
國立交通大學

電子工程學系 電子研究所碩士班

碩士論文

適用於快閃記憶體之二位元軟輸入(9153,8256)

低密度奇偶校驗碼解碼器之設計與實作

Design and Implementation of a (9153,8256) LDPC Decoder

with 2-bit Soft Input for NAND Flash Memory

學生：何堅柱

指導教授：張錫嘉 博士

中華民國 九十九年八月

適用於快閃記憶體之二位元軟輸入(9153,8256)

低密度奇偶校驗碼解碼器之設計與實作

Design and Implementation of a (9153,8256) LDPC Decoder

with 2-bit Soft Input for NAND Flash Memory

研 究 生：何堅柱 Student : Kin-Chu Ho

指導教授：張錫嘉 博士 Advisor : Dr. Hsie-Chia Chang

國立交通大學

電子工程學系 電子研究所 碩士班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Electronics Engineering

August 2010

Hsinchu, Taiwan, Republic of China

中華民國 九十九年八月

適用於快閃記憶體之二位元軟輸入(9153,8256)

低密度奇偶校驗碼解碼器之設計與實作

學生：何堅柱 指導教授：張錫嘉 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

BCH碼因為硬體架構非常簡單，目前是應用在快閃記憶體系統上錯誤更正碼

的主流。面對先進製程的發展與記憶體儲存容量的大幅提升所造成可靠度的降低，

以代數解碼演算法為主的BCH碼只能不斷增加校驗碼的數量來提升解碼效能，如

此一來也間接地減少資料所能儲存的空間。據此，本論文提出適用於快閃記憶體

系統的低密度奇偶校驗碼（Low Density Parity Check, 簡稱LDPC Codes）及其解

碼器架構，以二位元軟輸入之LDPC Codes提供在相同編碼率下比BCH碼更好的

錯誤更正能力。

由於下世代快閃記憶體的儲存頁碼大小為1024Bytes，我們使用permutation

matrix 演算法建出編碼率為 0.9 的 (9153,8256) LDPC Codes ，並利用

variable-node-centric sequential scheduling (簡稱VSS)來降低檢查節點運算元之電

路複雜度。相較於傳統二階層 MinSum 硬體架構，本論文除有效地節省節點運

算元的96%組合電路，藉由VSS，降低校驗節點運算元的76.6%暫存器。使用UMC

90nm製程，所提出的解碼器在工作頻率100MHz與10次解碼次數的情況下，最高

吞吐量可達到每秒2.78Gbits。

Design and Implementation of a (9153,8256) LDPC Decoder

with 2-bit Soft Input for NAND Flash Memory

Student : Kin-Chu Ho Advisor : Hsie-Chia Chang

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

Abstract

This thesis proposes a LDPC decoder architecture for NAND flash memory

system.BCH code is famous for NAND flash memory system because of its simple

hardware architecture. However, advanced technology scale down and more bits of

data stored per NAND Flash cell will cause the degradation of reliability. More parity

bits are required to improve the correcting capability of BCH code. But this greatly

degrades the storage capacity and is infeasible to commercial products. Soft input is

required to improve the correcting capability of error correcting code. However, BCH

code has only little improvement when soft input is provided. This thesis proposes a

2-bits soft input LDPC decoder, which can outperform BCH code under same code

rate.

The (9153, 8256) LDPC code is constructed by permutation matrix algorithm

with code rate 0.9. The variable-node-centric sequential scheduling (VSS)

architecture is adopted and CNU is modified to reduce hardware complexity.

Compared to the conventional Min-Sum two-stage pipelined architecture, the

proposed architecture can reduce approximately 96% combination circuits of VNU

and 76.8% registers. Using 90nm CMOS technology, the maximum throughput can

achieve 2.78 Gbps under operating frequency of 100 Mhz with 10 iterations.

誌謝

不知不覺兩年的碩士生活就要結束了，要感謝很多人對我的照顧與幫忙。首

先最要感謝是我的父母，很感激他們對我的支持。大學加碩士這六年，我都沒有

辦法長時間陪伴在他們身邊，只有寒暑假才可以短暫回家探望他們。但他們還是

沒有抱怨，支持我去做我想做的事。

 我也要感謝我的指導教授張錫嘉老師，除了在學術研究上的指導外，也很關

心我的生活狀況，很感謝他對我的包容。還有就是 LDPC GROUP 的陳志龍學長

和嚴紹維學長，除了細心指導研究以外，還常常帶我去體驗新竹美食，對我非常

照顧。

 最後要感謝 OCEAN 與 OASIS 的每一位伙伴。一起在研究上共同奮鬥，一

起聊天吃飯，慢慢培養了大家的感情。天下無不散之筵席，不少伙伴也在今年要

離開 OCEAN 這個大家庭。雖然有點不捨，但也衷心祝福大家前程似錦。

 其實心裡還有很多人想要感謝，但篇幅有限。最後讓我再次感謝每一位，謝

謝你們的照顧與幫忙，謝謝您們!!

Table of Contents

List of Figures . iii

List of Tables . v

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 Thesis organization . 2

Chapter 2 NAND Flash Memory . 3
2.1 Introduction of NAND Flash Memory . 3

2.1.1 Flash Memory System . 3
2.1.2 NAND Flash Cell Programming . 4
2.1.3 NAND Flash Cell Erasing . 4
2.1.4 NAND Flash Cell Reading . 5

2.2 Reliability of NAND Flash Memory . 6
2.2.1 Electron Leakage . 6
2.2.2 Program Disturb . 6
2.2.3 Read Disturb . 7

Chapter 3 Low Density Parity Check Code 10
3.1 Decoding Algorithm . 10

3.1.1 Standard Belief Propagation (BP) Algorithm 10
3.1.2 Variable-node-centric Sequential Scheduling (VSS) Algorithm . . . 11

3.2 Performance-Related Parameters . 14
3.2.1 Cycles in Tanner Graph . 14
3.2.2 Column Degree . 15

3.3 Code Construction . 18
3.3.1 Permutation Matrix Algorithm . 18
3.3.2 Code Performance . 21

Chapter 4 LDPC Decoder Architecture 22
4.1 Single Pipelined Architecture for VSS Algorithm 22
4.2 Check Node Unit (CNU) . 24

4.2.1 Accumulative Sorter . 24
4.2.2 Accumulative Sorter without 2nd minimum value 25

4.3 Varible Node Unit (VNU) . 28
4.4 Shifting Network . 29
4.5 Comparison with Conventional Architectures 31

i

Chapter 5 Simulation and Implementation Result 33
5.1 Quantization . 33
5.2 Performance . 35
5.3 Throughput . 36
5.4 Implementation Results . 37

Chapter 6 Conclusion and Future Work 39
6.1 Conclusion . 39
6.2 Future Work . 40

References . 41

ii

List of Figures

2.1 The Block Diagram of Flash Memory System. 4
2.2 NAND Flash Cell Programming [1]. 4
2.3 Threshold voltage distribution of a Signle Level Cell of NAND Flash Mem-

ory [1]. 5
2.4 NAND Flash Cell Erasing [1]. 5
2.5 NAND Flash Cell Reading [1]. 6
2.6 Program Disturb. 7
2.7 Read Disturb. 7
2.8 Threshold voltage distribution of a 2bits/cell NAND flash cell. 8
2.9 Threshold voltage distribution of a 2bits/cell NAND flash cell. 9

3.1 Illustratin of standard BP. 12
3.2 Illusion of VSS. 14
3.3 An example of a tanner graph with cycle-6. 15
3.4 Performance of LDPC code with different column degree. 16
3.5 Performance of LDPC code with different column degree. 17
3.6 Performance of LDPC code with different column degree. 18
3.7 An example of QC LDPC code, dc = 3, dv = 2 and p = 4. 19
3.8 Demonstration of cycle-4. 20
3.9 Pariyt check matrix H. 20
3.10 Performance of (9153, 8256) LDPC code. 21

4.1 Architecture and scheduling for VSS algorithm. 23
4.2 Conventional accumulative sorter. 24
4.3 Demonstration of conventional accumulative sorter. 25
4.4 Accumulative sorter w/o 2nd min. 26
4.5 Demonstration of accumulative sorter w/o 2nd min. 26
4.6 Performance of (9153, 8256) LDPC code with different global 2nd min com-

pensation, MS - MinSum, MS-VSS - MinSum with variable-node-centric
sequential scheduling. 27

4.7 Variable node unit architecture. 28
4.8 Illusion of messages shifted between CNUs. 29
4.9 Parity Check Matrix of (9153,8256) LDPC code. 30

5.1 2 bits (4 levels) non-linear quantization. 33
5.2 Performance of (9153, 8256) (Column deg = 8) LDPC code with different

parameters. 34
5.3 Performance of LDPC code with different input quantization. 35

iii

5.4 Performance comparison, Iteration = 40. 36
5.5 Layout of Place and Route. 38

iv

List of Tables

5.1 Synthesis result of CNU and VNU with technology UMC90. 36
5.2 Summary of implementation result (Place and Route). 37

v

Chapter 1

Introduction

1.1 Motivation

Error correcting code is important to NAND flash memory system since error is un-

avoidable [1]. BCH code [2] [3] is famous for NAND flash memory system because of

its simple hardware architecture and hard input requirement. As advanced technology

scaled down and more bits of data stored per NAND flash cell, more errors are introduced.

Under the limitation of number of parity bits, the correcting capability of BCH code is

not enough to meet the requirement of next generatation NAND flash emory system. Soft

input is required to improve the correcting capability of error correcting code. However,

BCH code has only little improvement when soft input is provided [4] [5]. LDPC code [6]

is a good candidate for its powerful correcting capability and simple decoding algorithm.

2-bit soft LDPC code can outperform BCH code with same code rate.

Low density parity check (LDPC) code is a famous error correcting code with near

Shannon limit performance [7]. The parity check matrix H can be described by a Tanner

graph [8]. The rows and columns of H are mapped to check nodes and variable nodes

respectively. In standard belief propagation (BP) algorithm, a LDPC decoder exchanges

messages between check nodes and variable nodes iteratively in fully parallel.

High code rate is a necessary condition for error correcting code applied on NAND

flash memory system. A high code rate LDPC code introduces large row degree which

causes implementation difficulty. The proposed LDPC code has a row degree of 81. The

solution to this problem is variable-node-centric sequential scheduling (VSS) [9] [10]. VSS

divides variable nodes into groups, and decodes in a scheduling order (partial parallel).

1

This greatly reduces the routing complexity and storage memory. A (9153, 8256) LDPC

code is constructed by permutaion matrix algorithm with code rate is 0.9. The proposed

LDPC code decoder has a better performance than BCH code with the same code rate

when 2-bit soft input is provided. The maximum throughput can achieve 2.78 Gbps under

operating frequency of 100Mhz with 10 iterations, using 90nm CMOS technology.

1.2 Thesis organization

The rest of this thesis is organized as follows. Chapter II gives the introduction of

NAND flash memory. In Chapter III, we introduce the decoding algorithm, performance-

related code paramemters and code construction. In Chapter IV, decoder architecture is

presented. The simulation result is given in Chapter V and conclusion in Chapter VI.

2

Chapter 2

NAND Flash Memory

2.1 Introduction of NAND Flash Memory

This section introduces the flash memory system and basic operations : Programming,

Erasing and Reading.

2.1.1 Flash Memory System

Flash memory is widely used for data storage in portable devices. Since flash memory

is non-volatile, no power is needed to maintain the information stored. In addition, flash

memory offers fast read access times comparing to hard disk. In this thesis, we take a

NAND flash memory as the target flash memory.

There are three basic operations in NAND flash memory called programming, erasing

and reading. NAND flash memory can be programmed and erased block by block. Each

block contains number of pages. NAND flash memory can be read page by page. More

details of these three operations will be presented in next section.

Fig. 2.1 shows the flash memory system. Data are transmitted in pages where a page

size is equal to 4K or 8K bytes. One single page consists of data area and spare area.

The data area stores the user data, and the spare area stores the system-control signal

and parity bits of error correcting code (ECC). Pages are encoded before programming,

and decoded after reading from flash memory.

3

Flash

Memory
Buffer ECC System

Figure 2.1: The Block Diagram of Flash Memory System.

2.1.2 NAND Flash Cell Programming

Fig. 2.2 shows a NAND flash Cell Programming. In a NAND flash Cell, there is a

Floating Gate between the Gate and Substrate. When data is written into NAND flash

Cell, 0V is applied to the Source and Drain. A high voltage (VG) is applied to the Gate.

Electrons in Substrate are attracted to the Floaging Gate. Different (VG) can be applied

to control the amount of electrons injected in Floating Gate. The amount of electrons

injected in Floating Gate determines the threshold voltage of a NAND flash Cell.

Substrate

0V 0V

VG

Figure 2.2: NAND Flash Cell Programming [1].

A Single Level Cell (SLC) means that only 1 bit data is stored per cell. Therefore, the

threshold voltage region of a SLC is divided into two levels. Fig. 2.3 shows the threshold

voltage distribution of SLC. For example, the threshold voltage is controlled to 2.5V if

data 1 is stored, or 5.5V if data 0 is stored. There is variation of threshold voltage due

to noise disturb and will be introduced in the next subsection.

2.1.3 NAND Flash Cell Erasing

Electrons in Floating Gate must be erased before reprogramming. When NAND flash

Cell is earsed, 0V is applied to the Source, Drain and Gate. And high voltage (VS) is

4

Figure 2.3: Threshold voltage distribution of a Signle Level Cell of NAND Flash Memory
[1].

applied to the Substrate. Electrons in Floating Gate are attracted to the Substrate and

no more electrons are left in Floating Gate.

Substrate

0V 0V

0V

VS

Figure 2.4: NAND Flash Cell Erasing [1].

2.1.4 NAND Flash Cell Reading

Fig. 2.5 shows NAND flash Cell Reading. To read a NAND flash cell, the selected

wordlines are grounded and high voltage (VD) is applied to the unselected wordlines. A

bias is applied to the bitlines. Current will flow through the transistor if there is no charge

stored in the cell.

5

0V

VD

VD

Unselected WL VD

Unselected WL VD

Selected WL 0V

Bit Line VBIAS

Figure 2.5: NAND Flash Cell Reading [1].

2.2 Reliability of NAND Flash Memory

Electron leakage, program and read disturb cause the variation of threshold voltage of

NAND flash cell. Errors may be introducted if the threshold voltage shifts to other level.

More details about noise disturb will be introduced in this subsection.

2.2.1 Electron Leakage

The number of electrons stored in Floating Gate decreases over time because electrons

may leak from the NAND flash Cell. This problem can be solved by erasing and repro-

gramming periodly. But NAND flash Cell may be damaged when number of Program

/ Erase cycles increases. Leakage will be more serious if NAND flash Cell is damaged.

Errors become unavoidable if NAND flash Cell is desired for a long time use.

2.2.2 Program Disturb

Fig. 2.6 shows the program disturb of a NAND flash Cell. Unselected cells on the

same wordline or on adjacent wordlines of programmed cell, may suffer from voltage stress

resulting in unwanted programming. Therefore, the threshold voltage of those unselected

cells increases and may shift to other level.

6

0V

Unselected WL 10V

Unselected WL 10V

Selected WL 20V

0VVCCVCC

VCC

VCC

Program

Disturb

Cells

Programmed

Cell

Figure 2.6: Program Disturb.

2.2.3 Read Disturb

Unselected cells adjacent to cells being read may suffer from voltage stress resulting

in unwanted programming. As in program disturb case, the threshold voltage of those

unselected cells increases and may shift to other level.

0V

Unselected Page 4.5V

Unselected Page 4.5V

Selected Page 0V Read Disturb

Cells

VBIASVBIAS VBIAS

4.5V

4.5V

Figure 2.7: Read Disturb.

7

In Fig. 2.3 , threshold voltage below 4V represents data 1 is stored, and threshold

voltage above 4V represents data 0 is stored. There is a tolerance range for the variation

of threshold voltage. Data is still correct if the threshold voltage does not shift to other

level.

Figure 2.8: Threshold voltage distribution of a 2bits/cell NAND flash cell.

Fig. 2.8 shows a 2bits/cell NAND flash cell. The storage capacity is doubled comparing

to the 1bit/cell NAND flash cell. Threshold voltage region is divided into 4 levels and

region for each level is narrower. Therefore, the probability of threshold voltage shifting

to other level is increased and led to degradation of reliability.

Nowadays, NAND flash memory system only provides hard input to error correcting

code. For example, in Fig. 2.8, only three voltages (3.2V, 4V and 5.1V) are applied

to check in which level the threshold voltage is. NAND flash memory system does not

provide any information that how likely this bit to be ’0’ or ’1’. Information received by

error correcting code is exactly ’0’ or ’1’. We call this hard input.

BCH code is feasible for its simple hardware architecture and only hard input require-

ment. However, advanced technology scale down and more bits of data stored per NAND

flash cell will cause the degradation of reliability. More parity bits are required to im-

prove the correcting capability of BCH code. The increase of spare area (area for parity

bits storage) greatly degrades the data storage capacity and is infeasible to commerical

product. To overcome this problem, NAND flash memory system will provide more infor-

mation (soft input) in the next generation standard and much powerful error correcting

8

code can be adopted.

Figure 2.9: Threshold voltage distribution of a 2bits/cell NAND flash cell.

In Fig. 2.9, if data 01 is stored and threshold voltage shifts to 5.5V, hard input only

provides that the second bit is a ’0’. More information can be provided if one more voltage

(5.8V) is applied to Gate. We can know that the threshold voltage is less than 5.8V, and

the second bit has a high probability of being ’1’. This provides more information for

each data bit to error correcting code and we call this soft input.

BCH code has only little improvement when soft input is provided [4] [5]. LDPC

code is probability-based and soft information can be well-used. Therefore, LDPC code

is a good candidate for the next generation NAND flash memory system. Providing soft

input will inrease reading latency in flash memory system. This is a trade-off between

correcting capability and system latency. This thesis shows that only 2-bits soft input

LDPC code can outperform BCH code under same code rate. Therefore, degradation to

system latency is minimized.

9

Chapter 3

Low Density Parity Check Code

LDPC code was first discovered by Gallager [6] in the early 1960s. But it does not at-

tract great attention until 1900s. The main reason is the high routing complexity making

implementaion very difficult. Decoding algorithm of LDPC code is iterative message-

passing decoding. Messages are passed between Check Node Unit (CNU) and Variable

Node Unit (VNU) during decoding process. This iterative message-passing algorithm pro-

vides superior correcting ability and makes LDPC code widely adopted in communication

application.

In this section, decoding algorithm will be introduced and performance-related code

paramemters will be discussed. Finally, a code construction algorithm will be introduced.

3.1 Decoding Algorithm

3.1.1 Standard Belief Propagation (BP) Algorithm

The log-likelihood ratio (LLR) of intrinsic information of nth variable node is denoted

by Pn. The message from nth variable node to mth check node is denoted by zmn. The

message from mth check node to nth variable node is denoted by ǫmn. The a posteriori

LLR of nth bit is denoted by zn. The current number of iteration and maximum number

of iteration is represented by i and IMax respectively. The standard BP is carried out as

followed.

1.Initialzation:

Set i = 1. For each m,n, set z0
mn = Pn

10

2.Iterative Decoding:

(a)check node to variable node update step, for 1 ≤ m ≤ M and each n ∈ N(m),

process

ǫi
mn = 2 tanh−1(

d
∏

n′∈N(m)\n

tanh(
zi−1

mn′

2
)) (3.1)

(b)variable node to check node update step, for 1 ≤ n ≤ N and each m ∈ M(n),

process

zi
mn = Pn +

∑

m′∈M(n)\m

ǫi
m′n (3.2)

zi
n = Pn +

∑

m′∈M(n)

ǫi
m′n (3.3)

3.Hard Decision:

Let Xn be the nth bit of decoded codeword. If z
(i)
n ≥ 0, Xn = 0, else if z

(i)
n < 0, Xn =

1. If H(x(i))t = 0 or IMAX is reached, the decoder stops and outputs the codeword.

Otherwise, it sets i = i + 1 and goes on iterative decoding.

The iterative decoding processes for one iteration of standard BP is illustrated below.

The messages are updated in parallel way between check nodes and variable nodes. The

process is shown in Fig. 3.1.

3.1.2 Variable-node-centric Sequential Scheduling (VSS)

Algorithm

High code rate LDPC code introduces high row degree. This makes implementation

difficult due to the large number of inputs to sorter. The hardware cost and critical path

of Check Node Unit (CNU) is greatly incresed. Shuffle decoding algorithm [9] [11] with

variable-node-centric sequential scheduling architecture(VSS) [10] processes check node

update procedure in G cycles, reducing the number of inputs to sorter.

In VSS approach, the initialization, and hard decision remain the same as the standard

11

V1 V2 V3

V1 V2 V3 V4 V5

V1

V1 V4 V5

ε
i

11

z
i-1

14

z
i-1

15

(a) Check node to variable node update of BP algorithm

V1 V2 V3

V1 V2 V3 V4 V5

V1 V2

V5

ε
i

15

z
i

15

(b) Varibale node to check node update of BP algorithm

Figure 3.1: Illustratin of standard BP.

BP algorithm. The only difference between two algorithms is the updating procedure.

Assume the N bits of a codeword are divided into G groups, so each group contains

N/G = NG bits. The messages are only exchanged between variable nodes from one

group and check nodes which are connected to that group. In addition, each group of

messages is updated in order. Furthermore, one iteration takes N cycles. For G = 1, the

VSS scheduling becomes standard BP.

The normalized min-sum (NMS) algorithm which compensates the approximation er-

ror in check node update step can also be applied to VSS approach with normalized factor

β = 0.5. The updating procedure of NMS algorithm with VSS approach is carried out as

follows.

1.Initialzation:

For each m,n, set z0
mn = Pn

2.Iterative Decoding:

(a)check node to variable node update step, for 1 ≤ g ≤ G − 1 , 1 ≤ m ≤ M and each

12

n ∈ N(m), process

ǫi
mn =

∏

n′∈N(m)\n,n′≤g·NG−1

sign(zi
mn′) ×

∏

n′∈N(m)\n,n′≥g·NG

sign(zi−1
mn′)×

min

{

min
n′∈N(m)\n,n′≤g·NG−1

{

|zi
mn′ |

}

, min
n′∈N(m)\n,n′≥g·NG

{

|zi−1
mn′ |

}

}

× β

(3.4)

(b)variable node to check node update step, for g ·NG ≤ n ≤ (g +1) ·NG − 1 and each

m ∈ M(n), process

zi
mn = Pn +

∑

m′∈M(n)\m

ǫi
m′n (3.5)

zi
n = Pn +

∑

m′∈M(n)

ǫi
m′n (3.6)

3.Hard Decision:

Let Xn be the nth bit of decoded codeword. If z
(i)
n ≥ 0, Xn = 0, else if z

(i)
n < 0, Xn = 1. If

H(x(i))t = 0 or IMAX is reached, the decoder stops and outputs the codeword. Otherwise,

it sets i = i + 1 and goes on iterative decoding.

The decoding process for one iteration of VSS is illustrated in Fig. 3.2 with G = 3 as

example. The arrows with blue color represent check node to variable node messages to

be updated. The arrows with red color represent variable node to check node messages

to be updated. On the other hand, black lines represent that messages are not updated

in that cycle.

13

C1 C2 C3

V1 V2 V3 V4 V5 V6

C1 C2 C3

V1 V2 V3 V4 V5 V6

(a) 1st group’s message updated

C1 C2 C3

V1 V2 V3 V4 V5 V6

C1 C2 C3

V1 V2 V3 V4 V5 V6

(b) 2nd group’s message updated

C1 C2 C3

V1 V2 V3 V4 V5 V6

C1 C2 C3

V1 V2 V3 V4 V5 V6

(c) 3rd group’s message updated

Figure 3.2: Illusion of VSS.

3.2 Performance-Related Parameters

3.2.1 Cycles in Tanner Graph

A LDPC code with cycle-4 introduces smaller trapping set [12]. It will cause per-

formance degradation in water fall region. For LDPC code, we call this performance

degradation in water fall region, the error floor [13]. Therefore, constructing LDPC code

with cycle-4 should be avoided and cycle should be as large as possible. Fig. 3.3 illustrates

a Tanner Graph with cycle-6 cycles and its corresponding parity check matrix.

14

C1 C2 C3

V1 V2 V3 V4 V5 V6

C4

(a) A tanner graph with cycle-6

1 1 0 1 0 0

1 0 1 0 0 0

0 1 1 0 1 0

0 0 0 1 0 1

H

 =

(b) Parity check matrix H corresponds to (a)

Figure 3.3: An example of a tanner graph with cycle-6.

3.2.2 Column Degree

A LDPC code with higher column degree has better performance in water fall region.

It means that it can suppress the error floor in lower bit error rate region. Fig. 3.4 shows

the performance of LDPC codes with different column degree. S represents scaling factor

in this thesis.

In Fig. 3.4, (672, 588) is a LDPC code from IEEE 15.3c Standard, with column degree

3. It has poor performance at waterfall region due to its low column degree. LDPC code

with column degree 8 and 12 has better performance at waterfall region.

15

3.5 4 4.5 5
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

N=10
7
, AWGN Channel,

Iteration = 25, Normalized Min-Sum

Eb/No(db)

B
E
R

(9409,8256), Column Deg=12, S=0.4, R=0.877

(9153,8256), Column Deg=8, S=0.5, R=0.9

(672,588), Column Deg=3, S=0.4, R=0.875

Figure 3.4: Performance of LDPC code with different column degree.

Fig 3.5 shows that LDPC code with higher column degree has better performance

at waterfall region. Both (2071,1746) and (2033,1714) LDPC codes are constructed by

permutation matrix algorithm [14] and will be introduced in next subsection. LDPC codes

constructed by permutation matrix algorithm has no cycle-4. They are QC code [15] and

their columne degree is 4. For (2048,1723) (IEEE 802.3an Standard [16]) LDPC, error

floor will not appear until BER down to 10−10. Thus, high column degree LDPC code is

desired for NAND flash memory system.

16

2.5 3 3.5 4 4.5 5
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

N=10
7
, Iteration = 50, Normalized Min-Sum

Eb/No(db)

B
E

R

(2071, 1746), Column Deg=3, S=0.75

(2033, 1714), Column Deg=3, S=0.75

(2048, 1723), Column Deg=6, S=0.75

Figure 3.5: Performance of LDPC code with different column degree.

In Fig 3.6, improvement of performance in waterfall region from higher column degree

is not clear. Since codeword length is very long, the improvement is expected to appear in

deeper Bit Error Rate region. Software computation is not fast enough to investigate the

error floor. FPGA simulation will be done in the future. Error correcting code applied

on NAND flash memory system requires high code rate and no performance degradation

down to bit error rate near 10−12. Therefore, a higher column degree LDPC code with no

cycle-4 is preferred. The proposed LDPC code in this thesis is (9153, 8256), with column

degree 8 and no cycle-4.

17

3 3.5 4 4.5 5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1
10

5
 codewords, Iteration = 50, Normalized Min-Sum

Eb/No(db)

B
E
R

(9160,8247), R=0.9, Column Deg=4, S=0.75

(9050,8149), R=0.9, Column Deg=5, S=0.75

(9153,8256), R=0.9, Column Deg=8, S=0.5

Figure 3.6: Performance of LDPC code with different column degree.

3.3 Code Construction

3.3.1 Permutation Matrix Algorithm

Permutation matrix [14] algorithm is a code construction of QC LDPC code. The

parity check matrix H of QC code is composed of many sub-matrixes. Each sub-matrix

will be an Identity matrix or cyclic shift of an Identity matrix. An example of QC code is

demonstrated in Fig 3.7. The number inside a sub-matrix represents the amount of cyclic

shift.

Cycle-4 causes performance degradation and this code construction can avoid any

cycle-4. Algorithm of code construction is described in [14]. In this thesis, we provide

another view of this algorithm. There are 3 parameters to be decided: row degree (dc),

18

1 0 0 0 0 0 0 1 0 0 1 0

0 1 0 0 1 0 0 0 0 0 0 1

0 0 1 0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 0 0 1 0 0

1 0 0 0 0 1 0 0 0 0 0 1

0 1 0 0 0 0 1 0 1 0 0 0

0 0 1 0 0 0 0 1 0 1 0 0

0 0 0 1 1 0 0 0 0 0 1 0

H = H =
0 1 2

0 3 1

Figure 3.7: An example of QC LDPC code, dc = 3, dv = 2 and p = 4.

variable node degree (dv) and size of sub-matrix (p). Row degree determines the number

of sub-matrix in one sub-matrix row. And variable node degree determines the number

of sub-matrix in one sub-matrix column.

Another view of permutation matrix algorithm:

Let’s Si,j represents the amount of cyclic shift in sub-matrix of ith sub-matrix row and

jth sub-matrix column. dc represents row degree. dv represents variable node degree. And

p represents size of sub-matrix and must be a prime number.

1.Initialization :

S0,j = j, 0 ≤ j ≤ dc − 1

2.Completion of the remaining Si,j:

Si,j = (j + (j + 1) · i) mod p, 0 ≤ j ≤ dc − 1, 0 ≤ i ≤ dv − 1

Fig. 3.8 demonstrates the condition that cycle-4 occurs. For any 4 numbers in a square

(the red dash box), if the difference between the cyclic shift amount in one sub-matrix

column, is equal to the difference between the cyclic shift amount in other sub-matrix

column, cycle-4 is formed. For example in Fig. 3.8, the difference between 1 and 2 is

equal to the difference between 2 and 3.

The following proof proves that the code construction will not produce any cycle-4.

The matrix in Fig. 3.9 is a parity check matrix H. A small square represents a sub-matrix.

19

1 0 0 0 0 0 0 1 0 0 1 0

0 1 0 0 1 0 0 0 0 0 0 1

0 0 1 0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 0 0 1 0 0

1 0 0 0 0 0 1 0 0 1 0 0

0 1 0 0 0 0 0 1 0 0 1 0

0 0 1 0 1 0 0 0 0 0 0 1

0 0 0 1 0 1 0 0 1 0 0 0

H = H =
0 1 2

0 2 3

Figure 3.8: Demonstration of cycle-4.

The number in small square represents the cyclic shift amount of that sub-matrix. There

are n sub-matrix in one sub-matrix row and m sub-matrix in one sub-matrix column. p

is the size of a sub-matrix.

1

1

2

2

1

2

Figure 3.9: Pariyt check matrix H.

C = [A + (x1 + 1)m′] mod p

D = [B + (x2 + 1)m′] mod p

(3.7)

C − A = [(x1 + 1)m′] mod p

D − B = [(x2 + 1)m′] mod p

(3.8)

20

where m′ = m2 − m1; 0 ≤ x1 < x2 ≤ n − 1; 0 ≤ m1 < m2 ≤ m − 1; n,m ≤ p

Since p is a prime number and, x1 < x2 ≤ n − 1 and n ≤ p, (C − A) will never be

equal to (D − B). Therefore, no cycle-4 is formed.

3.3.2 Code Performance

The proposed LDPC code in this thesis is (9153, 8256) with code rate 0.9. Column

degree is 8. The size of a sub-matrix is 113 and decoding algorihtm is Normalized Min-

Sum. S represents scaling factor and number of iteration is 40 .Fig. 3.10 shows its

performance.

4 4.2 4.4 4.6 4.8
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

N=10
7
, R=0.9, S=0.5, Iteration=40

Eb/No(db)

B
E

R

(9153,8256), AWGN Channel, Floating

Figure 3.10: Performance of (9153, 8256) LDPC code.

21

Chapter 4

LDPC Decoder Architecture

4.1 Single Pipelined Architecture for VSS

Algorithm

Details of variable-node-centric sequential scheduling algorithm(VSS) [10] is intro-

duced in previous section. Hardware architecture will be fully explained in this section.

The entire decoder depicted in Fig. 4.1(a) is composed of fully-parallel CNUs and

partial-parallel VNUs. Variable nodes are divided into 27 groups (G = 27). There are

904 Check Node Units (CNU) and 339 Variable Node Units (VNU). Let αi
g,m denotes the

sorted messages (1st min, 2nd min and indices) from variable nodes in the gth group to

mth check node at ith iteration, which is:

αi
g,m = min

n′∈N(m)\n,g·NG≤n′≤(g+1)·NG−1

{∣

∣zi
mn′

∣

∣

}

(4.1)

Then the magnitude part of check node to variable node message in equation 3.4 could

be computed by the following equation:

∣

∣ǫi
mn

∣

∣ = min
{

{

αi
j,m

}

j<g
, αi

g,m,
{

αi−1
k,m

}

k>g

}

(4.2)

Fig. 4.1(b) demonstrates the timing diagram of proposed decoder. G initialization

cycles are required to calculate α0
g,m for 0 ≤ g ≤ G − 1. Since only one subgroup of the

message zi
mn is updated in each cycle of one iteration, the main operation of CNU could

be simplified to calculate αi
g,m (local sorting) in each cycle and then perform global sorting

like equation 4.2. In single pipelined architecture, only messages αi
g,m and ǫi

mn are stored,

22

while the variable node to check node message zi
mn is on-the-fly calculated. The CNU

could be updated immediately after VNU’s operations in VSS approach and no variable

to check node message need to be stored.

1
st
 min

2
nd
 min

1
st
 min

2
nd
 min

1
st
 min

2
nd
 min

...
R
o
u
ti
n
g
 N
e
tw
o
rk

... ...

...
...

...
...

...
...

...
...

R
o
u
ti
n
g
 N
e
tw
o
rk

...
...

...
...

(a) Single pipelined architecture for VSS algorithm

1 2 G 1 2 G 1

C

V

C

V

C

V

C

V

C

V

C

V

C

V

C

V

C

CLK

Initialization Iteration 1

0 0 0

1 2min,2 min{ , , , }nd

m m mG
α α α⋯

1 0 0 0

1 2 3 4min,2 min{ , , , }nd

m m m m
α α α α

1 1 0 0

1 2 3 4min,2 min{ , , , }nd

m m m m
α α α α

Ready to update bit nodes

 in Group 1
1

m
α(represents

sorted messages from group m)

V

(b) Timing Schedule

Figure 4.1: Architecture and scheduling for VSS algorithm.

23

4.2 Check Node Unit (CNU)

This section presents detail CNU architecture based on VSS scheduling. The CNU

architecture is further optimized to reduce storage requirement and the number of sorters.

Different CNU architectures will affect the convergence speed and performance which will

be discussed in the next chapter. The messages sent from VNU are converted from two’s

complement format to sign-magnitude format for efficient computation of CNU. Therefore,

the operation of check node to variable node update could be divided into magnitude part

and sign part. For our proposed LDPC codes with row degree 81, the VSS approach with

G = 27, the number of messages need to be computed in each CNU group is 3.

4.2.1 Accumulative Sorter

Fig. 4.2 illustrates the magnitude part of CNU, which is an accumulative sorter

composed of a local sorter and a global sorter. The local sorter is used to find the local

1st min and 2nd min values in each subgroups, and global 1st min and 2nd min values of

a row will be found by a global sorter. G − 1 registers are required to store local 1st min

from different group. And local 2nd min is the same. The global sorter has 27 × 2 = 54

inputs in total. Number of registers will be increased if G becomes larger. This increases

the number of inputs to global sorter and the critical path.

1
st
 min

2
nd
 min

...
...

G-1 registers

G
lo
b
a
l
S
o
rt
e
r

1
s
t m
in

2
n
d
 m
in

Global

1
st
 min

Global

2
nd
 min

Local 1
st
 min in different group

Figure 4.2: Conventional accumulative sorter.

A demonstration is provided in Fig 4.3. We assume row degree = 9 and number of

24

group (G) = 3. R1stmin and R2ndmin represent the local 1st min and 2nd min of each group

respectively. The value in registers is reset to infinity before initialization. Since G = 3,

there are three variable nodes in each group and they provide new values to the sorter

every cycle. Local 1st min and 2nd min will be obtained and stored in the registers. The

values in each register is shifted to the right. The global sorter chooses the global 1st min

and 2nd min from these 7 values (3 new inputs, local 1st min and 2nd min from 2 local

groups). The red number represents the global 1st min in that cycle.

st

Group 1 Group 2 Group 3 Group 1

R1st min ∞ ∞ 0.1 ∞ 0.4 0.1 0.7 0.4

R2nd min ∞ ∞ 0.2 ∞ 0.5 0.2 0.8 0.5

Inputs 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7

Figure 4.3: Demonstration of conventional accumulative sorter.

4.2.2 Accumulative Sorter without 2nd minimum value

To reduce storage memory, local 2nd min values and global 2nd min values are not

stored. The local 1st min value is the minimum value from G− 1 groups. And global 2nd

min value is taken from local 1st min value directly. This may cause some performance

loss.

When local 1st min value is smaller than global 1st min value, global 1st min value is

replaced by local 1st min value. Then value stored in local 1st min register should be set

to a maximum value. Local sorter starts to find the new local 1st min value.

Conventionally, when the current updating group is the same as the group that global

1st min value comes, global 2nd min value should be sent to the variable nodes. Since

global 2nd min value is not stored, global 1st min value is updated by local 1st min value

and sent to bit nodes as global 2nd min value. Thus, both global 1st min and 2nd min

value are equal to local 1st min value at this cycle.

25

There are some methods for compensation on global 2nd min such as multipling or

adding a scalar to original global 1st min. But these methods only provide limited im-

provement. Since local 1st min value from G − 1 groups contains updated information,

taking local 1st min value as global 2nd min value can provide better improvement.

1
st
 min R

G
lo
b
a
l
S
o
rt
e
r

st

R

Figure 4.4: Accumulative sorter w/o 2nd min.

A demonstration is provided in Fig 4.4. We assume row degree = 9 and number of

group (G) = 3. Rlocal represents the local 1st min and Rglobal represents the global 1st

min. Number of registers is indepentent of G. Number of inputs to local sorter is equal

to N/G + 1 and number of inputs to local sorter is equal to 2. The new global 1st min

comes from the three new inputs, local 1st min and previous gloabl 1st min. The red

number represents the global 1st min in that cycle. After the initialization, the global 1st

min stored in register comes from gorup 1. At 4th cycle (group 1 update of 1st iteration),

there are new valus from group 1 and the global 1st min in register should be cleared.

Threrfore, global 1st min is replaced by local 1st min.

st

Group 1 Group 2 Group 3 Group 1

R local ∞ ∞ 0.4 ∞

R global ∞ 0.1 0.1 0.4

Inputs 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7

Figure 4.5: Demonstration of accumulative sorter w/o 2nd min.

26

0 5 10 15 20
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2
N=1000627200, SNR = 5.1dB, (9153,8256), S=0.5, Q=(4,2),

Iteration

B
E
R

MS

MS-VSS with 2nd min

MS-VSS, Global 2nd min = local 1st min + 0.25

MS-VSS, Global 2nd min = local 1st min + 0.5

MS-VSS, Global 2nd min = local 1st min

Figure 4.6: Performance of (9153, 8256) LDPC code with different global 2nd min compen-
sation, MS - MinSum, MS-VSS - MinSum with variable-node-centric sequential schedul-
ing.

Figure 4.6 shows the performance of (9153, 8256) LDPC code with different global

2nd min compensation. MinSum with VSS algorithm has a faster convergence speed than

MinSum algorithm. If global 2nd min is not stored, there is some performance degradation

and the convergence speed decreases. But reduced storage memory version is preferred for

the FPGA simulation. Compensation on global 2nd min (local 1st min) does not provide

any improvement. Thus, no compensation on global 2nd min is preferred. BER decreases

slowly after 10th iteration due to the absence of original global 2nd min value. Therefore.

number of iteration is decided to be 10. Throughput can be further increased if early

termination is applied. In addition, 2nd min can be preserved if better performance is

desired.

27

4.3 Varible Node Unit (VNU)

Fig. 4.7 shows the architecture of a VNU. SM to TC represents sign-magnitude

to two’s-complement conversion, and TC to SM represent two’s-complement to sign-

magnitude conversion. Registers are corresponding to different channel values in the

different groups. Since G = 27, there are 27 2-bits registers to store channel values in

one VNU. The bit width of messages passing between CNU and VNU is 4. The variable

node degree is 8. Thus, number of inputs of adder is 9. 2 bits channel value is mapped

to 4 bits value by non-linear quantization. More details of non-linear quantization will be

discussed in next chapter.

SM to TC

SM to TC

SM to TC

...

...

RRR

Channel

Value

...

Decoded bit

Clipping

Clipping

Clipping

...

TC to SM

TC to SM

TC to SM

4

4

4

4

4

4

8

4

7

7

7

4

4

4

1

MSB

Figure 4.7: Variable node unit architecture.

28

4.4 Shifting Network

High compexity of routing network between Check Node Units (CNU) and Varible

Node Units (VNU), is the main difficulty for hardware implementation of LDPC code.

Shifting Network [17] [18] [19] [20] has been proposed to reduce the routing complexity.

There are two routing networks between CNU and VNU. One is the direction from CNUs

to VNUs, while another one is the direction form VNUs to CNUs.

The shifting network of LDPC code, which is constructed by permutation matrix

algorithm, can be simplified. The wire connection from CNUs to VNUs is fixed and no

shifting network is needed. But messages of each CNU are shifted between CNUs. The

idea is explained in Fig 4.8.

1 0 0 0 0 1 0 0 0 1 1 0

1 0 1 0 0 0 0 1 0 0 0 1

0 1 1 0 1 0 0 0 0 1 0 0

0 0 0 1 1 0 1 0 0 0 0 1

0 1 0 0 0 1 1 0 1 0 0 0

0 0 0 1 0 0 0 1 1 0 1 0

H

=

(a) Parity Check Matrix of a LDPC code, with
variables divided into 6 groups

C1 C2 C3

V1 V2

C4 C5 C6 C2 C3 C4

V3 V4

C5 C6 C1

C3 C4 C5

V5 V6

C6 C1 C2 C4 C5 C6

V7 V8

C1 C2 C3

C5 C6 C1

V9 V10

C2 C3 C4 C6 C1 C2

V11 V12

C3 C4 C5

(b) Messages shifted between CNUs

Figure 4.8: Illusion of messages shifted between CNUs.

29

…

0 1 2

3 3

24

3

24

Figure 4.9: Parity Check Matrix of (9153,8256) LDPC code.

Fig. 4.9 shows the cyclic shift amount of some sub-matrices in parity check matrix of

(9153,8256) LDPC code. Since G = 27, 3 sub-martrices are processed in each decoding

cycle. The difference between cyclic shift amount of each group is a constant. Thus,

messages are shifted between CNUs after each decoding cycle and routing network can

be eliminated.

30

4.5 Comparison with Conventional Architectures

For accumulative sorter in Fig. 4.2, larger subgroup number G will result in fewer

inputs of local sorter but more inputs of global sorter. And the number of storage memory

for 1st min, 2nd min, and index values will increase. In addition, the critical path will

be shorter when G is larger becasue sorter is smaller. In traditional two-stage pipelined

architecture, both check node to variable node message and variable node to check node

message are kept in registers or memory. Assume the bit-width w of messages is 4 and

variable node degree is dv, then the required memory size (or registers) is as follows:

Conventional Min-Sum two-stage pipelined architecture:

RegV NU + RegCNU

= N · dv · w + m ·
(

1stmin + 2ndmin + Index + Sign
)

= 9153 · 8 · 4 bits + 904 · (3 + 3 + 7 + 81)

= 377872 bits

(4.3)

VSS architecture with conventional accumulative sorter(Fig. 4.2):

RegV NU + RegCNU

= 0 + m · (local 1stmin + local 2ndmin+

global 1stmin + global 2ndmin + Index + Sign)

= 904 · (3 · 26 + 3 · 26 + 3 + 3 + 7 + 81)

= 226000 bits

(4.4)

31

Proposed VSS architecture with No 2nd min accumulative sorter(Fig. 4.4):

RegV NU + RegCNU

= 0 + m ·
(

local 1stmin + global 1stmin + Index + Sign
)

= 904 · (3 + 3 + 5 · 2 + 81)

= 87688 bits

(4.5)

Compared to the conventional Min-Sum two-stage pipelined architecture, proposed

architecture reduces 76.8% registers. Compared to the VSS architecture with conventional

accumulative sorter, proposed architecture reduces 61.2% registers with some performance

loss. Since G = 27, the reduction of combinational circuit of VNU is approximately 96%.

32

Chapter 5

Simulation and Implementation
Result

5.1 Quantization

Belief Propagation (BP) is a probability-based message passing algorithm. When soft

input is available, LDPC code can provide powerful correcting ability. LDPC code with 2-

bit soft input can outperform BCH code under same code rate. Additive White Gaussian

Noise (AWGN) channel with Binary Phase Shift Keying Modulation (BPSK) are used for

demonstration and simulation. We assume that data ’0’ is mapped to ’1’ and data ’1’ is

mapped to ’-1’. 2-bit quantization represents 4 levels. A bit with channel value near 0 has

a high probability to be an error bit. Therefore, a non-linear quantization is preferred.

We make a threshold f to divide channel value into 4 levels.

-f f

Vmin-Vmin Vmax-Vmax

1-1 0

Figure 5.1: 2 bits (4 levels) non-linear quantization.

33

Fig. 5.2 shows the performance of LDPC code with different parameters f, Vmin and Vmax.

The bit width of Input LLR after non-linear quantization and messages passing between

CNUs and VNUs in decoder are 4 bits. Decoding algorithm is Normalized Min-Sum

algorithm with scaling factor = 0.5.

4.6 4.8 5 5.2 5.4 5.6
10

-6

10
-5

10
-4

10
-3

10
-2

N=10
7
, Iteration = 40

Eb/No(db)

B
E

R

f=0.35 Vmin=0.50 Vmax= 1.75

f=0.50 Vmin=0.50 Vmax= 1.75

f=0.35 Vmin=0.75 Vmax= 1.75

f=0.50 Vmin=0.75 Vmax= 1.75

f=0.35 Vmin=1.00 Vmax= 1.75

f=0.50 Vmin=1.00 Vmax= 1.75

Figure 5.2: Performance of (9153, 8256) (Column deg = 8) LDPC code with different
parameters.

Parameter f = 0.35, Vmin = 0.5 and Vmax = 1.75 provides the best performance.

In Fig. 5.3, the performance loss between floating input and 2 bits non-linear input

quantization is 0.3dB. 2 bits non-linear input quantization can provides better perfor-

mance than 4-bit linear input quantization. As more-bits input information requires

more READ on NAND flash cell, latency of reading data will increase. Therefore, 2 bits

non-linear input quantization is chosen.

34

4 4.5 5 5.5 6
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

N=10
7
, R=0.9, Iteration=40, (9153,8256)

Eb/No(db)

B
E
R

 Soft Input, Floating

2 bits non-linear Input, Q(4,2)

4 bits linear Input, Q(4,2)

4 bits linear Input, Q(4,1)

5 bits linear Input, Q(5,1)

Hard Input, Q(4,2)

Figure 5.3: Performance of LDPC code with different input quantization.

5.2 Performance

In Fig. 5.4, there is 0.7dB coding gain of 2-bit non-linear soft input LDPC code over

BCH code at BER=10−4. 2-bit non-linear soft input LDPC code has a great potential to

replace BCH code for NAND flash memory system. The simulation parameters of LDPC

code are 4-bit quantization (2-bit integer and 2-bit decimal fraction), with scaling factor

0.5. The bit width of messages passing between CNU and VNU is 4.

Without storing global 2nd min value introdueces 0.1dB performance loss. But Variable-

node-centric Sequential Scheduling (VSS) architecture with no 2nd min value reduces

76.6% registers and approximately 96% combinational circuit of VNU.

35

4 4.5 5 5.5 6
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

N=10
7
, S=0.5, Iteration=40, R=0.9

Eb/No(db)

B
E
R

(9153,8256), Soft Input, NMS, Floating

(9153,8256), 2 bits Soft Input, VSS w/o 2nd min, Q(4,2)

(9153,8256), 2 bits Soft Input, VSS w 2nd min, Q(4,2)

(9153,8256), 2 bits Soft Input, NMS, Q(4,2)

(9153,8256), Hard Input, NMS, Q(4,2)

(9032,8192), BCH code, t=60

Figure 5.4: Performance comparison, Iteration = 40.

5.3 Throughput

Gate count and critical path of CNU and VNU after synthesize is listed in Table. 5.1.

The critical path of CNU + VNU is 5ns. We assume that the critical path of control

circuit is 2ns. Therefore the clock cycle is 7ns. The LDPC decoder can operate at a

frequency of 125MHz.

Table 5.1: Synthesis result of CNU and VNU with technology UMC90.

CNU(sign bit register is not included) VNU
Gate count 225 620

Critical path (ns) 2 3

36

Number of iteration is 10 and clock frequency in Place and Route is 100Mhz.

Throughput =
Information length

Cycles per iteration · (Number of iteration + 1) · Cycle length

=
8256

27 · (10 + 1) · 10ns

≈ 2.78Gbps

5.4 Implementation Results

Table 5.2: Summary of implementation result (Place and Route).

Proposed LDPC Decoder
Technology UMC 90nm 1P9M
Code Spec (9153,8256)
Code Rate 0.9
Row Degree 81

Column Degree 8
Algorithm Variable-node-centric

Sequential Scheduling
Area 4.82 mm2

(No IO Pad)
Gate Count 1100k

Iteration 10
Input Quantization 2 bits
Clock Frequency 100MHz

Maximum Throughput 2.78 Gbits/s
Power 437 mW

Table 5.2 shows the postlayout result. Gate Count after synthesis is 1100k and Core

area is 4.82mm2 without IO pad. Using 90nm CMOS technology, the maximum through-

put can achieve 2.78 Gbps under operating frequency of 100Mhz with 10 iterations. Power

consumption is 437mW.

37

Figure 5.5: Layout of Place and Route.

38

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis proposes a (9153, 8256) LDPC code with code rate 0.9 for NAND flash

memory system. (9153,8256) LDPC code is constructed by permutation matrix algorithm,

with column degree 8. Simulations show that LDPC code with 2-bit soft input can

outperform BCH code under same code rate. Therefore, LDPC code is a good candidate

to replace BCH code in the next generation standard.

High code rate LDPC code introduces high row degree. This makes implementation

difficult due to the large number of inputs to sorter, and the routing complexity also

increases. Variable-node-centric sequential scheduling (VSS) is a good solution to this

problem. Variable nodes are divided into G groups. Check node update procedures are

processed in G cycles, reducing the number of inputs to sorter. CNU is further modified

to reduce the hardware cost. Compared to the conventional Min-Sum two-stage pipelined

architecture, it saves approximately 96% combination circuits of VNU and reduces 76.8%

registers. The maximum throughput can achieve 2.78 Gbps under operating frequency of

100Mhz with 10 iterations, using 90nm CMOS technology.

39

6.2 Future Work

Flash memory system requires Bit Error Rate (BER) down to 10−12. And this thesis

proposes a high column degree LDPC code in order to suppress error floor. Simulation

of BER down to 10−12 consumes years on computer. Therefore, we will do simulation on

FPGA to investigate the performance of LDPC code down to 10−12 in the future.

There is no standard flash memory channel for any simulation. Therefore, a standard

flash memory channel is desired if we want to compare performances of different error

correcting code on flash memory. It is a new challenge and more details about flash

memory will be studied.

40

References

[1] D. M. Greg Atwood, Al Fazio and B. Reaves, “Intel StrataFlashTM Memory Tech-
nology Overview,” Intel Technology Journal, pp. 1–8, 4th Quarter 1997.

[2] R.C.Bose and D.K.Ray-Chaudhuri, “On a class of error-correcting binary group
codes,” Inform. and Contr, vol. 3, pp. 68–79, March 1960.

[3] A. Hocquenghem, “Codes correcterus d’erreurs,” Chiffres, vol. 2, pp. 117–156,
September 1959.

[4] W. J. ReidIII, L. L. Joiner, and J. J. Komo, “Soft Decision Decoding of BCH Codes
Using Error Magnitudes,” IEEE Int. Symp. on Info. Theory, p. 303, June 1997.

[5] Y. M. Lin, C. L. Chen, H. C. Chang, , and C. Y. Lee, “A 26.9K 314.5Mbps Soft
(32400, 32208) BCH Decoder Chip for DVB-S2 System,” in IEEE Asian Solid-State
Circuits Conference, Nov. 2009, pp. 373–376.

[6] R.G.Gallager, “Low-Density Parity-Check Codes,” in MA: MIT Press, 1963.

[7] D. MacKay and R. Neal, “Near Shannon limit performance of low density parity
check codes,” Electron. Lett, vol. 33, no. 6, pp. 457–458, March 1997.

[8] X.-Y.Hu, E. Eleftheriou, and D.-M. Arnold, “Progressive edge-growth Tanner
graphs,” in Proc. IEEE Global Telecommunications Conf. (GLOBECOM), San An-
tonio, TX, Nov. 2001, pp. 995–1001.

[9] J. Zhang and M. Fossorier, “Shuffled iterative decoding,” IEEE Transactions on
Communications, vol. 53, no. 2, pp. 209–213, Feb. 2005.

[10] C.-L. Chen, K.-S. Lin, H.-C. Chang, W.-C. Fang, and C.-Y. Lee, “A 11.5-Gbps LDPC
Decoder Based on CP-PEG Code Construction,” in ESSCIRC, 2009, pp. 412–415.

[11] J. Sha, Z. Wang, M. Gao, and L. Lio, “Multi-Gb/s LDPC Code Design and Imple-
mentation,” IEEE Transactions on VLSI Systems, vol. 17, no. 2, pp. 262–268, Feb.
2009.

[12] T. Richardson, “Error floors of LDPC codes,” in Proc. 41st Annu. Allerton Conf.
Communications, Control and Computing, Oct 2003, pp. 1426–1435.

[13] T. Tian, C. Jones, J. Villasenor, and R. D. Wesel, “Construction of irregular LDPC
codes with low error floors,” in Proceedings IEEE International Conference on Com-
munications, vol. 5, 2003, pp. 3125–3129.

41

[14] H. Song, V. Kumar, and B.V.K., “Low-density parity check codes for partial response
channels,” IEEE Signal Processing Magazine, pp. 56–66, Jan. 2004.

[15] M. Fossorier, “Quasicyclic low-density parity-check codes from circulant permutation
matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1785–1793, Aug 2004.

[16] IEEE Std. 802.3an, Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications Std., 2006.

[17] D.Oh and K.Parhi, “Area Efficient Controller Design of Barrel Shifters for Recon-
figurable LDPC Decoders,” IEEE Internatinal Symposium on Circuits and Systems,
pp. 240–243, May 2008.

[18] C.-H. Liu, C.-C. Lin, H.-C. Chang, and Y. C.-Y. Lee, “Multi-Mode Message Passing
Switch Networks Applied for QC-LDPC Decoder,” IEEE Internatinal Symposium on
Circuits and Systems, vol. 18, no. 1, pp. 85–94, Jan 2010.

[19] D.Oh and K.Parhi, “Low-Complexity Switch Network for Reconfigurable LDPC De-
coders,” IEEE Transactions on Very Large Scale Integration Systems, pp. 752–755,
May 2008.

[20] J. Lin, Z. Wang, L. Li, J. Sha, and M. Gao, “Efficient Shuffle Network Architecture
and Application for WiMAX LDPC Decoders,” IEEE Transcations on Circuits and
Systems, vol. 56, no. 3, pp. 215–219, March 2009.

42

	Thesis_front.pdf
	THESIS.pdf

