its memory cost is likely to be reduced and other 

details are discussed in the next chapter. 
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4. Analysis of Integral histogram based JBF 

The support-pixel-first approach can achieve real time process with GPU 

hardware. As mentioned before, GPU implementation is a general-purpose hardware. 

Although it may be implemented in embedded or source-restricted system, it still cost 

expensive. For a specified low cost implementation, VLSI implementation may be a 

more proper candidate. In addition, both support-pixel-first and target-pixel-first 

approaches suffer from high memory cost; however, the cost of the latter is likely to 

be reduced by taking advantage of its progressive process, whereas the cost of the 

former must be frame-scale-magnitude because of its iterative process by frames. 

Therefore, in the thesis, we focus on VLSI implementation of target-pixel-first 

approach for BF or JBF. Within its algorithms, integral histogram is the state-of-art. 

To combine integral histogram and JBF, Ju and Kang [38] modified (3.4) to 
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 .  (4.1) 

Different from (3.4), the histogram in the numerator is the pixel intensity histogram h’c 

that accumulates the pixel intensity for each bin, instead of the pixel count in hc. In this 

chapter, we introduce the integral histogram approach in details, and then analyze the 

design challenges of integral-histogram-based JBF, which can also be applied to BF. 
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4.1. Integral histogram based JBF 

TABLE. 4-1 Computational flow and complexity analysis for each pixel in the 
integral histogram based JBF 

Process Complexity
(operation)

BW for 
IH 

(data) 

BW for 
pixel 
(data)

Integration process: 
Pixel count histogram hc 
Loop b=0 to Nb-1 
    IHO

S(b)=IHO
Q(b)+IHO

R(b)-IHO
P(b) 

  IHO
S(IS) += 1 

Pixel Intensity histogram h’c 
Loop b=0 to Nb-1 
    IHO

S(b)=IHO
Q(b)+IHO

R(b)-IHO
P(b) 

  IHO
S(IS) += Js 

 
 
 
ADD: 3Nb 
ADD: 1 
 
 
ADD: 3Nb 
ADD: 1 

 
 
 
4Nb 
 
 
 
4Nb 

 
 
 
 
 
 
 
 
2 pixels

Extraction process: 
Pixel count histogram hc 
Loop b=0 to Nb-1 
    hc(b)=IHO

D(b)+IHO
A(b)-IHO

B(b)-IHO
C(b) 

Pixel Intensity histogram h’c 
Loop b=0 to Nb-1    
hc(b)=IHO

D(b)+IHO
A(b)-IHO

B(b)-HO
C(b) 

 
 
 
ADD: 3Nb 
 
 
ADD: 3Nb 

 
 
 
4Nb 
 
 
4Nb 

 

Kernel calculation process: 
Loop b=0 to Nb-1 
  G(b) = g(|Ic-b|) 

 
ADD, LUT: 
Nb 

 
 
 
1 pixel 

Convolution process: 
Nu=0, De=0 
  Loop b=0 to Nb-1 
    De += G(b) x hc(b) 
Nu += G(b) x h’c(b) 
  Result = Nu / De 

 
MUL, ADD: 
Nb 
MUL, ADD: 
Nb 
DIV: 1 

 

 
 
 
 
 
1 pixel 

Total 17Nb+3 16Nb 4 pixels

TABLE. 4-1 presents the computational flow and computational analysis of the 

integral histogram based JBF to calculate 1-pixel result, which consists of the 

integration, extraction, kernel calculation, and convolution processes. In which, the 

former two are for the histogram calculation step, and the latter two are for the 1-D 

convolution step. Especially note that these processes, for each pixel, should compute 

for all bins of related histograms; therefore, their complexity and bandwidth for 

integral histogram (bandwidth for IH) are the multiple of the number of bin, Nb. 

For ease of explanation, we use the area view (image space) to show how this 
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approach operates and the memory view (IH space) to show the memory usage, as 

illustrated in Fig. 4.1 (a). In the area view, IHO
X is a histogram of the rectangular area 

stretched from the pixel O to X. Thus, the addition and subtraction of IH can be 

regarded as area merging and cutting, respectively. In the memory view, the data of 

IHO
X are stored at X, and the gray region represents occupied memory usage. With these 

representations, Fig. 4.1 (b) and (c) illustrate the integration and extraction processes. 

 

 

 

(a) (b) (c) 

IHO
Q IHO

R IHO
P IHO

SBin(Is)
+ - +

O PO

R

O Q O

SS

Fig. 4.1. Concept of integral histogram approach 
(a) representation of an integral histogram, (b) integration process, 

(c) extraction process. 

First, the integration process progressively calculates the IH of each pixel using the 

equation, 

)( S
P
O

R
O

Q
O

S
O IBinIHIHIHIH +−+=    (4.2) 

  For the pixel count histogram hc and the pixel intensity histogram h’c, their IHs are 
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computed separately as shown in TABLE. 4-1. The histogram IHO
S is computed from 

linearly combination of three exist integral histograms and a histogram of the target 

pixel IS. We show the target pixel histogram with the notation Bin(IS) because the 

histogram must be a one-hot histogram. For hc, Bin(IS) is 1 for the corresponding bin 

and 0 for others; on the other hand, for h’c, this term is Js for the corresponding bin, and 

also 0 for others. Adding the one-hot histogram updates only the bin corresponding to 

IS so that, as shown in TABLE. 4-1, it is perform outside the loop. After this process, 

the IH of each pixel is produced and stored into memory. 

Second, given the IHs, the extraction process can extract hc or h’c, the histograms of 

the window ABCD, which is centered by the target pixel c, is defined by equation, 

C
O

B
O

A
O

D
OABCDcc IHIHIHIHHhorh −−+=='   (4.3) 

As shown in Fig. 4.1 (c), a histogram with arbitrary window size can be obtained by 

using the IHs of four corners. With this property, the integral histogram approach can 

reduce computational complexity to O(|R|/sr) which is independent of window size. 

Third, the kernel calculation process computes the range kernel by a range table, 

which includes 256 items for the 256 possible values of |Ic-b|. Finally, given the range 

kernel g and the histograms hc and h’c, the convolution process calculates the result of 

target pixel c by (4.1). 

4.2. Design Challenge 

Since the complexities listed in TABLE. 4-1 are pixel wise as well as bin number 

dependent, they will grow quickly, as shown in Fig. 4.2, as resolution and bin number 

grow. The detailed design challenges are described below. 
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4.2.1. High Memory Cost for integral histograms 

During the integration process, all the IHs of whole image are stored in memory. 

BF needs a frame-scale-magnitude memory for hc, and JBF additionally needs another 

one for h’c. Therefore, the total memory cost of JBF is 

)8( +⋅+⋅ bbbb wNMNwNMN  (4.4) 

where the former term is for hc, and the later term is for h’c. M and N is the frame height 

and width, Nb is the number of bin, and wb is the bit width of a bin. Note that wb is 

related to the maximal integral area, and its value equals log2(MN). In addition, the bit 

width of h’c is more than hc by 8 bits because pixel intensity is 8 bits.  

Above memory cost would be 829.4 Mbytes for the HD1080p resolution as listed 

in Fig. 4.2 (a) and TABLE. 6-4. For a VLSI design, these massive data could be 

configured into off-chip memory (i.e. DRAM) or on-chip memory (i.e. SRAM). 

However, compared to the on-chip memory, the off-chip memory suffers from longer 

access latency due to its complicated controlling mechanism [39], and limited 

bandwidth usage due to bus sharing by multiple masters. Hence, our strategy for the 

high memory cost is to reduce the memory requirement and enable data to be stored in 

on-chip memory for fast implementation. 

4.2.2. High Computational Complexity in All Processes 

According to the complexity in TABLE. 4-1, generating 1-pixel result needs 

15Nb+2 additions, 2Nb multiplications, and 1 division. If Nb is 64, the total complexity 

will be 2,262.3 million operations for an HD1080p image as shown in Fig. 4.2 (b). To 

meet above demands, a VLSI design with sufficient parallel operators is necessary. 
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4.2.3. High Bandwidth in Integration and Extraction 

In TABLE. 4-1, the bandwidth for IH requires 16Nb for 1-pixel result, and that will 

reach 106.168 Gbits for an HD1080p image as shown in Fig. 4.2 (c) and TABLE. 6-4. 

That is because the IHs are accessed frequently. With the strategy for the memory cost 

problem, the IHs are stored in on-chip memory, and its data bus should be increased to 

address the high bandwidth problem. However, it results in over-partitioned memory 

and increased area. Thus, a method which can reduce the bandwidth is needed. 

4.2.4. Large Range Table in Kernel Calculation 

In the kernel calculation process, a range table with 256 items is needed. However, 

with the parallel operations for the computational complexity problem, this table 

should be duplicated. By straightforward implementation, 256 range tables, each of 

which corresponds to 256 possible values of (Ic - Iq), must be available for parallel 

operations.  Both the size (number of items) and the number of the range table result 

in large area; therefore, a table-reduction method and a table-reuse method are needed 

4.3.  Summary 

In conclusion, for example of the HD1080p image, the integral histogram approach 

needs the memory cost of 829 Mbytes and the bandwidth of 106 Gbits per frame. In 

addition, the Porikli’s approach still suffers from high computational complexity of 

2,262 million operations even though it has been accelerated by integral histogram 

approach. Moreover, the 1-D convolution needs a large range table with 256 items for 

the range kernel. Due to above problems, it is hard to achieve a real time performance 
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and thus demands VLSI hardware acceleration. In the next chapter, we will introduce 

our proposed memory reduction methods. And then in Chapter 6, a VLSI 

implementation with problem solving architecture will be addressed. 
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5.  Proposed Memory Reduction Methods 

5.1.  Overview 

To solve the high memory cost problem mentioned in last chapter, we propose 

three memory reduction methods. First, the runtime updating method (RUM) takes 

advantage of progressive raster-scan process to discard unnecessary data. Second, the 

stripe based method (SBM) avoids frame wide memory cost by dividing each frame 

into vertical stripes and processing them one by one. Finally, the sliding origin 

method (SOM) lessens the storage data dependency of the original histogram 

integration process to reduce the memory requirement from frame-scale-magnitude to 

line-scale-magnitude. With these memory methods, the memory cost can be reduced to 

0.003%-0.020%. The details of the proposed methods are described below. 

5.2.  Runtime Updating Method (RUM) 

The concept of the RUM is to perform the integration process and the extraction 

process at the same time, instead of two separate iterations in the original flow. Fig. 5.1 

illustrates its memory configuration in the memory view. In Fig. 5.1 (a), the integration 

process is performed from the integral origin O to D. In the meanwhile, the extraction 

process can extract the histogram HABCD as shown by Fig. 5.1 (b). From the data 

lifetime analysis for raster-scan, this is the last time taking IHO
A into extraction 

process. And all the IHs before the pixel A will not be used for extraction process 

anymore. Hence, only the IHs from the pixel from A to D require memory space. Thus, 

the memory cost is 
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)8(|||| +⋅+⋅ bbbb wNNSwNNS   (5.1) 

where M in (4.4) is replaced by the window width |S|. 
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Memory view Memory view  

 (c) (d) 
Fig. 5.1. Runtime updating method (RUM) 

(a) integration process, (b) extraction process for HABCD, (c) integration process for S, 
(d) extraction process for HPQRS 

Fig. 5.1 (c) and (d) illustrate the memory updating process when the two processes 

moves right to the next pixel S. In Fig. 5.1 (c), the integration process calculates the 

new IHO
S using IHO

D, IHO
D’, IHO

S’, and then the new IHO
S can overwrite the memory 

position of the discarded IHO
A. In Fig. 5.1 (d), the extraction process extracts HPQRS. On 

the whole, in raster scan from integral origin O to the end of region, the proposed 

RUM alternates between these two processes repeatedly. 
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With the proposed RUM, the memory cost could be reduced from a full frame to a 

partial frame. This method can gain considerable reduction since |S| is usually much 

smaller than M. 

5.3.  Stripe Based Method (SBM) 

 

 (a) (b) 

Fig. 5.2. Stripe based method (SBM) 
(a) partitioned-frame, (b) extended integral region for each stripe 

 

 (a) (b) 

Fig. 5.3. Integral region of SBM is an extended stripe. 

(a) four corner IHs for extraction process, (b) integration process. 

The main idea of the SBM is to slice the whole frame into many vertical stripes, and 
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the integration and extraction processes are performed stripe by stripe. Fig. 5.2 (a) 

illustrates a frame partitioned into stripes, and Fig. 5.2 (b) illustrates the extended 

region for a stripe. 

Fig. 5.3 (a) shows that, in the extraction process, some corner IHs, such as A and B, 

are outside the stripe. Therefore, as shown in Fig. 5.3 (b), the integration process 

should be carried out at extended region to make sure these outside-stripe IHs are 

defined. On both stripe boundaries, the integral region (IR) is extended by half the 

window width, |S|/2, to include the regions that can be traversed by window corners. 

Note that these IHs are associated with new origin O’ instead of O. 

As shown by Fig. 5.2 (b), the IR of each stripe is (|S| + ws -1) pixels wide. 

Compare with the original, the IR is reduced from a frame to an extended stripe; as a 

result, the bit width wb can be smaller. The total memory cost of the SBM is 

( ) ( ) )8(1||1|| +⋅−++⋅−+ bbsbbs wNwSMwNwSM , (5.2) 

where ws is the stripe width, and wb equals log2[M(|S|+ws-1)]. Compared to the original 

cost of (4.4), the SBM could significantly reduce memory if the stripe width, 

(|S|+ws-1), is much smaller than N.  

 

Fig. 5.4. Overlapped integration region between two adjacent stripes 

The overhead of the SBM is that the extended regions result in extra computation 
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and bandwidth due to repeatedly performed integration processes on these regions as 

shown by Fig. 5.4. Thinner stripes can reduce memory cost more, but that leads to more 

overheads. Thus, the selection of ws is a tradeoff between memory reduction and 

overheads. That will be discussed in Chapter 6.6. 

  

35 

 



  

5.4. Sliding Origin Method (SOM) 

 
 (a)  (b) 

 
 (c) 

 
(d) 

Fig. 5.5. Sliding Origin Method (SOM) 
(a) Sliding origin O, (b) extraction process with sliding origin O, 

(c) integration process for next pixel S, (d) modified integration process 
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The concept of the SOM is to vertically slide the origin pixel O with the integration 

and extraction processes to reduce memory cost from a plane to a single line. As shown 

in Fig. 5.5 (a), the origin pixel O slides downward to keep pace with the top row of 

the window ABCD. With the SOM, the integration and extraction processes can be 

simplified as described below. 

Fig. 5.5 (b) shows that, for the extraction process, the original IHO
A and IHO

B cannot 

form meaningful histogram rectangles in area view because the position of O is under 

A and B. Hence, these two histograms are zero and (4.3) can be simplified as the 

following equation, 

C
O

D
O

C
O

B
O

A
O

D
OABCD

IHIH
IHIHIHIHH

−=
−−+=

 (5.3) 

Fig. 5.5 (c) shows that, for the integration process, the new IHO
S is computed by 
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S
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S
O IBinIHIHIHIH +−+= ′′

  (5.4) 

However, the S’ and D’ are on the previous row, and by SOM they should have been 

defined by the previous origin O’ as shown in Fig. 5.5 (d), instead of O. Therefore, for 

real process, the IHO
S’ and IHO

D’ in (5.4) should be changed to IHO’
S’ and IHO’

D’ by the 

following derivation, which is corresponding to the area view of Fig. 5.5 (d). 
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Compare with (5.4), final line of (5.5) shows that only a slight change is required (it 

adds the term of subtracting Bin(IQ)) for the integration process to let the integral 

origin slide from O’ to O. 
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However, the slight change makes significant difference on the memory cost. With 

above simplification, only the IHs of C, D, S’ and D’ are associated, and by the concept 

of RUM, only a single row of IHs from D’ to D, requires memory space as shown 

in Fig. 5.6 (a). Thus, the total memory cost is reduced as 

)8( +⋅+⋅ bbbb wNNwNN   (5.6) 

where wb equals log2(|S|N) since the maximal IR is |S|N as shown by Fig. 5.6(b). 

Compared to the original cost of (4.4), the height dimension M is replaced by |S|, and 

wb is much smaller because |S| is usually much smaller than image width M. 

 
 (a) (b) 

Fig. 5.6. Sliding Origin Method 
(a) Memory Cost, (b) Maxima integral region. 
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5.5.  Combination 

 
 (a) (b) 

Fig. 5.7. Combination of memory reduction methods 
(a) Memory Cost, (b) Maximum integral region 

The proposed memory reduction methods could be easily combined as shown 

by Fig. 5.7 (a). First, the SBM partitions a whole frame into stripes. Then, by stripes, 

the RUM and SOM are performed row by row. This combination can reduce the 

memory cost to 

( ) ( ) )8(1||1|| +⋅−++⋅−+ bbsbbs wNwSwNwS   (5.7) 

where wb equals log2[|S|(|S|+ws-1)], |S|(|S|+ws-1) is the area of maximum integral 

region as shown by Fig. 5.7 (b). Compared to the original cost of (4.4), M is decreased 

to 1 since the SOM reduces data dependency of the extraction process and the RUM 

discards unnecessary data. Besides, N is decreased to (|S|+ws-1) since SBM cuts image 

into narrow stripes. Note that in this memory cost formulation, Nb and |S| are related to 

the application quality, and ws is related to hardware performance. The analysis of 

parameter selection will be further presented in Chapter 6.6.  
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5.6. Comparisons 

Refer to the analysis in [34], we use the 31-pixel-wide window (i.e. |S| is 31) and 

64-bin histogram (i.e. Nb is 64). In addition, we choose stripe width as 60 pixel (i.e. ws 

is 60) as an example and compare the original memory cost defined by equation (4.4) 

and the reduced memory cost computed by equation (5.7) for different frame 

resolutions. TABLE. 5-1 shows that the reduced memory cost is independent of the 

frame resolution. With above mentioned parameters, the memory cost is 23.04 Kbytes 

constantly. The amount is 3 to 5 decimal magnitude smaller than the original memory 

costs of different resolutions. For every resolution, other than the number of required 

integral histograms is reduced from frame-scale-magnitude to a line-scale-magnitude, 

its wb is also reduced due to the IR reduction. 

TABLE. 5-1 Comparisons of original and reduced memory cost 
Cost Unit: Bytes 

Integration region (IR) Unit: square pixel 
Histogram bin bit width (wb) Unit: bit 

Resolution CIF 
(352x288) 

VGA 
(640x480) 

HD720p 
(1280x720p) 

HD1080p 
(1920x1080p) 4Kx2K 

Original cost 

Original IR 

Original wb 

34.1M 

101.3K 

17 

113.0M 

307.2K 

19 

353.9M 

921.6K 

20 

829.4M 

2073.6K 

21 

3456M 

8M 

23 

Reduced cost 

Reduced IR 

Reduced wb 

23K(0.067%) 

2.79K (2.75%) 

12 (70.59%) 

23K(0.02%) 

2.79K(0.91%)

12 (63.16%) 

23K(0.0065%)

2.79K(0.30%)

12 (60%) 

23K (0.0028%) 

2.79K(0.13%) 

12 (57.14%) 

23K(0.0007%)

2.79K(0.03%)

12 (52.17%) 
|S|=31; ws=60; Nb=64 
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6. Architecture Design and Implementation 

6.1.  Overview 

TABLE. 6-1 Modified computational flow and complexity analysis for each pixel in 
the integral histogram approach for JBF 

Process Complexity
(operation) 

BW for IH
(data) 

BW for pixel 
(data) 

Integration process: 
Pixel count histogram hc 
Loop b=0 to Nb-1 
    IHO

S(b)=IHO
D(b)+IHO’

S’(b)-IHO’
D’(b)

  IHO
S(IS) += 1,  IHO

S(IQ) -= 1 
Pixel Intensity histogram h’c 
Loop b=0 to Nb-1 
    IHO

S(b)=IHO
D(b)+IHO’

S’(b)-IHO’
D’(b)

  IHO
S(IS) += JS,  IHO

S(IQ) -= JQ

 
 
 
ADD: 2Nb 
ADD: 2 
 
 
ADD: 2Nb 
ADD: 2 

 
 
 
4Nb 
 
 
 
4Nb 
 

 
 
 
 
 
 
 
 
4 pixels 

Extraction process: 
Pixel count histogram hc 
Loop b=0 to Nb-1 
    hc(b) = IHO

S(b) - IHO
R(b) 

Pixel Intensity histogram h’c 
Loop b=0 to Nb-1 
    hc(b) = IHO

S(b) - IHO
R(b) 

 
 
 
ADD: Nb 
 
 
ADD: Nb 

 
 
 
Nb 
 
 
Nb 

 

Kernel calculation process: 
Loop b=0 to Nb-1 
  G(b) = g(|Ic-b|) 

 
 
ADD, LUT: Nb

 
 
 
1 pixel 

Convolution process: 
Nu=0, De=0 
  Loop b=0 to Nb-1 
    De += G(b) x hc(b) 
Nu += G(b) x h’c(b) 
  Result = Nu / De 

 
 
 
MUL, ADD: Nb
MUL, ADD: Nb
DIV: 1 

 

 
 
 
 
 
1 pixel 

Total 11Nb+5 10Nb 6 pixels 

With memory reduction methods introduced in last chapter, the computational 

flow of JBF in TABLE. 4-1 is changed to that in TABLE. 6-1, and its hardware cost is 

presented in TABLE. 6-3. The integration process has added an IQ-relate subtraction 

term and the extraction process has simplified to be a two-term process. Therefore, 

the corresponding complexity and bandwidth are reduced consequently. And these 

reduction methods have reduced the memory cost from frame-scale-magnitude to 
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line-scale-magnitude. On the other hand, there are still three problems left to be 

solved with VLSI implementation. They are high parallelism-demand problem, high 

bandwidth problem, and large range table problem.  

To solve these problems and efficiently implement the architecture, we first 

propose the R-parallelism method to execute parallel computations in range domain to 

meet required throughput. Then, for on-chip bandwidth reduction, we take advantages 

of the timing relationship of data in the progressive computation to buffer the computed 

IHs, named delay-buffer method. The large range table size due to parallelism is further 

reduced by exploiting the numerical properties of Gaussian function. With memory 

reduction methods and these architecture design techniques, an efficient hardware 

design is proposed, which can be easily scalable to different performance target. For 

ease of explanation, we use an example for the performance target of HD1080p 

resolution to present the design. The details of these design techniques are presented in 

the rest of this chapter. 
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6.2.  Overall architecture 
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memory

Interface
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Fig. 6.1. Proposed architecture of JBF 

Fig. 6.1 shows the overall architecture that contains two parts, interface and core. In 

this architecture, the image pixels and the IHs are stored at the off-chip and on-chip 

memory, respectively. The interface accesses pixels from the off-chip memory through 

a 64-bit bus, and the core performs the computation of JBF.  

In the interface, the access controller allocates the bus priority to the input and 

output first-in-first-out (FIFO) buffers by round-robin policy. The size of each buffer is 

associated with off-chip bandwidth. Large buffers can support data reuse schemes to 

reduce the off-chip bandwidth. Because of sufficient off-chip bandwidth in this 

architecture, we do not apply any data reuse schemes here to have lower buffer cost, 

and set its size as 2x8-pixel, where the value of 8 is to meet the bus width, and the value 

of 2 is to support ping-pong mechanism for simultaneous reading and writing. 
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6.3.  Interface   

 

Fig. 6.2. Mechanism of input and output data control 

In the interface, the round-robin finite state machine (FSM) has six states. State 0 

to 4 associate to input FIFO buffers; state values determine which FIFO buffer should 

take the input of an 8-pixel data. For example, as shown by Fig. 6.2, the FIFO buffer 

of Ic takes input when state is zero; at the other time, it keeps old stored data. State 5 

associates to output FIFO buffer, an 8-pixel packaged result in FIFO buffer of Oc are 

sent to bus when state is 5; at the other time, this FIFO is loaded with newly processed 

result from the core. 

The FIFO buffer of any input is in 2x8-pixel ping-pong structure. For any time, 

one of two 8-pixel buffer is in Update mode and the other is in Give mode. The 

structure is used to make scheduling time easier because it enables buffer to receive 
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data (by Update mode buffer) and to give data (from Give mode buffer) at the same 

cycle. By our schedule, The Update-mode buffer will be loaded with an 8-pixel input 

in a cycle; for example, Fig. 6.3 (a) shows an input is coming and then in Fig. 6.3 (b) 

the Update mode buffer is loaded with the data. At the same cycle, the Give mode 

buffer gives out a pixel into the core. The mode will exchange after Update mode 

buffer is loaded data and Give mode buffer gives out all data as shown by Fig. 6.3 (c). 

After the switching, the loaded data starts to pour out and the empty buffer waits to be 

loaded again as in Fig. 6.3 (d). During the process, the mode exchanges continuously. 

 
 (a) (b) 

 
 (c) (d) 

Fig. 6.3. Process of Ping-Pong Structure 
(a) input is coming, (b) the next cycle, Update mode buffer loaded by input and Give 

mode gives out a pixel, (c) ready for mode exchange, (d) after mode exchange. 
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6.4. Time Schedule 

 

Fig. 6.4. Schedule of the proposed architecture 

The operations of the architecture are described below with the schedule in Fig. 6.4, 

which is hierarchically sliced from a frame to pipeline tiles. The throughput of each 

pipeline tile is the computational result of 8 pixels. In a pipeline tile, the access 

controller in the interface first reads pixels from the off-chip memory, and stores them 

into the FIFO buffers. It takes 5 cycles to switch through 5 states (state 0 to 4) of the 

round robin FSM. Then the two histogram calculation engines in the core begin to 

compute h’c and hc, and the convolution engine consecutively produces 8 pixel results 

which are then sent to the output FIFO buffer. Finally, the interface moves 8-pixel 

packaged results from the buffer to the off-chip memory at the state 5 of FSM. 

This schedule refers to the quality analysis in [34], it uses 31 pixels as window 

width and sets stripe width to be 60 pixels. Therefore, an HD1080p image is sliced 
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into 32 stripes and the width of an integral region is 90 pixels. 12 pipeline tiles are 

required for each row of integral region since each tile can calculate 8-pixel-wide 

histogram. By fully-pipelined schedule, performing 12 pipeline tiles takes 96 cycles. 

To sum up over 32 stripes, for a HD1080p frame, 3,317,760 cycles are needed. 

6.5.  Design Components 

In the core, the main components are two histogram calculation engines and one 

convolution engine for the TABLE. 6-1 computations, which have high computational 

complexity as mentioned above. Thus, the proposed R-parallelism method unrolls all 

computational loops in the range domain R. The details of this method are described in 

each engine as follows. 

6.5.1. Histogram Calculation Engine 

The histogram calculation engines perform the integration and extraction processes 

for hc and h’c as shown in TABLE. 6-1. With the R-parallelism method, we design their 

architectures as shown in Fig. 6.6, where the selected-bin adder (SBA) is depicted 

in Fig. 6.5. These two engines can achieve the throughput of 1 histogram per cycle. 

Note that the difference of the two engines is that the integral value of SBAs is the 

source pixel J in the engine h’c, instead of the constant 1 in the engine hc. In addition, all 

bit widths of data in the engine h’c are more than those in hc by 8 bits. 

According to equation (4.2), the integral values, J or 1, should be added into a 

corresponding bin of guided pixel; at the same time, other bins should keep their 

origin value. In SBA, before adder, a selector is used to select the corresponding bin; 

and after adder, a selector array updates the result back to the corresponding bin. All 
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the selectors are controlled according as the value of guided pixel. 

 

Fig. 6.5. Selected-bin adder in the histogram calculation engines 

 

 (a) (b) 
Fig. 6.6. Architectures of histogram calculation engines h’c and hc 
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 (a) (b) 

Fig. 6.7. The delay-buffer method 
(a) S’(t), S(t) at time=t are delayed to be (b) D’(t+1), D(t+1), respectively 

In above architectures, each engine needs to access the five IHs: IHO’
S’, IHO’

D’, IHO
S, 

IHO
D, and IHO

R, from on-chip memory in one cycle. To reduce the bandwidth problem, 

we propose the delay-buffer method, which is presented as follows by data dependency 

of the associated IHs in two successive cycles. Assume that the pixels S, S’, D, and D’ 

shown in Fig. 5.5 (d) are located (x,y), (x,y-1), (x-1,y), and (x-1,y-1) in the cycle t, 

respectively. As shown in Fig. 6.7 (a), their IHs are notated by 

)1,1()(),1()()1,()(),()( :,:,:,: −−−− ′′ yx
O

tyx
O

tyx
O

tyx
O

t IHDIHDIHSIHS   (6.1) 

For the next cycle t+1in Fig. 6.7 (b), their x-coordinates are increased by 1 as follows, 

)1,()1(),()1()1,1()1(),1()1( :,:,:,: −++−++++ ′′ yx
O

tyx
O

tyx
O

tyx
O

t IHDIHDIHSIHS   (6.2) 

From the (6.1) and (6.2), we can find that D(t+1) equals S(t), and D’(t+1) equals S’(t). 

That means IHO’
D’ and IHO

D can be obtained by delaying IHO’
S’ and IHO

S for one cycle, 

respectively. Therefore, we can use two delay-buffers to avoid accessing IHO’
D’ and 

IHO
D from the on-chip memory, and reduce bandwidth from five IHs to three IHs. 

The on-chip memory is divided into two banks, because there are two read 

demands from the engine. One demand is for IHO’
S’ and the other is for IHO

R. As 

shown in Fig. 6.8, it marks even bank and odd bank of memory with white and dark 

respectively. It shows that choosing stripe width wb as an even number can make two 

reading demands from different banks. 
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Fig. 6.8. On-chip memory with even bank and odd bank 

D

Phase I

Memory view

S'
R

Phase II

 

Fig. 6.9. Schedule phases of on-chip memory 

The detail schedule is performed in two alternating phases. With these phases, the 

even bank and odd bank of on-chip memory are alternatively used for reading and 

writing as shown by Fig. 6.9. At the phase I, IHO’
S’ and IHO

R
 are read from the even 

bank and the odd bank, respectively. In the meanwhile, IHO
D is written into the odd 

bank. Then at the phase II, IHO
D is written into the different (even) bank. As the arrow 

shows, the written IHO
D replaces the oldest integral histogram (IHO’

S’ of the prior 

phase) since this data will not be used anymore. In the meanwhile, IHO’
S’ and IHO

R
 are 

read from the odd bank and the even bank, respectively. On the whole, the two phases 

Memory view

DR
S'
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exchange iteratively for the overall engine process. 

In the following paragraphs, we will explain the computation of the two histogram 

calculation engines. Their computation flows are almost the same; therefore, we show 

the detail only with engine of h’c.  

The computation of the SBA I in Fig. 6.6 (a) is defined by (the check point one) 

),('1 S
S
O IBinIHIH += ′   (6.3) 

which means one of bins of IHO’
S’ is added by JS. 

The computation of the SBA II in Fig. 6.6 (a) is defined with check point one by 

),(2 Q
D
O IBinIHIH −=   (6.4) 

which means one of bins of IHO
D is subtracted with JQ. 

The integration process result IHO
S is calculated by 

)( '
'21

31
D
O

S
O

IHIHIH

IHIHIH

−+=

+=
, (6.5) 

which is the same as (5.5). Especially note that the addition and subtraction in (6.5) 

represents additions and subtractions of all bins respectively. With R-parallelism 

method, they are implemented by an array of adders. The number of adders is equal to 

the number of bins Nb. Finally, by using an array of adder as well, the engine performs 

extraction process defined by (as the notation in Fig. 5.5)  

R
O

S
OPQRSc IHIHIHh −=='   (6.6) 

to calculate the histogram of the window h’c.  
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6.5.2. Convolution Engine 

 
 (a)  (b) 

Fig. 6.10. Proposed architecture 
(a) convolution engine and (b) table selection modules 

 

Fig. 6.11. Construction of constant weight table 

52 

 



  

The convolution engine uses the histograms hc and h'c to further compute the pixel 

result by the kernel calculation and convolution processes in TABLE. 6-1. Its 

architecture is shown in Fig. 6.10 (a). With the proposed R-parallelism method, the 

convolution process can achieve the throughput of 1 pixel per cycle. Higher throughput 

can be further attained by the available cut-lines for pipelining in the figure, which can 

enable working clock be higher. 

The R-parallelism method brings high throughput but suffers from large size and 

large number of range table. With 256-level R, for any given target pixel intensity Ic, 

there should be a corresponding 256-item range table. Therefore, for 256 intensity 

levels, the amount of all table items should be 256x256. To reduce the range table, we 

take advantages of the symmetry and truncation property of Gaussian function to 

decrease its size from 256 to 32. Fig. 6.11 shows a curve shape of Gaussian functions 

can be truncated by considering required digit. For example, we can truncate values 

smaller than 2-8 for keeping 8-bit decimal digits. Furthermore, by taking advantage of 

symmetry property of Gaussian function, the negative side and positive side are 

folded together. Finally, a constant weight table is sampled from the folded curve. 

Nevertheless, the table size determines the quality so that it should be adjusted to 

meet the quality demand. In the proposed architecture, we use 32 for example because 

table of this size is enough to provide sufficient digit precision for usual BF 

processing (σr < 32). 

In addition, to avoid the large number of range table, we share one table by the table 

selection module as shown in Fig. 6.10 (b), which reduces the number of table to one. 

Each table selector chooses a weight from the table for its corresponding bin. For 

example, if Ic is 2, the selector TS0 selects g(2) for the first bin (represents for 

intensity 0) and selector TS1 also selects g(2) for the second bin (represents for 
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intensity 4), etc.. Any bin represents for intensity more than 34 is given 0. Then, 64 

selected weights and hc and h’c are sent into multiplier array and adder trees for 

computation of the equation of (4.1). 

6.5.3. Parameters versus hardware cost 

TABLE. 6-2 Parameters and their associated engine components 

Parameter Histogram Calculation 
Engine 

Convolution 
Engine 

Selected 
Value 

Window width |S| On-chip memory size 
Signal bit width Signal bit width 31 

Range kernel σr 
 
 Constant weight table size <32 

Stripe width ws On-chip memory size  
 60 

Bin number Nb 
On-chip memory size 
Operator array length 

Operator array length 
(adder/ multiplier array) 

64 
(sr = 4) 

There are four main parameters: window width |S|, range kernel parameter σr, 

stripe width ws, and bin number Nb, influencing hardware cost of the proposed 

histogram calculation engine and convolution engine. The associated engine 

components of these parameters are shown in TABLE. 6-2. For example, |S|, ws, and 

Nb are associated to the on-chip memory size of the calculation engine. This can be 

easily explained with the equation (5.7): the memory cost for integral histogram is 

determined by these three parameters. 

According to TABLE. 6-2, the function block layout of the core architecture 

doesn’t have to be redesigned for different parameter selections because these 

parameters do not affect its operation flow. (Especially note that the operation flow is 

invariant even to window size since the processes of integral histogram algorithm are 

independent of window selection.) Instead, these parameters affect the size or the 

operator number of their corresponding engine components. Therefore, if an 

application has variant parameter selection demands, the size and the operator number 
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of equipped engine components in its hardware design must be fulfill the most critical 

demand. For example, I select 31 as the window size for the proposed architecture 

since it is larger than the selections of most acceleration algorithms and applications. 

This makes sure that my architecture is suitable for most applications. 

6.5.4. Summary to design components 

Overall speaking, the histogram calculation engines and the convolution engine can 

be serially connected to achieve the throughput of 1 pixel per cycle. Their function 

block layouts and operation flows are invariant to parameter selection (even to the 

window size selection). For further high speed demand, more engines can be used to 

process multiple cascaded pixels simultaneously for higher throughput. The proposed 

memory reduction methods could be directly extended to support the processing of 

multiple pixels. In addition, note that for simpler BF, the histogram calculation engine 

h’c and its on-chip memory in the core module, and the two input FIFOs in the interface 

module could be reduced. 
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6.6. Memory Cost Analysis 
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Fig. 6.12. Analysis of Hardware performance and memory reduction 
(a)-(c) Hardware performance per frame with different ws; (d) memory reduction with 

the proposed methods for ws of 60 (M=1080, N=1920, Nb=64, |S|=31). 

In this chapter, we analyze the parameter selection in the proposed memory 

reduction methods. Show the overall memory reduction by three methods combined.  

As the combined memory cost in (5.7), there are three parameters, the window size 

of space kernel width |S|, the number of bin Nb, and the stripe width ws, where the 

former two are related to application quality, and the last one is related to target 

performance. Referring to the quality analysis in [34], we select 31 for |S| and 64 for Nb 

as an example to illustrate how to determine ws by considering hardware performance. 

Fig. 6.12 (a)-(c) estimates the hardware performance of JBF with different ws for the 

resolution HD1080p. The memory cost is computed with (5.7) and plotted in Fig. 6.12 
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(a). The off-chip bandwidth and computation time are calculated by the following 

equations and plotted in Fig. 6.12 (b) and (c), respectively, 

( )( ) ( ) pixwwNMpixwSwNM ssss 2/41||/ ⋅+⋅−+   (6.7) 

and 

( )( ) cycleswSwNM ss 11||/ ⋅−+   (6.8) 

where M(ws+|S|-1) is the stripe area with extended regions, and N/ws is the number of 

stripe in a frame. For the bandwidth, the term with 4 pixels is required by the 

integration process, and the other term with 2 pixels is required by other processes. 

Since the integration process should additionally perform on the extended integral 

regions as in Fig. 5.2, its bandwidth is more than the other processes’. For the 

computation time, the proposed architecture takes 1 cycle to produce 1-pixel integral 

process result. 

The selection of ws is mainly related to the target frame rate. If our target is 30 

frames per sec, the constraint of computation cycles is 3.3k; therefore, we could select 

60 for ws, as the example used by this chapter (as shown in TABLE. 6-2), when the 

working clock is 100 MHz. With the choice, the off-chip bandwidth will be 62.2%, and 

the memory cost can be reduced to 23 Kbytes, which is 0.003% of the original cost as 

shown in Fig. 6.12 (d). 

6.7. Implementation Result 

With above selected parameters, the proposed architecture of JBF has been 

implemented by Verilog and synthesized under the 90-nm CMOS technology 

process. TABLE. 6-3 lists the implementation result of the proposed architecture. The 
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hardware design spends less than 300K equivalent gate counts and 23 Kbytes on-chip 

memory to achieve the throughput of HD1080p 30 frames/sec at the clock rate of 

100MHz. Moreover, it can process at 200 MHz by pipelining on the available cut-lines 

in the convolution engine, and further achieve the throughput of 124 Mpixels per sec 

for HD1080p at the frame rate of 60 frames per sec. 

TABLE. 6-3 Example implementation result of the proposed architecture 

Technology UMC 90nm 
Image Size MxN 1920x1080 
Number of Bin Nb 64 
Window Size |S|x|S| 31x31 
Stripe Width ws 60 
Clock Rate (Hz) 100M 200M 
Frame Rate (Frame/Sec.) 30 60 
Logic Cost 
Excluding Memories 
(Equivalent Gate-Count)

Interface 9,578 9,917 
Histogram Cal. 97,766 148,649 
Convolution 168,333 197,351 
Total 276,178 355,917 

On-chip Memory (Byte) 23K 23K 
 

TABLE. 6-4 compares the complexity, memory requirement, and bandwidths between 

the proposed methods and the original integral histogram in different resolutions. With 

the proposed memory reduction and architecture design techniques, the complexity can 

be reduced to 0.15%, and the memory requirement can be reduced to 0.003%-0.02%. In 

addition, the bandwidth for IH (i.e. on-chip bandwidth) can be reduced to 32%-36%, 

but the bandwidth for pixels (i.e. off-chip bandwidth) is increased to 20.3-132.7 Mbits. 

(That is, bandwidth per second is about 1200-8000 Mbit for speed of 

60-frame-per-second) Nevertheless, the off-chip bandwidth is affordable by the 64-bit 

bus processing at 200 MHz. (The maximum affordable bandwidth is 12800 Mbit per 

second.) Note that the stripe width ws is specifically selected for the resolution 

HD1080p. Thus, it can be re-selected by means of the mentioned analysis in 

Chapter 6.6 to acquire better performance for another resolution. 
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TABLE. 6-5 compares our proposed hardware design with the previous 

implementations. Note that this paper is the first VLSI implementation to the best of 

author’s knowledge, and thus only other GPU and CPU approaches are listed for 

reference comparison. Although the throughput is less than that of Bilateral Grid, the 

proposed design still achieves best performance because of its significantly reduced 

memory cost. Comparing to other design, the proposed architecture could efficiently 

utilize the hardware cost to achieve real-time speed and low memory cost. 

TABLE. 6-4 Comparison of hardware cost per frame 

 Resol. 
Complexity

(million 
operation) 

Memory 
Requirement

(Kbyte) 

Bandwidth for 
IH 

(Mbit) 

Bandwidth 
for pixels 

(Mbit) 
Original VGA 335.1 (100%) 113,050 (100%) 14,470 (100%) 9.8 (100%)

HD720p 1,005.5 (100%) 353,894 (100%) 45,299 (100%) 29.5 (100%)
HD1080p 2,262.3 (100%) 829,440 (100%) 106,108 (100%) 66.4 (100%)

Mem. Reduction  VGA 197.0 (59%) 23 (0.020%) 9,083 (63%) 20.3 (206%)
HD720p 591.1 (59%) 23 (0.007%) 27,250 (60%) 60.8 (206%)
HD1080p 1,289.7 (57%) 23 (0.003%) 59,454 (56%) 132.7 (200%)

Mem. Reduction  
+ 

Archi. Design Tech. 

VGA 5.1 (0.15%) 23 (0.020%) 5,191 (36%) 20.3 (206%)
HD720p 1.5 (0.15%) 23 (0.007%) 15,571 (34%) 60.8 (206%)
HD1080p 3.3 (0.15%) 23 (0.003%) 33,974 (32%) 132.7 (200%)

Number of bin Nb=64, Window width |S|=31, Stripe width ws=60 

VGA=640x480, HD720p=1280x720, HD1080p=1920x1080 

TABLE. 6-5 Comparison of different implementations 

 
Support-Pixel-First Target-Pixel-First 

Durand and Dorsey 
[13]  

Chen et al. 
[36]  

Yang et al. 
[29]  

Adams et al.
[37]  

Porikli 
[34]  Proposed 

Approach 
Piecewise-linear 

Subsampling Bilateral Grid Piecewise-linear Gaussian 
KD-tree 

Integral 
Histogram 

Integral 
Histogram 

(ss=24, sr=19) (ss=16, sr=10) (sr=32)  (sr=4) (sr=4) 
Implementa

tion 

CPU 
P4  

2GHz 

GPU 
Geforce 

8800GTX 

GPU 
Geforce 

8800GTX 

GPU 
GeForce 
GTX260 

CPU 
P4 

3.2GHz 
ASIC 

Transistor 
count 
(Tech. 

Process) 

55M 
(130nm) 

[42] 

681M 
(90nm) 

[40] 

681M 
(90nm) 

[40] 

1,400M 
(TSMC 65nm)

[41] 

55M 
(130nm) 

[42] 

2.5M 
(UMC 90nm)

 

Image Size 
(Pixel) 10.4M 1.0M 1.0M 10M 1.0M 2.07M 

Frame Rate 
(Frame/sec) 

0.16 
(high dynamic range) 222 66 0.01-1 3.22 60 

Throughput 
(Pixel/sec) 1.6 M 222M 66M 0.1M-10M 3.22M 124M 

Memory 
(Byte) - 625K 4M 100M-1G 96M 23K 
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7. Conclusion 

The main contribution of this thesis is to propose efficient hardware architecture 

with three memory reduction methods for real-time integral histogram based JBF. The 

three proposed memory reduction methods combined reduces the memory cost to 

0.003% compare to the original integral histogram based JBF. The efficient hardware 

architecture can process large amount of parallel histogram bins simultaneously to 

achieve 1 pixel per cycle high throughput. The ASIC implementation of the 

architecture can achieve 124Mpixel (60 frames) per second with HD1080p resolution 

image under 200MHz clock rate. The chip consumes totally 355 K gate counts and 

23KBytes internal memory. The off-chip bandwidth requirement is 132.7Mbits per 

frame, which is 60% of the total bandwidth of 200 MHz clock rate. For higher 

throughput, the architecture and memory reduction methods can be directly extended 

to support the processing of multiple cascade pixels. 

Future Work 

In the thesis, we have proposed efficient architecture for IH based JBF and its 

design concept is also suitable for any integral image based applications but limited to 

those use the box spatial kernel. Nevertheless, Mohamed et al. [43] has shown that a 

more complicated kernel can be approximated by the linear combination of many 

basic box kernels. This extends the integral image approach to more complex 

applications. For the complex application, multiple parallel hardware cores of basic 

box kernel must be put together and thus the overall interface of data transfer and 

communication, and the analysis of internal memory and bandwidth requirement must 

be re-estimated elaborately for the best performance. 
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On the other hand, the proposed architecture is suitable for gray-level image 

process. For extended use for multi-color channels, extra software or hardware has to 

be further designed for blending color channels to gray level. Nevertheless, these 

methods usually depend on different applications. For example, for producing human 

visual consistent gray level images, Faust [44] has to includes human vision 

knowledge and visual aspects to present an enhance conversion.  
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