

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

即時的積分直方圖基準之聯合雙邊濾波演算法分析與設計

Analysis and Design of Real-time Integral Histogram Based

Joint Bilateral Filtering

研究生︰許博雄

指導教授︰張添烜 博士

中華民國 九十九 年 八 月

即時的積分直方圖基準之聯合雙邊濾波演算法分析與

設計
Analysis and Design of Real-time Integral Histogram Based

Joint Bilateral Filtering

研 究 生︰許博雄 Student: Po-Hsiung Hsu

指導教授︰張添烜 博士 Advisor: Dr. Tian-Sheuan Chang

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of Master of science
in

Electronics Engineering
August 2010

Hsinchu, Taiwan, Republic of China

中華民國 九十九 年 八 月

即時的積分直方圖基準之聯合雙邊濾波演算法分析與

設計

研究生: 許博雄 指導教授: 張添烜 博士

國立交通大學

電子工程學系電子研究所碩士班

摘 要

雙邊濾波演算法和聯合雙邊濾波演算法已經被廣泛運用在許多影像處理的

領域中，例如去除雜訊、色調處理、甚至是立體的相關應用和 MPEG 標準。它

雖然可以用快速演算法中的積分直方圖方法加速，但針對需要即時處理的應用，

仍然遭受高運算複雜度，高記憶體使用量的問題。要解決這些問題，VLSI 實現

是個必要的方法。本篇研究針對積分直方圖基準之(聯合)雙邊濾波演算法提出一

個有效率的硬體架構，其中包含三個自提的記憶體減量方法和可大量平行運算的

單元。

這些自提的記憶體減量方法包含動態更新方法，條狀切割方法，和積分起點

位移方法。其中動態更新方法是在運算期間，利用演算法循序逐列掃描計算的特

性，移除不再使用的資料。而條狀切割方法則進一步將每一張畫面切割成許多縱

向的條狀區域並作為逐列掃描計算的單位；每個條狀區域的寬度比畫面寬度短得

多，因此逐列掃描計算只需通過較短的列長，使得資料暫存量大減，不再需要整

個畫面寬的記憶體空間。最後，積分起點位移方法利用循序 動態積分起點

的概念，協助原始直方圖演算法的積分過程減少對儲存資料的依賴，使得記憶體

使用量得以由整張畫面的尺度，減少至列的尺度。整體來說，這三個方法很容易

i

結合起來，可以將記憶體使用量減少至原演算法的 0.003%。

另一方面，自提的硬體架構利用延遲暫存資料共用方法和使用查表選擇器，

分別解決了積分直方圖運算上高頻寬需求和大量查表的問題;並且利用記憶體的

切割來提升內部頻寬的容量。除此之外，它也使用數值(在影像中則為亮度)空間

平行方法來有效率地執行大量積分直方圖單元運算，而達到高產出。另外，這個

硬體架構的運算模組佈局與參數的選擇無關，因此對於不同參數需求的應用，將

不需再重新設計。

最後的硬體實現，在聯華電子 90 奈米製程下，使用 200 MHz 的工作時脈，

每秒可以執行 60 張 HD1080p (1920x1080)影像。晶片總共需要 355 K 個邏輯閘和

23 K 個晶片記憶體。

ii

Analysis and Design of Real-time Integral Histogram Based

Joint Bilateral Filtering

Student: Po-Hsiung Hsu Advisor: Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

Bilateral filtering and joint bilateral filtering have been widely used in many

image processing fields, such as de-noising, tone-management, and even the 3-D

applications and MPEG standard. They can be accelerated by the associated fast

algorithm, integral histogram, but still suffer from highly computational complexity

and massive memory, especially for real-time applications. To conquer them, VLSI

implementation becomes a necessary solution. In the thesis, we design an efficient

hardware architecture, which consists of three proposed memory reduction methods,

and highly parallel computational components for integral histogram based (joint)

bilateral filtering.

The proposed memory reduction methods include runtime updating method

(RUM), stripe-based method (SBM), and sliding origin method (SOM). The RUM in

runtime takes advantage of progressive raster-scan process of computation to discard

unnecessary data. The SBM further divides each frame into vertical stripes and

processes them one by one. These stripes are much narrower than a frame; therefore,

the raster scan process can traverse along shorter rows and the original frame-wide

iii

memory cost can be significantly reduced. Finally, the SOM uses the concept of

progressive sliding integral origin to help the original histogram integration process

lessen the dependency on storage data; therefore, the memory requirement can be

reduced from frame-scale-magnitude to line-scale-magnitude. On the whole, the three

methods can be easily combined to reduce the memory cost to 0.003% of the original

requirement.

On the other hand, the proposed hardware architecture solves the integral

histogram computational high bandwidth and large table problem by using

delay-buffer data-reuse method and table selector, respectively. And use memory

banks to enlarge the capacity of internal memory bandwidth. Besides, it uses range

(intensity, for image)-space-parallelism methods to process large amount of histogram

bins simultaneously to achieve high throughput. What’s more, the function block

layout of the hardware architecture is invariant to parameter selection; therefore, it

doesn’t have to be redesigned for applications of different parameter demands.

The final design implemented by UMC 90nm CMOS technology can achieve 60

frames per second for HD1080p (1920x1080) resolution image under 200MHz clock

rate. The chip consumes 355 K gate counts and 23 K Bytes on-chip memory.

iv

誌 謝

首先，要感謝我的指導教授—張添烜博士，在研究和修課上讓我能夠自由的

發揮；不管是研究本身或是工作應徵，在我遇到瓶頸都給予適切的建議與協助，

讓我得以用正確且有效率的方式來解決問題。老師良師益友的形象，深植我心。

此外，實驗支援研究的軟硬體充足，電腦設備操作環境寬敞，光線充足；讓我有

個舒適的研究環境。

感謝我的口試委員們，清華大學資訊工程系邱瀞德教授與交通大學電子工程

系王聖智教授。感謝你們百忙之中抽空前來指導，因為教授們的寶貴意見，讓我

的論文更加的充實而完備。

接著我要感謝實驗室的好夥伴們，特別是引我入門的曾宇晟學長，從零開始

帶我進入立體相關應用的領域；不斷提供並分析可行的方向；並指導我論文寫作

的技巧。也感謝林佑昆，張力中和李國龍等學長經驗的傳承，讓我受用無窮。謝

謝蔡宗憲學長，上班之後百忙中還能撥空協助我完成計畫。謝謝陳之悠學長曾力

薦我加入該實驗室。也謝謝王國振，許博淵，沈孟維，蔡政君等學長和黃筱珊學

姊曾經提供我研究上寶貴的經驗和協助。接著謝謝在國科會計畫中鼎力相助的洪

瑩蓉以及吳英佑學弟，沒有你們的即時幫忙，我恐怕無法順利 demo。謝謝 IC 競

賽戰友陳奕均，一起硬拼 12 小時拿下佳作，真的很難忘。也謝謝買飯團固定班

底廖元歆和陳宥辰，讓我天天不用孤單的走向二餐。此外，實驗室的邱亮齊，溫

孟勳，曹克嘉學弟也不能忘，是我平日一起經歷歡笑的好夥伴。

特別感謝生了病卻還不斷為我論文掛心提醒的媽媽，並祈求她早日康復。並

感謝永遠支持我的家人們：我的爸爸、弟弟，還有一直陪伴在旁替我加油的女友，

你們的支持與鼓勵，是我順利完成學業的最大動力。

在此，謹將本論文獻給所有愛我以及我愛的人。

v

vi

Contents

1. Introduction .. 1
1.1. Background ... 1

1.2. Motivation and contribution .. 2

1.3. Thesis Organization ... 2

2. Introduction of Bilateral Filtering ... 3

2.1. Overview ... 3

2.2. Bilateral Filtering .. 3

2.3. Application .. 8

2.3.1. De-noising .. 8

2.3.2. Texture and illumination separation ... 9

2.3.3. Joint Bilateral Filtering .. 10

2.4. Summary ... 11

3. Related Work .. 12

3.1. Support-pixel-first Approach ... 14

3.1.1. Piece-wise linear algorithm and Yong’s algorithm 14

3.1.2. Bilateral grid .. 15

3.2. Target-pixel-first Approach ... 16

3.2.1. Separable algorithm ... 17

3.2.2. Histogram & Huang’s algorithm .. 17

3.2.3. Weiss’ Distributed Histogram .. 19

3.2.4. Integral Histogram ... 20

3.3. Summary ... 22

4. Analysis of Integral histogram based JBF 23

4.1. Integral histogram based JBF .. 24

4.2. Design Challenge .. 26

4.2.1. High Memory Cost for integral histograms 28

vii

viii

4.2.2. High Computational Complexity in All Processes 28

4.2.3. High Bandwidth in Integration and Extraction 29

4.2.4. Large Range Table in Kernel Calculation .. 29

4.3. Summary ... 29

5. Proposed Memory Reduction Methods 31

5.1. Overview ... 31

5.2. Runtime Updating Method (RUM) ... 31

5.3. Stripe Based Method (SBM) ... 33

5.4. Sliding Origin Method (SOM) .. 36

5.5. Combination .. 39

5.6. Comparisons .. 40

6. Architecture Design and Implementation 41

6.1. Overview ... 41

6.2. Overall architecture ... 43

6.3. Interface.. ... 44

6.4. Time Schedule ... 46

6.5. Design Components .. 47

6.5.1. Histogram Calculation Engine ... 47

6.5.2. Convolution Engine ... 52

6.5.3. Parameters versus hardware cost ... 54

6.5.4. Summary to design components .. 55

6.6. Memory Cost Analysis .. 56

6.7. Implementation Result .. 57

7. Conclusion .. 60
Reference….. 62

List of Figures
Fig. 2.1. Illustration of space kernel f and range kernel g of BF 4
Fig. 2.2. Smoothing Results ... 5
Fig. 2.3. Gaussian kernel’s bandwidth ... 6
Fig. 2.4. Smoothing results of BF with different range parameter σr 7
Fig. 2.5. Flow of flash and no-flash image correction [10] 9
Fig. 3.1. Classification of acceleration approaches .. 12
Fig. 3.2. Concept of histogram-based approaches ... 18
Fig. 3.3. Concept of Huang’s algorithm ... 18
Fig. 3.4. Concept of Weiss distributed Histogram: .. 20
Fig. 3.5. Three-tier hierarchical distributed Histogram [33] 20
Fig. 3.6. Concept of integral histogram ... 20
Fig. 4.1. Concept of integral histogram approach .. 25
Fig. 4.2. Analysis of Design Challenges over frame resolutions 27
Fig. 5.1. Runtime updating method (RUM) ... 32
Fig. 5.2. Stripe based method (SBM) .. 33
Fig. 5.3. Integral region of SBM is an extended stripe. 33
Fig. 5.4. Overlapped integration region between two adjacent stripes 34
Fig. 5.5. Sliding Origin Method (SOM) .. 36
Fig. 5.6. Sliding Origin Method ... 38
Fig. 5.7. Combination of memory reduction methods ... 39
Fig. 6.1. Proposed architecture of JBF ... 43
Fig. 6.2. Mechanism of input and output data control ... 44
Fig. 6.3. Process of Ping-Pong Structure ... 45
Fig. 6.4. Schedule of the proposed architecture ... 46
Fig. 6.5. Selected-bin adder in the histogram calculation engines 48
Fig. 6.6. Architectures of histogram calculation engines h’c and hc 48
Fig. 6.7. The delay-buffer method ... 49
Fig. 6.8. On-chip memory with even bank and odd bank 50
Fig. 6.9. Schedule phases of on-chip memory ... 50
Fig. 6.10. Proposed architecture .. 52
Fig. 6.11. Construction of constant weight table ... 52
Fig. 6.12. Analysis of Hardware performance and memory reduction 56

ix

x

List of Tables

TABLE. 3-1 Comparison of computational complexity and memory cost in
related work ... 13

TABLE. 4-1 Computational flow and complexity analysis for each pixel in the
integral histogram based JBF ... 24

TABLE. 5-1 Comparisons of original and reduced memory cost 40
TABLE. 6-1 Modified computational flow and complexity analysis for each

pixel in the integral histogram approach for JBF 41
TABLE. 6-2 Parameters and their associated engine components 54
TABLE. 6-3 Example implementation result of the proposed architecture 58
TABLE. 6-4 Comparison of hardware cost per frame ... 59
TABLE. 6-5 Comparison of different implementations 59

1. Introduction

1.1. Background

Bilateral filtering [1] is a special image smoother which can remove small-scale

texture or noise while preserving large-scale structure or edges. The judgment to be

noise or edge could be determined by an easy-tuning parameter. The ability of easily

separating small-scale and large-scale contents makes bilateral filtering be more

widely used than a typical smoother, such as joint bilateral filtering. Joint bilateral

filtering, which is a variety of bilateral filtering combined with a guidance concept, is

associated with more widely applications such as up-sampling [2], adaptive support

weight [3], and even 3-D related processing [4] and MPEG standard [5].

The challenge of real time implementation for bilateral filtering is the high

computational complexity of its window processing. Many algorithms have been

proposed to reduce the complexity. In the thesis, we category them into two

approaches: support-pixel-first approach and target-pixel-first approach. In previous

work, the support-pixel-first approach was implemented through GPU programming,

and achieved real-time speed. However, GPU hardware is general purpose platform

and not a dedicated low-cost implementation for embedded applications. Therefore,

VLSI hardware implementation is a better solution to minimize hardware cost and

achieve real-time speed.

For VLSI hardware implementation, the support-pixel-first approach requires a

frame-scale-magnitude memory, but it can not be reduced because of its iterative

process by frames. On the other hand, the target-pixel-first approach also suffers from

1

frame-scale-magnitude memory requirement. Nevertheless, the cost is likely to be

reduced since its progressive process with pixel-by-pixel order.

1.2. Motivation and contribution

Motivated by the high memory cost in joint bilateral filtering, this thesis proposed

efficient hardware architecture based on integral histogram algorithm of the

target-pixel-first approach. The goal is to build a dedicated hardware for low memory

cost real-time joint bilateral filtering.

The major contributions of this thesis are three.

1. Based on integral histogram based joint bilateral filtering, we proposed three

memory reduction methods to significantly reduce the memory cost. This

makes integral histogram based joint bilateral filtering suitable for simpler

on-chip memory based implementation in ASIC.

2. We propose an efficient hardware architecture which can efficiently process

parallel operations and achieve high throughput.

3. We implemented the low memory cost real-time hardware of the proposed

architecture with the three proposed memory reduction methods.

1.3. Thesis Organization

Chapter 2 briefly introduces bilateral filtering and its applications. Chapter 3

introduces the acceleration algorithms for bilateral filtering. Chapter 4 discusses the

design challenges of integral histogram based joint bilateral filtering. To solve these

challenges, Chapter 5 proposes three proposed memory reduction methods, and

Chapter 6 proposes an efficient hardware architecture. Finally, Chapter 7 gives the

conclusion of this thesis.

2

2. Introduction of Bilateral Filtering

2.1. Overview

Bilateral filtering (BF) is primary adopted in image processing for de-noising.

With BF’s de-noising (or smoothing), the object edges and borders of image are

preserved. As a result, BF becomes popular because it can provide a no-blur clear

result. Moreover, the edge-preserving capability enables us to adapt BF for many

advanced applications such as texture editing, tone management, demosaicing,

stylization, and optical flow estimation [6].

2.2. Bilateral Filtering

BF, originated by Tomasi and Manduchi [1], is defined as,

() ()
() ()∑

∑
∈

∈

−−

−−
=

Sq qc

Sq qqc
c IIgqcf

IIIgqcf
IBF)(, (2.1)

where c is the target pixel, and q is the support pixel surrounding to c. For ease of

computing by typical row-column rectangular image file format, the support pixel q is

usually taken from a square window S centered at c. Both the intensities of c and q, Ic

and Iq, is in the range domain R from 0 to 255 for gray-level. In this equation, Iq are

accumulated and normalized with two weighting kernels, the space kernel f and the

range kernel g. Both f and g are usually chosen as low-pass functions with the

arguments of space distance |c-q| and intensity difference |Ic-Iq|, respectively.

3

 (a) (b)

 (c) (d)
Fig. 2.1. Illustration of space kernel f and range kernel g of BF

(a) 1-D space-color domain, (b) weighting by f, (c) weighting by g,(d) combined
weighting by f and g

Fig. 2.1 shows how kernel function f and g influent the weighting value for support

pixel q. In Fig. 2.1 (a), for ease of show, we take one-dimension (1-D) image as spatial

domain on x-axis and project intensity domain R onto the y-axis. Fig. 2.1 (b) shows

that Gaussian function with argument space distance |c-q| is a low-pass filter; it gives

higher weight on near-c support pixels and lower weight on farther ones. It is intuitive

that the farther q is away from target pixel c, the smaller its impact should place on

the final result. On the other hand, similar weighting mechanism is placed on the

intensity difference of c and q. Fig. 2.1 (c) shows that Gaussian function with

argument |Ic-Iq| gives support pixel higher weight if its intensity is similar to Ic. This is

also intuitive to realistic situation: two nearby pixels with similar intensity are likely

4

belongs to the same object. To multiplying the two function’s effect as Fig. 2.1 (d)

shows: the point A, B, C, D, and E are regarded as outliers with zero weighting.

Especially notes that point B is an outlier regarded by kernel g though it is adjacent to

c. Similarly, point C is an outlier regarded by kernel f though its intensity is Ic. That is

to say, either q is far away from c or Iq is dissimilar to Ic, the impact of q will be

negligible.

 (a)

 (b)

Fig. 2.2. Smoothing Results
(a) Gaussian filter, (b) Bilateral filter

Before Tomasi [1] et al. proposed BF, the most typical smoother was Gaussian

filtering (GF) or other low pass filtering. The typical smoothers suffered from

blur-effect because they only considered space kernel. Many algorithms have

proposed to eliminate this effect. Tomasi added a range kernel into GF to be BF; this

is a simple but effective method. Fig. 2.2 compares BF with GF to show that the range

kernel is the key component for edge-preserving. In Fig. 2.2 (a), GF is used to remove

the chessboard-like noise in the dark area of the left image. The right image is its

5

result. It is obvious that GF produces smooth result on the pixel far from the edge (the

area around the green pixel), whereas it produces blur effect near the edge. This

because GF is blind to entirely different colors across the edge; it still mixes all colors

within its window though the window steps across the edge. Therefore, in the output

result, it appears a blur area at the both sides of the edge. Fig. 2.2 (b) shows that BF

doesn’t produce blur effect because its window doesn’t step on the both sides of the

edge to mix entirely different colors. As shown by the red window, the window of BF

is trimmed by the edge because the bright-side pixels, which have entirely different

color from the center color, are regarded as outliers by its range kernel.

IcIc-3σr Ic+3σr3σr3σr

Outlier Outlier

g(|Ic-lq|)

Fig. 2.3. Gaussian kernel’s bandwidth

There is a parameter σr determining the degree of edge-preserving. It is defined by

the Gaussian function equation,

2

2

2

||

|)(| r

qc II

qc AeIIg σ

−
−

=− , (2.2)

where A is a constant. As shown in Fig. 2.3, the Gaussian kernel’s bandwidth extends

by about 3 times of σr. Outside the bandwidth, the value of g drops to below 0.01

which is negligible compare with the center weight. Any support pixel q with color

outside the bandwidth will be regarded as the outlier. As a result, any edge with lager

color difference will be reserved (As last paragraph illustrates, this kind of edge trims

kernel.). On the other hand, any edge with smaller color difference is blurred or

smoothed as the noise.

6

(a) (b)

(c) (d)

Fig. 2.4. Smoothing results of BF with different range parameter σr
(a) noisy image, (b) σr=25, (c) σr=100, (d) σr= very large (GF).

Fig. 2.4 shows smoothing results of BF with different parameter σr choices. For, the

given noisy “Lina” shown by Fig. 2.4 (a), the value 25 is the best choice for σr to

separate noise and edges. If σr becomes larger as Fig. 2.4 (c), more edges are also

regarded as noise so that only the image structure is reserved. If σr is further set to a

very large value, BF will be simplified to GF because the color kernel becomes a

constant function. As shown in Fig. 2.4 (d), the blur effect is obvious.

7

2.3. Application

We will recall applications of BF in this sub-chapter. They are mainly classified

into de-noising, texture and illumination separation, and joint BF.

2.3.1. De-noising

De-noising or smoothing is the primary goal of BF. Other than being applied for

2-D image smoothing, it is also adapted for video processing and 3-D mesh

smoothing. And many de-noise-related applications, such as flash and no-flash Image

correction, are constantly proposed.

For video application, Bennett et al. [7] introduced BF into temporal smoothing.

He assumes that the pixel variations in the temporal related same scene point over

frames are affected by zero-mean noise. GF is used to reduce the noise level but it

produces artifacts on moving object. Using BF instead can avoid these artifacts. For

3-D mesh smoothing, Jones et al. [8] and Fleishman et al. [9] simultaneously

presented two similar approaches to adapt BF in the higher-dimension space. In the

higher-dimension space, window computations for both kernels become more

complex. Geometry properties such as mesh normal, projection, etc., are considered

carefully.

On the other hand, in de-noise-related applications, Eisemann and Durand [10]

used BF for flash and no-flash image correction. For a no-flash photo of a dark scene,

although its illumination is correct, it has low signal-to-noise-ratio (SNR) that leads to

inaccurate edge detection. However, a flash photo of the same scene has high SNR

and higher discrimination of colors but it suffers from incorrect hard direct

illumination. As shown in Fig. 2.5 [10], BF is used to smooth both photos for

8

de-noising and information extraction. BF helps departing their small-scale details

and large-scale structure (This will be further discussed in 2.3.2). Finally, information

from flash and no-flash photos is combined to form the final result without noise and

with correct illumination and structure. Petschnigg et al. [11] also has proposed a

similar correction algorithm based on this approach.

Fig. 2.5. Flow of flash and no-flash image correction [10]

2.3.2. Texture and illumination separation

Oh et al. [12] used BF as a separation algorithm to extract image texture and

illumination component. They are motivated by the fact that in typical image, the

illumination variation typically occurs at a large scale structure than small scale

texture patterns; therefore, they proposed an approach using BF with suitable range

kernel g to remove small-scale texture and preserve the large-scale illumination

component. Simultaneously, the removed small-scale texture can also be extracted by

9

subtracting the large-scale component from origin image.

With the concept of above separation algorithm, Durand and Dorsey [13] isolated

texture component from naïve intensity compression in tone mapping of

high-dynamic range (HDR) image for low dynamic range display. This approach

prevents the details in small scale texture being removed during compression. Other

algorithms addressed in [14] and [15] also use the similar aspect.

2.3.3. Joint Bilateral Filtering

The BF used in the flash and no-flash image correction by Eisemann and

Dorsey [10] is defined specially with the following equation,

() ()
() ()∑

∑
∈

∈

−−

−−
=

Sq qc

Sq qqc

c IIgqcf

JIIgqcf
JJBF)(, (2.3)

where I is a guidance image, and J is another source image. Through the range kernel

g, the guidance image I could identify and suppress outliers for de-noising the source

image J. To emphasize that it joints guidance image influence into target source image,

this specially defined BF is renamed as joint bilateral filtering (JBF).With this

characteristic, JBF has been adopted in another flash and no-flash algorithm [15],

image de-nosing [16] and disparity-map fusion [17],[18].

Further extending the applications of JBF, Kopf et al. [2] proposed the joint bilateral

up-sampling that employed a high-resolution I to enlarge a low-resolution J for various

image processing, such as tone mapping, colorization, disparity maps [19]-[21],

demosaicing [22], texture synthesis [23]. A variety of JBF is the adaptive support

weight (ADSW), a matching cost aggregation approach, proposed by Yoon and

Kweon [3] for disparity estimation in 3D image processing. The disparity estimation is

10

based on matching corresponding pixels in different view frames. To increase

matching correctness, disparity estimation uses filter-like convolution to aggregate

support matching costs for target pixel. The ADSW employs the space and range

kernels into aggregation to deliver better disparity maps than that produced by the

traditional box filter. The concept of ADSW is further advanced in the disparity

estimation algorithms of [24]-[28], and is also adopted by the developing MPEG

standard, 3D Video Coding [5].

2.4. Summary

BF is an edge-preserving filter. Its parameter σr in range kernel can determine the

discontinuity in images to be either large-scale structure or small-scale texture (noise).

The characteristic makes its application more than the primary goal of de-noising such

as illumination and texture separation and JBF. Furthermore, with the guidance

concept of JBF, BF applicable algorithms can be extended to various fields, such as

disparity estimation for stereo process, up-sampling, and even the MPEG standard.

11

3. Related Work

Within BF applications, stereo processing is increasingly important in recent years.

Many 3D-related entertainments, facilities, and industrials are pouring or on the

horizon. Under this circumstance, BF and JBF must be ready for its potential

real-time requirement of image and video processing. However, the big challenge

for BF is its computational complexity in window computation. By brute-force

implementation, BF takes extremely long running time on huge operations.

 (a) (b)

Fig. 3.1. Classification of acceleration approaches

Various acceleration approaches for BF have been proposed, and can be classified

into two categories: target-pixel-first approach and support-pixel-first approach,

according to their computational characteristics, as illustrated in Fig. 3.1. The

target-pixel-first approach is an aggregation process that focuses on a target pixel c and

accumulates its support pixels q. On the other hand, the support-pixel-first approach is a

diffusion process that regards a support pixel q as a center to diffuse for its target pixels

c. With the classification, the milestone algorithms are listed in TABLE. 3-1.

 The computational complexity and memory cost of the milestone algorithms are

12

also compared in TABLE. 3-1. Note that the former is shown by amount per pixel and

the latter is shown by amount per frame. With this table, it is easy to approximate real

amount of computations and memory cost of these algorithms for any size of target

image. Take the brute-force implementation for example, referring to (2.1), for each

pixel result, BF aggregates support pixels in the window S; therefore, the

computational complexity is O(|S|2) which is associated to window size. This means if

it processes an HD1080p image with a 31-pixel window width, the amount of

required computations should be at the order of 2 billion (312x1920x1080). By

software, the computationally expensive implementation takes minutes for a frame.

In the rest of chapter, we introduce the acceleration algorithms. In 3.1 and 3.2,

support-pixel-first algorithms and target-pixel-first algorithms are introduced,

respectively. Finally, in 3.3, we explain how we select algorithms from them for our

proposed architecture design and implementation.

TABLE. 3-1 Comparison of computational complexity and memory cost in related
work

Approach Computational Complexity
(per pixel)

Memory Cost
(per frame)

 Brute-Force All O(|S|2) 0
Support

Pixel
First

Basic LUT Construction O(|R|) 4MN 2-D Conv. by FFT O(|S|log|S|)
Durand and
Dorsey [13]

Piecewise-linear
Subsampling

LUT Construction O(|R|/sr) 4MN/ss
2 2-D Conv. by FFT O(|S|/ss

2log(|S|/ss
2))

Yang et al.
[29]

Piecewise-linear LUT Construction O(|R|/sr)
4MN 2-D Conv. by Approx.

Gaussian
O(1)

Paris and
Durand [30]

Bilateral Grid LUT Construction O(|R|/sr) MN|R|/(srss
2)3-D Conv. by FFT O(|S||R|/(srss

2)log(|S||R|/(srss
2)))

Target
Pixel
First

Pham and Vliet
[31]

Separable 1-D Aggre. for Col. O(|S|) 0 1-D Aggre. for Row O(|S|)
Basic Histogram Histogram Calculation O(|R||S|2) 0 1-D Conv. O(|R|)
Huang
[32]

Extended
Histogram

Histogram Calculation O(|R||S|) |S||R| 1-D Conv. O(|R|)
Weiss
[33]

Distributed
Histogram

Histogram Calculation O(|R|log|S|) |S||E||R| 1-D Conv. O(|R|)
Porikli

[34]
Integral
Histogram

Histogram Calculation O(|R|/sr) MN|R|/sr 1-D Conv. O(|R|/sr)
M: frame height, N: frame width, |S|: window width, |R|: intensity range

ss: quantization factor for S, sr: quantization factor for R, E: extension pixel count

13

3.1. Support-pixel-first Approach

Within support-pixel-first milestone algorithms, Durand and Dorsey’s piece-wise

linear [13] is the first acceleration algorithm; Young’s algorithm [29] and Pairs’

algorithm [30] are partially related to it. Yong’s algorithm is boost of its constant time

speed (independent of window width) and Paris’ algorithm proposes a brand-new

spatial-intensity space.

3.1.1. Piece-wise linear algorithm and Yong’s algorithm

The range kernel makes BF nonlinear to spatial space; therefore, any spatial filter

acceleration approach such as Fast Fourier Transform (FFT) doesn’t help to speed up

BF. Instead of directly using the nonlinear equation of (2.1), Durand and Dorsey [13]

approximate BF with a serial of frame-scale look-up tables (LUTs) defined as follows

() ()
() ()
()
()∑

∑
∑
∑

∈

∈

∈

∈

−

−
=

−−

−−
=

Sq
j

q

Sq
j

q

Sq q

Sq qq
c

Gqcf

Hqcf

Ijgqcf

IIjgqcf
jLUT)(

 , (3.1)

each of which associates to an intensity j that replaces the Ic of (2.1). The FFT can

accelerate the computation of (3.1) since both its numerator and its denominator

become linear Gaussian convolution. The overall process includes two steps; at first,

for every full-scale intensity j, its LUT is computed; that is, for a typical 8-bit image,

256 LUTs should be computed and stored. Second, for every pixel, its result is picked

up from its intensity corresponded LUT by the following equation,

jIifjLUTIBF ccc == ,)()((3.2)

Besides, instead of using full-scale intensities, Durand and Dorsey [13] propose

14

piece-wise linear algorithm to reduce the number of LUT. With a quantization factor

sr, it only computes the LUT corresponds to intensity equals sr or its multiples. And

the result-picking function is rewritten as

⎪
⎪

⎩

⎪
⎪

⎨

⎧

<<−

=

−
−−

+
−

=
jIsjif

jIif

sjLUT
s

sjI
jLUT

s
Ij

jLUT
IBF

cr

c

cr
r

rc
c

r

c

c

c

,)(
)(

)(

,)(
)(. (3.3)

With (3.3), for the pixel without intensity corresponded LUT, its result is computed by

bilinear interpolation of two LUTs of the most similar intensities.

Durand and Dorsey [13] further introduced a fast piecewise-linear algorithm with

spatial space sub-sampling (quantization). The major computational complexity is

O(|(S|/ss
2)log(|S|/ss

2)) per pixel in 2-D FFT, where ss is a spatial quantization factor.

The memory requirement is huge with cost 4MN/ss
2 since at least four frame-scale

data, H j, G j, partial result of LUT(j) and previous result LUT(j-sr), are required under

the implementation of runtime updating LUT intensity by intensity [13].

Mostly based on piece-wise linear algorithm, Young et al. [29] used Deriche’s

recursive method [35] to approximate Gaussian convolution of (3.1). They shows that

this recursive method is able to run in constant time and the results are visually very

similar to the exact. Therefore, the convolution process is reduced to O(1) complexity;

and thus the major complexity of BF becomes O(|R|/sr) of LUT construction.

3.1.2. Bilateral grid

Paris and Durand [30] reformulated gray-level BF with a brand new 3-D space,

bilateral grid. By their algorithm, it takes three steps to process BF; they are bilateral

gird construction, 3-D Gaussian smoothing, and result extraction.

15

For bilateral grid construction, given a 2-D image, the first two dimensions of

bilateral grid will correspond to the image spatial position (x,y) and the third

dimension corresponds to the pixel intensity Ic. At the position (x,y,Ic), an non-zero

element is constructed. With all elements are constructed, in the second step, BF is

computed by a 3-D defined Gaussian smoothing to associate weights w with

intensities I and finally store each element with a vector (∑∑ IwI ,). Because in

bilateral grid the intensity is defined as an independent dimension, BF is linear for the

3-D Gaussian smoothing. Finally, in the result extraction step, the first two

dimensions of bilateral gird correspond back to the position of 2-D image and set

intensity there with the value, ∑∑ IwI / .

Paris and Durand further reduced the computational effort by down-sampling the

three dimensions of bilateral grid with the spatial quantization factor ss for the first

two dimensions (spatial position) and the range quantization factor sr for the third

dimension (intensity). The computational complexity of the algorithm is

O([|S||R|/(srss
2)][log(|S||R|/(srss

2))]) of Gaussian smoothing. The memory cost is

MN|R|/(srss
2) for storing the whole bilateral grid structure.

Following the bilateral grid scheme, Chen [36] further mapped this algorithm to

GPU hardware, obtaining real-time processing for several megapixel images. In

addition, Adams et al. [37] adopts the Gaussian KD-tree to improve its speed.

3.2. Target-pixel-first Approach

In TABLE. 3-1, the target-pixel-first algorithms can be mainly classified into two

kinds of approaches: one is separable approach [31] and the other is histogram-based

approach [32]-[34]. The separable approach uses two consequent 1-D BFs to speed up

16

the computation; Histogram-based approach uses range aggregation instead of spatial

aggregation by histogram represented BF. Within its acceleration algorithms, integral

histogram let the speed of BF implementation be independent of window width |S|.

3.2.1. Separable algorithm

Pham et al. [31] proposed this algorithm to approximate 2-D BF by two

consequent 1-D BFs which computed by brute-force implementation: pixels within a

row (column) are accumulated one by one and finally normalized. At first, by

performing 1-D BF to all rows and their results make up a single column; and then, it

performs 1-D BF again to the column for the final result. The computational

complexity of separable algorithm is reduce to O(|S|) per pixel because 1-D window

with length |S| is used for 1-D BF. Though it is significant faster than the brute-force

implementation, the performance degrades linearly with window size. In addition, its

axis-aligned 1-D BF makes it not suitable for the target image with complex patterns

since its result suffers from the axis-aligned artifact.

3.2.2. Histogram & Huang’s algorithm

The histogram-based approach could reduce computation without significant

quality degradation. The histogram representation of BF is defined as

()
()

()
()

()
()

()
()∑

∑
∑ ∑
∑ ∑
∑ ∑
∑ ∑
∑
∑

∈

∈

∈ =

∈ =

∈ =

∈ =

∈

∈

−

−
=

−

−
=

−

−
=

−

−
=

Rb cc

Rb cc

Rb bIc

Rb bIc

Rb bI c

Rb bI c

Sq qc

Sq qqc
c

bhbIg
bbhbIg

bIg

bbIg

bIg

bbIg

IIg

IIIg
IBF

q

q

q

q

)(
)(

]1[

]1[

][

][

)(

 (3.4)

17

where hc is the pixel count histogram of the window S centered by c as illustrated in Fig.

3.2. The key point of these approaches is to convert its convolution from the space

domain S to the range domain R, as shown in the summation index of (3.4). Thus, its

computation includes two parts: histogram calculation and 1-D convolution. In the

histogram calculation for hc, each support pixel q in S is classified by its intensity and

accumulated into its corresponding bin b. In other words, hc(b) refers to the number of

support pixels with the intensity b in S. Note that the number of bin Nb is 256 for the

exact result of typical 8-bit gray-level. In the 1-D convolution, (3.4) can be calculated

with the given hc. For the basic histogram-based approach, the major computational

complexity is O(|R||S|2) in the histogram calculation.

Fig. 3.2. Concept of histogram-based approaches

Fig. 3.3. Concept of Huang’s algorithm

To speed up the histogram calculation, an early proposed Huang’s algorithm [32]

can be applied. As shown in Fig. 3.3, windows of two consequently-processed pixels c

and c’ are almost overlapped each other; therefore, the window histogram hc’ can be

18

updated from the processed window hc by two row histograms. The computational

complexity associates to the row histogram is O(|R||S|) which is significantly faster

than the basic histogram approach if |S| is large. However, it spends extra memory

cost with size |S||R| to store row histograms on overlapped region.

3.2.3. Weiss’ Distributed Histogram

Based on Huang’s algorithm, Weiss [33] proposed a distributed histogram

approach that reassembles the histogram calculation of each row. The approach not

only reuses histograms in vertically process direction, but it also reuses data

horizontally during processing many column pixels together. Fig. 3.4 (a) illustrates an

example of 5-column-parallel process during which Weiss algorithm keeps nine

distributed histograms: he , which associates to the window of pixel e, and column

histograms h1-h8. Window histograms associate to targets c, d, f, g are computed from

these nine histograms as shown by Fig. 3.4 (b). In horizontal, the approach can be

extended for more parallel columns with different set of distributed histograms. On

the other hand, in vertical, these distributed histograms update by Huang’s algorithm.

Based on distributed histogram approach, Weiss further introduced hierarchical

approach. Fig. 3.5 [33] shows an example of hierarchical distributed histogram which

has yellow, orange, and red, totally three coarse-to-fine tiers. This hierarchical

approach can reduce computational complexity to near O(|R|log|S|). For the memory

cost, the approach uses Huang’s algorithm so that it also needs memory to store

histograms. Furthermore, since histograms are distributed, the memory cost grows

larger to |S||E||R|, where E associates to how many distributed histograms are used in

parallel.

19

 (a) (b)

Fig. 3.4. Concept of Weiss distributed Histogram:
(a) distributed histograms, (b) computations of target histograms

Fig. 3.5. Three-tier hierarchical distributed Histogram [33]

3.2.4. Integral Histogram

 (a) (b) (c)

Fig. 3.6. Concept of integral histogram
(a) Integral origin O and integral region (IR), (b) integration process, (c) an integral

histogram of pixel X of the IH space

20

Porikli et al. [34] proposed this algorithm to make the computational complexity

of histogram calculation independent of window size. The construction of integral

histogram (IH) is like a space transformation process from a 2-D image space to a 2-D

IH space. Prior to processing the transformation, we have to decide an integral origin

O and an integral region (IR) as illustrated in Fig. 3.6 (a). Fig. 3.6 (b) shows that

during the transformation with raster scan process from O to the end of IR, each pixel

of 2-D IH space is given an IH. Fig. 3.6 (c) illustrates that the given IH at any pixel X

is actually a quantized histogram (with quantized factor sr) for a 2-D image space

region stretches from O to X. Porikli et al. showed that quantized histogram doesn’t

suffer from severe quality degrading for BF result; therefore, the number of histogram

bins can be less than the number of intensity levels. In overall, the integration process’

computational complexity is O(|R|/sr) of pure histogram operations. And other details

will be further discussed in Chapter 4.1.

In IH space, arbitrary window histogram (as long as the whole window is within

the IR) is computed from linearly combination of its four corner integral

histograms ;therefore, the computational complexity is reduced to O(|R|/sr) that is

independent of window width |S|. The integral histogram approach can be faster than

the brute-force approach when |R|/sr is smaller than |S|2. That implies this approach is

suitable to be applied when BF has large window size. In term of computational

complexity, this algorithm is the state-of-art of the target-pixel first approach. But its

memory cost is large with amount MN|R|/sr because of the frame-scale-magnitude

process, where MN is the area of the image. Other details of the extraction process are

also discussed in Chapter 4.1.

21

3.3. Summary

In comparison, the support-pixel-first algorithms are iterative processed by frames

and the target-pixel-first algorithms are progressive processed pixel-by-pixel in raster

scan. For computational complexity, Young’s algorithm of the former and Porikli’s

algorithm of the latter achieve constant time of O(|R|/sr). They both suffer from high

memory cost because of frame-scale-magnitude LUTs and histogram storage,

respectively. In terms of implementation, the support-pixel-first approach is more

suitable for multi-color-channel computing since they are defined by a

multi-dimensional space. For the realization of gray level process, the

support-pixel-first has achieved real time in GPU hardware and target-pixel-first

approach is implemented by software program. However, we still choose

target-pixel-first approach because its memory cost is likely to be reduced and other

details are discussed in the next chapter.

22

4. Analysis of Integral histogram based JBF

The support-pixel-first approach can achieve real time process with GPU

hardware. As mentioned before, GPU implementation is a general-purpose hardware.

Although it may be implemented in embedded or source-restricted system, it still cost

expensive. For a specified low cost implementation, VLSI implementation may be a

more proper candidate. In addition, both support-pixel-first and target-pixel-first

approaches suffer from high memory cost; however, the cost of the latter is likely to

be reduced by taking advantage of its progressive process, whereas the cost of the

former must be frame-scale-magnitude because of its iterative process by frames.

Therefore, in the thesis, we focus on VLSI implementation of target-pixel-first

approach for BF or JBF. Within its algorithms, integral histogram is the state-of-art.

To combine integral histogram and JBF, Ju and Kang [38] modified (3.4) to

()
()

()
()

()
()

()
()∑

∑
∑ ∑
∑ ∑
∑ ∑
∑ ∑
∑
∑

∈

∈

∈ =

∈ =

∈ =

∈ =

∈

∈

−

′−
=

−

−
=

−

−
=

−

−
=

Rb cc

Rb cc

Rb bIc

Rb bI qc

Rb bI c

Rb bI qc

Sq qc

Sq qqc

c

bhbIg
bhbIg

bIg

JbIg

bIg

JbIg

IIg

JIIg
JJBF

q

q

q

q

)(
)(

]1[

][

][

][

)(

 . (4.1)

Different from (3.4), the histogram in the numerator is the pixel intensity histogram h’c

that accumulates the pixel intensity for each bin, instead of the pixel count in hc. In this

chapter, we introduce the integral histogram approach in details, and then analyze the

design challenges of integral-histogram-based JBF, which can also be applied to BF.

23

4.1. Integral histogram based JBF

TABLE. 4-1 Computational flow and complexity analysis for each pixel in the
integral histogram based JBF

Process Complexity
(operation)

BW for
IH

(data)

BW for
pixel
(data)

Integration process:
Pixel count histogram hc
Loop b=0 to Nb-1
 IHO

S(b)=IHO
Q(b)+IHO

R(b)-IHO
P(b)

 IHO
S(IS) += 1

Pixel Intensity histogram h’c
Loop b=0 to Nb-1
 IHO

S(b)=IHO
Q(b)+IHO

R(b)-IHO
P(b)

 IHO
S(IS) += Js

ADD: 3Nb
ADD: 1

ADD: 3Nb
ADD: 1

4Nb

4Nb

2 pixels

Extraction process:
Pixel count histogram hc
Loop b=0 to Nb-1
 hc(b)=IHO

D(b)+IHO
A(b)-IHO

B(b)-IHO
C(b)

Pixel Intensity histogram h’c
Loop b=0 to Nb-1
hc(b)=IHO

D(b)+IHO
A(b)-IHO

B(b)-HO
C(b)

ADD: 3Nb

ADD: 3Nb

4Nb

4Nb

Kernel calculation process:
Loop b=0 to Nb-1
 G(b) = g(|Ic-b|)

ADD, LUT:
Nb

1 pixel

Convolution process:
Nu=0, De=0
 Loop b=0 to Nb-1
 De += G(b) x hc(b)
Nu += G(b) x h’c(b)
 Result = Nu / De

MUL, ADD:
Nb
MUL, ADD:
Nb
DIV: 1

1 pixel

Total 17Nb+3 16Nb 4 pixels

TABLE. 4-1 presents the computational flow and computational analysis of the

integral histogram based JBF to calculate 1-pixel result, which consists of the

integration, extraction, kernel calculation, and convolution processes. In which, the

former two are for the histogram calculation step, and the latter two are for the 1-D

convolution step. Especially note that these processes, for each pixel, should compute

for all bins of related histograms; therefore, their complexity and bandwidth for

integral histogram (bandwidth for IH) are the multiple of the number of bin, Nb.

For ease of explanation, we use the area view (image space) to show how this

24

approach operates and the memory view (IH space) to show the memory usage, as

illustrated in Fig. 4.1 (a). In the area view, IHO
X is a histogram of the rectangular area

stretched from the pixel O to X. Thus, the addition and subtraction of IH can be

regarded as area merging and cutting, respectively. In the memory view, the data of

IHO
X are stored at X, and the gray region represents occupied memory usage. With these

representations, Fig. 4.1 (b) and (c) illustrate the integration and extraction processes.

(a) (b) (c)

IHO
Q IHO

R IHO
P IHO

SBin(Is)
+ - +

O PO

R

O Q O

SS

Fig. 4.1. Concept of integral histogram approach
(a) representation of an integral histogram, (b) integration process,

(c) extraction process.

First, the integration process progressively calculates the IH of each pixel using the

equation,

)(S
P
O

R
O

Q
O

S
O IBinIHIHIHIH +−+= (4.2)

 For the pixel count histogram hc and the pixel intensity histogram h’c, their IHs are

25

computed separately as shown in TABLE. 4-1. The histogram IHO
S is computed from

linearly combination of three exist integral histograms and a histogram of the target

pixel IS. We show the target pixel histogram with the notation Bin(IS) because the

histogram must be a one-hot histogram. For hc, Bin(IS) is 1 for the corresponding bin

and 0 for others; on the other hand, for h’c, this term is Js for the corresponding bin, and

also 0 for others. Adding the one-hot histogram updates only the bin corresponding to

IS so that, as shown in TABLE. 4-1, it is perform outside the loop. After this process,

the IH of each pixel is produced and stored into memory.

Second, given the IHs, the extraction process can extract hc or h’c, the histograms of

the window ABCD, which is centered by the target pixel c, is defined by equation,

C
O

B
O

A
O

D
OABCDcc IHIHIHIHHhorh −−+==' (4.3)

As shown in Fig. 4.1 (c), a histogram with arbitrary window size can be obtained by

using the IHs of four corners. With this property, the integral histogram approach can

reduce computational complexity to O(|R|/sr) which is independent of window size.

Third, the kernel calculation process computes the range kernel by a range table,

which includes 256 items for the 256 possible values of |Ic-b|. Finally, given the range

kernel g and the histograms hc and h’c, the convolution process calculates the result of

target pixel c by (4.1).

4.2. Design Challenge

Since the complexities listed in TABLE. 4-1 are pixel wise as well as bin number

dependent, they will grow quickly, as shown in Fig. 4.2, as resolution and bin number

grow. The detailed design challenges are described below.

26

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.5 1 1.5 2 2.5 3 3.5 4

Frame Resolution (Mpixel)

Memory Cost(Mbyte)

 829.4MB on HD1080p

(a)

(b)

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

0 0.5 1 1.5 2 2.5 3 3.5 4

Frame Resolution (Mpixel)

Operations
(Mtimes)

2262.3 Mtimes on HD1080p

0

50

100

150

200

250

0 1 2 3 4

Frame Resolution (Mpixel)

Bandwidth for IH
(Gbit)

106.168 Gbits on HD1080p

(c)

Fig. 4.2. Analysis of Design Challenges over frame resolutions

With Nb=64; (a) Memory cost, (b) Operations, (c) Bandwidth for IH

27

4.2.1. High Memory Cost for integral histograms

During the integration process, all the IHs of whole image are stored in memory.

BF needs a frame-scale-magnitude memory for hc, and JBF additionally needs another

one for h’c. Therefore, the total memory cost of JBF is

)8(+⋅+⋅ bbbb wNMNwNMN (4.4)

where the former term is for hc, and the later term is for h’c. M and N is the frame height

and width, Nb is the number of bin, and wb is the bit width of a bin. Note that wb is

related to the maximal integral area, and its value equals log2(MN). In addition, the bit

width of h’c is more than hc by 8 bits because pixel intensity is 8 bits.

Above memory cost would be 829.4 Mbytes for the HD1080p resolution as listed

in Fig. 4.2 (a) and TABLE. 6-4. For a VLSI design, these massive data could be

configured into off-chip memory (i.e. DRAM) or on-chip memory (i.e. SRAM).

However, compared to the on-chip memory, the off-chip memory suffers from longer

access latency due to its complicated controlling mechanism [39], and limited

bandwidth usage due to bus sharing by multiple masters. Hence, our strategy for the

high memory cost is to reduce the memory requirement and enable data to be stored in

on-chip memory for fast implementation.

4.2.2. High Computational Complexity in All Processes

According to the complexity in TABLE. 4-1, generating 1-pixel result needs

15Nb+2 additions, 2Nb multiplications, and 1 division. If Nb is 64, the total complexity

will be 2,262.3 million operations for an HD1080p image as shown in Fig. 4.2 (b). To

meet above demands, a VLSI design with sufficient parallel operators is necessary.

28

4.2.3. High Bandwidth in Integration and Extraction

In TABLE. 4-1, the bandwidth for IH requires 16Nb for 1-pixel result, and that will

reach 106.168 Gbits for an HD1080p image as shown in Fig. 4.2 (c) and TABLE. 6-4.

That is because the IHs are accessed frequently. With the strategy for the memory cost

problem, the IHs are stored in on-chip memory, and its data bus should be increased to

address the high bandwidth problem. However, it results in over-partitioned memory

and increased area. Thus, a method which can reduce the bandwidth is needed.

4.2.4. Large Range Table in Kernel Calculation

In the kernel calculation process, a range table with 256 items is needed. However,

with the parallel operations for the computational complexity problem, this table

should be duplicated. By straightforward implementation, 256 range tables, each of

which corresponds to 256 possible values of (Ic - Iq), must be available for parallel

operations. Both the size (number of items) and the number of the range table result

in large area; therefore, a table-reduction method and a table-reuse method are needed

4.3. Summary

In conclusion, for example of the HD1080p image, the integral histogram approach

needs the memory cost of 829 Mbytes and the bandwidth of 106 Gbits per frame. In

addition, the Porikli’s approach still suffers from high computational complexity of

2,262 million operations even though it has been accelerated by integral histogram

approach. Moreover, the 1-D convolution needs a large range table with 256 items for

the range kernel. Due to above problems, it is hard to achieve a real time performance

29

and thus demands VLSI hardware acceleration. In the next chapter, we will introduce

our proposed memory reduction methods. And then in Chapter 6, a VLSI

implementation with problem solving architecture will be addressed.

30

5. Proposed Memory Reduction Methods

5.1. Overview

To solve the high memory cost problem mentioned in last chapter, we propose

three memory reduction methods. First, the runtime updating method (RUM) takes

advantage of progressive raster-scan process to discard unnecessary data. Second, the

stripe based method (SBM) avoids frame wide memory cost by dividing each frame

into vertical stripes and processing them one by one. Finally, the sliding origin

method (SOM) lessens the storage data dependency of the original histogram

integration process to reduce the memory requirement from frame-scale-magnitude to

line-scale-magnitude. With these memory methods, the memory cost can be reduced to

0.003%-0.020%. The details of the proposed methods are described below.

5.2. Runtime Updating Method (RUM)

The concept of the RUM is to perform the integration process and the extraction

process at the same time, instead of two separate iterations in the original flow. Fig. 5.1

illustrates its memory configuration in the memory view. In Fig. 5.1 (a), the integration

process is performed from the integral origin O to D. In the meanwhile, the extraction

process can extract the histogram HABCD as shown by Fig. 5.1 (b). From the data

lifetime analysis for raster-scan, this is the last time taking IHO
A into extraction

process. And all the IHs before the pixel A will not be used for extraction process

anymore. Hence, only the IHs from the pixel from A to D require memory space. Thus,

the memory cost is

31

)8(|||| +⋅+⋅ bbbb wNNSwNNS (5.1)

where M in (4.4) is replaced by the window width |S|.

D

O

Memory view

D

BA

C

| |

O

Memory view

 (a) (b)

D

BA

C
S'D'
S

O

D

BA

C
S'D'
S

O

P Q

R

Memory view Memory view

 (c) (d)
Fig. 5.1. Runtime updating method (RUM)

(a) integration process, (b) extraction process for HABCD, (c) integration process for S,
(d) extraction process for HPQRS

Fig. 5.1 (c) and (d) illustrate the memory updating process when the two processes

moves right to the next pixel S. In Fig. 5.1 (c), the integration process calculates the

new IHO
S using IHO

D, IHO
D’, IHO

S’, and then the new IHO
S can overwrite the memory

position of the discarded IHO
A. In Fig. 5.1 (d), the extraction process extracts HPQRS. On

the whole, in raster scan from integral origin O to the end of region, the proposed

RUM alternates between these two processes repeatedly.

32

With the proposed RUM, the memory cost could be reduced from a full frame to a

partial frame. This method can gain considerable reduction since |S| is usually much

smaller than M.

5.3. Stripe Based Method (SBM)

 (a) (b)

Fig. 5.2. Stripe based method (SBM)
(a) partitioned-frame, (b) extended integral region for each stripe

 (a) (b)

Fig. 5.3. Integral region of SBM is an extended stripe.

(a) four corner IHs for extraction process, (b) integration process.

The main idea of the SBM is to slice the whole frame into many vertical stripes, and

33

the integration and extraction processes are performed stripe by stripe. Fig. 5.2 (a)

illustrates a frame partitioned into stripes, and Fig. 5.2 (b) illustrates the extended

region for a stripe.

Fig. 5.3 (a) shows that, in the extraction process, some corner IHs, such as A and B,

are outside the stripe. Therefore, as shown in Fig. 5.3 (b), the integration process

should be carried out at extended region to make sure these outside-stripe IHs are

defined. On both stripe boundaries, the integral region (IR) is extended by half the

window width, |S|/2, to include the regions that can be traversed by window corners.

Note that these IHs are associated with new origin O’ instead of O.

As shown by Fig. 5.2 (b), the IR of each stripe is (|S| + ws -1) pixels wide.

Compare with the original, the IR is reduced from a frame to an extended stripe; as a

result, the bit width wb can be smaller. The total memory cost of the SBM is

() ())8(1||1|| +⋅−++⋅−+ bbsbbs wNwSMwNwSM , (5.2)

where ws is the stripe width, and wb equals log2[M(|S|+ws-1)]. Compared to the original

cost of (4.4), the SBM could significantly reduce memory if the stripe width,

(|S|+ws-1), is much smaller than N.

Fig. 5.4. Overlapped integration region between two adjacent stripes

The overhead of the SBM is that the extended regions result in extra computation

34

and bandwidth due to repeatedly performed integration processes on these regions as

shown by Fig. 5.4. Thinner stripes can reduce memory cost more, but that leads to more

overheads. Thus, the selection of ws is a tradeoff between memory reduction and

overheads. That will be discussed in Chapter 6.6.

35

5.4. Sliding Origin Method (SOM)

 (a) (b)

 (c)

(d)

Fig. 5.5. Sliding Origin Method (SOM)
(a) Sliding origin O, (b) extraction process with sliding origin O,

(c) integration process for next pixel S, (d) modified integration process

36

The concept of the SOM is to vertically slide the origin pixel O with the integration

and extraction processes to reduce memory cost from a plane to a single line. As shown

in Fig. 5.5 (a), the origin pixel O slides downward to keep pace with the top row of

the window ABCD. With the SOM, the integration and extraction processes can be

simplified as described below.

Fig. 5.5 (b) shows that, for the extraction process, the original IHO
A and IHO

B cannot

form meaningful histogram rectangles in area view because the position of O is under

A and B. Hence, these two histograms are zero and (4.3) can be simplified as the

following equation,

C
O

D
O

C
O

B
O

A
O

D
OABCD

IHIH
IHIHIHIHH

−=
−−+=

 (5.3)

Fig. 5.5 (c) shows that, for the integration process, the new IHO
S is computed by

)(S
D
O

S
O

D
O

S
O IBinIHIHIHIH +−+= ′′

 (5.4)

However, the S’ and D’ are on the previous row, and by SOM they should have been

defined by the previous origin O’ as shown in Fig. 5.5 (d), instead of O. Therefore, for

real process, the IHO
S’ and IHO

D’ in (5.4) should be changed to IHO’
S’ and IHO’

D’ by the

following derivation, which is corresponding to the area view of Fig. 5.5 (d).

() ()
()() (

)()(
)()(

)(
)(

S
D
OQ

S
O

D
O

S
B
O

D
OQ

B
O

S
O

D
O

S
B
O

D
O

Q
O

S
O

D
O

S
D
O

S
O

D
O

S
O

IBinIHIBinIHIH
IBinIHIHIBinIHIHIH

IBinIHIHIHIHIH
IBinIHIHIHIH

+−−+=
+−−+−+=

+−−−+=
+−+=

′
′

′
′

′
′
′′

′
′

′
′
′′

′
′

′′

) (5.5)

Compare with (5.4), final line of (5.5) shows that only a slight change is required (it

adds the term of subtracting Bin(IQ)) for the integration process to let the integral

origin slide from O’ to O.

37

However, the slight change makes significant difference on the memory cost. With

above simplification, only the IHs of C, D, S’ and D’ are associated, and by the concept

of RUM, only a single row of IHs from D’ to D, requires memory space as shown

in Fig. 5.6 (a). Thus, the total memory cost is reduced as

)8(+⋅+⋅ bbbb wNNwNN (5.6)

where wb equals log2(|S|N) since the maximal IR is |S|N as shown by Fig. 5.6(b).

Compared to the original cost of (4.4), the height dimension M is replaced by |S|, and

wb is much smaller because |S| is usually much smaller than image width M.

 (a) (b)

Fig. 5.6. Sliding Origin Method
(a) Memory Cost, (b) Maxima integral region.

38

5.5. Combination

 (a) (b)

Fig. 5.7. Combination of memory reduction methods
(a) Memory Cost, (b) Maximum integral region

The proposed memory reduction methods could be easily combined as shown

by Fig. 5.7 (a). First, the SBM partitions a whole frame into stripes. Then, by stripes,

the RUM and SOM are performed row by row. This combination can reduce the

memory cost to

() ())8(1||1|| +⋅−++⋅−+ bbsbbs wNwSwNwS (5.7)

where wb equals log2[|S|(|S|+ws-1)], |S|(|S|+ws-1) is the area of maximum integral

region as shown by Fig. 5.7 (b). Compared to the original cost of (4.4), M is decreased

to 1 since the SOM reduces data dependency of the extraction process and the RUM

discards unnecessary data. Besides, N is decreased to (|S|+ws-1) since SBM cuts image

into narrow stripes. Note that in this memory cost formulation, Nb and |S| are related to

the application quality, and ws is related to hardware performance. The analysis of

parameter selection will be further presented in Chapter 6.6.

39

5.6. Comparisons

Refer to the analysis in [34], we use the 31-pixel-wide window (i.e. |S| is 31) and

64-bin histogram (i.e. Nb is 64). In addition, we choose stripe width as 60 pixel (i.e. ws

is 60) as an example and compare the original memory cost defined by equation (4.4)

and the reduced memory cost computed by equation (5.7) for different frame

resolutions. TABLE. 5-1 shows that the reduced memory cost is independent of the

frame resolution. With above mentioned parameters, the memory cost is 23.04 Kbytes

constantly. The amount is 3 to 5 decimal magnitude smaller than the original memory

costs of different resolutions. For every resolution, other than the number of required

integral histograms is reduced from frame-scale-magnitude to a line-scale-magnitude,

its wb is also reduced due to the IR reduction.

TABLE. 5-1 Comparisons of original and reduced memory cost
Cost Unit: Bytes

Integration region (IR) Unit: square pixel
Histogram bin bit width (wb) Unit: bit

Resolution CIF
(352x288)

VGA
(640x480)

HD720p
(1280x720p)

HD1080p
(1920x1080p) 4Kx2K

Original cost

Original IR

Original wb

34.1M

101.3K

17

113.0M

307.2K

19

353.9M

921.6K

20

829.4M

2073.6K

21

3456M

8M

23

Reduced cost

Reduced IR

Reduced wb

23K(0.067%)

2.79K (2.75%)

12 (70.59%)

23K(0.02%)

2.79K(0.91%)

12 (63.16%)

23K(0.0065%)

2.79K(0.30%)

12 (60%)

23K (0.0028%)

2.79K(0.13%)

12 (57.14%)

23K(0.0007%)

2.79K(0.03%)

12 (52.17%)
|S|=31; ws=60; Nb=64

40

6. Architecture Design and Implementation

6.1. Overview

TABLE. 6-1 Modified computational flow and complexity analysis for each pixel in
the integral histogram approach for JBF

Process Complexity
(operation)

BW for IH
(data)

BW for pixel
(data)

Integration process:
Pixel count histogram hc
Loop b=0 to Nb-1
 IHO

S(b)=IHO
D(b)+IHO’

S’(b)-IHO’
D’(b)

 IHO
S(IS) += 1, IHO

S(IQ) -= 1
Pixel Intensity histogram h’c
Loop b=0 to Nb-1
 IHO

S(b)=IHO
D(b)+IHO’

S’(b)-IHO’
D’(b)

 IHO
S(IS) += JS, IHO

S(IQ) -= JQ

ADD: 2Nb
ADD: 2

ADD: 2Nb
ADD: 2

4Nb

4Nb

4 pixels

Extraction process:
Pixel count histogram hc
Loop b=0 to Nb-1
 hc(b) = IHO

S(b) - IHO
R(b)

Pixel Intensity histogram h’c
Loop b=0 to Nb-1
 hc(b) = IHO

S(b) - IHO
R(b)

ADD: Nb

ADD: Nb

Nb

Nb

Kernel calculation process:
Loop b=0 to Nb-1
 G(b) = g(|Ic-b|)

ADD, LUT: Nb

1 pixel

Convolution process:
Nu=0, De=0
 Loop b=0 to Nb-1
 De += G(b) x hc(b)
Nu += G(b) x h’c(b)
 Result = Nu / De

MUL, ADD: Nb
MUL, ADD: Nb
DIV: 1

1 pixel

Total 11Nb+5 10Nb 6 pixels

With memory reduction methods introduced in last chapter, the computational

flow of JBF in TABLE. 4-1 is changed to that in TABLE. 6-1, and its hardware cost is

presented in TABLE. 6-3. The integration process has added an IQ-relate subtraction

term and the extraction process has simplified to be a two-term process. Therefore,

the corresponding complexity and bandwidth are reduced consequently. And these

reduction methods have reduced the memory cost from frame-scale-magnitude to

41

line-scale-magnitude. On the other hand, there are still three problems left to be

solved with VLSI implementation. They are high parallelism-demand problem, high

bandwidth problem, and large range table problem.

To solve these problems and efficiently implement the architecture, we first

propose the R-parallelism method to execute parallel computations in range domain to

meet required throughput. Then, for on-chip bandwidth reduction, we take advantages

of the timing relationship of data in the progressive computation to buffer the computed

IHs, named delay-buffer method. The large range table size due to parallelism is further

reduced by exploiting the numerical properties of Gaussian function. With memory

reduction methods and these architecture design techniques, an efficient hardware

design is proposed, which can be easily scalable to different performance target. For

ease of explanation, we use an example for the performance target of HD1080p

resolution to present the design. The details of these design techniques are presented in

the rest of this chapter.

42

6.2. Overall architecture

CoreOff-chip
memory

Interface

Histogram
Calculation
Engine h c

Convolution
Engine

Guidance
I

Source
J

Result
O

FIFO IS
(16 pixels)
FIFO IQ

(16 pixels)

FIFO JS
(16 pixels)
FIFO JQ

(16 pixels)

FIFO Ic
(16 pixels)

FIFO Oc
(16 pixels)

Histogram
Calculation
Engine hc

h c

hc

On-chip Memory
(20bitx90 x64)

64 bit

On-chip Memory
(12bitx90 x64)

64

64

64

64

64

64

8

8

8

8

8

8

20x64

12x64

20x6420x64 20x64

12x6412x64 12x64

Unit: bit

Fig. 6.1. Proposed architecture of JBF

Fig. 6.1 shows the overall architecture that contains two parts, interface and core. In

this architecture, the image pixels and the IHs are stored at the off-chip and on-chip

memory, respectively. The interface accesses pixels from the off-chip memory through

a 64-bit bus, and the core performs the computation of JBF.

In the interface, the access controller allocates the bus priority to the input and

output first-in-first-out (FIFO) buffers by round-robin policy. The size of each buffer is

associated with off-chip bandwidth. Large buffers can support data reuse schemes to

reduce the off-chip bandwidth. Because of sufficient off-chip bandwidth in this

architecture, we do not apply any data reuse schemes here to have lower buffer cost,

and set its size as 2x8-pixel, where the value of 8 is to meet the bus width, and the value

of 2 is to support ping-pong mechanism for simultaneous reading and writing.

43

6.3. Interface

Fig. 6.2. Mechanism of input and output data control

In the interface, the round-robin finite state machine (FSM) has six states. State 0

to 4 associate to input FIFO buffers; state values determine which FIFO buffer should

take the input of an 8-pixel data. For example, as shown by Fig. 6.2, the FIFO buffer

of Ic takes input when state is zero; at the other time, it keeps old stored data. State 5

associates to output FIFO buffer, an 8-pixel packaged result in FIFO buffer of Oc are

sent to bus when state is 5; at the other time, this FIFO is loaded with newly processed

result from the core.

The FIFO buffer of any input is in 2x8-pixel ping-pong structure. For any time,

one of two 8-pixel buffer is in Update mode and the other is in Give mode. The

structure is used to make scheduling time easier because it enables buffer to receive

44

data (by Update mode buffer) and to give data (from Give mode buffer) at the same

cycle. By our schedule, The Update-mode buffer will be loaded with an 8-pixel input

in a cycle; for example, Fig. 6.3 (a) shows an input is coming and then in Fig. 6.3 (b)

the Update mode buffer is loaded with the data. At the same cycle, the Give mode

buffer gives out a pixel into the core. The mode will exchange after Update mode

buffer is loaded data and Give mode buffer gives out all data as shown by Fig. 6.3 (c).

After the switching, the loaded data starts to pour out and the empty buffer waits to be

loaded again as in Fig. 6.3 (d). During the process, the mode exchanges continuously.

 (a) (b)

 (c) (d)

Fig. 6.3. Process of Ping-Pong Structure
(a) input is coming, (b) the next cycle, Update mode buffer loaded by input and Give

mode gives out a pixel, (c) ready for mode exchange, (d) after mode exchange.

45

6.4. Time Schedule

Fig. 6.4. Schedule of the proposed architecture

The operations of the architecture are described below with the schedule in Fig. 6.4,

which is hierarchically sliced from a frame to pipeline tiles. The throughput of each

pipeline tile is the computational result of 8 pixels. In a pipeline tile, the access

controller in the interface first reads pixels from the off-chip memory, and stores them

into the FIFO buffers. It takes 5 cycles to switch through 5 states (state 0 to 4) of the

round robin FSM. Then the two histogram calculation engines in the core begin to

compute h’c and hc, and the convolution engine consecutively produces 8 pixel results

which are then sent to the output FIFO buffer. Finally, the interface moves 8-pixel

packaged results from the buffer to the off-chip memory at the state 5 of FSM.

This schedule refers to the quality analysis in [34], it uses 31 pixels as window

width and sets stripe width to be 60 pixels. Therefore, an HD1080p image is sliced

46

into 32 stripes and the width of an integral region is 90 pixels. 12 pipeline tiles are

required for each row of integral region since each tile can calculate 8-pixel-wide

histogram. By fully-pipelined schedule, performing 12 pipeline tiles takes 96 cycles.

To sum up over 32 stripes, for a HD1080p frame, 3,317,760 cycles are needed.

6.5. Design Components

In the core, the main components are two histogram calculation engines and one

convolution engine for the TABLE. 6-1 computations, which have high computational

complexity as mentioned above. Thus, the proposed R-parallelism method unrolls all

computational loops in the range domain R. The details of this method are described in

each engine as follows.

6.5.1. Histogram Calculation Engine

The histogram calculation engines perform the integration and extraction processes

for hc and h’c as shown in TABLE. 6-1. With the R-parallelism method, we design their

architectures as shown in Fig. 6.6, where the selected-bin adder (SBA) is depicted

in Fig. 6.5. These two engines can achieve the throughput of 1 histogram per cycle.

Note that the difference of the two engines is that the integral value of SBAs is the

source pixel J in the engine h’c, instead of the constant 1 in the engine hc. In addition, all

bit widths of data in the engine h’c are more than those in hc by 8 bits.

According to equation (4.2), the integral values, J or 1, should be added into a

corresponding bin of guided pixel; at the same time, other bins should keep their

origin value. In SBA, before adder, a selector is used to select the corresponding bin;

and after adder, a selector array updates the result back to the corresponding bin. All

47

the selectors are controlled according as the value of guided pixel.

Fig. 6.5. Selected-bin adder in the histogram calculation engines

 (a) (b)
Fig. 6.6. Architectures of histogram calculation engines h’c and hc

48

 (a) (b)

Fig. 6.7. The delay-buffer method
(a) S’(t), S(t) at time=t are delayed to be (b) D’(t+1), D(t+1), respectively

In above architectures, each engine needs to access the five IHs: IHO’
S’, IHO’

D’, IHO
S,

IHO
D, and IHO

R, from on-chip memory in one cycle. To reduce the bandwidth problem,

we propose the delay-buffer method, which is presented as follows by data dependency

of the associated IHs in two successive cycles. Assume that the pixels S, S’, D, and D’

shown in Fig. 5.5 (d) are located (x,y), (x,y-1), (x-1,y), and (x-1,y-1) in the cycle t,

respectively. As shown in Fig. 6.7 (a), their IHs are notated by

)1,1()(),1()()1,()(),()(:,:,:,: −−−− ′′ yx
O

tyx
O

tyx
O

tyx
O

t IHDIHDIHSIHS (6.1)

For the next cycle t+1in Fig. 6.7 (b), their x-coordinates are increased by 1 as follows,

)1,()1(),()1()1,1()1(),1()1(:,:,:,: −++−++++ ′′ yx
O

tyx
O

tyx
O

tyx
O

t IHDIHDIHSIHS (6.2)

From the (6.1) and (6.2), we can find that D(t+1) equals S(t), and D’(t+1) equals S’(t).

That means IHO’
D’ and IHO

D can be obtained by delaying IHO’
S’ and IHO

S for one cycle,

respectively. Therefore, we can use two delay-buffers to avoid accessing IHO’
D’ and

IHO
D from the on-chip memory, and reduce bandwidth from five IHs to three IHs.

The on-chip memory is divided into two banks, because there are two read

demands from the engine. One demand is for IHO’
S’ and the other is for IHO

R. As

shown in Fig. 6.8, it marks even bank and odd bank of memory with white and dark

respectively. It shows that choosing stripe width wb as an even number can make two

reading demands from different banks.

49

Fig. 6.8. On-chip memory with even bank and odd bank

D

Phase I

Memory view

S'
R

Phase II

Fig. 6.9. Schedule phases of on-chip memory

The detail schedule is performed in two alternating phases. With these phases, the

even bank and odd bank of on-chip memory are alternatively used for reading and

writing as shown by Fig. 6.9. At the phase I, IHO’
S’ and IHO

R
 are read from the even

bank and the odd bank, respectively. In the meanwhile, IHO
D is written into the odd

bank. Then at the phase II, IHO
D is written into the different (even) bank. As the arrow

shows, the written IHO
D replaces the oldest integral histogram (IHO’

S’ of the prior

phase) since this data will not be used anymore. In the meanwhile, IHO’
S’ and IHO

R
 are

read from the odd bank and the even bank, respectively. On the whole, the two phases

Memory view

DR
S'

50

exchange iteratively for the overall engine process.

In the following paragraphs, we will explain the computation of the two histogram

calculation engines. Their computation flows are almost the same; therefore, we show

the detail only with engine of h’c.

The computation of the SBA I in Fig. 6.6 (a) is defined by (the check point one)

),('1 S
S
O IBinIHIH += ′ (6.3)

which means one of bins of IHO’
S’ is added by JS.

The computation of the SBA II in Fig. 6.6 (a) is defined with check point one by

),(2 Q
D
O IBinIHIH −= (6.4)

which means one of bins of IHO
D is subtracted with JQ.

The integration process result IHO
S is calculated by

)('
'21

31
D
O

S
O

IHIHIH

IHIHIH

−+=

+=
, (6.5)

which is the same as (5.5). Especially note that the addition and subtraction in (6.5)

represents additions and subtractions of all bins respectively. With R-parallelism

method, they are implemented by an array of adders. The number of adders is equal to

the number of bins Nb. Finally, by using an array of adder as well, the engine performs

extraction process defined by (as the notation in Fig. 5.5)

R
O

S
OPQRSc IHIHIHh −==' (6.6)

to calculate the histogram of the window h’c.

51

6.5.2. Convolution Engine

 (a) (b)

Fig. 6.10. Proposed architecture
(a) convolution engine and (b) table selection modules

Fig. 6.11. Construction of constant weight table

52

The convolution engine uses the histograms hc and h'c to further compute the pixel

result by the kernel calculation and convolution processes in TABLE. 6-1. Its

architecture is shown in Fig. 6.10 (a). With the proposed R-parallelism method, the

convolution process can achieve the throughput of 1 pixel per cycle. Higher throughput

can be further attained by the available cut-lines for pipelining in the figure, which can

enable working clock be higher.

The R-parallelism method brings high throughput but suffers from large size and

large number of range table. With 256-level R, for any given target pixel intensity Ic,

there should be a corresponding 256-item range table. Therefore, for 256 intensity

levels, the amount of all table items should be 256x256. To reduce the range table, we

take advantages of the symmetry and truncation property of Gaussian function to

decrease its size from 256 to 32. Fig. 6.11 shows a curve shape of Gaussian functions

can be truncated by considering required digit. For example, we can truncate values

smaller than 2-8 for keeping 8-bit decimal digits. Furthermore, by taking advantage of

symmetry property of Gaussian function, the negative side and positive side are

folded together. Finally, a constant weight table is sampled from the folded curve.

Nevertheless, the table size determines the quality so that it should be adjusted to

meet the quality demand. In the proposed architecture, we use 32 for example because

table of this size is enough to provide sufficient digit precision for usual BF

processing (σr < 32).

In addition, to avoid the large number of range table, we share one table by the table

selection module as shown in Fig. 6.10 (b), which reduces the number of table to one.

Each table selector chooses a weight from the table for its corresponding bin. For

example, if Ic is 2, the selector TS0 selects g(2) for the first bin (represents for

intensity 0) and selector TS1 also selects g(2) for the second bin (represents for

53

intensity 4), etc.. Any bin represents for intensity more than 34 is given 0. Then, 64

selected weights and hc and h’c are sent into multiplier array and adder trees for

computation of the equation of (4.1).

6.5.3. Parameters versus hardware cost

TABLE. 6-2 Parameters and their associated engine components

Parameter Histogram Calculation
Engine

Convolution
Engine

Selected
Value

Window width |S| On-chip memory size
Signal bit width Signal bit width 31

Range kernel σr

 Constant weight table size <32

Stripe width ws On-chip memory size
 60

Bin number Nb
On-chip memory size
Operator array length

Operator array length
(adder/ multiplier array)

64
(sr = 4)

There are four main parameters: window width |S|, range kernel parameter σr,

stripe width ws, and bin number Nb, influencing hardware cost of the proposed

histogram calculation engine and convolution engine. The associated engine

components of these parameters are shown in TABLE. 6-2. For example, |S|, ws, and

Nb are associated to the on-chip memory size of the calculation engine. This can be

easily explained with the equation (5.7): the memory cost for integral histogram is

determined by these three parameters.

According to TABLE. 6-2, the function block layout of the core architecture

doesn’t have to be redesigned for different parameter selections because these

parameters do not affect its operation flow. (Especially note that the operation flow is

invariant even to window size since the processes of integral histogram algorithm are

independent of window selection.) Instead, these parameters affect the size or the

operator number of their corresponding engine components. Therefore, if an

application has variant parameter selection demands, the size and the operator number

54

of equipped engine components in its hardware design must be fulfill the most critical

demand. For example, I select 31 as the window size for the proposed architecture

since it is larger than the selections of most acceleration algorithms and applications.

This makes sure that my architecture is suitable for most applications.

6.5.4. Summary to design components

Overall speaking, the histogram calculation engines and the convolution engine can

be serially connected to achieve the throughput of 1 pixel per cycle. Their function

block layouts and operation flows are invariant to parameter selection (even to the

window size selection). For further high speed demand, more engines can be used to

process multiple cascaded pixels simultaneously for higher throughput. The proposed

memory reduction methods could be directly extended to support the processing of

multiple pixels. In addition, note that for simpler BF, the histogram calculation engine

h’c and its on-chip memory in the core module, and the two input FIFOs in the interface

module could be reduced.

55

6.6. Memory Cost Analysis

0

50

100

150

200

250

16 32 48 64 80 96 112 128 144 160

(Mbits)

Stripe Width ws (pixel)

Off-chip Bandwidth

0

10

20

30

40

50

60

16 32 48 64 80 96 112 128 144 160

(Kbytes)

Stripe Width ws (pixel)

Memory Cost

132.7Mbits on 60 pixels

23.04KBytes on 60 pixels

(a) (b)

(c) (d)

0

1

2

3

4

5

6

7

16 32 48 64 80 96 112 128 144 160

(kcycle)

Stripe Width ws (pixel)

Computation Time

23,040

401,760

18,867,840

821,664,000

1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08 1.0E+10

RUM
+SBM
+SOM

RUM
+SBM

RUM

Original

Memory Cost (Byte)

Memory Reduction

97.7%

97.9%

94.3%

97.7%

97.9%

94.3%

3.11kCycles on 60 pixels

Fig. 6.12. Analysis of Hardware performance and memory reduction
(a)-(c) Hardware performance per frame with different ws; (d) memory reduction with

the proposed methods for ws of 60 (M=1080, N=1920, Nb=64, |S|=31).

In this chapter, we analyze the parameter selection in the proposed memory

reduction methods. Show the overall memory reduction by three methods combined.

As the combined memory cost in (5.7), there are three parameters, the window size

of space kernel width |S|, the number of bin Nb, and the stripe width ws, where the

former two are related to application quality, and the last one is related to target

performance. Referring to the quality analysis in [34], we select 31 for |S| and 64 for Nb

as an example to illustrate how to determine ws by considering hardware performance.

Fig. 6.12 (a)-(c) estimates the hardware performance of JBF with different ws for the

resolution HD1080p. The memory cost is computed with (5.7) and plotted in Fig. 6.12

56

(a). The off-chip bandwidth and computation time are calculated by the following

equations and plotted in Fig. 6.12 (b) and (c), respectively,

()() () pixwwNMpixwSwNM ssss 2/41||/ ⋅+⋅−+ (6.7)

and

()() cycleswSwNM ss 11||/ ⋅−+ (6.8)

where M(ws+|S|-1) is the stripe area with extended regions, and N/ws is the number of

stripe in a frame. For the bandwidth, the term with 4 pixels is required by the

integration process, and the other term with 2 pixels is required by other processes.

Since the integration process should additionally perform on the extended integral

regions as in Fig. 5.2, its bandwidth is more than the other processes’. For the

computation time, the proposed architecture takes 1 cycle to produce 1-pixel integral

process result.

The selection of ws is mainly related to the target frame rate. If our target is 30

frames per sec, the constraint of computation cycles is 3.3k; therefore, we could select

60 for ws, as the example used by this chapter (as shown in TABLE. 6-2), when the

working clock is 100 MHz. With the choice, the off-chip bandwidth will be 62.2%, and

the memory cost can be reduced to 23 Kbytes, which is 0.003% of the original cost as

shown in Fig. 6.12 (d).

6.7. Implementation Result

With above selected parameters, the proposed architecture of JBF has been

implemented by Verilog and synthesized under the 90-nm CMOS technology

process. TABLE. 6-3 lists the implementation result of the proposed architecture. The

57

hardware design spends less than 300K equivalent gate counts and 23 Kbytes on-chip

memory to achieve the throughput of HD1080p 30 frames/sec at the clock rate of

100MHz. Moreover, it can process at 200 MHz by pipelining on the available cut-lines

in the convolution engine, and further achieve the throughput of 124 Mpixels per sec

for HD1080p at the frame rate of 60 frames per sec.

TABLE. 6-3 Example implementation result of the proposed architecture

Technology UMC 90nm
Image Size MxN 1920x1080
Number of Bin Nb 64
Window Size |S|x|S| 31x31
Stripe Width ws 60
Clock Rate (Hz) 100M 200M
Frame Rate (Frame/Sec.) 30 60
Logic Cost
Excluding Memories
(Equivalent Gate-Count)

Interface 9,578 9,917
Histogram Cal. 97,766 148,649
Convolution 168,333 197,351
Total 276,178 355,917

On-chip Memory (Byte) 23K 23K

TABLE. 6-4 compares the complexity, memory requirement, and bandwidths between

the proposed methods and the original integral histogram in different resolutions. With

the proposed memory reduction and architecture design techniques, the complexity can

be reduced to 0.15%, and the memory requirement can be reduced to 0.003%-0.02%. In

addition, the bandwidth for IH (i.e. on-chip bandwidth) can be reduced to 32%-36%,

but the bandwidth for pixels (i.e. off-chip bandwidth) is increased to 20.3-132.7 Mbits.

(That is, bandwidth per second is about 1200-8000 Mbit for speed of

60-frame-per-second) Nevertheless, the off-chip bandwidth is affordable by the 64-bit

bus processing at 200 MHz. (The maximum affordable bandwidth is 12800 Mbit per

second.) Note that the stripe width ws is specifically selected for the resolution

HD1080p. Thus, it can be re-selected by means of the mentioned analysis in

Chapter 6.6 to acquire better performance for another resolution.

58

TABLE. 6-5 compares our proposed hardware design with the previous

implementations. Note that this paper is the first VLSI implementation to the best of

author’s knowledge, and thus only other GPU and CPU approaches are listed for

reference comparison. Although the throughput is less than that of Bilateral Grid, the

proposed design still achieves best performance because of its significantly reduced

memory cost. Comparing to other design, the proposed architecture could efficiently

utilize the hardware cost to achieve real-time speed and low memory cost.

TABLE. 6-4 Comparison of hardware cost per frame

 Resol.
Complexity

(million
operation)

Memory
Requirement

(Kbyte)

Bandwidth for
IH

(Mbit)

Bandwidth
for pixels

(Mbit)
Original VGA 335.1 (100%) 113,050 (100%) 14,470 (100%) 9.8 (100%)

HD720p 1,005.5 (100%) 353,894 (100%) 45,299 (100%) 29.5 (100%)
HD1080p 2,262.3 (100%) 829,440 (100%) 106,108 (100%) 66.4 (100%)

Mem. Reduction VGA 197.0 (59%) 23 (0.020%) 9,083 (63%) 20.3 (206%)
HD720p 591.1 (59%) 23 (0.007%) 27,250 (60%) 60.8 (206%)
HD1080p 1,289.7 (57%) 23 (0.003%) 59,454 (56%) 132.7 (200%)

Mem. Reduction
+

Archi. Design Tech.

VGA 5.1 (0.15%) 23 (0.020%) 5,191 (36%) 20.3 (206%)
HD720p 1.5 (0.15%) 23 (0.007%) 15,571 (34%) 60.8 (206%)
HD1080p 3.3 (0.15%) 23 (0.003%) 33,974 (32%) 132.7 (200%)

Number of bin Nb=64, Window width |S|=31, Stripe width ws=60

VGA=640x480, HD720p=1280x720, HD1080p=1920x1080

TABLE. 6-5 Comparison of different implementations

Support-Pixel-First Target-Pixel-First

Durand and Dorsey
[13]

Chen et al.
[36]

Yang et al.
[29]

Adams et al.
[37]

Porikli
[34] Proposed

Approach
Piecewise-linear

Subsampling Bilateral Grid Piecewise-linear Gaussian
KD-tree

Integral
Histogram

Integral
Histogram

(ss=24, sr=19) (ss=16, sr=10) (sr=32) (sr=4) (sr=4)
Implementa

tion

CPU
P4

2GHz

GPU
Geforce

8800GTX

GPU
Geforce

8800GTX

GPU
GeForce
GTX260

CPU
P4

3.2GHz
ASIC

Transistor
count
(Tech.

Process)

55M
(130nm)

[42]

681M
(90nm)

[40]

681M
(90nm)

[40]

1,400M
(TSMC 65nm)

[41]

55M
(130nm)

[42]

2.5M
(UMC 90nm)

Image Size
(Pixel) 10.4M 1.0M 1.0M 10M 1.0M 2.07M

Frame Rate
(Frame/sec)

0.16
(high dynamic range) 222 66 0.01-1 3.22 60

Throughput
(Pixel/sec) 1.6 M 222M 66M 0.1M-10M 3.22M 124M

Memory
(Byte) - 625K 4M 100M-1G 96M 23K

59

7. Conclusion

The main contribution of this thesis is to propose efficient hardware architecture

with three memory reduction methods for real-time integral histogram based JBF. The

three proposed memory reduction methods combined reduces the memory cost to

0.003% compare to the original integral histogram based JBF. The efficient hardware

architecture can process large amount of parallel histogram bins simultaneously to

achieve 1 pixel per cycle high throughput. The ASIC implementation of the

architecture can achieve 124Mpixel (60 frames) per second with HD1080p resolution

image under 200MHz clock rate. The chip consumes totally 355 K gate counts and

23KBytes internal memory. The off-chip bandwidth requirement is 132.7Mbits per

frame, which is 60% of the total bandwidth of 200 MHz clock rate. For higher

throughput, the architecture and memory reduction methods can be directly extended

to support the processing of multiple cascade pixels.

Future Work

In the thesis, we have proposed efficient architecture for IH based JBF and its

design concept is also suitable for any integral image based applications but limited to

those use the box spatial kernel. Nevertheless, Mohamed et al. [43] has shown that a

more complicated kernel can be approximated by the linear combination of many

basic box kernels. This extends the integral image approach to more complex

applications. For the complex application, multiple parallel hardware cores of basic

box kernel must be put together and thus the overall interface of data transfer and

communication, and the analysis of internal memory and bandwidth requirement must

be re-estimated elaborately for the best performance.

60

On the other hand, the proposed architecture is suitable for gray-level image

process. For extended use for multi-color channels, extra software or hardware has to

be further designed for blending color channels to gray level. Nevertheless, these

methods usually depend on different applications. For example, for producing human

visual consistent gray level images, Faust [44] has to includes human vision

knowledge and visual aspects to present an enhance conversion.

61

Reference

[1] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in

Proc. of IEEE Int’l Conf. on Computer Vision, pp. 839-846, 1998.

[2] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele, “Joint bilateral

upsampling,” in Proc. of ACM SIGGRAPH, vol. 26, no. 3, p. 96, 2007.

[3] K.-J. Yoon and I. S. Kweon, “Adaptive support-weight approach for

correspondence search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4,

pp. 650-656, April 2006.

[4] K.-J. Yoon and I. S. Kweon, “Stereo matching with symmetric cost functions,” in

Proc. of IEEE Computer Vision and Pattern Recognition, pp. 2371-2377, 2006.

[5] O. Stankiewicz, K. Wegner, and M. Wildeboer, “A soft-segmentation matching in

depth estimation reference software (DERS) 5.0,” ISO/IEC JTC1/SC29/WG11,

doc. M17049, Xian, China, October 2009.

[6] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand, “A gentle introducing to

bilateral filtering and its applications,” in Proc. of ACM SIGGRAPH tutorial,

2008.

[7] E.P. Bennett, J. L. Mason ,and L. McMillan, “Multispectral bilateral video fusion,”

IEEE Trans. on Image Processing, vol. 16, no. 5, pp. 1185-1194, May 2007.

[8] T.R. Jones, F. Durand ,and M. Desbrun, “Non-iterative, feature-preserving mesh

smoothing,” ACM Trans. on Graphics, vol. 22, no. 3, pp. 943-949, July 2003

[9] S. Fleishman, I. Drori ,and D. Cohen-Or, “Bilateral mesh denoising ,” ACM Trans.

62

on Graphics, vol. 22, no. 3, pp. 950-953, July 2003.

[10] E. Eiseman and F. Durand, “Flash photography enhancement via intrinsic

relighting,” ACM Trans. on Graphics, vol. 23, no. 3, pp. 673-678, August 2004.

[11] G. Petschnigg, M. Agrawala, H. Hoppe, R. Szeliski, M. Cohen, and K. Toyama,

“Digital photography with flash and no-flash image pairs,” in Proc. of ACM

SIGGRAPH, vol. 23, no. 3, pp. 664-672, 2004.

[12] B.M. Oh, M. Chen, J. Dorsey, and F. Durand, “Image-based modeling and photo

editing,” in Proc. of ACM SIGGRAPH, pp. 433-442, 2001

[13] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of

high-dynamic-range images,” in Proc. of ACM Int’l Conf. on Computer Graphics

and Interactive Techniques, pp. 257-266, 2002.

[14] M. Elad, “On the bilateral filter and ways to improve it,” IEEE Trans. on Image

Processing, vol. 11, no. 10, pp. 1141-1151, October 2002.

[15] S.B. Bae, E. Paris, and F. Durand, “Two-scale tone management for photographic

look,” ACM Trans. on Graphics, vol. 25, no. 3, pp. 637-645, 2006.

[16] H. Yu, Y.-L. Zhao, and H. Wang, “Image denoising using trivariate shrinkage filter

in the wavelet domain and joint bilateral filter in the spatial domain,” IEEE Trans.

Image Process., vol. 18, no. 10, pp. 2364-2369, October 2009.

[17] C. Varekamp and B. Barenbrug, “Improved depth propagation for 2D to 3D video

conversion using key-frames,” in Proc. of IET European Conf. on Visual Media

Production, pp. 167-173, 2007.

[18] C.-C. Cheng, C.-T. Li, P.-S. Huang, T.-K. Lin, Y.-M. Tsai, and L.-G. Chen, “A

block-based 2D-to-3D conversion system with bilateral filter,” in Proc. of IEEE

63

Int’l Conf. on Consumer Electronics, pp. 393-394, January 2009.

[19] Q. Yang, R. Yang, J. Davis, and D. Nister, “Spatial-depth super resolution for

range images,” in Proc. of IEEE Computer Vision and Pattern Recognition, pp.

1845-1852, 2007.

[20] D. Chan, H. Buisman, C. Theobalt, and S. Thrun, “A noise-aware filter for

real-time depth upsampling,” in Proc. of Workshop on Multi-camera and

Multi-modal Sensor Fusion Algorithms and Application – M2SFA2, 2008.

[21] A. K. Riemens, O. P. Gangwal, B. Barenburg, and R-P. M. Berretty, “Multi-step

joint bilateral depth upsampling,” in Proc. of SPIE Visual Communications and

Image Processing, p. 72570M, 2009.

[22] M.-C. Chuang, Y.-N. Liu, T.-H. Chen, and S.-Y. Chien, “Color filter array

demonsaicking using joint bilateral filter,” in Proc. of IEEE Int’l Conf. on

Multimedia and Expo, pp. 125-128, 2009.

[23] C. Xiao, Y. Nie, W. Hua, and G. Feng, “Fast multi-scale joint bilateral image and

video texture upsampling,” The Visual Computers, Springer Berlin/Heidelburg,

pp.154-157, December 2009.

[24] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nister, “High quality real-time

stereo using adaptive cost aggregation and dynamic programming,” in Proc. of

Int’l Symposium on 3D Data Processing, Visualization and Transmission

(3DPVT), pp. 798-805, 2006.

[25] Z. Gu, X, Su, Y. Liu, and Q. Zhang, “Local stereo matching with adaptive

support-weight, rank transform, and disparity calibration,” Pattern Recognition

Letter, vol. 29, issue 9, pp. 1230-1235, July 2008.

[26] Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nister, “Stereo matching with

color-weighted correlation, hierarchical belief propagation, and occlusion

64

handling,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 3, pp.2347-2354,

March 2009.

[27] J. Lu, S. Rogmans, G. Lafruit, and F. Catthoor, “Stream-centric stereo matching

and view synthesis: a high-speed approach on GPUs,” IEEE Trans. on Circuits

and Systems for Video Technology, vol. 19, no. 11, pp. 1598-1611, November

2009.

[28] N. Y.-C. Chang, T.-H. Tsai, P.-H. Hsu, Y.-C. Chen, and T.-S. Chang, “Algorithm

and architecture of disparity estimation with mini-census adaptive support weight,”

IEEE Trans. Circuits Sys. Video Technol, vol. 20, no. 6, pp. 792-805, June, 2010.

[29] Q. Yang, K.-H. Tan, and N. Ahuja, “Real-time O(1) bilateral filtering,” in Proc. of

IEEE Computer Vision and Pattern Recognition, pp. 557-564, 2009.

[30] S. Paris and F. Durand, “A fast approximation of the bilateral filter using a signal

processing approach,” International Journal of Computer Vision, vol. 81, no. 1,

pp.24-52, 2006.

[31] T. Q. Pham and L. J. van Vliet, “Separable bilateral filtering for fast video

processing,” in Proc. of IEEE Int’l Conf. on Multimedia & Expo, pp. 454-457,

2005.

[32] T.-S. Huang, “Two-dimensional digital signal processing II: transforms and

median filters,” Spring-Verlag, New York, pp. 209-211, 1981.

[33] B. Weiss, “Fast median and bilateral filtering,” ACM Trans. on Graphics, vol. 25,

no. 3, pp. 519-526, July 2006.

[34] F. Porikli, “Constant time O(1) bilateral filtering,” in Proc. of IEEE Computer

Vision and Pattern Recognition, pp.3895-3902, 2008.

[35] R. Deriche, “Recursively implementing the Gaussian and its derivatives”, in

Proc. of International Conference on Image Processing, pp. 263-267, 1992.

65

66

[36] J. Chen, S. Paris, and F. Durand, “Real-time edge-aware image processing with the

bilateral grid,” ACM Trans. on Graph, vol. 26, no. 3, article 103, pp. 1-9, July

2007.

[37] A. Adams, N. Gelfand, J. Dolson, and M. Levoy, “Gaussian KD-trees for fast high

dimensional filtering,” ACM Trans on Graph, vol. 28, no. 3, p. 21, 2009.

[38] M.-H. Ju, and H.-B. Kang, “Constant time stereo matching,” in Proc. of Int’l

Machine Vision and Image Processing Conf., pp. 13-17, 2009.

[39] Micron Technology, “Synchronous DRAM MT48LC2M32B2-1 Meg x 32 x 4

banks,”

Available:http://download.micron.com/pdf/datasheets/dram/sdram/128MbSDRA

Mx32.pdf

[40] A. Wong, “NVIDIA GeForce 8800 GTX/GTS Tech Report,” Available:

http://www.techarp.com/showarticle.aspx?artno=358&pgno=0

[41] A. L. Shimpi and D. Wilson, “Nvidia’s 1.4 billion transistor GPU: GT200 arrives

as the GeForce GTX 280 & 260,” Available:

http://www.anandtech.com/show/2549

[42] “CPU World,” Available: http://www.cpu-world.com/index.html

[43] M. Hussein, F. Porikli, and L. Davis, “Kernel integral images: a framework for

fast non-uniform filtering,” in Proc. of IEEE Computer Vision and Pattern

Recognition, pp. 1-8, 2008.

[44] L. Neumann, M. Cadik, and A. Memcsics, “An Efficient Perception-based

Adaptive Color to Gray Transformation”, in int’l Conf. of on Wireless

Communications and Signal Processing, pp. 1-4, 2009.

http://download.micron.com/pdf/datasheets/dram/sdram/128MbSDRAMx32.pdf
http://download.micron.com/pdf/datasheets/dram/sdram/128MbSDRAMx32.pdf

Biographical Notes

姓名︰許博雄

學歷︰

國立交通大學電子所系統組 碩士 (民國 97年 09月 ~ 民國 99年 08月)

國立交通大學電資學院學士班 學士 (民國 93年 09月 ~ 民國 97年 06月)

國立台南第一高級中學 (民國 90年 09月 ~ 民國 93年 06月)

著作︰

[1] Po-Hsiung Hsu, Yu-Chen Tseng and Tian-Sheuan Chang, “Low Memory Cost

Bilateral Filtering Using Stripe-based Sliding Integral Histogram,” in proceeding

of IEEE International Symposium on Circuit and System, pp. 3120-3123, 2010.

得獎事蹟︰

 98 學年度大專院校積體電路設計競賽標準元件數位電路設計組「佳作」

 97 學年度大專院校積體電路設計競賽標準元件數位電路設計組「設計完成

獎」

	1. Introduction
	1.1. Background
	1.2. Motivation and contribution
	1.3. Thesis Organization

	2. Introduction of Bilateral Filtering
	2.1. Overview
	2.2. Bilateral Filtering
	2.3. Application
	2.3.1. De-noising
	2.3.2. Texture and illumination separation
	2.3.3. Joint Bilateral Filtering

	2.4. Summary

	3. Related Work
	3.1. Support-pixel-first Approach
	3.1.1. Piece-wise linear algorithm and Yong’s algorithm
	3.1.2. Bilateral grid

	3.2. Target-pixel-first Approach
	3.2.1. Separable algorithm
	3.2.2. Histogram & Huang’s algorithm
	3.2.3. Weiss’ Distributed Histogram
	3.2.4. Integral Histogram

	3.3. Summary

	4. Analysis of Integral histogram based JBF
	4.1. Integral histogram based JBF
	4.2. Design Challenge
	4.2.1. High Memory Cost for integral histograms
	4.2.2. High Computational Complexity in All Processes
	4.2.3. High Bandwidth in Integration and Extraction
	4.2.4. Large Range Table in Kernel Calculation

	4.3. Summary

	5. Proposed Memory Reduction Methods
	5.1. Overview
	5.2. Runtime Updating Method (RUM)
	5.3. Stripe Based Method (SBM)
	5.4. Sliding Origin Method (SOM)
	5.5. Combination
	5.6. Comparisons

	6. Architecture Design and Implementation
	6.1. Overview
	6.2. Overall architecture
	6.3. Interface
	6.4. Time Schedule
	6.5. Design Components
	6.5.1. Histogram Calculation Engine
	6.5.2. Convolution Engine
	6.5.3. Parameters versus hardware cost
	6.5.4. Summary to design components

	6.6. Memory Cost Analysis
	6.7. Implementation Result

	7. Conclusion

