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視點合成器分析與設計 

研究生: 洪瑩蓉               指導教授: 張添烜博士 
 

國立交通大學 
電子工程學系  電子研究所碩士班 

 

摘要 
自由視點電視系統（FTV)可以產生自由視點視訊作為新一代的顯示應用。在自由視點電

視系統之中，視點合成(view synthesis)是其中重要的一部分，作為接收端的視點內差以

及重建。MPEG-FTV 所發展提供的視點合成演算法（view synthesis reference software, 

VSRS)使用了兩個參考視點的視訊及其深度圖來合成虛擬視點的視訊。為了達到即時處

理高解析度視訊的目標，我們根據VSRS演算法設計一個高規格視點合成器的積體電路。

然而，尤其是高解析度的視訊，在視點之間不規則的對應關係使得硬體設計時遇到資料

控制複雜、晶片記憶體需求高以及高頻寬等難題。 

在這篇論文中，針對上述的挑戰我們提出一個從像素等級、列等級、到畫框等級的階層

式管線化架構。在畫框等級管線化中，以兩個畫框等級分別進行深度貼圖(depth mapping)

與圖像貼圖(texture mapping)，並將第一級深度貼圖所產生之虛擬視點的深度圖寫到外部

記憶體中來減少內部晶片記憶體的需求。在列等級管線化中，我們利用環形

FIFO(Circular FIFO)以及列層級緩衝的架構來改進對外部記憶體資料傳輸的效率。最後，

所有的運算元都以像素等級的管線化來達到每秒 0.5 像素分別處理左、右兩個參考視點

的生產效率。 

在聯電 90 奈米的製程下，此設計的硬體消耗為 268.5K 個邏輯閘、單埠及雙埠晶片記憶

體各需 56.9K 及 12.5K。此外，在實驗結果的客觀評比中，我們提出的硬體化設計相比

於原本的 VSRS 演算法可以達到無 PSNR 下降的品質。  
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Abstract 
The free view-point television (FTV) system is a developing innovative system that can 

generate free view-point video for the new trend of display application. In the FTV system, 

the view synthesis is one of the most important components in the receiver-side for view 

interpolation and reconstruction. MPGE-FTV forum proposed view synthesis reference 

software (VSRS) that uses two-view videos and the corresponding depth maps to synthesize 

the virtual-view video. To achieve the demand of synthesizing high quality videos in real-time, 

we implemented a view synthesis engine in VLSI design based on the VSRS algorithm. 

However, the irregular mapped positions between views result in complicated data control, 

high internal storage, and high external bandwidth in hardware implementation, especially for 

high resolution videos. 

To address the design challenges, in this thesis, a hierarchical pipelining architecture from the 

frame-level, column-level, to pixel-level is proposed. In the frame-level pipelining, two stages 

are installed for the depth mapping and texture mapping to store temporary warped maps in 

external memory and reduce internal memory. In the column-level pipelining, the circular 

FIFO buffering architecture and column-level buffering are proposed to improve the 

efficiency of external data access. In the pixel-level pipelining, all the computations are 

parallelized to achieve the throughput of 0.5 pixels per cycle.  
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With the UMC 90nm CMOS technology, this design consumes 268.5K gate counts, 56.9KB 

and 12.5KB memory space for on-port and two-ports SRAMs. In the objective evaluation, our 

hardware implementation can generate the virtual view without quality drop in PSNR, 

compared to the original results of VSRS. 
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Chapter 1  

Introduction 

1.1 Background 

In these years, the 3D-TV system becomes more popular since it can generate stereoscopic 

views, and raise a drastic revolution in human vision entertainment. Another new developing 

system, free-viewpoint TV (FTV), can generate arbitrary views chosen by user. These two 

systems both adopt the depth image-based rendering (DIBR) method [1],[2], which uses depth 

maps to render novel views, and does not need the real geometry of scene since the depth 

maps only indicate the mapping relation between views. 

In the frameworks of the both systems for broadcast TV, the depth maps are estimated by the 

sender-side because of its high-complexity effort; after encoding, transmitting and decoding 

by multi-view video coding (MVC), the novel views are synthesized by the receiver-side. 

1.2 Motivation 

The recent research of view synthesis focused on algorithm development and implemented by 

software programming. However, for practical applications, the receiver-side demands a 

real-time view synthesis engine for displays. Furthermore, for the increasing resolution 

demands on consumers, the frame size of HD is a trend, so that the challenges on bandwidth 

or memory usage are increased.  Motivated by the real-time speed and high resolution 

requirement, the thesis proposes a view synthesis engine in application specific integrated 

circuit (ASIC) design, which supports the real-time demand for HD videos.   

1.3 Thesis organization 
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In this thesis, Chapter 2 concentrates on the basic background of video-plus-depth format and 

depth-image based rendering (DIBR), which is the most common idea of synthesizing images 

using depth map. Two different configurations of multi-cameras for DIBR, 3D warping and 

horizontal shift, are also briefly demonstrated in this chapter.  

Chapter 3 introduces the algorithm of view synthesis reference software (VSRS) provided by 

MPEG-FTV. The VSRS is a two-view based rendering method, using the video-plus depth 

format for each view. The algorithm uses the 3D warping for general camera mode, and the 

horizontal shift for 1D camera mode. In addition, the 3D warping needs the homography 

transform. The main flow of VSRS contains depth mapping, post-filtering, texture mapping, 

two-view blending and hole-filling. Since the last hole-filling affects the synthesis quality, 

different hole-filling methods are discussed in this chapter.  

Our hardware implementation is for the 3D warping mode of VSRS. Chapter 4 focuses on the 

architecture design of VSRS, and addresses the problem in 3D warping that the mapped index 

is random over the whole frame. Bandwidth usage and internal memory size are also the 

concentrated points in this chapter. Finally, this chapter proposes an efficient architecture with 

the frame-level pipelining in global view and the hierarchical column-level pipelining in local 

view. 

Chapter 5 describes the detail implementation methods based on the designed architecture. 

Final implementation results contain gate-count, internal memory usage and the overall 

performance in peak-signal-to-noise ratio (PSNR).      

1.4 Contribution 

The major contribution in this thesis includes: 
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1. We analyzed the hardware cost of VSRS algorithm for the general setting case of 

cameras, in which the cameras may with rotation such that they are not in the same 

baseline.   

2. We modified the hole-filling method in VSRS by using the simple bi-linear interpolation 

method and analyzed the bandwidth and memory usage in different hardware design 

approaches.  

3. We implemented the whole VSRS algorithm as ASIC design for the real-time, 

high-resolution requirements. 
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Chapter 2  

Related work 

View synthesis is an image rendering method in the application of depth map. This chapter 

first introduces the concept of stereo vision and depth estimation method associated with view 

synthesis. Then the data format of video-plus-depth applied in the 3D-TV and FTV system is 

described. Finally, the most general view synthesis method, depth-image based rendering 

(DIBR) is presented.  

2.1 Stereo vision and video-plus-depth concept 

Human feels 3D visual perception because the scenes seen by left eye and right eye are with 

horizontal difference. The difference is called screen parallax values or the disparity that brain 

can interpret it as 3D visual perception as shown in Fig. 2-1. This disparity XR-XL can further 

be transformed to depth Z based on the inverse proportional relationship considering the 

baseline B and focal length f,  

 

 

Fig. 2-1 Relationship of depth and disparity for 3D visual perception 

XX
Bf  Z

LR −
=
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The depth map stores the depth value sampled in 8 bits and has variety of applications, such 

as 3D display, 3D interactive system, or multi-view video etc. In fact, depth map can be 

obtained by many methods such as using time-of-flight camera (TOF camera), structure from 

motion algorithm or stereo matching algorithm etc. Nowadays, in both 3D-TV system [1] and 

FTV system [2], the video and its corresponding depth maps are encoded and transmitted by 

the sender-side, and they are decoded by the receiver-side to generate novel views or 

stereoscopic views. The data format in these systems is called video-plus-depth format. In the 

video-plus-depth format, the sender-side is mainly for video capturing, rectifying and depth 

estimating, and the receiver-side can do view synthesis flexibly and adaptively for different 

display needs by the reference of the depth maps [3].  

2.2 Depth-image-based rendering 

2.2.1 3D warping 

The depth-image-based rendering (DIBR) is an image-rendering technique using depth maps 

for virtual view synthesis. This rendering is by 3D warping model considering the provided 

known by-pixel depth. In 3D world-coordinate as shown in Fig. 2-2 (a), a point (X, Y, Z) can 

be mapped to a 2D point (u, v) in the image plane of a camera. In Eq. (2-1), this projection is 

performed by the projection matrix P, which can be decomposed to the camera intrinsic 

parameters K, the camera rotation matrix R, and the translation matrix T.  
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(2-2)
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Note that the term s in Eq. (2-1) is a scalar factor, which depends on the depth Z as in Eq.  

(2-2).  

Next we consider the back-projection from a 2D point to 3D word-coordinate. In fact, a 2D 

point would be mapped to a line in the 3D world-coordinate. That means one pixel will not be 

back-projected to a unique point in the 3D world-coordinate. Nevertheless, if we have the 

depth Z, a 2D point can be back-projected to a unique point in the 3D world-coordinate 

through this equation,  

 

 

(2-3)

Based on the projection of 3D to 2D and the back-projection of 2D to 3D, we can further 

extend this concept to the mapping relation between multi-views. For the convergent cameras 

as shown in Fig. 2-2 (b), the camera centers of two views are mapped and converged to the 

same point ZC in the 3D world-coordinate. And (a) is an example of multi-view projection. 

Since the point (uSrc, vSrc) of CamSrc and the point (uDst, vDst) of CamDst are projected to the 

same point (X, Y, Z) in the 3D world-coordinate, these two points have the mapping relation 

in the following equation, 

 

 

(2-4)

where the index of source view can be warped to destination view with the given Z value and 

the camera parameters of each camera. 
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(a) (b) 

Fig. 2-2 (a) Convergent multi-view cameras; each (u, v) in the image planes can project to the same 3D point(X, 

Y, Z). (b) Convergent two cameras and the convergence point ZC. Adapted from [4] 

2.2.2 Horizontal shift 

(a) (b) 

Fig. 2-3 (a) parallel multi-view cameras; each (u, v) in the image planes can project to the same 3D point(X, Y, 

Z). (b) Parallel two cameras and the convergence distance ZC. Adapted from [4] 

If cameras are all set parallel in a line as shown in Fig. 2-3, the DIBR can be simplified to the 

mapping method, called horizontal shift [5].  

For cameras are in parallel, the camera rotation matrix becomes an identity matrix I, and 

translation vector will only have nonzero element in X dimension as t=(TX, 0, 0)T. If the 
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intrinsic matrices of source view and destination view are the same, Eq. (2-4) can be rewrite 

as  

 
Z

fTT
uu uDstXSrcX

SrcDst

)( ,, −
+=

,
(2-5)

where fu is the focal length in the intrinsic matrix. It shows that the mapping index of two 

views in each image plane only has difference in horizontal direction. In this camera 

configuration, the process of view synthesis can be performed through a much easier way, 

which can be horizontal shifting according to the depth value Z. 
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Chapter 3  

Overview of view synthesis reference software algorithm 

3.1 Overview 

 

Fig. 3-1 Block diagram of view synthesis algorithm proposed by MPEG-FTV 

According to MPEG-FTV, the view synthesis algorithm synthesizes virtual/target/synthesized 

view based on the two view framework.[6] The algorithm block diagram is Fig. 3-1. First the 

camera parameters of reference views and synthesized view are used for projection matrix to 

do 3D image warping, and the projection is further implemented as homography transform 
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will be described in detail in following section. Note that the reference views are usually one 

in the left and one in the right for high-quality occlusion handling. The depth map at 

synthesized view is pixel-by-pixel mapped using forward warping from reference view, and 

then post-filled using median filter. Next, the synthesized depth is reverse warped to reference 

view for texture mapping. The above processes are adopted for both left view and right view, 

finally the synthesized texture from left view and right view are blended by occlusion 

handling and the remaining holes are filled by inpainting method.         

3.2 3D image warping 

3.2.1 Projection transform and homography transform 

This algorithm uses 3D image warping for view synthesis as described in Chapter 2.2 for the 

video-plus-depth data format. Fig. 3-2 illustrates the process of 3D image warping, where the 

projection represents the mapping between 3D world coordinate and image coordinate with a 

a 3x4 matrix. For the example of a point in the left view to its correspondence in the target 

view, the calculation of warping process contains two projection transform, which are the 

forward projection using PL and the backward projection using PV. Because of the twice 

projection and the pixel-by-pixel warping process, the projection transform method has high 

computational complexity.  
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Fig. 3-2 Warping process using projection or homography transform 

On the other hand, the homography method simplifies the warping process, and adopts the 

homography matrix, which is a 3x3 matrix for the relation between two image planes. For the 

same example in Fig. 3-2, the calculation of a point from the left view to target view can 

become only one transform using the homography matrix HLV. Note that one homography 

matrix is corresponding to one specific depth of Z in the 3D coordinate shown in Fig. 3-3. 

That is because a homography matrix is deduced from the forward projection and backward 

projection with fixed depth of Z. Since a depth map is usually represented using a gray-level 

image, there are 256 homography matrices for 256 depth levels between two views. In 

addition, because of the efficiency of homograph method, the released software of 

MPEG-FTV uses homography transform to perform the pixel-by-pixel warping process [5], 

[8]. 
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Fig. 3-3 Homography of 256 depth levels between two views 

For the homography relation with a specified depth Z, if the two image planes ISrc and IDst 

have the homography matrix H, they should satisfy the transform equation,  

 xDst = HxSrc (3-1)

where xSrc is a point with the vector (uSrc, vSrc, 1)T on the image plane ISrc, and xDst is a point 

with the vector (uDst, vDstc, 1)T on the image plane IDst. Let H be a 3x3 matrix formed by (h00, 

h01, h02; h10, h11, h12; h20, h21, h22). The transform equation Eq. (3-1) can be expanded as Eq. 

(3-2), and be further rewritten as Eq. (3-3). 

 
 

(3-2)

 
 

(3-3)

   

Note that the two linear equations in Eq. (3-3) are independent for solving H. For more 

clearly explanation, by defining the homography matrix as vector form,  
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h = (h00, h01, h02, h10, h11, h12, h20, h21, h22)T. 

Eq. (3-3) can be reformulated into  

 
 

(3-4)

This is a linear equation with 9 unknown values in h. We can find that a pair of corresponding 

points in two image planes can provide two independent equations for solving h. That is we 

have a linear system with 2-by-9. If there are N pairs of points, a linear system with 2N-by-9 

is formed. Because the homography transform is a homogeneous vector, the last element h22 

equals to 1, and it needs at least 4 pairs of points to solve h [4] . Then the linear system is 

formulated as the 8-by-8 square one,    

 

 

(3-5)

To solve the linear system, many numerical methods could be applied. In MPEG-FTV, the 

VSRS estimates the homography vector h using the function “cvFindHomography” in the 

open computer vision library (OpenCV). This function solves the above linear system by the 

singular value decomposition (SVD). For the hardware implementation of SVD, we should 

consider precision, computational complexity, and hardware cost. The details of 

implementation method are discussed in Chapter 5.1.2.  

3.2.2 Depth mapping using forward warping 
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In this step, both the depth maps of reference left view and right view are warped to the 

virtual views. This warping process is called forward warping, which represents the 3D 

warping from the reference view to the virtual view as in Fig. 3-2. For each pixel in the 

reference, according to its depth value and the corresponding homography matrix, the warped 

position in the virtual view can be acquired using the homography transform in Eq. (3-2). 

With the warped position, the depth value in the reference view is copied to the virtual view. 

After pixel-by-pixel warping, the whole new depth map is synthesized in the virtual view. 

Note that there are two new depth maps warped from left view and right view separately. 

Since the original depth map in the reference view may have noise, or the warping process 

may induce sampling alias, the new depth map in the virtual view usually suffers from small 

noisy holes. To remove them, the new depth map is post-filtered by the median filter [5], [6], 

[7]. 

3.2.3 Texture mapping using reverse warping 

In this step, the texture in the virtual view can be synthesized by warping the texture in 

reference view according to the depth map in the virtual view. This warping process is called 

reverse warping because the warping direction is from the virtual to reference view, instead of 

the reference to virtual view in the previous forward warping. 

The details of the reverse warping are presented as follows. Using depth value in the virtual 

view, which is the result of previous depth mapping, the position in virtual view can be 

warped to the position in reference view. With the corresponding positions, the texture from 

reference view is copied pixel-by-pixel to virtual view. Because of the post-filtered depth map, 

the synthesized frame has fewer holes, compared to the typical texture mapping by forward 

warping. Note that the decreased holes are caused mainly by round-off error [7], but the large 
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holes due to occlusion still remains in the result of this step. Note that this step should be 

performed for left view and right view separately. Thus, two synthesized frame for the virtual 

view are generated. 

3.3 Occlusion handling and blending 

In DIBR process, the mapped synthesized images incur large holes which may be seen by the 

right reference view or left reference view but occluded in the synthesized view. To recover 

the so called disocclusion, the study of one-view synthesis for stereoscopic video generation 

has adopted various hole-filling methods, such as linear interpolation [1] and horizontal 

extrapolation [10]. But it suffers from serious texture distortion since the large holes cannot 

be recovered well. Better filling methods may consider the depth information or gradient 

character into interpolation [11]. In order to alleviate the difficulty of hole-filling, the depth 

smoothing method [12]-[14] is adopted before the 3D warping process. The aim of the depth 

smoothing is to reduce the size of holes by means of lessening the sharp discontinuity in depth 

maps. 

On the other hand, for the two-view synthesis algorithm we adopt, two synthesized views 

from left reference view and right reference view are produced separately. Hence the holes 

caused by occlusion can be filled from each synthesized view, which is based on that some 

scene may be seen by only left-eye or only right-eye. Thus the blending method proposed in 

[7] is formulated by the equation 
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(3-7)

In Eq. (3-6), there are four blending modes, and the hole-pixel can be detected in the previous 

depth mapping step. For the first mode, a pixel is not a hole if it is mapped during the warping 

process. When both synthesized views are not holes, the blending is done by weighted 

addition with the distance factor in Eq. (3-7), where t is the translation vector in extrinsic 

camera parameters. For the second and third modes, if only one synthesized view can be 

obtained, the blending will only the corresponding reference view. For the last mode, if the 

pixel is a hole both from reference left and right views, it will be marked as the “final-hole”, 

and should be filled by other image interpolation method. The other method is introduced in 

the next section. 

However, boundary noise appears after blending due to mismatch between depth map and 

texture, especially at disparity discontinuity region. To eliminate these artifacts, the hole-maps 

are dilated one or two pixels, so that holes borders are extended and will be filled with 

background. Fig. 3-4 shows the synthesized image with and without dilating hole-map. 

Because the hole-map after dilating has the wider borders of the holes, the two hole-maps are 

different at the boundary area. A new truth table of blending mode can be adopted as in Table 

3-1. We define the different area of the two hole-maps as “Boundary Special”, because it is 

the border area of depth discontinuity, and may induce boundary noise. Note that its blend 

mode is different from the general case. 
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(a) (b) 

Fig. 3-4 Synthesized image (a) without dilating the hole-map and (b) with dilating the hole-map 

Table 3-1 Blend mode truth table 

0 if hole, 1 if not hole Blend Mode 
Boundary 

Special 

reference 

to L 

reference 

to R 

After dilation  

reference to L 

After dilation 

reference to R  
 

 

0 0 - - Final-hole 0 

0 1 0 - R only 0 

1 0 - 0 L only 0 

1 1 0 1 R only 1 

1 1 1 0 L only 1 

1 1 0 0 Weighted add 0 

1 1 1 1 Weighted add 0 

3.4 Hole-filling 

Remaining holes flagged as “final-hole” after blending can be handled by different methods 

in view synthesis. FTV uses the advanced inpainting method [15] for the general warping 

mode, and the simple linear interpolation method for the 1D horizontal shift mode. Müller et 
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al. [9] extrapolates only background color on holes by examining depth value on the two sides 

of hole-border, because foreground has larger depth and background has smaller depth. Oh et 

al [16] proposed a depth-based inpainting method which also fills holes with only background 

color. No matter what methods are, because these remaining final-holes cannot be seen from 

any reference views but only can be filled reference to surrounding pixels, it is enough for 

holes to be filled naturally but not exactly.  

However, the inpainting is a frame-based image processing and are more complex in 

hardware implementation. Thus, we apply a simple bi-linear interpolation, which performs a 

2D low-pass filter with geometric distance weighting on the final-hole flag. In this thesis, we 

implemented this simple bi-linear interpolation by block-based as shown in Fig. 3-5. 

 
Fig. 3-5 Bi-linear interpolation of hole-filling 

However, the block size is related to hole-size and is a key factor in internal memory size as 

well as in performance. When block is too small, the larger holes in frame border may not be 

filled; if block is too big, the buffer size becomes large, and the interpolated texture would be 

noised. Table 3-2 shows the performance of some sequences under different block sizes. The 

sequence “Ballet” has larger holes, so that its performance is better when block size increases. 

The sequences “BookArrival,” “LoveBird1” and “Kendo” have smaller holes, so that when 

block size is increased, the performance is degraded. For general good performance in 

average, we choose the block size of 9x5 in our design. 
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Fig. 3-6 Performance of bi-linear interpolation for hole-filling in different block size 

 

Table 3-2 Performance of hole-filling by using bi-linear interpolation in different block size 

Y-PSNR Performance (dB) 
Block size Ballet Breakdancers BookArrival Lovebird1 Newspaper Kendo 

5x3 33.18638 33.06250 36.41172 31.80200 30.67576 33.00001 
9x5 33.20828 33.16606 36.37078 31.80157 30.67691 32.99998 

13x7 33.21609 33.17187 36.35280 31.80039 30.67858 32.99997 
17x9 33.21837 33.16193 36.34878 31.79952 30.67945 32.99996 

21x11 33.22026 33.14299 36.34814 31.79897 30.67974 32.99996 
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Chapter 4  

Proposed architecture 

Our objective is to implement a real-time view synthesis (VS) engine corresponding to the 

VSRS algorithm for the frame size of HD1080p (1920x1080). There are three main 

challenges in implementing the VSRS algorithm. First, for general application, the 3D 

warping requires much more hardware complexity, especially in storage cost, than the 

horizontal shift method. That results from the cameras with rotation, so that the disparities 

between each view are not only in horizontal direction as shown in Fig. 2-2. Hence data 

storage is increased from 1D to 2D, and its data control becomes complicated. 

Second is that the VSRS algorithm uses two steps of 3D warping, one for depth mapping and 

the other for texture mapping. The main advantage in two steps warping is that warped depth 

map can be post-filled for better texture mapping. In addition, because the reverse warping 

processes in the index of target view, two synthesized views from different reference views 

can be processed at blending and hole-filling steps in parallel. However, the data storage and 

access are increased for the additional synthesized depth map, and therefore internal memory 

and bandwidth utilization become critical in architecture design.   

Third challenge is in the hole-filling. As Chapter 3.4 described, we choose the simple 

bi-linear interpolation with the block size of 9x5 in this step. But the data storage and access 

is still a challenge because of the remaining holes at irregular and discontinuous positions.  

Our architecture design is focus on solving the above three challenges. Finally the architecture 

adopts the two frame-level pipeline stages, and each with hierarchical column-level pipeline 

stages.  
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4.1 Two frame-level pipelining stages 

Because the depth mapping using forward warping and the texture mapping using reverse 

warping are performed at different positions, the former depth mapping should stores the 

warped depth of virtual view in a reorder buffer for the latter texture mapping. This size of 

reorder buffer will be disparity level if videos are rectified with no rotation. On the other hand, 

its size is up to multiple rows if videos are with rotation. For example of “Ballet” in Fig. 4-1, 

the region of depth map from row 0 to row 30 in reference view are forward warped to the 

target view with out-of-order position. The previous 20 rows in reference view are warped out 

to frame range, and this means that the first whole row of the virtual view is collected after 

the warping process of 20 rows. We need a buffer size of frame width by 20, which is 

40.96KB to buffer the previous mapped depth, and is up to 108KB for HD1080P. 

 

(a) 

 

(b) 

Fig. 4-1 Warped depth map row0 to row30 of “Ballet” (a) is the reference view and (b) is the virtual view. 

To eliminate this reorder buffer, we propose the architecture of two frame-level pipeline 

stages, which performs the depth mapping process and the texture mapping process in 

different stages.. Fig. 4-2 shows the schedule of the proposed two frame-level architecture. 

The warped depth is stored in the external memory at 1st stage and read at 2nd stage for texture 

mapping. 
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With the proposed two-level architecture, Table 4-1 shows that the total bandwidth is 

increased for the additional access of warped depth map. By using 64-bits bus with the 

working frequency of 200MHz, the bus utilization is 39.375% for the video throughput of 30 

frames per second (fps). In addition, for the specific analysis, we use the bus width of 64-bits 

in our design.  

Note that in Fig. 4-2, the warped depth maps are written and read simultaneously by 1st stage 

and 2nd stage. This means that there are ping-pong-like external memories for the warped 

depth maps. One is written the warped depth value of frame i, and the other is read the warped 

depth value of frame i-1.  

 

Fig. 4-2 Two frame-level pipeline and the access between external memory 
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Table 4-1 Total bandwidth of two frame-level stages 

 Architecture 

Data One frame-level stage Two frame-level stage 

Depth map (Left, Right) 2Frame(Read) 2Frame(Read) 

Depth map (Left to virtual 
Right to virtual) 

- 2Fram(Read, Write) 

Texture (YUV, L, R) 3Frame(Read) 3Frame(Read) 

Texture (YUV, virtual) 1.5Frame(Write) 1.5Frame(Write) 

Total bandwidth 
( 2MB/frame) 

13MB 21MB 

4.2 Scan-column warping order 

Usually a Z-buffer/depth buffer of frame-size is needed in depth mapping [8]. In 3D world 

coordinate, if foreground objects and background objects are projected to the same position in 

the image plane, the foreground objects will occlude the background objects. The Z-buffer 

should store all warped depth value in the depth mapping process for depth comparison to 

handle the occlusion problem. 

For on-the-fly warping processing, the size of a shift window is proportional to the horizontal 

search range (SR_H) and the vertical search range (SR_V). Furthermore, the search range is 

different among scenes and is increased when frame-size is larger. For the example, the frame 

size of “Ballet” , is 1024x768, the SR_H is 55 and SR_V is 197 for camera 5 and camera 4. 

Hence the total Z-buffer is at least 21.67KB and is up to 57.13KB for HD1080P.  

To eliminate the Z-buffer usage, when cameras are configured in a straight line, the 

foreground will occlude background in the same scan-line correctly if we scan from left to 

right for right-view warping and scan from right to left for left-view warping. This warping 

method is called depth-compatible order method, whose necessary constraint is the epipolar 

lines are parallel to scan-line. This is the scan-line order under the cameras with precisely 

parallel configuration, and the Z-buffer can be omitted in this case.  
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When cameras are with rotation, Morvan [4] has derived the occlusion-compatible scanning 

order for non-rectified images according to the epipolar geometry as shown in Fig. 4-3. For C 

and C’ are camera locations for virtual view and reference view; Pb and Pf are both projected 

to p in the virtual view and the epipole e’ is the point of C projected to the reference plane. 

The scanning order in the reference view should be from the frame border to epipole e’ in the 

epipolar line so that foreground Pf can occlude background Pb correctly in the vitual view. 

 

Fig. 4-3 Occlusion-compatible scanning order revised from [4]  

However, the calculation of epipolar line consumes additional hardware computational cost, 

followings we analyze different scan-order approaches to eliminate the computational cost. If 

the epipolar lines lie in the reference right view as in Fig. 4-4(a), the original scan-line order 

will fail since an epipolar line will be warped in different scan-line and the correct scan order 

in the epipolar line will be ruined as shown in Fig. 4-4(b). The similar situation occurred in 

Fig. 4-4(d), (e) for the reference left view. An example of scan-line order error is Fig. 4-5(a). 

We find that the warping order can be transferred to scan-column order that will not induce 

occlusion error even if without the accurate epipolar lines because the order is adapted from 

the range of a line to the range of the frame as shown in Fig. 4-4(c)(f). An example of 

scan-column order is Fig. 4-5(a). 
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(a) (b) (c) 

 
(d) (e) (f) 

Fig. 4-4 Warping order analysis. 

 

(a) (b) 

Fig. 4-5 Warped depth maps without Z-buffer with (a) scan-line order and (b) scan-column order 

However, the location of epipole determines the scan order in epipolar line and hence for 

cases that epipole lies inside the visible frame as in Fig. 4-6, our scan-column order must be 

modified according to the epipole position. 

 

Fig. 4-6 Epipole lies inside frame 
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4.3 Analysis of bus efficiency and bandwidth in warping process  

 

Fig. 4-7 Forward warping example of a column in the reference view 

For the proposed frame-level pipelining architecture, the out-of-order warping also increases 

the request-times between the core and bus due to writing warped depth in the 1st frame-level 

stage and reading warped texture in the 2nd frame-level stage. Because the scan-column order 

is adopted in this design, both the depth map and texture are arranged into a column to be 

stored in a row of the external memory. With this data arrangement, Fig. 4-7 shows a column 

of reference view is forward warped to the synthesized view. The warped positions are 

continuous in the synthesized view if their depth values are the same. But pixels with different 

depths are mapped to different columns, so that they are stored in different rows of the 

external memory. That results from increasing request times to bus. In addition, if the data 

size of a continuous segment with identical depth is less than the bus width in byte unit, the 
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bus transfer is not efficiency since only partial data in a transfer are available. It further makes 

the required bus cycle be increased. Although the total bandwidth is enough under the setting 

of 64-bit bus, the inefficient transferring results in increasing bus utilization and degrades the 

overall performance.  

The transition efficiency is related to depth continuity, which depends on sequences. 

Moreover, if we attempt to promote the efficiency of data transmission, the input and output 

(I/O) buffers would be increased to collect more data for reordering. Fig. 4-8 and Table 4-3 

shows the analysis of the bus efficiency with different I/O buffer sizes for the sequences 

“Breakdancers,” “Ballet,” “BookArrival,” and “Lovebird1”. The detail data of “Breakdancers” 

is shown in Table 4-2. Note that we set the bus width as 64-bits, and these sequences are run 

for a frame. In Table 4-2, for the bus transmission mode, the single mode means that data are 

transmitted for less than 8 bytes; while the burst mode means data are transmitted for more 

than 8 bytes. The request times should be accumulated one if the depth discontinuity 

happened. The transmit times should be accumulated one for the single mode, and the burst 

length for the burst mode. In addition, the maximum length is the maximum continuity in 

depth. The average bus efficiency is calculated as dividing the frame size by the average 

transmission times multiplying bus width in bytes..   

Tabel 4-2 shows that when buffer size is increased, the average bus efficiency is increased. 

But the efficiency cannot reach to the maximum value, 100%, except for the whole frame is 

with the same depth value which does not occur. Therefore, with the scan-column order 

warping, we choose the I/O buffer as the frame height for higher bus efficiency. Table 4-3 

shows that the average efficiency reaches to 88.7%. This means the data are ready when a 

column access is complete. This concept could be further extended to the column-level 

pipelining architecture, and is described in Chapter 4.5. 
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Table 4-2 “Breakcancer,” Cam5 to Came4, analysis of bus efficiency for different I/O buffer size 

“Breakdancers” Camera#5 to Camera#4 
Buffer Size 

(Byte) 
Single mode 

(Byte) 
Burst mode 

(Byte) 
Request times

Transmit 
times 

Max length 
(Byte) 

Average bus 
efficiency 

8 151712 0 151712 151712 8 0.648 

16 94899 27664 108731 122563 16 0.802 

32 72799 48140 87488 120939 32 0.813 

64 61048 57206 76440 118254 64 0.831 

128 55581 60750 71009 116331 128 0.845 

256 52790 62245 68269 115035 137 0.855 

768 51097 63395 66412 114492 187 0.859 

Table 4-3 Bus efficiency in buffer size of 8byte to frame width for different sequences  

Buffer 
Size 

(Byte) 

Breakdancers 

C5toC4 

Breakdancers 

C3toC4 

Ballet 

C5toC4 

Ballet 

C3toC4

BookArrival

C10toC8

BookArrival

C7toC8

Lovebird 

C5toC6 

Lovebird 

C10toC6 
Average

8 0.648 0.662 0.623 0.628 0.774 0.848 0.800 0.783 0.721 

16 0.802 0.807 0.774 0.775 0.906 0.972 0.916 0.896 0.856 

32 0.813 0.810 0.779 0.791 0.917 0.955 0.901 0.887 0.857 

64 0.831 0.826 0.793 0.812 0.925 0.957 0.904 0.887 0.867 

128 0.845 0.838 0.803 0.825 0.935 0.961 0.909 0.892 0.876 

256 0.855 0.846 0.807 0.834 0.941 0.967 0.915 0.899 0.883 

768 0.859 0.850 0.809 0.838 0.946 0.973 0.919 0.904 0.887 

 

Fig. 4-8 Bus efficiency in different I/O buffer size 
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4.4 Analysis of bandwidth and memory size in hole-filling process 

As discussion in Chapter 3.4, we select bi-linear interpolation with a window of 9x5 to do 

hole-filling. The position of final-hole is determined according to the depth map processed by 

the median filtering and the two synthesized hole-maps processed by the dilation as shown in 

the blend mode of Table 3-1. However, the locations of holes are irregular and different in 

among frames and scenes.  For this random position characteristic, the run-time synthesized 

output has to be stored in the internal memory for hole-filling. To minimize the internal 

memory usage, the data of whole frame can be stored in the external memory. But to lessen 

the overall bandwidth, the data should be stored in the internal buffer with the size of several 

columns. Thus, that is a trade-off issue between the external memory bandwidth and the 

internal memory usage, and the two approaches are proposed in the following sub-chapters.  

4.4.1 Frame-level buffering with vertically dynamic reuse 

To have a smaller volume in internal memory, the bi-linear interpolation in hole-filling 

can be processed at another frame-level stage. But the bandwidth utilization will be raised if 

doing interpolation by fetching every pixel in block size. For example, a 9x5 bi-linear 

interpolation needs the additional bandwidth of 45x2MB for a HD1080p frame. If only fetch 

pixels are flagged as final hole, a hole table recording hole position is needed. As shown in 

Table 4-4, the holes counts are up to about 1% of a frame. With this percentage, the 

bandwidth will be up to 0.9MB and the hole-buffer needs 55KB memory for an HD1080p 

frame.  

The bandwidth can be saved by using the data reuse technique. For the random-positioned 

characteristic of hole, in the blending step, the hole-position (HP) and the hole-height (HH) 

are pre-calculated and stored into a hole-index table. In the hole-filling step, according to the 

stored HP and HH, texture data are fetched into the filter kernel, and then the center pixel can 
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be filtered as shown in Fig. 4-9. This process is performed row by row until the holes are 

completely filled. For the holes are belong to the same index, their data for filtering can be 

reused, so that the bandwidth could be saved by 53.903%% in average as shown in Table 4-4.  

 

(a) (b) (c) (d) (e) 

Fig. 4-9 Filling process with dynamic vertically reuse for a 9x9 bi-linear filter. 

However, the bandwidth is low but the request-time is high. Because the kernel is fetched row 

by row but the texture data in external memory is stored by column, filling a hole needs 

request the bus for the block-size times. 

4.4.2 Column-level buffering 

The other method is run-time storing data in the internal memory. In the scan-column-order 

warping process, the blended texture is stored in the column buffers. Hence we take this 

strategy as column-level buffering. After all buffers are full, the interpolation kernel is full and 

the interpolation starts immediately. It needs no additional bandwidth. However, there is the 

number of column buffers equal to block-width, and both the texture and flagged final-holes 

need be buffered at the same time.  

4.4.3 Comparison 

Table 4-4 and Table 4-5 list overall bandwidth usage and internal memory size for 

frame-level buffering and column-level buffering. Note the hole-index table recording holes 
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position and holes length. Because holes length is less than 128 in the test sequences, we 

choose the bits of representing hole-length as 7 bits. Furthermore, we need 22bits to represent 

frame indexes for HD 1080P video. Therefore the total bits in hole-index table are 29bits as 

written in Table 4-5.  

Although the frame-level buffering approach is with the smallest internal buffer, it suffers 

from additional bandwidth.  Finally, we choose column-level buffering as the interpolation 

method for it contributes no bandwidth usage and the 56.16Kbit of internal memory is also 

smaller than the use of vertically dynamic reuse approach. 

Table 4-4 Bandwidth of different bi-linear interpolation approaches 

  Frame-level buffering 
Frame-level buffering with 

vertically dynamic reuse 
Column-level 

buffering 

Sequence 
name 

Number of 
holes 

Number of 
holes 

/frame (%) 

Bandwidth
(MB 

/frame) 

Number of 
holes index

Bandwidth
(MB 

/frame) 

Save 
(%) 

Bandwidth 
(MB/frame)

Ballet 7499 0.954  0.506  1475  0.145  71.405  0 

Breakdancers 7019 0.893  0.474  1243  0.127  73.147  0 

BookArrival 948 0.121  0.064  79  0.012  81.481  0 

Lovebird1 1197 0.152  0.081  1067  0.073  9.654  0 

Newspaper 901 0.115  0.061  185  0.018  70.243  0 

Champagne 574 0.047  0.039  113  0.011  71.390  0 

Kendo 183 0.023  0.012  183  0.012  0.000  0 

average     53.903 0 
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Table 4-5 Internal memory size of different bi-linear interpolation approaches 

Internal memory size
Frame-level buffering 

Original access 

Frame-level buffering 

with vertically dynamic 

reuse 

Column-level buffering

Kernel 9x5=45 bytes 9x5=45 bytes 9x5+2x5x3=75 bytes 
Hole-table 20Kx22bit=55KB - - 

Hole-index table - 2Kx29bit=7.25KB - 
Y buffer - - 4.32Kbytes 

Final hole buffer - - 4.32Kbits 
U buffer - - 1.08Kbytes 
V buffer - - 1.08Kbytes 

Total 55.04KB 7.25KB 7.02KB 

4.5 Column-level pipeline and bus scheduling 

From Chapter 4.3, we choose the data access by the column order. More specifically, the two 

critical data accesses, the warped depth writing and the reference texture reading, are 

column-pipelining for the forward warping and the reverse warping, respectively. From 

Chapter 4.1, we divide the depth mapping and texture mapping into two frame-level pipeline 

stages. In the first stage, the depth mapping is done by forward warping; in the second stage, 

the texture mapping contains depth filtering, reverser warping, blending, and hole-filling. The 

overall column-level processing is shown in Fig. 4-10, for the first stage and the second stage. 

To let a HD1080P video be processed for the speed of 30fps, and if this design runs at 

200MHz, the maximum processing cycle is 6.667M for a frame. For the most critical 

combinational logic are the warping and depth filtering, because they are the by-pixel process, 

a pixel can be processed for 3.215 cycles in average. In fact, we can do warping as well as 

depth filtering in pixel-pipeline hence the throughput is 1 pixel/cycle for left view and right 

view separately, and the total throughput achieves 0.5 pixels per cycle in the virtual view.  
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Therefore, the data rate for combinational design is enough, and the total bandwidth as well, 

by choosing bus width as 64-bit as described in Chapter 4.1. However, as discussed in 

Chapter 4.3, the random position of warping makes data access overhead increase. Moreover, 

the pipeline structure of two frame-level stages means that the bus has to deal with the 

accesses of two stages simultaneously, and the critical data access of two stages need be 

processed by sharing bus bandwidth in a certain cycles. Therefore, to ensure the critical 

access working correctly, we make the regular access of I/O in sequential with the 

column-level pipelining. The bus first deals the regular data read before column-level process 

starting; then it deals the random read/write during the column-level pipelining period; finally 

it does the regular texture write-back access as shown in Fig. 4-10.   

(a) 

 
(b) 

Fig. 4-10 Scheduling of BUS transmission in processing a column (a) is for depth mapping and (b) is for texture 

mapping. In fact that bus access is another column-level pipeline stage. 
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Chapter 5  

Hardware implementation 

 

Fig. 5-1 Overall architecture of VS engine 

Fig. 5-1 shows the overall hardware architecture which has three main parts: “Depth 

Mapping,” “Texture Mapping,” and “VSArbiter.” The “Depth mapping” module has two 

main function blocks: one is the preprocess for homography estimating, and the other is the 

forward warping for depth mapping. The “Texture mapping” module has two processes with 

complicated data flow. One is the hole-map processing to decide blend mode, and the other 

processing contains the depth filtering, reverse warping, blending and hole-filing. Finally, the 

“VSArbiter” arbitrates the bus requests from the above two modules. 

In addition, there are data buffers between the processes for data reuse and reordering. Note 

that for the notation of buffers, “D” means depth map, and “Y,” “U,” “V” are the 3-channel 

texture data. “L,” “R,” “V” mean reference left view, reference right view, and the virtual 

view, respectively. “LV” and “RV” mean the warped virtual view form reference left view 

and reference right view, respectively.  

VSArbiter

FirstStage
(Depth Mapping) SecondStage

(Texture Mapping)
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5.1 Preprocess 

The preprocess module is mainly for making homography matrices that will be used in the 

warping process, and does all calculation regarding to camera parameters. Since camera 

parameters are the same among one video, the module only have to process once over the all 

frames. For the proposed frame-level pipelining architecture, this preprocess module is 

installed into the first stage because the second stage of texture mapping module has less 

timing budget. The detailed architecture of the preprocess module is shown in Fig. 5-2. 

The “Ztrans” performs Z-transform for mapping 8-bit sampled depth level to depth value. The 

“MakeProjeciton” loads the camera parameters K, R, T to do matrix multiplication for the 

projection matrix P, as formulated in Eq. (2-1). With the depth value and projection matrix P, 

the “Projection transform” calculates the two-side projection in Eq. (2-4). All the input points 

src and the output points dst are feed into the “Make Homography” module for computing a 

homography matrix. Finally, all the coefficients of 256 homography matrices are stored in the 

internal memory “Homography table.” 

 

Fig. 5-2 sub-modules of the preprocess module 
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According to the description in Chapter 3.2.1, a homography matrix can be solved through an 

8x8 linear system. With the homography matrix, we can reduce the computational complexity 

in the warping process from two 3x4 matrix multiplication of projection transform to one 3x3 

matrix multiplication of homography transform. However, the 4 pairs of correspondence for 

solving the linear system should be obtained by projection transform, so that its hardware cost 

(i.e. MakingProjection and ProjectionTransform) cannot be avoided. 

Besides, the homography matrices need be stored in internal memory. There are 256 sets of 

homgraphy matrices for 256 depth values, and each set consists of 4 homography matrices for 

4 different mapping relationships. The mapping relationships are reference left view to virtual 

view, reference right view to virtual view, virtual view to reference left view, and virtual view 

to reference right view. The former two is for the depth mapping, and the latter two is for 

texture mapping. As a result, the internal memory should store 256x4 homography matrices. 

Since each homography matrix is a 3x3 matrix with 8 floating elements, the buffer size will 

be of 524,288 bits.  

To solve this large internal memory problem, Lin et al. [17] proposed a linear-interpolated 

approximation (LIA) method. They found that the homography matrices have the linear 

relationship between successive depth values. Thus, only N+1 sets of homography matrices 

are stored in memory, and the other depth values are interpolated using the stored matrices 

with inverse of depth distance as interpolation weighting, as shown in Eq. (5-1).  
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(5-1)

We adopt this method and choose N as 8 for implementation. Therefore we will need 9 

homography matrices of depth value equaling to 0, 32, 64, 96, 128, 160, 192, 224, and 255. 

The overall flow chart for estimating homography is shown in Fig. 5-3. 

In the following parts, we describe the detailed architecture of the modules 

ProjectionTransform and MakeHomography. 

 

Fig. 5-3 Flow chart of the preprocess module 

5.1.1 Projection transform 

The projection transform will do 4-points transform for homography estimation. Suppose 

PSrc=KSrc [RSrc; TSrc] projects (uSrc, vSrc)T to (X, Y, Z)T and PDst=KDst [RDst; TDst] projects (uDst, 
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vDst)T to (X, Y, Z)T. The Eq. (2-4) shows the relation of (uSrc, vSrc)T and (uDst, vDst)T obtained by 

the back-projection and projection. For the projection process, we need adders, multipliers 

and dividers in hardware implementation. In addition, the required bits of these operators 

regard to the Z value as well as the camera parameters, which depends on the content of 

scenes. Because the hardware cost will be increased when the operator bits are large, in the 

following, we discuss several methods to decrease the operator bits, especially for dividers. 

Table 5-1 Z value and the scaled Z of some sequences 

 Before scaling Scale  
factor 

After scaling 
Sequence Zmax Zmin Zmax Zmin 

Ballet 42 130 1 42 130 
Breakdancers 44 120 1 44 120 
BookArrival 23.345 54.471 1 23.345 54.471 
Lovebird1 1560.122 156012.2 1/1024 1.523 152.355 

Akko&Kayo 2342.249 12491.99 1/64 36.597 195.187 
Newspaper 2715.182 9050.605 1/64 42.424 141.415 
Champagne 2281.358 7045.261 1/32 71.292 220.164 

Kendo 448.2512 11206.28 1/64 7.003 175.098 

Table 5-1 shows the maximum and minimum depth of Z among different scenes. If the range 

of Z is a large dynamic range, the depth Z must be represented by wide-bit in hardware 

implementation. Hence the divider is very large. Nevertheless, the depth Z is sampled as 8-bit 

disparity in the depth map, so that we can scale (X, Y, Z)T to (sX, sY, sZ)T, where s is a base-2 

scalar and sZ is a 8-bit value, while keeping the original performance well. From Eq. (2-4), 

the relation of (uSrc, vSrc)T and (uDst, vDst)T remains when we also scale T to sT. By doing the 

step, the integer parts of Z and T can be sampled to only 8-bit numbers, and the divider can 

cut for maximum 10 bits in integer part. To further decrease the divider complexity, we 

transform the fixed-point division to IEEE 754 floating-point division, and the gate count can 

reduced to 3.258% at UMC 90nm process. The associated comparison is list in Table 5-2. 
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Table 5-2 Comparison of divider sizes for projection 

 Divider size 
(integer.fractional) 

Gate count(K) 
@90nmUMC 

Reduction 

Original 48.11/29 80.079 100% 
Z scaling 39.11/20 44.682 55.797% 

Floating-point 9.23/9.23 2.870 3.258% 

5.1.2 Homograhy matrix estimation 

As mentioned in Chapter 3.2.1, the homography matrix is estimated by solving an 8x8 linear 

system, and there are many methods for solving a linear system. The general methods are 

using matrix decomposition, such as the well-known LU decomposition or singular value 

decomposition (SVD). However, they suffer from high computational complexity in software 

implementation. The SVD is accelerated in VLSI design for many years. By using two-sided 

rotation, it can be implemented with parallel operators, such as systolic array [19] for 

efficiency. The operating processors in the systolic array containing rotation and angle 

computation to do two-sided rotation, and are further implemented as coordinate rotation 

digital computer (CORDIC) [20] for ease the hardware complexity. The CORDIC can replace 

trigonometry computation by iterative shift and addition [21]. 

The other easier method excepts for matrix decomposition in solving linear system is the 

iterative methods such as Gaussian-Seidel method as formulated in Eq. (5-2). For solving the 

above linear system in Eq. (3-5), the aii, hi, and bi are elements of A, h, and b, respectively; k 

is the iteration times, and n equals to 8 because this is an 8-by-8 system. 

 
(5-2)

Solving the linear system using iteration method has the following advantages. First is that the 

computation precision can be controlled by the iteration times. Next, because the homography 

estimation is independent of frame-size, it is not the timing-critical function in the VS engine. 
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Therefore, the iteration is a sequential computation and it can be with less logic in hardware 

implementation.  

However, the key fact of iteration computation is the convergence condition. In fact, 

Gaussian-Seidel methods will converge if the matrix A has the property of diagonal 

dominance [22],  

     
(5-3)

This is a sufficient condition, and this condition will be nearly fit if we rearrange A to let 

bigger elements in the matrix diagonal. Usually the matrix A are built uses source points in 

the frame corner, (width-1, 0), (0, height-1), (0, 0), and (width-1, height-1), which are indexed 

as source point 1, 2, 3, and 4 respectively. However, in order to let bigger elements in the 

diagonal, we rearrange Eq. (3-5) to the following equation, 

 

 

(5-4)

By using Gaussian-Seidel method in Eq. (5-2), to solve the rearranged system Eq. (5-4) , we 

find that the homography matrix can be estimated for certain iteration times, which is related 

to calculation precision. In the constraint of the precision requirement of homography 

coefficients list in Table 5-3, the iteration times for the system to converge are less than 20 as 

shown in Fig. 5-4.   
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Table 5-3 Precision of homography coefficients 

coefficient h00 h01 h02 h10 h11 h12 h20 h21 
(integer.fractional) 2.16 2.16 8.5 2.16 2.16 8.5 1.27 1.27 

. 

 

Fig. 5-4 Iteration times of homography estimation  

When storing the estimated homography matrix, the homogrphy coefficients will be divided 

into HBase and HInc as shown in Eq. (5-1). In addition, according to the bits setting in Table 

5-3, the total bits of a homography matrix are 154 bits. Therefore we need 308 bits to store a 

homography matrix, and totally 8x308 bits for setting N as 8 in the LIA method. Because 

there are four mapping relations, the total homography storage in the VS engine should be 

32x308 bits. However, due to the proposed two-stage frame-level pipelining architecture, the 

homography estimation is finished at the first stage while the reverse warping in the second 

stage also requires the homography matrices. Therefore, the homography table should be 

implemented with a ping-pong buffer for the reverse warping. In summary, the homography 

table is 48x308 bits in our design. 
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5.2 Warping  

 

Fig. 5-5 Sub-modules of warping 

The architecture for warping is shown in Fig. 5-5. It is the same for both forward warping and 

reverse warping but only the input is different; one is the depth map of reference views, and 

the other is the warped depth map of virtual view. The “WarpSet” module controls the input 

data, and refers to homography table according to the input depth. The “LinearHomo” module 

linearly interpolates the homography parameters as in Eq. (5-1). The “TransHomo” module 

performs the homography transform in Eq. (3-2), with 18- stage pipelining to achieve the 

throughput of 1 pixel/cycle as in Fig. 5-6. 

 

Fig. 5-6 Combinational logic of the “TransHomo” module; the two dividers are implemented using Synopsys 

DesignWare block IP “DW_div_pipe” of 16 pipeline stages  
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5.2.1 Forward warping 

In the VSRS software, a hole-map of virtual view labeled with 0 for hole and 1 for non-hole 

could be simultaneously produced in the forward warping process. To avoid storing the 

hole-map in internal memory, the information of hole-map could parasitize in the warped 

depth map using the depth of 0 as hole. Thus, the warped depth map in external memory are 

initially set as 0, and after forward warping process, the pixel with zero depth represents a 

hole. But for some cases, the depth value is 0 at the reference view are not the real-hole 

although they are still 0 after forward warping. We avoid this condition by leveling up the 

depth 0 as depth 1 when forward warping.  

Furthermore, because of the initialization of warped depth maps in external memory, the bus 

bandwidth will be increased to 25Mbytes per frame, and the bus utilization will increased to 

43.75% when using 64bits bus, as demonstrated in Chapter 4.1. In fact, the initialization 

process can be done by data memory access (DMA) controller, so that this process will not 

affect the timing plan as shown in Fig. 4-10. But since the preprocess module is part of the 

first-stage frame-level pipelining, and this module do not have to access data in external 

memory, we can overlap the schedule of the external memory initialization and the original 

preprocess as shown in in Fig. 5-7. 

However, the additional bus access will slow down the 2nd frame-level stage because the 

column-level scheduling plan for the 2nd frame-level stage is started with another bus access. 

The result of throughput drop due to the conflicts in external memory access will be detail 

discussed in Chapter 5.6.1.  
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Fig. 5-7 Refined scheduling of BUS transmission in processing the first column for the 1st frame-level stage 

5.2.2 Reverse warping 

In the second stage in the frame-level pipelining, the reverse warping is one of the 

column-level stages as shown in Fig. 4-10. After the reverse warping, the texture data are read 

in next stage. But as discussed in Chapter 4.3, the warped position is random, so in warping 

process, we record the warped index (u, v) and the length of depth continuity in a ping-pong 

index table. The index table can provide the next blending process to access pixel data from 

external memory more efficiently. Note that the accessed data may be 1 byte to 8 bytes, 

depending on the continuity length. To make this data in regular order for the use of blending 

in the next pipeline stage, we set a ping-pong valid table to flag the valid byte of input in the 

data accessing stage as shown in Fig. 5-8. Then the data can be reordered according to the 

valid table by only grabbing data with valid flag 1 into the reorder buffer.    
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Fig. 5-8 Example of the reordering process using the index table and valid table 
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This section demonstrates the block-based median filtering, dilation and bi-linear 

interpolation. These are all sub-functions of the second stage in frame-level pipelining. For 

the column-level pipelining architecture as described in Chapter 4.5, these filtering and 
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throughput of 1 pixel/cycle, the column buffers are all controlled using FIFOs, which will 

update data in the first-in-first-out order at every cycle. 

5.3.1 Circular FIFO control for 3x3 median filtering and 3x3 dilation 

 

Fig. 5-9 Sub-modules of filter 

The 3x3 median filtering is applied both in warped hole-map and depth map as shown in Fig. 

5-9. For the warped hole-map, the median concept can be changed to “summation larger than 

5.” In other words, if the number of hole in a 3x3 window is larger than 5, the center pixel 

will be labeled as 1. Also note that the hole-map is built by judging if depth is zero, as 

described in Chapter 5.2.1. On the other hand, for the warped depth map, 5 minimum 

selectors are allocated to select the median value among 9 inputs as in Fig. 5-10. The critical 

path of the 5 minimum selectors equals to the delay of 20 comparators.  

The 3x3 dilation can be implemented with a simple Boolean function. And it has the same 

data control as 3x3 median filtering. 



47 

 

Fig. 5-10 Model of 3x3 Median filter 

 

Fig. 5-11 Circular FIFO for 3x3 median filter and dilation 

The data control is shown in Fig. 5-11. There are 2 circular FIFOs for this 3x3 median filter. 

Data is stored into FIFO1 at the first column stage and will be pop out for median filtering in 

the second column stage, and then is re-stored into FIFO2. It will be pop-out again as the 

bottom line of filter kernel in the third column stage. The size of this circular FIFO is column 

height. It pushes in the newest input data and simultaneously popes out the data stored at 

previous column stage. 

By using the circular FIFOs, the input data can be reused for 9 times in 3x3 block-based 

filtering, and the hence bandwidth usage is small. The bandwidth equals to the frame size but 

not 9 times of frame size, which is the bandwidth usage without internal buffer.  

Note that this median filter is non-accumulated. The filtered data will not be stored back into 

FIFO, but is passed to next processing. The filtered depth is the input of reverse warping 
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module and the filtered hole-map is stored in another pipelining buffer waiting for dilation as 

shown in Fig. 5-9.. 

5.3.2 Column-level accumulated bi-linear interpolation 

The bi-linear interpolation is used for hole-filling. As discussed previously, we implemented 

it as column-level buffering, for the advantage of data reuse and low bandwidth. The 

block-based bi-linear interpolation has a similar control as 3x3 filtering. For the block size of 

9x5, there are 5 stages in column-level pipeline and 4 circular FIFOs for data reuse. Because 

this interpolation is guided by final-hole flag, the hole is also buffered in another 4 circular 

FIFOs. Moreover, the texture data is of 3 channels, Y, U, V, for the format of YUV4:2:0, the 

9x5 block can be adjusted to 5x3 block for U and V. So there are another two sets of 2 smaller 

FIFOs for U, V data.  

Because we want all holes to be filled successfully, the interpolated data must be capable of 

being referenced for filling process of following flagged holes. Therefore the interpolated 

output must be fed back into the circular buffer FIFIO3 as shown in Fig. 5-12.   

 

Fig. 5-12 Circular FIFO for 9x5 bi-linear interpolation in column-level accumulation 



49 

In fact, because the interpolation has a latency of 4 cycles, this is only a column-level 

accumulation. The fed back data will be pop-out and reused after a column stage.  

5.4 Blending 

The “Blending” module calculates Eq. (3-6), and it blends the two synthesized textures from 

two reference view. As mentioned in Chapter 5.2.2, because the warped data is out of order 

and is placed different positions between the two synthesized textures, we use the “reorder 

buffer” to reorder this warped texture data.   

The control of reorder buffer is by blend mode list in Table 3-1. For its data accessing step, all 

data will be fetched if it is non-hole. But the non-hole data may be not used in blending stage 

if it is in the boundary noise area, and this is the “Boundary Special” case defined in Chapter 

3.3. The data in reorder buffer of reference left view will be popped out when the blend mode 

is “L only”, “Weighted add,” and “Boundary Special” with “R only”. “L only” means only 

reference left view has reference texture; “Weighted add” means that both left view and right 

view have reference texture and they will be blended by weighted addition. The “R only” with 

“Boundary Special” flag means both left view and right view have mapped texture but the left 

view’s is with boundary noise. In the final case, although there is texture from the reference 

left view, the blending will not include it for that it is boundary noise. And thus this data in 

the reorder buffer need to be popped out but in fact, it will not be used in the blending stage.   

Note that the reorder buffer for reference right view has a similar control.  

5.5 Arbitration 

To implement the timing plan in bus access as shown in Fig. 4-10, those accesses units are 

divided into two groups for different arbitration type as in Fig. 5-13. 
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Group A is for regular access and the arbitration is by round-robin. In round-robin arbitration, 

when one’s transmission with bus completes, the next grant will give other requests except for 

no others request. In fact, the Group A can request only once in a column process if bus 

transmits with the burst length equal to the frame height. That is because the transmitted data 

are placed regularly in the external memory, where one column data is placed in one row of 

memory.  

On the other hand, group B will request data continuously during the warping process because 

the transmitted data are in fragment and the access location in memory is random. 

Furthermore, the access time of Group B is critical in overall processing cycle because access 

of Group B is one of column-level pipeline stages as discussed in Chapter 4.5. If the access 

time is increased for the reason of grant lost with bus, the overall pipeline stages will also 

increase. Therefore the arbitration is designed as that bus will always grant one if it requests 

continuously.  

 

Fig. 5-13 Two different groups in bus arbitration design  
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5.6 Implementation Result 

5.6.1 Overall schedule 

 

Fig. 5-14 Overall schedule of VS engine 

Above shows the overall schedule of our design. This is a hierarchical pipeline from the 

frame-level, column-level, to pixel-level. In the frame-level pipelining, two stages are the 

depth mapping and texture mapping. In the column-level pipelining, sub-modules and random 

bus access both use column-level buffering for efficiency. In the pixel-level pipelining, all the 

computations are parallelized to achieve the throughput of 0.5 pixels per cycle. Note that the 

“Preprocess” will only start at initial of a frame; it is not in the column-level pipelining stage. 

And the reset of external memory for DLV and DRV will be processed only in the first 

column of a frame.  
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Fig. 5-15 Accurate cycle counts for the sequence “Breakdancers” 

Fig. 5-15 shows the accurate cycle counts for the test sequence “Breakdancers” at the working 

frequency of 200MHz. Note that the frame size of this sequence is 1024x768. The cycle 

counts of the first frame-level stage is 2,123,936 cycles, containing 258,411 cycles for the 

“Preprocess” module and 1,865,525 cycles for 1024 columns in total. Because this stage 

contains 2 column-level pipelining stages, the latency is a column process. Hence in average, 

one column stage may cost 1,821 cycles. For the second frame-level stage, the total cycle 

counts are 2,429,849 for 1024 columns. For this stage contains 6 column-level pipelines, the 

latency is 5 column processes. Therefore one column process in the second frame-level stage 

is 2362 cycles in average. 

The critical one is the 2nd frame-level stage. If we scale the frame size to HD1080P, the cycle 

counts become 6,406,829 cycles, and the throughput will be 31 fps. However, because the 

reset of external memory is adopted at the first column, this makes the bus access unable in 

the beginning to the 2nd frame-level stage. As a result, the total cycle counts for 2nd 

frame-level stage are 2,630,557 cycles.  

Therefore, it needs 2,630,557 cycles to complete a frame of frame size 1024x768. If we scale 

the frame size to HD1080P, the cycle counts become 6,935,749 cycles, and the throughput 
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will be decreased to 28 fps.  In summary, this design can get the throughput of 58M pixels 

per second.  

5.6.2 Hardware cost 

This VS engine is synthesized using the UMC90nm technology process and the clock rate is 

200MHz. The detail gate count and internal memory report is shown below. 

Table 5-4 Implementation result of area, gate count and internal memory size 

SRAM included SRAM excluded Internal memory 

Cell Area(K) Gate count(K) Cell Area(K) Gate count(K) 1-port(KB) 2-port(KB)

FirstStage (Depth mapping) 

  Preprocess 174.314  61.769  174.314 61.769  0 0 

  Fwarp 148.922  52.772  148.922 52.772  0 0 

  Ctrl 12.540  4.443  12.540  4.443  0 0 

  I/O 256.331  90.833 0 0  14.592 0 

  Total 592.108  209.818  335.777 118.985  14.592 0 

SecondStage (Texture mapping) 

  Filter 342.057  121.210  72.860  25.818  0 5.440 

  Rwarp 146.440  51.892  146.440 51.892  0 0 

  Blend 167.941  59.51  80.184  28.414  4.352 0 

  HoleFill 390.680  138.440  81.444  28.860  0 7.072 

  Ctrl 40.862  14.479  40.862  14.479  0 0 

  I/O 479.311  169.848  0 0  23.104 0 

  Total 1567.294  555.384  421.793 149.466  27.456 12.512 

Homography Table 191.808 67.968 0 0 14.784 0 

Total   2159.403  765.203  757.570 268.451  56.832 12.512 

  

The sub-modules “Preprocess,” “FWarp” and “RWarp” have high complexity for the matrix 

computation; while “Filter” and “HoleFill” are heavy for the FIFO-based control, which is 

implemented using 2-port SRAM. The I/O interface of the two top modules “FirstStage” and 

“SecondStage” are also large for the column-level 1-port SRAM.   
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5.6.3 Performance result 

Table 5-5 Experimental sequences 

sequence name Ballet Breakdancers BookArrival Lovebird1 

texture 

    

depth 

    

WxH 1024x768 1024x768 1024x768 1024x768 

provider MSR MSR HHI ETRI 

depth provider provider Provider DERS_4_9 DERS_4_9 

sequence name Newspaper Champagne Tower Kendo 

texture 

   

 

depth 

   

 

WxH 1024x768 1280x960 1024x768 

provider GIST MPEG-FTV MPEG-FTV  

depth provider DERS_4_9 Provider Provider 

Table 5-5 lists 7 test sequences used in the experiment. The “Ballet” and “Breakdancers” are 

from Microsoft research (MSR) [23]; the “BookArrival,” “Lovebird1,” and “Newspaper” are from 

Fraunhofer Heinrich-Hertz-Institut (HHI) [24], Electronics and Telecommunications Research 

Institute (ETRS), and Gwangju Institute of Science and Technology (GIST) respectively, and their 

depth map are estimated using DERS_4_9, which is provided by MPED-FTV; the “Champagne Tower” 

and “Kendo” are from MPEG-FTV.  
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All sequences are run for 10 frames, and are evaluated by averaging the PSNR of each frame. 

The total performance is shown in Table 5-6. Three VSRS approaches are taken for each 

sequence of certain view and of certain 10 frames. The first approach is original VSRS_3_5 in 

the general mode of camera setting. And the second approach is VSRS_3_5 with inpainting 

replaced by bi-linear interpolation. The final is our hardware implementation design.  

Table 5-6 Comparison of Average PSNR in 10 frames 

Performance 
Original 

VSRS_3_5 

Original VSRS_3_5 

Our design 
Average Y-PSNR(dB) in 10 frames 

9x5 bi-linear 

interpolation 

Ballet, C5-C4-C3, f90-f99 33.081  33.208  33.372  

Breakdancers, C5-C4-C3, f81-f90 32.984  33.166  33.121  

BookArrival C10-C8-C7,f0-f9 36.385  36.371  36.499  

lovebird1, C5-C6-C8, f0-f9 31.791  31.802  31.800  

Newspaper, C3-C5-C6, f0-f9 30.683  30.677  30.778  

Champagne, C37-C38-C39, f0-f9 33.367  33.367  33.361  

Kendo C1-C2-C3, f0-f9 33.000  33.000  33.250  

Average ΔPSNR compare 
VSRS_3_5 

0.000  0.043  0.127  

In the comparison between the result of first and the second approach, it indicates that the 

inpainting method can be substituted by the simple bi-linear interpolation without degrading 

the overall performance. Even some sequences have worse performance in bi-linear 

interpolation approach, the degrading PSNR are less than 0.014 dB.  

This table also shows that the overall PSNR performance of our hardware implementation 

approach is better than software approach. This may be because the sampling alias in 3D 

warping is less in hardware implementation. Nevertheless, if in subjective sense, instead of 

the objective PSNR evaluation, their performances are in fact nearly the same in Fig. 5-16 

because our implementation is based on the software approach. 
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(a-1)Ballet, Our implementation (a-2)Ballet, VSRS 

(b-1)Breakdancers, Our implementation (b-2)Breakdancers, VSRS 

(c-1)BookArrival, Our implementation (c-2)BookArrival, VSRS 
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(d-1)Lovebird1, Our implementation (d-2)Lovebird1, VSRS 

(e-1)Newspaper, Our implementation (e-2)Newspaper, VSRS 

(f-1)Champagne Tower, Our implementation (f-2)Champagne Tower, VSRS 



58 

(e-1)Kendo, Our implementation (e-2)Kendo, VSRS 

Fig. 5-16 Experimental results in comparison to original VSRS results 



59 

Chapter 6  

Conclusion 

The major contribution in this thesis is the analysis and implementation of view synthesis 

engine (VS engine) based on the view synthesis reference software (VSRS) algorithm 

provided by MPEG-FTV. 

This implementation includes the whole flow of the VSRS algorithm, from making projection 

matrix, homography estimation, 3D warping, post-filtering to blending and hole-filling. In 

global view, we proposed 2-stages frame-level pipelining architecture to implement 3D 

warping of depth and texture in memory concern; in local view, we used the column-level 

pipelining to make data access efficient, because the warped index is random among whole 

frame. We also analyzed the hole-filling interpolation method and proposed a simple bi-linear 

interpolation that is friendly for hardware implementation.       

This design supports the video throughput of 58M pixels per second. In the UMC 90nm 

technology and at the 200MHz work frequency, the total hardware cost is 268.451K in gate 

counts and the total internal memory usage is 56.832KB for one-port SRAM and 12.512KB 

for two-port SRAM. Furthermore, the total bandwidth is 700Mbytes per second and the bus 

utilization is 43.75% by using 64-bits bus. The performance is good for it is without quality 

drop in the objective PSNR evaluation comparing to original VSRS algorithm. 

Future work 

We have implemented the whole VSRS algorithm as ASIC design that supports the general 

mode of camera settings, but the preprocess part that regarding to projection matrix and 

homography estimation is heavy, which has gate counts of totally 61.769K in our design. This 
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part can be simplified if the cameras are set in a line, and the 3D warping method can then be 

substituted by simple horizontal shift approach. In this approach, the hardware cost will be 

further cost down because the computation is simpler and the large usage in memory will also 

be saved. This adjustment is acceptable because actually, most videos are fetched in the 

parallel camera settings in the nowadays MPEG-FTV study.      

In addition, about 64.9% hardware cost is from the large usage in internal memory. In our 

design, we choose the size of I/O buffer as column-level for best bus efficiency. But we can 

indeed reduce the size to 16bytes or 32 bytes that with bus efficiency 85.6% and 85.7% in 

average and only decrease 3.1% compared to column size buffer as list in Table 4-3. By 

decrease the I/O buffer size to 32KB, the size of one-port SRAM can be reduced from 

56.832KB to 19.968 KB. 

Furthermore, for higher specification in today’s visual entertainment, the throughput usually 

is 60 fps for HD1080p videos. Because our design takes turns to processing left-view video 

and right-view video in a column-level stage, we can improve our design by doubling the 

combinational logics to process two views simultaneously so that the throughput could be 

doubled. 
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