TRFefE A E S Bl AE 2 L EE R T 2 A TR

Analysis and Design of Real-time Integral Histogram Based
Joint Bilateral Filtering

e E

R RRE B

PERRE 4 L4 & O~ B






TREefi o B B AE 2 ML ERRATE 27
2 21

or

Analysis and Design of Real-time Integral Histogram Based

Joint Bilateral Filtering

= o 4

O Student: Po-Hsiung Hsu
i B 1

Advisor: Dr. Tian-Sheuan Chang

B oz 2 ou < F
THIAREF ORI TSI
oL #H =

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master of science
in
Electronics Engineering
August 2010
Hsinchu, Taiwan, Republic of China

SENRE { L &

AR






?’Pﬂizﬁ’lﬁéln\ﬁ CRIARZHEFERRALTEZATE

wl,
.
%

$4 i o yoE: wpE L

W=l ~ F

TEAARE AT I TAELSL

£ 2

R F e om S R FE e SR LE Y A S Rk
R e d SERRRU S ¢ Ry BT R MR B Y {e MPEG R o v

&'g_f'k?u?,}z‘_i/:ﬁ‘gr/ ¢ m;f%,;,\‘*—‘sg]ﬂs/‘z-ég ®ooje 4 j—rﬁ_ﬁz"ﬁfﬁ m}'@’# ,

3
3
N
ek
W
<ol
(&

BAFSeR o A el v B AR AL o & 355 B AL 0 VLSI §

AR 2 c AEFIHRHFLAE S BRARL(HE)ERpFE 2R -

BypocdahA WA - BY e g2 BpRACRYFE 2T A ELFER D
Ao
PRI RWEFE 20 FHB LT 2 R 2 oo A

PO TS EINFRFE N FUEREIE CREFTHREFEAF AL FRE
BHEd RaeRBI T o il ARSI HA & i ff A A BE

SPEL LB R4 E B B 2 i A AR D HEE s TR aniRIE > € (TR

¥

Jit

O RED FEEG PR R I N R o BRI RE B2 B R R

R



Boiek o PSR Er 2RI RIFE 2 90.003% -

VoG B RGE I AR T L 2 e AAERT
ABEATHAECREE L FRRE R 2 AL PRI T D JI* s
PRARAP I OF R gt v R B (BB RIERAR)ZE
TE2FRFAFFPGFAEFLFICRIAERL aLTFAN T 2B

=

A8 B 5 B 27 Sl 31 8 B FL 000 7 b Rl R o ¥

Rt aET S 90 2 £ @A™ > & * 200 MHz e iEpFE%
= ;¥ 113 {7 60 52 HD1080p (1920x1080) % ffo fa # S & 7 & 355 K i BB {r

23K i fs H i fhiy -



Analysis and Design of Real-time Integral Histogram Based

Joint Bilateral Filtering

Student: Po-Hsiung Hsu Advisor: Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

Bilateral filtering and joint bilateral filtering have been widely used in many
image processing fields, such as de-noising, tone-management, and even the 3-D
applications and MPEG standard. They can be accelerated by the associated fast
algorithm, integral histogram, but still suffer from highly computational complexity
and massive memory, especially for real-time applications. To conquer them, VLSI
implementation becomes a necessary solution. In the thesis, we design an efficient
hardware architecture, which consists of three proposed memory reduction methods,
and highly parallel computational components for integral histogram based (joint)

bilateral filtering.

The proposed memory reduction methods include runtime updating method
(RUM), stripe-based method (SBM), and sliding origin method (SOM). The RUM in
runtime takes advantage of progressive raster-scan process of computation to discard
unnecessary data. The SBM further divides each frame into vertical stripes and
processes them one by one. These stripes are much narrower than a frame; therefore,

the raster scan process can traverse along shorter rows and the original frame-wide



memory cost can be significantly reduced. Finally, the SOM uses the concept of
progressive sliding integral origin to help the original histogram integration process
lessen the dependency on storage data; therefore, the memory requirement can be
reduced from frame-scale-magnitude to line-scale-magnitude. On the whole, the three
methods can be easily combined to reduce the memory cost to 0.003% of the original

requirement.

On the other hand, the proposed hardware architecture solves the integral
histogram computational high bandwidth and large table problem by using
delay-buffer data-reuse method and table selector, respectively. And use memory
banks to enlarge the capacity of internal memory bandwidth. Besides, it uses range
(intensity, for image)-space-parallelism methods to process large amount of histogram
bins simultaneously to achieve high throughput. What’s more, the function block
layout of the hardware architecture .is invariant to parameter selection; therefore, it

doesn’t have to be redesigned for applications of different parameter demands.

The final design implemented by UMC 90nm CMOS technology can achieve 60
frames per second for HD1080p (1920x1080) resolution image under 200MHz clock

rate. The chip consumes 355 K gate counts and 23 K Bytes on-chip memory.



=4
po\}

W\e

FAoRE S g SRR L A e et A P en

)’?;J,i: ) F q\,{ﬁﬂ ﬂ\_ﬁ/ q\‘l '%},@ﬁi’ tt}\‘.ﬁfl];iti?igy\,q lﬁjJ"mL;:’i‘b%‘]'%Pl' ,

)

BAE PFEY G F e NRFRAR AL EEFAEFE A A %o SRR o
P FHRABEFLOFEAMA L TRRERFRE T KR EANT
B 40 R § TR

EMHNOTFZLA P FECETRIR MBI REILFT IR
AL FFFRR EHEPFRE 2 Rrw kg FISRRPOFR LR AN
SEETRS Lt B

BREAER M ST AEP P BRI APy 2 RS KRR
FAGE N ZRGAPM Y AEE S A BRI AT E (T e IAp AR BT

LTI o }@:F&ﬁ'{iip By 3E A4 ¢ 'f‘-"-a*—l?i]""’f"%f_p\‘f‘“,%m@’k’?'g;\“ﬁq* 7{5_;‘3 o;gj»

HEZRE L I B BB TRE AR A R EF R4
B4 F i o« MHMLRER FRN O AT R B oy o ¥

B REAR L L R ek R ARA § A K Ap s b

MEEEGE S LG R pEER > AR oE 28T demo o HE IC

‘% W

AR - AT 12 L PFET T B nRIEd o 4 BHAE AR T

Bz

\.\'

BB AT o BAX X A2 B ihd w0 ) o A%z e AA >
FE oL AEFFS AL AAT P - LEFERLSEPE -

PR H 0 opir B 85 A W RS T AT R S P B o T
EHAGAHFADRAP AN 550837 - LB A3 FA et L
EEAEEEE 5 Y EEE S EAE & L5 S8 R

gt o WA LG AT A At o

i






Contents

1.

INErOAUCTION ... 1

1.1, BACKQIOUNG ....ooviiiiiiiiiiiee ettt 1
1.2. Motivation and CONtriDULION ..........ccooiiiiiiiicc e 2
1.3, TNESIS OrganiZation..........cceiuiriririeeieieieesie sttt 2
Introduction of Bilateral Filtering .........cccoccovveviiviniiiienn, 3

2.1, OVEIVIBW ...ttt ettt 3
2.2. Bilateral FIltEriNg ......c.coooviiiiiiiieseeee s 3
2.3, APPHCALION ...t 8
2 T8 B T o1 ] [ o SRR 8
2.3.2. Texture and illumination Separation..............ccocveereereienenescneseenns 9
2.3.3. Joint Bilateral FIEring .......cccoovrieiiciiieie e 10
2.4, SUMMANY .ottt ettt s akee s sbe ke e st e e taeahaasbeeasbeesbeessseenbeesnbeenbeessneanneeannas 11
Related WOrK..... .o i i 12

3.1. Support-pixel-first APProach......ccccciirii i 14
3.1.1. Piece-wise linear algorithm and Yong’s algorithm .........c..cccoceeenee. 14
3.1.2. Bilateral grid ........ccooviiiiiieeee s 15
3.2. Target-pixel-first APProach ..o 16
3.2.1. Separable algorithm ... 17
3.2.2. Histogram & Huang’s algorithm............cccccevviiiiinviee e 17
3.2.3. Weiss’ Distributed HiStOGram ...........ccccovireiiinencieneeeseseeeeens 19
3.2.4. Integral HiStOgram ..........ccceiveiieieiie s 20
3.3 SUMIMANY ..ottt bbb sn e an e ne s 22
Analysis of Integral histogram based JBF .............cccccoc.... 23

4.1. Integral histogram based JBF ... 24
4.2, DeSIgN ChalleNge ......cccveieiieiice e 26
4.2.1. High Memory Cost for integral histograms...........cccceeveveviveieenenne. 28

vii



4.2.2. High Computational Complexity in All Processes ..........ccccovervreenee. 28

4.2.3. High Bandwidth in Integration and Extraction.............cccceevevvennne. 29

4.2.4. Large Range Table in Kernel Calculation.............ccccceevvivieineincnenne. 29

4.3, SUMIMAIY ..ottt r e bbbt nn et 29

5. Proposed Memory Reduction Methods...........c.ccccoveevieennnee, 31
5.1 OVEIVIBW ..ottt bbbt 31

5.2. Runtime Updating Method (RUM) .........ccoviiiiiiiiieiesiee e 31

5.3. Stripe Based Method (SBM) ...t 33

5.4. Sliding Origin Method (SOM) ......cooveiiiieiice e 36

5.5, COMDINALION ..ot 39

5.6. COMPAIISONS ...c.uieieirieiieeieitiesteeteseesteetesseesteesaesreesteeseeaseesseaseesreesseaneesseensens 40

6. Architecture Design and Implementation ................cccevenen. 41
8.1, OVEIVIBW ..ottt ek ih ettt ek ettt ettt et bbbt nne i 41

6.2. OVerall arChitECIUIE .o.. .o ittt 43

6.3, INEEITACE. . ...t i s skt ettt ettt 44

6.4. TIimMe SChEdUIE ..o 46

6.5. DeSigN COMPONENTS .......oveeiiiriiiiieiieieie ettt 47
6.5.1. Histogram Calculation ENgine.........c.cccccoviveviiiieiiiesii e 47

6.5.2. CONVOIULION ENQINE ...c.veieiiiiicciecc et 52

6.5.3. Parameters versus hardware COSt ..........cccoovririnireiieienenc e 54

6.5.4. Summary to design COMPONENTS ........ccerverireririeieie e 55

6.6. Memory COStANAIYSIS ......coeriiirierieisinieiee st 56

6.7. Implementation RESUIL ........cccvoiiiieiiee e 57

7. CONCIUSION ... 60
RETEIENCE. ..o 62

viii



List of Figures

Fig. 2.1. lllustration of space kernel fand range kernel g of BF ...........cccceeene 4
Fig. 2.2. SMOOthING RESUILS.......ecvieiiieiecie et 5
Fig. 2.3. Gaussian kernel’s bandwidth.............ccccooviiiiiiiiicc e 6
Fig. 2.4. Smoothing results of BF with different range parameter oy.................... 7
Fig. 2.5. Flow of flash and no-flash image correction [10] ........ccccccvviveiviiciienns 9
Fig. 3.1. Classification of acceleration approaches...........ccccccevvvveivereiiereennn, 12
Fig. 3.2. Concept of histogram-based approaches..........ccccvcvevviierv i cciereean, 18
Fig. 3.3. Concept of Huang’s algorithm............cccccoveiiiiiiesee e 18
Fig. 3.4. Concept of Weiss distributed Histogram: ..........cccoocveveiieennernsiiereennn 20
Fig. 3.5. Three-tier hierarchical distributed Histogram [33]........ccccovevvviierirennnnn. 20
Fig. 3.6. Concept of integral hiStogram ..........ccccceevveiviieiiesie e 20
Fig. 4.1. Concept of integral histogram approach.............ccccceeveiiverveiesieesnennn 25
Fig. 4.2. Analysis of Design Challenges over frame resolutions..............c.c........ 27
Fig. 5.1. Runtime updating method (RUM).........cccceiiiiiiiieiiec e 32
Fig. 5.2. Stripe based method (SBM) ...t 33
Fig. 5.3. Integral region of SBM is an extended Stripe. ........cccccevvevveieiiiernennnn 33
Fig. 5.4. Overlapped integration region between two adjacent stripes................ 34
Fig. 5.5. Sliding Origin Method (SOM) ....c.covveiiiiieiieeiee e 36
Fig. 5.6. Sliding Origin Method.........ccioiiii it 38
Fig. 5.7. Combination of memory reduction methods.............cccccevveieriierieennenn 39
Fig. 6.1. Proposed architecture of JBF..........ccccooviieiiiie s 43
Fig. 6.2. Mechanism of input and output data control............c.ccccevveveiiernennenn, 44
Fig. 6.3. Process of Ping-PoNg StrUCTUIe ..........ccvevieiieieiec e 45
Fig. 6.4. Schedule of the proposed architeCture............cccoceviveveiierr e, 46
Fig. 6.5. Selected-bin adder in the histogram calculation engines....................... 48
Fig. 6.6. Architectures of histogram calculation engines /#’. and % .................... 48
Fig. 6.7. The delay-buffer method ..o 49
Fig. 6.8. On-chip memory with even bank and odd bank............c...ccecveverinennne. 50
Fig. 6.9. Schedule phases of on-Chip MEMOrY .........cccccoviievveie s 50
Fig. 6.10. Proposed arChiteCtUre ..........ccoevieieeiesiese e 52
Fig. 6.11. Construction of constant weight table ............cccooveviiieiice 52
Fig. 6.12. Analysis of Hardware performance and memory reduction................ 56



List of

Tables

TABLE. 3-1 Comparison of computational complexity and memory cost in

TABLE

TABLE
TABLE

TABLE
TABLE
TABLE
TABLE

related WOrK ......ooveeeeeeeeeeeeeeeeee,

. 4-1 Computational flow and complexity analysis for each pixel in the

integral histogram based JBF...................

. 5-1 Comparisons of original and reduced memory COSt............ccccueenee.
. 6-1 Modified computational flow and complexity analysis for each
pixel in the integral histogram approach for JBF...............ccccvene.
. 6-2 Parameters and their associated engine components ......................
. 6-3 Example implementation result of the proposed architecture.........

. 6-4 Comparison of hardware cost per frame...

. 6-5 Comparison of different implementations



1. Introduction

1.1. Background

Bilateral filtering [1] is a special image smoother which can remove small-scale
texture or noise while preserving large-scale structure or edges. The judgment to be
noise or edge could be determined by an easy-tuning parameter. The ability of easily
separating small-scale and large-scale contents makes bilateral filtering be more
widely used than a typical smoother, such as joint bilateral filtering. Joint bilateral
filtering, which is a variety of bilateral filtering combined with a guidance concept, is
associated with more widely applications such as up-sampling [2], adaptive support

weight [3], and even 3-D related processing [4] and MPEG standard [5].

The challenge of real time implementation for bilateral filtering is the high
computational complexity of its window processing. Many algorithms have been
proposed to reduce the complexity. In the thesis, we category them into two
approaches: support-pixel-first approach and target-pixel-first approach. In previous
work, the support-pixel-first approach was implemented through GPU programming,
and achieved real-time speed. However, GPU hardware is general purpose platform
and not a dedicated low-cost implementation for embedded applications. Therefore,
VLSI hardware implementation is a better solution to minimize hardware cost and

achieve real-time speed.

For VLSI hardware implementation, the support-pixel-first approach requires a
frame-scale-magnitude memory, but it can not be reduced because of its iterative

process by frames. On the other hand, the target-pixel-first approach also suffers from

1



frame-scale-magnitude memory requirement. Nevertheless, the cost is likely to be

reduced since its progressive process with pixel-by-pixel order.

1.2.Motivation and contribution

Motivated by the high memory cost in joint bilateral filtering, this thesis proposed
efficient hardware architecture based on integral histogram algorithm of the
target-pixel-first approach. The goal is to build a dedicated hardware for low memory
cost real-time joint bilateral filtering.

The major contributions of this thesis are three.

1. Based on integral histogram based joint bilateral filtering, we proposed three
memory reduction methods to significantly reduce the memory cost. This
makes integral histogram based. joint bilateral filtering suitable for simpler
on-chip memory based implementation in ASIC.

2. We propose an efficient hardware architecture which can efficiently process
parallel operations and achieve high throughput.

3. We implemented the low memory cost real-time hardware of the proposed

architecture with the three proposed memory reduction methods.

1.3. Thesis Organization

Chapter 2 briefly introduces bilateral filtering and its applications. Chapter 3
introduces the acceleration algorithms for bilateral filtering. Chapter 4 discusses the
design challenges of integral histogram based joint bilateral filtering. To solve these
challenges, Chapter 5 proposes three proposed memory reduction methods, and
Chapter 6 proposes an efficient hardware architecture. Finally, Chapter 7 gives the

conclusion of this thesis.



2. Introduction of Bilateral Filtering

2.1. Overview

Bilateral filtering (BF) is primary adopted in image processing for de-noising.
With BF’s de-noising (or smoothing), the object edges and borders of image are
preserved. As a result, BF becomes popular because it can provide a no-blur clear
result. Moreover, the edge-preserving capability enables us to adapt BF for many
advanced applications such as texture editing, tone management, demosaicing,

stylization, and optical flow estimation [6].

2.2.Bilateral Filtering

BF, originated by Tomasi and Manduchi [1], is defined as,

qusch_quqlc _]qwq
qusch_quqlc _Iq‘) |

BF(I), = (2.1)
where ¢ is the target pixel, and ¢ is the support pixel surrounding to c. For ease of
computing by typical row-column rectangular image file format, the support pixel g is
usually taken from a square window S centered at ¢. Both the intensities of ¢ and g, 1.
and /,, is in the range domain R from 0 to 255 for gray-level. In this equation, 7, are
accumulated and normalized with two weighting kernels, the space kernel fand the
range kernel g. Both f and g are usually chosen as low-pass functions with the

arguments of space distance |c-g| and intensity difference |.-1,], respectively.



color

color

g(|]c’[q|)

(©)
Fig. 2.1. Hlustration of space kernel fand range kernel g of BF

(@) 1-D space-color domain, (b) weighting by £, (c) weighting by g,(d) combined

weighting by fand g

O

.
-

[

[
e )

color

» space

\
L A

P space
[T T 1117
B C D E

A

C

Fig. 2.1 shows how kernel function f'and g influent the weighting value for support

pixel g. In Fig. 2.1 (a), for ease of show, we take one-dimension (1-D) image as spatial

domain on x-axis and project intensity domain R onto the y-axis. Fig. 2.1 (b) shows

that Gaussian function with argument space distance |c-g| is a low-pass filter; it gives

higher weight on near-c support pixels and lower weight on farther ones. It is intuitive

that the farther ¢ is away from target pixel ¢, the smaller its impact should place on

the final result. On the other hand, similar weighting mechanism is placed on the

intensity difference of ¢ and ¢. Fig. 2.1 (c) shows that Gaussian function with

argument |/.-1,| gives support pixel higher weight if its intensity is similar to 7. This is

also intuitive to realistic situation: two nearby pixels with similar intensity are likely

4



belongs to the same object. To multiplying the two function’s effect as Fig. 2.1 (d)
shows: the point 4, B, C, D, and E are regarded as outliers with zero weighting.
Especially notes that point B is an outlier regarded by kernel g though it is adjacent to
c. Similarly, point C is an outlier regarded by kernel f'though its intensity is /. That is
to say, either ¢ is far away from c or /, is dissimilar to /., the impact of ¢ will be

negligible.

(@)

(b)
Fig. 2.2. Smoothing Results
(a) Gaussian filter, (b) Bilateral filter

Before Tomasi [1] et al. proposed BF, the most typical smoother was Gaussian
filtering (GF) or other low pass filtering. The typical smoothers suffered from
blur-effect because they only considered space kernel. Many algorithms have
proposed to eliminate this effect. Tomasi added a range kernel into GF to be BF; this
is a simple but effective method. Fig. 2.2 compares BF with GF to show that the range
kernel is the key component for edge-preserving. In Fig. 2.2 (a), GF is used to remove

the chessboard-like noise in the dark area of the left image. The right image is its



result. It is obvious that GF produces smooth result on the pixel far from the edge (the
area around the green pixel), whereas it produces blur effect near the edge. This
because GF is blind to entirely different colors across the edge; it still mixes all colors
within its window though the window steps across the edge. Therefore, in the output
result, it appears a blur area at the both sides of the edge. Fig. 2.2 (b) shows that BF
doesn’t produce blur effect because its window doesn’t step on the both sides of the
edge to mix entirely different colors. As shown by the red window, the window of BF
is trimmed by the edge because the bright-side pixels, which have entirely different

color from the center color, are regarded as outliers by its range kernel.

g(l-1,)

Outlier Outlier

|

|

|

|
1.-30, 1. 1.+30,
40—3@— —35,—» ?

Fig. 2.3. Gaussian kernel’s bandwidth

There is a parameter o, determining the degree of edge-preserving. It is defined by
the Gaussian function equation,

2
11,

20',.2
g(1.-1,)=4e : (2.2)

where 4 is a constant. As shown in Fig. 2.3, the Gaussian kernel’s bandwidth extends
by about 3 times of o,. Outside the bandwidth, the value of g drops to below 0.01
which is negligible compare with the center weight. Any support pixel ¢ with color
outside the bandwidth will be regarded as the outlier. As a result, any edge with lager
color difference will be reserved (As last paragraph illustrates, this kind of edge trims
kernel.). On the other hand, any edge with smaller color difference is blurred or

smoothed as the noise.



(@) (b)

(©) (d)

Fig. 2.4. Smoothing results of BF with different range parameter oy
(a) noisy image, (b) 0,=25, (c) 0,=100, (d) o= very large (GF).

Fig. 2.4 shows smoothing results of BF with different parameter o, choices. For, the
given noisy “Lina” shown by Fig. 2.4 (a), the value 25 is the best choice for o, to
separate noise and edges. If o, becomes larger as Fig. 2.4 (c), more edges are also
regarded as noise so that only the image structure is reserved. If o, is further set to a
very large value, BF will be simplified to GF because the color kernel becomes a

constant function. As shown in Fig. 2.4 (d), the blur effect is obvious.



2.3.Application

We will recall applications of BF in this sub-chapter. They are mainly classified

into de-noising, texture and illumination separation, and joint BF.

2.3.1. De-noising

De-noising or smoothing is the primary goal of BF. Other than being applied for
2-D image smoothing, it is also adapted for video processing and 3-D mesh
smoothing. And many de-noise-related applications, such as flash and no-flash Image

correction, are constantly proposed.

For video application, Bennett et al. [7] introduced BF into temporal smoothing.
He assumes that the pixel variations in the temporal related same scene point over
frames are affected by zero-mean noise. GF is used to reduce the noise level but it
produces artifacts on moving object. Using BF instead can avoid these artifacts. For
3-D mesh smoothing, Jones et al. [8] and Fleishman et al. [9] simultaneously
presented two similar approaches to adapt BF in the higher-dimension space. In the
higher-dimension space, window computations for both kernels become more
complex. Geometry properties such as mesh normal, projection, etc., are considered

carefully.

On the other hand, in de-noise-related applications, Eisemann and Durand [10]
used BF for flash and no-flash image correction. For a no-flash photo of a dark scene,
although its illumination is correct, it has low signal-to-noise-ratio (SNR) that leads to
inaccurate edge detection. However, a flash photo of the same scene has high SNR
and higher discrimination of colors but it suffers from incorrect hard direct

illumination. As shown in Fig. 2.5 [10], BF is used to smooth both photos for

8



de-noising and information extraction. BF helps departing their small-scale details
and large-scale structure (This will be further discussed in 2.3.2). Finally, information
from flash and no-flash photos is combined to form the final result without noise and
with correct illumination and structure. Petschnigg et al. [11] also has proposed a

similar correction algorithm based on this approach.

NO FLASH

co;or intensity col;r

large scale large scale

<

shadow
treatment

et .

Fig. 2.5. Flow of flash and no-flash image correction [10]

2.3.2. Texture and illumination separation

Oh et al. [12] used BF as a separation algorithm to extract image texture and
illumination component. They are motivated by the fact that in typical image, the
illumination variation typically occurs at a large scale structure than small scale
texture patterns; therefore, they proposed an approach using BF with suitable range
kernel g to remove small-scale texture and preserve the large-scale illumination

component. Simultaneously, the removed small-scale texture can also be extracted by



subtracting the large-scale component from origin image.

With the concept of above separation algorithm, Durand and Dorsey [13] isolated
texture component from naive intensity compression in tone mapping of
high-dynamic range (HDR) image for low dynamic range display. This approach
prevents the details in small scale texture being removed during compression. Other

algorithms addressed in [14] and [15] also use the similar aspect.

2.3.3. Joint Bilateral Filtering

The BF used in the flash and no-flash image correction by Eisemann and

Dorsey [10] is defined specially with the following equation,

Y., =gz =10,
qusch_quq]c _Iq‘)

JBF(J), = (2.3)
where / is a guidance image, and J is‘another source image. Through the range kernel
g, the guidance image 7 could identify and suppress outliers for de-noising the source
image J. To emphasize that it joints guidance image influence into target source image,
this specially defined BF is renamed as joint bilateral filtering (JBF).With this
characteristic, JBF has been adopted in another flash and no-flash algorithm [15],

image de-nosing [16] and disparity-map fusion [17],[18].

Further extending the applications of JBF, Kopf et al. [2] proposed the joint bilateral
up-sampling that employed a high-resolution / to enlarge a low-resolution J for various
image processing, such as tone mapping, colorization, disparity maps [19]-[21],
demosaicing [22], texture synthesis [23]. A variety of JBF is the adaptive support
weight (ADSW), a matching cost aggregation approach, proposed by Yoon and

Kweon [3] for disparity estimation in 3D image processing. The disparity estimation is

10



based on matching corresponding pixels in different view frames. To increase
matching correctness, disparity estimation uses filter-like convolution to aggregate
support matching costs for target pixel. The ADSW employs the space and range
kernels into aggregation to deliver better disparity maps than that produced by the
traditional box filter. The concept of ADSW is further advanced in the disparity
estimation algorithms of [24]-[28], and is also adopted by the developing MPEG

standard, 3D Video Coding [5].

2.4. Summary

BF is an edge-preserving filter. Its parameter o, in range kernel can determine the
discontinuity in images to be either large-scale structure or small-scale texture (noise).
The characteristic makes its application-more than the primary goal of de-noising such
as illumination and texture separation and JBF. Furthermore, with the guidance
concept of JBF, BF applicable algorithms can be extended to various fields, such as

disparity estimation for stereo process, up-sampling, and even the MPEG standard.

11



3. Related Work

Within BF applications, stereo processing is increasingly important in recent years.
Many 3D-related entertainments, facilities, and industrials are pouring or on the
horizon. Under this circumstance, BF and JBF must be ready for its potential
real-time requirement of image and video processing. However, the big challenge
for BF is its computational complexity in window computation. By brute-force

implementation, BF takes extremely long running time on huge operations.

Target-pixel-first Support-pixel-
approach first approach
NS NS
1 g S e

S S
(a) (b)

Fig. 3.1. Classification of acceleration approaches

Various acceleration approaches for BF have been proposed, and can be classified
into two categories: target-pixel-first approach and support-pixel-first approach,
according to their computational characteristics, as illustrated in Fig. 3.1. The
target-pixel-first approach is an aggregation process that focuses on a target pixel ¢ and
accumulates its support pixels g. On the other hand, the support-pixel-first approach is a
diffusion process that regards a support pixel ¢ as a center to diffuse for its target pixels

c. With the classification, the milestone algorithms are listed in TABLE. 3-1.

The computational complexity and memory cost of the milestone algorithms are

12



also compared in TABLE. 3-1. Note that the former is shown by amount per pixel and
the latter is shown by amount per frame. With this table, it is easy to approximate real
amount of computations and memory cost of these algorithms for any size of target
image. Take the brute-force implementation for example, referring to (2.1), for each
pixel result, BF aggregates support pixels in the window §S; therefore, the
computational complexity is O(|S|?) which is associated to window size. This means if
it processes an HD1080p image with a 31-pixel window width, the amount of
required computations should be at the order of 2 billion (31°x1920x1080). By

software, the computationally expensive implementation takes minutes for a frame.

In the rest of chapter, we introduce the acceleration algorithms. In 3.1 and 3.2,
support-pixel-first algorithms and target-pixel-first algorithms are introduced,
respectively. Finally, in 3.3, we explain how we select algorithms from them for our

proposed architecture design and implementation.

TABLE. 3-1 Comparison of computational complexity and memory cost in related

work
Approach Computational Complexity Memory Cost
(per pixel) (per frame)
Brute-Force All o(S)°) 0
Support Basic LUT Construction O(R|) JMN
Pixel 2-D Conv. by FFT 0O(|S|log|S))
First Durand and  Piecewise-linear LUT Construction O(|R|/s,) 2
Dorsey [13]  Subsampling ~ 2-D Conv. by FFT 0(1SV/s log(|S|/5%) AN
Yang et al. Piecewise-linear LUT Construction O(|R|/s,)
[29] 2-D Conv. by Approx. O(1) 4MN
Gaussian
Paris and Bilateral Grid  LUT Construction O(|R|/s,) 2
Durand [30] 3-D Conv. by FFT O(S|IRV/(5,5)1og(|S||R|/(5,5,°) MNIR/(s,s5)
Target | Phamand Vliet Separable 1-D Aggre. for Col.  O(|S)) 0
Pixel [31] 1-D Aggre. for Row  O(|S))
First Basic Histogram Histogram Calculation O(|R||S|°) 0
1-D Conv. O(R])
Huang Extended Histogram Calculation O(|R||S]) ISIIR|
[32] Histogram 1-D Conv. O(|R|)
Weiss Distributed Histogram Calculation O(|R|loglS|) SIIEIR]
[33] Histogram 1-D Conv. O(R|)
Porikli Integral Histogram Calculation O(|R|/s,)
[34] Histogram 1-D Conv. O(|R|/s,) MNIRY/s,

M: frame height, N: frame width, |S|: window width, |R|: intensity range
sy quantization factor for S, s,: quantization factor for R, E: extension pixel count

13



3.1.Support-pixel-first Approach

Within support-pixel-first milestone algorithms, Durand and Dorsey’s piece-wise
linear [13] is the first acceleration algorithm; Young’s algorithm [29] and Pairs’
algorithm [30] are partially related to it. Yong’s algorithm is boost of its constant time
speed (independent of window width) and Paris’ algorithm proposes a brand-new

spatial-intensity space.
3.1.1. Piece-wise linear algorithm and Yong’s algorithm

The range kernel makes BF nonlinear to spatial space; therefore, any spatial filter
acceleration approach such as Fast Fourier Transform (FFT) doesn’t help to speed up
BF. Instead of directly using the nonlinear equation of (2.1), Durand and Dorsey [13]

approximate BF with a serial of frame-scale look-up tables (LUTs) defined as follows

> Sc=aeli=1,),
Y, le=dleli=1.])
Y Sl
2/ e—dlla;

each of which associates to an intensity j that replaces the /. of (2.1). The FFT can

LUT(j), =

(3.1)

qeS

accelerate the computation of (3.1) since both its numerator and its denominator
become linear Gaussian convolution. The overall process includes two steps; at first,
for every full-scale intensity j, its LUT is computed; that is, for a typical 8-bit image,
256 LUTs should be computed and stored. Second, for every pixel, its result is picked

up from its intensity corresponded LUT by the following equation,

BE(I), = LUT(j). , ifl.=j 3.2)

Besides, instead of using full-scale intensities, Durand and Dorsey [13] propose

14



piece-wise linear algorithm to reduce the number of LUT. With a quantization factor
s,, it only computes the LUT corresponds to intensity equals s, or its multiples. And

the result-picking function is rewritten as

LUT(j)., il =j
BF(I), = . (33

J LUT(j)C+ c (] Sr)LUT(j_S},)C,lf"]_S" <1(: <_]
S

r r

With (3.3), for the pixel without intensity corresponded LUT, its result is computed by
bilinear interpolation of two LUTSs of the most similar intensities.

Durand and Dorsey [13] further introduced a fast piecewise-linear algorithm with
spatial space sub-sampling (quantization). The major computational complexity is
O(|(S|/ss")log(1S|/s5°)) per pixel in 2-D FET, where s, is a spatial quantization factor.
The memory requirement is huge with cost 4MN/s;’ since at least four frame-scale
data, #/, G/, partial result of LUT(;) and previous result LUT(j-s,), are required under
the implementation of runtime updating LUT intensity by intensity [13].

Mostly based on piece-wise linear algorithm, Young et al. [29] used Deriche’s
recursive method [35] to approximate Gaussian convolution of (3.1). They shows that
this recursive method is able to run in constant time and the results are visually very
similar to the exact. Therefore, the convolution process is reduced to O(1) complexity;

and thus the major complexity of BF becomes O(|R|/s,) of LUT construction.

3.1.2. Bilateral grid

Paris and Durand [30] reformulated gray-level BF with a brand new 3-D space,
bilateral grid. By their algorithm, it takes three steps to process BF; they are bilateral

gird construction, 3-D Gaussian smoothing, and result extraction.

15



For bilateral grid construction, given a 2-D image, the first two dimensions of
bilateral grid will correspond to the image spatial position (x,y) and the third
dimension corresponds to the pixel intensity /.. At the position (x,y,/.), an non-zero
element is constructed. With all elements are constructed, in the second step, BF is

computed by a 3-D defined Gaussian smoothing to associate weights w with

intensities 7 and finally store each element with a vector (> wr,»’ 7). Because in

bilateral grid the intensity is defined as an independent dimension, BF is linear for the
3-D Gaussian smoothing. Finally, in the result extraction step, the first two

dimensions of bilateral gird correspond back to the position of 2-D image and set

intensity there with the value, > wr /> 1.

Paris and Durand further reduced the computational effort by down-sampling the
three dimensions of bilateral grid with the spatial quantization factor s, for the first
two dimensions (spatial position) and the range quantization factor s, for the third
dimension (intensity). The computational complexity of the algorithm is
O([IS|IR\/(srss")[log(|S||R|/(srs5°))]) of Gaussian smoothing. The memory cost is

MNIR|/(s,s5°) for storing the whole bilateral grid structure.

Following the bilateral grid scheme, Chen [36] further mapped this algorithm to
GPU hardware, obtaining real-time processing for several megapixel images. In

addition, Adams et al. [37] adopts the Gaussian KD-tree to improve its speed.

3.2. Target-pixel-first Approach

In TABLE. 3-1, the target-pixel-first algorithms can be mainly classified into two
kinds of approaches: one is separable approach [31] and the other is histogram-based

approach [32]-[34]. The separable approach uses two consequent 1-D BFs to speed up

16



the computation; Histogram-based approach uses range aggregation instead of spatial
aggregation by histogram represented BF. Within its acceleration algorithms, integral

histogram let the speed of BF implementation be independent of window width |S].

3.2.1. Separable algorithm

Pham et al. [31] proposed this algorithm to approximate 2-D BF by two
consequent 1-D BFs which computed by brute-force implementation: pixels within a
row (column) are accumulated one by one and finally normalized. At first, by
performing 1-D BF to all rows and their results make up a single column; and then, it
performs 1-D BF again to the column for the final result. The computational
complexity of separable algorithm is reduce to O(|S]|) per pixel because 1-D window
with length |S] is used for 1-D BF. Though it is significant faster than the brute-force
implementation, the performance degrades linearly with window size. In addition, its
axis-aligned 1-D BF makes it not suitable for the target image with complex patterns

since its result suffers from the axis-aligned artifact.

3.2.2. Histogram & Huang’s algorithm

The histogram-based approach could reduce computation without significant

quality degradation. The histogram representation of BF is defined as

el -1k,

>, el -1))

DI SIN 1)

DY ) (34
>, Lell _b|)b21q=b1] DI 1) A )Y

DR 2R)) S| R S [ X )

17

BF(I), =




where /. is the pixel count histogram of the window S centered by c as illustrated in Fig.
3.2. The key point of these approaches is to convert its convolution from the space
domain S to the range domain R, as shown in the summation index of (3.4). Thus, its
computation includes two parts: histogram calculation and 1-D convolution. In the
histogram calculation for 4., each support pixel ¢ in S is classified by its intensity and
accumulated into its corresponding bin &. In other words, 4.(b) refers to the number of
support pixels with the intensity b in S. Note that the number of bin N, is 256 for the
exact result of typical 8-bit gray-level. In the 1-D convolution, (3.4) can be calculated
with the given 4. For the basic histogram-based approach, the major computational

complexity is O(|R||S|?) in the histogram calculation.

he(b)

S E——
K
C o’ ]70' =n - f]_ 7L]1+
ettt I

Fig. 3.3. Concept of Huang’s algorithm

To speed up the histogram calculation, an early proposed Huang’s algorithm [32]
can be applied. As shown in Fig. 3.3, windows of two consequently-processed pixels ¢

and ¢’ are almost overlapped each other; therefore, the window histogram #.- can be

18



updated from the processed window 4. by two row histograms. The computational
complexity associates to the row histogram is O(|R||S|) which is significantly faster
than the basic histogram approach if |S| is large. However, it spends extra memory

cost with size |S||R| to store row histograms on overlapped region.

3.2.3. Weiss’ Distributed Histogram

Based on Huang’s algorithm, Weiss [33] proposed a distributed histogram
approach that reassembles the histogram calculation of each row. The approach not
only reuses histograms in vertically process direction, but it also reuses data
horizontally during processing many column pixels together. Fig. 3.4 (a) illustrates an
example of 5-column-parallel process during which Weiss algorithm keeps nine
distributed histograms: 4., which associates to the window of pixel e, and column
histograms /,-hs. Window histograms associate to targets c, d, f, g are computed from
these nine histograms as shown by Fig. 3.4 (b). In horizontal, the approach can be
extended for more parallel columns with different set of distributed histograms. On

the other hand, in vertical, these distributed histograms update by Huang’s algorithm.

Based on distributed histogram approach, Weiss further introduced hierarchical
approach. Fig. 3.5 [33] shows an example of hierarchical distributed histogram which
has yellow, orange, and red, totally three coarse-to-fine tiers. This hierarchical
approach can reduce computational complexity to near O(|R|log|S]|). For the memory
cost, the approach uses Huang’s algorithm so that it also needs memory to store
histograms. Furthermore, since histograms are distributed, the memory cost grows
larger to |S||E||R|, where E associates to how many distributed histograms are used in

parallel.

19



cdBf g @
|
|

\ ]75 ]1\:;:]16 +]Zj-fig
@ hy=h.+h; - hs
hs bs Br=h. + By - hs
ﬁ - by =he+hy- b7

(@ (b)

Fig. 3.4. Concept of Weiss distributed Histogram:
(a) distributed histograms, (b) computations of target histograms

1 =

' Immlllmm |

%‘E‘ "ﬁmn._;mm |
¥ |
d

E_‘Tl" o

RO |

iilllnniu!ﬂ"ﬂ ‘e

i g

Fig. 3.5. Three-tier hierarchical distributed Histogram [33]

3.2.4. Integral Histogram

1mage space

O\ [H / image space [H space
[ | 0 O
% 5 X
IR ]
RS /
\\_}
04,8+ 252(r=4)
(@) (b) (c)

Fig. 3.6. Concept of integral histogram

(@) Integral origin O and integral region (IR), (b) integration process, (c) an integral

histogram of pixel X of the IH space
20




Porikli et al. [34] proposed this algorithm to make the computational complexity
of histogram calculation independent of window size. The construction of integral
histogram (IH) is like a space transformation process from a 2-D image space to a 2-D
IH space. Prior to processing the transformation, we have to decide an integral origin
O and an integral region (IR) as illustrated in Fig. 3.6 (a). Fig. 3.6 (b) shows that
during the transformation with raster scan process from O to the end of IR, each pixel
of 2-D IH space is given an IH. Fig. 3.6 (c) illustrates that the given IH at any pixel X
is actually a guantized histogram (with quantized factor s,) for a 2-D image space
region stretches from O to X. Porikli et al. showed that quantized histogram doesn’t
suffer from severe quality degrading for BF result; therefore, the number of histogram
bins can be less than the number of intensity levels. In overall, the integration process’
computational complexity is O(|R|/s;) of pure histogram operations. And other details

will be further discussed in Chapter 4.1.

In IH space, arbitrary window histogram (as long as the whole window is within
the IR) is computed from linearly combination of its four corner integral
histograms ;therefore, the computational complexity is reduced to O(|R|/s,) that is
independent of window width |S|. The integral histogram approach can be faster than
the brute-force approach when |R|/s, is smaller than |S|°. That implies this approach is
suitable to be applied when BF has large window size. In term of computational
complexity, this algorithm is the state-of-art of the target-pixel first approach. But its
memory cost is large with amount MN|R|/s, because of the frame-scale-magnitude
process, where MN is the area of the image. Other details of the extraction process are

also discussed in Chapter 4.1.

21



3.3.Summary

In comparison, the support-pixel-first algorithms are iterative processed by frames
and the target-pixel-first algorithms are progressive processed pixel-by-pixel in raster
scan. For computational complexity, Young’s algorithm of the former and Porikli’s
algorithm of the latter achieve constant time of O(|R|/s,). They both suffer from high
memory cost because of frame-scale-magnitude LUTs and histogram storage,
respectively. In terms of implementation, the support-pixel-first approach is more
suitable for multi-color-channel computing since they are defined by a
multi-dimensional space. For the realization of gray level process, the
support-pixel-first has achieved real time in GPU hardware and target-pixel-first
approach is implemented by software program. However, we still choose
target-pixel-first approach because its memory cost is likely to be reduced and other

details are discussed in the next chapter.

22



4. Analysis of Integral histogram based JBF

The support-pixel-first approach can achieve real time process with GPU
hardware. As mentioned before, GPU implementation is a general-purpose hardware.
Although it may be implemented in embedded or source-restricted system, it still cost
expensive. For a specified low cost implementation, VLSI implementation may be a
more proper candidate. In addition, both support-pixel-first and target-pixel-first
approaches suffer from high memory cost; however, the cost of the latter is likely to
be reduced by taking advantage of its progressive process, whereas the cost of the
former must be frame-scale-magnitude because of its iterative process by frames.
Therefore, in the thesis, we focus on VLSI implementation of target-pixel-first

approach for BF or JBF. Within its algorithms, integral histogram is the state-of-art.

To combine integral histogram and JBF, Ju and Kang [38] modified (3.4) to

qusgq]c _14‘)111
qusgqlc - Iq‘)
ZbeR [Z1q =b gqlc B b|)]q ]

= . (41
ZbeR [Zlq=b gqlc _b|)] o
3 ZbeR[gqlc _b|)21q:qu] 3 Zbequlc —b

DI AR SR YA (A

JBF(J), =

)i ()
Jr. (b)

Different from (3.4), the histogram in the numerator is the pixel intensity histogram 4.
that accumulates the pixel intensity for each bin, instead of the pixel count in 4. In this
chapter, we introduce the integral histogram approach in details, and then analyze the

design challenges of integral-histogram-based JBF, which can also be applied to BF.

23



4.1. Integral histogram based JBF

TABLE. 4-1 Computational flow and complexity analysis for each pixel in the
integral histogram based JBF

Complexity BW for BW for
Process (operation) IH pixel
(data) (data)
Integration process:
Pixel count histogram 4,
Loop 5=0 to N,-1
THS(b)=IH2(b) +IH R (b)-IH L (b) ADD: 3N, AN
THS(Is) += 1 ADD: 1 b
Pixel Intensity histogram 4,
Loop 5=0 to N,-1
TH(b)=IH2(b)+IH " (b)-IH," (b) ADD: 3N, AN
TH (L) += J, ADD: 1 b 2 pixels

Extraction process:
Pixel count histogram 4,
Loop =010 N,-1
h(b)=IH"(b)+IHy" (b)-IH 5 (b)-IH, (b) ADD: 3N, 4N,
Pixel Intensity histogram 4.
Loop =010 N,-1

h(b)=IH,(b)+IH " (b)-IH 2 (b)-H, (b) ADD: 3N, 4N,
Kernel calculation process:
Loop b=0 to N,-1 ADD, LUT:

G(b) = g(l1-b]) N, 1 pixel
Convolution process:
Nu=0, De=0 MUL, ADD:

Loop 5=0 to N,-1 Ny

De += G(b) X h(b) MUL, ADD:

Nu += G(b) X h’«(b) N,

Result = Nu / De DIV:1 1 pixel
Total 17N,+3 16N, 4 pixels

TABLE. 4-1 presents the computational flow and computational analysis of the
integral histogram based JBF to calculate 1-pixel result, which consists of the
integration, extraction, kernel calculation, and convolution processes. In which, the
former two are for the histogram calculation step, and the latter two are for the 1-D
convolution step. Especially note that these processes, for each pixel, should compute
for all bins of related histograms; therefore, their complexity and bandwidth for

integral histogram (bandwidth for IH) are the multiple of the number of bin, N.

For ease of explanation, we use the area view (image space) to show how this

24



approach operates and the memory view (IH space) to show the memory usage, as
illustrated in Fig. 4.1 (). In the area view, IH," is a histogram of the rectangular area
stretched from the pixel O to X. Thus, the addition and subtraction of IH can be
regarded as area merging and cutting, respectively. In the memory view, the data of
IH," are stored at X, and the gray region represents occupied memory usage. With these

representations, Fig. 4.1 (b) and (c) illustrate the integration and extraction processes.

hio+ Ma-ha+  o=Hi
Jﬂﬂ IH IHX IHG Bin(l) IHY
IH,
Y ]
IH,* i
Area view Area view Area view
Integration process Extraction process
X
o o
RIS
Memory view Memory view Memory view
(a) (b) ()
Fig. 4.1. Concept of integral histogram approach
(a) representation of an integral histogram, (b) integration process,
(¢) extraction process.
First, the integration process progressively calculates the IH of each pixel using the
equation,

IHS =IHS +IHE —IH] + Bin (1) 4.2)

For the pixel count histogram 4. and the pixel intensity histogram /4., their IHs are

25



computed separately as shown in TABLE. 4-1. The histogram /H,° is computed from
linearly combination of three exist integral histograms and a histogram of the target
pixel Is. We show the target pixel histogram with the notation Bin(ls) because the
histogram must be a one-hot histogram. For 4., Bin(Is) is 1 for the corresponding bin
and O for others; on the other hand, for %, this term is J, for the corresponding bin, and
also 0 for others. Adding the one-hot histogram updates only the bin corresponding to
Is so that, as shown in TABLE. 4-1, it is perform outside the loop. After this process,

the IH of each pixel is produced and stored into memory.

Second, given the IHSs, the extraction process can extract k.. or ., the histograms of

the window ABCD, which is centered by the target pixel ¢, is defined by equation,
hoorh',=H pop =IHE +IH} =1H] - IH (4.3)

As shown in Fig. 4.1 (c), a histogram with arbitrary window size can be obtained by
using the IHs of four corners. With this property, the integral histogram approach can

reduce computational complexity to O(|R|/s,) which is independent of window size.

Third, the kernel calculation process computes the range kernel by a range table,
which includes 256 items for the 256 possible values of |I.-5|. Finally, given the range
kernel g and the histograms 4. and % ., the convolution process calculates the result of

target pixel ¢ by (4.1).

4.2.Design Challenge

Since the complexities listed in TABLE. 4-1 are pixel wise as well as bin number
dependent, they will grow quickly, as shown in Fig. 4.2, as resolution and bin number

grow. The detailed design challenges are described below.

26



(Mbyte) Memory Cost

1800
1600
1400

1200 " +**
1000 [ 820.4MBONHDI0BOp G4
800 “;ii?

600 oo
_o0*
400 +**
200 ot®
TS24
0 +®
0 0.5 1 15 2 25 3 35 4

Frame Resolution (Mpixel)

(@)

Operations

(Mtimes)
5000

4500
4000

3500

3000 &

2500 i

2000
1500

1000
500
0 el

0 0.5 1 15 2 2.5 3 35 4

Frame Resolution (Mpixel)

()

Bandwidth for IH

(Gbit)
250

200 Vo g

150

106.168 Gbits on HD1080p

100

50

0

0 1 2 3 4

Frame Resolution (Mpixel)

(©
Fig. 4.2. Analysis of Design Challenges over frame resolutions

With N,=64; (a) Memory cost, (b) Operations, (c) Bandwidth for IH

27



4.2.1. High Memory Cost for integral histograms

During the integration process, all the IHs of whole image are stored in memory.
BF needs a frame-scale-magnitude memory for 4., and JBF additionally needs another

one for #’.. Therefore, the total memory cost of JBF is
MN - N,w, + MN - N, (w, +8) (4.4)

where the former term is for 4., and the later term is for #’.. M and N is the frame height
and width, N, is the number of bin, and w; is the bit width of a bin. Note that wj is
related to the maximal integral area, and its value equals log,(MN). In addition, the bit

width of %’ is more than 4. by 8 bits because pixel intensity is 8 bits.

Above memory cost would be 829.4 Mbytes for the HD1080p resolution as listed
in Fig. 4.2 (a) and TABLE. 6-4. For a VVLSI design, these massive data could be
configured into off-chip memory (i.e. DRAM) or on-chip memory (i.e. SRAM).
However, compared to the on-chip memory, the off-chip memory suffers from longer
access latency due to its complicated controlling mechanism [39], and limited
bandwidth usage due to bus sharing by multiple masters. Hence, our strategy for the
high memory cost is to reduce the memory requirement and enable data to be stored in

on-chip memory for fast implementation.

4.2.2. High Computational Complexity in All Processes

According to the complexity in TABLE. 4-1, generating 1-pixel result needs
15N,+2 additions, 2N, multiplications, and 1 division. If N, is 64, the total complexity
will be 2,262.3 million operations for an HD1080p image as shown in Fig. 4.2 (b). To

meet above demands, a VVLSI design with sufficient parallel operators is necessary.

28



4.2.3. High Bandwidth in Integration and Extraction

In TABLE. 4-1, the bandwidth for IH requires 16N, for 1-pixel result, and that will
reach 106.168 Gbits for an HD1080p image as shown in Fig. 4.2 (c) and TABLE. 6-4.
That is because the IHs are accessed frequently. With the strategy for the memory cost
problem, the IHs are stored in on-chip memory, and its data bus should be increased to
address the high bandwidth problem. However, it results in over-partitioned memory

and increased area. Thus, a method which can reduce the bandwidth is needed.

4.2.4. Large Range Table in Kernel Calculation

In the kernel calculation process, a range table with 256 items is needed. However,
with the parallel operations for the computational complexity problem, this table
should be duplicated. By straightforward implementation, 256 range tables, each of
which corresponds to 256 possible values of (/.- Z;), must be available for parallel
operations. Both the size (number of items) and the number of the range table result

in large area; therefore, a table-reduction method and a table-reuse method are needed

4.3. Summary

In conclusion, for example of the HD1080p image, the integral histogram approach
needs the memory cost of 829 Mbytes and the bandwidth of 106 Gbits per frame. In
addition, the Porikli’s approach still suffers from high computational complexity of
2,262 million operations even though it has been accelerated by integral histogram
approach. Moreover, the 1-D convolution needs a large range table with 256 items for

the range kernel. Due to above problems, it is hard to achieve a real time performance

29



and thus demands VLSI hardware acceleration. In the next chapter, we will introduce
our proposed memory reduction methods. And then in Chapter 6, a VLSI

implementation with problem solving architecture will be addressed.

30



5. Proposed Memory Reduction Methods

5.1. Overview

To solve the high memory cost problem mentioned in last chapter, we propose
three memory reduction methods. First, the runtime updating method (RUM) takes
advantage of progressive raster-scan process to discard unnecessary data. Second, the
stripe based method (SBM) avoids frame wide memory cost by dividing each frame
into vertical stripes and processing them one by one. Finally, the sliding origin
method (SOM) lessens the storage data dependency of the original histogram
integration process to reduce the memory requirement from frame-scale-magnitude to
line-scale-magnitude. With these memory methods, the memory cost can be reduced to

0.003%-0.020%. The details of the proposed methods are described below.

5.2. Runtime Updating Method (RUM)

The concept of the RUM is to perform the integration process and the extraction
process at the same time, instead of two separate iterations in the original flow. Fig. 5.1
illustrates its memory configuration in the memory view. In Fig. 5.1 (a), the integration
process is performed from the integral origin O to D. In the meanwhile, the extraction
process can extract the histogram Hyzcp as shown by Fig. 5.1 (b). From the data
lifetime analysis for raster-scan, this is the last time taking IHy," into extraction
process. And all the IHs before the pixel 4 will not be used for extraction process
anymore. Hence, only the IHs from the pixel from 4 to D require memory space. Thus,

the memory cost is

31



|S|N-N,w,+|S|N-N,(w, +8) (5.1)

where M in (4.4) is replaced by the window width |S].

0] 0]
:
Integration Process .
b 1S Extraction Process
£ ' @
- N —»
Memory view Memory view
(a) (b)
0] 0]
[0l
D1S"
D] [R] S
Memory view Memory view
(©) (d)

Fig. 5.1. Runtime updating method (RUM)
(a) integration process, (b) extraction process for Hygcp, (C) integration process for S,

(d) extraction process for Hpogrs

Fig. 5.1 (c) and (d) illustrate the memory updating process when the two processes
moves right to the next pixel S. In Fig. 5.1 (c), the integration process calculates the
new [Hy" using IHo?, IH,", IH,® , and then the new IH,® can overwrite the memory
position of the discarded IH,". In Fig. 5.1 (d), the extraction process extracts Hpogs. On
the whole, in raster scan from integral origin O to the end of region, the proposed

RUM alternates between these two processes repeatedly.

32



With the proposed RUM, the memory cost could be reduced from a full frame to a

partial frame. This method can gain considerable reduction since |S| is usually much

smaller than M.

5.3. Stripe Based Method (SBM)

Stripe b\loundarK
I

Extended region

|

Stripe

emory view

-~
|

Wg

(a)
Fig. 5.2. Stripe based method (SBM)

|
|
|
|
|
|
|
|
|
|
|
|
I\}I,Iemory view
[}

-

112" ws !

1512

(b)

L

(a) partitioned-frame, (b) extended integral region for each stripe

?‘ipe bour%ry

Integral region boundary

Jocaaaaal

A B
ni__m

mo___
S S
|
|
S

Memory view

x/:/l/y Stripe pixel

0

Memory view

Fig. 5.3. Integral region of SBM is an extended stripe.

(b)

(@) four corner IHs for extraction process, (b) integration process.

The main idea of the SBM is to slice the whole frame into many vertical stripes, and




the integration and extraction processes are performed stripe by stripe. Fig. 5.2 (a)
illustrates a frame partitioned into stripes, and Fig. 5.2 (b) illustrates the extended

region for a stripe.

Fig. 5.3 (a) shows that, in the extraction process, some corner IHs, such as 4 and B,
are outside the stripe. Therefore, as shown in Fig. 5.3 (b), the integration process
should be carried out at extended region to make sure these outside-stripe IHs are
defined. On both stripe boundaries, the integral region (IR) is extended by half the
window width, |S]/2, to include the regions that can be traversed by window corners.

Note that these IHs are associated with new origin O’ instead of O.

As shown by Fig. 5.2 (b), the IR of each stripe is (|S|] + w, -1) pixels wide.
Compare with the original, the IR is reduced from a frame to an extended stripe; as a

result, the bit width w, can be smaller. The total memory cost of the SBM is
M( S |+w, =1)-N,w, + M (S| +w, —1)- N, (w, +8), (5.2)

where wy is the stripe width, and w;, equals logz[M(| S| +w,-1)]. Compared to the original
cost of (4.4), the SBM could significantly reduce memory if the stripe width,

(IS]+ws-1), is much smaller than N.

Overlapped IR

Memory view

=—

Fig. 5.4. Overlapped integration region between two adjacent stripes

The overhead of the SBM is that the extended regions result in extra computation

34



and bandwidth due to repeatedly performed integration processes on these regions as
shown by Fig. 5.4. Thinner stripes can reduce memory cost more, but that leads to more
overheads. Thus, the selection of wy is a tradeoff between memory reduction and

overheads. That will be discussed in Chapter 6.6.

35



5.4.Sliding Origin Method (SOM)

A B
0] 0
10 {
Area view Area view
(@) (b)
RN o) FEN(0)
i______Q:+ SH_
-/ ="
o o
| DS’
__________________ S
Area view
(©
_______ o’ | O
Y | il
I (o) B (o
(8 BO
0] §Q§
DS’
RN 243
Area view
(d)

Fig. 5.5. Sliding Origin Method (SOM)
(a) Sliding origin O, (b) extraction process with sliding origin O,
(c) integration process for next pixel S, (d) modified integration process

36



The concept of the SOM is to vertically slide the origin pixel O with the integration
and extraction processes to reduce memory cost from a plane to a single line. As shown
in Fig. 5.5 (a), the origin pixel O slides downward to keep pace with the top row of
the window ABCD. With the SOM, the integration and extraction processes can be

simplified as described below.

Fig. 5.5 (b) shows that, for the extraction process, the original IH," and IH,” cannot
form meaningful histogram rectangles in area view because the position of O is under
A and B. Hence, these two histograms are zero and (4.3) can be simplified as the

following equation,

H p=IH) +IH, —IH — IH

5.3
=IH) - IH§ 3)

Fig. 5.5 (c) shows that, for the integration process, the new IH,"® is computed by
IHS =IH) +IHS ~IH ) + Bin(I) (5.4)

However, the S” and D’ are on the previous row, and by SOM they should have been
defined by the previous origin O’ as shown in Fig. 5.5 (d), instead of O. Therefore, for
real process, the IHy," and IHy" in (5.4) should be changed to 7H,* and IHo" by the
following derivation, which is corresponding to the area view of Fig. 5.5 (d).
IHS =IH) +IH) —IH] + Bin(I)
= 10D +(1HS - IHS )~ (1HY — IH2 )+ Bin(I )

— H? +(1HS —(1H2 + Bin(1,) )~ (IHZ - IH2 )+ Bin(1,)
=1HJ +1H, — Bin(l,) - IHp + Bin(I)

(5.5)

Compare with (5.4), final line of (5.5) shows that only a slight change is required (it
adds the term of subtracting Bin(ly)) for the integration process to let the integral

origin slide from O’to O.

37



However, the slight change makes significant difference on the memory cost. With
above simplification, only the IHs of C, D, S’ and D’ are associated, and by the concept
of RUM, only a single row of IHs from D’ to D, requires memory space as shown

in Fig. 5.6 (a). Thus, the total memory cost is reduced as
N-N,w,+N-N,(w, +8) (5.6)

where wj, equals 1ogx(|S|N) since the maximal IR is |S|N as shown by Fig. 5.6(b).
Compared to the original cost of (4.4), the height dimension M is replaced by |S|, and

wy is much smaller because |S] is usually much smaller than image width M.

o o P
41 ICL = IISI L i
- > > < . >
Memory view Memory view

(a) (b)

Fig. 5.6. Sliding Origin Method
(a) Memory Cost, (b) Maxima integral region.

38



5.5. Combination

Stripe our%ry

Memory view Memory view

e
.4:'/—’/>/-:/
! I
. DSt I N
g b L_C
NI N
Extended Region boundary Extended Region boundary
(a) (b)

Fig. 5.7. Combination of memory reduction methods
(a) Memory Cost, (b) Maximum integral region

The proposed memory reduction -methods could be easily combined as shown
by Fig. 5.7 (a). First, the SBM partitions a whole frame into stripes. Then, by stripes,
the RUM and SOM are performed row by row. This combination can reduce the

memory cost to

(S|+w,=1)-N,w, +(S|+w, =1)- N, (w, +8) (5.7)
where w;, equals 10g2[|S|(|S]+ws-1)], |S](|S]+ws-1) is the area of maximum integral
region as shown by Fig. 5.7 (b). Compared to the original cost of (4.4), M is decreased
to 1 since the SOM reduces data dependency of the extraction process and the RUM
discards unnecessary data. Besides, N is decreased to (|S|+w;-1) since SBM cuts image
into narrow stripes. Note that in this memory cost formulation, N, and |S| are related to
the application quality, and wy is related to hardware performance. The analysis of

parameter selection will be further presented in Chapter 6.6.

39



5.6.Comparisons

Refer to the analysis in [34], we use the 31-pixel-wide window (i.e. |S] is 31) and
64-bin histogram (i.e. N, is 64). In addition, we choose stripe width as 60 pixel (i.e. w
is 60) as an example and compare the original memory cost defined by equation (4.4)
and the reduced memory cost computed by equation (5.7) for different frame
resolutions. TABLE. 5-1 shows that the reduced memory cost is independent of the
frame resolution. With above mentioned parameters, the memory cost is 23.04 Kbytes
constantly. The amount is 3 to 5 decimal magnitude smaller than the original memory
costs of different resolutions. For every resolution, other than the number of required
integral histograms is reduced from frame-scale-magnitude to a line-scale-magnitude,

its wy, is also reduced due to the IR reduction.

TABLE. 5-1 Comparisons of original and reduced memory cost
Cost Unit: Bytes
Integration region (IR) Unit: square pixel
Histogram bin bit width (w,) Unit: bit

CIF VGA HD720p HD1080p

Resolution (352x288) (640x480) (1280x720p)  (1920x1080p) AKxeK
Original cost 34.1M 113.0M 353.9M 829.4M 3456M
Original IR 101.3K 307.2K 921.6K 2073.6K 8M

Original w; 17 19 20 21 23

Reduced cost  23K(0.067%)  23K(0.02%)  23K(0.0065%) 23K (0.0028%) 23K(0.0007%)
Reduced /R 279K (2.75%) 2.79K(0.91%)  2.79K(0.30%)  2.79K(0.13%)  2.79K(0.03%)
Reduced w,  12(70.59%) 12 (63.16%) 12 (60%) 12 (57.14%) 12 (52.17%)

|S|=31; w,=60; N,=64

40



6. Architecture Design and Implementation

6.1. Overview

TABLE. 6-1 Modified computational flow and complexity analysis for each pixel in

the integral histogram approach for JBF

Complexity BW for IH BW for pixel
(operation) (data) (data)

Process

Integration process:
Pixel count histogram 4,
Loop »=0 to N,-1
IH S (b)=IH"(b)+IH,* (b)-IH," (b) ADD: 2N, 4N,
IH (Is) +=1, [H, (Ip) =1 ADD: 2
Pixel Intensity histogram /4.
Loop b=0to N,-1
IH (b)=IH,"(b)+IH, " (b)-IH," (b) ADD: 2N, 4N,
TH (L) +=Js, IHL, (Ip) -= Jp ADD: 2 4 pixels
Extraction process:
Pixel count histogram #,
Loop 5=0to N,-1
ho(b) = IH, (b) - IH,"(b) ADD: N, N,
Pixel Intensity histogram 4,
Loop 5=0to N,-1
h(b) = IH (D) - IH, (b) ADD: N, N,
Kernel calculation process:
Loop »=0 to N,-1

G(b) = g(lI-b)) ADD, LUT: N, 1 pixel
Convolution process:
Nu=0, De=0

Loop 5=0 to N,-1

De += G(b) X h.(b) MUL, ADD: N,

Nu += G(b) X h’.(b) MUL, ADD: N,

Result = Nu / De DIV:1 1 pixel
Total 11N,+5 10N, 6 pixels

With memory reduction methods introduced in last chapter, the computational
flow of JBF in TABLE. 4-1 is changed to that in TABLE. 6-1, and its hardware cost is
presented in TABLE. 6-3. The integration process has added an I,-relate subtraction
term and the extraction process has simplified to be a two-term process. Therefore,
the corresponding complexity and bandwidth are reduced consequently. And these

reduction methods have reduced the memory cost from frame-scale-magnitude to

41



line-scale-magnitude. On the other hand, there are still three problems left to be
solved with VLSI implementation. They are high parallelism-demand problem, high

bandwidth problem, and large range table problem.

To solve these problems and efficiently implement the architecture, we first
propose the R-parallelism method to execute parallel computations in range domain to
meet required throughput. Then, for on-chip bandwidth reduction, we take advantages
of the timing relationship of data in the progressive computation to buffer the computed
IHs, named delay-buffer method. The large range table size due to parallelism is further
reduced by exploiting the numerical properties of Gaussian function. With memory
reduction methods and these architecture design techniques, an efficient hardware
design is proposed, which can be easily scalable to different performance target. For
ease of explanation, we use an example for the performance target of HD1080p
resolution to present the design. The details of these design techniques are presented in

the rest of this chapter.

42



6.2. Overall architecture

_ Unit: bit
Off-chip| 64bit| Interface Core
memory o FIFOL o
o | (16 pixels) 8 - '
s »| FIFO J; | Histogram b
ource w@epel)l % 1 Calculation
J < | FIFO J, - 20x64
3 [ |6 pixels) 7 [~ Engine h -,
_ S | | FIFOI
GUIdanCe }: 64 (16 pixels) g z 20x64 Z 20x64 2 20x64
I el |l &1, FIFOL, On-chip Memory|  |Convolution
27| O |7es |(16 pixels)| |7 (20bitx90 x64) .
Result N g =ngine
0 3 Histogram h
¥ Calculation ==
= Engine A,
2 12x64 E 12x64 2 12x64
On-chip Memory
[ FIFO 0, (12bitx90 x64)
<L (16 pixels) a2

Fig. 6.1. Proposed architecture of JBF

Fig. 6.1 shows the overall architecture that contains two parts, interface and core. In
this architecture, the image pixels and the IHs are stored at the off-chip and on-chip
memory, respectively. The interface accesses pixels from the off-chip memory through

a 64-bit bus, and the core performs the computation of JBF.

In the interface, the access controller allocates the bus priority to the input and
output first-in-first-out (FIFO) buffers by round-robin policy. The size of each buffer is
associated with off-chip bandwidth. Large buffers can support data reuse schemes to
reduce the off-chip bandwidth. Because of sufficient off-chip bandwidth in this
architecture, we do not apply any data reuse schemes here to have lower buffer cost,
and set its size as 2x8-pixel, where the value of 8 is to meet the bus width, and the value

of 2 is to support ping-pong mechanism for simultaneous reading and writing.

43



6.3. Interface

Unit: bit

. e Ping-Pong Structure
Bus_input —-4 0 Update

8X8 ——— 3

\

else

Od  FIFO I o

FIFO Js

FIFO Jp

FIFO s %))

FIFO Zo

Ay v v v

FIFO O¢ 5

=~

fA[ \ I 10N 1 13

Bus_output -

Fig. 6.2. Mechanism of input and output data control
In the interface, the round-robin finite state machine (FSM) has six states. State 0
to 4 associate to input FIFO buffers; state values determine which FIFO buffer should
take the input of an 8-pixel data. For example, as shown by Fig. 6.2, the FIFO buffer
of I. takes input when state is zero; at the other time, it keeps old stored data. State 5
associates to output FIFO buffer, an 8-pixel packaged result in FIFO buffer of O_are
sent to bus when state is 5; at the other time, this FIFO is loaded with newly processed

result from the core.

The FIFO buffer of any input is in 2x8-pixel ping-pong structure. For any time,
one of two 8-pixel buffer is in Update mode and the other is in Give mode. The

structure is used to make scheduling time easier because it enables buffer to receive

44



data (by Update mode buffer) and to give data (from Give mode buffer) at the same
cycle. By our schedule, The Update-mode buffer will be loaded with an 8-pixel input
in a cycle; for example, Fig. 6.3 (a) shows an input is coming and then in Fig. 6.3 (b)
the Update mode buffer is loaded with the data. At the same cycle, the Give mode
buffer gives out a pixel into the core. The mode will exchange after Update mode
buffer is loaded data and Give mode buffer gives out all data as shown by Fig. 6.3 (c).
After the switching, the loaded data starts to pour out and the empty buffer waits to be

loaded again as in Fig. 6.3 (d). During the process, the mode exchanges continuously.

Wieie Castinills Ping-Pong Structure R Ping-Pong Structure
Update Mode ¢ | + Update Mode ; | 9
T s * T 78xs '>
(LTI 8171615 0 s 1716 i
@ (b)

Ping-Pong Structure Ping-Pong Structure

Mode Controller Mode Controller

: ;Update Mod%é 9 é é Give Mode (1) 9
- P *
Update Mode
(c) (d)

Fig. 6.3. Process of Ping-Pong Structure
(@) input is coming, (b) the next cycle, Update mode buffer loaded by input and Give
mode gives out a pixel, (c) ready for mode exchange, (d) after mode exchange.

45



6.4. Time Schedule

One frame (32 stripes) Unit: Cycle
|| 3,317,760
[ )
One stripe (1080 rows) |
96 i 96 96
: : > P -eeees >
1* row i i 2" row 1080" row
I\
One pipeline tile
I 5 1 5 1
| i / > !
iRead Pixels E Read Pixels i
! i |
! 8 | o) |
:Histogram ): Hist ram Calcu H)]‘:
' Calculation | S
8 ‘\ 8 1 8 1
| > >
Convolution iConvolution E( wolution i
T i L
> >
Write-Results I [ Write Results ' Write Results
I |

Fig. 6.4. Schedule of the proposed architecture

The operations of the architecture are described below with the schedule in Fig. 6.4,
which is hierarchically sliced from a frame to pipeline tiles. The throughput of each
pipeline tile is the computational result of 8 pixels. In a pipeline tile, the access
controller in the interface first reads pixels from the off-chip memory, and stores them
into the FIFO buffers. It takes 5 cycles to switch through 5 states (state 0 to 4) of the
round robin FSM. Then the two histogram calculation engines in the core begin to
compute #’. and &, and the convolution engine consecutively produces 8 pixel results
which are then sent to the output FIFO buffer. Finally, the interface moves 8-pixel

packaged results from the buffer to the off-chip memory at the state 5 of FSM.

This schedule refers to the quality analysis in [34], it uses 31 pixels as window

width and sets stripe width to be 60 pixels. Therefore, an HD1080p image is sliced

46



into 32 stripes and the width of an integral region is 90 pixels. 12 pipeline tiles are
required for each row of integral region since each tile can calculate 8-pixel-wide
histogram. By fully-pipelined schedule, performing 12 pipeline tiles takes 96 cycles.

To sum up over 32 stripes, for a HD1080p frame, 3,317,760 cycles are needed.

6.5. Design Components

In the core, the main components are two histogram calculation engines and one
convolution engine for the TABLE. 6-1 computations, which have high computational
complexity as mentioned above. Thus, the proposed R-parallelism method unrolls all
computational loops in the range domain R. The details of this method are described in

each engine as follows.

6.5.1. Histogram Calculation Engine

The histogram calculation engines perform the integration and extraction processes
for h.and /. as shown in TABLE. 6-1. With the R-parallelism method, we design their
architectures as shown in Fig. 6.6, where the selected-bin adder (SBA) is depicted
in Fig. 6.5. These two engines can achieve the throughput of 1 histogram per cycle.
Note that the difference of the two engines is that the integral value of SBAs is the
source pixel Jin the engine /., instead of the constant 1 in the engine .. In addition, all

bit widths of data in the engine /’. are more than those in 4. by 8 bits.

According to equation (4.2), the integral values, J or 1, should be added into a
corresponding bin of guided pixel; at the same time, other bins should keep their
origin value. In SBA, before adder, a selector is used to select the corresponding bin;

and after adder, a selector array updates the result back to the corresponding bin. All

47



the selectors are controlled according as the value of guided pixel.

. Selected-bin adder (SBA)

Guide pixel

Input [H

Integral value |

Output [H

Fig. 6.5. Selected-bin adder in the histogram calculation engines

Histogram Calculation Engine
Is% < h Unit: bit
o Ao SBA
I "1 h'.
Jors 7&7
20x64 20x64 20x64
[read ] \ Wl‘"lte | _[read | _________

On-chip Memory

© 20-bit x 64-bin 20-bit x 64-bin |
K Col. #1 | Col. #2 B
4 Col. #3 || Col. #4 B
i Col. #89 | Col. #90 B

(@)

Histogram Calculation Engine 4,
I < ™ Unit: bit
IHy-
1, O
0% SBA| = @
= 1 s
" IHo [ reg | fe
P e
IH, o
re o H
20x6g4 1‘ ® @
~ R
D~ : 1H,
IH, : v | °
~» SBA || regj
JANN, | | @ 20x64
12x64 12x64 12x64
Y
[read | [write] [read |
* On-chip Memory
12-bit x 64-bin 12-bit X 64-bin
| Col. #1 || Col. #2 |
! Col. #3 | Col. #4 | |
| Col. #89 | Col. #90 B

()

Fig. 6.6. Architectures of histogram calculation engines 4’. and 4.

48



T=t xI x+1
y-1 D’(f)

y Do

Memory view
(a) (b)
Fig. 6.7. The delay-buffer method
(@) S S at time=t are delayed to be (b) D"*"”, D" respectively

In above architectures, each engine needs to access the five IHs: IHo® |, IHo ", IH,",
IH,P, and IH,", from on-chip memory in one cycle. To reduce the bandwidth problem,
we propose the delay-buffer method, which is presented as follows by data dependency
of the associated IHs in two successive cycles. Assume that the pixels S, S’, D, and D’
shown in Fig. 5.5 (d) are located (x,y), (x,)-1), (x-1,y), and (x-1,y-1) in the cycle ¢,
respectively. As shown in Fig. 6.7 (a), their IHs are notated by

SO, 'O DO &Y prO g § Y (6.1)

For the next cycle ¢+ 7in Fig. 6.7 (b), their x-coordinates are increased by 1 as follows,

S(t+1) :IHéx+l,y), S/(t+l) :1Héx+l'y71), D(t+1) :]H(()x,y)’ Dl(t+1) :IHéx,yfl) (6.2)

From the (6.1) and (6.2), we can find that D**” equals $”, and D """ equals .
That means IH,” and IH," can be obtained by delaying /H,° and IH,® for one cycle,
respectively. Therefore, we can use two delay-buffers to avoid accessing /Hy” and

IH," from the on-chip memory, and reduce bandwidth from five IHs to three IHs.

The on-chip memory is divided into two banks, because there are two read
demands from the engine. One demand is for /H,° and the other is for IH,". As
shown in Fig. 6.8, it marks even bank and odd bank of memory with white and dark
respectively. It shows that choosing stripe width wj, as an even number can make two

reading demands from different banks.

49



mber |

Integral region width
beven + IS/ - 1) 1s even numl

Memory view

Fig. 6.8. On-chip memory with even bank and odd bank

Phase |

Memory view

Phase 11

Memory view

The detail schedule is performed in two alternating phases. With these phases, the
even bank and odd bank of on-chip memory are alternatively used for reading and
writing as shown by Fig. 6.9. At the phase I, [Hy° and IH," are read from the even
bank and the odd bank, respectively. In the meanwhile, IH," is written into the odd
bank. Then at the phase 11, IH," is written into the different (even) bank. As the arrow
shows, the written IH," replaces the oldest integral histogram (IHo” of the prior
phase) since this data will not be used anymore. In the meanwhile, /H,° and IH," are

read from the odd bank and the even bank, respectively. On the whole, the two phases

50

Fig. 6.9. Schedule phases of on-chip memory




exchange iteratively for the overall engine process.

In the following paragraphs, we will explain the computation of the two histogram
calculation engines. Their computation flows are almost the same; therefore, we show

the detail only with engine of /..

The computation of the SBA I in Fig. 6.6 (a) is defined by (the check point one)
IH, = IHS + Bin(Iy), (6.3)

which means one of bins of IHy " is added by J.

The computation of the SBA Il in Fig. 6.6 (a) is defined with check point one by
IH,=1IHY. — Bin(1,), (6.4)

which means one of bins of 7H," is subtracted with Jo.

The integration process result IHy" is calculated by

IH) = IH, + IH,

=\ (6.5)
= IH, +(IH, - IHY)

which is the same as (5.5). Especially note that the addition and subtraction in (6.5)
represents additions and subtractions of all bins respectively. With R-parallelism
method, they are implemented by an array of adders. The number of adders is equal to
the number of bins N,. Finally, by using an array of adder as well, the engine performs

extraction process defined by (as the notation in Fig. 5.5)

h'.=1IH pps = IH, —IH [ (6.6)

to calculate the histogram of the window 7%’

51



6.5.2. Convolution Engine

s s ) o —
Convolution Engine ¢ v TS0
77777777777777777777777777777777777777777777 Unit: bit g(Oz o 1™ 0
¢ | ed Range Table g?{ b ol
3 | Gaussian function | g2
! (0:52) | 75> 8(lc-0)
gg% 0 Table # % é lg »|others
£ o~} Selection |* ¥ *&(l-252
: | I——
y TSI
777777777777777777777777777777777777 w4
§ (1)5 2t p13.5
g 2} :ﬁ » 2,6
5> 8(lc-4)
h ,
»35
‘ g(3 lé 19 | mlothers
10
20x64

g0y, 1™
gglz» 3

o 1
®) 8 vy TS63

257
253,251
254,250

221
others

7> 8(1c-252)

8B 16 o
Available Cut-line for Pipelining o [T
() (b)

Fig. 6.10. Proposed architecture
(a) convolution engine and (b) table selection modules

8(x)
|
[
|
x=0
8(x)
| Truncated
[
0 : 0
x=- x=0 x=B
(0C0nstant weight table
§(/)/‘ “\. folded by

s, Symmetry

0
=B 5B

(1) hll+ 1)

Fig. 6.11. Construction of constant weight table

52



The convolution engine uses the histograms 4. and 4'. to further compute the pixel
result by the kernel calculation and convolution processes in TABLE. 6-1. Its
architecture is shown in Fig. 6.10 (a). With the proposed R-parallelism method, the
convolution process can achieve the throughput of 1 pixel per cycle. Higher throughput
can be further attained by the available cut-lines for pipelining in the figure, which can

enable working clock be higher.

The R-parallelism method brings high throughput but suffers from large size and
large number of range table. With 256-level R, for any given target pixel intensity 7,
there should be a corresponding 256-item range table. Therefore, for 256 intensity
levels, the amount of all table items should be 256x256. To reduce the range table, we
take advantages of the symmetry and truncation property of Gaussian function to
decrease its size from 256 to 32. Fig. 6.11 shows a curve shape of Gaussian functions
can be truncated by considering required digit. For example, we can truncate values
smaller than 2°® for keeping 8-bit decimal digits. Furthermore, by taking advantage of
symmetry property of Gaussian function, the negative side and positive side are
folded together. Finally, a constant weight table is sampled from the folded curve.
Nevertheless, the table size determines the quality so that it should be adjusted to
meet the quality demand. In the proposed architecture, we use 32 for example because
table of this size is enough to provide sufficient digit precision for usual BF

processing (o, < 32).

In addition, to avoid the large number of range table, we share one table by the table
selection module as shown in Fig. 6.10 (b), which reduces the number of table to one.
Each table selector chooses a weight from the table for its corresponding bin. For
example, if I; is 2, the selector TSO selects g(2) for the first bin (represents for

intensity 0) and selector TS1 also selects g(2) for the second bin (represents for

53



intensity 4), etc.. Any bin represents for intensity more than 34 is given 0. Then, 64
selected weights and %. and 4’. are sent into multiplier array and adder trees for

computation of the equation of (4.1).

6.5.3. Parameters versus hardware cost

TABLE. 6-2 Parameters and their associated engine components

Histogram Calculation Convolution Selected
Parameter - -
Engine Engine Value
- . On-chip memory size . L
Window width |S| Signal bit width Signal bit width 31
Range kernel o, Constant weight table size <32
Stripe width w On-chip memory size 60
. On-chip memory size Operator array length 64
Bin number N, Operator array length (adder/ multiplier array) (s,=4)

There are four main parameters: window width |S|, range kernel parameter o,,
stripe width wy, and bin number N, influencing hardware cost of the proposed
histogram calculation engine and convolution engine. The associated engine
components of these parameters are shown in TABLE. 6-2. For example, |S]|, w;, and
N,, are associated to the on-chip memory size of the calculation engine. This can be
easily explained with the equation (5.7): the memory cost for integral histogram is

determined by these three parameters.

According to TABLE. 6-2, the function block layout of the core architecture
doesn’t have to be redesigned for different parameter selections because these
parameters do not affect its operation flow. (Especially note that the operation flow is
invariant even to window size since the processes of integral histogram algorithm are
independent of window selection.) Instead, these parameters affect the size or the
operator number of their corresponding engine components. Therefore, if an

application has variant parameter selection demands, the size and the operator number

54



of equipped engine components in its hardware design must be fulfill the most critical
demand. For example, | select 31 as the window size for the proposed architecture
since it is larger than the selections of most acceleration algorithms and applications.

This makes sure that my architecture is suitable for most applications.

6.5.4. Summary to design components

Overall speaking, the histogram calculation engines and the convolution engine can
be serially connected to achieve the throughput of 1 pixel per cycle. Their function
block layouts and operation flows are invariant to parameter selection (even to the
window size selection). For further high speed demand, more engines can be used to
process multiple cascaded pixels simultaneously for higher throughput. The proposed
memory reduction methods could be directly extended to support the processing of
multiple pixels. In addition, note that for simpler BF, the histogram calculation engine
h’.and its on-chip memory in the core module, and the two input FIFOs in the interface

module could be reduced.

55



6.6.Memory Cost Analysis

(Kbytes) Memory Cost (Mbits) Off-chip Bandwidth
60 250
4
.4
) “/’ 200
40
/' 150 32.7Mbits on 60 pixels

30
20 23.04KBytes on 60 pixels 100
10 50

0 T T T T T T T T | 0 T T T T T T !

16 32 48 64 80 96 112 128 144 160 16 32 48 64 80 96 112 128 144 160
Stripe Width w (pixel) Stripe Width w; (pixel)
(a) (b)
(keycle) Computation Time Memory Reduction
7 -
| | \ \
6 Original 801,664,000
5 ‘ ‘ /97.' %
RUM | 18/867,840
4 ; cles on 60 pixels ‘ ‘ /
o | 97.9%
3
M fgg\'\/l/l ‘ 401,760
2 |
RUM / 94.3%
1 +SBM 23,040
+SOM
0 : : : : : : . ) ; ;
16 32 48 64 80 96 112 128 144 160 1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08 1.0E+10
Stripe Width w (pixel) Memory Cost (Byte)
(c) (d)

Fig. 6.12. Analysis of Hardware performance and memory reduction
(a)-(c) Hardware performance per frame with different wy; (d) memory reduction with
the proposed methods for w, of 60 (A/=1080, N=1920, N,=64, |S|=31).

In this chapter, we analyze the parameter selection in the proposed memory

reduction methods. Show the overall memory reduction by three methods combined.

As the combined memory cost in (5.7), there are three parameters, the window size
of space kernel width |S], the number of bin N, and the stripe width wy, where the
former two are related to application quality, and the last one is related to target
performance. Referring to the quality analysis in [34], we select 31 for |S| and 64 for N,

as an example to illustrate how to determine w;, by considering hardware performance.

Fig. 6.12 (a)-(c) estimates the hardware performance of JBF with different w; for the

resolution HD1080p. The memory cost is computed with (5.7) and plotted in Fig. 6.12

56



(). The off-chip bandwidth and computation time are calculated by the following

equations and plotted in Fig. 6.12 (b) and (c), respectively,

M(NIw,)|S|+w, —1)-4pix+ M (N w,)w, -2 pix (6.7)
and

M(NIw )| S|+w, —1)-lcycles (6.8)

where M(w,+|S|-1) is the stripe area with extended regions, and N/w; is the number of
stripe in a frame. For the bandwidth, the term with 4 pixels is required by the
integration process, and the other term with 2 pixels is required by other processes.
Since the integration process should additionally perform on the extended integral
regions as in Fig. 5.2, its bandwidth 'is more than the other processes’. For the
computation time, the proposed architecture takes 1 cycle to produce 1-pixel integral

process result.

The selection of w, is mainly related to the target frame rate. If our target is 30
frames per sec, the constraint of computation cycles is 3.3k; therefore, we could select
60 for wy, as the example used by this chapter (as shown in TABLE. 6-2), when the
working clock is 100 MHz. With the choice, the off-chip bandwidth will be 62.2%, and
the memory cost can be reduced to 23 Kbytes, which is 0.003% of the original cost as

shown in Fig. 6.12 (d).

6.7.Implementation Result

With above selected parameters, the proposed architecture of JBF has been
implemented by Verilog and synthesized under the 90-nm CMOS technology

process. TABLE. 6-3 lists the implementation result of the proposed architecture. The

57



hardware design spends less than 300K equivalent gate counts and 23 Kbytes on-chip
memory to achieve the throughput of HD1080p 30 frames/sec at the clock rate of
100MHz. Moreover, it can process at 200 MHz by pipelining on the available cut-lines
in the convolution engine, and further achieve the throughput of 124 Mpixels per sec

for HD1080p at the frame rate of 60 frames per sec.

TABLE. 6-3 Example implementation result of the proposed architecture

Technology UMC 90nm
Image Size MXN 1920x1080
Number of Bin N, 64
Window Size |S|x|S] 31x31
Stripe Width w, 60

Clock Rate (Hz) 100M 200M
Frame Rate (Frame/Sec.) 30 60
Logic Cost Interface 9,578 9,917

Excluding Memories Histogram Cal. 97,766 148,649

(Equivalent Gate-Count) Convolution 168,333 197,351
Total 276,178 355,917

On-chip Memory (Byte) 23K 23K

TABLE. 6-4 compares the complexity, memory requirement, and bandwidths between
the proposed methods and the original integral histogram in different resolutions. With
the proposed memory reduction and architecture design techniques, the complexity can
be reduced to 0.15%, and the memory requirement can be reduced to 0.003%-0.02%. In
addition, the bandwidth for IH (i.e. on-chip bandwidth) can be reduced to 32%-36%,
but the bandwidth for pixels (i.e. off-chip bandwidth) is increased to 20.3-132.7 Mbits.
(That is, bandwidth per second is about 1200-8000 Mbit for speed of
60-frame-per-second) Nevertheless, the off-chip bandwidth is affordable by the 64-bit
bus processing at 200 MHz. (The maximum affordable bandwidth is 12800 Mbit per
second.) Note that the stripe width wy is specifically selected for the resolution
HD1080p. Thus, it can be re-selected by means of the mentioned analysis in

Chapter 6.6 to acquire better performance for another resolution.

58



TABLE. 6-5 compares our

proposed hardware design with the previous

implementations. Note that this paper is the first VLSI implementation to the best of

author’s knowledge, and thus only other GPU and CPU approaches are listed for

reference comparison. Although the throughput is less than that of Bilateral Grid, the

proposed design still achieves best performance because of its significantly reduced

memory cost. Comparing to other design, the proposed architecture could efficiently

utilize the hardware cost to achieve real-time speed and low memory cost.

TABLE. 6-4 Comparison of hardware cost per frame

Complexity Memory Bandwidth for| Bandwidth

Resol. (million Requirement IH for pixels

operation) (Kbyte) (Mbit) (Mbit)
Original VGA 335.1 (100%) | 113,050 (100%) 14,470 (100%) 9.8 (100%)
HD720p | 1,005.5 (100%) | 353,894 (100%) 45,299 (100%) | 29.5 (100%)
HD1080p | 2,262.3 (100%) | 829,440 (100%) | 106,108 (100%)| 66.4 (100%)
Mem. Reduction VGA 197.0 (59%) 23 (0.020%) 9,083 (63%) | 20.3 (206%)
HD720p 591.1 (59%) 23 (0.007%) | 27,250 (60%) | 60.8 (206%)
HD1080p | 1,289.7 (57%) 23 (0.003%) | 59,454 (56%) | 132.7 (200%)
Mem. Reduction VGA 5.1 (0.15%) 23 (0.020%) 5,191 (36%) 20.3 (206%)
+ HD720p 1.5 (0.15%) 23 (0.007%) | 15,571 (34%) 60.8 (206%)
Archi. Design Tech. HD1080p 3.3 (0.15%) 23 (0.003%) | 33,974 (32%) | 132.7 (200%)

Number of bin N,=64, Window width |S|=31, Stripe width w,=60
VGA=640x480, HD720p=1280x720, HD1080p=1920x1080

TABLE. 6-5 Comparison of different implementations

Support-Pixel-First Target-Pixel-First
Durand and Dorsey ~ Chenetal. Yang et al. Adams et al. Porikli
Proposed
[13] [36] [29] [37] [34]
Piecewise-linear . . . o Gaussian Integral Integral
Approach Subsampling Bilateral Grid - Piecewise-linear KD-tree Histogram  Histogram
(s,=24,5,=19) (s,=16, 5,=10) (5,=32) (s,=4) (s,=4)
Implementa CPU GPU GPU GPU CPU
ption P4 Geforce Geforce GeForce P4 ASIC
2GHz 8800GTX 8800GTX GTX260 3.2GHz
Trigz'stmr 55M 681M 681M 1,400M 55M 2.5M
(Tech (230nm) (90nm) (90nm) (TSMC 65nm)| (130nm) (UMC 90nm)
Process) [42] [40] [40] [41] [42]
Image Size 10.4M 1.0M 1.0M 10M 1.0M 2.07M
(Pixel)
Frame Rate 0.16
(Frame/sec)| (high dynamic range) 222 66 0.01-1 3.2 60
Throughput 1.6 M 222M 66M 0.IM-10M | 3.22M 124M
(Pixel/sec)
Memory - 625K 4M 100M-1G 96M 23K
(Byte)

59



7. Conclusion

The main contribution of this thesis is to propose efficient hardware architecture
with three memory reduction methods for real-time integral histogram based JBF. The
three proposed memory reduction methods combined reduces the memory cost to
0.003% compare to the original integral histogram based JBF. The efficient hardware
architecture can process large amount of parallel histogram bins simultaneously to
achieve 1 pixel per cycle high throughput. The ASIC implementation of the
architecture can achieve 124Mpixel (60 frames) per second with HD1080p resolution
image under 200MHz clock rate. The chip consumes totally 355 K gate counts and
23KBytes internal memory. The off-chip bandwidth requirement is 132.7Mbits per
frame, which is 60% of the total bandwidth of 200 MHz clock rate. For higher
throughput, the architecture and memory reduction methods can be directly extended

to support the processing of multiple cascade pixels.

Future Work

In the thesis, we have proposed efficient architecture for IH based JBF and its
design concept is also suitable for any integral image based applications but limited to
those use the box spatial kernel. Nevertheless, Mohamed et al. [43] has shown that a
more complicated kernel can be approximated by the linear combination of many
basic box kernels. This extends the integral image approach to more complex
applications. For the complex application, multiple parallel hardware cores of basic
box kernel must be put together and thus the overall interface of data transfer and
communication, and the analysis of internal memory and bandwidth requirement must

be re-estimated elaborately for the best performance.

60



On the other hand, the proposed architecture is suitable for gray-level image
process. For extended use for multi-color channels, extra software or hardware has to
be further designed for blending color channels to gray level. Nevertheless, these
methods usually depend on different applications. For example, for producing human
visual consistent gray level images, Faust [44] has to includes human vision

knowledge and visual aspects to present an enhance conversion.

61



Reference

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in

Proc. of IEEE Int’l Conf. on Computer Vision, pp. 839-846, 1998.

J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele, “Joint bilateral

upsampling,” in Proc. of ACM SIGGRAPH, vol. 26, no. 3, p. 96, 2007.

K.-J. Yoon and I. S. Kweon, “Adaptive support-weight approach for
correspondence search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4,

pp. 650-656, April 2006.

K.-J. Yoon and I. S. Kweon, “Stereo matching with symmetric cost functions,” in

Proc. of IEEE Computer Vision and Pattern Recognition, pp. 2371-2377, 2006.

O. Stankiewicz, K. Wegner, and M. Wildeboer, “A soft-segmentation matching in
depth estimation reference software (DERS) 5.0,” ISO/IEC JTCI1/SC29/WGl1,

doc. M17049, Xian, China, October 2009.

S. Paris, P. Kornprobst, J. Tumblin, and F. Durand, “A gentle introducing to
bilateral filtering and its applications,” in Proc. of ACM SIGGRAPH tutorial,

2008.

E.P. Bennett, J. L. Mason ,and L. McMillan, “Multispectral bilateral video fusion,”

IEEE Trans. on Image Processing, vol. 16, no. 5, pp. 1185-1194, May 2007.

T.R. Jones, F. Durand ,and M. Desbrun, “Non-iterative, feature-preserving mesh

smoothing,” ACM Trans. on Graphics, vol. 22, no. 3, pp. 943-949, July 2003

S. Fleishman, 1. Drori ,and D. Cohen-Or, “Bilateral mesh denoising ,” ACM Trans.

62



on Graphics, vol. 22, no. 3, pp. 950-953, July 2003.

[10] E. Eiseman and F. Durand, “Flash photography enhancement via intrinsic

relighting,” ACM Trans. on Graphics, vol. 23, no. 3, pp. 673-678, August 2004.

[11] G. Petschnigg, M. Agrawala, H. Hoppe, R. Szeliski, M. Cohen, and K. Toyama,
“Digital photography with flash and no-flash image pairs,” in Proc. of ACM

SIGGRAPH, vol. 23, no. 3, pp. 664-672, 2004.

[12] B.M. Oh, M. Chen, J. Dorsey, and F. Durand, “Image-based modeling and photo

editing,” in Proc. of ACM SIGGRAPH, pp. 433-442, 2001

[13] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of
high-dynamic-range images,” in Proc. of ACM Int’l Conf. on Computer Graphics

and Interactive Techniques, pp. 257-266, 2002.

[14] M. Elad, “On the bilateral filter and ways to improve it,” IEEE Trans. on Image

Processing, vol. 11, no. 10, pp. 1141-1151, October 2002.

[15] S.B. Bae, E. Paris, and F. Durand, “Two-scale tone management for photographic

look,” ACM Trans. on Graphics, vol. 25, no. 3, pp. 637-645, 2006.

[16] H. Yu, Y.-L. Zhao, and H. Wang, “Image denoising using trivariate shrinkage filter
in the wavelet domain and joint bilateral filter in the spatial domain,” IEEE Trans.

Image Process., vol. 18, no. 10, pp. 2364-2369, October 2009.

[17] C. Varekamp and B. Barenbrug, “Improved depth propagation for 2D to 3D video
conversion using key-frames,” in Proc. of IET European Conf. on Visual Media

Production, pp. 167-173, 2007.

[18] C.-C. Cheng, C.-T. Li, P.-S. Huang, T.-K. Lin, Y.-M. Tsai, and L.-G. Chen, “A

block-based 2D-to-3D conversion system with bilateral filter,” in Proc. of IEEE

63



Int’l Conf. on Consumer Electronics, pp. 393-394, January 20009.

[19] Q. Yang, R. Yang, J. Davis, and D. Nister, “Spatial-depth super resolution for
range images,” in Proc. of IEEE Computer Vision and Pattern Recognition, pp.
1845-1852, 2007.

[20] D. Chan, H. Buisman, C. Theobalt, and S. Thrun, “A noise-aware filter for
real-time depth upsampling,” in Proc. of Workshop on Multi-camera and
Multi-modal Sensor Fusion Algorithms and Application — M2SFA2, 2008.

[21] A. K. Riemens, O. P. Gangwal, B. Barenburg, and R-P. M. Berretty, “Multi-step
joint bilateral depth upsampling,” in Proc. of SPIE Visual Communications and
Image Processing, p. 72570M, 2009.

[22] M.-C. Chuang, Y.-N. Liu, T.-H. Chen, and S.-Y. Chien, “Color filter array
demonsaicking using joint bilateral filter,” in Proc. of IEEE Int’l Conf. on
Multimedia and Expo, pp. 125-128, 2009.

[23] C. Xiao, Y. Nie, W. Hua, and G. Feng, “Fast multi-scale joint bilateral image and
video texture upsampling,” The Visual Computers, Springer Berlin/Heidelburg,
pp.154-157, December 2009.

[24] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nister, “High quality real-time
stereo using adaptive cost aggregation and dynamic programming,” in Proc. of
Int’l Symposium on 3D Data Processing, Visualization and Transmission
(3DPVT), pp. 798-805, 2006.

[25] Z. Gu, X, Su, Y. Liu, and Q. Zhang, “Local stereo matching with adaptive
support-weight, rank transform, and disparity calibration,” Pattern Recognition
Letter, vol. 29, issue 9, pp. 1230-1235, July 2008.

[26] Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nister, “Stereo matching with

color-weighted correlation, hierarchical belief propagation, and occlusion

64



handling,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 3, pp.2347-2354,
March 20009.

[27] J.Lu, S. Rogmans, G. Lafruit, and F. Catthoor, “Stream-centric stereo matching
and view synthesis: a high-speed approach on GPUs,” IEEE Trans. on Circuits
and Systems for Video Technology, vol. 19, no. 11, pp. 1598-1611, November
20009.

[28] N.Y.-C. Chang, T.-H. Tsai, P.-H. Hsu, Y.-C. Chen, and T.-S. Chang, “Algorithm
and architecture of disparity estimation with mini-census adaptive support weight,”
IEEE Trans. Circuits Sys. Video Technol, vol. 20, no. 6, pp. 792-805, June, 2010.

[29] Q. Yang, K.-H. Tan, and N. Ahuja, “Real-time O(1) bilateral filtering,” in Proc. of
IEEE Computer Vision and Pattern Recognition, pp. 557-564, 2009.

[30] S. Parisand F. Durand, “A fast approximation of the bilateral filter using a signal
processing approach,” International Journal of Computer Vision, vol. 81, no. 1,
pp.24-52, 2006.

[31] T. Q. Pham and L. J. van Vliet, “Separable bilateral filtering for fast video
processing,” in Proc. of IEEE Int’l Conf. on Multimedia & Expo, pp. 454-457,
2005.

[32] T.-S. Huang, “Two-dimensional digital signal processing IlI: transforms and
median filters,” Spring-Verlag, New York, pp. 209-211, 1981.

[33] B. Weiss, “Fast median and bilateral filtering,” ACM Trans. on Graphics, vol. 25,
no. 3, pp. 519-526, July 2006.

[34] F. Porikli, “Constant time O(1) bilateral filtering,” in Proc. of IEEE Computer
Vision and Pattern Recognition, pp.3895-3902, 2008.

[35] R. Deriche, “Recursively implementing the Gaussian and its derivatives”, in

Proc. of International Conference on Image Processing, pp. 263-267, 1992.

65



[36] J. Chen, S. Paris, and F. Durand, “Real-time edge-aware image processing with the
bilateral grid,” ACM Trans. on Graph, vol. 26, no. 3, article 103, pp. 1-9, July
2007.

[37] A. Adams, N. Gelfand, J. Dolson, and M. Levoy, “Gaussian KD-trees for fast high
dimensional filtering,” ACM Trans on Graph, vol. 28, no. 3, p. 21, 20009.

[38] M.-H. Ju, and H.-B. Kang, “Constant time stereo matching,” in Proc. of Int’l
Machine Vision and Image Processing Conf., pp. 13-17, 2009.

[39] Micron Technology, “Synchronous DRAM MT48LC2M32B2-1 Meg x 32 x 4
banks,”
Available:http://download.micron.com/pdf/datasheets/dram/sdram/128MbSDRA
Mx32.pdf

[40] A. Wong, “NVIDIA GeForce 8800 GTX/GTS Tech Report,” Available:
http://www.techarp.com/showarticle.aspx?artno=358&pgno=0

[41] A. L. Shimpi and D. Wilson, “Nvidia’s 1.4 billion transistor GPU: GT200 arrives
as the GeForce GTX 280 & 260,” Available:
http://www.anandtech.com/show/2549

[42] “CPU World,” Available: http://www.cpu-world.com/index.html

[43] M. Hussein, F. Porikli, and L. Davis, “Kernel integral images: a framework for
fast non-uniform filtering,” in Proc. of IEEE Computer Vision and Pattern
Recognition, pp. 1-8, 2008.

[44] L. Neumann, M. Cadik, and A. Memcsics, “An Efficient Perception-based
Adaptive Color to Gray Transformation”, in int’l Conf. of on Wireless

Communications and Signal Processing, pp. 1-4, 2009.

66


http://download.micron.com/pdf/datasheets/dram/sdram/128MbSDRAMx32.pdf
http://download.micron.com/pdf/datasheets/dram/sdram/128MbSDRAMx32.pdf

Biographical Notes

Wz e

g

B2l B30kl L (RR97#09° ~ A EO9#E 08 7)
B -8 e FEme L £1 (AF93#£09" ~ A EO7T#067)
W2 os - 3sd g (LB 90£09" ~ 2 EO3=06")

[1] Po-Hsiung Hsu, Yu-Chen Tseng and Tian-Sheuan Chang, “Low Memory Cost
Bilateral Filtering Using Stripe-based Sliding Integral Histogram,” in proceeding
of IEEE International Symposium on Circuit and System, pp. 3120-3123, 2010.

WREE

V9T FERARRAHMTRERFRE S SRR RRE TR
#



	1. Introduction
	1.1.  Background
	1.2. Motivation and contribution
	1.3. Thesis Organization

	2. Introduction of Bilateral Filtering
	2.1.  Overview
	2.2. Bilateral Filtering
	2.3. Application 
	2.3.1. De-noising
	2.3.2. Texture and illumination separation
	2.3.3. Joint Bilateral Filtering

	2.4.  Summary

	3. Related Work
	3.1. Support-pixel-first Approach
	3.1.1. Piece-wise linear algorithm and Yong’s algorithm
	3.1.2. Bilateral grid

	3.2. Target-pixel-first Approach
	3.2.1. Separable algorithm
	3.2.2. Histogram & Huang’s algorithm
	3.2.3. Weiss’ Distributed Histogram
	3.2.4. Integral Histogram

	3.3. Summary

	4. Analysis of Integral histogram based JBF
	4.1. Integral histogram based JBF
	4.2. Design Challenge
	4.2.1. High Memory Cost for integral histograms
	4.2.2. High Computational Complexity in All Processes
	4.2.3. High Bandwidth in Integration and Extraction
	4.2.4. Large Range Table in Kernel Calculation

	4.3.  Summary

	5.  Proposed Memory Reduction Methods
	5.1.  Overview
	5.2.  Runtime Updating Method (RUM)
	5.3.  Stripe Based Method (SBM)
	5.4. Sliding Origin Method (SOM)
	5.5.  Combination
	5.6. Comparisons

	6. Architecture Design and Implementation
	6.1.  Overview
	6.2.  Overall architecture
	6.3.  Interface  
	6.4. Time Schedule
	6.5.  Design Components
	6.5.1. Histogram Calculation Engine
	6.5.2. Convolution Engine
	6.5.3. Parameters versus hardware cost
	6.5.4. Summary to design components

	6.6. Memory Cost Analysis
	6.7. Implementation Result

	7. Conclusion

