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位元平面之壓縮取樣搭配 

貝氏估計解碼法於失真壓縮之應用 

 
 

學生：吳思賢 

 

指導教授：蔣迪豪 

彭文孝 

 

國立交通大學 電子工程學系 電子研究所碩士班 

 

摘 要       

 
本論文探討的問題是：當壓縮取樣點已遭受失真破壞，甚至取樣點亦嚴重不足的情

況下，如何能夠有效地重建回原本的稀疏訊號。而這樣的過程涉及如何估計稀疏訊

號子空間和稀疏訊號非零係數，在本研究中，我們依據最大後驗機率估計理論

(MAP)，推導了一組向量化的估計函數。藉著充分利用訊號的前驗機率，使得我們

提出的作法，可以利用極少、接近稀疏訊號非零係數個數的取樣點，即可進行完美

重建！同時，在取樣點嚴重不足的情況下預測稀疏訊號子空間時，本方法亦比前人

方法有更低的錯誤預測機率。此外，為了能更佳地重建稀疏訊號的重要資訊，我們

提出了位元平面切割方法。當這樣的技術與 MAP 估計函數相結合後，我們實證其可

得到與泛用 JPEG 標準相匹敵的壓縮性能：在同樣的壓縮品質下，其壓縮率差距小

於一倍。除此之外，我們亦將這個嶄新的技術應用於多重描述編碼，結果亦顯示我

們設計的 MAP 估計方法，即使是在流失率極嚴重的摧毀式通道環境，還是能夠提供

明顯良好的解碼品質。總而言之，相較前人研究成果，我們的壓縮取樣系統搭配

MAP 貝氏估計解碼法，不僅能提供極佳的壓縮性能，同時亦保有極為強悍的錯誤扺

抗能力。 
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Student： Sz-Hsien Wu 
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ABSTRACT 

This thesis addresses the problem of reconstructing a compressively sampled 

sparse signal from its lossy and possibly insufficient measurements. The 

process involves estimations of sparsity pattern and sparse representation, for 

which we derived a vector estimator based on the Maximum a Posteriori 

Probability (MAP) rule. By making full use of signal prior knowledge, our 

scheme can use a measurement number close to sparsity to achieve perfect 

reconstruction. It also shows a much lower error probability of sparsity 

pattern than prior work, given insufficient measurements. To better recover 

the most significant part of the sparse representation, we further introduce the 

notion of bit-plane separation. When applied to image compression, the 

technique in combination with our MAP estimator shows promising results as 

compared to JPEG: the difference in compression ratio is seen to be within a 

factor of two, given the same decoded quality. More than this, we also 

applied such framework into the application of multiple description coding. 

According to the simulation results, our MAP estimator is very resilient to the 

loss of measurements, showing an acceptable quality while coping with a 

highly loss channel. In conclusion, our CS framework using the MAP 

estimation can provide a much better compression efficiency and stronger 

functionality of error-resilience, compared with other prior work. 
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Chapter 1

Introduction

1.1 Overview

Compressive Sensing (CS) is an emerging technique for acquiring and reconstructing

sparse signals. Its notion dates back to a few decades ago, but only until recently, it

became widely known to the community due to several theoretical breakthroughs. One of

them states that sparse signals can be perfectly reconstructed when sampled with a mea-

surement number that would be considered insufficient by the Nyquist criterion. Another

celebrated result is that the reconstruction, equivalent to solving an underdetermined ma-

trix equation, can be achieved by simply minimizing the l1 norm of the decoded signal.

This approach is deemed universal in the sense that it makes only use of sparse property.

However, one major drawback is that it has no guarantee of success if the measurement

number is far below the bound [1]. A question that naturally arises is whether the bound

can be further lowered by introducing more prior knowledge of the signal for decoding.

The answer is affirmative. To take advantage of image characteristics, Jafarpour et

al. [2] and Wang et al. [3] proposed using total variance in place of the l1 norm as the new

objective. The images so reconstructed are shown to be more subjectively pleasing. Also,

a higher SNR is attained with fewer measurements. For generality, Fletcher et al. [4] [5]

casts the problem of reconstructing a sparse signal as a sequential estimation of its spar-

sity pattern and sparse representation. They first identified signal subspace based on

the Maximum Likelihood (ML) principle and then estimated the corresponding non-zero

coefficients, i.e., the sparse representation of the signal, by minimizing Minimum Mean

Squared Error (MMSE). In their scheme, it is somehow ad hoc not to consider the dis-
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tribution of sparse representation in estimating signal subspace. Our investigation shows

that it suffers from serious mis-estimation of subspace, given insufficient measurements.

1.2 Contributions

Specifically, our main contributions in this work include the following:

1.2.1 MAP Decoding Algorithm

Rather than separately estimating signal subspace and non-zero coefficients, in this

thesis we combined them as a parameter vector and derived a Bayesian estimator based

on the Maximum a Posteriori (MAP) rule. With the same signal models in [4] [5], our es-

timator for non-zero coefficients is found to coincide with the MMSE estimator in [4], but

the one for signal subspace differs from their MLE estimator in that the prior knowledge

of sparse representation is also involved. Simulation results indicate that our MAP esti-

mators can recover the signal with high probability, even lack of sufficient measurements.

1.2.2 Bit-Plane Compressive Sensing and Image Compression

To further improve R-D performance, we brought into use bit-plane (BP) separation,

which partitions the sparse representation into a MSB BP and a LSB BP through a scalar

quantizer. Because the MSB BP, which captures most significant information, usually has

a higher sparsity than the original representation, it requires much fewer measurements for

perfect reconstruction and hence helps to improve R-D performance, especially in the low-

rate region. The technique together with the MAP estimators achieves superiority over

other schemes, including the single use of l1 decoding, of MAP decoding, or of the 2-step

approach (MLE+MMSE) [4]. When applied to image compression, it shows promising

results as compared with the well-optimized JPEG codec.

1.2.3 Multiple Description Coding using Compressive Sensing

Beside compression efficiency, error-resilience functionality is also highly desirable in

image coding. In tradition, many state-of-art systems progressively retransmit the lost

2



packets to form a reliable connection through Transmission Control Protocol (TCP), de-

teriorating the compression ratio due to the redundancy. A question arises whether there

exists a representation that can make all the received packets be useful, if losses are in-

evitable. Multiple description image coding (MDC) creates such representations, which

is a coding technique that fragments an image source into multiple descriptions. At the

receiver side, the reconstruction has a distortion depending only on the number of de-

scriptions received without regard to their receiving order. Inevitably, MDC introduces

redundancy between descriptions, which leads to an inferior rate-distortion (R-D) per-

formance as compared to single description coding [6]. Since CS makes possible perfect

reconstruction by l1 minimization when a sufficient number of random measurements are

taken, CS has the desirable feature of MDC. By the very nature of this property, Zhang et

al. and Wang et al. replaced DCT/IDCT in conventional image coders with CS sensing

matrix, showing that l1 reconstruction is more resilient to the loss of measurements (or

coefficients) [3] [7]. Therefore, CS-MDC is also included in our study. From our simu-

lation results, the MAP-based CS-MDC framework can perform a better reconstruction

with highly insufficient descriptions, as compared with l1-based CS-MDC.

1.3 Organization of Thesis

The rest of this thesis is organized as follows: Chapter 2 briefly reviews the basics of

CS. Chapter 3 presents the derivation of our MAP estimators for sparsity pattern and

sparse representation. Chapter 4 introduces the BP-CS framework. Chapter 5 and 6

apply our BP-CS to image compression and MDC, comparing its performance with that

of the other prior work. Lastly, Chapter 7 concludes this thesis with a summary of our

work.
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Chapter 2

Compressive Sensing

2.1 Basics of Compressive Sensing

A signal x ∈ ℜN is called ”sparse” if most of its transform coefficients associated with

some basis Ψ are zero.

x = Ψu, (2.1)

where its sparsity S determines the number of non-zero elements in vector u. It was shown

in [1] that such a sparse signal can be more compactly represented by a reduced-dimension

vector y through a random sensing matrix Φ:

y = Φx = ΦΨu, (2.2)

where Φ ∈ ℜM×N , and y ∈ ℜM ,M < N with its elements called measurements. Obvi-

ously, x cannot be derived from y by the inverse of Φ, which is not invertible. Nevertheless,

the CS theory [1] states that u can be reconstructed through l1 minimization,

û = min‖u‖1 subject to y = Φx = ΦΨu. (2.3)

Once u is recovered, x̂ follows immediately by x̂ = Ψû. Notice that for perfect reconstruc-

tion, the number M of measurements must satisfy the Robust Uncertainty Principle [8],

M ≥ C · S · logN, (2.4)

where C is a constant that relates to a very small value δ, deciding the probability of

successful recovery 1 − O(N−δ). Therefore, equation (2.4) reveals the key fact : CS

cannot recover the signal with insufficient measurement number that belows O(S logN).
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In many realistic application, the measurement y cannot be preserved or transmitted

without any error, hence the robustness of compressive sensing with regard to measure-

ment error is classified as an important issue and studied by considering the new model,

ỹ = Φx+ n, (2.5)

where n is an error with bounded energy ‖n‖22 ≤ ǫ, and such model is named as Robust

Compressive Sensing. To recover x from the noised measurement ỹ, (2.3) can have a

quadratic constraint, as equation (2.6),

û = min‖u‖1 subject to ‖ỹ − Φx‖22 ≤ ǫ (2.6)

The formulation (2.6) is again convex that should have an unique solution, and it also

belongs to a special instance of Second Order Cone Programming (SOCP) [1].

2.2 Reconstruction by Estimation

2.2.1 MLE + MMSE

Figure 2.1: Recover the signal through estimation

In (2.2), the reconstruction of x can be cast as an estimation problem, in which

the parameters of interest are the subspace of non-zero coefficients, i.e., the sparsity

pattern, and their values. This approach usually involves assuming a probabilistic model

for both signal subspace θ and non-zero coefficients w ∈ ℜS. For example, Fletcher et

al. [4] modeled w with Gaussian distribution, w ∼ N (uw,Cw), and assumed θ distributes
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uniformly in [1, CN
S ]; in addition, w is independent of θ. With their models, the sparse

signal x is given by

x = Ψθw, (2.7)

where Ψθ is composed of column vectors in Ψ that correspond to non-zero elements in u.

Substituting (2.7) into (2.2) gives y = ΦΨθw. Taking into account quantization effects,

we then have a simple linear additive noise model,

ỹ = ρΦΨθw + n, (2.8)

where the quantization noise vector n ∼ N (0,Cn) and ρ is the linear gain of forward

quantization model. To estimate θ, Fletcher et al. [4] employed the ML technique to

identify sparsity pattern, leading to a

θ̂ = max
j=1,..,CN

S

‖Pjỹ‖, (2.9)

Define the asymptotic probability of subspace mis-estimation as Perr = limN→inf Pr(θ̂ 6=

θ), the ratio sparsity to the measurement number α = S
M
, and the quantization accuracy

β = 2−2αR. While there are sufficient bit-rate R to allow α and β satisfying

−
1

2
log2(β) ≥ αRV +

1

2
α log2(1 +

1− β

αβ
) (2.10)

then Perr will act like a step function,

Perr =

{

1, α > αcrit

0, α < αcrit
(2.11)

meanwhile, with θ̂, x is further inferred using the MMSE estimate.

x̂ = E[x|ỹ, θ = θ̂] (2.12)

It is expected that the estimation approach can use fewer measurements to reconstruct

x than the l1 algorithm. Essentially, this is because the latter does not use any prior

knowledge of the source. Our simulation results, as given in Chapter 3, show that the

former requires approximately half of the measurements necessary for the l1 decoding.
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2.2.2 Asymptotic R-D Performance

The motivation of compressive sensing is that the sensing matrices and sparsity pat-

terns are not known by the encoder; instead, they are only known by the decoder. To

further study the limitation of CS rate-distortion performance, Fletcher et al. evaluated

the performance of a simple but non-universal compression scheme, allowing both the

encoder and decoder to know the sensing matrices and sparsity patterns. Since now the

encoder can adapt to the signal structure, they call this scheme adaptive quantization. In

the case, the encoder is simply quantizing a S-dimensional Gaussian random vector with

given RS bits. By the well-known rate-distortion function for a Gaussian source,

DGaussian(R) = 2−2R. (2.13)

Of course, for sparse signal, the sparsity pattern θ is unknown, hence the encoder has to

spend log2 J bits for encoding J possible sparsity patterns. Let

RV =
1

S
log2 J, (2.14)

Therefore, the distortion of adaptive quantization can be shown as,

Dadapt(R) =

{

2−2(R−RV ), R > RV ;

1, otherwise.
(2.15)

To illustrate the relationship between compressive sensing and adaptive quantization

on the basis of rate-distortion performance, Fletcher et al. plot the asymptotic distor-

tion for both. Fig. 2.2 displays the distortion as a function of quantization rate R, for

different subspace rate RV = 2 and 4.6, showing the main important findings: the recon-

struction SNR can be increased with lower subspace rate RV , since adaptive quantization

needs fewer bits to encode the subspace index. Therefore, compressive sensing is possible

to achieve the similar performance with adaptive quantization, if the priori was used in

decoding. However, there are some questions raised: Firstly, is it possible to use fewer

measurements in decoding CS measurements through estimation-based approach? Sec-

ondly, if the answer is affirmative, can we consider the 2-step approach (MLE + MMSE)

as a promising decoding method? These questions will be answered in Chapter 3.
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Figure 2.2: Asymptotic performance of compressive sensing(CS) and adaptive quantiza-
tion(Adapt) of a sparse source

2.3 Related applications of compressive sensed im-

ages

In this chapter, we will introduce the applications of compressive sensing, including

image compression and multiple description coding.

2.3.1 Compressively Sampled Images

Jafarpour et al. [2] select a variety of different real images to test the quality of the

recovered images. Instead of using l1 minimization in recovering the sparse represented

images in the wavelet domain, they used a quadratic programming method called min

TV . Following is its definition,

|x|TV =
∑

i,j

√

(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2 (2.16)

By using (2.16), the original linear programming (2.3) can be cast as a min TV recovering

algorithm,

x̂ = min‖x‖TV subject to y = Φx. (2.17)
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Figure 2.3: Recover the image by min TV with different measurement number

As we can see from Fig. 2.3, the TV method is an efficient way to recover a two

dimensional piecewise smooth signal, for example, natural images. Therefore, many ap-

plications prefer to use TV method rather than l1 minimization in image reconstruction

for enhancing the subjective quality. Although such recovering algorithm is restricted

to a specific type of signals, and it doesn’t promise the exact reconstruction as l1, Total

Variance still provides a key concept that CS decoding can benefit from using some prior

knowledge of the signal.

2.3.2 Compressive Sensing based Multiple Description Coding

Among present CS-MDC architecture [3] [7], the common framework is based on the

scheme of random projection and l1 minimization, as shown in Fig. 2.4. In this frame-

work, the image is fragmented into multiple blocks, and then projected into CS random

measurements. After receiving these measurements, encoder will de-fragment all the re-

ceived measurements and recover the signal through l1 minimization by equation (2.6).

Because different measurements are equally important, the decoding quality only depends

on the received measurement number.
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Figure 2.4: Present CS-MDC system

Another issue is controlling the number of transmitted measurements, which affects

the compression efficiency. Based on an empirical distortion function [3] [9] e(M) =

βM−δ for l1 algorithm, the transmitted measurement number can be decided by setting

a target distortion. However, not matter in our study or the prior works in [4], the

distortion behavior of estimation-based frameworks are not identical with the l1 algorithm.

Therefore, the measurement allocation should be discussed again, instead of using the

empirical distortion function for l1. This work can be found in the Chapter 6.
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Chapter 3

MAP Decoding Algorithm

The mis-estimation of θ has a profound effect on the reconstruction quality. It may

provide a wrong prior information for estimating x, as suggested by (2.12); moreover, the

misplace of non-zero coefficients often induces significant distortion. It was shown in [4]

that the ML estimator in (2.9) has an error probability that is a step function of the ratio

of sparsity S to measurement number M : the probability of error flips suddenly from 0 to

1 if the ratio exceeds a critical threshold. This is due in part to the ignorance of the prior

information of w. To overcome this problem, we propose a MAP decoding scheme that

make use of the prior knowledge of both θ and w for a joint estimation. Their estimators

are then substituted into (3.7) to predict x. It turns out that (3.7) has the same form as

(2.12), except that the θ estimator is different, as we now proceed to show.

3.1 MAP Estimators for Sparsity Pattern and Non-

zero Coefficients

To jointly estimate θ and w on the basis of ỹ by the MAP rule, we need the posterior

distribution. Since θ is discrete but w is continuous, we define the posteriori to be

maximized as

P (θ,w′ ≤ w < w′ +∆w|ỹ) (3.1)
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where {w′ ≤ w < w′ +∆w} is an event and ∆w ∼ 0 is a fixed, small displacement. The

MAP estimators are thus the values of θ and w′ that maximize

P (θ,w′ ≤ w < w′ +∆w|ỹ)

= P (θ|ỹ)P (w′ ≤ w < w′ +∆w|θ, ỹ)

= P (θ|ỹ)f(w′|θ, ỹ)∆w

=
P (θ)f(ỹ|θ)

f(ỹ)
f(w′|θ, ỹ)∆w

=
P (θ)f(w′|θ)f(ỹ|w′, θ)∆w

f(ỹ)
, (3.2)

where the last equality is because f(ỹ,w′|θ) = f(ỹ|θ)f(w′|θ, ỹ) = f(w′|θ)f(ỹ|w′, θ).

The conditional probability density function (pdf) f(ỹ|θ,w′) can be further computed,

using (2.8) and the signal models in [4], as

f(ỹ|θ,w′) =
1

(2π)M/2det(Cn)
e−

1

2
(ỹ−Hθw

′)TC−1
n (ỹ−Hθw

′). (3.3)

Since θ and w have uniform and Gaussian distributions, respectively, we then arrive at

(θ̂, ŵ) = min
θ,w′

{(ỹ −Hθw
′)TC−1

n (ỹ −Hθw
′) + (w′ − uw)

TC−1
w (w′ − uw)}, (3.4)

The search for θ and w in (3.4) need not be exhaustive. Observe that if θ is fixed, the

objective is an unimodal, convex function in w. Thus the relation between ŵ and θ must

satisfy

ŵ = uw + (C−1
w +HT

θ C
−1
n Hθ)

−1HT
θ C

−1
n (ỹ −Hθuw), (3.5)

which is exactly the conditional mean E[w|ỹ, θ]. A back substitution of (3.5) into (3.4)

gives
θ̂ = min

θ
{(ỹ −Hθŵ)TC−1

n (ỹ −Hθŵ) + (ŵ − uw)
TC−1

w (ŵ − uw)}, (3.6)

Note that a numerical search for θ̂ is inevitable since θ is discrete. With both θ̂ and ŵ,

we give an estimate of x by

x̂ = Ψθ̂ŵ (3.7)

It is instructive to remark on the differences between our estimators and those in [4].

Firstly, if (3.7) is used to give an estimate of x, it has the same form as that in (2.12).
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Proof.

x̂ = E[x|y, θ = θ̂]

= E[Ψθw|y, θ = θ̂]

= Ψθ̂E[w|y, θ = θ̂]

= Ψθ̂ŵ

This is because ŵ = E[w|ỹ, θ = θ̂] and Ψθ is a matrix with orthonormal columns.

It then follows that the MMSE estimator commutes over linear transformation of w.

Secondly, our θ estimator involves the prior information of w, which is a consequence of

the joint estimation. Given the additional information, it is expected to outperform the

ML estimator in (2.9), as will be verified subsequently.

3.2 Performance Analysis

In this section, we carry out a number of experiments to verify the performance of our

MAP estimators, which is compared to that of the l1 algorithm and of the 2-step approach

[4]. The first experiment examines their decoded distortion versus measurement number,

mainly to understand the effect of insufficient measurements on reconstruction quality.

The second experiment analyzes the average measurement number needed for achieving

a specified distortion level, in order to assess the R-D performance when measurement

number can be communicated to the decoder for each signal realization, as is common in

many practical applications. In both experiments, we generate the source using the signal

assumptions in [4], that is, w ∼ N (0, σ2I) and θ ∼ U [1, CN
S ], with sparsity S = 16 and

signal dimension N = 64. The results shown are on the basis of 10,000 (independent)

simulation runs.

Fig. 3.1(a) plots the mean squared reconstruction errors of all three schemes as func-

tions of measurement number. As expected, to achieve perfect reconstruction, the l1 algo-

rithm requires a significantly larger number of measurements than the other two schemes.

Amazingly, the number required for the latter two schemes is very close to the sparsity

value, indicating the minor overhead necessary for signaling the positions of non-zero coef-
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ficients. This also demonstrates the benefits of introducing prior information in decoding.

Another interesting observation is that the 2-step approach has a much higher distortion

than the other schemes, when the measurement number drops below the sparsity. To

give reasons, Fig. 3.1(b) shows the error probabilities of the sparsity pattern θ. It can

be seen that the MAP estimator has a uniformly smaller error probability than the ML

estimator, although the difference is negligible given extremely insufficient measurements

(e.g. 5-15). It is worth pointing out that the mis-estimation of θ will affect the estimation

of x through (2.12). Such chain effect may cause the ML estimator to produce a distor-

tion that is even higher than using prior mean x̂ = 0, especially when the measurement

number is insufficient. This is corroborated by the comparison with the l1 algorithm, for

which we use prior mean as the estimate of x whenever it fails to recover the signal.

The analysis in Fig. 3.1(a) applies a fixed number of measurements to all signal re-

alizations. Even though the sparsity is fixed, it is seen in many cases and for all three

schemes that some signals can be reconstructed with much fewer measurements than

others. Motivated by this observation, we provide in Fig. 3.2 the distributions of mea-

surement number needed for the three algorithms to achieve perfect reconstruction. It is

not surprising that when ordered by the average number, these algorithms have a relation

of l1 > 2-step > MAP. But, what is new is that the l1 algorithm also has a larger variance

due to its universal property. Recall that it makes no use of any prior information, other

than the premise that signal is sparse. In Fig. 3.2(b) the analysis is further extended to

the case with distortion (MSE=0.06). We see that the distribution of the l1 now become

woven together with the other two, in which the one of our MAP scheme spreads out

more towards zero. These results have two implications. The first is that when used for

perfect reconstruction, the l1 is far from efficient: relaxing a bit the quality constraint

yields a significant saving of measurements. The second is compatible with our previous

finding; that is, our scheme can better recover the signal with fewer measurements due

mainly to its improved accuracy in estimating sparsity pattern.

In summary, our analysis reveals that the l1 algorithm is universal, but, as it is, far

from being ideal when it comes to R-D performance. To this end, all prior information
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should be used to their best advantage. The 2-step and the MAP approaches are two

examples showing how the priors could possibly be utilized at the decoder. In both

approaches, the fidelity of sparsity pattern has a great influence on decoded quality and

our MAP scheme is shown to outperform the ML estimator.
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Figure 3.1: The measurement-distortion curves of various decoding algorithms (a) and
their error probabilities of sparsity pattern (b)
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Figure 3.2: Measurement number distribution subject to distortion constraints: (a)
MSE=0 and (b) MSE=0.06.
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Chapter 4

Compressive Sensing with Bit-Plane

Separation

4.1 Concept of Bit-Plane Separation

As we saw earlier, it is important to minimize the error probability of sparsity pattern

Pe(θ). Unfortunately, given an insufficient measurement number, this probability tends

to one in most decoding algorithms. This explains why their distortions usually remain

unchanged in the low-rate region. To maximize the probability of correct decision while

minimizing the required measurement number, we introduce the notion of bit-plane (BP)

separation in the CS framework. Fig. 4.1 illustrates the concept of operations. As shown,

the sparse signal representation u is first partitioned into a MSB BP and a LSB BP

by a scalar quantizer and then the resulting signals are sampled independently by CS.

Observe that the MSB signal u
MSB

, which captures most significant information about

u, usually has a higher sparsity than the original signal u. In anticipating that u
MSB

can

be recovered first with few measurements, we expect the BP separation to help improve

R-D performance, especially in the low-rate region. However, this approach, like two-layer

scalable coding, may also introduce redundancy in the high-rate region. In this chapter,

we shall analyze this new framework in detail.

4.2 Performance Analysis

We start with the R-D comparison in Fig. 4.2(a), where the horizontal axis indicates

rate constraint (expressed in number of bits) rather than measurement number. Note that
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Figure 4.1: Concept of operations for bit-plane CS.

measurement fidelity for different configurations is not uniform: without BP separation,

each measurement is quantized uniformly into 15 bits, while with BP separation, the

measurements at the MSB and the LSB BPs have a precision of 8 bits and 10 bits,

respectively. These numbers are so chosen that the SNR ratio is high enough for almost

lossless signal reconstruction. Fig. 4.2(a) confirms our prediction. As expected, the

distortions associated with using BP separation drop drastically in the low-rate region.

Inspection of Fig. 4.2(b) reveals that this is because the MSB BP is allocated with

all measurements available, which is intuitively agreeable since the LSB BP can hardly

contribute to distortion reduction with only few measurements due to its low sparsity.

Another interesting observation is seen by noting that the distortions remain at a fixed

level in the mid-rate range. According to Fig. 4.2(b), neither the MSB BP or the LSB BP

is allocated with more measurements. These are the points at which the MSB signal has

been perfectly reconstructed, but the number of measurements is still far from sufficient to

recover the LSB. Remarkably, our θ estimator for the LSB BP become the ML estimator,

i.e., (2.9), since its non-zero coefficients w
LSB

tend to have a uniform distribution. It is

thus conceivable that the best policy is not to allocate any measurements to the LSB:

recall that the ML estimate may result in a higher distortion than prior mean, given

insufficient measurements.

As the rate is increased further, we observe a sudden increase in the LSB measure-

ment number along with a slight decrease in the MSB measurement number. This is a

manifestation of the step-like R-D behavior of the ML estimator. The transition indi-

cates the borderline between the perfect reconstruction and the complete corruption of
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the LSB signal, at which sacrificing a bit the MSB quality is more R-D efficient in the

present example. The degradation extent depends on the quantization step size used for

BP separation.

The results so far have an important implication: the conventional CS framework is

far from ideal for signal compression. Although using BP separation helps to improve its

R-D performance, the technique is quite arbitrary and by no means optimal. There is

still plenty of room for further improvement.
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Chapter 5

Application to Image Compression

In this chapter, we apply the previously developed estimators to image compression.

Following the common practices, we divide an image into 8x8 blocks, each of which, when

spanned by DCT basis, approximates a sparse signal. In this case, the DCT coefficients

form the sparse representation. For its BP separation, the quantization step size is set to

128, and the MSB and LSB BPs are properly quantized into 8 bits and 11 bits, respectively,

compared to 12 bits without BP separation. In addition, uw and Cw in 3.5 are substituted

with their minimum variance unbiased estimators, since both are unknown for real image

data.

Fig. 5.1 compares the R-D curves of various decoding schemes. Particularly, the

average number of bits per block are displayed as functions of distortion. This is to account

for the use of CS in many practical situations, where the decoder is usually informed of the

minimum measurement number required for each signal realization. From Fig. 5.1, the

results are mostly in agreement with theoretical simulations, although our signal models

may not best represent real data. As expected, the use of prior information always

improves estimation accuracy and the benefit of BP separation is most obvious when only

few measurements are available. However, to our surprise, the 2-step approach is not

that pessimistic, as compared with our scheme. This is attributed to that measurement

number can now be chosen properly to suit the need of each block. With reference to

Fig. 3.2, their means indeed tend to be identical, even though the distributions differ

significantly. The comparison with JPEG further shows the promising aspect of our

scheme. The difference in compression ratio (given the same image quality) is seen to
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be within a factor of two. Fig. 5.2 and 5.3 provide sample results of subjective quality

comparison.
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Figure 5.1: R-D performance subject to distortion constraints: (a) Baboon and (b) Lena.
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(a) Original (b) l1

(c) MLE+MMSE (d) MAP

(e) BP+MAP (f) JPEG

Figure 5.2: Baboon, average bpp=0.52, PNSR : (a) inf (b) fail (c) 21.726 (d) 22.032 (e)
23.427 (f) 26.263
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(a) Original (b) l1

(c) MLE+MMSE (d) MAP

(e) BP+MAP (f) JPEG

Figure 5.3: Lena, average bpp=0.47, PNSR : (a) inf (b) fail (c) 26.428 (d) 27.360 (e) 28.97
(f) 57.924
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Chapter 6

Application to Multiple Description

Coding

Compressive sensing is a natural tool to realize the multiple description coding, when

CS measurements are treated as MDC descriptions. However, most existing CS-MDC

don’t use any prior knowledge about the image in reconstruction; instead, they use the

l1 and TotalV ariance to recover the signal. As a consequence, these decoding methods

are not promised in the case of insufficient measurements, as compared with our MAP

decoding algorithm. To adapt the MAP framework in Fig. 4.1 into a MDC system, we

have to concern about the problem of measurement allocation.

6.1 Measurement Allocation

Fig. 3.2 suggests that uniform allocation of the measurements is not optimal; in other

words, the allocation of measurements should be variant with different blocks. Given a

block that can be perfectly represented with k measurements. If each measurement was

transmitted through an erasure channel with loss probability p, i.i.d, then we can acquire

the failure rate for transmitting m measurements, define

Pfailure := P (number of received measurements < k) (6.1)

Then the failure rate can be derived as a binomial cumulative distribution function,

Pfailure(m) =
k−1
∑

i=0

Cm
i (1− p)i(p)m−i (6.2)

Due to the fact that Pfailure(m) is a decreasing function of m, where m can be found

through iteratively minimizing Pfailure(m) under a given rate constraint. This process
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Figure 6.1: Concept of operations for bit-plane CS-based MDC.

can be formally elaborated as a minimization process,

minimize
mi

Pfailure(mi)

subject to
∑

i

mi ×R ≤ Rtarget

mi ≥ ki

(6.3)

where i is an index to indicate different blocks.

6.2 Pseudo-Random Packetization

To promise the measurements of every blocks can be received by a certain proportion,

a pseudo uniformly-random packeting approach is used in our system. Given P packets

that should be transmitted by encoder, each measurement will be assigned to the packet

through a mapping function Pkt(yqj ) = rand(j) mod P , where j is the index of each

measurement. Therefore, both encoder and decoder can coherently generate the same

pseudo random sequence, avoiding the overhead of synchronization. The whole system is

given in Fig. 6.1, depicting the operations in the case of losing packets.

6.3 Performance Analysis

In this experiment, most of settings are inherited from previous chapter, e.g. quanti-

zation bits, signal models, etc. The allocated measurements are also divided into P = 100

packets to meet the realistic application, and an erasure channel is also simulated with

different loss rate (10%-90%). To do the adaptive measurement allocation through (6.3),

the CS-MDC system is restricted to achieve a compression ratio = 1.5 for satisfying the
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rate constraint Rtarget, and the loss rate is set to p = 0.6(60%) for deciding the failure

rate through (6.2). Meanwhile, we also compare our adaptive approach with an intuitive

linear allocation framework, allowing us to justify the necessary of adaptive allocation.

the operation of linear allocation is easy to be shown as,

E[received measurements] = mi(1− p) ≥ ki

⇒ mi ≥
ki

1− p
= c · ki (6.4)

The relation between mi and ki in (6.4) tends to be linear dependent with a coefficient c,

seems easier and more intuitive than the adaptive strategy in (6.3). Therefore, a question

is raised whether it can achieve the same or even better performance than our adaptive

strategy? The answer is negative, because linear allocation is based on the ”mean” sense,

decoder may fail in recovering some blocks that lost too many measurements. This result

can be shown in our simulations.

Fig 6.2 displays the distortion as a function of loss rate. As we saw in other prior

works, distortion of l1 exhibits an exponentially increased function of loss rate. Amaz-

ingly, the performance of 2-step (MLE+MMSE) is even worse than the l1 recovering

algorithm, whose distortion is significantly higher than the other approaches. To give

reasons, recall that the 2-step approach will suffers subspace mis-estimations from insuf-

ficient measurements, resulting in very high distortion, as shown in Fig. 4.2. Therefore,

the 2-step approach is not an ideal solution for coping with erasure channel, due to the

sensitivity of measurement number. As we can predict, MAP-based CS-MDC provides

an outstanding recovering performance, owing to its better estimation of subspace. Be-

sides, the integration of bit-plane separation doesn’t bring any obvious pros or cons to the

error-resilience, hence the bit-plane separation is simply a way to enhance the compres-

sion ratio without sacrificing the functionality of error-resilience. However, if the adaptive

allocation is replaced by the linear approach, the performance degradation can be easily

observed. In conclusion, MAP-based algorithm with adaptive measurement allocation

allows CS-MDC to achieve a much better compression efficiency and provide stronger

error-resilience, rather than conventional l1-based algorithm. Fig. 6.3 - 6.8 shows the

subjective quality in different loss rate.
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Figure 6.2: Loss - Distortion performance subject to compression ratio = 1.5 (a) Baboon
and (b) Lena.
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(a) Original (b) l1

(c) MLE+MMSE (d) MAP

(e) BP+MAP (Linear Allocation) (f) BP+MAP

Figure 6.3: Baboon, compression ratio=1.5 ,loss rate = 40% , PNSR : (a) inf (b)33.60
(c)74.74 (d)74.66 (e)33.05 (f)65.27
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(a) Original (b) l1

(c) MLE+MMSE (d) MAP

(e) BP+MAP (Linear Allocation) (f) BP+MAP

Figure 6.4: Baboon, compression ratio=1.5, loss rate = 60% , PNSR : (a) inf (b)24.09
(c)17.3719 (d)36.52 (e)26.76 (f)28.63
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(a) Original (b) l1

(c) MLE+MMSE (d) MAP

(e) BP+MAP (Linear Allocation) (f) BP+MAP

Figure 6.5: Baboon, compression ratio=1.5, loss rate = 80%, PNSR : (a) inf (b)14.17
(c)fail (d)19.37 (e)18.59 (f)20.59
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(a) Original (b) l1

(c) MLE+MMSE (d) MAP

(e) BP+MAP (Linear Allocation) (f) BP+MAP

Figure 6.6: Baboon, compression ratio=1.5, loss rate = 40%, PNSR : (a) inf (b)31.63
(c)74.45 (d)74.40 (e)30.99 (f)81.39
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(a) Original (b) l1

(c) MLE+MMSE (d) MAP

(e) BP+MAP (Linear Allocation) (f) BP+MAP

Figure 6.7: Baboon, compression ratio=1.5, loss rate = 60%, PNSR : (a) inf (b)23.52
(c)fail (d)37.66 (e)24.06 (f)37.61
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(a) Original (b) l1

(c) MLE+MMSE (d) MAP

(e) BP+MAP (Linear Allocation) (f) BP+MAP

Figure 6.8: Baboon, compression ratio=1.5, loss rate = 80%, PNSR : (a) inf (b)12.39
(c)fail (d)20.72 (e)18.36 (f)23.57
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Chapter 7

Conclusion

In this thesis, we derived the MAP estimator from a theoretical model, and empirically

analyzed its R-D performance. Meanwhile, we also proposed a technique of bit-plane

separation that can further improve the R-D performance of CS. Our study obtains the

following discoveries:

1. The CS R-D behavior highly depends on the decoding algorithm, instead of encoding

method. As we can see from the empirical R-D performance, the one using the

priori can significantly reduce the distortion rather than the blind approach, given

the identical encoding scheme and same number of measurements.

2. Our MAP method shows a promising result, even with insufficient measurements.

This is because MAP has a better estimate of the signal subspace, providing a

much better reconstruction than ML+MMSE does. By incorporating signal prior

knowledge for decoding, MAP can reconstruct a sparse signal perfectly with a mea-

surement number very close to its sparsity.

3. To further improve R-D performance, a technique of bit-plane separation is proposed

and combined with our MAP estimator. Due to the high sparseness of MSB bit-

plane, MAP can recover the MSB bit-plane with very few measurements. Therefore,

it can be anticipated that the distortion can be further minimized in the low rate

region, since the limited bit-rate is enough to allocate sufficient number of MSB

measurements.

4. By using bit-plane separation and MAP decoding allocation, CS is possible to
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achieve a promising results as compared with the well-optimized JPEG codec.

Meanwhile, due to a better reconstruction quality with highly insufficient measure-

ments, MAP is also an efficient decoding algorithm on the application of MDC.

Our work is still in its early stage, we plan to extend our investigation in several

directions:

1. The MAP decoding algorithm should be analyzed theoretically. As we observed from

the simulation results, MAP is possible to recover the signal with a measurement

number that is even below the sparsity. Such interesting fact should be further

studied.

2. Bit-plane separation is very intuitive and by no means optimal; however, it still

enhance the the R-D performance of CS. This result implies that the existing CS

encoding framework is not very efficient. A question arises whether there exists an

optimal coding technique that can be used in CS encoding.

3. During our investigation of Bayesian MAP decoding framework, another CS frame-

work is also proposed by Shihao Ji et al., named as ”Bayesian Compressive Sens-

ing” [10]. It should be noticed that their approach is based on ”Bayesian Machine

Learning”, and hence such framework is implemented by the Relevance Vector Ma-

chine algorithm. Although Bayesian learning also involves the using of priori, their

work did not show such amazing improvement as we did. Therefore, it is very in-

teresting to study the difference between theirs and ours, for further investigating a

better way of applying Bayesian inference to CS.
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