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Abstract

In this thesis, we study the problem of spectrum sensing in cognitive radio networks
from the view of sequential change-point detection (also called quickest detection).
Aiming at avoiding interference to licensed primary users, which can help promote the
willingness of the primary systems to accept the idea of coexistence with cognitive users,
we propose several cumulative-sum (CUSUM)-based algorithms for detecting as quickly
as possible the event that the dormant primary systems start reclaiming the use of the
spectrum by exploiting the feature of the incipient part of the primary signals. Particularly,
we are interested in the applicability of CUSUM-based tests to the coexistence problem
when considering the fading effects between the cognitive and the primary user, given

only the statistical channel information.

In the first part of the thesis, we consider the single-user scenario and propose four
CUSUM-based algorithms according to different perspectives and manners on the fading
effects under flat fading or frequency-selective fading environments. In the second part of
the thesis, we extend the proposed CUSUM-based algorithms to the case of cooperative
quickest detection, where a number of cognitive users provide decision strategies and

collaboratively detect the beginning of the reclaims of the primary signals. In the



simulations, we demonstrate the effectiveness of the proposed algorithms with the
settings defined in IEEE 802.16e as the primary signal model. Comparisons of the

proposed CUSUM-based algorithms are also provided in the simulations.
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Chapter 1

Introduction

1.1 Motivation

Recently, cognitive radio has emerged as a feasible apprmaalleviate the problem
that most of the allocated radio spectrum are used spotbdasal utilized inefficiently

in wireless communications applications [2]. Generallgapng, a cognitive radio is a
software-defined radio aware of its environment and autansty adapting its operations
to achieve desired objectives in response to unexpectétivas. Many kinds of possi-
ble mechanisms have been proposed for promising bettam\esticiency and spectrum
utilization. One main approach is to concede unlicenseaitiog users to opportunisti-
cally use those frequency spectrum yielded by underlyitglidensed primary users to
improve the efficiency of current spectral utilization. histcase, under the concern of
possible interference to primary users, cognitive usersiishassure that they could fairly
detect the activities of primary users and try to avoid ii@@nce to the primary licensed
users as much as possible, which can help promote the wisgyof the primary sys-
tems to accept the idea of coexistence with unlicensed tegnisers. Specifically, the
effectiveness of detection strategy applying in cognitagio networks has been one of
the key factors that the opportunistic mechanism is wokkablincreasing the efficiency
in two main aspects. One is that the cognitive users havedw kvhether there exist pri-
mary users transmitting or not before opportunistic used,the other issue is to vacate

frequency bands as quickly as possible when primary uskimgag the use of the spec-



trum. This corresponds to the following two types of spettidetection (or commonly

termed aspectrum sensing) problems in cognitive radio networks:

e Detecting the existence of spectrum holes in order to oppatically use that spec-

trum vacancy.

e Detecting the retransmission of primary users in a specturently used by a

cognitive user and determine the time instant at which ttramemission starts.

There have been plenty of research studies that apply theeobanal block-based
detection to the detection problems mentioned above initegmadio networks [3].
However, the fact that the efficiency of speculative spectutilization would be en-
hanced if we could detect as quickly as possible the idlimglbgand that the interference
to the primary users could be avoided as much as possibleofaitive user is capable
of perceiving the restart of transmission of the primaryriesecites our interest in the
applicability of sequential detection on cognitive radios

On the other hand, prior information about primary user@prent signaling struc-
tureis sometimes available to public in existing licensgstems such as WiMAX sys-
tems. In this situation, it is possible to enhance the efficaawareness of the reoccu-
pying of primary user by exploiting features of the frameisture in cognitive detection.
In the thesis, combined with the aim to responding as quiaklypossible the activities
level of primary users, we are interested in contriving &ffe detection strategies that
make use of known feature of primary signaling in sequemntiahner for promoting the

cognitive coexistence.

1.2 Why Quickest Detection?

Most research and development about spectrum sensing mtivegadios concentrate
on classical block-based detection schemes such as ersagptidn, feature detection or
matched filtering [3]. In these schemes, cognitive usersyweollect a succession of
observations within a fixed sensing time window, and thenutate corresponding test

statistics for decisions. Most of them put emphasis on meng probability of de-
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tection while maintaining an acceptable levelfalse alarm rate, particularly in detect-
ing whether there is spectrum hole existing in the enviramnfer possible opportunistic
cognitive transmissions. On the other hand, when focusindetecting primary user’s
retransmission activity and striving at avoiding inteefiece to primary users by vacat-
ing frequency bands that are occupied by cognitive user®@s &s retransmission of
underlying primary users occurs, the delay between thenastid time instant and the
true primary user’s retransmission time instant becomes@at index to the feasibility
of cognitive mechanisms. However, due to the inherent ratfiblock-based detection,
this delay performance of detection has not been addresstt iconventional meth-
ods [4], [5], [6], and [7]. Thus, this motivates us to studg #pplicability of sequential-
type detection, especially the change-point detecticso(ehlled quickest detection), in
dealing with the detection problem in cognitive networks.

Quickest detection is a branch topic of sequential-typedatitn [8], [1]. Conceptu-
ally, the idea is to detect changes in distribution of obatons as quickly as possible,
which coincides the aim that secondary users should déectiange in the activity level
of the primary users immediately. In contrast to block-lbegeproaches, mean delay of
detection is an essential performance index in sequertaige-point detection. This
property makes the quickest detection as an appropriatewark for dynamic spectrum

sensing in cognitive radio networks.

1.3 Related Work

The problem of detecting an abrupt change was first studieddne in the context of
quality control [9]. In the conventional formulation of tltbange-point detection prob-
lem, there is a sequence of observations whose distribotianges at some unknown
point in time, and the goal is to detect this change as quiaklpossible subject to false
alarm constraints. In the simplest situation where the masens are independent and
identically distributed (i.i.d.) with known distributi@nbefore and after the change, the
problem is well understood and has been solved under ayafietiteria since the sem-

inal work by Page. Under minimax formulation, which is firsbposed by Lorden [10],



the well-known Page’s cumulative sum (CUSUM) algorithm haen proved to be opti-
mal?! in the sense of minimizing the mean delay of detection whiééntaining a certain
level of false alarm rate [11] and [12].

The extension to composite hypotheses testing problemsawihe distributions of ob-
servations before or after change are not completely spdatuld be found in [10], [13]
and [14]. In [15], the authors consider the problem of detgch change from one given
stationary and ergodic stochastic process to another sudegs. Change-point detec-
tion involving dependent observations is discussed in,[Mfre the authors shows that
Page’s CUSUM procedure is still asymptotically minimaxiogl for dependent obser-
vations under some conditions which are difficult to verifygeneral. Although it is easy
to extend the CUSUM decision rule for dependent observatigireplacing statistics by
conditional density as proposed in [15] and [16], it has be®open problem concerning
whether the asymptotic optimalftyf the CUSUM rule still holds as commented in [17].

The first generalization of the CUSUM detection procedugarding multichannel
and distributed systems is proposed in the work by Tartagops3] and further extended
and discussed in [19] where asymptotically optimal procesltor two distributed scenar-
ios are presented based on i.i.d. local observations bafat@fter change. In work [20],
also concerning the simplest case with i.i.d. local obg@wma, the author proves that
a CUSUM procedure based on binary-quantized data with a tonadikelihood ratio
guantizer (MLRQ) is asymptotically optimal under a comatiton second moments in the
system with limited local memory and develops asymptototl in the system with full
local memory. The case that there exists unknown paranretiee ipost-change detection

as further extension in the distributed multisensor sgttth binary quantization is ad-

In the sense that the stopping time of CUSUM procedure mir@siihe worst average conditional
delay ¢, denotes the change time anddenotes the alarm time)* = sup, -, €SSSURy, (t, — to +
1|te > to,}‘f“*l), where}‘f“*1 is the filtration, namely the smallestfield with respect to observations
Y1, - -, Yto,—1 and the essential supremum (esssup) means the worst casgatetlelay, for a fixed mean

time between false alarffi = Ey, (t,)
2An optimal algorithm for change detection is any algoritiattminimizes the worst mean conditional

delay for detectiorr* for a fixed mean time between false alafiimand an algorithm isisymptotically

optimalif it reaches this optimal property asymptotically wHER— oo



dressedin [21]. In [22], Tartakovsky proposes nonparametulti-chart CUSUM test for
the rapid intrusion detection applied to general stochastidels in multichannel sensor
systems and show that the proposed multi-chart detectiocedure typically performs
significantly better than single-channel counterparts.

Under cognitive radios setup, the authors in [23] introdusing generalized like-
lihood ratio (GLR) test combined with parallel CUSUM algbrin and propose a suc-
cessive refinement to tackle the problem with unknown anmbditof primary signals,
which consist of mutually independent sequence before &ird @hange. And, scenar-
ios with different information levels about primary usersoln by cognitive users are
considered in [24], in which GLRT-based algorithm and nangmetric approach are de-
veloped based on mutually independent homogeneous gaussiabuted signal model.
The work in [25] deals with the spectrum detection problenmiyoducing the CUSUM-
based quickest detection with hidden Markov Models (HMMRglated work of coop-
erative spectrum sensing based on CUSUM procedure can be faUy26] and [27],
both based on i.i.d. local observations. In [26], collaliseaquickest detection in an ad
hoc network, where no data fusion center is needed and co#libn among sensors is
through information exchange, is proposed for multi-nodsec Cooperative spectrum
sensing schemes applying linear test on CUSUM statistica¥empting the need of es-
timation of unknown parameters in post-change distrilvuéice provided in [27] under

different distributed scenarios.

1.4 Contributions of the Research

Aiming at avoiding interference to licensed primary usevhjch can help promote the
willingness of the primary systems to accept the idea of istexce with cognitive users,
we propose several cumulative-sum (CUSUM)-based algosttinat exploits the feature
of the incipient part of the primary signals for detectingyasckly as possible the event
that the dormant primary systems start reclaiming the ugkeo§pectrum. Particularly,
our formulation captures possible fading effects betwéencognitive and the primary

user given only the statistical channel information at #eeiver end.



Contrast to the homogenous-distributed and independesdraditions after change
that are commonly assumed in conventional quickest detecthe detection problem
we deal with involves non-homogenous and innately depdnoleservations after the
reoccupying of the coexisting primary system. To tackle pheblem, we first con-
sider the single-user scenario and propose four CUSUMebalg®rithms depending on
different assumptions on the fading environments. Speatlificwe call the four pro-
posed algorithms as the classical CUSUM, weighted CUSUMRGhased CUSUM,
and MMSE-based CUSUM algorithms, which are briefly desctibs follows. In the
classical CUSUM algorithm, we treat the unknown channelbofacas random variables
with known prior statistics and calculate the likelihoodigabetween joint probability
density functions of observations under the condition®tgetind after the reclaiming
occurs. While in weighted CUSUM and GLRT-based CUSUM aldpon, we consider
the unknown channel coefficient as deterministic but unknoanstant during the detec-
tion process. We weight the likelihood ratio by applyingopiinformation as weighting
function and estimate the unknown parameter through alladota observations. The es-
timates are then substituted into the likelihood. Depamnfthe philosophy employed by
the GLRT-based CUSUM algorithm, the MMSE-based CUSUM aljor is to estimate
the unknown fading coefficient by incorporating prior kneddgjie. We also examine the
required length of backward observations that keeps cambp@efficacy with the one
without any curtailment of observational window.

Further, we extend the proposed CUSUM-based algorithnisetodase of cooperative
quickest detection, where a number of cognitive users geodecision strategies and col-
laboratively detects instantaneously the beginning ofrélméaims of the primary signal
under three different distributed frameworks. The firstrthsited scenario is in central-
ized setting, which means that the original data receiveskasors are sent completely
to a fusion center where a final decision is made based onrabsenassages for global
CUSUM test. In the cases considering decentralized framewee resort to hard fu-
sion of local CUSUM and global CUSUM with quantized local d&m. In hard fusion
of local CUSUM scheme, we assume that each of the coopesaiveors has sufficient

memory to individually perform CUSUM-based quickest datecthen the fusion center



makes final decision based on local decisions sent by seasoosding to hard-decision
combining rules. In the decentralized scheme consideltotgpf CUSUM with quantized
local decisions, we propose using an approximation oniligtons of the received signal
after reoccupying to tackle the quantization at the locakees, and the CUSUM-based
algorithm is performed at the fusion center while the loegisors are assumed memory-
less and send quantized version of their observations fosida making.

In the simulations, we demonstrate the effectiveness optbposed algorithms with
the settings defined in IEEE 802.16e as the primary signaleinddomparisons of the
proposed CUSUM-based algorithms are also provided in thalations.

To sum up, the contributions of the research include:

e We deal with the spectrum sensing problem under fading enmients in a sequen-
tial detection viewpoint, which involves non-homogenoistributed and innately
mutually dependent observations after the reoccupyindg@fcbexisting primary
system. This problem has not been studied before. Althduglwvork in [25] also
discusses quickest spectrum detection with dependent\aiems after change,
the dependency among the observations lies on the sampling wideband power
spectrum density. They first train the corresponding HMMapaeters of specific
primary signal and then perform quickest pattern cognjtvamnich heavily depends
on the Markov properties in calculating statistics, to detbe appearance of a
predefined pattern as quickly as possible. While in our pgedschemes, the de-
pendency among observation sequence is due to possiblefregselective fading

effects.

e We develop several effective change detection strategissdon CUSUM proce-
dure with practical assumptions. In addition, we also psgpmoperative schemes
as further extension. By simulation, we demonstrate thectaffeness of the pro-

posed algorithms either under flat fading or frequencyeswie fading case.



Chapter 2

Cognitive Radio and CUSUM-Based

Quickest Detection Preliminary

2.1 Cognitive Radio

Cognitive radio technology, which is first proposed by Mitah [2], has emerged as a
potential candidate to revolutionize spectrum utilizatidn general, cognitive radio is
defined as a software-defined radio that is aware of its sndiog and autonomously
adapting its operations to achieve desired objectivessipaiese to unexpected variations,
based on the active monitoring of several factors in thereateand internal radio envi-
ronment, such as radio frequency spectrum, user behavibneinvork state. The need
for CRs is motivated by various factors. Early works focustmncapability of enhancing
the flexibility of personal services in a way that support®mated reasoning about the
needs of the anticipated user. The radio seeks out the eghuformation and provides
the user with instructions or the desired service. Fig! RBldstrates the cognition cycle
which consists of Observe, Orient, Plan, Decide, Learn actdoAases, has been widely
used to understand and analyze the performance of cogprteesses in cognitive radios
and cognitive networks. More recently, the problem of speotunder-utilization urges

the need for intelligent radios to tackle the dynamic altmoes efficiently. Although the

1This figure is adapted From Mitola, "Cognitive Radio: An Igtated Agent Architecture for Soft-ware
Defined Radio”, Doctor of Technology, Royal Inst. Techn&lTH), 2000, pp 48
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Figure 2.1: Simplified Cognition Cycle.

initial aim of CR not directly lies on promoting the utilizah of spectrum resource, it
does serves as a potential candidate to alleviate thisgmobince cognitive users could
either opportunistically utilize idled spectrum by detegtthe spectrum hole or actively
negotiate with primary userse the existing licensed users, to access the spectrum. There
have been plenty of researches on CR-related topic, whighl dee classified into three
fundamental tasks [3]: 1. Radio-scene analysis, whichuohes estimation of interfer-
ence temperature of the radio environment and detectiopeasftaim holes. 2. Channel
state estimation and predictive modeling, which encongsasstimation of channel-state
information and prediction of channel capacity for use by ttansmitter. 3. Transmit
power control and dynamic spectrum management.

Our work is focus on detecting the activity level of primagess under fading envi-
ronments, aiming at avoiding interference to licensedsermpromoting the coexistence
with underlying primary system, which we adopt an alteretiiew in sequential sense

contrary to conventional block-based detection to tackth.w



2.2 CUSUM-Based Quickest Detection

Change detection is a fundamental problem arising acrogsugbranches of science, fi-
nance and engineering. By taking the change-point as digtistio but unknown param-
eter, we focus ourselves on the minimax formulation of cleapgint detection under the
simplest case and introduce the corresponding efficieettieh scheme, Page’s cumula-
tive sum (CUSUM) algorithm, with its conceptual derivatsosnd optimal properties for
background understanding. Extensive and comprehensigdestcould be referred to [1]

and [8] for deeper materials.

2.2.1 A Simple Case - Concept and Page’s CUSUM Algorithm
Fundamental Concept

Started by a very important concept in analysis of matheraksiatistics, the logarithm

of the likelihood ratio, defined by

o, (y)
o (0) 1)

l(y) =1In

and referred to as the log-likelihood ratio, CUSUM algaritis developed from the key
statistical property of this ratio as following:
Given thatEy, andEy, denote the expectations of the random observation under the

two distributionspy, andpy,, respectively. Then, it can be easily verified
Ey, (1) < 0andEy, (1) > 0. (2.2)

Namely,a change in the parametérs reflected as a change in the sign of the mean value
of the log-likelihood ratipwhich can be regarded as a kind of detectability of change in
distribution [1].

Page’s CUSUM Algorithm

Consider a sequence of independent random varighlgs with a probability density
pe(y) depending upon only one scalar parameter. Before the unkobange time,, the

parameter is equal tod,, and after the change it is equal@a A decision strategy to
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i
| alarm time
° 35 =

Figure 2.2:Typical behavior of the log-likelihood rati§;, corresponding to a change in the mean
of a Gaussian sequence with constant variance : negatitéédfore and positive drift after the

change. (Fig.2.5 of [1])

raise an alarm of the presence of change can be regardedampangttimet,, which is

characterized only by the past observations at each tinumnsl_etS]’? = Ef:j l;, with

Po, (i)
Pog (i)

typical behavior of the log-likelihood ratis} shows a negative drift before change, and a

[; =In , be the log-likelihood ratio for the observations frgiito ;.. Intuitively, the
positive drift after change, as shown in Fig. 2.2. Thereftire relevant information, as far
as the change is concerned, lies in the difference betweevalbe of the log-likelihood
ratio and its current minimum value; and the correspondexjgion rule is then, at each
time instant, to compare this difference to some threshaldi/sas follows:

gr = S¥ —my > h, wherem;, = Jnin, Sy (2.3)

which leads to the following equivalent decision function

gr = max S;-“ andt, = min{k : g, > h}. (2.4)

1<j<k

It could be easily verified that the stopping timeés equal to the one determined by Page’s
procedure (also known as CUSUM algorithm) introduced and/elé as follows, which

has been proved optimal in the sense that it minimizes thetwawerage conditional delay
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T = sup,, 1 €SSSURy, (ta — to + 1|t. > to, F1°') ? for a fixed mean time between false
alarmT = Ey, (t,) [8].
In specific, Page suggested the use of repeated testing nfaremple hypotheses:
HO 10 = 90

(2.5)
H1 10 = 61

with the aid of the sequential probability ratio test (SPRIHe SPRT is defined with the
aid of the pair(d, T') whered is the decision rule and is a stopping time. The definition
of the SPRT is thus

T = min{k : SF > hor S <0} (2.6)

andd = 1if ST > h; otherwised = 0.

The key idea of Page was to restart the SPRT algorithm as btigeareviously taken
decision isd = 0. The first time at whichl = 1, we stop observation and do not restart a
new cycle of the SPRT. This time is then the alarm time at wkiiehchange is detected.

The resulting decision rule can be rewritten in a recursie@mer as

Poy (Yk)

" Je—1 +1n 3 yk,lfgk 1+1np9(yk;>0 2.7
0/ g s 20 £
e,
gk = (gr—1 + s1) " with go =0, (2.8)

and the stopping rule i, = min{k : g > A}, which is equivalent to other forms
presented before.

On the other hand, for deriving the asymptotical optimaditthe CUSUM algorithm,
it is convenient if we interpret the CUSUM stopping timeby using a set of parallel
open-ended SPRT, which are activated at each possible elieng; = 1,..., k&, and
with upper threshold and lower threshold equals tecc. Each of these SPRT stops at
time k if, for some; < k, the observationg;, ..., y, are significant for accepting the

hypothesis about change.

2]:{0_1 is the filtration, namely the smallestfield with respect to observations, ..., y:,—1; the

essential supremum (esssup) means the worst case detisithyn
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Let 7} be the stopping time for the open-ended SPRT activated atjtim
T; = min{k > j : SF > n} (2.9)

where we use the convention tligt= oo when this minimum is never reached. Lorden

[10] defines the following extended stopping time as the minn of the{7’, }:
T* = min {7}} (2.10)

It also can be showed that = T™.

Optimal Properties

First, deduced from the properties of a set of parallel opesed SPRT, the relation be-
tween the lower bound for the mean time between false alanmshe upper bound for
the worst average conditional delay for detection under.tlite assumption is stated as

follows

Theorem 1 (Thm 5.2.1 in [1]) Let7" be a stopping time with respect{g,, y», . .. } such
that

Py, (T < 0) <«

Fork = 1,2,..., let T, be the stopping time obtained by applyifigo {yx, yir1, ...}
and letT), = T), + k — 1.
Define the extended stopping time by

T* = min{Ty|k = 1,2,...}

Then,T* is such that

where

Ey, (T*) = sup esssus, (7" — k + 1|y1, .. ., Yr_1)
k>1

13



Applying the above theorem to the case thiacorresponds to an open-ended SPRT
with upperthreshold:

. L Poy (¥3)
T — min{n >k:> "  In pe;(yi)}
00 if no suchn exists

Then, the extended stopping tirié is Page’s CUSUM stopping time and
to=T"=min{T}|k =1,2,...}

In this case, it follows from Wald’s identity (séehm. 4.3.2 of [1]) that wher: goes to
infinity

h
Eel(T) ~ K(@l,eo)

where

- n Do, (yl)
Ki0500) = Ealln ) )

is the Kullback information. Second, from the Wald’s inelifyawe have
P4, (T < 0)<e"=a.

Thus, the worst mean delay is given by

_ InT
7" = Eg, (T") ~ 7K(6’1 7 ash — oo

whereT denotes thenean time between false alarm

T = Eqy(t,).

The above approximal equation gives the basic relation dstwhe delay for detection
and the mean time for false alarm for the CUSUM algorithm mghmplest situation.
Secondly, Lorden proved that the infimum of the worst meaaydaimong a class of
extended stopping times is precisely given by this relatibhe main results of Lorden
concerning the asymptotically optimal solution of changeedtion problems are briefly

described as below.

Theorem 2 (Thm 5.2.2in [1]) Let {T'(«)|0 < a < 1} be a class of open-ended SPRT
such that

Py, [T (o) < 0] < «v
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and for all real 8,
In(a™!)
K(61,60)
Forvy > 1, leta = y~! and letT*(~) be the associated extended stopping time defined by

Eg, [T(a)] ~

T*(y) = min{Ty(a)|k = 1,2,...}

Then,
Eo[T*(v)] = v
and for all real§;, T*(~) minimizesEy, [T'(v)] among all stopping time$(+) satisfying
the above constraint.
Furthermore,

N * lnf}/
Eg, (T"(v)) ~ K(0:.00) asy — oo

This theorem shows the optimality of the CUSUM algorithmmfran asymptotic view,
what is often calledirst-order optimality[28]. More precisely, CUSUM algorithm is op-
timal, with respect to the worst average conditional deldyen the mean time between
false alarms goes to infinity. Based upon the same criteriovoost average conditional
delay, another optimality result for CUSUM algorithm is peo in [11] and [12], in a
nonasymptotic framework: The CUSUM algorithm minimizes thorst average condi-
tional delay for alll” > T;, whereT}, is small for most cases of practical interest. Gener-
ally, it is difficult to obtain explicit expressions for perimance analysis in the finite case.
This asymptotic point of view is convenient in practice hesma low rate of false alarms
is always desirable.

Note that, the CUSUM algorithm is optimal when it is tunedhntite true values of
the parameters before and after change. When the algorstiused in situations where
the actual parameter values are different from the preasdigalues, this optimality is

lost.

2.2.2 Extension to Composite Hypothesis Cases

Consider the case where the parameter before chanigeassumed to be known while
0 is unknown based on the assumption that observations agpendent of one another

conditioned on the change-point. There are two main appesaas described below.
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e Weighted-CUSUM Algorithm:

Itis an algorithm comes from the ideaweighting the likelihood ratio with respect
to all possible values of the parametgr using a weighting functiod?’(6, ), where
F(6,) may be interpreted as the cumulative distribution functém probability
measure. It was derived for change detection in [29], anddBext extension of
the CUSUM stopping time defined as follows. Let

Ak = /: %dlf(el) (2.11)
be the weighted likelihood ratio for the observations frammet; up to timek. Then
the stopping time is

tlll/[/eighted _ min{]{; ] 112?;2 In ]\f > h} (2.12)

The most simple choices involve using the uniform distitnutover a specified
interval that contains all possible values of the param@&teor Dirac masses on
some specified values. Another useful choice is the Gausksarbution. Note

that this type of algorithm cannot be written in a recursivenmer as the classi-
cal CUSUM algorithm described before. Some asymptotic griogs related to
weighted-CUSUM algorithm could be found in Section 5.2.31¢f

e General Likelihood Ratio Test (GLRT) based CUSUM Algorithm

In this approach, the unknown parameters replaced by its maximum likelihood

estimate as
/A\f _ SuPg, Po, (yj7 SR yk) (213)
p@o(ij s 7yk’)
with
GLRT __ - . Ak
t, = min{k : max In A7 > hj. (2.14)

The properties of the case that consider hypoth&kes{6 = 6,} andH, : {6 >
0,0y < 0} with the aid of an exponential family of distributionse(, py(y) =
h(y) exp??~4?)) are derived in Section 5.3.1 of [1].
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As the weighted-CUSUM algorithm, the GRLT-based approditihhas no recur-
sive expression thus needs to store all the observationgaggtimate the unknown

parameter in all time slots.

2.2.3 Dependent Observations

In this subsection, we consider the situation in which weetdependent observations and
briefly introduce the result in generalization of Lordendyaptotical optimality on the
CUSUM algorithm for dependent models derived by Lai [16].

Suppose that the conditional density functiony@fconditioned ont, = j given

Y1, - Yk—1 iSpO’j<"y1, ceey yk—l) fork < to andp17j(~|y1, ceey yk—l) for k > to. Let

P H.
SJ ::ln . (y].? 7yk'| ])
PO(ys, -, yu|Hs)

Zl P1j yzlyl,---,yi_1)7 b
Po,;j yzlyb---,yi_l)

(2.15)

i=j

whereP) and H; denotes the probability measure and the hypothesis witfeotgo
change-point, = j andP () and H,, are used for the situation when there is no change

occurs. Then, a natural generalization of the CUSUM rulé) (2.

- > )
t, = min{k : 4 & Sk >R} (2.16)
Under the condition that the conditional likelihood ratatgisfies
to+t

lim sup esssup® |max y In Pltolilys; - Yizt) > kN1 +0) | y1,92, -, Yio-1| =0

k=00 t5>1 sk Do (Wilyy, - - -, yi1)

Yo >0,
(2.17)

wheren~! 31" In % is assumed to converge in probability undf) to
some positive constart, Lai provides the asymptotic lower bound for the worst case
average conditional delay subject to mean time betweea &désm constraint and proves
that the generalized CUSUM rule (2.16) with suitably cho#aeshold# and certain
window-limited modification thereof attain this asymptdtbwer bound. However, it has
been an open problem concerning whether the asymptotimality of the CUSUM rule

(2.16) still holds in general as commented in [17].
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Chapter 3

CUSUM-Based Quickest Detection for

Cognitive Coexistence

3.1 Problem Setup

Under a primary communication system (e.g., WIMAX systeassour explanatory ex-
ample throughout the thesis) as shown in Fig. 4.1, we begimmvodeling the spectrum
sensing problem into a quickest detection with one singtmitive user. To detect the
presence of primary user’s signals as quickly as possible approach is to exploit fea-
tures of the inceptive part of frame structure if prior knedde about primary system is
available. Take the widespread WiIMAX system as example irpoposed scheme, we
make use of the long preamble, which consists of two WIMAX ®FBymbols and is
transmitted at the beginning of the frame. Due to the pecibdof the preamble structure
and the aim that we want to detect the presence at first hanthayeonly consider the
simplified transmitted signal model composed of repeatgthsats in the leading pream-
ble for symbolic convenience. Note that the feasibility of proposed strategies depends
on the prior knowledge of leading signals of primary uset,andy applicable to periodic
structure.

In particular, under the concern of flat fading channel betweognitive and primary
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Figure 3.1: A sketch map of the spectrum sensing problemngita detect the reoccu-

pying of underlying primary system as quickly as possible.

user (e.g., WIMAX base station), the received signal in tohoenain could be modeled as
yp = WY (k,to) + ny, (3.1)

with

T(h to) = { s((k — to)modNy), ask > t (3.2)

0y = 0, ask < tg.

In the above equation,, denotes the unknown presence time instant of primary sig-
nal, N, denotes the length of the repeated segment of the preangvel si, mod-
els the complex white gaussian noise with variapgeat time k, ands(i) is retrieved
from the ith element ofs, which collects the periodic fragment of preamble symbol
s = [s(0),s(1),...,s(N, —1)]T. Note thath is the fading effect over the start signals
of the new frame and might be treated either as determifaatianknown constant or as

random variable of a stochastic process, depending on vpihidbisophy we take.
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Thus, Our goal is to determine a decision strategy to faielgdt the beginning of the
primary signaling prefixed by known preamble structure askiy as possible, for the
sake that the interference caused by the cognitive emittiret existing primary systems
must be avoided.

Contrast to the case of independent observations charactdyy only one parame-
ter, the detection problem we deal with involvem-homogenous and innately dependent
distributedobservations after the reoccupying of the coexisting prysgstem. In partic-
ular, the difficulties lie on the following aspects. Firstetfeature of preamble packet sig-
naling results in non-homogeneous observations aftergeghamhich means the received
signals are time-varying distributed even if we ignore tffeats of fading channel. In
the second place, due to the fact that the signals are tréedrithrough a fading channel,
we have to tackle with the fading effects in the received aigafter change. Two ap-
proaches are considered in the following two section in oaimerent and coherent sense,
respectively.

In non-coherent approaches, as the literal meaning, itsarasd that the receiver
only has knowledge of the statistics of channel and no esttmaf realization about the
unknown channel coefficient is needed. We also discuss asigriftom coherent sense,
which means we resort to channel estimation of the reabizatf fading coefficient at the

receiver end in our proposed strategies.

3.2 Non-Coherent Approaches

In non-coherent approach, we contrive to two CUSUM-basedegiies without any esti-
mation of realization about the unknown channel fading facefts in the receiver end.
One is called classical CUSUM algorithm, and another is éerto be weighted CUSUM
algorithm. In classical CUSUM algorithm, we treat the unkmachannel factor as a ran-
dom variable with known prior statistics and calculate ikelihood ratio between joint
probability density functions of observations under theditions before and after change
occurs, while in weighted CUSUM algorithm we take the unknakannel coefficient

as deterministic but unknown constant during the detegiiogess and then weight the
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likelihood ratio by applying prior information as weighgjriunction.
After restricting ourselves to purely Rayleigh-fading shals, we may assume that
the flat fading channel is modeled as~ CA/(0,0%). The more general case under

frequency-selective channel will be further discusseaiarlsubsection.

3.2.1 Classical CUSUM Algorithm

Giveno? at the receiver end, the joint distribution of received saigrin specific interval
of observation time before or after change can be fully jgecivith the channel effect
averaged. Whereas, the observation sequence after thgectiave{y,o, y:0+1,- .-} iS
dependent due to the presence of fading channel. Due to tiaamoogeneous feature
of observations after reoccupying timg it seems implicit in the validity of applying
CUSUM algorithm. Thus, we need to study the natural trendhefdg-likelihood before
and after change.

First, before the change tintg, it can be verified from the Kullback information that

" Po(k,) (yw Yit1, - 7yk3)] <

p@o(yi7 Yit1, 7yk:)
Eq, [ln p@(k’,j)(yjayj+1, v ,yk)] <0, (3.3)
p@g(ijyj+lv X ,yk)

Vi < j < k<o,

Ey,[1

wherepe i ;) denotes the joint distribution of received signals frometimto & given

to = j andp,, denotes the joint distribution before change occurs. Froenabove

inequality, we can observe a negative drift of the expeatgdikelihood before change,

which indicates the absence of the primary signaling. Sirlyil we have

In p@(k,j)(yw Yjt1s " Uk)
oo (Yj Yj+1, " 5 Yk)

In Po(k,i) (yzv Yiv1, - 7?//43) (34)
Poo (Yis Yir1s -, Yr)

Vk > j 21> to,

0 <Eo, | ] <

Eo@k,]

which indicates the positive tendency as the change hasredcuTherefore, we might
apply the idea of CUSUM algorithm to detect the beginnindefiteoccupying signals by

the discrimination property. Although the log-likelihoaatio here is not additive due to
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the dependency among the observations after change, hedstit the term “CUSUM”
to represent the increasing amount on expected log-liketiratio. Then, the decision

rule is given by

p@(k,j)(yja Yjt1," Yk)

gr = max In (3.5)
155k Doy (Ys Yjsts -+ 5 Uk)
Hoyrp—1
7rk*j+11det Kk exp (_yf Kéf yéﬂ)

= maX n 1 / 1 kH A (36)

1=j<k G2n)TTT EXP (_U_%y]‘ y7)

and

to = min{k : g, > h}, (3.7)

wherer represents the covariance matrix of received signals fiom j to & under
to = J, andyf:’ collects observations;, y,+1, - - ., Yx-
To be more specific, we can view the received signals from fioek undert, = j
alternatively as
havptn;
haji1 + njp

Vihoms= | ' (3.8)

hxy, + nyg

wherex; = s((i — to)modN;). We could recognize thatf|, —; is a random vector whose

real part and imaginary part are collectively jointly Gaass Further, it is a circular
symmetric complex Gaussian random vector with its jointsitgrfunction denoted as
CN(0,K%), where

opl|z;|[* + o2 ORT;T oy
2 2 2 2 2
K — Uhxj'-i-lx;k' Uthj-i-llH +o, Uhxj.-i-lxlt . (3.9)
| ohTkT] TRTLT ] 4 o ol P+ op

In conclusion, we treat the unknown channel factor as a randwiable with known
prior statistics and calculate the likelihood ratio betwgaint probability density func-
tions of observations under the conditions before and aftange occurs. At each time

instant, we search for the time at which the backward accatedllikelihood ratio is
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maximum, in other words, the instant the reoccupying méstyitakes place. Then, we
raise alarm to declare the change at the first time the resudtacumulated likelihood
ratio is larger than a well-chosen threshold. Appropriateghold. can be determined

by numerical simulation in advance of detection.

3.2.2 Extension to Frequency-selective Fading Case

Under the concern of frequency-selective fading channgdxen cognitive user and un-
derlying primary user or base station, the received signéhie-domain could be rela-

tively modeled as

Y(k,tg) ® herr(k), ask >t
ye = 0(k, to) + ny., whereg(k) = (s fo) ® fress (k) ° (3.10)
0, ask < tg
with
k — to)modN,), ask >t
Tl 1) = 4o T o) ) \ (3.11)
0, ask < ty.
and
h(k);as0 <k <L —1
hesp(k) = _ (3.12)
0, Otherwise

Similar to previous flat fading case; denotes the unknown presence time instant of
primary signal /N, denotes the length of the repeated segment of the preangbia i,
models the AWGN with variance? at timek, ands(i) is retrieved from theth element
of the periodic fragment of preamble symisok [s(0), s(1),. .., s(N, — 1)]7. Note that
the fading effects are caused by the charnebnsists ofL uncorrelated taps(l),! =
0,1,...,L — 1, where each element &f are modeled as purely Rayleigh-fading with
variances? with uniform power constraint” jo? = 1.

Now, since the natural tendency is still reserved in the cddeequency-selective
fading, we could design the corresponding decision styafiegm the idea of CUSUM
algorithm in a similar way for detecting the beginning of tieeccupying of underlying

primary system in multipath environments. Specificallg ttecision rule is in the form
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of

g}:g — max In p@(kz,j)(yjayj+17 S Uk) (3.13)
1<j<k DPaq (yj7 Yj+1, 7yk)
H -1
e &P (<Y C )
= max In - L Y (3.14)
1<j<k Gz XD (_Eyﬂ' y5)
and
thS = min{k : g/'® > h}, (3.15)
Whereyé‘? collects observationg;, y;+1, - - -, Yk, andCé‘? represents the covariance matrix
of received signals convoluted withchannel taps from timgto £ undert, = ;.
In detail,yé‘-C conditioned on, = j can be decomposed as
ijh + ny 0 Tj1 0 XjL—1 h(O) 1
k XJT+1h + Mt Tj+1,0 Tj+11 *°° Tj41,L-1 h(l) 41
y; |t0=j = ) ~ } . . ) . +
I xFh + ny { | Tho Tra vt TkLel | _h(L -1) K
(3.16)

where thel by 1 vectorx; collects the symbols convoluted withat time instant. After
such rearrangement, we could assure jtjat—; is also a random vector whose real part
and imaginary part are collectively jointly Gaussian withoint density function denoted
asCN (0, C), where

T2, % 2 T2 % T N2 %
X; X°x; + 0y, X 2°X5 X; 27X},
T 2 * T 2. * 2 T 2. *
Ck_ X 27X X XX o, Xj 127X (3.17)
J . )
T2, % T2, TS24, % 2
I X 22X X) 22X 4 e XX Xp + 05

with 32 being the diagonal power delay profile matrixésg{c?2, o%,...,0%_,}. Note
that the elements of covarian(i#j only depends on the value— j and can be calculated

and stored in advance.

3.2.3 Modified Window-limited Version

Although the resultant accumulated likelihood ratio of fireposed classical CUSUM

decision strategy could not be calculated in recursive waegycould resort to examine
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the required length of backward observations that keepgaaable efficacy with the one
without any curtailment of observational window. On theasthand, we also curious
about the influence on the case with regard to limited datagé&oin the receiver equip-
ment.

Thus, we can simply replace the decision strategy in previgoposed classical

CUSUM algorithm with a modified window-limited version, vahiis thus given as

In p@(k,j)(%’a Yj+1," " ,yk)

WL
g, "= max (3.18)
k max (1,k—W+1)<j<k Dog (y]7 Yj+1," " 7yk’)
tWE = min{k : g)'* > h}, (3.19)

wherelV/ is predetermined window size according to available temuydouffer.
Surprisingly, the effectiveness of classical CUSUM altjon after truncating the

length of needed backward observations is pretty nearlypaeoable with the original

one with full memory of past observations, which lowers thenplexity and required

storage during implement and is demonstrated by simulatisults.

3.2.4 Weighted CUSUM Algorithm

Consider another view about the unknown fading factor, e tae unknown channel
coefficienth as deterministic but unknown constant during the detegirmgess in our
proposed weighted CUSUM algorithm. The main idea is to wetgh likelihood ra-
tio with respect to all possible values of the fading coedfitiby using a well-chosen
weighting function and take the resultant weighted likedild ratio as an indicator about
whether the reoccupying has occurs or not. Once the reswlt@ighted likelihood ex-
ceeds a particular predetermined threshold, which revdatenct possibility of primary
user’s activity, we stop taking observations and raise amato declare that the change
has very likely occurred.

Specifically, the form of the decision strategy of weightddSTM algorithm is as

following:
glzueighted
= max ln/ P ) 'pT(k’j)Ih(yk)ph(h)dh (3.20)
1<j<k  J_ oo (Yjs 5 Yk)
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and
t;ueighted . mln{k gwezghted Z h} (321)

That is, for every time instant, we calculate the weighted likelihood ratio from time
j = 1,2,...,k to determine the most possible change point and comparetiutant
log-likelihood ratio to some determined threshold. Onceeexling, we raise an alarm to
declare the reoccupying of underlying primary user.

Provided statistical information about the fading coedidj it is fairly reasonable to
choose the weighting functiop, asCA(0,03). So, we could calculate the weighted

likelihood ratio as following

/ Prupl0s) Preph@e) ) g,

p@()(yj? e 7yk)

k k
" e Rk
:/_ eXp{;nyT(n,j) o2 ZT(”J 2 Z||T(n7j)||2}ph(h)dh

/ / explu(aite oo s T anmuz
k H
Zn jynT Z T(ng

+ o - | Z I 2o, ()0
1 o Zn Yn T (n.g) T Zn u?
=L [ exptu St T Sy Z 06,1} exp{~ 2

k H
o n= ynT” n:'Tn'yn
/ exp{m'(z =J (n,9) Z J = (n,9) )

o

k
1 ) ) v?
X —" v ;HT(W)H }exp{—a—i}dv

(3.22)

After integrating manipulations, we can get the close fofitihe weighted log-likelihood

ratio

ln/ pnj’j)m(yj)"'pr(k,j)\h(yk)ph(h)dh

: peok(ij k) (3.23)
o k5 o ko 2

- n . )7 =1 [+1
2(zail+1)[(5ag) + (Sb;)°] — (ol +1)

Lok Sk .
with S,; = Sk SR () —i—ynT(w), Sp; = (3 ST gy — Tg” ) andl =

k
Do 1[I
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Then we could represent the resultant weighted log-likelchratio at time instant

as

weighted
k

o2 —~k
— ___“n_ (g
1<%k 2(2021 4+ 1) I

~k
0;)? + (Sb;)?] — In(o}l + 1) (3.24)
and the stopping time to raise an alarm is

goeighted _ yin{f . geishted > b1 (3.25)

From the closed-form of weighted log-likelihood ratio (3)2we can see that the
computing complexity of weighted CUSUM algorithm is lesaritthe one of classical
CUSUM algorithm, which involves more multiplications dogi detection process. On
the other hand, at low-SNR region, the manipulation of diyeweighting over the log-
likehood ratio might alleviate the impact of low resolutidue to fixed noisy power before

and after change.

3.3 Coherent Approaches

In this section, we resort to another route to tackle thenigéfactor in the received signals
after reoccupying. In coherent sense, we take the fadinifjcdeat as unknown but deter-
ministic constant or realization of random variable witlolm prior knowledge needed
to be estimated, which turns the observations after changelependent sequence with
a common unknown parameter

Now, since there exists unknown factor in the distributibsignals after change, we
adopt two reasonable ways to refine the statistics we ne@hfbne detection. One is the
GLRT-based CUSUM algorithm in which we estimate the unknparameter through all
available observations then substituting the result ilkigihood ratio; another one is to
estimate the realization of unknown fading coefficient npowating with prior knowl-
edge, which lead to MMSE-based CUSUM algorithm.
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3.3.1 GLRT-Based CUSUM Algorithm

Conceptually, the decision strategy of GLRT-based CUSUd@thm is given by

GOLT _ a1 PO B Uyt 45 1) (3.26)
1<j<k Poo(Yjs Yj+1s - Yk)
and
tOERT — min{k : gZH BT > b}, (3.27)

where the unknown parametgris hence replaced by its maximum likelihood estimate
(MLE).
To derive the MLE of unknown parameterover observations;, y,.1, . . ., yx under

to = j is equivalent to find the estimator which minimize the lesgtare (LS) error
35(h) =20 [yn — h g 12 (3.28)

overh.
After decomposing all complex quantities into their read anaginary parts, we turns

the LS error into the following alternatively quadraticrioin real variables.r andh;

J?(hm hr) :Zﬁ:j 19n, + Y1 — (hr + 3R ) (L r+ L ). 0) |1
=% (Un = BRY (ng),r A+ R Ly 1)+ Wit — he Yyt — Mgy r)’
(3.29)

We can rearrang®"’ (hp, hy) bysettingy;?R = [k - UeR) Y, = Wi Yir - Yk,

XRp = [T(j7j)7R T(j-i—l,j),R e T(kJ)ﬂ]T, andxl = [T(j,j),f T(j+17j)7f C T(;W-)J]T so that
Jfl(hm hi) = (YfR — hgxg + hIXI)T(YfR — hrxp + hixp)
+ (Yfl — hRX[ — h[XR)T(y;?I — hRX[ — h[XR) (330)

or lettingx; = [xp — x;], x2 = [x; — xg] andh = [hp h;]T

I¥ (hp hy) =(y5, —xi0)T(yh . —xih) + (y¥, —xh) (v}, —x:h)  (3.31)

Taking the gradients yields

oIk

T —2xfy§R + 2xTxh — 2xgy§?1 + 2x2 X5k, (3.32)
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then setting this equal to zero and solving produces

by =(x{x1 + x5 %) 7' (x] v} R TX2Y5 )

k k o~
Xpy§ X7 YE, n
xLxp+xTx; IR (3.33)
k k ~
Tt/
xng-‘,-xITxI JI

which is the minimizing solution. However, if we rewrih@‘? in complex form aﬁsz +

Tk ik
zh”_hj,we have

ik _XRY) p TX1Y5, +iXRYS, — XT Y] p)
J XpXR + X1 X[

(Y;€R + iyf[>T<XR N ZXI)
- xExp 4+ xFx; (3.34)

k H

k
D n=i I |12

which is the MLE ofh over observation$y,, y;+1, - - - i }-

By substituting the MLE’]? into the above equation, we arrive at

1k
Pe -(yj7yj+17“' 7yk7h)
GELRT — may In =) J

1<5<k Do, (?/j> Yj+1, ,yk)

(3.35)

3.3.2 MMSE-based CUSUM algorithm

Analogous to replacing the unknown parameters by their mami likelihood estimators
in GLRT, we could estimate the realization of unknown faduogfficient incorporating
with prior knowledge if applicable, which leads to the usenghimum mean square
estimator (MMSE) that minimizes the Bayesian MSE.

Depart from the philosophy employed by GLRT, we assume ttetihknown fading
coefficienth is a random variable whose particular realization we musinase. The
motivation for doing so is, if we have available some priooktedge about, we can in-
corporate it into our estimator. It is somehow difficult tokeaise of any prior knowledge
in classical estimation such as MLE. The mechanism for dthiregrequires us to assume
our unknown factorh as a random variable, which is complex gaussian distribarted
represented als ~ CN (0, o3).
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After rearranging observatioqy;, y;+1, - - ., yx } conditioned ort, = j into complex

linear model, we have

Y T(]>]) 1
- TG +1,5 n.
yh = yj_“ —h Y _ 7 + J.“ = hx? +n® (3.36)
_yk_ L T(kvj) ] _nk_

wherex? = [T(5,7) Y(j +1,5) ... T(k,5)]" andn} ~ CN (0,070 11).
Since it can be easily verified thyxf andh are jointly complex gaussian, we have the

MMSE estimator for the complex Bayesian linear model given b

h;c(MMSE) :E(h|yf)

k|2 kH  k
:(<O'2)_1 + ”Xj H )—lxj Y
h o? a? (3.37)
X 1y;
=
Zit |52
By substituting the MMSE of, over observation$y;, y;.1, . .., yx}, we arrive at
3 k(MMSE)
g]g/[MSE \ maX ]_n p®(k,j)(ijyj+1,~.. ,yk7hj ) (3_38)
1<j<k Po, (yja Yj+1,° " 7yk)
and
tMMSE — min{k+gMM5E > h). (3.39)

30



Chapter 4

Cooperative CUSUM-Based Quickest

Detection in Cognitive Sensors Network

4.1 Problem Setup

In this chapter, we are interested in developing cooper&lySUM-based quickest detec-
tion algorithms applied to multiuser scenario. As shownim B.1, we restrict ourselves
to the case in which the information available for local dem-making is in distributed
way, not shared among cooperative users. Assume thereti®t/ge> 1 geographically
distributed sensors, denoted®&s S, . . ., Sk, cooperatively detecting the reactivities of
underlying primary systems. The reoccupying of primarynalg occurs at an unknown
time instantt, for all sensors simultaneously. Similar to single-usenac®, we may
only consider the simplified transmitted signal model fombplic convenience. Again,
the applicability of our proposed strategies depends orptloe knowledge of primary
signals, not only confined to periodic structure.

Specifically, under the concern of fading effects betwedlaloorative cognitive sen-
sors and primary user, the received signal in time-domaseasorS,. could be modeled
as

Yre = by (K, o) + 0 (4.1)
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Change-point
Detection

Fusion Center

Figure 4.1: A sketch map of the spectrum sensing problemngirto detect the reoc-
cupying of underlying primary system as quickly as possibla cooperative multiuser

network.

with

Tl ty) = { s((k — to)modN,), ask > t, 4.2)

0y = 0, ask < tg.

wheret, denotes the unknown point in time of the presence of priminyas, . , mod-
els the complex white gaussian noise with variaa¢et time instant: in the receiver
end ofS,., N, denotes the length of the repeated segment of the preargbks ,shnds(7)
is retrieved from theth element ofs, which collects the periodic fragment of pream-
ble symbols = [s(0),s(1),...,s(Ns,—1)]*. In flat fading casej, ; is modeled as
purely Rayleigh-fading between primary user and sefsavith variancav;ih, remaining
constant during observation time and could be simplifiedh,as While in frequency-
selective fading case, we take; as the fading effect at time caused by the channel
h, = [h.(0), h.(1),...,h.(L —1)]T consists ofL resolvable paths, and each tagpfis
mutually uncorrelated and modeled as purely Rayleighataiith variancenil.

In general, there are two kinds of scenario as consideritectien problems of dis-
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tributed sensor network, termed of centralized scenaribdatentralized scenario. In
the centralized setting, the original data received at@sng;, » = 1,..., R, are sent
completely to a fusion center where a final decision is madedban all sensor massages.
In the decentralized framework, quantized version of olzdens or local decisions are
forwarded to the fusion center for making a final decisione @ecentralized scenario is
usually more practical due to communication bandwidth trairgt between sensors and
the fusion center.

Next, under considering three different distributed framiks, we will extend pre-
viously proposed CUSUM-based algorithms to multiuser kgst detection and provide
decision strategies to collaboratively detect the begigoif primary signals as quickly as

possible to avoid possible interference to primary systems

4.2 Centralized Case: Global CUSUM Algorithm

In centralized sense, we might assume that the pairwisenefembetween the sensors and
the fusion center are error-free. The original data receateach sensor is thus sent com-
pletely to the fusion center for global CUSUM test. Thatle fusion center collects all
messages received by sensors and performs the CUSUM-bais&dsj detection based
on the whole set of observations.

Under the assumption that the fading effects experiencezhbly sensor are mutually
independent, we could simply extend the result strategeeset! in single-user case as
following:

» Classical CUSUM Algorithm (flat fading case):

gr = max In p@)(k,j)(yr,jv Yrj+1, " 7?/7“,/6) (43)
Isjsk = P00 Yrjs Yrjr1s s Yrk)
H k=1
R g O (v Ke o ve)

= max In - . R (4.4)

= (oZmF 37T EXP (—5z¥r5 ¥rj)

and

to = min{k : g, > h} (4.5)
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WhEI’Eyr;‘? collects observation§y, ;, ..., Yk}, andK denotes the covariance matrix

of observation vectoyr;? conditioned onty = ;.

» Classical CUSUM Algorithm (frequency-selective fadingepn

4 p@(kj)(yrjvyrj-i-l)"' 7y7”]€)
In : : ’ .

FS
b poy (Y Yrgts e Yrk)
R %exp( y C k 1y ]‘?)
7|—k*'+1 e rk r r
= max In ' dltc 2 J ! (4.7)
1<j<k £ T XD (_Eyrﬁ' yrj)
and
t5S = min{k : g/'* > h}, (4.8)
WhereC denotes the covariance matrix of observatidéns;, ..., v, } conditioned on
to =7 W|th power delay profile matri¥s? = diag{o;,02,..., 00, 1}
» Weighted CUSUM algorithm:
weighted
k
& el T (T ) RERS oy (9
= max In / 2 - Dh,.(hi)dh, (4.9)
i<k =0 o Poo (Yris*** s Yrk)
~ max ZLKS (S — (el (4.10)
<55k - 20’2l T 1) r,a rbj r,h )

o ok k.
with S, = Zn TR A +ymT( iy Orb; = z(zn YE gy — yrnT( ;) and
[ = Zﬁ:j | (.5 ||*. The stopping time to raise an alarm is

twe’ght“l min{k : gwe’ghted > h} (4.11)

» GLRT-based CUSUM algorithm:

R
maxp, Pe . » (Yrj> Yrj+1s > Yrks N
g&" T = max $ I g s Yyt Ui ) (4.12)
1<5<k —1 Do, (yr,ja Yrj+1, 7yr,k)
R p@(k D (yr,ju yr,j+17 oy Yrks ;;Tf)
= max In ! (4.13)
155 <k £ PooYrgs Yrjorts s Yrik)
with h belng the MLE over observatiodg, ;, ..., y,x} conditioned ort, = j
k H
~k Zn:j yr,nT(nJ) (4.14)

A k
T i TP
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and
tCERT — min{k : g > B} (4.15)

» MMSE-based CUSUM algorithm:

~ kK(MMSE)

y Po A \YrgsYrj+1y " s Yrks Nor;
gMMSE _ pax In iy (Yrd> Y+t j ) (4.16)
1<5<k —1 Poy (yr,j> Yrj+1," " 7yr,k)
where the MMSE over observatiofs, ;, ..., y,x} is given by
~ k(MMSE) XKy,
rj P —— 4.17
: = P @1
r,h
and
ty M5 = minfk - gy > n} (4.18)

4.3 Decentralized Case: Hard Fusion of Local CUSUM

In this section, we first resort to a straightforward coopeeadecentralized scheme
termed ofhard fusion of local CUSUMAssume that each of the cooperative sensors
has sufficient memory to individually perform CUSUM-basedc§est detection. Then,
the fusion center makes final decision based on local desisent by sensors according
to well-known hard-decision combining rules, such as AN @ M -out-of-R rules in
general. Further, we assume that each of the sensors migét send their local deci-
sions at each time instant for updating information at theedin center or update just for
once at the first time the local statistic reaches predeteuntihreshold.

Specifically, if the sensors updates their decisions ofllqoéckest detection con-
stantly until the fusion center makes the final decision,stio@ping time by the general

M-out-of-R rule at the fusion center is given by
R
tfardFusion _ mln{k‘ . Z Ur,k > M} (419)
r=1
where

1, if glgeet > b,
Uk = ’ (4.20)
0, Otherwise.
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In the above equatiorg,f,‘;ml could be chosen from algorithms previously discussed in
single-user scenario.
As to the one-shot scheme, the corresponding stopping yrtiegtgeneral\/ -out-of-

R rule at the fusion center is in the form of

R
gHordPusions _ yin (k=3O > M) (4.21)

r=1

where

1, if k>t,(r)=min{n : gkl > h,
Uy = > talr) {4, = e (4.22)
0, Otherwise.

4.4 Decentralized Case: Global CUSUM with Quantized
Local Decision

Now, rather than performing quickest detection at locakses) we are interested in the
decentralized scenario in which the CUSUM test is perforatdtie fusion center while
the local sensors are assumed memoryless and send quardrzezh of their observa-
tions for decision making.

However, due to the memorylessness of local sensor and @ueofiguantization, it is
reluctant to exploit the known signal structure about primeser as before. That s, if we
still adopt the signal model in (4.1), the sensor has notghdi do quantization by opti-
mal local mapping, the monotone likelihood ratio quantinethout the knowledge about
the exact timing index if the reoccupying has occurs. Thiesrasort taapproximatehe
received observation sequeng x, v r+1, - - - } conditioned on, = k to be circularly
symmetric complex gaussian random variables with variaﬁge&nd mutually indepen-
dent. In specific, observations at tit sensor at timé are approximately distributed as

follows:

aNCN(O,sz), |fk’2t0
Yrk ’ . (4.23)
~ CN(0,02), Otherwise.

Under this approximation, we might take the quickest deiadh the view as suggested
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by Page, as repeated sequential probability ratio tesfibgasimple hypotheses:
Ho:yrp ~ fl(yr,k) = CN’(O’U?@)
H, Yy ~ folyrr) =CN(0,02,) Vr=12,--- R

»Yr,x

(4.24)

Thus, in the mapping of monotone likelihood ratio quantiziee local messagg, ;, at

time instant produced by sensdf, based on théth observationy, ;, is given by
Ur,k =Pp if dr,p S % = A(yr,k) < dr,p-l—l (425)

where0 = d,o < dpy < -+ < dpp,y < drp,, = 00 represents the quantization
threshold set used by sens%r

Then, if we letz, ; represents the received signal at the fusion center ihgns
transmitted by sensd,, we have the likelihood ratio of, ;, as following:
ot [ (2l p) P{U = p|H, }
pqu (2| 0) P{Uss = p|Ho}
By applying Page’s CUSUM algorlthm, the decision stratefye fusion center is given

by

A e(Zpi) = (4.26)

k = lrgjagckz Zl In Avg(21) (4.27)
n=j r
R
= max(g]?_l, 0) + Z In Ay y(2k) (4.28)
=l
and
t@ = min{k: g,? > h}. (4.29)

In detail, it is convenient to calculate{U,, = p|Hy} and P{U,, = p|/H;} by
transforming thresholds in monotone likelihood ratio dieer into thresholds related

directly to observationg, ;. Start from

02 0-7%96 - 0721 2
Ayri) = O_gn exp (WH%&H ), (4.30)

T

we have

(%Y

0740 d
= Hyr,kH Z \/(m) In (02/22 ) =S d; (4.32)
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As we know, given

CN(0,07,), underH,;
Yrke ~ (433)
CN(0,02%), underHy,

the distributions of absolute value @f, underH, andH, are Rayleigh distributed as

2
—5— exp (202) , underH;

||y7“7k'|| ~ ) (434)
oi% exp (%) , underH,.
Thus, we could calculate the conditional probabilities as
P{U,, =pHo} =P{d,, < AMy,rx) < dyps1|H1} (4.35)
o (MBI =l 4.36)
PA\T202, PA 202, '
and P{U,; =p/Ho} =P{d,, < Ayrx) < drps1/Ho} (4.37)

N A Sl -
= oxp | ——5 — exp - 2 (4.38)

and rewrite the global likelihood ratio (4.26) as

m 2 dl 2
ot f(zeklp) [eXp (M> — exp (%)]
N —lld, 2 [ I
o8 f(eriulp) e (AR ) — exp (SRl )|

By the general form of global likelihood ratio (4.39), we €scon three kinds of sce-

Ar(2ri) = (4.39)

narios based on different channel conditions between seasal the fusion center with
1-bit or 2-bit local quantization. The discussion and corrgoen among these schemes

would be further shown in Chapter 5.
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Chapter 5

Simulations

5.1 Simulation Setup

In this chapter, we present some numerical results and ggaomparisons to demon-
strate the effectiveness of our proposed algorithms. Asitogry signal model adopted
in the simulations, we choose the settings defined in IEEE18@2 the long preamble
which contains two OFDM symbols and each of them consistswfrieplications in time
domain and constitutes the incipient part of the new franpiofary user, as the target we
want to recognize as quickly as possible. We set the finitetiwass0 and the reoccupy-
ing time is uniformly distributed on the time instanit, . . ., 15 in one trial. Fix the noise
power at cognitive receivers end to one, we define the SNReagdhsmit power from
primary user. In flat-fading case, the variance of the Ragle€listributed channel effebt
is set to ber? = 1. While in frequency-selective fading case, we set the chlonler to
be L = 4 with uniform power delay profile matrix 88 = diag{0.25,0.25,0.25,0.25}.
Note that some parameters may vary across the differentaimm scenarios thus not

stated here, the remaining details will be specified in easke.c

5.2 Effectiveness of Proposed CUSUM-based Algorithms

In the first subsection, we focus on the behaviors of diffepgoposed approaches and

show the effectiveness of our proposed algorithms, untlegiat-fading case or frequency-
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Figure 5.1: Performances of non-coherent approaches gtesuser scenario under flat-
fading environment. (a) Classical CUSUM algorithm. (b) gvged CUSUM algorithm.
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Figure 5.2: Performances of non-coherent approaches ghesirser scenario: Classical

CUSUM algorithm in frequency-selective-fading environmne

selective fading case. In the second subsection, we sielhiafproposed CUSUM-based
quickest detection applied to different distributed fravoeks and examine the influence

when the number of involved cognitive users increases.

5.2.1 Single-user Scenario

Fig. 5.1(a) and Fig. 5.2 show the performances of classg@icach as well as the mod-
ified truncated version with window si2é& = 5. We can see that the classical method
performs fairly effectively by using a well-chosen threkshand converges to zero mean
delay as SNR grows in both the flat-fading case and the frexyugglective fading case.
Furthermore, the performance curves of window-limitedsi@r show that it is enough
to keep the detectability in only five backward data becauseake the innately depen-
dency among the received sequence after change into acasuleisigning the decision
strategy. Another method of non-coherent approaches, éiggwed CUSUM algorithm,
also performs well as shown in Fig. 5.1(b). Given the staasinformation about un-
derlying fading channel, the weighted CUSUM algorithm paris well and converges

as quickly as classical method does. Especially at low-S&¢fion, the manipulation of
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Figure 5.3: Performances of coherent approaches in sisglescenario under flat-fading
environment. (a) GLRT-based CUSUM algorithm. (b) MMSE-dth€USUM algorithm.
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Figure 5.4: Comparison of ROC curves of four proposed allgas under SNR= 10 in

flat-fading case.

directly weighting over the log-likelihood ratio allevest the impact of low resolution due
to fixed noisy power before and after change thus improvesdhesponding mean de-
lay. However, we can see that weighted CUSUM algorithm mielatively degrade if we
truncate the available past observations due to ignordno@erent dependency. Specif-
ically, since the mechanism of weighted CUSUM algorithmlddae seem as weighting
the log-likelihood ratio of each time instant individualiyd then summing them up for
calculating the resultant statistics, it would be reldtideard to accumulate sufficient
amount to reach the predetermined threshold at low resoluftiwe limit the length of
observational window.

The performances of coherent approaches GLRT-based CU&jdktam and MMSE-
based CUSUM algorithm are demonstrated in Fig. 5.3. We chidtthat the GLRT-
based method performs much steadily at low-SNR region dtleetéact that it estimates
the fading coefficient according to cumulative realizasiohhe same phenomenon could

be observed in the comparison with the performance of the EBM&sed algorithm. It
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could be inferred from the fact that when there is little akkagons, the MMSE is approx-
imated by the mean df according to prior knowledge instead of the realizatiougadf
h. On the other hand, contrary to non-coherent approachespuld observe that the
mean delay converges to some specific small value varyingehkibsen threshold rather
than to zero. This might be attributed to the fact that therste essential error due to es-
timation especially under the situation that we aim to respdo the change immediately.
And similar to weighted CUSUM algorithm in non-coherent eggehes, the GLRT-based
method and MMSE-based method deteriorate to some exterd esmneern the limitation
of the accessible data buffer. Since if we curtail the okeséyaal window, it would result
in larger estimation error and insufficient amount on resulstatistics in low resolution
condition and thus lead to comparatively larger mean delay.

In Fig. 5.4, we depict the operating curves of four proposé&t50OM-based algo-
rithms under SNR: 10dB in flat-fading case. We can see that if we constraint ovesel
work on small rate of false alarm for assuring the efficientpmportunistic accessing,
weighted, GLRT-based and MMSE-based CUSUM algorithmsoperfbetter than the
classical one. This could be inferred from the fact that farthree methods are adaptive
to the realization of fading channel and yet the non-coherkassical approach always
attributes to the effect in the long run. On the other harassital method is less sensitive
to the curtailment of observational window due to propehnittthe inherent dependency

among the observations after change is reserved in thet&tsti

5.2.2 Multiuser Scenario

First, we simulate the cooperative CUSUM-based quickewtatien algorithms under
centralized framework. Consider a symmetric multiusenage where for each sensor
the channel conditions are identical and the observatiomalao assumed independent
across the sensors, the performance of proposed algorithdes the case ok = 2 and

R = 4 are shown in Fig. 5.5, Fig. 5.6, and Fig. 5.7. Under non-cefieapproaches,
we choose the thresholds that result in the same performaatge at SNR= —10 dB
for comparison of the performances with different numbemoblved sensors. As to

coherent approaches, we set the thresholds that lead toneemw delay for comparing the
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effect of increasing set in cooperative sensors. In botlafidtfrequency-selective fading
channels, we could see a growing tendency of the convergdmatvior in mean delay as
the number of cooperative sensors increasing. But at the sam, the performance gain
would gradually saturate as the number of cooperative semstreases. We could also
find that both the GLRT-based and MMSE-based method havdesmaan delay under
low resolution condition with growing number of secondagnsors.

Secondly, we present the performances of decentralizeshsshwith hard fusion of
local CUSUM. Similarly, we assume that all of the coopemensors are identical and
the observations are mutually independent. Welgéet 1 and M = 2 as making final
decision byM-out-of-R combing rule under both the casesidt= 2 andR = 4. In both
the schemes that sensors updates just for once and at eadngsiant, we could observe
analogous tendency in convergence of mean delay as we deederntralized case from
Fig. 5.8-5.13. On the other hand, the performance gain dgingutiown mean delay
is relatively smaller as comparing with centralized casss t bandwidth constraint of
communication between sensors and the fusion center.

Finally, we discuss the decentralized framework adoptinga) CUSUM with quan-
tized local decisions. Three kinds of scenarios based darélift channel conditions
between sensors and the fusion center with 1-bit or 2-b#tllqaantization are presented.
Note that under the assumption of fixed noise power at sersats/ariance of fading
effects, the distribution after reoccupying of the primasgr within low-SNR region, es-
pecially below 0 dB, results in a small difference with theedrefore reclaiming. This
property also leads to low discrimination between the axiprated distributions before
and after change and affects the effectiveness of quaistizaftig. 5.14 shows the per-
formance curves under perfect channels between sensothefusion center. We also
model the channels between sensors and the fusion centeraag ymmetric channels
with bit-cross-error equals to 0.2 and the correspondimfppmance curves are given in
Fig. 5.15. Further, we consider additive white gaussiasenohannels with received SNR
at the fusion center being 10 dB and the performance cureeshawn in 5.16.

Fixed the number of cooperative sensors, we could see thatase using 2 bits in

quantization generally achieves superior performancédacbunterpart with only 1-bit

45



quantization in low-SNR region under each channel corlit®n the other hand, under
the cases considering perfect channel and AWGN channel,owkel cee that the per-
formance curves converges to zero in mean delay as SNR saze#hereas, we could
observe that the mean delay converges to some specific sshalslose to zero and vary-
ing with bit-cross-error under the cases with BSC chanrtgiisce the likelihood ratio in

the fusion center is concentrated at some specific value algeidntization and could
not be smoothed out by averaging the channel effect in thensleghase due to the dis-
crete property of BSC, the cross-error in the second phasargmission thus dominates
the convergent value in mean delay of global CUSUM test. [@nlgito previous two

distributed frameworks, we could see the increasing amioutite cooperative sensors

expedite the convergence in mean delay and thus improvesfdativeness of detection.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

We have studied the spectrum sensing problem under therwootpossible fading en-
vironments in a sequential view for promoting the coexiséeaf cognitive applications
with existing primary systems. Aiming at avoiding intedace to licensed primary users,
we have proposed several cumulative-sum (CUSUM)-basexditdms, termed of classi-
cal CUSUM, weighted CUSUM, GLRT-based CUSUM and MMSE-base&UM algo-
rithm respectively, for detecting as quickly as possib&edient that the dormant primary
systems start reclaiming the use of the spectrum given aatisscal information about
the channel condition between cognitive and primary uséfs.have demonstrated that
all of the four proposed algorithms promise agility of déiteg the beginning of reoccupy-
ing primary signals as for the case with flat-fading. Evenarnmdultipath environments,
the proposed classical CUSUM algorithm performs fairly lwathin limited backward
observational window.

Further, we have also studied the case of cooperative cgtide¢ection where a num-
ber of cognitive users provide decision strategies an@bohatively detects the beginning
of the reclaims of the primary signal under three differeistributed frameworks. We
consider decentralized schemes including hard fusion el IEBUSUM test and global
CUSUM test with quantized version of local observationsddiion to centralized case.

In the simulations, we have justified the effectiveness ef ghoposed CUSUM-based
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quickest detection applied to different distributed fravoeks and examine how the in-

creasing number of involved cognitive users influences dropmance gain.

6.2 Future Work

In this thesis, although we have proposed effective CUSUWdged algorithms to tackle
the spectrum sensing problem in a sequential manner, tlogeatfy of proposed algo-
rithms has not been analyzed. Since our formulation captpossible fading effects
between the cognitive and the primary user, the detectiobl@m we deal with involves
non-homogenous and innately dependent observationdladteeoccupying of the coex-
isting primary system contrast to homogenous-distribatedl independent observations
after change in conventional quickest detection. Besidesalso emphasize the situa-
tion where we could make use of known feature of primary diggaduring detection
process. These properties exclude existing availablg/sisadbout CUSUM procedures
under minimax formulation on the optimality or asymptotehlavior to the best of our
knowledge as yet.

As for cooperation schemes, future work might consider #msgh of the quantiza-
tion strategy on the local sensors with- memory or take thewi@égncy among quantized
versions of observations into account as designing thesidecrule of global CUSUM
test. Another aspect for future work is to include the desfpower allocation under
cooperative schemes as we consider more practical situatiere the levels of channel

conditions among involved cognitive users are not idehtica
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