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Analysis and Design of a View Synthesis Engine

Student: Ying-Rung Horng Advisor: Dr. Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

The free view-point television (FTV) system is a developing innovative system that can
generate free view-point video for the new trend of display application. In the FTV system,
the view synthesis is one of the most important components in the receiver-side for view
interpolation and reconstruction. MPGE-FTV forum proposed view synthesis reference
software (VSRS) that uses two-view videos and the corresponding depth maps to synthesize
the virtual-view video. To achieve the demand of synthesizing high quality videos in real-time,
we implemented a view synthesis engine in_VLSI design based on the VSRS algorithm.
However, the irregular mapped positions between views result in complicated data control,
high internal storage, and high external bandwidth in hardware implementation, especially for

high resolution videos.

To address the design challenges, in this thesis, a hierarchical pipelining architecture from the
frame-level, column-level, to pixel-level is proposed. In the frame-level pipelining, two stages
are installed for the depth mapping and texture mapping to store temporary warped maps in
external memory and reduce internal memory. In the column-level pipelining, the circular
FIFO buffering architecture and column-level buffering are proposed to improve the
efficiency of external data access. In the pixel-level pipelining, all the computations are

parallelized to achieve the throughput of 0.5 pixels per cycle.

il



With the UMC 90nm CMOS technology, this design consumes 268.5K gate counts, 56.9KB
and 12.5KB memory space for on-port and two-ports SRAMs. In the objective evaluation, our
hardware implementation can generate the virtual view without quality drop in PSNR,

compared to the original results of VSRS.
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Chapter 1

Introduction

1.1 Background

In these years, the 3D-TV system becomes more popular since it can generate stereoscopic
views, and raise a drastic revolution in human vision entertainment. Another new developing
system, free-viewpoint TV (FTV), can generate arbitrary views chosen by user. These two
systems both adopt the depth image-based rendering (DIBR) method [1],[2], which uses depth
maps to render novel views, and does not need the real geometry of scene since the depth

maps only indicate the mapping relation between views.

In the frameworks of the both systems for broadcast TV, the depth maps are estimated by the
sender-side because of its high-complexity effort; after encoding, transmitting and decoding

by multi-view video coding (MVC), the novel views are synthesized by the receiver-side.

1.2 Motivation

The recent research of view synthesis focused on algorithm development and implemented by
software programming. However, for practical applications, the receiver-side demands a
real-time view synthesis engine for displays. Furthermore, for the increasing resolution
demands on consumers, the frame size of HD is a trend, so that the challenges on bandwidth
or memory usage are increased. Motivated by the real-time speed and high resolution
requirement, the thesis proposes a view synthesis engine in application specific integrated

circuit (ASIC) design, which supports the real-time demand for HD videos.

1.3 Thesis organization



In this thesis, Chapter 2 concentrates on the basic background of video-plus-depth format and
depth-image based rendering (DIBR), which is the most common idea of synthesizing images
using depth map. Two different configurations of multi-cameras for DIBR, 3D warping and

horizontal shift, are also briefly demonstrated in this chapter.

Chapter 3 introduces the algorithm of view synthesis reference software (VSRS) provided by
MPEG-FTV. The VSRS is a two-view based rendering method, using the video-plus depth
format for each view. The algorithm uses the 3D warping for general camera mode, and the
horizontal shift for 1D camera mode. In addition, the 3D warping needs the homography
transform. The main flow of VSRS contains depth mapping, post-filtering, texture mapping,
two-view blending and hole-filling. Since the last hole-filling affects the synthesis quality,

different hole-filling methods are discussed in this chapter.

Our hardware implementation is for the 3D warping mode of VSRS. Chapter 4 focuses on the
architecture design of VSRS, and addresses the problem in 3D warping that the mapped index
is random over the whole frame. Bandwidth usage and internal memory size are also the
concentrated points in this chapter. Finally, this chapter proposes an efficient architecture with
the frame-level pipelining in global view and the hierarchical column-level pipelining in local

view.

Chapter 5 describes the detail implementation methods based on the designed architecture.
Final implementation results contain gate-count, internal memory usage and the overall

performance in peak-signal-to-noise ratio (PSNR).

1.4 Contribution

The major contribution in this thesis includes:



We analyzed the hardware cost of VSRS algorithm for the general setting case of
cameras, in which the cameras may with rotation such that they are not in the same
baseline.

We modified the hole-filling method in VSRS by using the simple bi-linear interpolation
method and analyzed the bandwidth and memory usage in different hardware design
approaches.

We implemented the whole VSRS algorithm as ASIC design for the real-time,

high-resolution requirements.



Chapter 2
Related work

View synthesis is an image rendering method in the application of depth map. This chapter
first introduces the concept of stereo vision and depth estimation method associated with view
synthesis. Then the data format of video-plus-depth applied in the 3D-TV and FTV system is
described. Finally, the most general view synthesis method, depth-image based rendering

(DIBR) is presented.

2.1 Stereo vision and video-plus-depth concept

Human feels 3D visual perception because the scenes seen by left eye and right eye are with
horizontal difference. The difference is called scteen parallax values or the disparity that brain
can interpret it as 3D visual perception as shown in Fig. 2-1. This disparity Xz-X; can further
be transformed to depth Z based on“the inverse proportional relationship considering the

baseline B and focal length f,

B
Z= A
X, — X,
object
depth
X X Z
image plan ﬁ

j g TP

' focalJength,f '

left eye right eye
baseline,B

Fig. 2-1 Relationship of depth and disparity for 3D visual perception



The depth map stores the depth value sampled in 8 bits and has variety of applications, such
as 3D display, 3D interactive system, or multi-view video etc. In fact, depth map can be
obtained by many methods such as using time-of-flight camera (TOF camera), structure from
motion algorithm or stereo matching algorithm etc. Nowadays, in both 3D-TV system [1] and
FTV system [2], the video and its corresponding depth maps are encoded and transmitted by
the sender-side, and they are decoded by the receiver-side to generate novel views or
stereoscopic views. The data format in these systems is called video-plus-depth format. In the
video-plus-depth format, the sender-side is mainly for video capturing, rectifying and depth
estimating, and the receiver-side can do view synthesis flexibly and adaptively for different

display needs by the reference of the depth maps [3].
2.2 Depth-image-based rendering

2.2.1 3D warping

The depth-image-based rendering (DIBR) is an image-rendering technique using depth maps
for virtual view synthesis. This rendering is'by 3D warping model considering the provided
known by-pixel depth. In 3D world-coordinate as shown in Fig. 2-2 (a), a point (X, ¥, Z) can
be mapped to a 2D point (%, v) in the image plane of a camera. In Eq. (2-1), this projection is
performed by the projection matrix P, which can be decomposed to the camera intrinsic

parameters K, the camera rotation matrix R, and the translation matrix T.

u

siv|=P _ |=K[R |-T

-1

-~ N~ X
— N~ X

u
Z-T ,by letting(u",v",w")T =R'K"|v (2-2)

S =

"



Note that the term s in Eq. (2-1) is a scalar factor, which depends on the depth Z as in Eq.
(2-2).

Next we consider the back-projection from a 2D point to 3D word-coordinate. In fact, a 2D
point would be mapped to a line in the 3D world-coordinate. That means one pixel will not be
back-projected to a unique point in the 3D world-coordinate. Nevertheless, if we have the
depth Z, a 2D point can be back-projected to a unique point in the 3D world-coordinate

through this equation,

X 77 u
Y [=Z—=R'K'|v|+T (2-3)
z

1

w

Based on the projection of 3D to 2D and the back-projection of 2D to 3D, we can further
extend this concept to the mapping relation:between multi-views. For the convergent cameras
as shown in Fig. 2-2 (b), the camera centers of two_views are mapped and converged to the
same point Z¢ in the 3D world-coordinate. And (a)/is an example of multi-view projection.
Since the point (us., vs.) of Camg, and the point (ups, vps) of Campg are projected to the
same point (X, Y, Z) in the 3D world-coordinate, these two points have the mapping relation

in the following equation,

Z _ T ul):z Z _ T uSrc
Z ,Dst Z,Src K R Rfl K—l + K R (T _ T )
W" var " Dst ™" Dst™ " Sre™ 0 sre vSrc Dst ™+ Dst Sre Dst/)* (2_4)

Dst 1 Sre 1

where the index of source view can be warped to destination view with the given Z value and

the camera parameters of each camera.



Camge

(a) (b)

Fig. 2-2 (a) Convergent multi-view cameras; each (u, v) in the image planes can project to the same 3D point(X,

Y, Z). (b) Convergent two cameras and the convergence point Z¢. Adapted from [4]

2.2.2 Horizontal shift

Zc

Cam; +————————————» Cam
' Baseline of Cam;;

(a) (b)

Fig. 2-3 (a) parallel multi-view cameras; each (u, v) in the image planes can project to the same 3D point(X, Y,

7). (b) Parallel two cameras and the convergence distance Z¢. Adapted from [4]

If cameras are all set parallel in a line as shown in Fig. 2-3, the DIBR can be simplified to the

mapping method, called horizontal shift [5].

For cameras are in parallel, the camera rotation matrix becomes an identity matrix I, and

translation vector will only have nonzero element in X dimension as t=(Tx, 0, 0)". If the



intrinsic matrices of source view and destination view are the same, Eq. (2-4) can be rewrite

as

(Ty s = Tx.pa) o
uDS[ = uSrc + - ZX’DI (2'5)

B

where f, is the focal length in the intrinsic matrix. It shows that the mapping index of two
views in each image plane only has difference in horizontal direction. In this camera
configuration, the process of view synthesis can be performed through a much easier way,

which can be horizontal shifting according to the depth value Z.



Chapter 3

Overview of view synthesis reference software algorithm

3.1 Overview
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Fig. 3-1 Block diagram of view synthesis algorithm proposed by MPEG-FTV

According to MPEG-FTV, the view synthesis algorithm synthesizes virtual/target/synthesized
view based on the two view framework.[6] The algorithm block diagram is Fig. 3-1. First the
camera parameters of reference views and synthesized view are used for projection matrix to

do 3D image warping, and the projection is further implemented as homography transform



will be described in detail in following section. Note that the reference views are usually one
in the left and one in the right for high-quality occlusion handling. The depth map at
synthesized view is pixel-by-pixel mapped using forward warping from reference view, and
then post-filled using median filter. Next, the synthesized depth is reverse warped to reference
view for texture mapping. The above processes are adopted for both left view and right view,
finally the synthesized texture from left view and right view are blended by occlusion

handling and the remaining holes are filled by inpainting method.

3.2 3D image warping
3.2.1  Projection transform and homography transform

This algorithm uses 3D image warping for view synthesis as described in Chapter 2.2 for the
video-plus-depth data format. Fig. 3-2 illustrates the process of 3D image warping, where the
projection represents the mapping between 3D world coordinate and image coordinate with a
a 3x4 matrix. For the example of a point.in the left view to its correspondence in the target
view, the calculation of warping process contains two projection transform, which are the
forward projection using Py, and the backward projection using Py. Because of the twice
projection and the pixel-by-pixel warping process, the projection transform method has high

computational complexity.
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Fig. 3-2 Warping process using projection or homography transform

On the other hand, the homography method simplifies the warping process, and adopts the
homography matrix, which is a 3x3 matrix for the relation between two image planes. For the
same example in Fig. 3-2, the calculation of a point from the left view to target view can
become only one transform using the homography matrix Hry. Note that one homography
matrix is corresponding to one specific depth of Z in the 3D coordinate shown in Fig. 3-3.
That is because a homography matrix is-deduced from the forward projection and backward
projection with fixed depth of Z. Since a depth map is usually represented using a gray-level
image, there are 256 homography matrices for 256 depth levels between two views. In
addition, because of the efficiency of homograph method, the released software of

MPEG-FTV uses homography transform to perform the pixel-by-pixel warping process [5],

[8].
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Fig. 3-3 Homography of 256 depth levels between two views

For the homography relation with a specified depth Z, if the two image planes Is;. and Ipg

have the homography matrix H, they should satisfy the transform equation,

Xpst = HXgre (3-1)
where Xg;. is a point with the vector (us,, Vs, 1 )T on the image plane Is;., and Xp is a point
with the vector (upg, Vs, 1 )T on the image plane Ipg. Let H be a 3x3 matrix formed by (%gy,
hoi, hoz hio, hig, hiz hoo hap, ho2y). The transform equation Eq. (3-1) can be expanded as Eq.

(3-2), and be further rewritten as Eq. (3-3).

u. = hooum + hmvm + hoz _ hmum + hnvm + h1z (3 2)

Dst s Vst — =
hzo”m + thvSrc + hzz hzo”m + hzlvm + hzz

uSrchOO + VSrchOI + hoz _uDstuSrchZO _uDstvSrchZI _uD:IhZZ =0 (3 3)

uSrchIO + VSrchll + hlz - VDsluSrchZO _vDstVSrchZI _vDschZ =0

Note that the two linear equations in Eq. (3-3) are independent for solving H. For more

clearly explanation, by defining the homography matrix as vector form,
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h= (h()(), h()]: h()Z, h[(); h]]; h12, hZ(); h21; hZZ)T-

Eq. (3-3) can be reformulated into

(3-4)

1 - VD.YIMSV'L‘ ~VpaV -V

|:u5a Vere 10 0 0 “UpUsg.e TUp Ve _uD.\'r:|h=0

DV sre .
This is a linear equation with 9 unknown values in h. We can find that a pair of corresponding
points in two image planes can provide two independent equations for solving h. That is we
have a linear system with 2-by-9. If there are N pairs of points, a linear system with 2N-by-9
is formed. Because the homography transform is a homogeneous vector, the last element 4,

equals to 1, and it needs at least 4 pairs of points to solve h [4] . Then the linear system is

formulated as the 8-by-8 square one,

A h b
— — —
Ugey Vogey 10 0 0 - Upaases  —UpgiVsea | Moo Upgi i
0 0 0 Uge1  Vsren 1 - Vpdalbsier:  — VosiaVseea || Mo Vst
Uger Vo 10 0 0 —upgsligis —UpgaVses | Mo Upgia
0 0 0 ug, Voo Bo—Vpallg.s —VpuaVses | My Vpst.2
= (3-5)
Uses Vses 10 0 0 —up, gy —UpysVses | hy Upst,3
0 0 0 ug.3 Vees 1 —Vpusllges —VpusVses | Mo VDst,3
Uses Vsea 10 0 0 —upyaliges —UpyaVsea | Moo Upst 4
0 0 0 ugy Vogeu 1 —Vpualges —VpuaVses Ny Vst 4

To solve the linear system, many numerical methods could be applied. In MPEG-FTV, the

2

VSRS estimates the homography vector h using the function “cvFindHomography” in the
open computer vision library (OpenCV). This function solves the above linear system by the
singular value decomposition (SVD). For the hardware implementation of SVD, we should

consider precision, computational complexity, and hardware cost. The details of

implementation method are discussed in Chapter 5.1.2.

3.2.2  Depth mapping using forward warping
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In this step, both the depth maps of reference left view and right view are warped to the
virtual views. This warping process is called forward warping, which represents the 3D
warping from the reference view to the virtual view as in Fig. 3-2. For each pixel in the
reference, according to its depth value and the corresponding homography matrix, the warped
position in the virtual view can be acquired using the homography transform in Eq. (3-2).
With the warped position, the depth value in the reference view is copied to the virtual view.
After pixel-by-pixel warping, the whole new depth map is synthesized in the virtual view.

Note that there are two new depth maps warped from left view and right view separately.

Since the original depth map in the reference view may have noise, or the warping process
may induce sampling alias, the new depth map in the virtual view usually suffers from small

noisy holes. To remove them, the new depth.map is post-filtered by the median filter [5], [6],

[7].
3.2.3  Texture mapping using reverse warping

In this step, the texture in the virtual view can be synthesized by warping the texture in
reference view according to the depth map in the virtual view. This warping process is called
reverse warping because the warping direction is from the virtual to reference view, instead of

the reference to virtual view in the previous forward warping.

The details of the reverse warping are presented as follows. Using depth value in the virtual
view, which is the result of previous depth mapping, the position in virtual view can be
warped to the position in reference view. With the corresponding positions, the texture from
reference view is copied pixel-by-pixel to virtual view. Because of the post-filtered depth map,
the synthesized frame has fewer holes, compared to the typical texture mapping by forward

warping. Note that the decreased holes are caused mainly by round-off error [7], but the large
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holes due to occlusion still remains in the result of this step. Note that this step should be
performed for left view and right view separately. Thus, two synthesized frame for the virtual

view are generated.

3.3 Occlusion handling and blending

In DIBR process, the mapped synthesized images incur large holes which may be seen by the
right reference view or left reference view but occluded in the synthesized view. To recover
the so called disocclusion, the study of one-view synthesis for stereoscopic video generation
has adopted various hole-filling methods, such as linear interpolation [1] and horizontal
extrapolation [10]. But it suffers from serious texture distortion since the large holes cannot
be recovered well. Better filling methods may consider the depth information or gradient
character into interpolation [11]. In order toralleviate the difficulty of hole-filling, the depth
smoothing method [12]-[14] is adopted before the 3D warping process. The aim of the depth
smoothing is to reduce the size of holes by means of lessening the sharp discontinuity in depth

maps.

On the other hand, for the two-view synthesis algorithm we adopt, two synthesized views
from left reference view and right reference view are produced separately. Hence the holes
caused by occlusion can be filled from each synthesized view, which is based on that some
scene may be seen by only left-eye or only right-eye. Thus the blending method proposed in

[7] is formulated by the equation

A-a)!,(u,v)+aly(u,v), if I,(u,v)and I,(u,v)are not holes
) I, (u,v), 1if I,(u,v)ishole »
U,V = . . -
I, (u,v), if I,(u,v)ishole -0

0, else
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In Eq. (3-6), there are four blending modes, and the hole-pixel can be detected in the previous
depth mapping step. For the first mode, a pixel is not a hole if it is mapped during the warping
process. When both synthesized views are not holes, the blending is done by weighted
addition with the distance factor in Eq. (3-7), where t is the translation vector in extrinsic
camera parameters. For the second and third modes, if only one synthesized view can be
obtained, the blending will only the corresponding reference view. For the last mode, if the
pixel is a hole both from reference left and right views, it will be marked as the “final-hole”,
and should be filled by other image interpolation method. The other method is introduced in

the next section.

However, boundary noise appears after-blending due to mismatch between depth map and
texture, especially at disparity discontinuity region. To eliminate these artifacts, the hole-maps
are dilated one or two pixels, so that holes borders are extended and will be filled with
background. Fig. 3-4 shows the synthesized image with and without dilating hole-map.
Because the hole-map after dilating has the wider borders of the holes, the two hole-maps are
different at the boundary area. A new truth table of blending mode can be adopted as in Table
3-1. We define the different area of the two hole-maps as “Boundary Special”, because it is
the border area of depth discontinuity, and may induce boundary noise. Note that its blend

mode is different from the general case.
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Fig. 3-4 Synthesized image (a) without dilating the-hole-map and (b) with dilating the hole-map

Table 3-1 Blend mode truth table

0 if hole, 1 if not hole Blend Mode Boundary
Special

reference | reference After dilation After dilation
toL toR reference to L reference to R

0 0 - - Final-hole 0

0 1 0 - R only 0

1 0 - 0 L only 0

1 1 0 1 R only 1

1 1 1 0 L only 1

1 1 0 0 Weighted add 0

1 1 1 1 Weighted add 0

3.4 Hole-filling

Remaining holes flagged as “final-hole” after blending can be handled by different methods

in view synthesis. FTV uses the advanced inpainting method [15] for the general warping

mode, and the simple linear interpolation method for the 1D horizontal shift mode. Miiller et
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al. [9] extrapolates only background color on holes by examining depth value on the two sides
of hole-border, because foreground has larger depth and background has smaller depth. Oh et
al [16] proposed a depth-based inpainting method which also fills holes with only background
color. No matter what methods are, because these remaining final-holes cannot be seen from
any reference views but only can be filled reference to surrounding pixels, it is enough for

holes to be filled naturally but not exactly.

However, the inpainting is a frame-based image processing and are more complex in
hardware implementation. Thus, we apply a simple bi-linear interpolation, which performs a
2D low-pass filter with geometric distance weighting on the final-hole flag. In this thesis, we

implemented this simple bi-linear interpolation by block-based as shown in Fig. 3-5.
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Fig. 3-5 Bi-linear interpolation of hole-filling

However, the block size is related to hole-size and is a key factor in internal memory size as
well as in performance. When block is too small, the larger holes in frame border may not be
filled; if block is too big, the buffer size becomes large, and the interpolated texture would be
noised. Table 3-2 shows the performance of some sequences under different block sizes. The
sequence “Ballet” has larger holes, so that its performance is better when block size increases.
The sequences “BookArrival,” “LoveBird1” and “Kendo” have smaller holes, so that when
block size is increased, the performance is degraded. For general good performance in

average, we choose the block size of 9x5 in our design.
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Fig. 3-6 Performance of bi-linear interpolation for hole-filling in different block size

Table 3-2 Performance of hole-filling by, using bi<linear interpolation in different block size

Y-PSNR Performance (dB)

Block size Ballet Breakdancers BookArriyal Lovebirdl Newspaper Kendo
5x3 33.18638 33.06250 36.41172 31.80200 30.67576 33.00001
9x5 33.20828 33.16606 36.37078 31.80157 30.67691 32.99998
13x7 33.21609 33.17187 36.35280 31.80039 30.67858 32.99997
17x9 33.21837 33.16193 36.34878 31.79952 30.67945 32.99996

21x11 33.22026 33.14299 36.34814 31.79897 30.67974 32.99996
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Chapter 4
Proposed architecture

Our objective is to implement a real-time view synthesis (VS) engine corresponding to the
VSRS algorithm for the frame size of HD1080p (1920x1080). There are three main
challenges in implementing the VSRS algorithm. First, for general application, the 3D
warping requires much more hardware complexity, especially in storage cost, than the
horizontal shift method. That results from the cameras with rotation, so that the disparities
between each view are not only in horizontal direction as shown in Fig. 2-2. Hence data

storage is increased from 1D to 2D, and its data control becomes complicated.

Second is that the VSRS algorithm uses two steps of 3D warping, one for depth mapping and
the other for texture mapping. The main advantage in-two steps warping is that warped depth
map can be post-filled for better texture mapping. In addition, because the reverse warping
processes in the index of target view, two synthesized views from different reference views
can be processed at blending and hole-filling steps in parallel. However, the data storage and
access are increased for the additional synthesized depth map, and therefore internal memory

and bandwidth utilization become critical in architecture design.

Third challenge is in the hole-filling. As Chapter 3.4 described, we choose the simple
bi-linear interpolation with the block size of 9x5 in this step. But the data storage and access

is still a challenge because of the remaining holes at irregular and discontinuous positions.

Our architecture design is focus on solving the above three challenges. Finally the architecture
adopts the two frame-level pipeline stages, and each with hierarchical column-level pipeline

stages.
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4.1 Two frame-level pipelining stages

Because the depth mapping using forward warping and the texture mapping using reverse
warping are performed at different positions, the former depth mapping should stores the
warped depth of virtual view in a reorder buffer for the latter texture mapping. This size of
reorder buffer will be disparity level if videos are rectified with no rotation. On the other hand,
its size is up to multiple rows if videos are with rotation. For example of “Ballet” in Fig. 4-1,
the region of depth map from row 0 to row 30 in reference view are forward warped to the
target view with out-of-order position. The previous 20 rows in reference view are warped out
to frame range, and this means that the first whole row of the virtual view is collected after
the warping process of 20 rows. We need a buffer size of frame width by 20, which is

40.96KB to buffer the previous mapped depth, and is up to 108KB for HD1080P.

-4 frame width! >
row 0
.
(a)
row=-20

row=49 ¢—

(b)

Fig. 4-1 Warped depth map row0 to row30 of “Ballet” (a) is the reference view and (b) is the virtual view.

To eliminate this reorder buffer, we propose the architecture of two frame-level pipeline
stages, which performs the depth mapping process and the texture mapping process in
different stages.. Fig. 4-2 shows the schedule of the proposed two frame-level architecture.
The warped depth is stored in the external memory at 1 stage and read at 2™ stage for texture
mapping.

21



With the proposed two-level architecture, Table 4-1
increased for the additional access of warped depth map. By using 64-bits bus with the
working frequency of 200MHz, the bus utilization is 39.375% for the video throughput of 30

frames per second (fps). In addition, for the specific analysis, we use the bus width of 64-bits

in our design.

Note that in Fig. 4-2, the warped depth maps are written and read simultaneously by 1% stage
and 2" stage. This means that there are ping-pong-like external memories for the warped

depth maps. One is written the warped depth value of frame i, and the other is read the warped

depth value of frame i-/.

shows that the total bandwidth is

External Bus
memory 1 B time
bR . ot . | Read
Frame i Frame i
stage1
DRV DLV Write Depth Depth Depth Depth Depth
Frame i Framei |= mapping | mapping | mapping | mapping | mapping
Frame1 | Frame2 | Frame3 | Frame4 | Frame...
DRV DLV Read
Frame i-1 | Frame i-1 » Texture | Texture | Texture | Texture | Texture
> mapping | mapping | mapping | mapping | mapping
Read Frame1 | Frame2 | Frame3 | Frame4 | Frame...
TR TL
Frame i-1 | Frame i-1 stage2
Write DR/DL: depth map of reference right/left view
v | DRV/DLV: warped depth map from reference right/left
Frame i-1 TR/TL/TV: texture (YUV) of reference right/left and virtual
~&

Fig. 4-2 Two frame-level pipeline and the access between external memory
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Table 4-1 Total bandwidth of two frame-level stages

Architecture
Data One frame-level stage Two frame-level stage
Depth map (Left, Right) 2Frame(Read) 2Frame(Read)
Depth map (Left to virtual )
) ) - 2Fram(Read, Write)
Right to virtual)
Texture (YUV, L, R) 3Frame(Read) 3Frame(Read)
Texture (YUV, virtual) 1.5Frame(Write) 1.5Frame(Write)
Total bandwidth
13MB 21MB
( 2MB/frame)

4.2 Scan-column warping order

Usually a Z-buffer/depth buffer of frame-size is needed in depth mapping [8]. In 3D world
coordinate, if foreground objects and background objects are projected to the same position in
the image plane, the foreground objects will o¢clude the background objects. The Z-buffer
should store all warped depth value in the depth mapping process for depth comparison to

handle the occlusion problem.

For on-the-fly warping processing, the size of a shift window is proportional to the horizontal
search range (SR_H) and the vertical search range (SR_V). Furthermore, the search range is
different among scenes and is increased when frame-size is larger. For the example, the frame
size of “Ballet” , 1s 1024x768, the SR _H is 55 and SR_V is 197 for camera 5 and camera 4.

Hence the total Z-buffer is at least 21.67KB and is up to 57.13KB for HD1080P.

To eliminate the Z-buffer usage, when cameras are configured in a straight line, the
foreground will occlude background in the same scan-line correctly if we scan from left to
right for right-view warping and scan from right to left for left-view warping. This warping
method is called depth-compatible order method, whose necessary constraint is the epipolar
lines are parallel to scan-line. This is the scan-line order under the cameras with precisely

parallel configuration, and the Z-buffer can be omitted in this case.
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When cameras are with rotation, Morvan [4] has derived the occlusion-compatible scanning
order for non-rectified images according to the epipolar geometry as shown in Fig. 4-3. For C
and C’ are camera locations for virtual view and reference view; Pb and Pf are both projected
to p in the virtual view and the epipole ¢’ is the point of C projected to the reference plane.
The scanning order in the reference view should be from the frame border to epipole e’ in the

epipolar line so that foreground Pf can occlude background Pb correctly in the vitual view.

Fig. 4-3 Occlusion-compatible scanning order revised from [4]

However, the calculation of epipolar line consumes additional hardware computational cost,
followings we analyze different scan-order approaches to eliminate the computational cost. If
the epipolar lines lie in the reference right view as in Fig. 4-4(a), the original scan-line order
will fail since an epipolar line will be warped in different scan-line and the correct scan order
in the epipolar line will be ruined as shown in Fig. 4-4(b). The similar situation occurred in

Fig. 4-4(d), (e) for the reference left view. An example of scan-line order error is Fig. 4-5(a).

We find that the warping order can be transferred to scan-column order that will not induce
occlusion error even if without the accurate epipolar lines because the order is adapted from
the range of a line to the range of the frame as shown in Fig. 4-4(c)(f). An example of

scan-column order is Fig. 4-5(a).
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Fig. 4-4 Warping order analysis.
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Fig. 4-5 Warped depth maps without Z-buffer with (a) scan-line order and (b) scan-column order

However, the location of epipole determines the scan order in epipolar line and hence for
cases that epipole lies inside the visible frame as in Fig. 4-6, our scan-column order must be

modified according to the epipole position.

polar W

epipole

Fig. 4-6 Epipole lies inside frame
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4.3 Analysis of bus efficiency and bandwidth in warping process

Fig. 4-7 Forward warping example of a column in the reference view

For the proposed frame-level pipelining architecture, the out-of-order warping also increases
the request-times between the core and bus due to writing warped depth in the 1% frame-level
stage and reading warped texture in the 2™ frame-level stage. Because the scan-column order
is adopted in this design, both the depth map and texture are arranged into a column to be
stored in a row of the external memory. With this data arrangement, Fig. 4-7 shows a column
of reference view is forward warped to the synthesized view. The warped positions are
continuous in the synthesized view if their depth values are the same. But pixels with different
depths are mapped to different columns, so that they are stored in different rows of the
external memory. That results from increasing request times to bus. In addition, if the data

size of a continuous segment with identical depth is less than the bus width in byte unit, the
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bus transfer is not efficiency since only partial data in a transfer are available. It further makes
the required bus cycle be increased. Although the total bandwidth is enough under the setting
of 64-bit bus, the inefficient transferring results in increasing bus utilization and degrades the

overall performance.

The transition efficiency is related to depth continuity, which depends on sequences.
Moreover, if we attempt to promote the efficiency of data transmission, the input and output
(I/0) bufters would be increased to collect more data for reordering. Fig. 4-8 and Table 4-3
shows the analysis of the bus efficiency with different I/O buffer sizes for the sequences
“Breakdancers,” “Ballet,” “BookArrival,” and “Lovebird1”. The detail data of “Breakdancers”
is shown in Table 4-2. Note that we set the bus width as 64-bits, and these sequences are run
for a frame. In Table 4-2, for the bus transmission mode, the single mode means that data are
transmitted for less than 8 bytes; while the burst mode means data are transmitted for more
than 8 bytes. The request times should be accumulated one if the depth discontinuity
happened. The transmit times should be accumulated one for the single mode, and the burst
length for the burst mode. In addition, the maximum length is the maximum continuity in
depth. The average bus efficiency is calculated as dividing the frame size by the average

transmission times multiplying bus width in bytes..

Tabel 4-2 shows that when buffer size is increased, the average bus efficiency is increased.
But the efficiency cannot reach to the maximum value, 100%, except for the whole frame is
with the same depth value which does not occur. Therefore, with the scan-column order
warping, we choose the I/O buffer as the frame height for higher bus efficiency. Table 4-3
shows that the average efficiency reaches to 88.7%. This means the data are ready when a
column access is complete. This concept could be further extended to the column-level

pipelining architecture, and is described in Chapter 4.5.
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Table 4-2 “Breakcancer,” Cam5 to Came4, analysis of bus efficiency for different I/O buffer size

“Breakdancers” Camera#5 to Camera#4

Buffer Size | Single mode | Burst mode ) Transmit | Max length | Average bus
(Byte) (Byte) (Byte) Request times times (Byte) efficiency

8 151712 0 151712 151712 8 0.648

16 94899 27664 108731 122563 16 0.802

32 72799 48140 87488 120939 32 0.813

64 61048 57206 76440 118254 64 0.831
128 55581 60750 71009 116331 128 0.845
256 52790 62245 68269 115035 137 0.855
768 51097 63395 66412 114492 187 0.859

Table 4-3 Bus efficiency in buffer size of 8byte to frame width for different sequences

Buffer
Breakdancers |Breakdancers| Ballet Ballet | BookArrival | BookArrival | Lovebird | Lovebird
Size Average
C5toC4 | C3toC4 | C5toC4 | C3toC4 | C10toC8 | C7toC8 C5toC6 | C10toCo6
(Byte)

8 0.648 0.662 0.623 0.628 0.774 0.848 0.800 0.783 0.721
16 0.802 0.807 0.774 0.775 0.906 0.972 0916 0.896 0.856
32 0.813 0.810 0.779 0.791 0.917 0.955 0.901 0.887 0.857
64 0.831 0.826 0.793 0.812 0.925 0.957 0.904 0.887 0.867
128 0.845 0.838 0.803 0.825 0.935 0.961 0.909 0.892 0.876
256 0.855 0.846 0.807 0.834 0.941 0.967 0915 0.899 0.883
768 0.859 0.850 0.809 0.838 0.946 0.973 0919 0.904 0.887

—
——
A
-
o
-

Fig. 4-8 Bus efficiency in different I/O buffer size
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4.4 Analysis of bandwidth and memory size in hole-filling process

As discussion in Chapter 3.4, we select bi-linear interpolation with a window of 9x5 to do
hole-filling. The position of final-hole is determined according to the depth map processed by
the median filtering and the two synthesized hole-maps processed by the dilation as shown in
the blend mode of Table 3-1. However, the locations of holes are irregular and different in
among frames and scenes. For this random position characteristic, the run-time synthesized
output has to be stored in the internal memory for hole-filling. To minimize the internal
memory usage, the data of whole frame can be stored in the external memory. But to lessen
the overall bandwidth, the data should be stored in the internal buffer with the size of several
columns. Thus, that is a trade-off issue between the external memory bandwidth and the

internal memory usage, and the two approaches are proposed in the following sub-chapters.
4.4.1  Frame-level buffering with vertically dynamic reuse

To have a smaller volume in internal memory, the bi-linear interpolation in hole-filling
can be processed at another frame-level stage. But the bandwidth utilization will be raised if
doing interpolation by fetching every pixel in block size. For example, a 9x5 bi-linear
interpolation needs the additional bandwidth of 45x2MB for a HD1080p frame. If only fetch
pixels are flagged as final hole, a hole table recording hole position is needed. As shown in
Table 4-4, the holes counts are up to about 1% of a frame. With this percentage, the
bandwidth will be up to 0.9MB and the hole-buffer needs 55KB memory for an HD1080p

frame.

The bandwidth can be saved by using the data reuse technique. For the random-positioned
characteristic of hole, in the blending step, the hole-position (HP) and the hole-height (HH)
are pre-calculated and stored into a hole-index table. In the hole-filling step, according to the

stored HP and HH, texture data are fetched into the filter kernel, and then the center pixel can
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be filtered as shown in Fig. 4-9. This process is performed row by row until the holes are
completely filled. For the holes are belong to the same index, their data for filtering can be

reused, so that the bandwidth could be saved by 53.903%% in average as shown in Table 4-4.
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Fig. 4-9 Filling process with dynamic vertically reuse for a 9x9 bi-linear filter.

However, the bandwidth is low but the request-time 1s high. Because the kernel is fetched row
by row but the texture data in external memory is stored by column, filling a hole needs

request the bus for the block-size times.
4.4.2 Column-level buffering

The other method is run-time storing data in the internal memory. In the scan-column-order
warping process, the blended texture is stored in the column buffers. Hence we take this
strategy as column-level buffering. After all buffers are full, the interpolation kernel is full and
the interpolation starts immediately. It needs no additional bandwidth. However, there is the
number of column buffers equal to block-width, and both the texture and flagged final-holes

need be buffered at the same time.

4.4.3 Comparison

Table 4-4 and Table 4-5 list overall bandwidth usage and internal memory size for

frame-level buffering and column-level buffering. Note the hole-index table recording holes
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position and holes length. Because holes length is less than 128 in the test sequences, we
choose the bits of representing hole-length as 7 bits. Furthermore, we need 22bits to represent
frame indexes for HD 1080P video. Therefore the total bits in hole-index table are 29bits as

written in Table 4-5.

Although the frame-level buffering approach is with the smallest internal buffer, it suffers
from additional bandwidth. Finally, we choose column-level buffering as the interpolation
method for it contributes no bandwidth usage and the 56.16Kbit of internal memory is also

smaller than the use of vertically dynamic reuse approach.

Table 4-4 Bandwidth of different bi-linear interpolation approaches

Frame-level buffering with | Column-level
Frame-level buffering
vertically dynamic reuse buffering
Number of Bandwidth Bandwidth Bandwidth
Sequence |Number of Number of Save
holes (MB (MB (MB/frame)
name holes holes index (%)
/frame (%)| /frame) /frame)

Ballet 7499 0.954 0:506 1475 0.145 71.405 0
Breakdancers| 7019 0.893 0.474 1243 0.127 73.147 0
BookArrival 948 0.121 0.064 79 0.012 81.481 0

Lovebird1 1197 0.152 0.081 1067 0.073 9.654 0
Newspaper 901 0.115 0.061 185 0.018 70.243 0
Champagne 574 0.047 0.039 113 0.011 71.390 0

Kendo 183 0.023 0.012 183 0.012 0.000 0

average 53.903 0
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Table 4-5 Internal memory size of different bi-linear interpolation approaches

Frame-level buffering
Frame-level buffering
Internal memory size with vertically dynamic | Column-level buffering
Original access
reuse
Kernel 9x5=45 bytes 9x5=45 bytes 9x5+2x5x3=75 bytes
Hole-table 20Kx22bit=55KB - -
Hole-index table - 2Kx29bit=7.25KB -
Y buffer - - 4.32Kbytes
Final hole buffer - - 4.32Kbits
U buffer - - 1.08Kbytes
V buffer - - 1.08Kbytes
Total 55.04KB 7.25KB 7.02KB

4.5 Column-level pipeline and bus scheduling

From Chapter 4.3, we choose the data access by the column order. More specifically, the two
critical data accesses, the warped depth writing ‘and the reference texture reading, are
column-pipelining for the forward warping and the reverse warping, respectively. From
Chapter 4.1, we divide the depth mapping.and texture mapping into two frame-level pipeline
stages. In the first stage, the depth mapping is done by forward warping; in the second stage,
the texture mapping contains depth filtering, reverser warping, blending, and hole-filling. The

overall column-level processing is shown in Fig. 4-10, for the first stage and the second stage.

To let a HD1080P video be processed for the speed of 30fps, and if this design runs at
200MHz, the maximum processing cycle is 6.667M for a frame. For the most critical
combinational logic are the warping and depth filtering, because they are the by-pixel process,
a pixel can be processed for 3.215 cycles in average. In fact, we can do warping as well as
depth filtering in pixel-pipeline hence the throughput is 1 pixel/cycle for left view and right

view separately, and the total throughput achieves 0.5 pixels per cycle in the virtual view.
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Therefore, the data rate for combinational design is enough, and the total bandwidth as well,
by choosing bus width as 64-bit as described in Chapter 4.1. However, as discussed in
Chapter 4.3, the random position of warping makes data access overhead increase. Moreover,
the pipeline structure of two frame-level stages means that the bus has to deal with the
accesses of two stages simultaneously, and the critical data access of two stages need be
processed by sharing bus bandwidth in a certain cycles. Therefore, to ensure the critical
access working correctly, we make the regular access of I/O in sequential with the
column-level pipelining. The bus first deals the regular data read before column-level process
starting; then it deals the random read/write during the column-level pipelining period; finally

it does the regular texture write-back access as shown in Fig. 4-10.

time

comblnatlonal function

Bus access

time

Fig. 4-10 Scheduling of BUS transmission in processing a column (a) is for depth mapping and (b) is for texture

mapping. In fact that bus access is another column-level pipeline stage.



Chapter 5

Hardware implementation

VSArbiter
FirstStage E : E E E E E E
A ' Secondstage : O
(Depth Mapping): (Texture Mapping) ; E IR
Preprocess ' : : : 1
! I ; s s I Pl
' . : ::
Forward H e : e :
= =
| 1158 . |58 cikaring |1, REVErSE 252 . Hole R |
22 | Warping : EE F'Ite"ng?Warping §§§ Blending | Filling 8§
: ] : : : R
: ' : N : Vo
: . ' ! ! P
; ! H . S R
: . ! : : : !
T ' : : : P
' ’ (I
Fig. 5-1 Overall architecture of VS engine
Fig. 5-1 shows the overall hardware architecture which has three main parts: “Depth

Mapping,” “Texture Mapping,” and “VSArbiter:? The “Depth mapping” module has two

main function blocks: one is the preprocess for homography estimating, and the other is the

forward warping for depth mapping. The “Texture mapping” module has two processes with

complicated data flow. One is the hole-map processing to decide blend mode, and the other

processing contains the depth filtering, reverse warping, blending and hole-filing. Finally, the

“VSArbiter” arbitrates the bus requests from the above two modules.

In addition, there are data buffers between the processes for data reuse and reordering. Note

that for the notation of buffers, “D” means depth map, and “Y,” “U,” “V” are the 3-channel

texture data. “L,” “R,” “V” mean reference left view, reference right view, and the virtual

view, respectively. “LV” and “RV” mean the warped virtual view form reference left view

and reference right view, respectively.
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5.1 Preprocess

The preprocess module is mainly for making homography matrices that will be used in the
warping process, and does all calculation regarding to camera parameters. Since camera
parameters are the same among one video, the module only have to process once over the all
frames. For the proposed frame-level pipelining architecture, this preprocess module is
installed into the first stage because the second stage of texture mapping module has less
timing budget. The detailed architecture of the preprocess module is shown in Fig. 5-2.

The “Ztrans” performs Z-transform for mapping 8-bit sampled depth level to depth value. The
“MakeProjeciton” loads the camera parameters K, R, T to do matrix multiplication for the
projection matrix P, as formulated in Eq. (2-1). With the depth value and projection matrix P,
the “Projection transform” calculates the two-side projection in Eq. (2-4). All the input points
src and the output points dst are feed into the “Make Homography” module for computing a
homography matrix. Finally, all the coefficients of 256 -homography matrices are stored in the

internal memory “Homography table.”
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Fig. 5-2 sub-modules of the preprocess module
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According to the description in Chapter 3.2.1, a homography matrix can be solved through an
8x8 linear system. With the homography matrix, we can reduce the computational complexity
in the warping process from two 3x4 matrix multiplication of projection transform to one 3x3
matrix multiplication of homography transform. However, the 4 pairs of correspondence for
solving the linear system should be obtained by projection transform, so that its hardware cost

(i.e. MakingProjection and ProjectionTransform) cannot be avoided.

Besides, the homography matrices need be stored in internal memory. There are 256 sets of
homgraphy matrices for 256 depth values, and each set consists of 4 homography matrices for
4 different mapping relationships. The mapping relationships are reference left view to virtual
view, reference right view to virtual view, virtual view to reference left view, and virtual view
to reference right view. The former two is.for the depth mapping, and the latter two is for
texture mapping. As a result, the internal memory should store 256x4 homography matrices.
Since each homography matrix is a 3x3 matrix with 8 floating elements, the buffer size will

be of 524,288 bits.

To solve this large internal memory problem, Lin et al. [17] proposed a linear-interpolated
approximation (LIA) method. They found that the homography matrices have the linear
relationship between successive depth values. Thus, only N+1 sets of homography matrices
are stored in memory, and the other depth values are interpolated using the stored matrices

with inverse of depth distance as interpolation weighting, as shown in Eq. (5-1).

36



256 . 256

_,_MH LforZ=0,——2——,...255
N N

HN (Z) = HEase,i 256/N Inci

. Z o (5-1)
1= m ’ le‘ase.i = H(mln(l X 256/N7255))’H1nc,i = le‘ase.i+l - HBa:e.i

We adopt this method and choose N as 8 for implementation. Therefore we will need 9
homography matrices of depth value equaling to 0, 32, 64, 96, 128, 160, 192, 224, and 255.

The overall flow chart for estimating homography is shown in Fig. 5-3.

In the following parts, we describe the detailed architecture of the modules

ProjectionTransform and MakeHomography.

Camera parameters

||

Make projection
matrix

D depth level=0

depth level+=256/N
Z transform

) 4 z 4-points

Projection projection
transform

4-points
correspondences
v

Make
homography
matrix

!

Save parameters in
homography table

Fig. 5-3 Flow chart of the preprocess module
5.1.1  Projection transform
The projection transform will do 4-points transform for homography estimation. Suppose

Ps:=Ksre [Rsre; Tsre] projects (usye, vs)' to (X, Y, Z)" and Ppg=Kpg [Rps; Tpsi] projects (ups,
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vDst)T to (X, Y, Z)T. The Eq. (2-4) shows the relation of (ug., vS,C)T and (upg, vDS,)T obtained by
the back-projection and projection. For the projection process, we need adders, multipliers
and dividers in hardware implementation. In addition, the required bits of these operators
regard to the Z value as well as the camera parameters, which depends on the content of
scenes. Because the hardware cost will be increased when the operator bits are large, in the

following, we discuss several methods to decrease the operator bits, especially for dividers.

Table 5-1 Z value and the scaled Z of some sequences

Before scaling Scale After scaling
Sequence Zmax Zmin factor Zmax Zmin
Ballet 42 130 1 42 130
Breakdancers 44 120 1 44 120
BookArrival 23.345 54.471 1 23.345 54.471
Lovebirdl 1560.122 156012.2 1/1024 1.523 152.355
Akko&Kayo 2342.249 12491.99 1/64 36.597 195.187
Newspaper 2715.182 9050.605 1/64 42.424 141.415
Champagne 2281.358 7045.261 1/32 71.292 220.164
Kendo 448.2512 11206.28 1/64 7.003 175.098

Table 5-1 shows the maximum and minimum depth of Z among different scenes. If the range
of Z is a large dynamic range, the depth Z must be represented by wide-bit in hardware
implementation. Hence the divider is very large. Nevertheless, the depth Z is sampled as 8-bit
disparity in the depth map, so that we can scale (X, Y, Z)" to (sX, sY, sZ)", where s is a base-2
scalar and sZ is a 8-bit value, while keeping the original performance well. From Eq. (2-4),
the relation of (g, vS,C)T and (upy, vDS,)T remains when we also scale T to sT. By doing the
step, the integer parts of Z and T can be sampled to only 8-bit numbers, and the divider can
cut for maximum 10 bits in integer part. To further decrease the divider complexity, we
transform the fixed-point division to IEEE 754 floating-point division, and the gate count can

reduced to 3.258% at UMC 90nm process. The associated comparison is list in Table 5-2.
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Table 5-2 Comparison of divider sizes for projection

Divider size Gate count(K) Reduction
(integer.fractional) @90nmUMC
Original 48.11/29 80.079 100%
Z scaling 39.11/20 44.682 55.797%
Floating-point 9.23/9.23 2.870 3.258%

5.1.2 Homograhy matrix estimation

As mentioned in Chapter 3.2.1, the homography matrix is estimated by solving an 8x8 linear
system, and there are many methods for solving a linear system. The general methods are
using matrix decomposition, such as the well-known LU decomposition or singular value
decomposition (SVD). However, they suffer from high computational complexity in software
implementation. The SVD is accelerated in VLSI design for many years. By using two-sided
rotation, it can be implemented with parallel operators, such as systolic array [19] for
efficiency. The operating processors- in the systolic- array containing rotation and angle
computation to do two-sided rotation, and are further implemented as coordinate rotation
digital computer (CORDIC) [20] for ease the hardware complexity. The CORDIC can replace

trigonometry computation by iterative shift and addition [21].

The other easier method excepts for matrix decomposition in solving linear system is the
iterative methods such as Gaussian-Seidel method as formulated in Eq. (5-2). For solving the
above linear system in Eq. (3-5), the a;;, h;, and b; are elements of A, h, and b, respectively; &
is the iteration times, and » equals to 8 because this is an 8-by-8 system.

" =~ i(% /aﬁ)hj(.k) — Zn:(al.j /aﬁ)h;.k_l) +(b,/a,) (5-2)

Jj=1j<i Jj=1,j>i

Solving the linear system using iteration method has the following advantages. First is that the
computation precision can be controlled by the iteration times. Next, because the homography
estimation is independent of frame-size, it is not the timing-critical function in the VS engine.
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Therefore, the iteration is a sequential computation and it can be with less logic in hardware

implementation.

However, the key fact of iteration computation is the convergence condition. In fact,
Gaussian-Seidel methods will converge if the matrix A has the property of diagonal
dominance [22],

a,> 2 ai/" (5-3)

J=1,j#i

This is a sufficient condition, and this condition will be nearly fit if we rearrange A to let
bigger elements in the matrix diagonal. Usually the matrix A are built uses source points in
the frame corner, (width-1, 0), (0, height-1), (0, 0), and (width-1, height-1), which are indexed
as source point 1, 2, 3, and 4 respectively. However, in order to let bigger elements in the

diagonal, we rearrange Eq. (3-5) to the following equation,

Uger Vsen 1 0 =upgitiger  —Upg1Veer | Foo Upsa
Uger Vser 10 0 0 =upt., —UpgsVses | by Ups,2
Uges Vses 10 0 0 —up, s —UpgsVses | hgy Ups.s
0 0 0 ugi Veer 1 —Vouillger  ~VouaVser || Mo | Vst
0 0 0 ug, Voo 1 =Vpuallges ~VpuaVeesr | M Vg2 >4
0 0 0 g3 Voes 1 —Vpusllges —VpusVses | M Vg3
0 0 0 gy Voes 1 —Vouallges ~VpuaVsea | M Vpsi.a
Ugeqy Voeq 1 0 0 0 —up gy —UpysVses \ Dy U pst 4

By using Gaussian-Seidel method in Eq. (5-2), to solve the rearranged system Eq. (5-4) , we
find that the homography matrix can be estimated for certain iteration times, which is related
to calculation precision. In the constraint of the precision requirement of homography
coefficients list in Table 5-3, the iteration times for the system to converge are less than 20 as

shown in Fig. 5-4.
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Table 5-3 Precision of homography coefficients

coefficient hoo ho he, | hio hy, hiy | hy hy,
(integer.fractional) | 2.16 | 2.16 | 8.5 | 2.16 | 2.16 | 8.5 | 1.27 | 1.27
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Fig. 5-4 Iteration times of homography estimation

When storing the estimated homography matrix, the homogrphy coefficients will be divided
into Hgase and Hyye as shown in Eq. (5-1). In addition, according to the bits setting in Table
5-3, the total bits of a homography matrix are 154 bits. Therefore we need 308 bits to store a
homography matrix, and totally 8x308 bits for setting N as 8 in the LIA method. Because
there are four mapping relations, the total homography storage in the VS engine should be
32x308 bits. However, due to the proposed two-stage frame-level pipelining architecture, the
homography estimation is finished at the first stage while the reverse warping in the second
stage also requires the homography matrices. Therefore, the homography table should be
implemented with a ping-pong buffer for the reverse warping. In summary, the homography

table is 48x308 bits in our design.
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5.2 Warping
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Fig. 5-5 Sub-modules of warping

The architecture for warping is shown in Fig. 5-5. It is the same for both forward warping and
reverse warping but only the input is different; one is the depth map of reference views, and
the other is the warped depth map of virtual view. The “WarpSet” module controls the input
data, and refers to homography table according to the input depth. The “LinearHomo” module
linearly interpolates the homography parameters as in Eq. (5-1). The “TransHomo” module
performs the homography transform in Eq. (3-2), with 18- stage pipelining to achieve the

throughput of 1 pixel/cycle as in Fig. 5-6.
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Fig. 5-6 Combinational logic of the “TransHomo” module; the two dividers are implemented using Synopsys

DesignWare block IP “DW _div_pipe” of 16 pipeline stages
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5.2.1  Forward warping

In the VSRS software, a hole-map of virtual view labeled with 0 for hole and 1 for non-hole
could be simultaneously produced in the forward warping process. To avoid storing the
hole-map in internal memory, the information of hole-map could parasitize in the warped
depth map using the depth of 0 as hole. Thus, the warped depth map in external memory are
initially set as 0, and after forward warping process, the pixel with zero depth represents a
hole. But for some cases, the depth value is 0 at the reference view are not the real-hole
although they are still 0 after forward warping. We avoid this condition by leveling up the

depth 0 as depth 1 when forward warping.

Furthermore, because of the initialization of warped depth maps in external memory, the bus
bandwidth will be increased to 25Mbytes per frame, and the bus utilization will increased to
43.75% when using 64bits bus, as demonstrated. in-Chapter 4.1. In fact, the initialization
process can be done by data memory-access (DMA) controller, so that this process will not
affect the timing plan as shown in Fig. 4-10;-But since the preprocess module is part of the
first-stage frame-level pipelining, and this module do not have to access data in external
memory, we can overlap the schedule of the external memory initialization and the original

preprocess as shown in in Fig. 5-7.

However, the additional bus access will slow down the 2™ frame-level stage because the
column-level scheduling plan for the 2™ frame-level stage is started with another bus access.
The result of throughput drop due to the conflicts in external memory access will be detail

discussed in Chapter 5.6.1.
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Fig. 5-7 Refined scheduling of BUS transmission in processing the first column for the 1 frame-level stage

5.2.2  Reverse warping

In the second stage in the frame-level pipelining, the reverse warping is one of the

column-level stages as shown in Fig. 4-10. After the reverse warping, the texture data are read

in next stage. But as discussed in Chapter 4.3, the warped position is random, so in warping

process, we record the warped index (uy v) and the length of depth continuity in a ping-pong

index table. The index table can provide the next blending process to access pixel data from

external memory more efficiently. Note that the-accessed data may be 1 byte to 8 bytes,

depending on the continuity length. To make this data in regular order for the use of blending

in the next pipeline stage, we set a ping-pong valid table to flag the valid byte of input in the

data accessing stage as shown in Fig. 5-8. Then the data can be reordered according to the

valid table by only grabbing data with valid flag 1 into the reorder buffer.
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Fig. 5-8 Example of the reordering process using the index table and valid table

5.3 Median filtering, dilation, and bi-linear interpolation

This section demonstrates the block-based median filtering, dilation and bi-linear
interpolation. These are all sub-functions of the second stage in frame-level pipelining. For
the column-level pipelining architecture as described in Chapter 4.5, these filtering and

interpolation need buffers data with the size of several columns. In addition, to achieve the
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throughput of 1 pixel/cycle, the column buffers are all controlled using FIFOs, which will

update data in the first-in-first-out order at every cycle.

5.3.1  Circular FIFO control for 3x3 median filtering and 3x3 dilation
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Fig. 5-9 Sub-modules of filter

The 3x3 median filtering is applied both in warped hole-map and depth map as shown in Fig.
5-9. For the warped hole-map, the median concept can be changed to “summation larger than
5.” In other words, if the number of hole in a 3x3 window is larger than 5, the center pixel
will be labeled as 1. Also note that the hole-map is built by judging if depth is zero, as
described in Chapter 5.2.1. On the other hand, for the warped depth map, 5 minimum
selectors are allocated to select the median value among 9 inputs as in Fig. 5-10. The critical

path of the 5 minimum selectors equals to the delay of 20 comparators.

The 3x3 dilation can be implemented with a simple Boolean function. And it has the same

data control as 3x3 median filtering.
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The data control is shown in Fig. 5-11. There are 2 circular FIFOs for this 3x3 median filter.
Data is stored into FIFO1 at the first column stage and will be pop out for median filtering in
the second column stage, and then is re-stored into FIFO2. It will be pop-out again as the
bottom line of filter kernel in the third column stage. The size of this circular FIFO is column
height. It pushes in the newest input data and simultaneously popes out the data stored at

previous column stage.

By using the circular FIFOs, the input data can be reused for 9 times in 3x3 block-based
filtering, and the hence bandwidth usage is small. The bandwidth equals to the frame size but

not 9 times of frame size, which is the bandwidth usage without internal buffer.

Note that this median filter is non-accumulated. The filtered data will not be stored back into

FIFO, but is passed to next processing. The filtered depth is the input of reverse warping
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module and the filtered hole-map is stored in another pipelining buffer waiting for dilation as

shown in Fig. 5-9..

5.3.2  Column-level accumulated bi-linear interpolation

The bi-linear interpolation is used for hole-filling. As discussed previously, we implemented
it as column-level buffering, for the advantage of data reuse and low bandwidth. The
block-based bi-linear interpolation has a similar control as 3x3 filtering. For the block size of
9x5, there are 5 stages in column-level pipeline and 4 circular FIFOs for data reuse. Because
this interpolation is guided by final-hole flag, the hole is also buffered in another 4 circular
FIFOs. Moreover, the texture data is of 3 channels, Y, U, V, for the format of YUV4:2:0, the
9x5 block can be adjusted to 5x3 block for U and V. So there are another two sets of 2 smaller

FIFOs for U, V data.

Because we want all holes to be filled successfully, the interpolated data must be capable of
being referenced for filling process of ‘following flagged holes. Therefore the interpolated

output must be fed back into the circular buffer FIFIO3 as shown in Fig. 5-12.
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Fig. 5-12 Circular FIFO for 9x5 bi-linear interpolation in column-level accumulation
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In fact, because the interpolation has a latency of 4 cycles, this is only a column-level

accumulation. The fed back data will be pop-out and reused after a column stage.

5.4 Blending

The “Blending” module calculates Eq. (3-6), and it blends the two synthesized textures from
two reference view. As mentioned in Chapter 5.2.2, because the warped data is out of order
and is placed different positions between the two synthesized textures, we use the “reorder

buffer” to reorder this warped texture data.

The control of reorder buffer is by blend mode list in Table 3-1. For its data accessing step, all
data will be fetched if it is non-hole. But the non-hole data may be not used in blending stage
if it is in the boundary noise area, and this is the “Boundary Special” case defined in Chapter
3.3. The data in reorder buffer of reference left view will be popped out when the blend mode
is “L only”, “Weighted add,” and “Boundary Special” with “R only”. “L only” means only
reference left view has reference texture; “Weighted add” means that both left view and right
view have reference texture and they will be blended by weighted addition. The “R only” with
“Boundary Special” flag means both left view and right view have mapped texture but the left
view’s is with boundary noise. In the final case, although there is texture from the reference

left view, the blending will not include it for that it is boundary noise. And thus this data in

the reorder buffer need to be popped out but in fact, it will not be used in the blending stage.
Note that the reorder buffer for reference right view has a similar control.
5.5 Arbitration

To implement the timing plan in bus access as shown in Fig. 4-10, those accesses units are

divided into two groups for different arbitration type as in Fig. 5-13.
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Group A is for regular access and the arbitration is by round-robin. In round-robin arbitration,
when one’s transmission with bus completes, the next grant will give other requests except for
no others request. In fact, the Group A can request only once in a column process if bus
transmits with the burst length equal to the frame height. That is because the transmitted data
are placed regularly in the external memory, where one column data is placed in one row of
memory.

On the other hand, group B will request data continuously during the warping process because
the transmitted data are in fragment and the access location in memory is random.
Furthermore, the access time of Group B is critical in overall processing cycle because access
of Group B is one of column-level pipeline stages as discussed in Chapter 4.5. If the access
time is increased for the reason of grant lost with bus, the overall pipeline stages will also
increase. Therefore the arbitration is designed as that bus will always grant one if it requests

continuously.

DL | DR | DLV | DRV | YV uv A%
Read | Read | Read | Read | Write | Write | Write

Fig. 5-13 Two different groups in bus arbitration design

Group A
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5.6 Implementation Result

5.6.1 Overall schedule

time

\/

3= = """"""""""""""""""""""""
2 =3 H '30 2 DepthMedian
Z|oE[w|3]
3773
|8 HoleMapMedian
HoleMapDilate
RWarp
(b) Column-level s e | s
Blend
HoleFill

Fig. 5-14 Overall schedule of VS engine

Above shows the overall schedule of our design. This is a hierarchical pipeline from the
frame-level, column-level, to pixel-level. In the frame-level pipelining, two stages are the
depth mapping and texture mapping. In the column-level pipelining, sub-modules and random
bus access both use column-level buffering for efficiency. In the pixel-level pipelining, all the
computations are parallelized to achieve the throughput of 0.5 pixels per cycle. Note that the
“Preprocess” will only start at initial of a frame; it is not in the column-level pipelining stage.
And the reset of external memory for DLV and DRV will be processed only in the first

column of a frame.
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Fig. 5-15 Accurate cycle counts for the sequence “Breakdancers”

Fig. 5-15 shows the accurate cycle counts for the test sequence “Breakdancers” at the working
frequency of 200MHz. Note that the frame size of this sequence is 1024x768. The cycle
counts of the first frame-level stage is 2,123,936 cycles, containing 258,411 cycles for the
“Preprocess” module and 1,865,525 cycles for 1024 columns in total. Because this stage
contains 2 column-level pipelining stages, the latency:is a column process. Hence in average,
one column stage may cost 1,821 cycles: For the second frame-level stage, the total cycle
counts are 2,429,849 for 1024 columns. For this stage contains 6 column-level pipelines, the
latency is 5 column processes. Therefore one column process in the second frame-level stage

is 2362 cycles in average.

The critical one is the 2™ frame-level stage. If we scale the frame size to HD1080P, the cycle
counts become 6,406,829 cycles, and the throughput will be 31 fps. However, because the
reset of external memory is adopted at the first column, this makes the bus access unable in
the beginning to the 2™ frame-level stage. As a result, the total cycle counts for 2™

frame-level stage are 2,630,557 cycles.

Therefore, it needs 2,630,557 cycles to complete a frame of frame size 1024x768. If we scale

the frame size to HD108OP, the cycle counts become 6,935,749 cycles, and the throughput
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will be decreased to 28 fps. In summary, this design can get the throughput of 58M pixels

per second.

5.6.2 Hardware cost

This VS engine is synthesized using the UMC90nm technology process and the clock rate is

200MHz. The detail gate count and internal memory report is shown below.

Table 5-4 Implementation result of area, gate count and internal memory size

SRAM included SRAM excluded Internal memory
Cell Area(K) Gate count(K) Cell Area(K) Gate count(K) 1-port(KB) 2-port(KB)

FirstStage (Depth mapping)

Preprocess 174.314 61.769 174.314 61.769 0 0

Fwarp 148.922 52.772 148.922 52.772 0 0

Ctrl 12.540 4.443 12.540 4.443 0 0

| 7o) 256.331 90.833 0 0 14.592 0

Total 592.108 209818 335.777 118.985 14.592 0

SecondStage (Texture mapping)

Filter 342.057 121.210 72.860 25.818 0 5.440

Rwarp 146.440 51:892 146.440 51.892 0 0

Blend 167.941 59.51 80.184 28.414 4.352 0
HoleFill 390.680 138.440 81.444 28.860 0 7.072

Ctrl 40.862 14.479 40.862 14.479 0 0

/o 479.311 169.848 0 0 23.104 0
Total 1567.294 555.384 421.793 149.466 27.456 12.512

Homography Table 191.808 67.968 0 0 14.784 0
Total 2159.403 765.203 757.570 268.451 56.832 12.512

The sub-modules “Preprocess,” “FWarp” and “RWarp” have high complexity for the matrix
computation; while “Filter” and “HoleFill” are heavy for the FIFO-based control, which is
implemented using 2-port SRAM. The I/O interface of the two top modules “FirstStage” and

“SecondStage” are also large for the column-level 1-port SRAM.
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5.6.3

Performance result

Table 5-5 Experimental sequences

sequence name

Ballet Breakdancers BookArrival Lovebird1

texture
depth
WxH 1024x768 1024x768 1024x768 1024x768
provider MSR MSR HHI ETRI
depth provider provider Provider DERS 4 9 DERS 4 9
sequence name Newspaper Champagne Tower Kendo

texture

depth

WxH
provider

depth provider

1024x768 1280x960 1024x768
GIST MPEG-FTV MPEG-FTV
DERS 4 9 Provider Provider

Table 5-5 lists 7 test sequences used in the experiment. The “Ballet” and “Breakdancers™ are

from Microsoft research (MSR) [23]; the “BookArrival,” “Lovebirdl,” and “Newspaper” are from

Fraunhofer Heinrich-Hertz-Institut (HHI) [24],

Electronics and Telecommunications Research

Institute (ETRS), and Gwangju Institute of Science and Technology (GIST) respectively, and their

depth map are estimated using DERS 4 9, which is provided by MPED-FTV; the “Champagne Tower”

and “Kendo” are from MPEG-FTV.
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All sequences are run for 10 frames, and are evaluated by averaging the PSNR of each frame.
The total performance is shown in Table 5-6. Three VSRS approaches are taken for each
sequence of certain view and of certain 10 frames. The first approach is original VSRS 3 5in
the general mode of camera setting. And the second approach is VSRS 3 5 with inpainting

replaced by bi-linear interpolation. The final is our hardware implementation design.

Table 5-6 Comparison of Average PSNR in 10 frames

Performance Original VSRS _3 5
Original
9xS5 bi-linear Our design
Average Y-PSNR(dB) in 10 frames VSRS 3 5
interpolation
Ballet, C5-C4-C3, f90-f99 33.081 33.208 33.372
Breakdancers, C5-C4-C3, f81-190 32.984 33.166 33.121
BookArrival C10-C8-C7,f0-19 36.385 36.371 36.499
lovebird1, C5-C6-C8, f0-19 31.791 31.802 31.800
Newspaper, C3-C5-C6, f0-19 30.683 30.677 30.778
Champagne, C37-C38-C39, {0-f9 33.367 33.367 33.361
Kendo C1-C2-C3, f0-f9 33.000 33.000 33.250
Average APSNR compare
0.000 0.043 0.127
VSRS 3 5

In the comparison between the result of first and the second approach, it indicates that the
inpainting method can be substituted by the simple bi-linear interpolation without degrading
the overall performance. Even some sequences have worse performance in bi-linear

interpolation approach, the degrading PSNR are less than 0.014 dB.

This table also shows that the overall PSNR performance of our hardware implementation
approach is better than software approach. This may be because the sampling alias in 3D
warping is less in hardware implementation. Nevertheless, if in subjective sense, instead of
the objective PSNR evaluation, their performances are in fact nearly the same in Fig. 5-16

because our implementation is based on the software approach.
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(a-1)Ballet, Our implementation (a-2)Ballet, VSRS

(c-1)BookArrival, Our implementation (c-2)BookArrival, VSRS
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(f-1)Champagne Tower, Our implementation (f-2)Champagne Tower, VSRS
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(e-1)Kendo, Our implementation (e-2)Kendo, VSRS

Fig. 5-16 Experimental results in comparison to original VSRS results
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Chapter 6
Conclusion

The major contribution in this thesis is the analysis and implementation of view synthesis
engine (VS engine) based on the view synthesis reference software (VSRS) algorithm

provided by MPEG-FTV.

This implementation includes the whole flow of the VSRS algorithm, from making projection
matrix, homography estimation, 3D warping, post-filtering to blending and hole-filling. In
global view, we proposed 2-stages frame-level pipelining architecture to implement 3D
warping of depth and texture in memory concern; in local view, we used the column-level
pipelining to make data access efficient, because the warped index is random among whole
frame. We also analyzed the hole-filling interpolation method and proposed a simple bi-linear

interpolation that is friendly for hardware implementation.

This design supports the video throughput of 58M pixels per second. In the UMC 90nm
technology and at the 200MHz work frequency, the total hardware cost is 268.451K in gate
counts and the total internal memory usage is 56.832KB for one-port SRAM and 12.512KB
for two-port SRAM. Furthermore, the total bandwidth is 700Mbytes per second and the bus
utilization is 43.75% by using 64-bits bus. The performance is good for it is without quality

drop in the objective PSNR evaluation comparing to original VSRS algorithm.

Future work

We have implemented the whole VSRS algorithm as ASIC design that supports the general
mode of camera settings, but the preprocess part that regarding to projection matrix and
homography estimation is heavy, which has gate counts of totally 61.769K in our design. This
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part can be simplified if the cameras are set in a line, and the 3D warping method can then be
substituted by simple horizontal shift approach. In this approach, the hardware cost will be
further cost down because the computation is simpler and the large usage in memory will also
be saved. This adjustment is acceptable because actually, most videos are fetched in the

parallel camera settings in the nowadays MPEG-FTV study.

In addition, about 64.9% hardware cost is from the large usage in internal memory. In our
design, we choose the size of 1/O buffer as column-level for best bus efficiency. But we can
indeed reduce the size to 16bytes or 32 bytes that with bus efficiency 85.6% and 85.7% in
average and only decrease 3.1% compared to column size buffer as list in Table 4-3. By
decrease the I/O buffer size to 32KB, the size of one-port SRAM can be reduced from

56.832KB to 19.968 KB.

Furthermore, for higher specification in today’s visual entertainment, the throughput usually
is 60 fps for HD1080p videos. Because our design takes turns to processing left-view video
and right-view video in a column-level stage, we can improve our design by doubling the
combinational logics to process two views simultaneously so that the throughput could be

doubled.
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