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Abstract

This thesis proposes three approaches to apply for the channel-coded MIMO
system. MIMO communication system has been widely applied in many wireless
communications for better transmission efficiency and signal quality. Channel coding
or forward error correction allows the system work better with the additional coding
gain in lower SNR environment. Channel-coded MIMO system which refers to the
MIMO detection with channel coding scheme is defined in many communication
standard such as IEEE802.11n, IEEE802.16e and 3GPP LTE. Soft-output of MIMO
system is required to a concatenate channel coding like turbo code and low-density
parity-check (LDPC). However, complexity increases intensively as the hard-outputs
transfer to soft-outputs of MIMO detection.

A bi-direction method to reduce the complexity of soft-output MIMO decoding
is proposed in this thesis. Sphere decoding of MIMO system encounters the empty-set
issue as generating LLRs. Bi-direction method solves the empty-set issue and reduce
the computations at most 30% compared to the original method QOC. In addition,
nonlinear quantization (NLQ) is applied to the list sphere decoding and obtains a great
performance improvement at most 2dB with little computation complexity.
Furthermore, a two-stage algorithm applied on the channel-coded MIMO system is
presented to improve the error performance at most 0.3dB.
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Chapter 1

Introduction

1.1 Motivation

Multiple-input multiple-out (MIMO) technoloy is widely recognized as the future wire-
less communication systems, and it’s becoming an essential part in the new wireless
standard [1], [2]. MIMO systems can be used to improve the transmission quality by
sending the same data which is referred as spatial diversity, or to increase the channel
capacity by transmitting different data which is called spatial multiplexing [3]. There
are several methods to detect the signals at the receiver [4], [5], [6]. Mazimum-likelihood
(ML) performs the best error performance for minimizing the symbol error probabilities.
However, the exhaustic search is infeasible since it requires huge computation complexity
with the growth of the number of antenna and the size of constellation. Sphere decoding
(SD) algorithm can be applied as an efficient means to searching for the sequence with the
minimum path metric. Instead of exhaustively search, only the signals within the radius
will be searched in SD. However, the computation complexity depends on the channel
conditions and the noise variance, and the non-constant decoder throughput results to
difficulties in hardware implementation. Thus, K-best SD [7], [8] is often used as an
alternative approximation and K should be large enough to guarantee ML performance.
For the channel-coded MIMO system, soft ouputs of MIMO detector are required and an
empty-set issue has to be dealt with. Therefore, the list size is a tradeoff between error
performance and computation complexity.

In this thesis, a bi-direction method is proposed to reduce the computation complexity



when the MIMO decoder generates the soft outputs. A nonlinear quantization method
to improve the error performance of list sphere decoding is discussed. Furthermore, a
two-stage algorithm applied on the channel-coded MIMO system is presented to improve

the error performance.

1.2 Thesis Organization

Complexity reduction and the trade-off between performance for designing sphere de-
coders and LDPC decoders are the focus of this dissertation.The dissertation can be
organized as follows. In Chapter 2, MIMO system models are introduced, and several
MIMO signal detection methods are briefly reviewed. Then, the bi-direction algorithms
is presented in Chapter 3, including parameters derivations and complexity analysis. A
two-stage algorithm is presented in Chapter 4 for the channel-coded MIMO system. Sub-
sequently, the simulation results are given in Chapter 5. Finally, Chapter 6 concludes this

work.



Chapter 2

MIMO System

MIMO communication system has been widely applied in many wireless communica-
tions. This is an approach to achieve better transmission efficiency and signal quality due
to the spatial multiplexing and the inherent diversity gain. Diversity gain refers to the
slope of the error probability vesus SNR plot in a log-scale. Diversity provides multiple
paths to manage fading channel and thus boost the system capacity. When the system
spatial multiplexing strategy and the signal detection schemes are given, the maximum
achievable diversity gain is determined [9]. In the following, a brief review of MIMO sys-
tem and the channel models will be given first, and several linear and non-linear MIMO

detection schemes will be introduced later.

2.1 System Model

Signal _ N A
. . S N \\ // /// y

Mapping | S Spatlfll 2N 2 MIMQ | S

map() Mapping| . /7 Detection|

Figure 2.1: Simplified MIMO system model

Fig. 2.1 illustrates a simplified MIMO system model. A bit stream x map to a symbol



steam by the signal mapping function map(+), such as PSK and QAM modulation. Then
the symbols s are transmitted by the different antennas which are decided by the spatial
mapping method. At the receiver, y is the received vector which is interfered by the
channel and noise and § is the decoding output that is detected by the MIMO detection.

In the mathematical representation, a MIMO system of Ny transmit antennas and Ny

receive antennas can be represented by

y = Hs+n, (2.1)
where s is the Ny x 1 transmitted signal vector, H is an Np x Npi channel matrix of
independent and identical distributed (i.i.d.) complex Gaussian elements, and n is an
Ngr x 11ii.d. complex Gaussian noise vector, and y is the N x 1 received signal. Note
that an independent and flat-fading channel is assumed in (2.1). For convenience, there

is a simplified method referred to the real value decomposition. Thus, (2.1) is often

represented by an equivalent real-valued form as

[ R{}
y =
| 5(3)
| R} -S{H} | | R{s} B
| S{A} R 3{s} 3{n}
= Hs+n. (2.2)

where R{-} and 3{-} respectively refer to the real and the imaginary parts of a complex
signal. The complex modulation map(-) also decomposed into two real-valued singnal
mapping map(-). For example, M* -QAM mapping is transformed to two M -PAM modu-
lation. Futhermore, the channel matrix H is assumed to have full rank and to be perfectly

estimated at the receiver.

2.2 MIMO Signal Detection Algorithm

MIMO signal detection can be classified into linear detection and nonlinear detec-
tion. Linear equalization and successive interference cancellation are two representative
approaches in the linear category. For nonlinear detection, maximum-likelihood detection
can achieve optimum performance with the expense of higher computation complexity.

There are several detection methods in the following.

4



2.2.1 Linear Detection Methods

Linear detection methods try to compensate received signal by equalizing the channel
response. Zero-forcing (ZF) and minimum mean-squared error (MMSE) [10] equalizations
are the two most common linear schemes. Assume the pseudo-inverse channel matrix is
H* = (H"H)'H”. When Ny = Ny, H" = H™', that is, the inverse of the channel
matrix.

ZF equalization can be realized by directly multiplying the received vector y by I:IJ“;
therefore,

H'y =H"(Hs +n)=5+H"n (2.3)
The ZF solution can be derived by quantizing I:I+§f to its nearest integers. It provides the
maximum achievable diversity gain is Ng — Ny — 1 [9]. However, the noise is enhanced
by H* and limits the system performance.

MMSE equalization aims to substitute the H in (2.3) by other compensation matrix
such that the average enhanced noise power is minimized. Given p as the received SNR,

the MMSE equalization estimates s by multiplying y with

I 7 P~ -
DymMse = ( ;Ir + HHH)_IHH (24)

The MMSE receiver has the same maximum diversity as the ZF receiver, which is Ny —
Np —1[9]. Although linear detections require lower complexity, the performance degra-

dation is significant.

2.2.2 Successive Interference Canceling

The MIMO system model in (2.1) can be rewritten as
y = ) h&+in
= S+ ) hid+a, (2.5)

where h; refers to the i-th column of the channel matrix H. The second element of (2.5)
is regarded as interference to Sg. Successive interference cancelling (SIC) tries to estimate

the partial symbols to remove the interference.



SIC detection have Np stages and assume S, detects at the k-th stage. Supposed
S1,82,...,8,_1 be the estimates of S1,8,,...,8,_1. Substracting the estimates from vy,

then received vector yy is

k—1

i=1
Since the interference from sy, 8s,...,8;_1 is deleted. Then interference nulling restrains
the rest interference from Sjy1,Sk42,...,Sn,. The nulling process is similar to ZF and

MMSE equalization. Apparently, SIC suffers from error propagation if the first few
symbols are detected incorrectly. Therefore, ordered successive interference cancellation
(OSIC) or Bell Lab layered space-time (BLAST) [11] is brought out to sort the detection
order. The maximum achievable diversity gain of SIC is Ng — Ny + k [9]. Although the
performance is better than ZF and MMSE, the performance is still suboptimal. There is

a optimal solution of MIMO detection and will be introduced in the next section.

2.2.3 Maximum-likelihood Signal Detection

Mazimum-likelihood (ML) signal detection is one of the optimal detection method in
the MIMO system. ML estimates the transmit vector s by searching for a vector s that

maximizes the conditional probability,

§ = arg max Pr(yls), (2.7)

seQNt

where (2 denotes all possible constellation points of the mapping function map(-). Accord-
ing to the Gaussian system model in (2.1) and the equivalent real-valued form in (2.2),

(2.7) can be reduced to a closet-lattice-point searching problem [12],

$yp = arg min ||y — Hs||?, (2.8)

scQ2Nt

where s is an 2Ny dimensional lattice point of the lattice generated by H, |al* =
S (a;)? denotes the Euclidian norm of N-dimensional vector a, and 22 = Q x Q x
-+ x £ the 2N7 times Cartesian product of 2. That is, ML detection is to find a vector
s over the combination of Q** that minimize ||y — Hs||>. ML detection has been proved
that fully utilizes the benefit of diversity, Ng, but the computation complexity is exponen-
tial growth with Nz x [Q]. Therefore, a detection algorithm to realize ML detection while
decreasing the complexity is essential. In the following, the sphere decoding algorithm

will be introduced.



2.3 Sphere Decoding Algorithm

From the previous section, the computation complexity and the performance are in-
creased in an order by ZF, MMSE, ZF-SIC, MMSE-SE, ML. Although ML detection is
the optimal solution, exhaustively search for minimum of (2.8) to realize it is infeasible
when number of antennas and the constellation grow. Therefore, there are some sim-
plied search strategies to realize ML dectection. Following are depth-first and breath-first
sphere decoding(SD) introduced to reduce the complexity.

2.3.1 Depth First Sphere Decoding

The sphere decoding searches for the minimizer in the hypersphere, which is ||y — Hs||* <
R. Assume R is choosing properly such that the sphere contains at least one lattice point,

(2.8) becomes

éML = éSD = arg min Hy = I‘ISH2 , (29)
seQ2Nt |ly—Hs||*<r?

Fig. 2.2 depicts the simple concept of sphere decoding. Take Ny = 1 and 16-QAM
into account, SD algorithm searches the candidates in the circle and pruning the rest
constellation points outside the radius. And the solution is the lattice point that is the

closest to the received signal.

o O | 0O O

o /O

Figure 2.2: Geometrical representation of sphere decoding algorithm



In addition, (2.9) converts the closest-search problem to a tree-search problem while
preprocessing technique is applied. By QR-decomposition, the channel matrix is factorizd
to H = QR and Q is an 2Nz x2 N7 unitary matrix and R is an 2 N7 x 2Ny upper triangular
matrix. Multiplying y by Q”, (2.9) transforms to

$sp = arg min |y — Rs|*, (2.10)

s€Q2Nt ||y —Rs|*<r?

where y = Q’y.

Due to the triangular form of matrix R, the vector form of (2.10) is

INp INp 2
arg min Z (yz ZR” S; )

w>
I

seQNT ||y —Hs|*<r? T

2Nt

= arg min Z e(s™), (2.11)

seQr ly—Hs|?<r? £
where the partial path is s@ = [s"s\"), - --sg])\,T]T.

(PED) of s is defined as

2Ny ONp ' 2

The partial Fuclidean distance

i'=i j=i’

2NT 2NT 2 2]VT 2
3] (55900 N (8 oI

i'=i41
= T(s'D) 4 ¢(s9). (2.12)

From (2.12), the tree search algorithm initiates from 2Nz -th layer, which denotes root
node, to the 1-st layer of the tree, which indicates leaf note. According to (2.10) and (2.11),

SD searchs the lattice points in the hypersphere, that is, satisfy the radius constraint,

2Ny Ny 2
e 3 (02 n)
= (?J2NT—R2NT,2NTS2NT)2

. 2
+  (Yany—1 — Ronp—12N7—152N,—1 — Roang—1.2N7S2ny)

+ (1 — Rias1 — Riasy — -+ — RianpSang)” - (2.13)



Fig. 2.3 describes the simplied searching strategy of SD. Consider Ny = 2, BPSK
MIMO system, the nodes on the blue paths passes the radius constraint, which means

the paths are the possible candidates and the rest paths are discarded.

s 00600060860

Figure 2.3: Tree-search of sphere decoding

From (2.13), when detection initiates from 2Np-th layer, son, has to satisfy r? >

-~ 2
(Y2ny — RongangSany)”- Then,

[—r%—@/w{‘ < o, < {T%—%NTJ | (2.14)
Rong ong Rong ony
and define the lower bound
=7+ iJon.
o S g 2.15
4 { Rong ong —‘ ( )
and the upper bound
T+ Yan
e —J | 216
& LRMT,QNT (2.16)

At 2Ny — 1-th layer, define 75y = r* — (Jan, — Rang.angSan,) s then (2.9) becomes

2 . 2
Tong—1 = (Yong—1 — Rong 1287152871 — Rong—128752n7) - (2.17)

Besides, define

YaNp—12Ny = YoNp—1 — Rong—1,287 52N, (2.18)
Therefore,
—ToNg—1 + Yanp—1)2N TaNp—1 + YoNp—1)2N
Lon,—1 = [ = L T—‘ < Sonp—1 < { T ro 1PN | Uangp—1.
Rong—12N7—1 Rong—12Np—1
(2.19)



In the simliar process, the candidates from 2Ny — 2-th layer to 1-th layer can be derived

recursively from

—rp+ Y T+ 7
Ly = [ k yk|k+1-‘ < s < L k ykk+1J _ (2'20)
Rk,k R]Qk
where
2Ny
Uklk+1 = Yk — Z Rkisgkﬂ), (2.21)
i=k+1
and
rp =r?—T(s*). (2.22)

The SD algorithm starts from the root node, and the search moves towards to leaf node
when the current path metric satisfies the radius upper bound U,. If the current path
metric exceeds Uy, the search moves back to the direction of the root node. Therefore,
the search is referred to depth-first sphere decoding since the search direction goes back
and forth.

Obliviously, the decoding complexity of depth-first sphere decoding depends on the
numbers of nodes visited in the searching. At each decoding, the candidates passing the
radius constraints, which are referred to survival paths, are not constant. Depending on
different channels, the throughput of the decoder is not fixed and the decoding direction
is not uni-direction. Therefore, this algorithm is not suitable for the hardware imple-
mentation. To improve the throughput and apply parallelism and pipeline technique,
breadth-first sphere decoding arose. This algorithm will be introduced in the following

section.

2.3.2 Breadth First Sphere Decoding

Breadth First Sphere Decoding is also called K-Best SD algorithm, which is constant
decoding throughput and easy to hardware implementation.

The decoding procedure also starts from the root node. Unlike the depth-first search
that moves back and forth, K-Best algorithm expands every branch at each layer first
and calculates the PEDs of all expanded branches. Secondly, keep K partial paths that
the PEDs are smaller and eliminate others. Then, expend the branches of next layer by
these K survival partial paths. Perform the iterative steps until reach the leaf node and

obtain K survival paths ultimately.

10



(a) Hlustration of depth-first SD

600000

(b) Mlustration of breadth-first SD and K = 2

Figure 2.4: Description of depth-first and breadth-first sphere decoding

Fig. 2.4 depicts the difference of depth-first and breadth-first SD. For a 2 x 2 MIMO
system with BPSK, depth-first search has chances to move back when the PED dissatisty

the radius constraint. However, K-Best algorithm selects 2 partial paths in each layer

and only goes down while starts the searching strategy.

Obviously, the computation complexity of K-Best algorithm depends on the selection

of K. In addition, the complexity is dominated by sorting K-Best PEDs at each layer.

However, the performance loss is substantial if K is small and complexity is increasing

with larger K. Therefore, there are lots of discussions to trade-off between the compu-

tation complexity and performance [13], [14]. Table 2.1 summerizes some characters of

depth-first and breadth-first searches.

Table 2.1: Comparisom of depth-first and breadth-first sphere decoding

Throughput | Latency | Performance
Depth-First SD variable Long ML
Breadth-First SD constant Short Near-ML

11



Chapter 3

Soft-output MIMO System

The additional coding gain allows the system work better when the MIMO system is
combined with channel coding. Many advanced channel coding schemes, such as turbo
codes [15] or low density parity check codes [16], [17], require the received data to have
probabilistic information as soft value inputs instead of hard-decision inputs. In the pre-
vious chapter, the outputs of introduced algorithm are hard-decision outputs. Therefore,
there are some revisions that should be applied on the algorithms.

A list sphere decoder (LSD) [4], which is modified from a sphere decoder, performs
almost the same operations but generates different output format [18]. Not only the best
guess of ML solution, a candidate list containing other symbols which have high proba-
bilities of being ML solution is also delivered for computing the probabilistic information.

In the following sections, derivation of soft values from a list sphere decoder will be
introduced first. Then the algorithms are addressed to deal with the soft output of MIMO

system and the low-complexity technique will be proposed.

3.1 List Sphere Decoding Algorithm

A list sphere decoding (LSD) is mainly comprised of candidate list generation and
soft value generation. L, the candidate list, could be produced by the sphere decoding
algorithms that mentioned in Chapter 2. And Fig. 3.1 exemplifies the realization of LSD.

12
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Figure 3.1: Soft-output MIMO detector

3.1.1 Decoding Algorithm

The outputs of LSD are soft values that differ from the SD. The candidate list can
be generated by lots of methods. For depth-first SD, the radius is fixed until the survival
paths are exceed the size of candidate list, which is |£]. When £ is full, the radius shrinks
to the largest PED in the list. Sorting the maximum PED and radius-updating strategy
is carrying out whenever adding a new path. For breadth-first search, the K-Best survival
paths are the candidates in the candidate list £. Then, the probabilistic information is
generated by these candudate list.

For a binary data, log likelihood ratio (LLR) is one of the most common description
of the probabilistic information for the received data. The LLR of the bit z ; is defined

by its a posteriori probabilities, which is

Pr(zy, 0ly)
Lizn) = 1 J
() = 109 P, =1py)
Prlee, =0) . Pr(ylee; = 0)
= lo ) +lo A 3.1
S Br(eny = 1) I Prlylan, = 1) (3:1)

where z; means the k-th bit mapped from the j-th symbol. Supposed map(-) is the
M_.-PAM mapping function such that sy = map(zy 1, 2., ..., 2k, ). The first term in
(3.1) is the priori information and this term is zero for ML detection. With Gaussian

noise assumption, LLR becomes

logPr(y‘xk’j =0) longeﬂjp Pr(yls)
Pr(yley; =1) 2 seq,, Pr(yls)
1 . 2
< oo min lly — sl = min [ly — Hs?)
1

Q

2
@(Segunml\y—HSH - _min [y -Hs|’), (32
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where o is the noise varience, and €2;; is the set of all s having x5 ; = b for b = 0, 1.

When QR-decomposition is performed,

L(z,) min [y —Rs|* ~ min [}y — Rs||"). (3.3)

- rﬂ<serﬂlﬁL er,oﬁL
From (3.2), the searching range of minimum of s is narrowed from €;; to €;; N L.
Although the complexity is reduced, the empty-set issue is occurred and will be discussed

in the following.

3.1.2 Empty-set Issue

From (3.3), there are chances to encounter the situation of ;1 NL = 0 or Q;oNL =0,
which is refereed to the empty-set issue. If the problem is occurred, we could not find the

minimum in the empty-set.

L L

(a) Without the empty-set, €, 0N L # () and (b) With the empty-set, ;0N L = 0 and
QiinL#0. Q1NL#0.

Figure 3.2: Description of the empty-set issue

As the illustration of Fig. 3.2, the minimum could be found in the Fig. 3.2(a) while
Fig. 3.2(b) shows that ;N L is an empty-set. Therefore, we could try to enlarge the size
of £ until £ includes the probability 0 of z; ; as the illustration of Fig. 3.3. However, the
expansion has to be performed on every zj, ; and the complexity is increasing exponentially.

On the other way, the elements from Fig. 3.2(b), the elements in the candidate list of
xy; are all 1 and it suggests that the probability of 1 is higher than 0. Then the subtrahend
in the (3.3) could be set to a larger value which represents the larger cost. Besides, there
are several other algorithms to dealing with the problem and will be introduced in the

following section.
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Figure 3.3: Solution to the empty-set

3.2 QOC Decoding Algorithm

QOC is an abbreviation of OR ordered successive interference cancellation (OSIC)
with candidates [19]. The concept of this algorithm is trying to avoid the occurrence of
the empty-set and narrow the size of the candidate list as small as possible. Assume
the system model in Chapter 2 is applied and parameter M is referred to the number
of survival paths which is similar as the parameter K in the K-Best SD. QOC decoding

algorithm consists of the following four steps.

e Step 1- Ordering and QR Decomposition of the Channel Matriz H:
By using the methods in [20], order the channel matrix H and then apply QR

decomposition of the channel matrix H. Then the ML solution in (2.8) becomes

A . ~ 2
Syrp = arg min ||y — Rs||
SEQ2Nt
INp INp 2
= arg min gl— E Rijsg-z) y (34)
seQNT “ >
=1 Jj=t

where y = Q”y.

e Step 2 - M x |Q| Temporary Vector Generation:
This algorithm is composed of Np stages, where each stage generates M x |Q]
temporary vectors and selects M candidate vectors. It makes use of the M candidate
vectors from the previous stage and generate M X |€2| temporary vectors. At stage

n, each temporary vectors from ¢ = 2Ny — n to © = 1 is calculated by

~ 2Nt (2)
i . RZS
éi — Q (y Z]RZ,—’,—I = ) ) (35)
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where Q(+) represents a slicing function.

e Step 3 - ML Metric Computation:
For each temporary vector obtained in Step 2, the following ML metic is determined

by

i=1

L LT N7 N7 N\’
e ([0 ] ) -3 (- Sma?) o
j=i
while PED metric from (2.12) is
' o 2Ny 2Ny 1\
PED <[s£j>s§21 . S;?VT] ) => <y — ZRijsy’) . (3.7)
i=n =i
The calculation of ML metric requires more computation complexity but it avoids

the empty-set issue.

e Step 4 - M Candidate Vector Selection and Truncation:
By Step 3, M candidate vectors with the smallest ML metric values are selected.
And the length of the candidate vectors is reduced from Nr to n. Then Step 2 to

Step 4 are repeated for each stage until the final stage 1.

A simple example is given in the Fig. 3.4. Consider a 2 x 2 MIMO system with M = 1.
At stage 1 of Fig. 3.4(a), all || symbols are tried for s, and the remaining symbol s3, s9
and s; are generated by (3.5), which are || temporary vectors [sy, s3, S2, $1]. Then choose
M = 1 survival path with the smallest ML metric by (3.6) and truncate the survival path
to the partial path [s4]. At stage 2 of Fig. 3.4(b), all || symbols are tried for s3 and then
for each [s4, s3], the remaining s, and s; are also generated by (3.6). By the similar way,
the procedure is iteratively performed until stage 1.

If apply QOC method in the hard decision, the QOC solution is determined by the
smallest path at stage 1, such as K-Best SD. For soft output of QOC decoding, LLR
calculation could be done at Step 3 and there is no chance to run into an empty-set
problem. Since all M x 2] temporary vector are expanded at step 2 and €, or Q;;
couldn’t be an empty collection. Furthermore, the calculations of ML metric (3.6) could
be reused in the LLR (3.3). Thus, QOC method actually deals with the empty-set issue.

To sum up, the whole picture of hard QOC decoding method is similar as K-Best
sphere decoding and soft QOC decoding method is similar as list sphere decoding. They

only differ from the ordering of channel matrix and the calculations of the path metric.
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§ 4,candidate
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S3,S]C S3,try symbol
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S.s10 5,510
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(a) stage 1 (b) stage 2
S4,candidate S4,candidate
B S3,candidate S3,candidate
S, S,
7777777777777777 sty symbol 2,candidate
5Bd
Sl,SIC e e Sl,try symbol
| - > ) | - —
N N
Q Q
(c) stage 3 (d) stage 4

Figure 3.4: Hlustration of QOC algorithm with M =1 for 2 x 2 MIMO system.
3.3 Approach-I: Bi-Direction Decoding

Although the QOC method solves the problem of the empty-set issue, the complexity
is much higher than the list sphere decoding for the same list size. Since QOC method
needs to compute ML metric, the whole path [son,, Sans—1,- -, s1] has to be calculated.
In addition, the complexity is increasing dramatically especially when the modulation
order €2, the number of antenna Nr and the size of the QOC list M are increasing.

For the above reason, proposed bi-direction method comes up with a solution to re-
duce the complexity. The main idea is using two times of QR decomposition to reduce
the calculations of ML metric. Proposed bi-direction decoding algorithm consists of the

following four steps.

e Step 1- QR Decomposition of the Channel Matriz H two times:
Same as the QOC method, channel matrix H is applied by the QR decomposition.
Then H = Q1R and obtain the order of symbol s, which is II;. II; is referred

as the order of channel matrix, that is, the order of the symbol to be expanded in
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the decoding procedure. Without the loss of generality, assume the order of I1; is
[2N7, 2Ny — 1,..., 1] which means that the decoding starts from son,., then son, 1,

and so on. On the other hand, define ITy as [Ny, Np — 1,..., 1, 2Ny, 2Ny — 1,..., Ny + 1].
Then decompose H again by the order IT; and H = Q2Ra.

Step 2 - M x |Q| Temporary Vector Generation:

First, define a parameter P, here, which means the degree of the applying of bi-
direction. For instance, bi-direction method is performed from stage 2Nr/2 to 1
if P, = 2N7/2. It makes use of the M candidate vectors from the previous stage
and generate M X || temporary vectors. However, at stage n and n > P;, each

temporary vectors from ¢ = Ny —n to 1 = P + 1 of first direction is calculated by

(1) 2Nt 1) ()
. Ui’ = D jmiv Rij's;
S; = Q ( JR(l—; J _J ) . (38)

i

where Q(-) represents a slicing function, y' = Qly

From second direction, temporary vectors from ¢ = 1 to i = P; is

~(2) 2N @) (i)
S =Q (yZNTH_i mRYE L Riongt1 4555 )

R®

(2Np+1-3)(2Np+1—4)

where 32 = Qly.

If at stage n < Py, each temporary vectors from i = 1 to © = n — P, of second

direction is calculated by

~(2) 2Nt (2) (@)
=0 <y2NT+1i 1 Zj:QNT+27i R(QNT—i-l—i)ij ) . (3.10)

(2)
R(2NT+1—1')(2NT+1—2')
Step 3 - ML Metric Computation:
For each temporary vector obtained in Step 2, the following bi-direction metic (BM)

is determined by BM ([slsiH _ SQNT]T>. And if at stage n and n > P,

. 2N 2Ny 2
i) (2 7 ~(1 1) (¢
o ([0t 1) = 3 (- o)

i:Ps"Fl j=’i
Ps 2Np—it1 2
~(2) (2) (i)
+ Z (yQNT—i—i-l - Z RNy —it1);5) ) (3.11)
i=1 j=i
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On the other hand, if at stage n and n < P;,

- INp INp 2
7 7 7 ~(1 1 7
pav ([0 o)) = Y (yp—zﬁggsy)
=i

i=n—Ps+1
n—"Ps 2Np—i+1 2
~(2) (2) (i)
+ Z (yQNT—i—l-l - Z R(QNT—i+1)j5j ><312>
=1 j=i

e Step 4 - M Candidate Vector Selection and Truncation:
This step is almost the same as QOC method. By Step 3, M candidate vectors with
the smallest ML metric values are selected. And the length of the candidate vectors

is reduced from Np to n. Then Step 2 to Step 4 are repeated for each stage until
the final stage 1.

g "N

N 4,candidate

S
4.try symbol
By QIRIL e o Q‘Rli
SS,SIC S3,t7y symbol
85 sie T 3 s10
B R
By QZRZT ! y QZ 2 s
1,51C 1,81C
(a) stage 1 (b) stage 2
Q —
Q —
S4,candidate S4 candidate
S .
By QlRl L || " 3candidate S3,candidate
By QR,
¢ o S2,t;j/ symbol

S2,candidate
By QzRZT YSI,SIC % y '?) Stary symbol

(c) stage 3 (d) stage 4

Figure 3.5: Illustration of bi-direction algorithm with M =1 and P, = 4 for 2 x 2 MIMO

system.

A simple illustration is depicted in Fig. 3.5. Also consider a 2 x 2 MIMO system with
M =1 and P; = 2Ny /2 = 2 as an example. At stage 1 of Fig. 3.5(a), all |{2| symbols are
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tried for s, and the remaining symbol s3, s; and s; are generated by (3.8), which are ||
temporary vectors [sy, S3, S2, $1]. In addition, s; and s3 are calculated by Q;R4, while s9
and s; are computed by Q2R3. Furthermore, s; and s; could be calculated only once,
the same values are applied at the rest of stages. Then choose M = 1 survival path with
the smallest ML metric by (3.9) and truncate the survival path to the partial path [s4].

At stage 2 of Fig. 3.5(b), all || symbols are tried for s3 which is calculated by Q1R4
and then for each [s4, s3], the remaining s and s; are the values computed at sate 1.
Then choose M = 1 survival path with the smallest ML metric by (3.9) and truncate the
survival path to the partial path [s4, s3].

From stage 3 (3 > P, = 2) of Fig. 3.5(c), all |2] symbols are tried for so which is
calculated by Q1R and then for each [s4, $3, s3], the remaining s is the value computed
at sate 1 which is calculated by Q2Rs. That is, bi direction method is applied only from
symbol sp,_; to s; when number of stage is larger then P;. Then choose M = 1 survival
path with the smallest ML metric by (3.9) as well and truncate the survival path to the
partial path [sy, s3, s9]. In the leaf node of s1, the same operations are performed as QOC
decoding in Fig. 3.5(d).

In a word, bi-direction method disperses the calculations by Q;R; and Q2R5. From
1 = 2Nr —n to @ = 1 where n is referred to stage, QOC method has to calculate the re-
maining symbol by (3.5). However, bi-direction method takes advantage of the characters

of upper triangular matrix R; and Ry to reduce the computation of complexity.

[ pM () (O]
R1,1 Rl,z RI,ZNT B
B . 1
O ), .. “e :
S
Al I)— — — p) — — 2
- 2 R Ri=| {0 RCTTRL s =]
S Bl Rz R, AN
| N | SHw.
oo| 0 Ry - Ry, 0 0 0 0 RY,, '
: : P il ) [R® R . ... RO
s N I 1,1 1,2 12Ny B
2N, »™ . 2N,
400 0 Ry | 0o - SR o
- (= — — 2N -1
R,=| : 0 RPNU —Rf;—l,lzNT =8 = N
. N - N :
: : DN, :I
N S
(2) 1
| 0 0 0 0 Rmdzzvr_

Figure 3.6: Matrix illustration of bi-direction.
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From Fig. 3.6, the calculation of (3.5) is increasing from the root node, layer 2Ny, to
the leaf node, layer 1. Bi-direction method replaces the upper part of original R with the
lower part of Ra. Therefore, this method could reduce the complexity in the decoding

procedure. And the complexity analysis is given at the following section.

3.4 Complexity Analysis

The complexity of three differenent soft-ouput MIMO decoder is given in Table 3.1.
The computation complexity compares in terms of multiplications. And divisions have to
be applied on bi-direction and QOC method. Thus, the factor C' is used to represent a
multiple of the hardware complexity between divisions and multiplications.

From the table, the multiplication operations of bi-direction at QR decomposition are 2
times of QOC and LSD. However, the multiplications of bi-direction at LLR caculation are
much less than QOC and LSD for the same list size. In addition, the sorting comparison
depend on the list size, K or M. Furthermore, parameter P, of bi-direction is another
tradeoff between complexity and performane. If bi-direction performed at more stages,
the complexity is lower while the performance loss is greater. Therefore, a designer could

choose a proper parameter to meet the desired spec at the lowest cost.
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Table 3.1: Comparisom of three soft-output MIMO decoders.

Multiplications at Multiplications at Sorting
LLR Calculation QR Decomposition Comparison
Qi+ P(C+2) - C
+M Y 2(C +1)(2N7)?
Bi-direction T2+ Oy +2C Ny Q[M 2Ny — 2)
+(P, — 2)(C+2)P, = C] +22Nr 4- 1) AT +Q + 1]
4 SN L (9N — P (e + 2)]
Q21 4 C(2Np —1) (C'+1)(2Nyp)?
QOC M (T +CNy Q[M(2N7 — 2)
T2+ 0) T2 +(2Np 4 1) 28 +Q+1]
. QLI 20 +3) (C 4 1)(2Nr)? + CNy | Q[IL|(2Nr — 2)
+2 4 39)] +(2Np 4+ 1) 8T +Q + 1]
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Chapter 4

LDPC-Coded MIMO System

In Chapter 3, list sphere decoding algorithm and other decoding method have been
shown to be an efficient and applicable approach to realize ML detection for MIMO
systems. Combined with channel coding scheme, the additional coding gain allows the
system work better in lower SNR environment. Now, many advanced communication
systems such as wireless local area network (IEEE802.11n [21]), wireless metropolitan
network (IEEE802.16e [22]), and 10G BASE-T Eithernet (IEEE802.3an [23]), employ
low-density parity-check (LDPC) code as the forward error correction (FEC) technique.

In the following section, LDPC code decoder will be introduced first. Then a method

of connecting MIMO detection and LDPC to improve the performance is brought up.

4.1 Low Density Parity Check Codes

In 1963, Gallager [16] first introduced and proved low-density parity-check (LDPC)
code as a powerful error control scheme. Until the advances in VLSI technology, LDPC
codes were almost forgotten in the subsequent thirty years. Rediscovered by Mackay [17]
and then shown to be capacity-approaching, interests in LDPC codes eventually rose in
the late 1990s. The simple arithmetic computations and implicit parallelism of the LDPC
decoding algorithms facilitate low-complexity and high-speed hardware implementations.

The log-likelihood ratio (LLR) of intrinsic information of n'* variable node is denoted

h

by P,. The message from n'* variable node to m!" check node is denoted by 2,,,. The

message from m' check node to n'* variable node is denoted by €,,,. The a posteriori
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LLR of n'" bit is denoted by z,. The current number of iteration and maximum number
of iteration is represented by ¢ and I,;,, respectively. The standard BP is carried out as

followed.

e Step 1 - Initialzation:

Set i = 1. For each m,n, set 2%, = P,

e Step 2 - Iterative Decoding:

(a) check node to variable node update step, for 1 < m < M and each n € N(m),

process
d i—1
) A
¢ —2tanh! h(Zmn 4.1
i = 2tann ™ (T tann(Z22) (4.1)
n’eN(m)\n

(b) variable node to check node update step, for 1 < n < N and each m € M(n),

process
2t =P, + Z NG (4.2)
m/€M (n)\m
=Pt D € (4.3)
m/€M(n)

e Step 3 - Hard Decision:
Let X,, be the n'" bit of decoded codeword. If zq(f) > 0,X, =0, else if zﬁf) <0,X, =
L. If H(z®)t =0 or Iy 4x is reached, the decoder stops and outputs the codeword.

Otherwise, it sets ¢ =i + 1 and goes on iterative decoding.

The iterative decoding processes for one iteration of standard BP is illustrated below.
The messages are updated in parallel way between check nodes and variable nodes. The
process is shown in Fig. 4.1.

As it is shown in (4.1), the nonlinear function of hypertangent is the most complicated
operation in computing €’ . Therefore, min-sum alogorithm [24] is proposed to reduce
the complexity. The decoding algorithm is the same as original BP algorithm and only

modifies the equation of check node to bit node update. (4.1) becomes

d

@ : i—1 : i—1

€ = -sign(z' 7, min Z . 4.4
n’EN(m)\
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(b) Varibale node to check node update of BP algorithm

Figure 4.1: llustratin of standard BP.

Furthermore a scaling factor 3 is applied to compensate the performance loss. That

is, (4.4) adjusts to

d
U 3 i—1 : i—1
€~ | | sign(z~ min - |z | X 3, 4.5
mn , g ( mn) n EN(m)\n ‘ mn ﬁ ( )
n’€N(m)\n

where 0 < 3 < 1.
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4.2 LDPC-Coded MIMO System

In this section, the whole simulation environment will be introduced first. Then the
two-stage algorithm will be applied on the channel-coded MIMO receiver. In addition,
simulations based on the LDPC codes defined in IEEE802.16e (WiMax) [22] are pre-
sented in the following. An LDPC-Coded 16-QAM and 64-QAM 4 x 4 MIMO system was
simulated. Randomly generated binary data are encoded by (2304,1152) LDPC code.
By direct spatial mapping, the coded information is transmitted via an uncorrelated flat
fading channel which is mentioned in Chapter 2 and applied min-sum algorithm as the
LDPC decoding algorithm. And the iteration of LDPC is at most 30. The whole simula-
tion environment is illustrated in Fig. 4.2. First, an information bit stream b is generated
randomly and encoded by LDPC. Then symbols transmit after signal and spatial map-
ping. When the signals detect by MIMO detection and generate the LLR values, LDPC

decodes the code words into bit information.

sf N Lyl
Signal | = | Spatial —§2-Y< :\/\V\\\/’\{::\&LSoﬂ-output o ~
b,| Channel [ x | >'8"3" | § | Spatia 7’ S i X [ Channel
Encoder Mapping™>|Mapping| . 0. ) Decoder
map (D) * RN Detection
JL 7777777777 yNR

Figure 4.2: Channel-coded MIMO system
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4.3 Approach-II: Nonlinear Quantization

In this section, we will propose a nonlinear quantization method (NLQ) to improve
the performance of LSD. As mentioned at Chapter 3, a large probability value is set to
the empty set if the issue occurs in LSD. That is, the first term or the second term defined
in the (3.2) is fixed to a large constant, which is 10 as a simulated parameter here.

Obviously, the performance of BER highly depends on the size of list |£| since the
empty set seldom occurs when the size of list is larger. NLQ provides a simple way to
improve the performance of soft-output MIMO decoder. NLQ truncates the output LLRs
of MIMO system and the inputs of LDPC decoder by a positive parameter v. The soft-
values generated by (3.2) quantized between v and —v as Fig. 4.3 shown. The LLRs are
truncated to v if the values are larger than v; the LLRs are quantized to v while they are
smaller than —v. At Fig. 4.4, a real LLR distribution is given to show clearly.

|
[ b | LLR distribution
-y 14

Figure 4.3: Geometrical representation of LLRs of soft-output MIMO decoder.

As the illustration of Fig. 4.4, the original LLR distribution from LSD is depicted in
Fig. 4.4(a). And we perform NLQ with v = 6 which quantizes the original LLRs between
6 and —6. The resulted LLR distribution is depicted as Fig. 5.7(b). NLQ is applied on
channel-coded MIMO system befer error control code and after MIMO detection. And

the simulation results will be given in the next chapter.
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(b) LLR distribution after NLQ and v = 6.

Figure 4.4: LLR distribution of (2304, 1152) LDPC-coded 16-QAM 4 x 4 system at 12
dB.
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4.4 Approach-III: Two-Stage Algorithm

In this section, a method to improve the bit error rate (BER) of channel-coded MIMO
system is proposed. A reversed list ® which stores some unreliable bits from MIMO de-

tection is defined. And the flow chart of two-stage algorithm is given as Fig. 4.5.

MIMO LLR : LDPC
Generation <« Decoding

Store in the
reversed list Iteration=20

1
I
I
I
I
I
0 I
I
I
I
I
I
I
I

\ 4
Reverse the

intrinsic values
of the bits in the
reversed list P

Figure 4.5: Flow chart of two-stage algorithm

First, unreliable bits are chosen from the MIMO detection. We define two positive
factor o and /3 here. If the quantity of LLR of z; is larger than a which means that the
bit is strong at 0 or strong at 1. This infers that the channel to transmit the bit z; is
good and the channel gain of this antenna should large. And the diagonal elements of R
is used as the measurement of the channel gain. Thus, we could assume the bit z; is not
reliable if the LLR value is larger than o and R;; is smaller than 3. After the preliminary
sieving, the unreliable bit is stored in the reversed list ®.

After a block of LDPC codeword is detected by MIMO detection, n bits in the reversed
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list @ is selected and send to the LDPC decoder and then start the LDPC decoding
algorithm. At stage 1 which LDPC decodes before 20 iterations, the LLR values from
MIMO detection remain unchanged. At stage 2 which LDPC decodes at 20 iterations, we
flip the LLRs of bits that are in the reversed list ® and then start the LDPC decoding
procedure again. By this two-stage method, some errors could be corrected by the LDPC
decoder and improve the error performance, and the performane will be shown in Chpater
D.

The complexity overhead of two-stage algorithm is that some comparsions are prformed
while MIMO detection and LDPC decoding. The comparisons at MIMO detection are
performed to choose the unreliable bits and then choose n bits in the reversed list ®.
Besides, flipping the bits in the reversed bit also cost some extra comparison operations.

Therefore, there is another tradeoff between performance and complexity.
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Chapter 5

Simulation Results and Comparison

In this chapter, the performance and the computation complexity trade-off between
QOC and bi-direction method are given first. And the error performance of MIMO dection
methods with NLQ are discussed. Then we will present the error performance of two-
stage algorithm. The following discussion is shown by 16-QAM 4 x 4 MIMO system with
(2304,1152) LDPC decoder defined in 802.16e [22] and the LDPC decoding algorithm
is applied by normalized min-sum algorithm with scaling factor 0.75. In addition, the
number of iteration of LDPC is 30. In the end, all proposed algorithms are summarized

by 64-QAM 4 x 4 MIMO system with (2304, 1152) LDPC decoder defined in 802.16¢ [22].

5.1 Bi-Direction Method

The error performance and the complexity comparison of LSD, proposed bi-direction
and QOC method are given in this section. Fig. 5.1(a) shows the BER of 16-Best
LSD and the QOC and bi-direction method for parameter M = 4. Fig. 5.1(b) shows the
performance of 32-Best LSD and the QOC and bi-direction method for parameter M = 8.
In addition, the parameter P, = 4 is considered in the bi-direction method. From Fig.
5.1, the error performance of all these three algorithms improves when the size of list is
expended, parameter M for bi-direction and QOC method and parameter |£| for LSD.
In addition, bi-direction and QOC method could approach LSD with smaller M which is

almost quarter of |L].
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(b) M = 8 for bi-direction and QOC, and |£| = 32 for LSD.

Figure 5.1: BER of (2304, 1152) LDPC-coded 16-QAM 4 x 4 system.

32



10

—+— Bi-direction, M=4, Ps=
-—+- Bi-direction, M=8, Ps=
—6— QO0C, M=4
--6-Q0C, M=8

10'1 \ —A— 16-Best LSD
S --f- 32-Best LSD

4
4

R R

I

I

Bit Error Rate (BER)

10

9 9.5 10 10.5 11 11.5 12
Eb/No(db)

Figure 5.2: BER of (2304, 1152) LDPC-coded 16-QAM 4 x 4 system.
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Figure 5.3: Complexity comparison of 16-QAM 4 x 4 system in terms of multiplications.
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Figure 5.4: Ilustration of complexity reduction for the similar performance at QOC

M = 4 and bi-direction M =8, P, = 4.
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Figure 5.5: BER of (2304, 1152) LDPC-coded 16-QAM 4 x 4 system.

Although the performance loss of bi-direction from QOC at BER 1073 is about 0.2 dB
as M =4 and 0.5 dB as M = 8, the complexity reduction is about 50% and 70% of QOC
respectively which is shown in the Fig. 5.3. And the sorting comparison of bi-direction
method also reduces to 33% of LSD. Furthermore, the complexity of bi-direction is always
the lowest in these three algorithms at the similar performance. Therefore, the bi-direction
method provides a way to reduce the complexity. Fig. 5.2 combines Fig. 5.1(a) and Fig.
5.1(b). The BER performance of QOC M = 4 is similar to bi-direction method M = 8 and
P, = 4. And Fig. 5.3 shows that the complexity of bi-direction method is only about 66%
of QOC. The simpilfied illustration of computation comparison of QOC and bi-direction
method is shown in Fig. 5.4. Bi-direction method calculates 9 times smaller diagonal
matrices and 1 additional QR decomposition to replace 4 times full diagonal matrices
calculation of QOC. For 16-QAM 4 x 4 system, the ratio of computation between QOC
and bi-direction is about (8 x 8) x 4 : (3(4 x 4) x 9+ £(8 x 8)) = 16 : 13. Therfore,
bi-direction method actually reduces the computation complexity.

In addition, the stage parameter, P, has impact on the BER as shown in Fig. 5.5. If
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bi-direction applied on fewer stages, that is, smaller P;, the performance loss is less while
the complexity is increasing. When P, equal to 1, the BER performance is the same as

QOC method. Therefore, P; is another tradeoff between performance and complexity.
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5.2 Nonlinear Quantization

In this section, we will show the performance comparison before NLQ and after NLQ.
Let us cosider different v of NLQ method. In the Fig. 5.6(a), different v has influence on
the performane. For 16-Best LSD, if LLRs quantize at smaller ~, the varience of LLRs
is too small for LDPC decoder and the information for every bits is too few to decode.
Because LDPC decoding algorithm is derived by binary phase shift keying (BPSK) mod-
ulation, LDPC decoder maybe preferr a kind of input LLRs. Therefore, the performance
degrades when v exceeds 6 for 16-Best LSD which is depicted from Fig. 5.6(b). From
this experiment, v = 6 is choosen as the following simulation.

The real lines in Fig. 5.7(a) is referred to the original bit error rate of LSD with
different list size and the dash lines represent the performance of NLQ method applied on
LSD. From Fig. 5.7(a), the BER of LLSD with NLQ will improve almost 2dB. In addition,
the performance gain is established for different list size, |L|.

Not only LSD, the NLQ method also improves the performance of bi-direction method
and QOC which is given at the Fig. 5.8. The performance after NL(Q improves almost 2
dB both in the QOC and bi-direction method as well.

For the different channel coding scheme, the improvement by NLQ also comes into
existence. The LDPC decoder is replaced with a rate—% soft Viterbi decoder at Fig. 5.9
and NLQ parameter v = 4.5 is applied here. LSD after NLQ at BER 10~* improves about
1.7 dB in 64-Best LSD.
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Figure 5.6: BER of (2304, 1152) LDPC-coded 16-QAM 4 X 4 system versus different ~.
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Figure 5.8: BER of (2304, 1152) LDPC-coded 16-QAM 4 x 4 system with bi-direction and
QOC method, and v = 6.
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5.3 Two-Stage Algorithm

As mentioned in Chapter 4, we perform the two-stage algorithm on the 4 x 4 LDPC-
coded MIMO system after NLQ. A 10 bit reversed list stores the most unreliable bits
from soft-output MIMO decoder. These 10 bits are determined if the LLR values are
larger than 5 and the corresponded channel gain is less than 0.5. That is, the simulated
parameter « is 5 and [ is 0.5. After LDPC decoding performs 20 iteration, LLR values
in the reversed list change to the opposite signs and then starts decoding procedure until
30 iteration. Besides, the NLQ parameter v uses 4.5 as simulation.

From the simulation result of Fig. 5.10, 0.2-0.3 dB performance enhancement is pro-
vided by the two-stage algorithm and has influence both on the LSD and bi-direction
method. And there are a little comparison overhead to perform two-stage algorithm.
Therefore, two-stage provides a method that could apply on all kinds of soft-output MIMO

decoder to improve the performance.
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Figure 5.10: BER of (2304, 1152) LDPC-coded 64-QAM 4 x 4 system, and v = 4.5.
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5.4 Summary

In conclusion, 64-QAM 4 x4 MIMO system with (2304, 1152) LDPC decoder is given as
a summary. Fig. 5.11 shows that NLQ is applied on the LSD. For MIMO system without
channel coding, that is, the hard decision of conventional K-Best sphere decoding, the
parameter K should be chosen as 64 to approach ML solution. NLQ method applied on
LSD could use the same K as the K-Best SD to achieve a great performance without any

list expansion. And 64-Best LSD in the soft-output MIMO decoder is good enough when

the NLQ method is performed.

QOC method indeed works better when M is small at Fig. 5.12. The performane
of QOC for M = 4 achieves that of 16-Best LSD. However, the performane of QOC for
M = 32 is worse than that of 32-Best LSD. And the complexity of QOC is higher than
that of LSD in the same parameter. That is, the peformance of QOC is not increasing
proportional to M, which is referred as the computation complexity. Therefore, the low

complexity character of bi-direction method could be a replacement when M is increasing

which is shown as Fig. 5.13.
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Figure 5.11: BER of (2304,1152) LDPC-coded 64-QAM 4 x 4 system after NLQ with

v=4.5
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Figure 5.14: Comparison of computation complexity in terms of multiplications.

From Fig. 5.13, the performance difference of bi-direction and QOC is smaller with
the increasing of M. The performance loss is 0.5 dB for M = 4 and 0.2 dB for M = 8.

And the computation complexity is analized as Fig. 5.14.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, three methods are proposed to reduce the complexity and improve the
performance for the channel-coded MIMO system. First, a bi-direction method reduces
the complexity of the soft-output MIMO decoder. Traditionally, sphere decoder of the
MIMO system encounters the empty-set issue as generating LLRs. Although the decod-
ing method such as QOC solves the empty-set problem, the computation complexity is
increasing intensively with the order of modulation and the list size. Bi-direction reduces
computations by using two diagonal matrices and two decoding process and reduction is
at most 30% compared to the original method QOC.

In addtion, nonlinear quantization (NLQ) is applied to the list sphere decoding and
other soft-output MIMO decoder. By transforming the ouptut LLR distribution of MIMO
detection, NLQ obtains a great performance improvement at most 2dB with little com-
putation complexity. In the end, a two-stage algorithm for the channel-coded MIMO
system is presented. An reversed list is constructed to store some unreliable bits from
MIMO decoding. And the LLRs in the reversed list are changed to the opposite values
as LDPC decoding procedure. The two-stage algorithm improves the bit error rate of the
channel-coded MIMO decoder at most 0.3dB.
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6.2 Future work

For the nonlinear quantiztion (NLQ), we use the same parameter v = 6 in the whole
simulation. However, the optimal value of v maybe differ from the constellation, the size
of the list at MIMO detection and channel decoding scheme. Therefore, a derivation of ~
is essential in the future as a design parameter.

In addition, bi-direction could be applied on the other algorithms to reduce the comu-
tation complexity with a few performance loss such as layered orthogonal lattice detector

(LORD) [25] and list sphere decoding.

48



Bibliography

1]

A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bolcskei, “An overview of MIMO
communications - a key to gigabit wireless,” in Proc. IEFE, vol. 92, no. 2, Feb. 2004,
pp- 198-218.

B. G. Evans and K. Baughan, “Vision of 4G,” FElectron. Commun. Eng. J., vol. 12,
no. 6, pp. 293-303, Dec. 2000.

G. J. Foschini, “Layered space time architecture for wireless communicationin a fad-
ing environment when using multiple antennas,” Bell Lab. Tech. J., vol. 1, no. 2, pp.

41-59, Aug. 1996.

S. Baro, J. Baro, and M. Witzke, “Iterative detection of MIMO transmission using a
list-sequential (LISS) detector,” in IEEE International Conference on Communica-

tions (ICC), vol. 4, May 2003, pp. 2653-2657.

H. Vikalo, B. Hassibi, and T. Hassibi, “Iterative decoding for mimo channels via
modified sphere decoding,” in IEEE Trans. Wireless Commun., vol. 3, Nov. 2004,
pp. 2299-2311.

E. Viterbo and J. Boutros, “A universal lattice code decoder for fading channels,” in

IEEE. Trans. Inf. Theory, vol. 45, no. 5, Jul. 1999, pp. 1639-1642.

K. W. Wong, C. Y. Tsui, R. S. K. Cheng, and W. H. Mow, “A VLSI architecture of
a K-best lattice decoding algorithm for MIMO channels,” PIMRC, vol. 02, 2002.

E. Viterbo and J. Boutros, “A universal lattice code decoder for fading channels,”

IEEE Trans. on Inform. Theory, vol. 45, pp. 1639-1642, July. 1999.

49



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. K. Winters, J. Salz, and R. D. Gitlin, “The impact of antenna diversity on the
capacity of wireless communication systems,” in IFEE Trans. Commun., pp. 1740—

1751.

D. Tse and P. Viswanath, Fundamentals of Wireless Communications. New York:

Cambridge University Press, 2005.

P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Golden, “V-blast: an ar-
chitecture for realizing very high data rates over the rich-scattering wireless channel,”
in IEEFE International Conference on Signals, Systems and Electronics (ISSSE), Sep.
1994, pp. 295-300.

E. Agrell, A. Vardy, and K. Zeger, “Closest point search in lattices,” IEFE Trans.
on Inform. Theory, vol. 48, no. 8, p. 2201V2214, Aug. 2002.

Y.-H. Wu, Y.-T. Liu, H.-C. Chang, Y.-C. Liao, and H.-C. Chang, “Early-pruned K-
best sphere decoding algorithm based on radius constraints,” in IEEE International

Conference on Communications (ICC), pp. 4496-4500.

H.-C. Chang, Y.-C. Liao, and H.-C. Chang, “Low-complexity prediction techniques of
K-best sphere decoding for MIMO systems,” in IEEE Workshop on Signal Processing
Systems, pp. 45—49.

C. Berrou and A. Glvieux, “Near optimum error correcting and decoding: Turbo-

codes,” in IEEFE Trans. Commun., pp. 1261-1271.
R. G. Gallager, “Low-Density Parity-Check Codes,” in MA: MIT Press.

D. J. C.MacKay and R. M. Neal, “Near Shannon limit performance of low density
parity check codes,” Electron. Lett, vol. 33, no. 6, pp. 457-458, March 1997.

B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-antenna

channel,” in IEEE Trans. Commun., vol. 51, Mar. 2003, pp. 389-399.

T.-H. Im, I. Park, J. Kim, J. Yi, J. Kim, S. Yu, and Y .-S. Cho, “A new signal detection
method for spatially multiplexed MIMO systems and its VLSI implementation,” in
IEEFE Trans. Circuits Syst. 11: Ezxpress Briefs, pp. 399-403.

20



[20]

[21]

[22]

[23]

[24]

[25]

Y. Dai, S. Sun, and Z. Lei, “A comparative study of QRD-M detection and sphere
decoding for MIMO-OFDM systems,” in Proc. IEEE Int. Symp., pp. 186190, Sep.
2005.

Information technology-telecommunications and information exchange between
systems-Local and metropolitan networks specific requirements-Part 11: wireless LAN
medium access control (MAC) and physical layer (PHY) specifications: Enhance-
ments for Higher Throughput,, IEEE Std. Std. P802.11n.D1.0, 2006.

Local and metropolitan area network part16: air interface for fized and mobile broad-

band wireless access systems draft, IEEE Std. Std. P802.16e.D9, 2005.

Part 3: carrier sense multiple access with collision detection (CSMA/CD) access
method and physical layer specifications amendment to IEEE Std 802.3-2005,, IEEE
Std. Std. P802.3an, 2006.

M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decod-
ing of low-density parity check codes based on belief propagation,” in IEEE Trans.
Commun., vol. 47, May. 1999, pp. 673-680.

M. Siti and M. P. Fitz, “A novel soft output layered orthogonal lattice detector for
multiple antenna communications,” in IEEFE International Conference on Commu-

nications (ICC), Jun. 2006, pp. 1686-1691.

ol



	中文_abstract
	THESIS_2.pdf



