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Bit-plane Compressive Sensing with
Bayesian Decoding for Lossy Compression

Student : Sz-Hsien Wu Advisors :  Dr. Tihao Chiang
Dr. Wen-Hsiao Peng

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

ABSTRACT

This thesis addresses the problem of reconstructing a compressively sampled
sparse signal from its lossy and possibly insufficient measurements. The
process involves estimations of sparsity. pattern and sparse representation, for
which we derived a vector estimator based on the Maximum a Posteriori
Probability (MAP) rule. By making full use of signal prior knowledge, our
scheme can use a measurement number close to sparsity to achieve perfect
reconstruction. It also shows a much lower error probability of sparsity
pattern than prior work, given insufficient measurements. To better recover
the most significant part of the sparse representation, we further introduce the
notion of bit-plane separation. When applied to image compression, the
technique in combination with our MAP estimator shows promising results as
compared to JPEG: the difference in compression ratio is seen to be within a
factor of two, given the same decoded quality. More than this, we also
applied such framework into the application of multiple description coding.
According to the simulation results, our MAP estimator is very resilient to the
loss of measurements, showing an acceptable quality while coping with a
highly loss channel. In conclusion, our CS framework using the MAP
estimation can provide a much better compression efficiency and stronger

functionality of error-resilience, compared with other prior work.



MATE 0 BhE - A HE I 0T | B A <w H A m%'é"g/‘%%ﬁ%&

L AT B LR B PR I B e AT Compressive Sensing o fe #t

2

BERG RI BB ELL AT EOET o A @A - B L
35 Ed s NBEIIHTRRED B RE A T LY oL
PEREAPREOEE > AEEALEALY > AL A Fa QIR E o .
FEAL R R e B0 B R e A f - REAEE T
AAPER AR AR TR B R Th S A R AR RR P e

FHEF AT BELL > AFASET TR B R Ly ad 224y

P AR e EEFEN IR R B HA PR e o KEEFL L AL S
VI B e Rr d i B A LRF RO -5

B R Em i giEd b A e ¥ ¥R A P G B LR R KRR

IH

BB P i idt c RBER LA T AFREAGA TG B RER

P

2385 - {301

)
=i
N
)
i
4
ke
ol
F_L
pant
e
s
&=
-
=
il
B
=
=
3
~

5% %€ F* (Prof. Carrson Fung) H_# A B2 P ayfcy £fF > < FpFa
P = PR S BT A UL (5 R R R e e B
%(% \a—i F‘: l—b F‘:ﬁg’/‘ézx\j\/}s}i]”ﬁlg:@’ ¢Nq,\nr)j':\,rﬂﬁ7’%"i\‘.é‘f’]ﬁ:3£g’ i##‘,’l&?‘}\.

AR R RIS R RN RE LS Bl Y5 BRI RA - R



"’u#é]:p‘-"“wrr‘g:{ f:‘;’é?b%’{ ’ff—i@r} ;llg:{ e Je ‘Q‘meE’IJ?;(Bé?’*\.tE sy N
FR BB R LA T d B E L BB
“f TR EAERPEAEE DS e R > A BT 1k ek RaEE o

(A BERENT S B

=

B - FAM oA RS ARAF DR > A T R
B EAEF v b mbE o B ARREE > LirE L e g et o

EAG P F AR ORI AR o » BT LT EF o itAR e BF A AR Y

SERR B RN R R A Y T at RN R T

P TR T RPN A FF RIS R R E R

q}]\l

e

=

FRF 0 AEFPRER O BEALT L PORE S RA R PR - N
TREEEARRE LAY AP G G- IR R LT R s RS

ez f s AR iR R o A 71 Commlab F 5k % v & 5 5§

=1

FillESc]

hy
e

SEFELIEERE RAFOBRE R T Y o LSRG 0 EAR B
g REE LS KMo RmRRS SRR B F R E e 2F LS ¥ A
FHFIAFEAHETE o H e AR FUL o A PG Fd R e s L

R 3 Commlab = MAPL #73 & & 4k fcle i > F] 2 [ efs 2 fodeBr > RN A

Foogahi ey > BF R A WRDIFE o B PF o 2 RIRHT L T HE S

et ool o F AARF F SRR > TR o > B A hs
BB o B il ARBHANIE S BPRTHPEAL eI FE S 2HAG (S

BB AR RANEG G o A RBATEN R RATAL S -



Contents

1 Introduction
1.1 Overview . . . . . .. o
1.2 Contributions . . . . . . . ..
1.2.1 MAP Decoding Algorithm . . . . . . ... ... ... ........
1.2.2  Bit-Plane Compressive Sensing and Image Compression . . . . . . .
1.2.3  Multiple Description Coding using Compressive Sensing . . . . . . .

1.3 Organization of Thesis .. . .ooow v s o0 L 0L

2 Compressive Sensing
2.1 Basics of Compressive Sensing . . . . . . ... ...
2.2 Reconstruction by Estimation . . . . ... . ... 0oL
2.2.1 MLE 4+ MMSE . 00 o
2.2.2  Asymptotic R-D Performance . . . . .. ... ... ... ... ...
2.3 Related applications of compressive sensed images . . . . . . . . .. .. ..
2.3.1 Compressively Sampled Images . . . . . ... ... ... ... ...

2.3.2 Compressive Sensing based Multiple Description Coding . . . . . .

3 MAP Decoding Algorithm
3.1 MAP Estimators for Sparsity Pattern and Non-zero Coefficients . . . . . .

3.2 Performance Analysis . . . . . . . . ...

4 Compressive Sensing with Bit-Plane Separation
4.1 Concept of Bit-Plane Separation . . . . . . . . ... ... ... ... ...,

4.2 Performance Analysis . . . . . . . . . .. ...



Application to Image Compression

Application to Multiple Description Coding

6.1 Measurement Allocation . . . . . . . . . . ..

6.2 Pseudo-Random Packetization . . . . . . . . . . . ... ... ..

6.3 Performance Analysis

Conclusion

vi

22

27
27
28
28

37



List of Figures

2.1
2.2

2.3
2.4

3.1

3.2

4.1
4.2

5.1
5.2

2.3

6.1
6.2

6.3

Recover the signal through estimation . . . . . . . ... ... ... .. ... 5

Asymptotic performance of compressive sensing(CS) and adaptive quanti-

zation(Adapt) of a sparse source . . . . . ... L 8
Recover the image by min TV with different measurement number . . . . . 9
Present CS-MDC system . . . . . . .. . . ... ... 10

The measurement-distortion.curvesiof various decoding algorithms (a) and
their error probabilities of sparsity pattern (b) . . . . . . . . .. ... ... 16
Measurement number distribution subject to distortion constraints: (a)

MSE=0 and (b) MSE=0.06. . « s« . . e 17

Concept of operations for bit-plane CS. ... . . . . . ... ... ... 19
The effect of bit-plane separation on the R-D performance: (a) R-D curves

and (b) measurement allocation. . . . . . . . ... ... 21

R-D performance subject to distortion constraints: (a) Baboon and (b) Lena. 24
Baboon, average bpp=0.52, PNSR : (a) inf (b) fail (c) 21.726 (d) 22.032
(€) 23427 (£) 26263+« « o o o 25
Lena, average bpp=0.47, PNSR : (a) inf (b) fail (c) 26.428 (d) 27.360 (e)
98.97 () BT.024 o o oo o 26

Concept of operations for bit-plane CS-based MDC. . . . . . . . .. .. .. 28
Loss - Distortion performance subject to compression ratio = 1.5 (a) Ba-
boon and (b) Lena. . . . . . ... ..o 30
Baboon, compression ratio=1.5 ,loss rate = 40% , PNSR : (a) inf (b)33.60
(c)74.74 (d)74.66 (€)33.05 (£)65.27 . . . . . ... 31

vil



6.4

6.5

6.6

6.7

6.8

Baboon, compression ratio=1.5, loss rate = 60% , PNSR : (a) inf (b)24.09
(€)17.3719 (d)36.52 (€)26.76 (£)28.63 . . o o o o v o
Baboon, compression ratio=1.5, loss rate = 80%, PNSR : (a) inf (b)14.17
(O)fail (A)19.37 ()18.59 (£)20.59 . .« o oo
Baboon, compression ratio=1.5, loss rate = 40%, PNSR : (a) inf (b)31.63
(€)74.45 (A)7440 (€)30.99 (8130 . o o o v v v
Baboon, compression ratio=1.5, loss rate = 60%, PNSR : (a) inf (b)23.52
(O)fail (A)37.66 (€)24.06 ()3T.61 . . . . o oo
Baboon, compression ratio=1.5, loss rate = 80%, PNSR : (a) inf (b)12.39
(O)fail (d)20.72 ()18.36 (D)23.57 + o v oo

viii



Chapter 1

Introduction

1.1 Overview

Compressive Sensing (CS) is an emerging technique for acquiring and reconstructing
sparse signals. Its notion dates back to a few decades ago, but only until recently, it
became widely known to the community due to several theoretical breakthroughs. One of
them states that sparse signals.can be perfectly reconstructed when sampled with a mea-
surement number that would be considered insufficient by the Nyquist criterion. Another
celebrated result is that the reconstruetion, equivalent to solving an underdetermined ma-
trix equation, can be achieved by simply minimizing the /; norm of the decoded signal.
This approach is deemed universal in the sense that it makes only use of sparse property.
However, one major drawback is that it has no guarantee of success if the measurement
number is far below the bound [1]. A question that naturally arises is whether the bound
can be further lowered by introducing more prior knowledge of the signal for decoding.

The answer is affirmative. To take advantage of image characteristics, Jafarpour et
al. [2] and Wang et al. [3] proposed using total variance in place of the [; norm as the new
objective. The images so reconstructed are shown to be more subjectively pleasing. Also,
a higher SNR is attained with fewer measurements. For generality, Fletcher et al. [4] [5]
casts the problem of reconstructing a sparse signal as a sequential estimation of its spar-
sity pattern and sparse representation. They first identified signal subspace based on
the Maximum Likelihood (ML) principle and then estimated the corresponding non-zero
coefficients, i.e., the sparse representation of the signal, by minimizing Minimum Mean

Squared Error (MMSE). In their scheme, it is somehow ad hoc not to consider the dis-



tribution of sparse representation in estimating signal subspace. Our investigation shows

that it suffers from serious mis-estimation of subspace, given insufficient measurements.

1.2 Contributions
Specifically, our main contributions in this work include the following:

1.2.1 MAP Decoding Algorithm

Rather than separately estimating signal subspace and non-zero coeflicients, in this
thesis we combined them as a parameter vector and derived a Bayesian estimator based
on the Maximum a Posteriori (MAP) rule. With the same signal models in [4] [5], our es-
timator for non-zero coefficients is found to coincide with the MMSE estimator in [4], but
the one for signal subspace differs from their MLE estimator in that the prior knowledge
of sparse representation is also involved. Simulation results indicate that our MAP esti-

mators can recover the signal with high probability, even lack of sufficient measurements.

1.2.2 Bit-Plane Compressive Sensing and Image Compression

To further improve R-D performance, we brought into use bit-plane (BP) separation,
which partitions the sparse representation into a MSB BP and a LSB BP through a scalar
quantizer. Because the MSB BP, which captures most significant information, usually has
a higher sparsity than the original representation, it requires much fewer measurements for
perfect reconstruction and hence helps to improve R-D performance, especially in the low-
rate region. The technique together with the MAP estimators achieves superiority over
other schemes, including the single use of [; decoding, of MAP decoding, or of the 2-step
approach (MLE4+MMSE) [4]. When applied to image compression, it shows promising

results as compared with the well-optimized JPEG codec.

1.2.3 Multiple Description Coding using Compressive Sensing

Beside compression efficiency, error-resilience functionality is also highly desirable in

image coding. In tradition, many state-of-art systems progressively retransmit the lost



packets to form a reliable connection through Transmission Control Protocol (TCP), de-
teriorating the compression ratio due to the redundancy. A question arises whether there
exists a representation that can make all the received packets be useful, if losses are in-
evitable. Multiple description image coding (MDC) creates such representations, which
is a coding technique that fragments an image source into multiple descriptions. At the
receiver side, the reconstruction has a distortion depending only on the number of de-
scriptions received without regard to their receiving order. Inevitably, MDC introduces
redundancy between descriptions, which leads to an inferior rate-distortion (R-D) per-
formance as compared to single description coding [6]. Since CS makes possible perfect
reconstruction by /; minimization when a sufficient number of random measurements are
taken, CS has the desirable feature of MDC. By the very nature of this property, Zhang et
al. and Wang et al. replaced DCT/IDCT in conventional image coders with CS sensing
matrix, showing that [ reconstruetion is more resilient to the loss of measurements (or
coefficients) [3] [7]. Therefore, CS-MDC is also included in our study. From our simu-
lation results, the MAP-based CS-MDC framework can perform a better reconstruction

with highly insufficient descriptions, as compared with /;-based CS-MDC.

1.3 Organization of Thesis

The rest of this thesis is organized as follows: Chapter 2 briefly reviews the basics of
CS. Chapter 3 presents the derivation of our MAP estimators for sparsity pattern and
sparse representation. Chapter 4 introduces the BP-CS framework. Chapter 5 and 6
apply our BP-CS to image compression and MDC, comparing its performance with that
of the other prior work. Lastly, Chapter 7 concludes this thesis with a summary of our

work.



Chapter 2

Compressive Sensing

2.1 Basics of Compressive Sensing

A signal x € R¥ is called "sparse” if most of its transform coefficients associated with

some basis W are zero.

x = Vu, (2.1)

where its sparsity S determines the number of non-zero elements in vector u. It was shown
in [1] that such a sparse signal can'be more compactly represented by a reduced-dimension

vector y through a random sensing matrix ®:
y = dx = dVu, (2.2)

where ® € RM*N and y € RM, M < N with its elements called measurements. Obvi-
ously, x cannot be derived from y by the inverse of ®, which is not invertible. Nevertheless,

the CS theory [1] states that u can be reconstructed through I; minimization,
u = min|lul|; subjectto y = dx = dVu. (2.3)

Once u is recovered, x follows immediately by x = . Notice that for perfect reconstruc-

tion, the number M of measurements must satisfy the Robust Uncertainty Principle [8],
M>C-S-logN, (2.4)

where C' is a constant that relates to a very small value §, deciding the probability of
successful recovery 1 — O(N~°). Therefore, equation (2.4) reveals the key fact : CS

cannot recover the signal with insufficient measurement number that belows O(S log V).

4



In many realistic application, the measurement y cannot be preserved or transmitted
without any error, hence the robustness of compressive sensing with regard to measure-

ment error is classified as an important issue and studied by considering the new model,
y = &x + n, (2.5)

where n is an error with bounded energy ||n||3 < ¢, and such model is named as Robust
Compressive Sensing. To recover x from the noised measurement y, (2.3) can have a

quadratic constraint, as equation (2.6),
0 = min|jull; subjectto |y — x5 <e (2.6)

The formulation (2.6) is again convex that should have an unique solution, and it also

belongs to a special instance of Second Order Cone Programming (SOCP) [1].

2.2 Reconstruction by Estimation

2.2.1 MLE + MMSE

(0}
Input N . Q -
Signal Random | ‘Quantization > By O] >
Projection g_ecmfered
igna
Encoder L)

6

Subspace
Detection

Figure 2.1: Recover the signal through estimation

In (2.2), the reconstruction of x can be cast as an estimation problem, in which
the parameters of interest are the subspace of non-zero coefficients, i.e., the sparsity
pattern, and their values. This approach usually involves assuming a probabilistic model
for both signal subspace § and non-zero coefficients w € R°. For example, Fletcher et

al. [4] modeled w with Gaussian distribution, w ~ N (u,,, C,,), and assumed 6 distributes



uniformly in [1,C%]; in addition, w is independent of §. With their models, the sparse
signal x is given by

x = Uyw, (2.7)

where Wy is composed of column vectors in ¥ that correspond to non-zero elements in u.
Substituting (2.7) into (2.2) gives y = ®Wyw. Taking into account quantization effects,

we then have a simple linear additive noise model,
y = pd¥yw + n, (2.8)

where the quantization noise vector n ~ A(0,C,,) and p is the linear gain of forward
quantization model. To estimate 6, Fletcher et al. [4] employed the ML technique to

identify sparsity pattern, leading to a

6= max Py, 2.9
ek | (2.9)

)
Define the asymptotic probability of subspace mis-estimation as P.,,., = limy_in¢ Pr(é #*

ol
M

B =272 While there are sufficient bit-rate R to allow a and 3 satisfying

0), the ratio sparsity to the measurement number o = and the quantization accuracy

1 1 1—
—3 log,(6) > aRy + §0z10g2(1 + a—ﬁﬂ) (2.10)

then P,.. will act like a step function,

1 > crit
Poyy = {0’ aon (2.11)
, a < ot

meanwhile, with é, x is further inferred using the MMSE estimate.
x = E[x[y,0 = 0] (2.12)

It is expected that the estimation approach can use fewer measurements to reconstruct
x than the [; algorithm. Essentially, this is because the latter does not use any prior
knowledge of the source. Our simulation results, as given in Chapter 3, show that the

former requires approximately half of the measurements necessary for the {; decoding.



2.2.2 Asymptotic R-D Performance

The motivation of compressive sensing is that the sensing matrices and sparsity pat-
terns are not known by the encoder; instead, they are only known by the decoder. To
further study the limitation of CS rate-distortion performance, Fletcher et al. evaluated
the performance of a simple but non-universal compression scheme, allowing both the
encoder and decoder to know the sensing matrices and sparsity patterns. Since now the
encoder can adapt to the signal structure, they call this scheme adaptive quantization. In
the case, the encoder is simply quantizing a S-dimensional Gaussian random vector with

given RS bits. By the well-known rate-distortion function for a Gaussian source,
DGaussian(R) = 2_2R- (213)

Of course, for sparse signal, the sparsity: pattern ¢ is unknown, hence the encoder has to
spend log, J bits for encoding J pessible sparsity patterns. Let

1

Ry = ¢

log, J. (2.14)

Therefore, the distortion of adaptive quantization can be shown as,

2 2B=BV)" R > Ry;

1, otherwise.

D ggapt(R) = { (2.15)

To illustrate the relationship between compressive sensing and adaptive quantization
on the basis of rate-distortion performance, Fletcher et al. plot the asymptotic distor-
tion for both. Fig. 2.2 displays the distortion as a function of quantization rate R, for
different subspace rate Ry = 2 and 4.6, showing the main important findings: the recon-
struction SNR can be increased with lower subspace rate Ry, since adaptive quantization
needs fewer bits to encode the subspace index. Therefore, compressive sensing is possible
to achieve the similar performance with adaptive quantization, if the priori was used in
decoding. However, there are some questions raised: Firstly, is it possible to use fewer
measurements in decoding CS measurements through estimation-based approach? Sec-
ondly, if the answer is affirmative, can we consider the 2-step approach (MLE + MMSE)

as a promising decoding method? These questions will be answered in Chapter 3.
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Figure 2.2: Asymptotic performance of compressive sensing(CS) and adaptive quantiza-
tion(Adapt) of a sparse source

2.3 Related applications of compressive sensed im-
ages

In this chapter, we will introduce the applications of compressive sensing, including

image compression and multiple description coding.

2.3.1 Compressively Sampled Images

Jafarpour et al. [2] select a variety of different real images to test the quality of the
recovered images. Instead of using /; minimization in recovering the sparse represented
images in the wavelet domain, they used a quadratic programming method called min

TV. Following is its definition,

x|y =) \/($i+1,j — 2ig)? + (@ij — 7i5)? (2.16)
i

By using (2.16), the original linear programming (2.3) can be cast as a min TV recovering

algorithm,

x = man||x||rv subjectto y = dx. (2.17)



f1§

(a) m=100) (b m=2000 () m=35000

i

(g) m=10000 (h) m=20000 (1) Original Image
Figure 2.3: Recover the image by min TV with different measurement number

As we can see from Figi 2:3; the TV method is an efficient way to recover a two
dimensional piecewise smooth signal, for example, natural images. Therefore, many ap-
plications prefer to use TV method rather than [, minimization in image reconstruction
for enhancing the subjective quality. Although such recovering algorithm is restricted
to a specific type of signals, and it doesn’t promise the exact reconstruction as [y, Total
Variance still provides a key concept that CS decoding can benefit from using some prior

knowledge of the signal.

2.3.2 Compressive Sensing based Multiple Description Coding

Among present CS-MDC architecture [3] [7], the common framework is based on the
scheme of random projection and [; minimization, as shown in Fig. 2.4. In this frame-
work, the image is fragmented into multiple blocks, and then projected into CS random
measurements. After receiving these measurements, encoder will de-fragment all the re-
ceived measurements and recover the signal through /; minimization by equation (2.6).
Because different measurements are equally important, the decoding quality only depends

on the received measurement number.
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Another issue is controlling the number of transmitted measurements, which affects
the compression efficiency. Based on an empirical distortion function [3] [9] e(M)
BM 9 for Iy algorithm, the transmitted measurement number can be decided by setting
a target distortion. However, not matter in our study or the prior works in [4], the
distortion behavior of estimation-based frameworks are not identical with the [, algorithm.

Therefore, the measurement allocation should be discussed again, instead of using the

Figure 2.4: Present CS-MDC system

empirical distortion function-for /;. This work can be found in the Chapter 6.

10




Chapter 3
MAP Decoding Algorithm

The mis-estimation of # has a profound effect on the reconstruction quality. It may
provide a wrong prior information for estimating x, as suggested by (2.12); moreover, the
misplace of non-zero coefficients often induces significant distortion. It was shown in [4]
that the ML estimator in (2.9) has an error probability that is a step function of the ratio
of sparsity S to measurement number M: the probability of error flips suddenly from 0 to
1 if the ratio exceeds a critical threshold. This is due in part to the ignorance of the prior
information of w. To overcome this problem, we propose a MAP decoding scheme that
make use of the prior knowledge of both 6 and w for a joint estimation. Their estimators
are then substituted into (3.7) to predict x. It turns out that (3.7) has the same form as

(2.12), except that the 0 estimator is different, as we now proceed to show.

3.1 MAP Estimators for Sparsity Pattern and Non-
zero Coeflicients

To jointly estimate # and w on the basis of y by the MAP rule, we need the posterior
distribution. Since 6 is discrete but w is continuous, we define the posteriori to be

maximized as

PO, W <w<w + Ayly) (3.1)

11



where {w' <w < W' + Ay} is an event and Ay, ~ 0 is a fixed, small displacement. The

MAP estimators are thus the values of 8 and w’ that maximize

PO,w <w<w+Ayly)

I
~
=

YIP(W <w<w +A,0,5)

_ POSGID s
_ POSWI0) (W', 0)Aw
- /) | (3:2)

where the last equality is because f(y,w'|0) = f(¥|0)f(W'|0,y) = f(W'|0)f(y|w',0).
The conditional probability density function (pdf) f(y|0, w’) can be further computed,

using (2.8) and the signal models in [4], as

- 1 il - w)T —1l/& w'
F50) =~ g o9

Since # and w have uniform and Gaussian distributions, respectively, we then arrive at

(0, w) = min{(y — How')! Cpl(y = How') + (W' — u,) CH (W' — uy)}, (3-4)

The search for # and w in (3.4) need not be exhaustive. Observe that if 6 is fixed, the
objective is an unimodal, convex function in w. Thus the relation between w and ¢ must
satisfy

w=u, +(C,' + Hy C, Hy) ' Hy C,'(¥ — Hyuw), (3.5)

which is exactly the conditional mean E[w|y,6]. A back substitution of (3.5) into (3.4)
gives R

0 = min{(y How)T'C (7 — How) + (W — 1) ' C (W — uy)}, (3.6)
Note that a numerical search for § is inevitable since 6 is discrete. With both 6 and w,

we give an estimate of x by

X = U;w (3.7)

It is instructive to remark on the differences between our estimators and those in [4].

Firstly, if (3.7) is used to give an estimate of x, it has the same form as that in (2.12).

12



Proof.

X = E[x|y,0=0]
= E[Tewly,0 = 0]
= UyE[wly,0 = 0]
= Uw O

This is because w = E[wl|y,0 = 0] and ¥, is a matrix with orthonormal columns.
It then follows that the MMSE estimator commutes over linear transformation of w.
Secondly, our # estimator involves the prior information of w, which is a consequence of
the joint estimation. Given the additional information, it is expected to outperform the

ML estimator in (2.9), as will be verified subsequently.

3.2 Performance Analysis

In this section, we carry out a number of experiments to verify the performance of our
MAP estimators, which is compared to that of the /; algorithm and of the 2-step approach
[4]. The first experiment examines their decoded distortion versus measurement number,
mainly to understand the effect of insufficient measurements on reconstruction quality.
The second experiment analyzes the average measurement number needed for achieving
a specified distortion level, in order to assess the R-D performance when measurement
number can be communicated to the decoder for each signal realization, as is common in
many practical applications. In both experiments, we generate the source using the signal
assumptions in [4], that is, w ~ N(0,0%I) and 6 ~ U[1,CY], with sparsity S = 16 and
signal dimension N = 64. The results shown are on the basis of 10,000 (independent)
simulation runs.

Fig. 3.1(a) plots the mean squared reconstruction errors of all three schemes as func-
tions of measurement number. As expected, to achieve perfect reconstruction, the [; algo-
rithm requires a significantly larger number of measurements than the other two schemes.
Amazingly, the number required for the latter two schemes is very close to the sparsity

value, indicating the minor overhead necessary for signaling the positions of non-zero coef-
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ficients. This also demonstrates the benefits of introducing prior information in decoding.
Another interesting observation is that the 2-step approach has a much higher distortion
than the other schemes, when the measurement number drops below the sparsity. To
give reasons, Fig. 3.1(b) shows the error probabilities of the sparsity pattern 6. It can
be seen that the MAP estimator has a uniformly smaller error probability than the ML
estimator, although the difference is negligible given extremely insufficient measurements
(e.g. 5-15). It is worth pointing out that the mis-estimation of # will affect the estimation
of x through (2.12). Such chain effect may cause the ML estimator to produce a distor-
tion that is even higher than using prior mean X = 0, especially when the measurement
number is insufficient. This is corroborated by the comparison with the [, algorithm, for
which we use prior mean as the estimate of x whenever it fails to recover the signal.

The analysis in Fig. 3.1(a) applies a fixed number of measurements to all signal re-
alizations. Even though the sparsity is fixed; it is seen in many cases and for all three
schemes that some signals can be reconstructed with much fewer measurements than
others. Motivated by this observation, we provide in Fig. 3.2 the distributions of mea-
surement number needed for-the three algorithms to achieve perfect reconstruction. It is
not surprising that when ordered by the average number, these algorithms have a relation
of [y > 2-step > MAP. But, what is new is that the [; algorithm also has a larger variance
due to its universal property. Recall that it makes no use of any prior information, other
than the premise that signal is sparse. In Fig. 3.2(b) the analysis is further extended to
the case with distortion (MSE=0.06). We see that the distribution of the I; now become
woven together with the other two, in which the one of our MAP scheme spreads out
more towards zero. These results have two implications. The first is that when used for
perfect reconstruction, the [; is far from efficient: relaxing a bit the quality constraint
yields a significant saving of measurements. The second is compatible with our previous
finding; that is, our scheme can better recover the signal with fewer measurements due
mainly to its improved accuracy in estimating sparsity pattern.

In summary, our analysis reveals that the [; algorithm is universal, but, as it is, far

from being ideal when it comes to R-D performance. To this end, all prior information
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should be used to their best advantage. The 2-step and the MAP approaches are two
examples showing how the priors could possibly be utilized at the decoder. In both
approaches, the fidelity of sparsity pattern has a great influence on decoded quality and

our MAP scheme is shown to outperform the ML estimator.
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Chapter 4

Compressive Sensing with Bit-Plane
Separation

4.1 Concept of Bit-Plane Separation

As we saw earlier, it is important to minimize the error probability of sparsity pattern
P.(0). Unfortunately, given an insufficient measurement number, this probability tends
to one in most decoding algorithms. This explains why their distortions usually remain
unchanged in the low-rate region: To maximize the probability of correct decision while
minimizing the required measurement number, we introduce the notion of bit-plane (BP)
separation in the CS framework. Fig. 4.1 illustrates the concept of operations. As shown,
the sparse signal representation u is first partitioned into a MSB BP and a LSB BP
by a scalar quantizer and then the resulting signals are sampled independently by CS.

Observe that the MSB signal u which captures most significant information about

MSB)
u, usually has a higher sparsity than the original signal u. In anticipating that u,,,, can
be recovered first with few measurements, we expect the BP separation to help improve
R-D performance, especially in the low-rate region. However, this approach, like two-layer

scalable coding, may also introduce redundancy in the high-rate region. In this chapter,

we shall analyze this new framework in detail.

4.2 Performance Analysis

We start with the R-D comparison in Fig. 4.2(a), where the horizontal axis indicates

rate constraint (expressed in number of bits) rather than measurement number. Note that
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Figure 4.1: Concept of operations for bit-plane CS.

measurement fidelity for different configurations is not uniform: without BP separation,
each measurement is quantized uniformly into 15 bits, while with BP separation, the
measurements at the MSB and the LSB BPs have a precision of 8 bits and 10 bits,
respectively. These numbers are so chosen that the SNR ratio is high enough for almost
lossless signal reconstruction. Fig.m 4.2(a) confirms our prediction. As expected, the
distortions associated with using BP separation drop drastically in the low-rate region.
Inspection of Fig. 4.2(b) reveals that this is because the MSB BP is allocated with
all measurements available, which is intuitively agreeable since the LSB BP can hardly
contribute to distortion reduction with only few measurements due to its low sparsity.
Another interesting observation is seen-by noting that the distortions remain at a fixed
level in the mid-rate range. According to Fig. 4.2(b), neither the MSB BP or the LSB BP
is allocated with more measurements. These are the points at which the MSB signal has
been perfectly reconstructed, but the number of measurements is still far from sufficient to
recover the LSB. Remarkably, our 6 estimator for the LSB BP become the ML estimator,

i.e., (2.9), since its non-zero coefficients w,,,, tend to have a uniform distribution. It is

LSB
thus conceivable that the best policy is not to allocate any measurements to the LSB:
recall that the ML estimate may result in a higher distortion than prior mean, given
insufficient measurements.

As the rate is increased further, we observe a sudden increase in the LSB measure-
ment number along with a slight decrease in the MSB measurement number. This is a

manifestation of the step-like R-D behavior of the ML estimator. The transition indi-

cates the borderline between the perfect reconstruction and the complete corruption of
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the LSB signal, at which sacrificing a bit the MSB quality is more R-D efficient in the
present example. The degradation extent depends on the quantization step size used for
BP separation.

The results so far have an important implication: the conventional CS framework is
far from ideal for signal compression. Although using BP separation helps to improve its
R-D performance, the technique is quite arbitrary and by no means optimal. There is

still plenty of room for further improvement.
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Chapter 5

Application to Image Compression

In this chapter, we apply the previously developed estimators to image compression.
Following the common practices, we divide an image into 8x8 blocks, each of which, when
spanned by DCT basis, approximates a sparse signal. In this case, the DCT coefficients
form the sparse representation. For its BP separation, the quantization step size is set to
128, and the MSB and LSB BPs are properly quantized into 8 bits and 11 bits, respectively,
compared to 12 bits without BP separation. In addition, u,, and C,, in 3.5 are substituted
with their minimum variance unbiased estimators, since both are unknown for real image
data.

Fig. 5.1 compares the R-D curves of various decoding schemes. Particularly, the
average number of bits per block are displayed as functions of distortion. This is to account
for the use of CS in many practical situations, where the decoder is usually informed of the
minimum measurement number required for each signal realization. From Fig. 5.1, the
results are mostly in agreement with theoretical simulations, although our signal models
may not best represent real data. As expected, the use of prior information always
improves estimation accuracy and the benefit of BP separation is most obvious when only
few measurements are available. However, to our surprise, the 2-step approach is not
that pessimistic, as compared with our scheme. This is attributed to that measurement
number can now be chosen properly to suit the need of each block. With reference to
Fig. 3.2, their means indeed tend to be identical, even though the distributions differ
significantly. The comparison with JPEG further shows the promising aspect of our

scheme. The difference in compression ratio (given the same image quality) is seen to
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be within a factor of two. Fig. 5.2 and 5.3 provide sample results of subjective quality

comparison.
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Figure 5.1: R-D performance subject to distortion constraints: (a) Baboon and (b) Lena.



(f) JPEG

Figure 5.2: Baboon, average bpp=0.52, PNSR : (a) inf (b) fail (c) 21.726 (d) 22.032 (e)
23.427 (f) 26.263
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(e) BP+MAP (f) JPEG

Figure 5.3: Lena, average bpp=0.47, PNSR : (a) inf (b) fail (c) 26.428 (d) 27.360 (e) 28.97
(f) 57.924
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Chapter 6

Application to Multiple Description
Coding

Compressive sensing is a natural tool to realize the multiple description coding, when
CS measurements are treated as MDC descriptions. However, most existing CS-MDC
don’t use any prior knowledge about, the image in reconstruction; instead, they use the
Il and TotalVariance to recover the signal. As a consequence, these decoding methods
are not promised in the case of insufficient measurements, as compared with our MAP
decoding algorithm. To adapt the MAP framework in Fig. 4.1 into a MDC system, we

have to concern about the problem of measurement allocation.

6.1 Measurement Allocation

Fig. 3.2 suggests that uniform allocation of the measurements is not optimal; in other
words, the allocation of measurements should be variant with different blocks. Given a
block that can be perfectly represented with & measurements. If each measurement was
transmitted through an erasure channel with loss probability p, i.i.d, then we can acquire

the failure rate for transmitting m measurements, define
Ptoiture = P(number of received measurements < k) (6.1)

Then the failure rate can be derived as a binomial cumulative distribution function,

k—1

Pragture(m) =Y _ CI"(1 = p)'(p)™~" (6.2)

=0

Due to the fact that Prgure(m) is a decreasing function of m, where m can be found

through iteratively minimizing Ppgure(m) under a given rate constraint. This process
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Figure 6.1: Concept of operations for bit-plane CS-based MDC.
can be formally elaborated as a minimization process,

minimize  Ppagpure(m;)

m;

subject to Z m; X R < Rtarget (63)

ny > k;

where 7 is an index to indicate different blocks.

6.2 Pseudo-Random Packetization

To promise the measurements of every blocks can be received by a certain proportion,
a pseudo uniformly-random packeting approach is used in our system. Given P packets
that should be transmitted by encoder, each measurement will be assigned to the packet
through a mapping function Pkt(yj) = rand(j) mod P, where j is the index of each
measurement. Therefore, both encoder and decoder can coherently generate the same
pseudo random sequence, avoiding the overhead of synchronization. The whole system is

given in Fig. 6.1, depicting the operations in the case of losing packets.

6.3 Performance Analysis

In this experiment, most of settings are inherited from previous chapter, e.g. quanti-
zation bits, signal models, etc. The allocated measurements are also divided into P = 100
packets to meet the realistic application, and an erasure channel is also simulated with
different loss rate (10%-90%). To do the adaptive measurement allocation through (6.3),

the CS-MDC system is restricted to achieve a compression ratio = 1.5 for satisfying the
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rate constraint Ryq.get, and the loss rate is set to p = 0.6(60%) for deciding the failure
rate through (6.2). Meanwhile, we also compare our adaptive approach with an intuitive
linear allocation framework, allowing us to justify the necessary of adaptive allocation.

the operation of linear allocation is easy to be shown as,

E[received measurements| = m;(1 — p) > k;

k;
= m; 2
l—p

The relation between m; and k; in (6.4) tends to be linear dependent with a coefficient c,
seems easier and more intuitive than the adaptive strategy in (6.3). Therefore, a question
is raised whether it can achieve the same or even better performance than our adaptive
strategy? The answer is negative, because linear allocation is based on the "mean” sense,
decoder may fail in recovering some blocks that lost too many measurements. This result
can be shown in our simulations.

Fig 6.2 displays the distortion as a function of loss rate. As we saw in other prior
works, distortion of [; exhibits-an exponentially increased function of loss rate. Amaz-
ingly, the performance of 2-step (MLE+MMSE) is even worse than the [ recovering
algorithm, whose distortion is significantly higher than the other approaches. To give
reasons, recall that the 2-step approach will suffers subspace mis-estimations from insuf-
ficient measurements, resulting in very high distortion, as shown in Fig. 4.2. Therefore,
the 2-step approach is not an ideal solution for coping with erasure channel, due to the
sensitivity of measurement number. As we can predict, MAP-based CS-MDC provides
an outstanding recovering performance, owing to its better estimation of subspace. Be-
sides, the integration of bit-plane separation doesn’t bring any obvious pros or cons to the
error-resilience, hence the bit-plane separation is simply a way to enhance the compres-
sion ratio without sacrificing the functionality of error-resilience. However, if the adaptive
allocation is replaced by the linear approach, the performance degradation can be easily
observed. In conclusion, MAP-based algorithm with adaptive measurement allocation
allows CS-MDC to achieve a much better compression efficiency and provide stronger
error-resilience, rather than conventional [;-based algorithm. Fig. 6.3 - 6.8 shows the

subjective quality in different loss rate.
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(a) Original (b) Iy

(e) BP+MAP (Linear Allocation) (f) BP+MAP

Figure 6.3: Baboon, compression ratio=1.5 ,loss rate = 40% , PNSR : (a) inf (b)33.60
(¢)74.74 (d)74.66 (¢)33.05 (£)65.27
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(e) BP+MAP (Linear Allocation) (f) BP+MAP

Figure 6.4: Baboon, compression ratio=1.5, loss rate = 60% , PNSR : (a) inf (b)24.09
(¢)17.3719 (d)36.52 (€)26.76 (£)28.63
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(e) BP+MAP (Linear Allocation)

Figure 6.5: Baboon, compression ratio=1.5, loss rate = 80%, PNSR : (a) inf (b)14.17
(¢)fail (d)19.37 (e)18.59 (£)20.59
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(a) Original

(e) BP+MAP (Linear Allocation) (f) BP+MAP

Figure 6.6: Baboon, compression ratio=1.5, loss rate = 40%, PNSR : (a) inf (b)31.63
(¢)74.45 (d)74.40 (€)30.99 (£)81.39

34



(e) BP+MAP (Linear Allocation) (f) BP+MAP

Figure 6.7: Baboon, compression ratio=1.5, loss rate = 60%, PNSR : (a) inf (b)23.52
(c)fail (d)37.66 (€)24.06 (£)37.61
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(e) BP+MAP (Linear Allocation) (f) BP+MAP

Figure 6.8: Baboon, compression ratio=1.5, loss rate = 80%, PNSR : (a) inf (b)12.39
(¢)fail (d)20.72 (e)18.36 (£)23.57
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Chapter 7

Conclusion

In this thesis, we derived the MAP estimator from a theoretical model, and empirically
analyzed its R-D performance. Meanwhile, we also proposed a technique of bit-plane
separation that can further improve the R-D performance of CS. Our study obtains the

following discoveries:

1. The CS R-D behavior highly dependsion the decoding algorithm, instead of encoding
method. As we can see from the empirical R-D performance, the one using the
priori can significantly reduce the distortion rather than the blind approach, given

the identical encoding scheme and same number of measurements.

2. Our MAP method shows a promising result, even with insufficient measurements.
This is because MAP has a better estimate of the signal subspace, providing a
much better reconstruction than ML+MMSE does. By incorporating signal prior
knowledge for decoding, MAP can reconstruct a sparse signal perfectly with a mea-

surement number very close to its sparsity.

3. To further improve R-D performance, a technique of bit-plane separation is proposed
and combined with our MAP estimator. Due to the high sparseness of MSB bit-
plane, MAP can recover the MSB bit-plane with very few measurements. Therefore,
it can be anticipated that the distortion can be further minimized in the low rate
region, since the limited bit-rate is enough to allocate sufficient number of MSB

measurements.

4. By using bit-plane separation and MAP decoding allocation, CS is possible to
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achieve a promising results as compared with the well-optimized JPEG codec.
Meanwhile, due to a better reconstruction quality with highly insufficient measure-

ments, MAP is also an efficient decoding algorithm on the application of MDC.

Our work is still in its early stage, we plan to extend our investigation in several

directions:

1. The MAP decoding algorithm should be analyzed theoretically. As we observed from
the simulation results, MAP is possible to recover the signal with a measurement
number that is even below the sparsity. Such interesting fact should be further

studied.

2. Bit-plane separation is very intuitive and by no means optimal; however, it still
enhance the the R-D performancee of CS. This result implies that the existing CS
encoding framework is not very efficient.. A question arises whether there exists an

optimal coding technique that can be used in CS encoding.

3. During our investigation of Bayesian MAP decoding framework, another CS frame-
work is also proposed by Shihao Ji et al., named as ”Bayesian Compressive Sens-
ing” [10]. It should be noticed that; their approach is based on ”Bayesian Machine
Learning”, and hence such framework is implemented by the Relevance Vector Ma-
chine algorithm. Although Bayesian learning also involves the using of priori, their
work did not show such amazing improvement as we did. Therefore, it is very in-
teresting to study the difference between theirs and ours, for further investigating a

better way of applying Bayesian inference to CS.
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