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摘要 

在本篇論文，我們從序列式即時變化偵測的觀點來探討感知無線電網路頻帶偵

測問題。為了能增進感知網路中次要使用者與主要使用者之間的共存性，我們提出

以「累積和程序」為基礎之演算法，在利用已知主要使用者之初始訊號結構下，能

有效且即時地偵測到主要使用者的重新運作並歸還次要使用者投機使用之頻帶資源

以避免對主要使用者造成嚴重干擾。我們特別考慮感知使用者與主要使用者之間存

在衰變通道且於接收端僅知通道統計特性下累和式即時變化偵測的可行性。 

我們首先考慮一個由單一主要使用者和單一次要使用者所構成的感知無線電網

路。在考慮衰變通道效應之下，我們從非同調與同調的角度出發各別提出以累積和

程序為基礎的即時偵測演算法。並於第二階段，在考慮各種分散式協作機制之下，

將先前所提出的累和式演算法推演於由多個次要使用者共同參與之合作式偵測，以

期能進一步地藉由多重使用者所提供的空間多樣性以增進即時偵測主要使用者活動

的效能表現。在模擬中，我們在主要使用者的訊號模型上採取了 IEEE 802.16e 的長

同步碼做為序列偵測的目標，並且在各種衰變環境下驗證並比較所提之累和式演算

法的可行性與效能表現。 
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Abstract 

In this thesis, we study the problem of spectrum sensing in cognitive radio networks 

from the view of sequential change-point detection (also called quickest detection). 

Aiming at avoiding interference to licensed primary users, which can help promote the 

willingness of the primary systems to accept the idea of coexistence with cognitive users, 

we propose several cumulative-sum (CUSUM)-based algorithms for detecting as quickly 

as possible the event that the dormant primary systems start reclaiming the use of the 

spectrum by exploiting the feature of the incipient part of the primary signals. Particularly, 

we are interested in the applicability of CUSUM-based tests to the coexistence problem 

when considering the fading effects between the cognitive and the primary user, given 

only the statistical channel information. 

 

In the first part of the thesis, we consider the single-user scenario and propose four 

CUSUM-based algorithms according to different perspectives and manners on the fading 

effects under flat fading or frequency-selective fading environments. In the second part of 

the thesis, we extend the proposed CUSUM-based algorithms to the case of cooperative 

quickest detection, where a number of cognitive users provide decision strategies and 

collaboratively detect the beginning of the reclaims of the primary signals. In the 



simulations, we demonstrate the effectiveness of the proposed algorithms with the 

settings defined in IEEE 802.16e as the primary signal model. Comparisons of the 

proposed CUSUM-based algorithms are also provided in the simulations. 
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Chapter 1

Introduction

1.1 Motivation

Recently, cognitive radio has emerged as a feasible approach to alleviate the problem

that most of the allocated radio spectrum are used sporadically and utilized inefficiently

in wireless communications applications [2]. Generally speaking, a cognitive radio is a

software-defined radio aware of its environment and autonomously adapting its operations

to achieve desired objectives in response to unexpected variations. Many kinds of possi-

ble mechanisms have been proposed for promising better system efficiency and spectrum

utilization. One main approach is to concede unlicensed cognitive users to opportunisti-

cally use those frequency spectrum yielded by underlying idle licensed primary users to

improve the efficiency of current spectral utilization. In this case, under the concern of

possible interference to primary users, cognitive users should assure that they could fairly

detect the activities of primary users and try to avoid interference to the primary licensed

users as much as possible, which can help promote the willingness of the primary sys-

tems to accept the idea of coexistence with unlicensed cognitive users. Specifically, the

effectiveness of detection strategy applying in cognitiveradio networks has been one of

the key factors that the opportunistic mechanism is workable of increasing the efficiency

in two main aspects. One is that the cognitive users have to know whether there exist pri-

mary users transmitting or not before opportunistic uses, and the other issue is to vacate

frequency bands as quickly as possible when primary user reclaiming the use of the spec-

1



trum. This corresponds to the following two types of spectrum detection (or commonly

termed asspectrum sensing) problems in cognitive radio networks:

• Detecting the existence of spectrum holes in order to opportunistically use that spec-

trum vacancy.

• Detecting the retransmission of primary users in a spectrumcurrently used by a

cognitive user and determine the time instant at which the retransmission starts.

There have been plenty of research studies that apply the conventional block-based

detection to the detection problems mentioned above in cognitive radio networks [3].

However, the fact that the efficiency of speculative spectrum utilization would be en-

hanced if we could detect as quickly as possible the idling bands, and that the interference

to the primary users could be avoided as much as possible if a cognitive user is capable

of perceiving the restart of transmission of the primary user excites our interest in the

applicability of sequential detection on cognitive radios.

On the other hand, prior information about primary user’s incipient signaling struc-

tureis sometimes available to public in existing licensed systems such as WiMAX sys-

tems. In this situation, it is possible to enhance the efficacy in awareness of the reoccu-

pying of primary user by exploiting features of the frame structure in cognitive detection.

In the thesis, combined with the aim to responding as quicklyas possible the activities

level of primary users, we are interested in contriving effective detection strategies that

make use of known feature of primary signaling in sequentialmanner for promoting the

cognitive coexistence.

1.2 Why Quickest Detection?

Most research and development about spectrum sensing in cognitive radios concentrate

on classical block-based detection schemes such as energy detection, feature detection or

matched filtering [3]. In these schemes, cognitive users always collect a succession of

observations within a fixed sensing time window, and then calculate corresponding test

statistics for decisions. Most of them put emphasis on maximizing probability of de-

2



tection while maintaining an acceptable level offalse alarm rate, particularly in detect-

ing whether there is spectrum hole existing in the environment for possible opportunistic

cognitive transmissions. On the other hand, when focusing on detecting primary user’s

retransmission activity and striving at avoiding interference to primary users by vacat-

ing frequency bands that are occupied by cognitive users as soon as retransmission of

underlying primary users occurs, the delay between the estimated time instant and the

true primary user’s retransmission time instant becomes a crucial index to the feasibility

of cognitive mechanisms. However, due to the inherent nature of block-based detection,

this delay performance of detection has not been addressed in the conventional meth-

ods [4], [5], [6], and [7]. Thus, this motivates us to study the applicability of sequential-

type detection, especially the change-point detection (also called quickest detection), in

dealing with the detection problem in cognitive networks.

Quickest detection is a branch topic of sequential-type detection [8], [1]. Conceptu-

ally, the idea is to detect changes in distribution of observations as quickly as possible,

which coincides the aim that secondary users should detect the change in the activity level

of the primary users immediately. In contrast to block-based approaches, mean delay of

detection is an essential performance index in sequential change-point detection. This

property makes the quickest detection as an appropriate framework for dynamic spectrum

sensing in cognitive radio networks.

1.3 Related Work

The problem of detecting an abrupt change was first studied byPage in the context of

quality control [9]. In the conventional formulation of thechange-point detection prob-

lem, there is a sequence of observations whose distributionchanges at some unknown

point in time, and the goal is to detect this change as quicklyas possible subject to false

alarm constraints. In the simplest situation where the observations are independent and

identically distributed (i.i.d.) with known distributions before and after the change, the

problem is well understood and has been solved under a variety of criteria since the sem-

inal work by Page. Under minimax formulation, which is first proposed by Lorden [10],

3



the well-known Page’s cumulative sum (CUSUM) algorithm hasbeen proved to be opti-

mal 1 in the sense of minimizing the mean delay of detection while maintaining a certain

level of false alarm rate [11] and [12].

The extension to composite hypotheses testing problems where the distributions of ob-

servations before or after change are not completely specified could be found in [10], [13]

and [14]. In [15], the authors consider the problem of detecting a change from one given

stationary and ergodic stochastic process to another such process. Change-point detec-

tion involving dependent observations is discussed in [16], where the authors shows that

Page’s CUSUM procedure is still asymptotically minimax optimal for dependent obser-

vations under some conditions which are difficult to verify in general. Although it is easy

to extend the CUSUM decision rule for dependent observations by replacing statistics by

conditional density as proposed in [15] and [16], it has beenan open problem concerning

whether the asymptotic optimality2 of the CUSUM rule still holds as commented in [17].

The first generalization of the CUSUM detection procedure regarding multichannel

and distributed systems is proposed in the work by Tartakovsky [18] and further extended

and discussed in [19] where asymptotically optimal procedures for two distributed scenar-

ios are presented based on i.i.d. local observations beforeand after change. In work [20],

also concerning the simplest case with i.i.d. local observations, the author proves that

a CUSUM procedure based on binary-quantized data with a monotone likelihood ratio

quantizer (MLRQ) is asymptotically optimal under a condition on second moments in the

system with limited local memory and develops asymptotic theory in the system with full

local memory. The case that there exists unknown parameter in the post-change detection

as further extension in the distributed multisensor setting with binary quantization is ad-

1In the sense that the stopping time of CUSUM procedure minimizes the worst average conditional

delay (t0 denotes the change time andta denotes the alarm time)̄τ∗ = supt0≥1
esssupEθ1

(ta − t0 +

1|ta ≥ t0,F t0−1

1
), whereF t0−1

1
is the filtration, namely the smallestσ-field with respect to observations

y1, . . . , yt0−1 and the essential supremum (esssup) means the worst case detection delay, for a fixed mean

time between false alarm̄T = Eθ0
(ta)

2An optimal algorithm for change detection is any algorithm that minimizes the worst mean conditional

delay for detection̄τ∗ for a fixed mean time between false alarm̄T and an algorithm isasymptotically

optimalif it reaches this optimal property asymptotically whenT̄ → ∞

4



dressed in [21]. In [22], Tartakovsky proposes nonparametric multi-chart CUSUM test for

the rapid intrusion detection applied to general stochastic models in multichannel sensor

systems and show that the proposed multi-chart detection procedure typically performs

significantly better than single-channel counterparts.

Under cognitive radios setup, the authors in [23] introduceusing generalized like-

lihood ratio (GLR) test combined with parallel CUSUM algorithm and propose a suc-

cessive refinement to tackle the problem with unknown amplitude of primary signals,

which consist of mutually independent sequence before and after change. And, scenar-

ios with different information levels about primary users known by cognitive users are

considered in [24], in which GLRT-based algorithm and non-parametric approach are de-

veloped based on mutually independent homogeneous gaussian distributed signal model.

The work in [25] deals with the spectrum detection problem byintroducing the CUSUM-

based quickest detection with hidden Markov Models (HMMs).Related work of coop-

erative spectrum sensing based on CUSUM procedure can be found in [26] and [27],

both based on i.i.d. local observations. In [26], collaborative quickest detection in an ad

hoc network, where no data fusion center is needed and collaboration among sensors is

through information exchange, is proposed for multi-node case. Cooperative spectrum

sensing schemes applying linear test on CUSUM statistics for exempting the need of es-

timation of unknown parameters in post-change distribution are provided in [27] under

different distributed scenarios.

1.4 Contributions of the Research

Aiming at avoiding interference to licensed primary users,which can help promote the

willingness of the primary systems to accept the idea of coexistence with cognitive users,

we propose several cumulative-sum (CUSUM)-based algorithms that exploits the feature

of the incipient part of the primary signals for detecting asquickly as possible the event

that the dormant primary systems start reclaiming the use ofthe spectrum. Particularly,

our formulation captures possible fading effects between the cognitive and the primary

user given only the statistical channel information at the receiver end.
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Contrast to the homogenous-distributed and independent observations after change

that are commonly assumed in conventional quickest detection, the detection problem

we deal with involves non-homogenous and innately dependent observations after the

reoccupying of the coexisting primary system. To tackle theproblem, we first con-

sider the single-user scenario and propose four CUSUM-based algorithms depending on

different assumptions on the fading environments. Specifically, we call the four pro-

posed algorithms as the classical CUSUM, weighted CUSUM, GLRT-based CUSUM,

and MMSE-based CUSUM algorithms, which are briefly described as follows. In the

classical CUSUM algorithm, we treat the unknown channel factors as random variables

with known prior statistics and calculate the likelihood ratio between joint probability

density functions of observations under the conditions before and after the reclaiming

occurs. While in weighted CUSUM and GLRT-based CUSUM algorithm, we consider

the unknown channel coefficient as deterministic but unknown constant during the detec-

tion process. We weight the likelihood ratio by applying prior information as weighting

function and estimate the unknown parameter through all available observations. The es-

timates are then substituted into the likelihood. Depart from the philosophy employed by

the GLRT-based CUSUM algorithm, the MMSE-based CUSUM algorithm is to estimate

the unknown fading coefficient by incorporating prior knowledge. We also examine the

required length of backward observations that keeps comparable efficacy with the one

without any curtailment of observational window.

Further, we extend the proposed CUSUM-based algorithms to the case of cooperative

quickest detection, where a number of cognitive users provide decision strategies and col-

laboratively detects instantaneously the beginning of thereclaims of the primary signal

under three different distributed frameworks. The first distributed scenario is in central-

ized setting, which means that the original data received atsensors are sent completely

to a fusion center where a final decision is made based on all sensor massages for global

CUSUM test. In the cases considering decentralized framework, we resort to hard fu-

sion of local CUSUM and global CUSUM with quantized local decision. In hard fusion

of local CUSUM scheme, we assume that each of the cooperativesensors has sufficient

memory to individually perform CUSUM-based quickest detection then the fusion center
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makes final decision based on local decisions sent by sensorsaccording to hard-decision

combining rules. In the decentralized scheme considering global CUSUM with quantized

local decisions, we propose using an approximation on distributions of the received signal

after reoccupying to tackle the quantization at the local sensors, and the CUSUM-based

algorithm is performed at the fusion center while the local sensors are assumed memory-

less and send quantized version of their observations for decision making.

In the simulations, we demonstrate the effectiveness of theproposed algorithms with

the settings defined in IEEE 802.16e as the primary signal model. Comparisons of the

proposed CUSUM-based algorithms are also provided in the simulations.

To sum up, the contributions of the research include:

• We deal with the spectrum sensing problem under fading environments in a sequen-

tial detection viewpoint, which involves non-homogenous distributed and innately

mutually dependent observations after the reoccupying of the coexisting primary

system. This problem has not been studied before. Although the work in [25] also

discusses quickest spectrum detection with dependent observations after change,

the dependency among the observations lies on the sampling of the wideband power

spectrum density. They first train the corresponding HMM parameters of specific

primary signal and then perform quickest pattern cognition, which heavily depends

on the Markov properties in calculating statistics, to detect the appearance of a

predefined pattern as quickly as possible. While in our proposed schemes, the de-

pendency among observation sequence is due to possible frequency selective fading

effects.

• We develop several effective change detection strategies based on CUSUM proce-

dure with practical assumptions. In addition, we also propose cooperative schemes

as further extension. By simulation, we demonstrate the effectiveness of the pro-

posed algorithms either under flat fading or frequency-selective fading case.
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Chapter 2

Cognitive Radio and CUSUM-Based

Quickest Detection Preliminary

2.1 Cognitive Radio

Cognitive radio technology, which is first proposed by Mitola in [2], has emerged as a

potential candidate to revolutionize spectrum utilization. In general, cognitive radio is

defined as a software-defined radio that is aware of its surrounding and autonomously

adapting its operations to achieve desired objectives in response to unexpected variations,

based on the active monitoring of several factors in the external and internal radio envi-

ronment, such as radio frequency spectrum, user behavior and network state. The need

for CRs is motivated by various factors. Early works focus onthe capability of enhancing

the flexibility of personal services in a way that supports automated reasoning about the

needs of the anticipated user. The radio seeks out the required information and provides

the user with instructions or the desired service. Fig. 2.11 illustrates the cognition cycle

which consists of Observe, Orient, Plan, Decide, Learn and Act phases, has been widely

used to understand and analyze the performance of cognitiveprocesses in cognitive radios

and cognitive networks. More recently, the problem of spectrum under-utilization urges

the need for intelligent radios to tackle the dynamic allocations efficiently. Although the

1This figure is adapted From Mitola, ”Cognitive Radio: An Integrated Agent Architecture for Soft-ware

Defined Radio”, Doctor of Technology, Royal Inst. Technol. (KTH), 2000, pp 48
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Figure 2.1: Simplified Cognition Cycle.

initial aim of CR not directly lies on promoting the utilization of spectrum resource, it

does serves as a potential candidate to alleviate this problem since cognitive users could

either opportunistically utilize idled spectrum by detecting the spectrum hole or actively

negotiate with primary users,i.e the existing licensed users, to access the spectrum. There

have been plenty of researches on CR-related topic, which could be classified into three

fundamental tasks [3]: 1. Radio-scene analysis, which includes estimation of interfer-

ence temperature of the radio environment and detection of spectrum holes. 2. Channel

state estimation and predictive modeling, which encompasses estimation of channel-state

information and prediction of channel capacity for use by the transmitter. 3. Transmit

power control and dynamic spectrum management.

Our work is focus on detecting the activity level of primary users under fading envi-

ronments, aiming at avoiding interference to licensed users for promoting the coexistence

with underlying primary system, which we adopt an alternative view in sequential sense

contrary to conventional block-based detection to tackle with.
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2.2 CUSUM-Based Quickest Detection

Change detection is a fundamental problem arising across various branches of science, fi-

nance and engineering. By taking the change-point as deterministic but unknown param-

eter, we focus ourselves on the minimax formulation of change-point detection under the

simplest case and introduce the corresponding efficient detection scheme, Page’s cumula-

tive sum (CUSUM) algorithm, with its conceptual derivations and optimal properties for

background understanding. Extensive and comprehensive studies could be referred to [1]

and [8] for deeper materials.

2.2.1 A Simple Case - Concept and Page’s CUSUM Algorithm

Fundamental Concept

Started by a very important concept in analysis of mathematical statistics, the logarithm

of the likelihood ratio, defined by

l(y) = ln
pθ1(y)

pθ0(y)
(2.1)

and referred to as the log-likelihood ratio, CUSUM algorithm is developed from the key

statistical property of this ratio as following:

Given thatEθ0 andEθ1 denote the expectations of the random observation under the

two distributionspθ0 andpθ1 , respectively. Then, it can be easily verified

Eθ0(l) < 0 andEθ1(l) > 0. (2.2)

Namely,a change in the parameterθ is reflected as a change in the sign of the mean value

of the log-likelihood ratio, which can be regarded as a kind of detectability of change in

distribution [1].

Page’s CUSUM Algorithm

Consider a sequence of independent random variables{yk} with a probability density

pθ(y) depending upon only one scalar parameter. Before the unknown change timet0, the

parameterθ is equal toθ0, and after the change it is equal toθ1. A decision strategy to
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Figure 2.2:Typical behavior of the log-likelihood ratioSk corresponding to a change in the mean

of a Gaussian sequence with constant variance : negative drift before and positive drift after the

change. (Fig.2.5 of [1])

raise an alarm of the presence of change can be regarded as a stopping timeta, which is

characterized only by the past observations at each time instant. LetSk
j =

∑k

i=j li, with

li = ln
pθ1

(yi)

pθ0
(yi)

, be the log-likelihood ratio for the observations fromyj toyk. Intuitively, the

typical behavior of the log-likelihood ratioSk
1 shows a negative drift before change, and a

positive drift after change, as shown in Fig. 2.2. Therefore, the relevant information, as far

as the change is concerned, lies in the difference between the value of the log-likelihood

ratio and its current minimum value; and the corresponding decision rule is then, at each

time instant, to compare this difference to some threshold said~ as follows:

gk = Sk
1 − mk ≥ ~, wheremk = min

1≤j≤k
Sj

1 (2.3)

which leads to the following equivalent decision function

gk = max
1≤j≤k

Sk
j andta = min{k : gk ≥ ~}. (2.4)

It could be easily verified that the stopping timeta is equal to the one determined by Page’s

procedure (also known as CUSUM algorithm) introduced and derived as follows, which

has been proved optimal in the sense that it minimizes the worst average conditional delay
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τ̄ ∗ = supt0≥1 esssupEθ1(ta − t0 + 1|ta ≥ t0,F t0−1
1 ) 2 for a fixed mean time between false

alarmT̄ = Eθ0(ta) [8].

In specific, Page suggested the use of repeated testing of thetwo simple hypotheses:

H0 : θ = θ0

H1 : θ = θ1

(2.5)

with the aid of the sequential probability ratio test (SPRT). The SPRT is defined with the

aid of the pair(d, T ) whered is the decision rule andT is a stopping time. The definition

of the SPRT is thus

T = min{k : Sk
1 ≥ ~ or Sk

1 ≤ 0} (2.6)

andd = 1 if ST
1 ≥ ~; otherwised = 0.

The key idea of Page was to restart the SPRT algorithm as long as the previously taken

decision isd = 0. The first time at whichd = 1, we stop observation and do not restart a

new cycle of the SPRT. This time is then the alarm time at whichthe change is detected.

The resulting decision rule can be rewritten in a recursive manner as

gk =





gk−1 + ln
pθ1

(yk)

pθ0
(yk)

, if gk−1 + ln
pθ1

(yk)

pθ0
(yk)

> 0

0, if gk−1 + ln
pθ1

(yk)

pθ0
(yk)

≤ 0
(2.7)

i.e.,

gk = (gk−1 + sk)
+ with g0 = 0, (2.8)

and the stopping rule ista = min{k : gk ≥ ~}, which is equivalent to other forms

presented before.

On the other hand, for deriving the asymptotical optimalityof the CUSUM algorithm,

it is convenient if we interpret the CUSUM stopping timeta by using a set of parallel

open-ended SPRT, which are activated at each possible change timej = 1, . . . , k, and

with upper thresholdh and lower threshold equals to−∞. Each of these SPRT stops at

time k if, for somej ≤ k, the observationsyj, . . . , yk are significant for accepting the

hypothesis about change.

2F t0−1

1
is the filtration, namely the smallestσ-field with respect to observationsy1, . . . , yt0−1; the

essential supremum (esssup) means the worst case detectiondelay.
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Let Tj be the stopping time for the open-ended SPRT activated at time j:

Tj = min{k ≥ j : Sk
j ≥ ~} (2.9)

where we use the convention thatTj = ∞ when this minimum is never reached. Lorden

[10] defines the following extended stopping time as the minimum of the{Tj}:

T ∗ = min
j=1,2,...

{Tj} (2.10)

It also can be showed thatta = T ∗.

Optimal Properties

First, deduced from the properties of a set of parallel open-ended SPRT, the relation be-

tween the lower bound for the mean time between false alarms and the upper bound for

the worst average conditional delay for detection under thei.i.d. assumption is stated as

follows

Theorem 1 (Thm 5.2.1 in [1]) LetT be a stopping time with respect to{y1, y2, . . . } such

that

Pθ0(T < ∞) ≤ α

For k = 1, 2, . . . , let T̃k be the stopping time obtained by applyingT to {yk, yk+1, . . . }
and letTk = T̃k + k − 1.

Define the extended stopping time by

T ∗ = min{Tk|k = 1, 2, . . .}

Then,T ∗ is such that

Eθ0(T
∗) ≥ 1

α

Ēθ1(T
∗) ≤ Eθ1(T )

where

Ēθ1(T
∗) = sup

k≥1
esssupEk(T

∗ − k + 1|y1, . . . , yk−1)
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Applying the above theorem to the case thatTk corresponds to an open-ended SPRT

with upperthreshold~:

Tk =





min{n ≥ k :
∑n

i=k ln
pθ1

(yi)

pθ0
(yi)

}
∞ if no suchn exists

Then, the extended stopping timeT ∗ is Page’s CUSUM stopping timeta and

ta = T ∗ = min{Tk|k = 1, 2, . . .}

In this case, it follows from Wald’s identity (seeThm. 4.3.2 of [1]) that when~ goes to

infinity

Eθ1(T ) ∼ ~

K(θ1, θ0)

where

K(θ1, θ0) = Eθ1[ln
pθ1(yi)

pθ0(yi)
]

is the Kullback information. Second, from the Wald’s inequality, we have

Pθ0(T < ∞) ≤ e−~ = α.

Thus, the worst mean delay is given by

τ̄ ∗ = Ēθ1(T
∗) ∼ ln T̄

K(θ1, θ0)
, as~ → ∞

whereT̄ denotes themean time between false alarm

T̄ = Eθ0(ta).

The above approximal equation gives the basic relation between the delay for detection

and the mean time for false alarm for the CUSUM algorithm in the simplest situation.

Secondly, Lorden proved that the infimum of the worst mean delay among a class of

extended stopping times is precisely given by this relation. The main results of Lorden

concerning the asymptotically optimal solution of change detection problems are briefly

described as below.

Theorem 2 (Thm 5.2.2 in [1]) Let {T (α)|0 < α < 1} be a class of open-ended SPRT

such that

Pθ0 [T (α) < ∞] ≤ α
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and for all realθ1

Eθ1 [T (α)] ∼ ln(α−1)

K(θ1, θ0)
.

For γ > 1, letα = γ−1 and letT ∗(γ) be the associated extended stopping time defined by

T ∗(γ) = min{Tk(α)|k = 1, 2, . . .}

Then,

Eθ0[T
∗(γ)] ≥ γ

and for all realθ1, T ∗(γ) minimizesĒθ1[T̄ (γ)] among all stopping times̄T (γ) satisfying

the above constraint.

Furthermore,

Ēθ1(T
∗(γ)) ∼ ln γ

K(θ1, θ0)
asγ → ∞

This theorem shows the optimality of the CUSUM algorithm from an asymptotic view,

what is often calledfirst-order optimality[28]. More precisely, CUSUM algorithm is op-

timal, with respect to the worst average conditional delay,when the mean time between

false alarms goes to infinity. Based upon the same criterion of worst average conditional

delay, another optimality result for CUSUM algorithm is proven in [11] and [12], in a

nonasymptotic framework: The CUSUM algorithm minimizes the worst average condi-

tional delay for allT̄ ≥ T̄0, whereT̄0 is small for most cases of practical interest. Gener-

ally, it is difficult to obtain explicit expressions for performance analysis in the finite case.

This asymptotic point of view is convenient in practice because a low rate of false alarms

is always desirable.

Note that, the CUSUM algorithm is optimal when it is tuned with the true values of

the parameters before and after change. When the algorithm is used in situations where

the actual parameter values are different from the preassigned values, this optimality is

lost.

2.2.2 Extension to Composite Hypothesis Cases

Consider the case where the parameter before changeθ0 is assumed to be known while

θ1 is unknown based on the assumption that observations are independent of one another

conditioned on the change-point. There are two main approaches as described below.
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• Weighted-CUSUM Algorithm:

It is an algorithm comes from the idea ofweighting the likelihood ratio with respect

to all possible values of the parameterθ1, using a weighting functiondF (θ1), where

F (θ1) may be interpreted as the cumulative distribution functionof a probability

measure. It was derived for change detection in [29], and is adirect extension of

the CUSUM stopping time defined as follows. Let

Λ̃k
j =

∫ ∞

−∞

pθ1(yj, . . . , yk)

pθ0(yj, . . . , yk)
dF (θ1) (2.11)

be the weighted likelihood ratio for the observations from timej up to timek. Then

the stopping time is

tWeighted
a = min{k : max

1≤j≤k
ln Λ̃k

j ≥ ~}. (2.12)

The most simple choices involve using the uniform distribution over a specified

interval that contains all possible values of the parameterθ1, or Dirac masses on

some specified values. Another useful choice is the Gaussiandistribution. Note

that this type of algorithm cannot be written in a recursive manner as the classi-

cal CUSUM algorithm described before. Some asymptotic properties related to

weighted-CUSUM algorithm could be found in Section 5.2.3 of[1].

• General Likelihood Ratio Test (GLRT) based CUSUM Algorithm:

In this approach, the unknown parameterθ1 is replaced by its maximum likelihood

estimate as

Λ̂k
j =

supθ1
pθ1(yj, . . . , yk)

pθ0(yj, . . . , yk)
(2.13)

with

tGLRT
a = min{k : max

1≤j≤k
ln Λ̂k

j ≥ ~}. (2.14)

The properties of the case that consider hypothesesH0 : {θ = θ0} andH1 : {θ ≥
θ, θ0 < θ} with the aid of an exponential family of distributions (i.e., pθ(y) =

h(y) expθy−d(θ)) are derived in Section 5.3.1 of [1].
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As the weighted-CUSUM algorithm, the GRLT-based approach still has no recur-

sive expression thus needs to store all the observations andre-estimate the unknown

parameter in all time slots.

2.2.3 Dependent Observations

In this subsection, we consider the situation in which we have dependent observations and

briefly introduce the result in generalization of Lorden’s asymptotical optimality on the

CUSUM algorithm for dependent models derived by Lai [16].

Suppose that the conditional density function ofyk conditioned ont0 = j given

y1, . . . , yk−1 is p0,j(·|y1, . . . , yk−1) for k < t0 andp1,j(·|y1, . . . , yk−1) for k ≥ t0. Let

S̄k
j := ln

P(j)(y1, · · · , yk|Hj)

P(0)(y1, · · · , yk|H∞)

=

k∑

i=j

ln
p1,j(yi|y1, . . . , yi−1)

p0,j(yi|y1, . . . , yi−1)
, k ≥ j

(2.15)

whereP(j) andHj denotes the probability measure and the hypothesis with respect to

change-pointt0 = j andP(0) andH∞ are used for the situation when there is no change

occurs. Then, a natural generalization of the CUSUM rule (2.4) is

t̄a = min{k : max
1≤j≤k

S̄k
j ≥ ~} (2.16)

Under the condition that the conditional likelihood ratio satisfies

lim
k→∞

sup
t0≥1

esssupP(t0)

[
max
t≤k

t0+t∑

i=t0

ln
p1,t0(yi|y1, . . . , yi−1)

p0,t0(yi|y1, . . . , yi−1)
≥ kI(1 + δ) | y1, y2, . . . , yt0−1

]
= 0

∀δ >0,

(2.17)

wheren−1
∑t0+n

i=t0
ln

p1,t0(yi|y1,...,yi−1)

p0,t0(yi|y1,...,yi−1)
is assumed to converge in probability underP(t0) to

some positive constantI, Lai provides the asymptotic lower bound for the worst case

average conditional delay subject to mean time between false alarm constraint and proves

that the generalized CUSUM rule (2.16) with suitably chosenthreshold~ and certain

window-limited modification thereof attain this asymptotic lower bound. However, it has

been an open problem concerning whether the asymptotic optimality of the CUSUM rule

(2.16) still holds in general as commented in [17].

17



Chapter 3

CUSUM-Based Quickest Detection for

Cognitive Coexistence

3.1 Problem Setup

Under a primary communication system (e.g., WiMAX systems,as our explanatory ex-

ample throughout the thesis) as shown in Fig. 4.1, we begin with modeling the spectrum

sensing problem into a quickest detection with one single cognitive user. To detect the

presence of primary user’s signals as quickly as possible, one approach is to exploit fea-

tures of the inceptive part of frame structure if prior knowledge about primary system is

available. Take the widespread WiMAX system as example in our proposed scheme, we

make use of the long preamble, which consists of two WiMAX OFDM symbols and is

transmitted at the beginning of the frame. Due to the periodicity of the preamble structure

and the aim that we want to detect the presence at first hand, wemay only consider the

simplified transmitted signal model composed of repeated segments in the leading pream-

ble for symbolic convenience. Note that the feasibility of our proposed strategies depends

on the prior knowledge of leading signals of primary user, not only applicable to periodic

structure.

In particular, under the concern of flat fading channel between cognitive and primary
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Figure 3.1: A sketch map of the spectrum sensing problem aiming to detect the reoccu-

pying of underlying primary system as quickly as possible.

user (e.g., WiMAX base station), the received signal in time-domain could be modeled as

yk = hΥ(k, t0) + nk (3.1)

with

Υ(k, t0) =





s((k − t0)modNs), ask ≥ t0

θ0 = 0, ask < t0.
(3.2)

In the above equation,t0 denotes the unknown presence time instant of primary sig-

nal, Ns denotes the length of the repeated segment of the preamble signal, nk mod-

els the complex white gaussian noise with varianceσ2
n at timek, ands(i) is retrieved

from the ith element ofs, which collects the periodic fragment of preamble symbol

s = [s(0), s(1), . . . , s(Ns − 1)]T . Note thath is the fading effect over the start signals

of the new frame and might be treated either as deterministicbut unknown constant or as

random variable of a stochastic process, depending on whichphilosophy we take.
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Thus, Our goal is to determine a decision strategy to fairly detect the beginning of the

primary signaling prefixed by known preamble structure as quickly as possible, for the

sake that the interference caused by the cognitive emitter to the existing primary systems

must be avoided.

Contrast to the case of independent observations characterized by only one parame-

ter, the detection problem we deal with involvesnon-homogenous and innately dependent

distributedobservations after the reoccupying of the coexisting primary system. In partic-

ular, the difficulties lie on the following aspects. First, the feature of preamble packet sig-

naling results in non-homogeneous observations after change, which means the received

signals are time-varying distributed even if we ignore the effects of fading channel. In

the second place, due to the fact that the signals are transmitted through a fading channel,

we have to tackle with the fading effects in the received signals after change. Two ap-

proaches are considered in the following two section in non-coherent and coherent sense,

respectively.

In non-coherent approaches, as the literal meaning, it is assumed that the receiver

only has knowledge of the statistics of channel and no estimation of realization about the

unknown channel coefficient is needed. We also discuss and design from coherent sense,

which means we resort to channel estimation of the realization of fading coefficient at the

receiver end in our proposed strategies.

3.2 Non-Coherent Approaches

In non-coherent approach, we contrive to two CUSUM-based strategies without any esti-

mation of realization about the unknown channel fading coefficients in the receiver end.

One is called classical CUSUM algorithm, and another is termed to be weighted CUSUM

algorithm. In classical CUSUM algorithm, we treat the unknown channel factor as a ran-

dom variable with known prior statistics and calculate the likelihood ratio between joint

probability density functions of observations under the conditions before and after change

occurs, while in weighted CUSUM algorithm we take the unknown channel coefficient

as deterministic but unknown constant during the detectionprocess and then weight the
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likelihood ratio by applying prior information as weighting function.

After restricting ourselves to purely Rayleigh-fading channels, we may assume that

the flat fading channel is modeled ash ∼ CN (0, σ2
h). The more general case under

frequency-selective channel will be further discussed in later subsection.

3.2.1 Classical CUSUM Algorithm

Givenσ2
h at the receiver end, the joint distribution of received signals in specific interval

of observation time before or after change can be fully specified with the channel effect

averaged. Whereas, the observation sequence after the change time{yt0, yt0+1, . . . } is

dependent due to the presence of fading channel. Due to the non-homogeneous feature

of observations after reoccupying timet0, it seems implicit in the validity of applying

CUSUM algorithm. Thus, we need to study the natural trend of the log-likelihood before

and after change.

First, before the change timet0, it can be verified from the Kullback information that

Eθ0[ln
pΘ(k,i)(yi, yi+1, · · · , yk)

pθ0(yi, yi+1, · · · , yk)
] ≤

Eθ0[ln
pΘ(k,j)(yj, yj+1, · · · , yk)

pθ0(yj, yj+1, · · · , yk)
] ≤ 0,

∀i ≤ j ≤ k ≤ t0,

(3.3)

wherepΘ(k,j) denotes the joint distribution of received signals from time j to k given

t0 = j and pθ0 denotes the joint distribution before change occurs. From the above

inequality, we can observe a negative drift of the expected log-likelihood before change,

which indicates the absence of the primary signaling. Similarly, we have

0 ≤EΘ(k,j)[ln
pΘ(k,j)(yj, yj+1, · · · , yk)

pθ0(yj, yj+1, · · · , yk)
] ≤

EΘ(k,i)[ln
pΘ(k,i)(yi, yi+1, · · · , yk)

pθ0(yi, yi+1, · · · , yk)
],

∀k ≥ j ≥ i ≥ t0,

(3.4)

which indicates the positive tendency as the change has occurred. Therefore, we might

apply the idea of CUSUM algorithm to detect the beginning of the reoccupying signals by

the discrimination property. Although the log-likelihoodratio here is not additive due to
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the dependency among the observations after change, we still adopt the term “CUSUM”

to represent the increasing amount on expected log-likelihood ratio. Then, the decision

rule is given by

gk = max
1≤j≤k

ln
pΘ(k,j)(yj, yj+1, · · · , yk)

pθ0(yj, yj+1, · · · , yk)
(3.5)

= max
1≤j≤k

ln

1
πk−j+1 detKk

j

exp (−yk
j

H
Kk

j

−1
yk

j )

1

(σ2
nπ)k−j+1 exp (− 1

σ2
n
yk

j

H
yk

j )
(3.6)

and

ta = min{k : gk ≥ ~}, (3.7)

whereKk
j represents the covariance matrix of received signals from time j to k under

t0 = j, andyk
j collects observationsyj, yj+1, . . . , yk.

To be more specific, we can view the received signals from timej to k undert0 = j

alternatively as

yk
j |t0=j =




hxj + nj

hxj+1 + nj+1

...

hxk + nk




(3.8)

wherexi = s((i − t0)modNs). We could recognize thatyk
j |t0=j is a random vector whose

real part and imaginary part are collectively jointly Gaussian. Further, it is a circular

symmetric complex Gaussian random vector with its joint density function denoted as

CN (0,Kk
j ), where

Kk
j =




σ2
h||xj||2 + σ2

n σ2
hxjx

∗
j+1 · · · σ2

hxjx
∗
k

σ2
hxj+1x

∗
j σ2

h||xj+1||2 + σ2
n · · · σ2

hxj+1x
∗
k

...
...

. . .
...

σ2
hxkx

∗
j σ2

hxkx
∗
j+1 · · · σ2

h||xk||2 + σ2
n




. (3.9)

In conclusion, we treat the unknown channel factor as a random variable with known

prior statistics and calculate the likelihood ratio between joint probability density func-

tions of observations under the conditions before and afterchange occurs. At each time

instant, we search for the time at which the backward accumulated likelihood ratio is
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maximum, in other words, the instant the reoccupying most likely takes place. Then, we

raise alarm to declare the change at the first time the resultant accumulated likelihood

ratio is larger than a well-chosen threshold. Appropriate threshold~ can be determined

by numerical simulation in advance of detection.

3.2.2 Extension to Frequency-selective Fading Case

Under the concern of frequency-selective fading channel between cognitive user and un-

derlying primary user or base station, the received signal in time-domain could be rela-

tively modeled as

yk = θ(k, t0) + nk, whereθ(k) =





Υ(k, t0) ⊛ heff (k), ask ≥ t0

0, ask < t0
(3.10)

with

Υ(k, t0) =





s((k − t0)modNs), ask ≥ t0

0, ask < t0.
(3.11)

and

heff (k) =





h(k), as0 ≤ k ≤ L − 1

0, Otherwise.
(3.12)

Similar to previous flat fading case,t0 denotes the unknown presence time instant of

primary signal,Ns denotes the length of the repeated segment of the preamble signal,nk

models the AWGN with varianceσ2
n at timek, ands(i) is retrieved from theith element

of the periodic fragment of preamble symbols = [s(0), s(1), . . . , s(Ns − 1)]T . Note that

the fading effects are caused by the channelh consists ofL uncorrelated tapsh(l), l =

0, 1, . . . , L − 1, where each element ofh are modeled as purely Rayleigh-fading with

varianceσ2
l with uniform power constraintΣL

l=0σ
2
l = 1.

Now, since the natural tendency is still reserved in the caseof frequency-selective

fading, we could design the corresponding decision strategy from the idea of CUSUM

algorithm in a similar way for detecting the beginning of thereoccupying of underlying

primary system in multipath environments. Specifically, the decision rule is in the form
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of

gFS
k = max

1≤j≤k
ln

pΘ(k,j)(yj, yj+1, · · · , yk)

pθ0(yj, yj+1, · · · , yk)
(3.13)

= max
1≤j≤k

ln

1
πk−j+1 detCk

j

exp (−yk
j

H
Ck

j

−1
yk

j )

1

(σ2
nπ)k−j+1 exp (− 1

σ2
n
yk

j

H
yk

j )
(3.14)

and

tFS
a = min{k : gFS

k ≥ ~}, (3.15)

whereyk
j collects observationsyj, yj+1, . . . , yk, andCk

j represents the covariance matrix

of received signals convoluted withL channel taps from timej to k undert0 = j.

In detail,yk
j conditioned ont0 = j can be decomposed as

yk
j |t0=j =




xT
j h + nj

xT
j+1h + nj+1

...

xT
k h + nk




=




xj,0 xj,1 · · · xj,L−1

xj+1,0 xj+1,1 · · · xj+1,L−1

...
...

. . .
...

xk,0 xk,1 · · · xk,L−1







h(0)

h(1)
...

h(L − 1)




+




nj

nj+1

...

nk




(3.16)

where theL by 1 vectorxi collects the symbols convoluted withh at time instanti. After

such rearrangement, we could assure thatyk
j |t0=j is also a random vector whose real part

and imaginary part are collectively jointly Gaussian with its joint density function denoted

asCN (0,Ck
j ), where

Ck
j =




xT
j Σ2x∗

j + σ2
n xT

j Σ2x∗
j+1 · · · xT

j Σ2x∗
k

xT
j+1Σ

2x∗
j xT

j+1Σ
2x∗

j+1 + σ2
n · · · xT

j+1Σ
2x∗

k

...
...

. . .
...

xT
k Σ2x∗

j xT
k Σ2x∗

j+1 · · · xT
k Σ2x∗

k + σ2
n




(3.17)

with Σ2 being the diagonal power delay profile matrix asdiag{σ2
0, σ

2
1, . . . , σ

2
L−1}. Note

that the elements of covarianceCk
j only depends on the valuek− j and can be calculated

and stored in advance.

3.2.3 Modified Window-limited Version

Although the resultant accumulated likelihood ratio of theproposed classical CUSUM

decision strategy could not be calculated in recursive way,we could resort to examine
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the required length of backward observations that keeps comparable efficacy with the one

without any curtailment of observational window. On the other hand, we also curious

about the influence on the case with regard to limited data storage in the receiver equip-

ment.

Thus, we can simply replace the decision strategy in previous proposed classical

CUSUM algorithm with a modified window-limited version, which is thus given as

gWL
k = max

max (1,k−W+1)≤j≤k
ln

pΘ(k,j)(yj, yj+1, · · · , yk)

pθ0(yj, yj+1, · · · , yk)
(3.18)

tWL
a = min{k : gWL

k ≥ ~}, (3.19)

whereW is predetermined window size according to available temporary buffer.

Surprisingly, the effectiveness of classical CUSUM algorithm after truncating the

length of needed backward observations is pretty nearly comparable with the original

one with full memory of past observations, which lowers the complexity and required

storage during implement and is demonstrated by simulationresults.

3.2.4 Weighted CUSUM Algorithm

Consider another view about the unknown fading factor, we take the unknown channel

coefficienth as deterministic but unknown constant during the detectionprocess in our

proposed weighted CUSUM algorithm. The main idea is to weight the likelihood ra-

tio with respect to all possible values of the fading coefficient by using a well-chosen

weighting function and take the resultant weighted likelihood ratio as an indicator about

whether the reoccupying has occurs or not. Once the resultant weighted likelihood ex-

ceeds a particular predetermined threshold, which reveal adistinct possibility of primary

user’s activity, we stop taking observations and raise an alarm to declare that the change

has very likely occurred.

Specifically, the form of the decision strategy of weighted CUSUM algorithm is as

following:

gweighted
k

= max
1≤j≤k

ln

∫ ∞

−∞

pΥ(j,j)|h(yj) · · ·pΥ(k,j)|h(yk)

pθ0(yj, · · · , yk)
ph(h)dh (3.20)
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and

tweighted
a = min{k : gweighted

k ≥ ~} (3.21)

That is, for every time instantk, we calculate the weighted likelihood ratio from time

j = 1, 2, . . . , k to determine the most possible change point and compare the resultant

log-likelihood ratio to some determined threshold. Once exceeding, we raise an alarm to

declare the reoccupying of underlying primary user.

Provided statistical information about the fading coefficient, it is fairly reasonable to

choose the weighting functionph asCN (0, σ2
h). So, we could calculate the weighted

likelihood ratio as following

∫ ∞

−∞

pΥ(j,j)|h(yj) · · · pΥ(k,j)|h(yk)

pθ0(yj, · · · , yk)
ph(h)dh

=

∫ ∞

−∞

exp{ h

σ2
n

k∑

n=j

yH
n Υ(n,j) +

hH

σ2
n

k∑

n=j

ΥH
(n,j)yn − ‖h‖2

σ2
n

k∑

n=j

‖Υ(n,j)‖2}ph(h)dh

=

∫ ∞

−∞

∫ ∞

−∞

exp{u(

∑k

n=j yH
n Υ(n,j) +

∑k

n=j ΥH
(n,j)yn

σ2
n

) − u2
k∑

n=j

‖Υ(n,j)‖2

+ vi(

∑k

n=j yH
n Υ(n,j) −

∑k

n=j ΥH
(n,j)yn

σ2
n

) − v2
k∑

n=j

‖Υ(n,j)‖2}phR
(u)duphI

(v)dv

=
1

σh

√
π

∫ ∞

−∞

exp{u(

∑k

n=j yH
n Υ(n,j) +

∑k

n=j ΥH
(n,j)yn

σ2
n

) − u2
k∑

n=j

‖Υ(n,j)‖2} exp{−u2

σ2
h

}du

× 1

σh

√
π

∫ ∞

−∞

exp{vi(

∑k

n=j yH
n Υ(n,j) −

∑k

n=j ΥH
(n,j)yn

σ2
n

) − v2
k∑

n=j

‖Υ(n,j)‖2} exp{− v2

σ2
h

}dv

(3.22)

After integrating manipulations, we can get the close form of the weighted log-likelihood

ratio

ln

∫ ∞

−∞

pΥ(j,j)|h(yj) · · · pΥ(k,j)|h(yk)

pθ0(yj, · · · , yk)
ph(h)dh

=
σ2

n

2(2σ2
nl + 1)

[(S̃a

k

j )
2 + (S̃b

k

j )
2] − ln(σ2

hl + 1)

(3.23)

with S̃a

k

j =
∑k

n=j yH
n Υ(n,j) + ynΥ

H
(n,j), S̃b

k

j = i(
∑k

n=j yH
n Υ(n,j) − ynΥ

H
(n,j)) and l =

∑k

n=j ‖Υ(n,j)‖2.
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Then we could represent the resultant weighted log-likelihood ratio at time instantk

as

gweighted
k

= max
1≤j≤k

σ2
n

2(2σ2
nl + 1)

[(S̃a

k

j )
2 + (S̃b

k

j )
2] − ln(σ2

hl + 1) (3.24)

and the stopping time to raise an alarm is

tweighted
a = min{k : gweighted

k ≥ ~} (3.25)

From the closed-form of weighted log-likelihood ratio (3.23), we can see that the

computing complexity of weighted CUSUM algorithm is less than the one of classical

CUSUM algorithm, which involves more multiplications during detection process. On

the other hand, at low-SNR region, the manipulation of directly weighting over the log-

likehood ratio might alleviate the impact of low resolutiondue to fixed noisy power before

and after change.

3.3 Coherent Approaches

In this section, we resort to another route to tackle the fading factor in the received signals

after reoccupying. In coherent sense, we take the fading coefficient as unknown but deter-

ministic constant or realization of random variable with known prior knowledge needed

to be estimated, which turns the observations after change to independent sequence with

a common unknown parameterh.

Now, since there exists unknown factor in the distribution of signals after change, we

adopt two reasonable ways to refine the statistics we need foron-line detection. One is the

GLRT-based CUSUM algorithm in which we estimate the unknownparameter through all

available observations then substituting the result into likelihood ratio; another one is to

estimate the realization of unknown fading coefficient incorporating with prior knowl-

edge, which lead to MMSE-based CUSUM algorithm.
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3.3.1 GLRT-Based CUSUM Algorithm

Conceptually, the decision strategy of GLRT-based CUSUM algorithm is given by

gGLRT
k = max

1≤j≤k
ln

maxh pΘ(k,j)
(yj, yj+1, · · · , yk; h)

pθ0(yj, yj+1, · · · , yk)
(3.26)

and

tGLRT
a = min{k : gGLRT

k ≥ ~}, (3.27)

where the unknown parameterh is hence replaced by its maximum likelihood estimate

(MLE).

To derive the MLE of unknown parameterh over observationsyj, yj+1, . . . , yk under

t0 = j is equivalent to find the estimator which minimize the least-square (LS) error

Jk
j (h) = Σk

n=j‖yn − hΥ(n,j)‖2 (3.28)

overh.

After decomposing all complex quantities into their real and imaginary parts, we turns

the LS error into the following alternatively quadratic form in real variableshR andhI

Jk′

j (hR, hI) =Σk
n=j‖yn,R + iyn,I − (hR + ihI)(Υ(n,j),R + iΥ(n,j),I)‖2

=Σk
n=j(yn,R − hRΥ(n,j),R + hIΥ(n,j),I)

2 + (yn,I − hRΥ(n,j),I − hIΥ(n,j),R)2

(3.29)

We can rearrangeJk′

j (hR, hI) by settingyk
j R

= [yj,R yj+1,R . . . yk,R]T , yk
j I

= [yj,I yj+1,I . . . yk,I ],

xR = [Υ(j,j),R Υ(j+1,j),R . . . Υ(k,j),R]T , andxI = [Υ(j,j),I Υ(j+1,j),I . . . Υ(k,j),I ]
T so that

Jk′

j (hR, hI) = (yk
j R

− hRxR + hIxI)
T (yk

j R
− hRxR + hIxI)

+ (yk
j I

− hRxI − hIxR)T (yk
j I

− hRxI − hIxR) (3.30)

or lettingx1 = [xR − xI ], x2 = [xI − xR] andh = [hR hI ]
T

Jk′

j (hR, hI) =(yk
j R

− x1h)T (yk
j R

− x1h) + (yk
j I

− x2h)T (yk
j I

− x2h) (3.31)

Taking the gradients yields

∂Jk′

j

∂h
= −2xT

1 yk
j R

+ 2xT
1 x1h− 2xT

2 yk
j I

+ 2xT
2 x2h, (3.32)
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then setting this equal to zero and solving produces

ĥk
j =(xT

1 x1 + xT
2 x2)

−1(xT
1 yk

j R
+ xT

2 yk
j I

)

=




xT
Ryk

j R
+xT

I yk
j I

xT
R
xR+xT

I
xI

xT
Ryk

j I
−xT

I yk
j R

xT
R
xR+xT

I
xI


 =




ĥk
j R

ĥk
j I




(3.33)

which is the minimizing solution. However, if we rewritêhk
j in complex form asĥk

j R
+

iĥk
j I

= ĥk
j , we have

ĥk
j =

xT
Ryk

j R
+ xT

I yk
j I

+ i(xT
Ryk

j I
− xT

I yk
j R

)

xT
RxR + xT

I xI

=
(yk

j R
+ iyk

j I
)T (xR − ixI)

xT
RxR + xT

I xI

=

∑k

n=j ynΥ
H
(n,j)∑k

n=j ‖Υ(n,j)‖2

(3.34)

which is the MLE ofh over observations{yj, yj+1, . . . , yk}.

By substituting the MLÊhk
j into the above equation, we arrive at

gGLRT
k = max

1≤j≤k
ln

pΘ(k,j)
(yj, yj+1, · · · , yk; ĥ

k
j )

pθ0(yj, yj+1, · · · , yk)
(3.35)

3.3.2 MMSE-based CUSUM algorithm

Analogous to replacing the unknown parameters by their maximum likelihood estimators

in GLRT, we could estimate the realization of unknown fadingcoefficient incorporating

with prior knowledge if applicable, which leads to the use ofminimum mean square

estimator (MMSE) that minimizes the Bayesian MSE.

Depart from the philosophy employed by GLRT, we assume that the unknown fading

coefficienth is a random variable whose particular realization we must estimate. The

motivation for doing so is, if we have available some prior knowledge abouth, we can in-

corporate it into our estimator. It is somehow difficult to make use of any prior knowledge

in classical estimation such as MLE. The mechanism for doingthis requires us to assume

our unknown factorh as a random variable, which is complex gaussian distributedand

represented ash ∼ CN (0, σ2
h).
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After rearranging observations{yj, yj+1, . . . , yk} conditioned ont0 = j into complex

linear model, we have

yk
j =




yj

yj+1

...

yk




= h




Υ(j, j)

Υ(j + 1, j)
...

Υ(k, j)




+




nj

nj+1

...

nk




= hxk
j + nk

j (3.36)

wherexk
j = [Υ(j, j) Υ(j + 1, j) . . . Υ(k, j)]T andnk

j ∼ CN (0, σ2
nIk−j+1).

Since it can be easily verified thatyk
j andh are jointly complex gaussian, we have the

MMSE estimator for the complex Bayesian linear model given by

ĥ
k(MMSE)
j =E(h|yk

j )

=((σ2
h)

−1 +
‖xk

j‖2

σ2
n

)−1
xkH

j yk
j

σ2
n

=
xkH

j yk
j

σ2
n

σ2
h

+ ‖xk
j‖2

(3.37)

.

By substituting the MMSE ofh over observations{yj, yj+1, . . . , yk}, we arrive at

gMMSE
k = max

1≤j≤k
ln

pΘ(k,j)
(yj, yj+1, · · · , yk; ĥ

k(MMSE)
j )

pθ0(yj, yj+1, · · · , yk)
(3.38)

and

tMMSE
a = min{k : gMMSE

k ≥ ~}. (3.39)
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Chapter 4

Cooperative CUSUM-Based Quickest

Detection in Cognitive Sensors Network

4.1 Problem Setup

In this chapter, we are interested in developing cooperative CUSUM-based quickest detec-

tion algorithms applied to multiuser scenario. As shown in Fig. 4.1, we restrict ourselves

to the case in which the information available for local decision-making is in distributed

way, not shared among cooperative users. Assume there is a set of R ≥ 1 geographically

distributed sensors, denoted asS1, S2, . . . , SR, cooperatively detecting the reactivities of

underlying primary systems. The reoccupying of primary signals occurs at an unknown

time instantt0 for all sensors simultaneously. Similar to single-user scenario, we may

only consider the simplified transmitted signal model for symbolic convenience. Again,

the applicability of our proposed strategies depends on theprior knowledge of primary

signals, not only confined to periodic structure.

Specifically, under the concern of fading effects between collaborative cognitive sen-

sors and primary user, the received signal in time-domain atsensorSr could be modeled

as

yr,k = hr,kΥ(k, t0) + nr,k (4.1)
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Figure 4.1: A sketch map of the spectrum sensing problem aiming to detect the reoc-

cupying of underlying primary system as quickly as possiblein a cooperative multiuser

network.

with

Υ(k, t0) =





s((k − t0)modNs), ask ≥ t0

θ0 = 0, ask < t0.
(4.2)

wheret0 denotes the unknown point in time of the presence of primary signal,nr,k mod-

els the complex white gaussian noise with varianceσ2
n at time instantk in the receiver

end ofSr, Ns denotes the length of the repeated segment of the preamble signal, ands(i)

is retrieved from theith element ofs, which collects the periodic fragment of pream-

ble symbols = [s(0), s(1), . . . , s(Ns − 1)]T . In flat fading case,hr,k is modeled as

purely Rayleigh-fading between primary user and sensorSr with varianceσ2
r,h, remaining

constant during observation time and could be simplified ashr. While in frequency-

selective fading case, we takehr,k as the fading effect at timek caused by the channel

hr = [hr(0), hr(1), . . . , hr(L − 1)]T consists ofL resolvable paths, and each tap ofhr is

mutually uncorrelated and modeled as purely Rayleigh-fading with varianceσ2
r,l.

In general, there are two kinds of scenario as considering detection problems of dis-
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tributed sensor network, termed of centralized scenario and decentralized scenario. In

the centralized setting, the original data received at sensorsyr,k, r = 1, . . . , R, are sent

completely to a fusion center where a final decision is made based on all sensor massages.

In the decentralized framework, quantized version of observations or local decisions are

forwarded to the fusion center for making a final decision. The decentralized scenario is

usually more practical due to communication bandwidth constraint between sensors and

the fusion center.

Next, under considering three different distributed frameworks, we will extend pre-

viously proposed CUSUM-based algorithms to multiuser quickest detection and provide

decision strategies to collaboratively detect the beginning of primary signals as quickly as

possible to avoid possible interference to primary systems.

4.2 Centralized Case: Global CUSUM Algorithm

In centralized sense, we might assume that the pairwise channels between the sensors and

the fusion center are error-free. The original data received at each sensor is thus sent com-

pletely to the fusion center for global CUSUM test. That is, the fusion center collects all

messages received by sensors and performs the CUSUM-based quickest detection based

on the whole set of observations.

Under the assumption that the fading effects experienced byeach sensor are mutually

independent, we could simply extend the result strategies derived in single-user case as

following:

◮ Classical CUSUM Algorithm (flat fading case):

gk = max
1≤j≤k

R∑

r=1

ln
pΘ(k,j)(yr,j, yr,j+1, · · · , yr,k)

pθ0(yr,j, yr,j+1, · · · , yr,k)
(4.3)

= max
1≤j≤k

R∑

r=1

ln

1
πk−j+1 detKr

k
j

exp (−yr
k
j

H
Kr

k
j

−1
yr

k
j )

1

(σ2
nπ)k−j+1 exp (− 1

σ2
n
yr

k
j

H
yr

k
j )

(4.4)

and

ta = min{k : gk ≥ ~} (4.5)
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whereyr
k
j collects observations{yr,j, . . . , yr,k}, andKr

k
j denotes the covariance matrix

of observation vectoryr
k
j conditioned ont0 = j.

◮ Classical CUSUM Algorithm (frequency-selective fading case):

gFS
k = max

1≤j≤k

R∑

r=1

ln
pΘ(k,j)(yr,j, yr,j+1, · · · , yr,k)

pθ0(yr,j, yr,j+1, · · · , yr,k)
(4.6)

= max
1≤j≤k

R∑

r=1

ln

1
πk−j+1 detCr

k
j

exp (−yr
k
j

H
Cr

k
j

−1
yr

k
j )

1

(σ2
nπ)k−j+1 exp (− 1

σ2
n
yr

k
j

H
yr

k
j )

(4.7)

and

tFS
a = min{k : gFS

k ≥ ~}, (4.8)

whereCr
k
j denotes the covariance matrix of observations{yr,j, . . . , yr,k} conditioned on

t0 = j with power delay profile matrixΣ2
r = diag{σ2

r,0, σ
2
r,1, . . . , σ

2
r,L−1}.

◮ Weighted CUSUM algorithm:

gweighted
k

= max
1≤j≤k

R∑

r=1

ln

∫ ∞

−∞

pΥ(j,j)|hr
(yr,j) · · ·pΥ(k,j)|hr

(yr,k)

pθ0(yr,j, · · · , yr,k)
phr

(hr)dhr (4.9)

= max
1≤j≤k

R∑

r=1

σ2
n

2(2σ2
nl + 1)

[(S̃r,a

k

j
)2 + (S̃r,b

k

j
)2] − ln(σ2

r,hl + 1) (4.10)

with S̃r,a

k

j
=

∑k

n=j yH
r,nΥ(n,j) + yr,nΥ

H
(n,j), S̃r,b

k

j
= i(

∑k

n=j yH
r,nΥ(n,j) − yr,nΥ

H
(n,j)) and

l =
∑k

n=j ‖Υ(n,j)‖2. The stopping time to raise an alarm is

tweighted
a = min{k : gweighted

k ≥ ~} (4.11)

◮ GLRT-based CUSUM algorithm:

gGLRT
k = max

1≤j≤k

R∑

r=1

ln
maxhr

pΘ(k,j)
(yr,j, yr,j+1, · · · , yr,k; hr)

pθ0(yr,j, yr,j+1, · · · , yr,k)
(4.12)

= max
1≤j≤k

R∑

r=1

ln
pΘ(k,j)

(yr,j, yr,j+1, · · · , yr,k; ĥr

k

j )

pθ0(yr,j, yr,j+1, · · · , yr,k)
(4.13)

with ĥr

k

j being the MLE over observations{yr,j, . . . , yr,k} conditioned ont0 = j

ĥr

k

j =

∑k

n=j yr,nΥ
H
(n,j)∑k

n=j ‖Υ(n,j)‖2
(4.14)
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and

tGLRT
a = min{k : gGLRT

k ≥ ~} (4.15)

◮ MMSE-based CUSUM algorithm:

gMMSE
k = max

1≤j≤k

R∑

r=1

ln
pΘ(k,j)

(yr,j, yr,j+1, · · · , yr,k; ĥr

k(MMSE)

j )

pθ0(yr,j, yr,j+1, · · · , yr,k)
(4.16)

where the MMSE over observations{yr,j, . . . , yr,k} is given by

ĥr

k(MMSE)

j =
xkH

j yr
k
j

σ2
n

σ2
r,h

+ ‖xk
j‖2

(4.17)

.

and

tMMSE
a = min{k : gMMSE

k ≥ ~} (4.18)

4.3 Decentralized Case: Hard Fusion of Local CUSUM

In this section, we first resort to a straightforward cooperative decentralized scheme

termed ofhard fusion of local CUSUM. Assume that each of the cooperative sensors

has sufficient memory to individually perform CUSUM-based quickest detection. Then,

the fusion center makes final decision based on local decisions sent by sensors according

to well-known hard-decision combining rules, such as AND, OR orM-out-of-R rules in

general. Further, we assume that each of the sensors might either send their local deci-

sions at each time instant for updating information at the fusion center or update just for

once at the first time the local statistic reaches predetermined threshold.

Specifically, if the sensors updates their decisions of local quickest detection con-

stantly until the fusion center makes the final decision, thestopping time by the general

M-out-of-R rule at the fusion center is given by

tHardFusion
a = min{k :

R∑

r=1

Ur,k ≥ M} (4.19)

where

Ur,k =





1, if gLocal
r,k ≥ ~r

0, Otherwise.
(4.20)
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In the above equation,gLocal
r,k could be chosen from algorithms previously discussed in

single-user scenario.

As to the one-shot scheme, the corresponding stopping time by the generalM-out-of-

R rule at the fusion center is in the form of

tHardFusion∗
a = min{k :

R∑

r=1

Ur,k ≥ M} (4.21)

where

Ur,k =





1, if k ≥ ta(r) = min{n : gLocal
r,n ≥ ~r}

0, Otherwise.
(4.22)

4.4 Decentralized Case: Global CUSUM with Quantized

Local Decision

Now, rather than performing quickest detection at local sensors, we are interested in the

decentralized scenario in which the CUSUM test is performedat the fusion center while

the local sensors are assumed memoryless and send quantizedversion of their observa-

tions for decision making.

However, due to the memorylessness of local sensor and the need of quantization, it is

reluctant to exploit the known signal structure about primary user as before. That is, if we

still adopt the signal model in (4.1), the sensor has no ability to do quantization by opti-

mal local mapping, the monotone likelihood ratio quantizer, without the knowledge about

the exact timing index if the reoccupying has occurs. Thus, we resort toapproximatethe

received observation sequence{yr,k, yr,k+1, · · · } conditioned ont0 = k to be circularly

symmetric complex gaussian random variables with varianceσ2
r,x and mutually indepen-

dent. In specific, observations at therth sensor at timek are approximately distributed as

follows:

yr,k





a
∼ CN (0, σ2

r,x), if k ≥ t0

∼ CN (0, σ2
n), Otherwise.

(4.23)

Under this approximation, we might take the quickest detection in the view as suggested

36



by Page, as repeated sequential probability ratio testing of two simple hypotheses:

H0 : yr,k ∼ f1(yr,k) = CN (0, σ2
n)

H1 : yr,k ∼ f0(yr,k) = CN (0, σ2
r,x) ∀ r = 1, 2, · · · , R.

(4.24)

Thus, in the mapping of monotone likelihood ratio quantizer, the local messageUr,k at

time instantk produced by sensorSr based on thekth observationyr,k is given by

Ur,k = p if dr,p ≤ f1(yr,k)

f0(yr,k)
, Λ(yr,k) < dr,p+1 (4.25)

where0 = dr,0 < dr,1 < · · · < dr,pmql−1
< dr,pmql

= ∞ represents the quantization

threshold set used by sensorSr.

Then, if we letzr,k represents the received signal at the fusion center whenUr,k is

transmitted by sensorSr, we have the likelihood ratio ofzr,k as following:

Λr,k(zr,k) =

∑pmql

p=0 f(zr,k|p)P{Ur,k = p|H1}∑pmql

p=0 f(zr,k|p)P{Ur,k = p|H0}
. (4.26)

By applying Page’s CUSUM algorithm, the decision strategy of the fusion center is given

by

gQ
k = max

1≤j≤k

k∑

n=j

R∑

r=1

ln Λr,k(zr,k) (4.27)

= max(gQ
k−1, 0) +

R∑

r=1

ln Λr,k(zr,k) (4.28)

and

tQa = min{k : gQ
k ≥ ~}. (4.29)

In detail, it is convenient to calculateP{Ur,k = p|H0} and P{Ur,k = p|H1} by

transforming thresholds in monotone likelihood ratio quantizer into thresholds related

directly to observationsyr,k. Start from

Λ(yr,k) =
σ2

n

σ2
r,x

exp

(
σ2

r,x − σ2
n

σ2
r,xσ

2
n

‖yr,k‖2

)
, (4.30)

we have

Λ(yr,k) ≥ dp ≡ ‖yr,k‖2 ≥
(

σ2
r,xσ

2
n

σ2
r,x − σ2

n

)
ln

(
dp

σ2
n/σ2

r,x

)
(4.31)

≡ ‖yr,k‖ ≥
√(

σ2
r,xσ

2
n

σ2
r,x − σ2

n

)
ln

(
dp

σ2
n/σ2

r,x

)
, d′

p (4.32)
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As we know, given

yr,k ∼





CN (0, σ2
r,x), underH1

CN (0, σ2
n), underH0,

(4.33)

the distributions of absolute value ofyr,k underH0 andH1 are Rayleigh distributed as

‖yr,k‖ ∼





y

σ2
r,x

exp
(

−y2

2σ2
r,x

)
, underH1

y

σ2
n

exp
(

−y2

2σ2
n

)
, underH0.

(4.34)

Thus, we could calculate the conditional probabilities as

P{Ur,k = p|H0} =P{dr,p ≤ Λ(yr,k) < dr,p+1|H1} (4.35)

= exp

(−‖d′
p‖2

2σ2
r,x

)
− exp

(−‖d′
p+1‖2

2σ2
r,x

)
(4.36)

and P{Ur,k = p|H0} =P{dr,p ≤ Λ(yr,k) < dr,p+1|H0} (4.37)

= exp

(−‖d′
p‖2

2σ2
n

)
− exp

(−‖d′
p+1‖2

2σ2
n

)
(4.38)

and rewrite the global likelihood ratio (4.26) as

Λr,k(zr,k) =

∑pmql

p=0 f(zr,k|p)
[
exp

(
−‖d′p‖

2

2σ2
r,x

)
− exp

(
−‖d′p+1‖

2

2σ2
r,x

)]

∑pmql

p=0 f(zr,k|p)
[
exp

(
−‖d′p‖

2

2σ2
n

)
− exp

(
−‖d′p+1‖

2

2σ2
n

)] (4.39)

By the general form of global likelihood ratio (4.39), we focus on three kinds of sce-

narios based on different channel conditions between sensors and the fusion center with

1-bit or 2-bit local quantization. The discussion and comparison among these schemes

would be further shown in Chapter 5.
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Chapter 5

Simulations

5.1 Simulation Setup

In this chapter, we present some numerical results and provide comparisons to demon-

strate the effectiveness of our proposed algorithms. As to primary signal model adopted

in the simulations, we choose the settings defined in IEEE 802.16e, the long preamble

which contains two OFDM symbols and each of them consists of four replications in time

domain and constitutes the incipient part of the new frame ofprimary user, as the target we

want to recognize as quickly as possible. We set the finite horizon as50 and the reoccupy-

ing time is uniformly distributed on the time instants1, 2, . . . , 15 in one trial. Fix the noise

power at cognitive receivers end to one, we define the SNR as the transmit power from

primary user. In flat-fading case, the variance of the Rayleigh distributed channel effecth

is set to beσ2
h = 1. While in frequency-selective fading case, we set the channel order to

beL = 4 with uniform power delay profile matrix asΣ = diag{0.25, 0.25, 0.25, 0.25}.

Note that some parameters may vary across the different simulation scenarios thus not

stated here, the remaining details will be specified in each case.

5.2 Effectiveness of Proposed CUSUM-based Algorithms

In the first subsection, we focus on the behaviors of different proposed approaches and

show the effectiveness of our proposed algorithms, under either flat-fading case or frequency-
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Figure 5.1: Performances of non-coherent approaches in single-user scenario under flat-

fading environment. (a) Classical CUSUM algorithm. (b) Weighted CUSUM algorithm.
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Figure 5.2: Performances of non-coherent approaches in single-user scenario: Classical

CUSUM algorithm in frequency-selective-fading environment.

selective fading case. In the second subsection, we simulate the proposed CUSUM-based

quickest detection applied to different distributed frameworks and examine the influence

when the number of involved cognitive users increases.

5.2.1 Single-user Scenario

Fig. 5.1(a) and Fig. 5.2 show the performances of classical approach as well as the mod-

ified truncated version with window sizeW = 5. We can see that the classical method

performs fairly effectively by using a well-chosen threshold and converges to zero mean

delay as SNR grows in both the flat-fading case and the frequency-selective fading case.

Furthermore, the performance curves of window-limited version show that it is enough

to keep the detectability in only five backward data because we take the innately depen-

dency among the received sequence after change into accountas designing the decision

strategy. Another method of non-coherent approaches, the weighted CUSUM algorithm,

also performs well as shown in Fig. 5.1(b). Given the statistical information about un-

derlying fading channel, the weighted CUSUM algorithm performs well and converges

as quickly as classical method does. Especially at low-SNR region, the manipulation of
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Figure 5.3: Performances of coherent approaches in single-user scenario under flat-fading

environment. (a) GLRT-based CUSUM algorithm. (b) MMSE-based CUSUM algorithm.
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Figure 5.4: Comparison of ROC curves of four proposed algorithms under SNR= 10 in

flat-fading case.

directly weighting over the log-likelihood ratio alleviates the impact of low resolution due

to fixed noisy power before and after change thus improves thecorresponding mean de-

lay. However, we can see that weighted CUSUM algorithm mightrelatively degrade if we

truncate the available past observations due to ignorance of inherent dependency. Specif-

ically, since the mechanism of weighted CUSUM algorithm could be seem as weighting

the log-likelihood ratio of each time instant individuallyand then summing them up for

calculating the resultant statistics, it would be relatively hard to accumulate sufficient

amount to reach the predetermined threshold at low resolution if we limit the length of

observational window.

The performances of coherent approaches GLRT-based CUSUM algorithm and MMSE-

based CUSUM algorithm are demonstrated in Fig. 5.3. We couldfind that the GLRT-

based method performs much steadily at low-SNR region due tothe fact that it estimates

the fading coefficient according to cumulative realizations. The same phenomenon could

be observed in the comparison with the performance of the MMSE-based algorithm. It
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could be inferred from the fact that when there is little observations, the MMSE is approx-

imated by the mean ofh according to prior knowledge instead of the realization value of

h. On the other hand, contrary to non-coherent approaches, wecould observe that the

mean delay converges to some specific small value varying with chosen threshold rather

than to zero. This might be attributed to the fact that there exists essential error due to es-

timation especially under the situation that we aim to response to the change immediately.

And similar to weighted CUSUM algorithm in non-coherent approaches, the GLRT-based

method and MMSE-based method deteriorate to some extent as we concern the limitation

of the accessible data buffer. Since if we curtail the observational window, it would result

in larger estimation error and insufficient amount on resultant statistics in low resolution

condition and thus lead to comparatively larger mean delay.

In Fig. 5.4, we depict the operating curves of four proposed CUSUM-based algo-

rithms under SNR= 10dB in flat-fading case. We can see that if we constraint ourselves

work on small rate of false alarm for assuring the efficiency of opportunistic accessing,

weighted, GLRT-based and MMSE-based CUSUM algorithms perform better than the

classical one. This could be inferred from the fact that former three methods are adaptive

to the realization of fading channel and yet the non-coherent classical approach always

attributes to the effect in the long run. On the other hand, classical method is less sensitive

to the curtailment of observational window due to property that the inherent dependency

among the observations after change is reserved in the statistics.

5.2.2 Multiuser Scenario

First, we simulate the cooperative CUSUM-based quickest detection algorithms under

centralized framework. Consider a symmetric multiuser scenario where for each sensor

the channel conditions are identical and the observations are also assumed independent

across the sensors, the performance of proposed algorithmsunder the case ofR = 2 and

R = 4 are shown in Fig. 5.5, Fig. 5.6, and Fig. 5.7. Under non-coherent approaches,

we choose the thresholds that result in the same performancevalue at SNR= −10 dB

for comparison of the performances with different number ofinvolved sensors. As to

coherent approaches, we set the thresholds that lead to zeromean delay for comparing the
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effect of increasing set in cooperative sensors. In both flatand frequency-selective fading

channels, we could see a growing tendency of the convergent behavior in mean delay as

the number of cooperative sensors increasing. But at the same time, the performance gain

would gradually saturate as the number of cooperative sensors increases. We could also

find that both the GLRT-based and MMSE-based method have smaller mean delay under

low resolution condition with growing number of secondary sensors.

Secondly, we present the performances of decentralized schemes with hard fusion of

local CUSUM. Similarly, we assume that all of the cooperative sensors are identical and

the observations are mutually independent. We setM = 1 andM = 2 as making final

decision byM-out-of-R combing rule under both the cases ofR = 2 andR = 4. In both

the schemes that sensors updates just for once and at each time instant, we could observe

analogous tendency in convergence of mean delay as we see in the centralized case from

Fig. 5.8-5.13. On the other hand, the performance gain of cutting down mean delay

is relatively smaller as comparing with centralized cases due to bandwidth constraint of

communication between sensors and the fusion center.

Finally, we discuss the decentralized framework adopting global CUSUM with quan-

tized local decisions. Three kinds of scenarios based on different channel conditions

between sensors and the fusion center with 1-bit or 2-bit local quantization are presented.

Note that under the assumption of fixed noise power at sensorsand variance of fading

effects, the distribution after reoccupying of the primaryuser within low-SNR region, es-

pecially below 0 dB, results in a small difference with the one before reclaiming. This

property also leads to low discrimination between the approximated distributions before

and after change and affects the effectiveness of quantization. Fig. 5.14 shows the per-

formance curves under perfect channels between sensors andthe fusion center. We also

model the channels between sensors and the fusion center as binary symmetric channels

with bit-cross-error equals to 0.2 and the corresponding performance curves are given in

Fig. 5.15. Further, we consider additive white gaussian noise channels with received SNR

at the fusion center being 10 dB and the performance curves are shown in 5.16.

Fixed the number of cooperative sensors, we could see that the case using 2 bits in

quantization generally achieves superior performance to the counterpart with only 1-bit
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quantization in low-SNR region under each channel condition. On the other hand, under

the cases considering perfect channel and AWGN channel, we could see that the per-

formance curves converges to zero in mean delay as SNR increases. Whereas, we could

observe that the mean delay converges to some specific small value close to zero and vary-

ing with bit-cross-error under the cases with BSC channels.Since the likelihood ratio in

the fusion center is concentrated at some specific value due to quantization and could

not be smoothed out by averaging the channel effect in the second phase due to the dis-

crete property of BSC, the cross-error in the second phase oftransmission thus dominates

the convergent value in mean delay of global CUSUM test. Similarly to previous two

distributed frameworks, we could see the increasing amountin the cooperative sensors

expedite the convergence in mean delay and thus improves theeffectiveness of detection.
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Figure 5.5: Performances of cooperative schemes by non-coherent approaches in central-

ized case under flat-fading environment. (a) Classical CUSUM. (b) Weighted CUSUM.
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Figure 5.6: Performances of cooperative schemes by coherent approaches in centralized

case under flat-fading environment. (a) GLRT-based CUSUM. (b) GLRT-based CUSUM.
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Figure 5.7: Performances of cooperative classical CUSUM algorithm in centralized case

under frequency-selective fading environment.
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Figure 5.8: Performances of cooperative schemes by non-coherent approaches in decen-

tralized case by hard-fusion of local CUSUM under flat-fading environment in the scheme

that sensors updates just for once. (a) Classical CUSUM. (b)Weighted CUSUM.
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Figure 5.9: Performances of cooperative schemes by coherent approaches in decentralized

case by hard-fusion of local CUSUM under flat-fading environment in the scheme that

sensors updates just for once. (a) GLRT-based CUSUM. (b) GLRT-based CUSUM.
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Figure 5.10: Performances of cooperative classical CUSUM algorithm in decentralized

case by hard-fusion of local CUSUM under frequency-selective fading environment in

the scheme that sensors updates just for once.
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Figure 5.11: Performances of cooperative schemes by non-coherent approaches in decen-

tralized case by hard-fusion of local CUSUM under flat-fading environment in the scheme

that sensors updates at each time instant. (a) Classical CUSUM. (b) Weighted CUSUM.
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Figure 5.12: Performances of cooperative schemes by coherent approaches in decentral-

ized case by hard-fusion of local CUSUM under flat-fading environment in the scheme

that sensors updates at each time instant. (a) GLRT-based CUSUM. (b) GLRT-based

CUSUM.

54



−10 −5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

35

40

45

SNR(dB)

M
ea

n 
de

la
y 

ov
er

 3
00

0 
tr

ia
ls

 

 

R= 1, h̄= 0.50

R= 1, h̄= 0.50, W= 5

R= 2, h̄= 0.65

R= 2, h̄= 0.65, W= 5

R= 4, h̄= 0.28

R= 4, h̄= 0.28, W= 5

Figure 5.13: Performances of cooperative classical CUSUM algorithm in decentralized

case by hard-fusion of local CUSUM under frequency-selective fading environment in

the scheme that sensors updates at each time instant.
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Figure 5.14: Performances of approximation method in decentralized case applying

global CUSUM with quantized local decision under perfect channel between sensors and

the fusion center. (a) 1-bit quantization, R=2. (b) 1-bit quantization, R=4. (c) Comparison

of the cases (1) R=2 with 1-bit quantization (2) R=4 with 1-bit quantization (3) R=2 with

2-bit quantization (4) R=4 with 2-bit quantization.
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Figure 5.15: Performances of approximation method in decentralized case applying

global CUSUM with quantized local decision under binary symmetric channel with cross-

error= 0.2 between sensors and the fusion center. (a) 1-bit quantization, R=2. (b) 1-bit

quantization, R=4. (c) Comparison of the cases (1) R=2 with 1-bit quantization (2) R=4

with 1-bit quantization (3) R=2 with 2-bit quantization (4)R=4 with 2-bit quantization.
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Figure 5.16: Performances of approximation method in decentralized case applying

global CUSUM with quantized local decision under AWGN channel with received

SNR= 10dB between sensors and the fusion center. (a) 1-bit quantization, R=2. (b) 1-bit

quantization, R=4. (c) Comparison of the cases (1) R=2 with 1-bit quantization (2) R=4

with 1-bit quantization (3) R=2 with 2-bit quantization (4)R=4 with 2-bit quantization.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

We have studied the spectrum sensing problem under the concern of possible fading en-

vironments in a sequential view for promoting the coexistence of cognitive applications

with existing primary systems. Aiming at avoiding interference to licensed primary users,

we have proposed several cumulative-sum (CUSUM)-based algorithms, termed of classi-

cal CUSUM, weighted CUSUM, GLRT-based CUSUM and MMSE-basedCUSUM algo-

rithm respectively, for detecting as quickly as possible the event that the dormant primary

systems start reclaiming the use of the spectrum given only statistical information about

the channel condition between cognitive and primary users.We have demonstrated that

all of the four proposed algorithms promise agility of detecting the beginning of reoccupy-

ing primary signals as for the case with flat-fading. Even under multipath environments,

the proposed classical CUSUM algorithm performs fairly well within limited backward

observational window.

Further, we have also studied the case of cooperative quickest detection where a num-

ber of cognitive users provide decision strategies and collaboratively detects the beginning

of the reclaims of the primary signal under three different distributed frameworks. We

consider decentralized schemes including hard fusion of local CUSUM test and global

CUSUM test with quantized version of local observations in addition to centralized case.

In the simulations, we have justified the effectiveness of the proposed CUSUM-based
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quickest detection applied to different distributed frameworks and examine how the in-

creasing number of involved cognitive users influences the performance gain.

6.2 Future Work

In this thesis, although we have proposed effective CUSUM-based algorithms to tackle

the spectrum sensing problem in a sequential manner, the efficiency of proposed algo-

rithms has not been analyzed. Since our formulation captures possible fading effects

between the cognitive and the primary user, the detection problem we deal with involves

non-homogenous and innately dependent observations afterthe reoccupying of the coex-

isting primary system contrast to homogenous-distributedand independent observations

after change in conventional quickest detection. Besides,we also emphasize the situa-

tion where we could make use of known feature of primary signaling during detection

process. These properties exclude existing available analysis about CUSUM procedures

under minimax formulation on the optimality or asymptotic behavior to the best of our

knowledge as yet.

As for cooperation schemes, future work might consider the design of the quantiza-

tion strategy on the local sensors with memory or take the dependency among quantized

versions of observations into account as designing the decision rule of global CUSUM

test. Another aspect for future work is to include the designof power allocation under

cooperative schemes as we consider more practical situation where the levels of channel

conditions among involved cognitive users are not identical.
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