

國 立 交 通 大 學

電子工程學系電子研究所碩士班

碩 士 論 文

H.264/AVC及SVC熵解碼器之分析與設計

Analysis and Design of Entropy Decoder for

H.264/AVC and Scalable Extension

研 究 生： 廖元歆

指導教授： 張添烜 教授

中華民國 九十九年 八月

H.264/AVC及SVC熵解碼器之分析與設計

Analysis and Design of Entropy Decoder for

H.264/AVC and Scalable Extension

研 究 生： 廖元歆 Student：Yuan-Hsin Liao

指導教授： 張添烜博士 Advisor：Dr. Tian-Sheuan Chang

國 立 交 通 大 學

電子工程學系電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in

Electronics Engineering

August 2010

Hsinchu, Taiwan, Republic of China

中華民國 九十九年八月

 i

H.264/AVC 及 SVC 熵解碼器之分析與設計

研究生：廖元歆 指導教授：張添烜博士

國立交通大學

電子工程學系電子研究所碩士班

摘 要

 近年來，由於 H.264/AVC 較以前的視訊標準有更佳的編碼效率，至今已被

廣泛使用在視訊應用系統中。要想實現高解析度畫面即時解碼，熵解碼器的效能

需求非常的高。因此，我們需要設計一個高效能的積體電路來加速熵解碼器的解

碼速度。

 本篇研究提出一個適用於 H.264/AVC 以及 SVC 的高產量熵解碼器硬體設

計。首先，我們提出一個延遲均衡的雙符號內容適應性變動長度解碼器，並將解

碼程序中多餘的解碼步驟省略以加速解碼的進行。工作頻率相較於傳統的設計可

提高 21%，而整體產量相較於我們之前的設計可提升28.2%。接著，針對H.264/AVC

的另一種亂度編碼，我們提出一個以混合式記憶體為架構之高產量內容適應性二

元算數解碼器。在整個解碼架構中，我們將語法單元剖析及其解碼進行合併，並

提出以混合式記憶體為架構的雙符號平行解碼技術來加速解碼速度。更進一步

的，我們利用一個有效率的預測機制以及透過數學上的轉換來提升解碼效能。

 基於聯華電子 90 奈米製程，我們的內容適應性變動長度解碼器的最高工作

頻率可達 390 MHz，13.88k 個邏輯閘。而我們的內容適應性二元算數解碼器的

最高工作頻率可達 264 MHz，42.37k 個邏輯閘。我們的解碼器在節省了 48.6%的

 ii

硬體成本下的產量為每秒 451.4 百萬個符號，高於其他已被發表的設計。此外，

我們將硬體設計拓展到 SVC。在工作頻率 135 MHz 下，我們所提出的熵解碼器可

支援 3 層解析度，最高 1920x1080、三層播放頻率、最高每秒 60 張畫面、以及

三層畫面品質的及時解碼。

 iii

Analysis and Design of Entropy Decoder for

H.264/AVC and Scalable Extension

Student: Yuan-Hsin Liao Advisor: Dr. Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao-Tung University

Abstract

In recent years, the state-of-the-art video coding standard H.264/AVC which

provides better compression efficiency for video images than the earlier standards has

been widely adopted in current video application system. To satisfy the heavy

performance requirement on real-time H.264/AVC decoding systems especially for

large-scale video sequences, VLSI implementation of the entropy decoder is

necessary since it dominates the overall decoder system performance.

In this thesis, we propose a high-throughput and fully hardwired entropy decoder

for H.264/AVC and its scalable extension. First, we present a delay balanced

two-level CAVLC decoder with 21% shorter critical path delay in comparison to

traditional two-level decoder. Furthermore, a skipping mechanism is adopted to

remove unnecessary decoding processes. The overall CAVLC throughput is 28.2%

better than our previous design. Second, for the CABAC decoder, we propose a high

throughput CABAC decoding design which combines SE parsing and decoding with a

new hybrid memory two-symbol parallel decoding technique to accelerate the

decoding speed while reducing the hardware cost. Further speedup is achieved to

 iv

avoid stalls for most of the cases by the prediction-based method. In addition, an

efficient mathematical transform method is also proposed to further decrease the

critical path delay of two-symbol binary arithmetic decoding procedure by 28%.

The proposed entropy decoder is implemented by UMC 90nm technology and

experimental results show that our CAVLC decoder can operate at 390 MHz with

13.88k gate count, besides, our CABAC decoder can operate at 264 MHz with 42.37k

gate count, and the throughput is 451.4 Mbin/sec, which surpasses previous design

with 48.6% hardware cost saving. Furthermore, we extend our entropy decoder

towards SVC extension of H.264/AVC. At the working frequency 135 MHz, our

proposed entropy decoder can support 3 spatial layers, maximum resolution

1920x1080, 3 temporal layers, maximum frame rate 60 fps, and 3 CGS quality layers

real-time SVC decoding.

 v

誌 謝

 在此首先要感謝我的指導教授－張添烜博士。在這兩年的研究期間，不論是

在課業方面的問題，研究上遭遇到的困難，甚至是在面對人生未來時所感到的迷

惑，老師總是會在我有需要的時候為我提供幫助，給予我很多建議與想法。

 同時也要感謝我的口試委員們，中央大學電機工程系蔡宗漢教授及交通大學

電子工程系李鎮宜教授，感謝兩位能從百忙中專程抽空過來指導，教授們寶貴的

意見與指教將使本篇論文更臻完備。

 接著我要謝謝實驗室的同仁們。感謝李國龍學長，從我申請上研究所之後就

進行前期的指導，引領我進入視訊處理這門學問的殿堂，並教導我如何做研究及

找資料。感謝曾宇晟學長，在研究上以及軟體工具使用上給了我相當大的幫助。

感謝陳之悠學長、許博淵學長、沈孟維學長以及黃筱珊學姊，你們所教導我的硬

體設計程式技巧，至今仍讓我受用無窮。再來要感謝我的研究夥伴陳宥辰，在與

你共事的過程中讓我學到了很多東西，也成長了很多。此外要感謝其他實驗室成

員，張彥中學長、王國振學長、還有許博雄、洪瑩蓉、陳奕均，有了你們的鼓勵

才得以讓這篇論文能夠順利完成。白駒過隙，碩士班短短兩年的時光一眨眼就過

去了，但與各位一同努力一同歡笑的日子將成為我一生中難以遺忘的回憶。

 最後我要感謝我的父親、母親以及女友阿兔，你們支持與關心，是我能夠順

利完成學業的最大動力。

 謹以這篇論文獻給所有愛我以及支持我的人。

 vi

Contents

CHAPTER 1 INTRODUCTION .. 1

1.1 Motivation and Contribution ... 1

1.2 Thesis Organization ... 2

CHAPTER 2 OVERVIEW OF CAVLC .. 3

2.1 Context-based Adaptive Variable Length Coding .. 3

2.1.1 CAVLC Decoding Flow .. 4

2.2 Design Challenges and Related Works .. 7

CHAPTER 3 OVERVIEW OF CABAC .. 10

3.1 Arithmetic Coding ... 10

3.2 Context-based Adaptive Binary Arithmetic Coding .. 12

3.2.1 Binarization.. 13

3.2.2 Context Modeling ... 17

3.2.3 Adaptive Binary Arithmetic Coding ... 19

3.3 CABAC Decoding Algorithm Overview ... 23

3.4 Design Challenges and Related Works .. 26

CHAPTER 4 PROPOSED ENTROPY DECODER ... 30

4.1 Proposed CAVLC Decoder .. 31

4.1.1 Analysis .. 32

4.1.2 Proposed Delay Balanced Two-level Decoder Architecture .. 37

4.1.3 CAVLC Decoding Architecture Design .. 39

4.1.4 Experimental Results.. 42

4.2 Proposed CABAC Decoder ... 46

4.2.1 Analysis .. 46

4.2.2 MCS Stage .. 52

4.2.3 Context Model Memory Design ... 58

4.2.4 TSBAD Stage .. 62

4.2.5 Experimental Results.. 66

CHAPTER 5 EXTENDING TOWARDS SVC .. 71

5.1 Design target and Design Challenges .. 71

5.2 Proposed Entropy Decoder for SVC .. 72

CHAPTER 6 CONCLUSION AND FUTURE WORK .. 78

6.1 Conclusion ... 78

 vii

6.2 Future Work ... 79

REFERENCE ... 81

BIOGRAPHICAL NOTES ... 84

 viii

List of Figures

(Chapter2)

Fig. 1 CAVLC decoding flow ... 6

Fig. 2 Transmitted bitstream for a 4 x 4 residual block ... 7

(Chapter3)

Fig. 3 Example for interval subdivision .. 11

Fig. 4 Recursive interval subdivision for the sequence (C, B, C, E) ... 11

Fig. 5 CABAC encoder block diagram .. 13

Fig. 6 Pseudo code for k-th order Exp-Golomb code construction ... 16

Fig. 7 Neighboring syntax elements involved in context model selection of current syntax

element ... 19

Fig. 8 Probability transition rule .. 20

Fig. 9 Flow diagram of binary arithmetic encoding process. (a) Regular coding mode. (b)

Bypass coding mode ... 21

Fig. 10 Flowchart of (a) renormalization process and (b) PutBit(B) ... 22

Fig. 11 CABAC parsing flow .. 24

Fig. 12 Flow diagram of (a) regular bin decision process, (b) renormalization process, and (c)

bypass bin decision process .. 26

Fig. 13 Pipelining scheme of CABAC decoding ... 27

Fig. 14 Data hazard caused by significance map. (a) 4x4 residual block. (b) Flow diagram of

the CABAC decoding scheme for significance map. (c) Example for decoding the

significance map. (d) Illustration of cycle stall of CABAC decoding .. 28

(Chapter4)

Fig. 15 Framework of proposed entropy decoder .. 31

Fig. 16 Original level decoding procedure defined in H.264/AVC standard ... 35

Fig. 17 MSD decoding procedure .. 36

Fig. 18 Modified level decoding procedure with MSD algorithm ... 37

Fig. 19 Proposed delay balanced two-level decoding architecture .. 39

Fig. 20 Proposed CAVLC decoder .. 41

Fig. 21 Residual block reconstruction architecture ... 42

Fig. 22 SE parsing flow for the H.264/AVC ... 48

 ix

Fig. 23 Proposed CABAC decoder architecture .. 52

Fig. 24 Pipeline scheduling of (a) prediction miss and (b) prediction hit .. 54

Fig. 25 Memory operation in the significance map decoding process ... 61

Fig. 26 Mathematical reordering. (a) O-(R-RLPS). (b) (O-R)+RLPS .. 65

Fig. 27 Mathematical transform for the second bin decision process .. 65

Fig. 28 Architecture of proposed two-symbol arithmetic decoding engine ... 66

(Chapter5)

Fig. 29 Framework of proposed entropy decoder for SVC ... 74

 x

List of Tables

(Chapter2)

Table 1 CAVLC DECODING PROCEDURE FOR THE 4 X 4 RESIDUAL BLOCK DEPICTED IN FIG. 2 7

(Chapter3)

Table 2 DECODING PROCUDURE FOR INPUT NUMBER .. 12

Table 3 UNARY BINARIZATION .. 14

Table 4 TRUNCATED UNARY BINARIZATION ... 14

Table 5 FIXED-LENGTH BINARIZATION .. 15

Table 6 UEG3 BINARIZATION FOR ABSOLUTE VALUES OF MOTION VEXTOR DIFFERENCES 16

Table 7 SYNTAX ELEMENT AND CORRESPONDING CONTEXT INDICES ... 17

Table 8 CONTEXT CATEGORY DEPENDING ON SYNTAX ELEMENTS AND BLOCK TYPES 19

(Chapter4)

Table 9 THRESHOLD VALUE FOR SUFFIXLENGTH TRANSITION .. 35

Table 10 EXAMPLE OF RESIDUAL BLOCK RECONSTRUCTION PROCESS .. 42

Table 11 COMPARISON OF CAVLC DECODING PERFORMANCE ... 43

Table 12 CAVLC DECODER IMPLEMENTATION RESULT COMPARISONS DIFFERENT DESIGNS 44

Table 13 MAXIMUM FRAME RATES FOR SOME EXAMPLE FRAME SIZES .. 44

Table 14 WORKING FREQUENCY FOR DIFFERENT LEVEL CONDITIONS .. 46

Table 15 STATISTICAL RESULT OF BIN DISTRIBUTION WITH I CODING STRUCTURE AND QP28 48

Table 16 STATISTICAL RESULT OF BIN DISTRIBUTION WITH I CODING STRUCTURE AND QP20 49

Table 17 STATISTICAL RESULT OF BIN DISTRIBUTION WITH I CODING STRUCTURE AND QP12 49

Table 18 STATISTICAL RESULT OF BIN DISTRIBUTION WITH IPPP CODING STRUCTURE AND

QP28 ... 49

Table 19 STATISTICAL RESULT OF BIN DISTRIBUTION WITH IPPP CODING STRUCTURE AND

QP20 ... 50

Table 20 STATISTICAL RESULT OF BIN DISTRIBUTION WITH IPPP CODING STRUCTURE AND

QP12 ... 50

Table 21 STATISTICAL RESULT OF BIN DISTRIBUTION WITH IBBBP CODING STRUCTURE AND

QP28 ... 51

Table 22 STATISTICAL RESULT OF BIN DISTRIBUTION WITH IBBBP CODING STRUCTURE AND

QP20 ... 51

 xi

Table 23 STATISTICAL RESULT OF BIN DISTRIBUTION WITH IBBBP CODING STRUCTURE AND

QP12 ... 52

Table 24 IMPROVEMENT OF PREDICTION ACCURACY USING THE PROPOSED METHODS WITH I

CODING STRUCTURE ... 55

Table 25 IMPROVEMENT OF PREDICTION ACCURACY USING THE PROPOSED METHODS WITH

IPPP CODING STRUCTURE ... 55

Table 26 IMPROVEMENT OF PREDICTION ACCURACY USING THE PROPOSED METHODS WITH

IBBBP CODING STRUCTURE ... 56

Table 27 BIN INDEX TRANSITION RELATION IN SIGNIFICANCE MAP .. 57

Table 28 CONTENT OF SRAM AFTER REORGANIZATION OF OUR PROPOSAL .. 61

Table 29 CONTENT OF REGISTER AFTER REORGANIZATION OF OUR PROPOSAL 62

Table 30 CABAC DECODING PERFORMANCE OF THE PROPOSED ARCHITECTURE WITH I CODING

STRUCTURE ... 67

Table 31 CABAC DECODING PERFORMANCE OF THE PROPOSED ARCHITECTURE WITH IPPP

CODING STRUCTURE ... 68

Table 32 CABAC DECODING PERFORMANCE OF THE PROPOSED ARCHITECTURE WITH IBBBP

CODING STRUCTURE ... 69

Table 33 CABAC DECODER IMPLEMENTATION RESULT COMPARISONS OF DIFFERENT DESIGNS 69

Table 34 WORKING FREQUENCY FOR DIFFERENT LEVEL CONDITIONS .. 70

(Chapter5)

Table 35 CONTENT OF SRAM FOR SVC QUALITY ENHANCEMENT LAYER ... 74

Table 36 CONTENT OF REGISTER FOR SVC QUALITY ENHANCEMENT LAYER ... 75

Table 37 CONTENT OF SRAM FOR SVC BASE LAYER ... 75

Table 38 CONTENT OF REGISTER FOR SVC BASE LAYER .. 76

Table 39 SYNTHESIS RESULTS ... 76

 1

Chapter 1 INTRODUCTION

 H.264/AVC is the state-of-the-art video coding standard developed by the Joint

Video Team (JVT) of ISO/IEC Moving Picture Experts Group and the ITU-T Video

Coding Experts Group (MPEG and VCEG). With many advanced techniques, it

provides better compression efficiency for video than the earlier MPEG-4 and H.263

standards do. Recently, H.264/AVC has been widely adopted in current video

application system such as Blu-ray Disc, Youtube, television service, and real-time

videoconferencing.

 H.264/AVC specifies two entropy coding tools: Context-based Adaptive Variable

Length Coding (CAVLC), and Context-based Adaptive Binary Arithmetic Coding

(CABAC) [1], [2]. Both methods employ context-based adaptive modeling in their

entropy coding framework and achieve better compression efficiency compared to

previous video coding standards. In CAVLC, an adaptive VLC table switching

method depending on already coded symbols is used, and in CABAC, an adaptive

probability model estimation technique is utilized for binary arithmetic coding. For

the reason that the adaptation of CAVLC can not perfectly match actually conditional

symbol statistics and the limitation of 1 bit/symbol imposed on variable length codes,

CABAC can achieve averaged bit-rate savings of 9% to 14% at the cost of higher

computation complexity in comparison to CAVLC [3].

1.1 Motivation and Contribution

 In recent years, as network transmission speed rises and high-definition

television gains popularity, the demand for better visual quality grows fast. That

means video application system is expected to support high-definition (HD) resolution

 2

encoding and decoding. In addition to the heavy decoding requirement of H.264/AVC,

this trend leads to the result that more data has to be processed in the same time for

video decoders, and makes it more difficult to work in real-time for CPUs. In that

event, it is necessary to accelerate the decoding speed of entropy decoder with

hardware since its throughput dominates the overall decoder system performance.

However, the inherently strong data dependency significantly restricts the throughput

of entropy decoder and is generally considered as the main design challenge in

hardware implementation. In order to achieve high decoding performance and low

hardware cost real-time entropy decoding systems, a fully hardwired entropy decoder

is proposed in this thesis.

1.2 Thesis Organization

 The rest of this thesis is organized as follows. We briefly describe the entropy

codec (CAVLC and CABAC) and their design challenges in hardware implementation

in Chapter 2 and Chapter 3, respectively. In Chapter 4, the proposed entropy decoding

architecture is presented and we provide simulation results to demonstrate the

performance of our entropy decoder design. In Chapter 5, we extend our proposed

entropy decoder towards the Scalable Video Coding (SVC) extension of the

H.264/AVC standard. Finally, the conclusion is given in Chapter 6.

 3

Chapter 2 OVERVIEW OF CAVLC

Variable-length coding (VLC) is an entropy coding method that converts each

data symbol to a variable length codeword, and achieves data compression by

utilizing the various probabilities of occurrence of data symbols. Symbols with high

probabilities of occurrence are represented by short codewords while symbols with

low probabilities of occurrence are represented by long codewords. There are two

constrains on the VLC, one is that the bit string must consist of integral number of

bits, another one is that each codeword must be uniquely decodable.

2.1 Context-based Adaptive Variable Length Coding

 CAVLC and Exp-Golomb coding are the baseline entropy coding methods of

H.264/AVC. In spite of the advantage of Exp-Golomb coding in computational

efficiency, the compression efficiency is not good enough for real application alone.

To enhance the compression efficiency, a more efficient entropy coding technique

CAVLC is designed for encoding quantized transformed coefficients of 4 x 4 and 2 x

2 residual blocks by taking advantage of several characteristics of quantized blocks.

After decorrelated by the Discrete Cosine Transform (DCT) and quantization, most of

the quantized coefficients are zero while a few nonzero coefficients are clustered

around the top left of the block. Afterward, by a reordering, nonzero coefficients are

grouped together and the level of nonzero coefficients tends to be larger at the low

frequencies (start of the reordered array) and smaller toward the high frequencies (end

of the reordered array). Moreover, high-frequency nonzero coefficients are often a

series of ±1 (TrailingOnes). To efficiently represent the large number of zeros, a

 4

run-level coding technique can be applied to reduce the redundancy of the data

symbols. However, Run and Level are not quite correlated. Consequently, to achieve

better compression efficiency, Run and Level are coding separately in CAVLC.

Distinct from conventional VLC that VLC table is unique; CAVLC switches

VLC tables for different syntax elements relying on already transmitted symbols. That

is why it is named context-based adaptive. Although better compression efficiency is

achieved by exploiting inter-symbol redundancies, the rise in computational

complexity and data dependency imposed on the CAVLC decoder makes it hard to be

speeded up by parallelism and pipelining. In the following, the decoding flow of

CAVLC alone with its design challenges is discussed in more detail.

2.1.1 CAVLC Decoding Flow

A residual block is represented by five types of SEs in CAVLC. These syntax

elements are defined as follows:

1) coeff_token: This syntax element indicates the total number of nonzero

coefficients (TotalCoeffs) including TrialingOnes. Since the coding units of

CAVLC are 4 x 4 and 2 x 2 blocks, TotalCoeffs can be any value from 0 to 16

and TrialingOnes can be anything from 0 to 3. There are three

variable-length codeword tables and a fixed-length codeword table using for

coding coeff_token. The choice of look-up table depends on the total number

of nonzero coefficients to the left and on top of the current block, nA and nB

respectively.

2) trailing_ones_sing_flag: This 1-bit syntax element indicates the sign of

TrialingOnes, and is coded in reverse order.

3) level: The syntax element level represents the value of remaining nonzero

coefficients and is also coded in reverse order. Each level is composed of a

 5

prefix part (level_prefix) and a suffix part (suffix_part).

4) total_zeros: The sum of zero coefficients, except for zeros after the last

nonzero coefficient, is represented by this syntax element. The choice of

VLC table depends on the total number of nonzero coefficients of the current

block.

5) run_before: Number of zeros preceding each nonzero coefficient is encoded

as this syntax element. The VLC table for coding each run_before is chosen

according to the number of zeros left (zerosLeft).

 Fig. 1 shows the flow diagram of CAVLC decoding. The decoding process

consists of six steps: coeff_token parsing, trailing_ones_sing_flag parsing, level

parsing, total_zeros parsing, run_before parsing, and residual block reconstruction.

Table 1 shows an example for the decoding procedure of a CAVLC coded residual

block as depicted in Fig. 2 and its corresponding decoded information. The input

bitstream provided for CAVLC decoder is “00001000_11100101_11101101”, after

the decoding procedure, the 4 x 4 residual block, “0, 3, 0, 1, -1, -1, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0”, is reconstructed.

 6

Figure 1. CAVLC decoding flow.

 7

0 3 -1 0

0 1 0

0 0 0

0 0 0 0

-1

1

Reordered block: 0, 3, 0, 1, -1, -1, 0, 1, 0...

4 x 4 residual block

Encoded CAVLC bitstream: 000010001110010111101101

Figure 2. Transmitted bitstream for a 4 x 4 residual block.

TABLE 1. CAVLC DECODING PROCEDURE FOR THE 4 X 4 RESIDUAL BLOCK DEPICTED

IN FIG. 2

Bitstream: 000010001110010111101101

Syntax Element Codeword Value Output Array

coeff_token 100 TotalCoeffs = 5, TrailingOnes = 3 N/A

TrailingOne sign 0 + 1

TrailingOne sign 1 − -1, 1

TrailingOne sign 1 − -1, -1, 1

level 1 +1 1, -1, -1, 1

level 0010 +3 3, 1, -1, -1, 1

total_zeros 111 3 3, 1, -1, -1, 1

run_before 10 1 3, 1, -1, -1, 0, 1

run_before 1 0 3, 1, -1, -1, 0, 1

run_before 1 0 3, 1, -1, -1, 0, 1

run_before 01 1 3, 0, 1, -1, -1, 0, 1

Reconstructed block: 0, 3, 0, 1, -1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0

2.2 Design Challenges and Related Works

In hardware implementation, the VLC decoding can be realized as a finite state

machine in essence. One bit or several bits of bitstream are scanned in each clock

 8

cycle. According to the chosen VLC table, if the bit string matches a codeword, the

corresponding value is returned. Otherwise, more bits will be scanned in the next

cycle. Since the bitstream boundary between successive codewords is unknown until

the codeword length of the former one is detected, the decoding procedure is

inherently sequential and thus the throughput of CAVLC decoder is therefore hard to

be elevated.

Intuitively, multi-symbol decoding is an effective way to raise throughput,

especially for trailing_ones_sing_flag, level, and run_before parsing stages which are

critical loops in the CAVLC decoding procedure. However, the main obstacle to

parallel decoding is how to break the recursive dependencies between codewords. In

trailing_ones_sing_flag parsing stage, since the number of TrailingOnes is already

derived in coeff_token parsing stage, [4] and [5] implemented the parsing procedure in

a single cycle. In level parsing stage, two level decoders are cascaded to produce two

level symbols in one cycle [6]. However, it induces a huge critical path delay. In

run_before parsing stage, since the codewords of VLC table used for run_before is

much less and shorter than others, the data dependency obstacle is much easier to be

overcome, and thus several efficient multi-run_before decoding architectures had

proposed to boost the throughput of CAVLC decoder. When run_before is equal to 0,

the corresponding codeword is composed of “1” bits. Therefore by counting the bit

length of the series of “1” bits of input bitstream, multiple run_before symbols valued

0 can be parsed in one cycle [6]. This method is effective in the high bit-rate coding

but inefficient in the low bit-rate coding where the residual blocks are very sparse.

Since the sub VLC tables of run_before are separated by zerosLeft, unless zerosLeft is

larger than 6, the zerosLeft for choosing the next run_before look-up table is

predictable. By utilizing this character, Yu et al. [7] proposed a combined look-up

table for decoding successive two run_before symbols at the same time. At the

 9

expense of significant hardware cost raise, Wen et al. [8] adopted a bit-position VLC

decoding approach that all run_before symbols are decoded using less than 3 cycles in

one block to achieve high throughput. Lee et al. [9] presented a multi-symbol decoder

that can decode three run_before symbols in one cycle. Furthermore, a pattern-search

method had been reported in [10]. In this method, a block can be reconstructed

directly without performing CAVLC decoding procedure if a pattern is matched in a

pre-established look-up table.

For the two critical loops, level parsing process and run_before parsing process,

which mainly affect the overall decoding performance, a lot of techniques have been

proposed to speed up run_before parsing process, whereas there are few effective

ways to improve level parsing performance. In this thesis, a highly efficient two-level

decoding architecture is proposed to expedite the CAVLC decoding speed.

 10

Chapter 3 OVERVIEW OF CABAC

For a data symbol with probability of occurrence P to be encoded, the theoretical

optimum number of bits is log2(1 / P). It is usually a fraction instead of an integer. As

a result, in essence, entropy coding based on integral number of bits long codewords

can not achieve optimal data compression. As a practical alternative, arithmetic

coding provides a technique that can encode a sequence of data symbols into a single

fractional number and thus can more closely approach the theoretical optima.

3.1 Arithmetic Coding

The arithmetic coding algorithm is a recursive subdivision of an interval based

on the probability of occurrence of encoded symbols. In the encoding procedure, first,

the range (0.0, 1.0) is subdivided into subranges depending on the probability of

occurrence of each symbol as Fig. 3 shows. Then, whenever a symbol is encoded, the

new rage is set to the corresponding subrange. Finally, the sequence of data symbols

can be represented by any fractional number in the final range. An example for

encoding the sequence (C, B, C, E) is presented in Fig. 4. After the first symbol is

encoded, the new range is (0.3, 0.7), and the next new range is (0.34, 0.42).

Progressively, the initial range becomes smaller. At the end of sequence of data

symbols, a number 0.394 which lies within the final rage (0.3928, 0.396) is outputted.

 11

Figure 3. Example for interval subdivision.

Figure 4. Recursive interval subdivision for the sequence (C, B, C, E).

In the decoding procedure, each symbol is decoded depending on the subrange

where the input number falls. Then, the new range is updated to this subrange. Table 2

shows an example for decoding a fractional number 0.394 encoded by the encoding

Symbol Probability)/1(log2 P Subrange

A 0.1 3.32 (0.0, 0.1)

B 0.2 2.32 (0.1, 0.3)

C 0.4 1.32 (0.3, 0.7)

D 0.2 2.32 (0.7, 0.9)

E 0.1 3.32 (0.9, 1.0)

 12

procedure mentioned above. When decoding the first symbol, because 0.394 falls

within the subrange (0.3, 0.7), it is decoded as (C). Then, range is set to the subrange

which belongs to (C). The next symbol is decoded as (B) since 0.394 lies within the

subrange (0.34, 0.42), and so on. The decoding does not halt until the entire sequence

of data symbols (C, B, C, E) is decoded.

TABLE 2. DECODING PROCUDURE FOR INPUT NUMBER 0.394

3.2 Context-based Adaptive Binary Arithmetic Coding

In spite of the fact that the algorithm of arithmetic coding is simple in definition,

the hardware and software implementations suffer from its high computational

complexity. The limited throughput (symbols/second) is generally considered as its

main disadvantage. To solve this problem while maintaining the compression

efficiency, CABAC introduces an adaptive binary arithmetic coding technique

combined with well-designed context models. Furthermore, the interval is subdivided

by using addition and look-up take to avoid multiplication operation, and the

Decoding Procedure Range Subrange Decoded Symbol

1) Set the initial range (0.0, 1.0)

2) Find the subrange where the number falls

 and decode the symbol

 (0.3, 0.7) (C)

3) Set the new range (0.3, 0.7)

4) Find the subrange where the number falls

 and decode the symbol

 (0.34, 0.42) (B)

5) Set the new range (0.34, 0.42)

6) Find the subrange where the number falls

 and decode the symbol

 (0.364, 0.396) (C)

7) Set the new range (0.364, 0.396)

8) Find the subrange where the number falls

 and decode the symbol

 (0.3928, 0.396) (E)

 13

probabilities updating is simplified by look-up table.

Fig. 5 shows the block diagram of CABAC encoding process. The encoding

process consists of three steps: binarization, context modeling, and binary arithmetic

coding [2]. In the first step, a syntax element is transferred from non-binary value into

a series of binary bins, called a bin string. For each bin to be encoded, two coding

modes are candidates. In the regular mode, a context model representing probability

model is first selected according to previous encoded syntax elements. Then, based on

the context model, the bin value is encoded by the regular coding engine, and context

model updating follows. In the bypass mode, a bypass coding engine without the

usage of context model is executed to speed up the encoding process. The three

functional blocks are discussed in more detail in the following.

Figure 5. CABAC encoder block diagram.

3.2.1 Binarization

The binarization design in CABAC depends on a few code trees that provide a

simple computation to derive codewords. There are four types of binarization process

specified in CABAC: the unary (U) binarization process, the truncated unary (TU)

binarization process, the fixed-length (FL) binarization process, and the concatenated

 14

unary/ k-th order Exp-Golomb (UEGk) binarization process. However, there is an

exception. Instead of computing by means of a structured coding scheme, look-up

tables are used for mapping macroblock types and submacroblock types into binary

sequences.

Table 3 shows the bin strings of U binarization. For each unsigned integer valued

syntax element x, the bin string consists of x “1” bits followed by a terminating “0”

bit.

TABLE 3. UNARY BINARIZATION

Value of syntax element (x) Bin string

0 0

1 1 0

2 1 1 0

3 1 1 1 0

4 1 1 1 1 0

5 1 1 1 1 1 0

… … … … … … … …

Bin index 0 1 2 3 4 5 …

The bin strings of TU binarization are shown in Table 4. A number cMax is

defined for mapping x with [0, cMax]. For x < cMax the bin strings are the same as U

codes, whereas x = cMax the bin string is given by a bin string of length cMax with

“1” bits only.

TABLE 4. TRUNCATED UNARY BINARIZATION

Value of syntax element (x) Bin string (cMax = 7)

0 0

 15

1 1 0

2 1 1 0

3 1 1 1 0

4 1 1 1 1 0

5 1 1 1 1 1 0

6 1 1 1 1 1 1 0

7 1 1 1 1 1 1 1

Bin index 0 1 2 3 4 5 6

As shown in Table 5, the bin strings of FL binarization are given by

fixedLength-bit binary representations, where fixedLength = Ceil(Log2(cMax + 1)).

The FL binarization process is mainly applied to the syntax elements which are nearly

uniform distribution.

TABLE 5. FIXED-LENGTH BINARIZATION

Value of syntax element (x) Bin string (cMax = 7)

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

Bin index 0 1 2

The UEGk binarization process is applied to absolute values of motion vector

differences (MVD) and absolute values of transform coefficient levels (ABS_LEVEL).

The UEGk bin string consists of a prefix and a suffix code word. The prefix bit string

is constructed by TU binarizaton process with cMax = Min(uCoff, Abs(x)) , where

 16

ucoff is the cutoff value which also represents the maximum length of the prefix bit

string. After the prefix part is obtained, if Abs(x) is larger than or equal to the cutoff

value, the EGk binarization process is invoked to derive the suffix part. The first part

of EGk code is formed with a unary code with l(y) = Floor(log2(y / 2k + 1)). The

second part is constructed as the binary representation of y + 2k(1- 2l(y)) with (k +

l(y)) bits. The pseudo code of computational procedure is depicted in Fig. 6. Table 6

shows the bin strings for MVD valued from 0 to 13, where the prefix parts are in gray

shadow.

if(Abs(x) >= uCoff) {

 y = Abs(x) – uCoff

 while(1) {

 //unary first part of EGk

 if(y >= (1 << k)) {

 put(1)

 y = y – (1 << k)

 k++

}

else {

 put(0) //terminating “0” of first part

 while(k--) //binary second part of EGk

 put((y >> k) & 1)

 break

}

 }

}

Figure 6. Pseudo code for k-th order Exp-Golomb code construction.

TABLE 6. UEG3 BINARIZATION FOR ABSOLUTE VALUES OF MOTION VECTOR

DIFFERENCES

| MVD | Bin string (uCoff = 9)

 17

Prefix (TU code) Suffix (EG3 code)

0 0

1 1 0

2 1 1 0

3 1 1 1 0

4 1 1 1 1 0

5 1 1 1 1 1 0

6 1 1 1 1 1 1 0

7 1 1 1 1 1 1 1 0

8 1 1 1 1 1 1 1 1 0

9 1 1 1 1 1 1 1 1 1 0 0 0 0

10 1 1 1 1 1 1 1 1 1 0 0 0 1

11 1 1 1 1 1 1 1 1 1 0 0 1 0

12 1 1 1 1 1 1 1 1 1 0 0 1 1

13 1 1 1 1 1 1 1 1 1 0 1 0 0

… … … … … … … … … … … … … … …

Bin index 0 1 2 3 4 5 6 7 8 9 10 11 12 …

3.2.2 Context Modeling

The probability models supplying for binary arithmetic coding is an important

part since it dominates the overall coding efficiency. Consequently, the context model

has to be selected by taking into account conditional probability estimation and keep

updated during encoding. In CABAC, to reduce the complexity requirement, only the

neighbors of current syntax element are involved in context model selection such that

only a few choices are left.

TABLE 7. SYNTAX ELEMENTS AND CORRESPONDING CONTEXT INDICES

Syntax Element
Slice Type

I/SI P/SP B

mb_skip_flag 11–13 24–26

mb_field_decoding_flag 70–72 70–72 70–72

end_of_slice_flag 276 276 276

 18

mb_type 0/3–10 14–20 27–35

transform_size_8x8_flag 399–401 399–401 399–401

coded_block_pattern 73–84 73–84 73–84

mb_qp_delta 60–63 60–63 60–63

prev_intra4x4_pred_mode_flag 68 68 68

rem_intra4x4_pred_mode 69 69 69

prev_intra8x8_pred_mode_flag 68 68 68

rem_intra8x8_pred_mode 69 69 69

intra_chroma_pred_mode 64–67 64–67 64–67

ref_idx 54–59 54–59

mvd (horizontal) 40–46 40–46

mvd (vertical) 47–53 47–53

sub_mb_type 21–23 36–39

coded_block_flag 85–104 85–104 85–104

significant_coeff_flag
105–165,

277–337

105–165,

277–337

105–165,

277–337

last_significant_coeff_flag
166–226,

338–398

166–226,

338–398

166–226,

338–398

coeff_abs_level_minus1 227–275 227–275 227–275

significant_coeff_flag (8x8)
402–416,

436–450

402–416,

436–450

402–416,

436–450

last_significant_coeff_flag (8x8)
417–425,

451–459

417–425,

451–459

417–425,

451–459

coeff_abs_level_minus1 (8x8) 426–435 426–435 426–435

All context models are listed in Table 7. Each context model, which contains a

6-bit probability state and the value of most probable symbol, is identified by a

context index (ctxIdx). The calculation of ctxIdx is defined as

ctxIdxIncctxCatctxIdxBasectxIdx

where ctxIdxBase denotes the base context index, which is defined as the lower

value of the range contained in Table 7, ctxCat represents context category, which is

only valid for syntax elements of residual type and is given in Table 8, and ctxIdxInc

denotes the context index increment, which is derived based on bin index (binIdx),

 19

previously encoded bins, or neighboring syntax elements to the left and on top of the

current syntax element, as illustrated in Fig. 7.

TABLE 8. CONTEXT CATEGORY DEPENDING ON SYNTAX ELEMENTS AND BLOCK TYPES

Syntax element

Context category (ctxCat)

Luma-16x16

DC

Luma-16x16

AC
Luma-4x4

Chroma

DC

Chroma

AC
Luma-8x8

coded_block_flag 0 4 8 12 16 0

significant_coeff_flag 0 15 29 44 47 0

last_significant_coeff_flag 0 15 29 44 47 0

coeff_abs_level_minus1 0 10 20 30 39 0

 B .

 A C

Figure 7. Neighboring syntax elements involved in context model selection of current

syntax element.

3.2.3 Adaptive Binary Arithmetic Coding

Binary arithmetic coding is based on the principle of progressive interval

subdivision. In terms of symbols to be encoded, only most probable symbol and least

probable symbol (MPS and LPS) with probabilities of occurrence PMPS and PLPS are

specified. Based on this setting, the given interval represented by a lower bound (L)

and an interval range (R) is subdivided into RMPS and RLPS as follows:

LPSMPS

LPSLPS

RRR

PRR

 20

However, the computational requirement of multiplication operations becomes

the bottleneck that limits the overall throughput. To solve this problem, a novel

multiplication-free solution with negligible performance degradation is developed in

CABAC.

Motivated by introducing some approximations of the range R or of the

probability PLPS in substitution for their actual values, the basic idea of the new

multiplication-free binary arithmetic coding scheme for H.264/AVC relies on the

assumption that the estimated probabilities of each context model can be represented

by a sufficiently limited set of representative values [3]. Total 128 probability states

are effectively used for representing the approximate probability estimation of each

context model. Each probability state is composed of a 6-bit state index (stateIdx)

indicating the LPS probability and a 1-bit value that represent the MPS value

(valMPS). The numbering of state index is guided by the principle that with state

index equaling to 0 corresponds an LPS probability value of 0.5, the higher the

number of state index, the lower LPS probability value is assigned. Whenever the

encoding procedure of each symbol is completed, the context model updating process

is executed to keep context models “up to date”. The determination of probability

updating is illustrated in Fig. 8. In practical implementation, the transition of

probability states can be realized by a table-based transition process. This continuous

update makes the binary arithmetic coding engine adaptive.

),1(

),,(62

old

old

P

PPMax
Pnew

095.0
0.5

0.01875 63

1

Figure 8. Probability transition rule.

 21

Fig. 9 shows the flow diagram of binary arithmetic encoding process. Two

coding modes are specified in CABAC, one is regular coding mode, where probability

estimation is utilized, and another one called bypass coding mode is used to encode

symbols with approximately uniform probability distribution.

rangeIdx = (R >> 6) & 3
RLPS = TabRangeLPS[stateIdx][rangeIdx]

R = R - RLPS

binVal !=
valMPS

L = L + R
R = RLPS

stateIdx != 0

valMPS = 1 - valMPS

stateIdx = transIdxLPS[stateIdx] stateIdx = transIdxMPS[stateIdx]

Done

Encode
Rugular

Yes

No

Yes

No

Encode
Bypass

L = L << 1

L = L + R
R = RLPS

(a)

Done

Yes

(b)

Renormalization

Renormalization

binVal !=
valMPS

Figure 9. Flow diagram of binary arithmetic encoding process. (a) Regular coding

mode. (b) Bypass coding mode.

Fig. 9(a) illustrates the regular coding mode. In the first step, with a table which

contains 64 x 4 pre-computed LPS subranges, the interval range is subdivided

depending on the state index and range without multiplication operation. Then,

according to the given bin value (binVal), the corresponding process is performed.

 22

Finally, since the interval range has to stay within [28, 29] to keep a fixed precision, a

renormalization process is necessary if the updated interval range R is smaller than

0x100. Fig. 10 shows the flow diagram of renormalization process. The output bits are

recursively generated during the renormalization. If the interval range is in the bottom

half, PutBit(0) is performed; else if the interval range is in the top half, PutBit(1) is

performed; otherwise bitsOutstanding (BO) is increased by 1.

With regard to bypass coding mode, the probability distribution of symbol to be

encoded is nearly uniform. That means RLPS = RMPS = R/2. Consequently, the usage of

context model is not required and the subdivision operation can be simplified to

accelerate the encoding speed. Furthermore, only one-loop renormalization process

using double decision thresholds without doubling R and L is performed in the final

step. The flow diagram of bypass coding mode is depicted in Fig. 9(b).

Renormalization

R < 256

L = L - 256
BO = BO + 1

Done

(a)

L < 256

L >= 512

L = L - 512

R = R << 1
L = L << 1

PutBit(B)

firstBitFlag != 0

firstBitFlag = 0 WriteBits(B, 1)

BO > 0

WriteBits(1-B, 1)
BO = BO - 1

Done

(b)

No

Yes No

Yes

No

Yes

Yes
Yes

No

No

PutBit(0) PutBit(1)

Figure 10. Flowchart of (a) renormalization process and (b) PutBit(B).

 23

3.3 CABAC Decoding Algorithm Overview

In CABAC, every syntax element (SE) is composed of a series of bins. Given the

bitstream, combined with syntax element parsing, the object of CABAC decoder is to

transfer the decoded bin string into actual value and return it. Fig. 11 depicts the

generic CABAC parsing process. Prior to decoding a new slice, an initialization

process is performed that all context models are initialized depending on the slice type

and quantization parameter, moreover, the interval range and coding offset are reset to

0x1FE and first 9 bits of the bitstream, respectively. In the parsing flow, each syntax

element is parsed sequentially. After the type of syntax element is decided, depending

on the bin index, the corresponding bin decoding process is executed. Finally, the

constructed bin string is de-binarized. If any codeword is matched, the corresponding

value is returned and the decoding procedure for current syntax element is complete.

 24

Figure 11. CABAC parsing process.

In the hardware realization, the bin decoding process consists of four elementary

steps: context selection (CS), context model loading (CL), binary arithmetic decoding

(BAD), and binarization matching (BM). In the first step, context index which acts as

the context model address is calculated. After the address is obtained, a context model

(CM) loaded from CM memory is passed to the BAD stage. In BAD stage, a bin is

 25

decoded to be MPS or LPS according to a probability model provided by the CM.

Afterward, the constructed bin string is de-binarized in the final stage to decide

whether the decoding process of current SE is finished or not, and the context model

update (CU) process takes place at the same time.

To read the specific context model from the context model memory, the memory

address must be calculated first. Generally, the memory address of each context model

is the same as its corresponding context index. However, the organization of context

models in H.264/AVC is clearly not the most economical. Therefore, reorganization is

allowed to achieve better performance as designer’s wish.

In the binary arithmetic decoding procedure, most symbols are decoded by the

regular bin decision process depending on the location of coding offset. Fig. 12(a)

shows the flowchart of regular decoding process. In the first step, according to the

state index provided by context model and current interval range, LPS subrange is

selected from a look-up table and MPS subrange is calculated as RMPS = R – RLPS.

Then, by comparing the coding offset (O) with the MPS subrange (RMPS), if the

coding offset falls within the LPS subrange, the bin is identified as LPS. Otherwise, if

the coding offset falls within the MPS subrange, the bin is identified as MPS. In the

meanwhile, R and O are assigned to the corresponding subinterval, and the probability

state is transferred in the end.

 26

Figure 12. Flow diagram of (a) regualr bin decision process, (b) renormalization

process, and (c) bypass bin decision process.

A renormalization operation is required whenever the interval range (R) is out of

its legal range (R < 0x100). Fig. 12(b) depicts the flowchart of renormalization.

Recursively, the left-shift of R and O does not halt until R is larger than or equal to

0x100. During the renormalization procedure, the input bits coming from bitstream

are appended to coding offset.

Besides, the other symbols with approximately uniform probability distribution

are decoded by bypass bin decision process. The flowchart of bypass decoding

process can be seen in Fig. 12(c).

3.4 Design Challenges and Related Works

 27

In hardware implementation, to achieve high throughput, pipelined architecture

and parallel architecture are considered helpful methods generally. Since every bin is

decoded by the same chain of operations (CS→CL→BAD→BM and CU), the

decoding performance can be elevated by exploiting the pipelining scheme presented

in [11] . Fig. 13 shows a 4-stage pipelining CABAC decoder design. However, the

boost of throughput is limited by the pipeline stalling caused by data hazards. Take

significance map (significant_coeff_flag and last_significant_coeff_flag) which

occupies the major portion of syntax elements in slice data for example, as shown in

Fig. 14, the choice of the bin right after significant_coeff_flag and corresponding

context model depends on the current bin value since the bin may be

significant_coeff_flag or last_significant_coeff_flag. As a result, two cycles are

unavoidable to resolve this data hazards.

Figure 13. Pipelining scheme of CABAC decoding.

 28

Decode
coded_block_flag

coded_block_flag == 1

Decode significant_coeff_flag

Decode last_significant_coeff_flag

significant_coeff_flag == 1

last_significant_coeff_flag == 1

Done

scanningPosition <
numCoeff - 1

scanningPosition = 0

scanningPosition++

Scanning Position

Transform coefficient levels

significant_coeff_flag

last_significant_coeff_flag

Yes

No

Yes

No

Yes

No

0 1 2 3 4 5 6

8 0 -3 0 0 1 1

0 0 0

0 0 01 1 1 1

1

(c)

(a)

CS CL BAD
BM

CU

CS CL BAD
BM

CU
stall stall

binVal CM depends on previous binVal

(d)

Yes

No

8

-3

0

0

0

1 1

0 0 0 0

0 0

0

0

0

(b)

Figure 14. Data hazard caused by significance map. (a) 4x4 residual block. (b)

Flow diagram of the CABAC decoding scheme for significance map. (c) Example for

decodong the significance map. (d) Illustration of cycle stall of CABAC decoding.

To relieve the performance degradation originated in syntax element switching

overhead, a prediction-based pipelined architecture was proposed in [12], where the

correlation between successive SEs are exploited to achieve higher prediction

accuracy in comparison to the prediction that just predicts current symbol to be MPS.

Furthermore, multi-symbol decoding architecture design is also an effective way to

 29

speed up decoding procedure. A parallel decoding method was proposed to enhance

decoding performance by predicting that the current symbol is MPS [16]. The

architecture in [13] employed a branch selection two-symbol parallel decoding

technique to resolve data dependency problem, and can process two bins within one

cycle for general cases, but suffers from high area cost. Chen et al. [14] proposed a

fully hardwired CABAC decoder that is capable of decoding at most two bins in one

cycle for certain syntax elements: coeff_abs_level_minus1, significant_coeff_flag,

last_significant_coeff_flag, and mvd.

 However, in some works such as [15], [16], their architecture only focuses on bin

decoding process, while leaving SE parsing to another processor. Although the

separation of SE parsing and decoding makes the implementation of CABAC

decoding much simpler, it results in that the actual throughput can not reach its

theoretical maximum, since whenever SE switching takes place, the context model

has to be reloaded.

 A fully hardwired CABAC decoder design which combines SE parsing with

decoding is proposed in this thesis. The characteristics of SE parsing flow and bin

distribution among SEs are analyzed to design the decoding architecture which not

only can decode multiple bins in one cycle without stalls for most cases but also can

keep low hardware cost by employing hybrid context model memory architecture.

Moreover, with the efficient mathematical transform method for two-symbol binary

arithmetic decoding (TSBAD) engine, the decoding speed can be further elevated.

 30

Chapter 4 PROPOSED ENTROPY DECODER

 Fig. 15 shows the system level architecture of proposed entropy decoder for

H.264/AVC. It contains a CAVLC decoder, a CABAC decoder, a SE parser, a

neighboring information fetcher, a bitstream fetcher, and a memory controller.

According to the entropy coding mode, the SE parser chooses the corresponding

decoder to decode SEs. When entropy_coding_mode_flag is equal to 0, SEs of

residual blocks are decoded by using the CAVLC decoding scheme, and other SEs are

decoded by using the VLC decoding scheme which is included in the CAVLC decoder.

When entropy_coding_mode_flag is equal to 1, SEs lying at macroblock layer and

below are decoded using the CABAC decoder, and other SEs belonging to slice layer

and above are decoded by the VLC decoder.

In the entropy decoding procedure, the bitstream fetcher reads bitstream which is

stored in external memory by the memory controller and transmits it to the CAVLC

decoder and the CABAC decoder. The neighboring data involving in entropy

decoding process, such as total_coeff and mvd used for calculating nC and ctxIdxInc,

are stored in the upper macroblock information memory. Furthermore, if entropy

coding mode is binary arithmetic coding, in the beginning of decoding each slice, all

the CMs are reset to the initial values stored in ROM. Whenever a SE is decoded, if it

is related to the remaining SE parsing flow, it will be buffered in the SE register. The

detail of our proposed entropy decoder is presented in the following.

 31

Figure 15. Framework of proposed entropy decoder.

4.1 Proposed CAVLC Decoder

It is apparent that the greatest obstacle to further boosting the throughput of

CAVLC decoder originates in level parsing procedure which is based on arithmetic

operations and accounts for a critical loop in the whole CAVLC decoding procedure.

In terms of multi-level decoding, since the inter-codeword dependency and succession

of arithmetic operations lead to an unavoidably long critical path, we can not gain

throughput from cascading level decoders directly. Moreover, the inter-level

dependency of suffixLength which can not be calculated until the value of current

level is determined makes it unable to exploit pipeline structure. It seems both

multi-symbol decoding and pipelining scheme are not workable for level decoding

process.

Our destination is to find a method that can break the inter-level dependency and

the inter-codeword dependency. If this goal is reached, we can make a breakthrough

 32

and thus the CAVLC decoding performance can be further improved. Consequently,

first of all, we investigate the characteristics of level decoding flow.

4.1.1 Analysis

Fig. 16 shows the flowchart of level decoding procedure defined in the

H.264/AVC standard. The decoding procedure can be divided into two parts: the first

part is bitstream scanning process and the second part is for computing the value of

level. The bit string of each level is formed with level_prefix and level_suffix as

]_][01...0[

]_][_[

_

suffixlevel

suffixlevelprefixlevel

bitStringlevel

where level_prefix consists of a series of “0” bits followed by a terminating “1” bit.

The value of level_prefix is constrained in the range 0 to 15 in general profiles. In the

bitstream scanning process, after the value of level_prefix is determined by detecting

the leading zeros in the bitstream, the parameter levelSuffixSize which represented the

bit length of level_suffix is calculated as

if(level_prefix = = 15)

 levelSuffixSize = 12

 else if(level_prefix = =14 && suffixLength = = 0)

 levelSuffixSize = 4

 else

 levelSuffixSize = suffixLength

Based on the levelSuffixSize, bits belonging to level_suffix are scanned, and the

initial value of levelCode is calculated as

suffixlevelthsuffixLengprefixlevellevelCode _)_(

 33

 In the second part, levelCode is adjusted in case of special conditions. If

level_prefix is equal to 15 and suffixLength is equal to 0, levelCode will be increased

by 15, and if the number of TrailingOnes is less than 3, the first levelCode in the level

decoding procedure will be increased by 2. Once the final value of levelCode is

obtained, the value of level will be determined as: if levelCode is even, level =

(levelCode + 2) / 2. Otherwise, level = (-levelCode - 1) / 2. Finally, since the absolute

value of level tends to be larger in the level decoding procedure, to obtain high

compression efficiency, adaptive probability model is used depending on previous

decoded level. As a result, by examining the absolute value of decoded level, if it is

larger than the thresholds listed in Table 9, suffixLength must be modified to a more

suitable value since small suffixLength is fit for small level; large suffixLength is just

the opposite.

The main barriers to exploit parallel decoding are inter-level dependency of

suffixLength and the unknown demarcation between successive codewords. Although

the codeword length can be derived in the first part of level decoding procedure as

follows:

xSizelevelSuffiprefixlevelngthCodewordLe 1_

, the updated suffixLength which affect the levelSuffixSize of next level can not be

obtained until the value of current level is determined. However, a modified

suffixLength detector (MSD) algorithm was presented to advance the computation of

suffixLength prior to the determination of the value of current level [4]. Fig. 17 depicts

the MSD decoding procedure, the input signal of MSD is level_prefix instead of the

value of level. From the current decoding information and the level_prefix, the

suffixLength provided for next level decoding process can be calculated in the first

part. With this efficient algorithm, the level decoding process can be realized as Fig.

 34

18 shows. However, despite the fact that the MSD algorithm shortens the critical path

delay of level decoding process, multi-level decoding based on cascaded level

decoders still leads to an unavoidably long critical path, and thus remains unsuitable

for implementation.

In our approach, to further expedite the throughput of CAVLC decoder, instead

of straight cascading level decoders, we take advantage of MSD algorithm to exploit a

highly performance two-level decoding architecture. In general case, the

levelSuffixSize which indicates the codeword length of level_suffix is equal to

suffixLength. Consequently, the start point of next level codeword in the bitstream can

be decided as soon as the level_prefix decoding has finished. Moreover, the

adjustment of levelCode in the second part is only applied to the first level of the

residual block. It means that those two special conditional branches can be skipped in

the second level decoding. Base on these two features, we propose a delay balanced

two-level decoding (DBTLD) architecture that efficiently shortens the critical path in

comparison to traditional design that cascades two level decoders directly.

 35

level_prefix

levelSuffixSize
Generator

level_suffix

levelCode =
level_prefix << suffixLength

levelCode += level_suffix

suffixLength == 0
&& level_prefix == 15

i == TrailingOnes
&& TrailingOnes < 3

levelCode += 15

levelCode += 2

Yes

No

Yes

No

First Part

Second Part

bitstream

suffixLength

level

level calculator

suffixLength_init

suffixLength
Detector

Figure 16. Original level decoding procedure defined in H.264/AVC standard.

TABLE 9. THRESHOLD VALUE FOR SUFFIXLENGTH TRANSITION

Current suffixLength Threshold value to modify suffixLength

0 0

1 3

 36

2 6

3 12

4 24

5 48

6 N/A

Figure 17. MSD decoding procedure.

 37

level_prefix

levelSuffixSize
Generator

level_suffix

levelCode =
level_prefix << suffixLength

levelCode += level_suffix

suffixLength == 0
&& level_prefix == 15

i == TrailingOnes
&& TrailingOnes < 3

levelCode += 15

levelCode += 2

Yes

No

Yes

No

First Part

Second Part

bitstream

suffixLength

suffixLength
Detector

level

level calculator

suffixLength_init

Figure 18. Modified level decoding procedure with MSD algorithm.

4.1.2 Proposed Delay Balanced Two-level Decoder Architecture

Fig. 19 shows the block diagram of proposed DBTLD architecture. The second

level decoding process is designed for the general case that levelSuffixSize is equal to

suffixLength. Since the codeword length of first level can be determined immediately

after the level_prefix is decoded, and the examination process of levelCode increment

 38

is unnecessary for the second level decoding process, a balanced structure can be

obtained.

The first level decoding process is the same as Fig. 18 shows. For bitstream

supplying for the second level decoding process, the input bitstream is shifted

according to suffixLength and level_prefix_1. Afterward, instead of generating

levelSuffixSize_2, the level_suffix_2 is parsed directly by fetching the output of first

suffixLength_1 detector (SD_1) which is referred to the MSD algorithm. Finally,

without checking the two special cases for increasing levelCode_2, the level mapping

process is performed straight. Compared to the conventional approach of cascading

two MSD algorithm based level decoders, the critical path delay of proposed DBTLD

engine is improved by 21% (from 3.25ns to 2.56ns).

 39

level_prefix_1

levelSuffixSize
Generator

level_suffix_1

levelCode_1 =
level_prefix_1 << suffixLength

levelCode_1 += level_suffix_1

suffixLength == 0 &&
level_prefix_1 == 15

i == TrailingOnes
&& TrailingOnes < 3

levelCode_1 += 15

levelCode_1 += 2

Yes

No

Yes

No

bitstream

suffixLength_1

suffixLength
Detector

level_1

level calculator

level_prefix_2

levelCode_2 =
level_prefix_2 << suffixLength_1

level_suffix_2

levelCode_2 += level_suffix_2

Bitstream
Shifter

level calculator

level_2

suffixLength
Detector

suffixLength_2

suffixLength_init

suffixLengthFirst Part

Second Part

Figure 19. Proposed delay balanced two-level decoding architecture.

4.1.3 CAVLC Decoding Architecture Design

Based on the DBTLD engine, the CAVLC decoding architecture is designed as

shown in Fig. 20. In the trailing_ones_sing_flag decoding unit, all sign flags are

scanned in one cycle. After level decoding procedure is done, all nonzero coefficients

are stored in a 16-entry deep and 13-bit wide output buffer. Finally, in the run_before

decoding unit, whenever a run_before symbol is decoded, the corresponding level is

transmitted to its actual position in the output buffer. Since only one output buffer is

 40

used instead of storing level and run_before information separately, to regularize the

data transmission of output buffer, the prediction-based run_before look-up table

combination method [7] is employed that two run_before symbols are decoded in one

cycle except when only one run_before symbol left. Fig. 21 shows the architecture of

residual block reconstruction. After TrailingOnes and levels are pushed in the output

buffer in order, in each cycle, one or two level symbols are moved to their final

locations respectively depending on the coeffsLeft and zerosLeft information. The

movement starts from the last coefficient and ends until no more run_befores are

decoded. The parameters coeffsLeft denotes the remaining number of nonzero

coefficients needs to be moved, and zerosLeft represents the remaining number of

zeros to be decoded. Table 10 shows an example for the reconstruction process. In the

beginning, all nonzero coefficients are arranged in order, output buffer index 0 to

(TotalCoeffs – 1). After total_zeros is decoded, coefficients are moved to the indices

which are calculated as (coeffsLeft + zerosLeft – 1) in reverse order, and the value of

the original position of the moved coefficient is replaced by 0. In this example, first,

the last coefficient 1 is moved to index 8 (6 + 3 - 1), and the coefficient -1 is moved to

index 6 (5 + 2 - 1). In the next cycle, only the one run_before symbol is valid since no

more zeros left to be decoded, and the coefficients -2 is moved to index 4 (4 + 1 - 1).

To further accelerate the decoding procedure, skipping mechanism is employed

to remove redundant decoding processes:

1) Zero block skip: When TotalCoeffs is equal to 0, the remaining decoding

processes are skipped since nonzero coefficients do not exist in the block.

2) Level skip: When TotalCoeffs is equal to TrailingOnes, the level decoding

procedure is skipped since there has no nonzero coefficients left to be

decoded.

3) Total zeros skip: When TotalCoeffs is equal to maximum number of

 41

coefficients (maxNumCoeff), the total_zeros decoding procedure and

run_before decoding procedure is bypassed because there are no zero

coefficients to be decoded.

4) Run skip: When total_zeros is equal to 0 or TotalCoeffs is equal to 1,

run_before decoding procedure is not necessary.

Moreover, in the CAVLC decoding procedure, because coeff_token,

trailing_ones_sing_flag, level, total_zeros, and run_before decoding units are not

performed simultaneously, only one of them is designated to work in each cycle, to

save power consumption, idled units are turned off by functional gating.

Figure 20. Proposed CAVLC decoder.

 42

Figure 21. Residual block reconstruction architecture.

TABLE 10. EXAMPLE OF RESIDUAL BLOCK RECONSTRUCTION PROCESS

Decoded Symbol coeffsLeft zerosLeft Output Buffer

total_zeros = 3 x x 4 3 2 -2 -1 1 0 0 0 0 0 0 0 0 0 0

run_before_1 = 1

run_before_2 = 1
6 3 4 3 2 -2 0 0 -1 0 1 0 0 0 0 0 0 0

run_before_1 = 1

run_before_2 = x
4 1 4 3 2 0 -2 0 -1 0 1 0 0 0 0 0 0 0

4.1.4 Experimental Results

 Table 11 shows the decoding performance of the proposed CAVLC decoder for

different video sequences. To compare with previous works fair, we use the same

testing environment that all the sequences with resolution of QCIF (176 x 144) are

intra coded. The RTL simulation result shows in the low bit-rate coding like high QP

or simple image, since the residual block is very sparse, Lee’s design [9] which only

focus on boosting run_before decoding procedure can achieve higher decoding speed.

However, in the high bit-rate coding, the demand for high decoding speed is actually

necessary, our proposed design that takes both level and run_before decoding

procedures into consideration prevails over other existing designs.

The synthesis results of the proposed CAVLC decoder and a comparison of

 43

hardware cost and decoding speed with other existing work are shown in Table 12.

The proposed CAVLC decoder is synthesized with UMC 90nm. We enhance the

throughput by exploiting multi-symbol decoding scheme for both level and

run_before symbols while allowing the maximum working frequency to be about 390

MHz with 13.88k gate count. Lin’s design [4] has minimum hardware cost, however,

its decoding speed of the two main critical loops, level decoding procedure and

run_before decoding procedure that dominate the overall decoding performance, is

only one symbol per cycle, which is merely half in comparison to our design. By

applying the prediction-based run_before look-up table combination method [7], two

run_bofore symbols can be decoded in each cycle. Furthermore, with the DBTLD

engine, not only two level symbols can be decoded at the same cycle, but also 21%

critical path delay is saved in comparison to the traditional two-level decoder. Table

13 shows the maximum frame rates (frames per second) for different Level limits

defined in the H.264/AVC standard. According to the definition and the throughput of

our design, we list the minimum working frequency requirement of Level in Table 14.

The result shows that our proposed CAVLC decoder can achieve real-time decoding

for all Level conditions.

TABLE 11. COMPARISON OF CAVLC DECODING PERFORMANCE

Video Sequence QP Bitrate(Mbps)
Average cycle/MB

Proposed Yu [7] Lee [9] Tsai [6]

Akiyo

28 0.59 44 50 N/A 39

20 1.13 75 93 N/A N/A

12 2 117 154 N/A 143

Foreman

28 0.83 58 68 N/A N/A

20 1.76 116 151 N/A N/A

12 3.12 182 259 N/A N/A

Mobile 28 2.21 145 194 135 150

 44

20 3.66 203 300 211 N/A

12 5.32 233 367 264 241

News

28 0.83 58 70 49 N/A

20 1.53 95 125 87 N/A

12 2.58 141 195 138 N/A

Stefan

28 1.5 102 133 97 106

20 2.58 150 214 154 N/A

12 3.94 188 282 204 201

Average 127.13 177 148.8 146.67

Reduction (%) 28.18 14.56 13.32

TABLE 12. CAVLC DECODER IMPLEMENTATION RESULT COMPARISONS OF DIFFERENT

DESIGNS

Specifications Proposed Lin [4] Yu [7] Lee [9] Alle [5] Tsai [6]

Technology 90nm 0.18um 0.18um 0.18um 0.13um 0.13um 0.18um

Max. Frequency 385 MHz 193 MHz 213 MHz 125 MHz 125MHz 250MHz 160 MHz

Area: Logic Part

(gate count)
13,544 14,373 6,771 13,192 15,602 17,202 13,189

Area: Memory Part

(bits)
W/O W/O W/O W/O 5,120 W/O

Average cycle/MB 127.13 N/A 177 148.8 N/A 146.67

TABLE 13. MAXIMUM FRAME RATES FOR SOME EXAMPLE FRAME SIZES

 45

Level 1 1b 1.1 1.2 1.3 2 2.1 2.2 3 3.1 3.2 4 4.1 4.2 5 5.1

Max

MBs/frame
 99 99 396 396 396 396 792 1620 1620 3600 5120 8192 8192 8704 22080 36864

Format
Resolution

(W x H)

MBs

Total

SQCIF 128x96 48 30.9 30.9 62.5 125.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0

QCIF 176x144 99 15.0 15.0 30.3 60.6 120.0 120.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0

QVGA 320x240 300 - - 10.0 20.0 39.6 39.6 66.0 67.5 135.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0

525 SIF 352x240 330 - - 9.1 18.2 36.0 36.0 60.0 61.4 122.7 172.0 172.0 172.0 172.0 172.0 172.0 172.0

CIF 352x288 396 - - 7.6 15.2 30.0 30.0 50.0 51.1 102.3 172.0 172.0 172.0 172.0 172.0 172.0 172.0

525 HHR 352x480 660 - - - - - - 30.0 30.7 61.4 163.6 172.0 172.0 172.0 172.0 172.0 172.0

625 HHR 352x576 792 - - - - - - 25.0 25.6 51.1 136.4 172.0 172.0 172.0 172.0 172.0 172.0

VGA 640x480 1200 - - - - - - - 16.9 33.8 90.0 172.0 172.0 172.0 172.0 172.0 172.0

525 4SIF 704x480 1320 - - - - - - - 15.3 30.7 81.8 163.6 172.0 172.0 172.0 172.0 172.0

525 SD 720x480 1350 - - - - - - - 15.0 30.0 80.0 160.0 172.0 172.0 172.0 172.0 172.0

4CIF 704x576 1584 - - - - - - - 12.8 25.6 68.2 136.4 155.2 155.2 172.0 172.0 172.0

625 SD 720x576 1620 - - - - - - - 12.5 25.0 66.7 133.3 151.7 151.7 172.0 172.0 172.0

SVGA 800x600 1900 - - - - - - - - - 56.8 113.7 129.3 129.3 172.0 172.0 172.0

XGA 1024x768 3072 - - - - - - - - - 35.2 70.3 80.0 80.0 172.0 172.0 172.0

720p HD 1280x720 3600 - - - - - - - - - 30.0 60.0 68.3 68.3 145.1 163.8 172.0

4VGA 1280x960 4800 - - - - - - - - - - 45.0 51.2 51.2 108.8 122.9 172.0

SXGA 1280x1024 5120 - - - - - - - - - - 42.2 48.0 48.0 102.0 115.2 172.0

525 16SIF 1408x960 5280 - - - - - - - - - - - 46.5 46.5 98.9 111.7 172.0

16CIF 1408x1152 6336 - - - - - - - - - - - 38.8 38.8 82.4 93.1 155.2

4SVGA 1600x1200 7500 - - - - - - - - - - - 32.8 32.8 69.6 78.6 131.1

1080 HD 1920x1088 8160 - - - - - - - - - - - 30.1 30.1 64.0 72.3 120.5

2Kx1K 2048x1024 8192 - - - - - - - - - - - 30.0 30.0 63.8 72.0 120.0

2Kx1080 2048x1088 8704 - - - - - - - - - - - - - 60.0 67.8 112.9

4XGA 2048x1536 12288 - - - - - - - - - - - - - - 48.0 80.0

16VGA 2560x1920 19200 - - - - - - - - - - - - - - 30.7 51.2

3616x1536 3616x1536 21696 - - - - - - - - - - - - - - 27.2 45.3

3672x1536 3680x1536 22080 - - - - - - - - - - - - - - 26.7 44.5

4Kx2K 4096x2048 32768 - - - - - - - - - - - - - - - 30.0

4096x2304 4096x2304 36864 - - - - - - - - - - - - - - - 26.7

 46

TABLE 14. WORKING FREQUENCY FOR DIFFERENT LEVEL CONDITIONS

Level Max. MBs/frame Max. MB Processing Rate (MBs/s) Working Frequency

1 99 1,458 0.19 MHz

1b 99 1,458 0.19 MHz

1.1 396 3,000 0.39 MHz

1.2 396 6,000 0.77 MHz

1.3 396 11,880 1.52 MHz

2 396 11,880 1.52 MHz

2.1 792 19,800 2.52 MHz

2.2 1,620 20,250 2.58 MHz

3 1,620 40,500 5.15 MHz

3.1 3,600 108,000 13.73 MHz

3.2 5,120 216,000 27.46 MHz

4 8,192 245,760 31.25 MHz

4.1 8,192 245,760 31.25 MHz

4.2 8,704 522,240 66.4 MHz

5 22,080 589,824 74.95 MHz

5.1 36,864 983,040 125.13 MHz

4.2 Proposed CABAC Decoder

 Since it is obvious that the main obstacle to adopting pipelining scheme for

CABAC decoder comes from data hazards, the design of pipelining stages shall be

considered carefully. We are concerned about whether there are factors that dominate

the decoding performance. If the answer is affirmative, we can adjust our design to

those cases for achieving better decoding performance. Consequently, first of all, we

investigate the characteristics of SE parsing flow and bin distribution among SEs.

4.2.1 Analysis

The SE parsing flow is mainly dependent on conditional branches as illustrated

in Fig. 22. Branches denoted by “*” indicate that the condition of branch and the

current SE value are independent. In other words, the next SE type to be decoded

 47

right after current SE can be decided before the current SE decoding is completed.

Therefore, for this kind of branches, the context models used for decoding the next SE

can be prepared in advance to prevent pipelining stall. However, most branches

denoted by “#” are dependent on the current SE value. Not until the current SE value

is ascertained can the next SE type be determined.

Table 15 – Table 23 list the analyzed results of bin distribution based on the

video sequences with HD 1920x1080, 4:2:0 color format and frame rate 30 fps

encoded by H.264/AVC reference software JM 12.2. From the statistic, we can

observe that the proportion of significant_coeff_flag and last_significant_coeff_flag

can reach up to 50% of total bins. Furthermore, the SE switching rate (number of

decoded SEs / number of decoded bins) is about 68% in average (see Table 24 – Table

26), and over 90% of SE switches comes from the significance map. Consequently, it

is apparent that how to deal with significant_coeff_flag and

last_significant_coeff_flag is the key to solve the problem invoked by data hazards.

Fig. 23 shows the architecture of our proposed CABAC decoder design. In our

architecture, we divide the chain of operations into two stages, modified context

model selection (MCS) stage and TSBAD stage. MCS stage contains CS and CL.

TSBAD stage includes a two-symbol decoding engine and CU. The detailed

description of the architecture is presented in the following subchapter.

 48

Syntax Element
Parsing

mb_skip_flag

mb_field_decoding_flag

last_significant_coedd_flag

mb_type

transform_size_8x8_flag sub_mb_type

prev_intra_pred_mode_flag

rem_intra_pred_mode

Intra_chroma_pred_mode

ref_idx_l0

mvd_l0

ref_idx_l1

mvd_l1

coded_block_pattern

transform_size_8x8_flag

mb_qp_delta

coded_block_flag

significant_coedd_flag

coeff_abs_level_minis1

end_of_slice_flag

Done

#

#

#

#

#

#

#

*

*

*

*

*

*

*

Figure 22. SE parsing flow for the H.264/AVC.

TABLE 15. STATISTICAL RESULT OF BIN DISTRIBUTION WITH I CODING STRUCTURE AND

QP28

Syntax Element
Video Sequence (I_QP28) Average

(%) Pedesttrian_area Riverbed Rush_hour Station2 Sunflower Tractor

mb_type 2.48 0.88 7.12 1.88 2.15 0.77 2.55

mb_skip_flag 0 0 0 0 0 0 0

intra_pred_mode 9.93 8.24 11.52 11.19 12.18 6.42 9.91

mvd 0 0 0 0 0 0 0

coded_block_pattern 5.04 3.91 6.75 4.6 5.82 3.3 4.9

coded_block_flag 5.91 2.96 3.9 3.17 5.35 4.5 4.3

significant_coeff_flag 28.64 29.85 19.26 28.12 19.63 29.78 25.88

last_significant_coeff_flag 12.5 14.09 12.01 13.79 13.51 14.52 13.4

coeff_abs_level_minus1 30.33 36.78 30.68 32.96 35.87 37.9 34.09

 49

TABLE 16. STATISTICAL RESULT OF BIN DISTRIBUTION WITH I CODING STRUCTURE AND

QP20

Syntax Element
Video Sequence (I_QP20) Average

(%) Pedesttrian_area Riverbed Rush_hour Station2 Sunflower Tractor

mb_type 0.49 0.27 0.84 0.43 0.56 0.26 0.48

mb_skip_flag 0 0 0 0 0 0 0

intra_pred_mode 4.94 4.24 6.69 5.38 6.36 3.48 5.18

mvd 0 0 0 0 0 0 0

coded_block_pattern 2.02 1.54 3.4 1.74 2.89 1.37 2.16

coded_block_flag 3.58 2.93 3.28 3.23 4.53 2.89 3.41

significant_coeff_flag 37.78 33.84 39.29 35.31 24.12 31.05 33.57

last_significant_coeff_flag 13.62 14.04 11.7 14.26 14.3 14.83 13.79

coeff_abs_level_minus1 35.77 41.9 31.83 38.18 44.78 44.98 39.57

TABLE 17. STATISTICAL RESULT OF BIN DISTRIBUTION WITH I CODING STRUCTURE AND

QP12

Syntax Element
Video Sequence (I_QP12) Average

(%) Pedesttrian_area Riverbed Rush_hour Station2 Sunflower Tractor

mb_type 0.15 0.11 0.23 0.17 0.19 0.11 0.16

mb_skip_flag 0 0 0 0 0 0 0

intra_pred_mode 3.18 3.37 3.62 3.26 3.86 2.57 3.31

mvd 0 0 0 0 0 0 0

coded_block_pattern 0.78 0.64 0.89 0.67 0.96 0.61 0.76

coded_block_flag 2.2 2.02 2.44 2.03 2.5 1.81 2.17

significant_coeff_flag 31 27.31 36.17 29.41 31.98 25.74 30.27

last_significant_coeff_flag 15.92 15.32 15.62 15.83 13.76 14.87 15.22

coeff_abs_level_minus1 46.1 50.73 40.27 48.09 45.92 53.78 47.48

TABLE 18. STATISTICAL RESULT OF BIN DISTRIBUTION WITH IPPP CODING STRUCTURE

AND QP28

Syntax Element Video Sequence (IPPP_QP28) Average

 50

Pedesttrian_area Riverbed Rush_hour Station2 Sunflower Tractor (%)

mb_type 5.59 1.58 8.8 7.35 6.16 3.77 5.54

mb_skip_flag 2.87 0.7 4.11 5.47 6.05 1.76 3.49

intra_pred_mode 6.76 7.92 3.67 4.82 3.7 1.83 4.78

mvd 8.11 0.86 21.6 12.92 16.13 15.4 12.50

coded_block_pattern 8.54 3.98 9.78 11.33 10.83 6.87 8.56

coded_block_flag 5.33 2.86 2.22 3.82 3.86 4.78 3.81

significant_coeff_flag 20.62 29.28 14.36 17.91 14.88 24.77 20.3

last_significant_coeff_flag 10.3 13.75 7.97 8.19 8.48 10.83 9.92

coeff_abs_level_minus1 24.88 35.82 19.15 19.65 20.49 25.63 24.27

TABLE 19. STATISTICAL RESULT OF BIN DISTRIBUTION WITH IPPP CODING STRUCTURE

AND QP20

Syntax Element
Video Sequence (IPPP_QP20) Average

(%) Pedesttrian_area Riverbed Rush_hour Station2 Sunflower Tractor

mb_type 1.49 0.54 2.51 1.51 3.65 0.95 1.78

mb_skip_flag 0.59 0.25 0.92 0.57 1.64 0.34 0.72

intra_pred_mode 2.75 4.17 3.16 0.99 1.44 0.7 2.2

mvd 3.8 0.1 11.69 5.46 11.98 4.79 6.3

coded_block_pattern 3.04 1.56 4.46 2.87 6.93 1.95 3.47

coded_block_flag 4.79 2.92 3.92 4.86 5.39 4.03 4.32

significant_coeff_flag 39.71 33.49 32.7 45.85 26.74 39.4 36.32

last_significant_coeff_flag 12.06 13.99 10.88 11.24 11.08 13.8 12.18

coeff_abs_level_minus1 29.48 41.75 26.58 24.53 27.17 32.71 30.37

TABLE 20. STATISTICAL RESULT OF BIN DISTRIBUTION WITH IPPP CODING STRUCTURE

AND QP12

Syntax Element
Video Sequence (IPPP_QP12) Average

(%) Pedesttrian_area Riverbed Rush_hour Station2 Sunflower Tractor

mb_type 0.37 0.21 0.4 0.38 0.59 0.32 0.38

mb_skip_flag 0.14 0.1 0.16 0.13 0.2 0.12 0.14

intra_pred_mode 1.97 3.36 3.42 1.49 1.54 0.88 2.11

mvd 0.77 0.01 0.68 1.11 3.98 1.45 1.33

coded_block_pattern 0.86 0.64 0.93 0.79 1.23 0.71 0.86

 51

coded_block_flag 2.22 2.01 2.47 1.96 3.84 1.65 2.36

significant_coeff_flag 34.46 27.3 36.83 34.92 38.19 31.13 33.81

last_significant_coeff_flag 16.51 15.29 15.72 17.02 14.71 16.61 15.98

coeff_abs_level_minus1 42.05 50.58 38.63 41.61 34.62 46.61 42.35

TABLE 21. STATISTICAL RESULT OF BIN DISTRIBUTION WITH IBBBP CODING

STRUCTURE AND QP28

Syntax Element
Video Sequence (IBBBP_QP28) Average

(%) Pedesttrian_area Riverbed Rush_hour Station2 Sunflower Tractor

mb_type 7.34 3.83 10.22 8.38 6.29 4.31 6.73

mb_skip_flag 2.86 0.69 4.26 5.09 6.1 1.82 3.47

intra_pred_mode 6.25 7.34 3.96 4.89 4.39 2.42 4.88

mvd 6.74 2.02 20.35 13.92 14.21 14.23 11.91

coded_block_pattern 9.09 3.89 10.46 12.53 11.31 6.37 8.94

coded_block_flag 5.62 3.04 2.67 3.74 3.9 5.01 4

significant_coeff_flag 19.09 28.07 12.62 15.94 13.92 22.98 18.77

last_significant_coeff_flag 10.03 13.29 7.37 7.46 8.3 10.82 9.55

coeff_abs_level_minus1 25.29 34.66 18.18 18.32 20.69 26.46 23.93

TABLE 22. STATISTICAL RESULT OF BIN DISTRIBUTION WITH IBBBP CODING

STRUCTURE AND QP20

Syntax Element
Video Sequence (IBBBP_QP20) Average

(%) Pedesttrian_area Riverbed Rush_hour Station2 Sunflower Tractor

mb_type 2.37 1.45 4.1 2.48 3.95 1.39 2.62

mb_skip_flag 0.67 0.25 1.04 0.74 1.71 0.35 0.79

intra_pred_mode 3.19 4.02 2.98 1.6 2.12 1.32 2.54

mvd 3.39 0.33 13.41 6.74 11.05 4.47 6.57

coded_block_pattern 3.24 1.55 4.77 3.2 6.44 1.99 3.53

coded_block_flag 5.33 2.9 4.48 5.59 5.49 4.3 4.68

significant_coeff_flag 35.68 33.01 28.04 40.48 23.73 35.81 32.79

last_significant_coeff_flag 12.16 13.85 10.62 11.12 11.25 13.87 12.15

coeff_abs_level_minus1 31.07 41.4 26.44 24.97 29.29 34.86 31.34

 52

TABLE 23. STATISTICAL RESULT OF BIN DISTRIBUTION WITH IBBBP CODING

STRUCTURE AND QP12

Syntax Element
Video Sequence (IBBBP_QP12) Average

(%) Pedesttrian_area Riverbed Rush_hour Station2 Sunflower Tractor

mb_type 0.68 0.6 0.98 0.66 1.03 0.55 0.75

mb_skip_flag 0.14 0.1 0.16 0.14 0.22 0.12 0.15

intra_pred_mode 1.95 3.35 2.82 1.2 1.58 1.16 2.01

mvd 0.78 0.04 1.33 1.36 3.27 1.51 1.38

coded_block_pattern 0.87 0.64 0.9 0.82 1.32 0.72 0.88

coded_block_flag 2.58 2.03 2.61 2.05 4.42 1.77 2.58

significant_coeff_flag 34.38 27.19 36.79 35.89 36.93 30.72 33.65

last_significant_coeff_flag 16.39 15.24 15.65 16.84 14.58 16.14 15.81

coeff_abs_level_minus1 41.49 50.31 37.94 40.34 35.51 46.69 42.05

Figure 23. Proposed CABAC decoder architecture.

4.2.2 MCS Stage

 53

The main idea of MCS stage is to select CMs for decoding the next two bins. To

simplify and regularize the MCS process, we restrict the two-symbol decoding to a

single SE only so that the bin index of the first bin is always even and the second bin

is always odd for all SEs. This restriction also matches the property of SE parser that

can only parse SEs one by one. As a result, the assignment of CMs to next two bins is

regular, and the calculation of CM addresses becomes much simpler. However, this

restriction still results in drastic performance degradation due to frequent syntax

element switching. To reduce the performance degradation while avoiding being

burdened with hardware cost overhead, we propose an approach to predict the type of

next SE. Since the high correlation between the features of image in spatial domain,

the value of current SE is predictable by referring to the neighboring SEs. Thus by

assuming that the value of current SE is the same as its latest value, we can effectively

predict what type of SE is coming next. With the proposed scheme, the penalty of

prediction miss is merely one cycle as illustrated in Fig. 24. Benefited by the proposed

prediction-based method, we can achieve about 80% prediction accuracy in average

as shown in Table 24 – Table 26. Note that Hit Rate = (number of prediction hits) /

(number of decoded SEs).

To further improve the accuracy of prediction, we merge all symbols of the

significance map which is composed of significant_coeff_flag and

last_significant_coeff_flag as an individual SE by exploiting their decoding regularity

since significant_coeff_flag and last_significant_coeff_flag account for over 90% of

prediction miss. As a result, predictions for the branches right after

significant_coeff_flag and last_significant_coeff_flag are not necessary anymore.

Compared with the predictor which does not perform SE merging, the combination of

SE merging method and prediction-based method can achieve about 17% higher

prediction accuracy in average, as shown in Table 24 – Table 26. Moreover, for high

 54

bit-rate coding such as QP equaling to 12, the prediction accuracy can reach over

99%.

After applying the SE merging method, the bin index transition of significance

map can be summarized in Table 27, and the binarization matching condition becomes

when current bin is last_significant_coeff_flag and its bin value is 1, or the current bin

index meets the final bin index (((binIdx % 2 = 1) && (binVal = 1)) || (binIdx =

numCoeff - 1)). From this table, we can observe that only one case that nextBinIdx

equals to (binIdx + 2) takes place when current symbol is significant_coeff_flag and

its bin value is 0 ((binIdx % 2 = 0) && (binVal = 1)). As a result, CM selection and

assignment for significance map can still only depend on the bin index of next two

bins.

Figure 24. Pipeline scheduling of (a) prediction miss and (b) prediction hit.

 55

TABLE 24. IMPROVEMENT OF PREDICTION ACCURACY USING THE PROPOSED METHODS

WITH I CODEING STRUCTURE

Video Sequence

(I)

Q

P

SE Switching

Rate

(%)

Hit Rate (%)

Without SE Merging With SE Merging

Pedesttrian_are

a

28 72.89 79.08 95.66

20 74.06 80.53 98.22

12 67.88 80.73 99.51

Riverbed

28 70.04 80.89 97.7

20 68.98 82.08 98.8

12 62.66 82.54 99.71

Rush_hour

28 65.66 81.45 95.67

20 73.78 82.68 97.71

12 72.96 78.95 99.39

Station2

28 71.29 79.01 97.14

20 72.15 81.07 98.53

12 65.76 81.66 99.66

Sunflower

28 65.71 81.32 95.42

20 64.1 83.3 97.52

12 65.33 82.65 99.55

Tractor

28 71.01 80.12 97.13

20 67.39 82.81 99.26

12 59.61 83.53 99.84

Average 68.4 81.36 98.13

TABLE 25. IMPROVEMENT OF PREDICTION ACCURACY USING THE PROPOSED METHODS

WITH IPPP CODEING STRUCTURE

Video Sequence

(IPPP)

Q

P

SE Switching

Rate

(%)

Hit Rate (%)

Without SE Merging With SE Merging

Pedesttrian_are

a

28 65.95 79.47 92.65

20 75.38 79.48 96.6

12 72.24 79.09 99.39

 56

Riverbed

28 69.36 80.85 97.53

20 68.73 81.98 98.72

12 62.66 82.54 99.7

Rush_hour

28 55.23 79.8 91.63

20 67.77 79.39 95.57

12 73.98 78.6 99.29

Station2

28 63.73 79.67 91.67

20 79.36 78.2 96.77

12 73.15 79.17 99.53

Sunflower

28 61.66 79.77 90.46

20 67.01 77.8 93.09

12 74.95 78.02 98.76

Tractor

28 64.46 77.5 93.13

20 75.01 78.08 97.78

12 67.86 81.16 99.71

Average 68.81 79.48 96.22

TABLE 26. IMPROVEMENT OF PREDICTION ACCURACY USING THE PROPOSED METHODS

WITH IBBBP CODEING STRUCTURE

Video

Sequence

(IBBBP)

Q

P

SE Switching Rate

(%)

Hit Rate (%)

Without SE Merging With SE Merging

Pedesttrian_are

a

28 64.11 79.65 92.14

20 72.68 79.4 96.11

12 72.3 78.93 99.38

Riverbed

28 67.09 80.66 97.24

20 67.87 81.97 98.69

12 62.47 82.54 99.7

Rush_hour

28 54.4 80.68 90.98

20 64.16 79.35 94.71

12 73.73 78.37 99.23

Station2

28 61.45 80.58 91.88

20 75.94 78.23 96.03

12 73.82 78.84 99.53

Sunflower
28 61.46 79.96 89.99

20 64.56 78.7 93.08

 57

12 73.89 78.59 98.61

Tractor

28 63.18 78.02 93.08

20 72.16 79.07 97.71

12 66.78 81.31 99.72

Average 67.34 79.71 95.99

TABLE 27. BIN INDEX TRANSITION RELATION IN SIGNIFICANCE MAP

Current Flag Bin Value Next Flag Next binIdx

SIG[i] 0 SIG[i+1] binIdx + 2

SIG[i] 1 LAST[i] binIdx + 1

LAST[i] 0 SIG[i+1] binIdx + 1

LAST[i] 1 X X

a. i denotes scanning position

b. SIG denotes significant_coeff_flag

c. LAST denotes last_significant_coeff_flag

To sum up, for successive two bins, the position of the second bin in a SE may

be binIdx_plus1 (binIdx + 1) or binIdx_plus2 (binIdx + 2). It means that by giving two

possible CMs, the second bin can be decoded according to the necessary CM chosen

by its actual bin index. Furthermore, by means of the prediction-based mechanism,

the CMs of predicted next SE and the CMs of current SE can be calculated in parallel.

In the end that the value of current SE is confirmed, if the actual result matches what

we presume, the CABAC decoder can keep processing without stall. Otherwise, the

pipeline has to be stalled for recalculating the context models of next SE. Therefore,

we employ two CS modules to calculate SRAM memory address (Addr_SRAM) and

Register memory addresses (Addr1_REG and Addr2_REG) in parallel, one for current

SE and another one for predicted next SE. For the CS module of next SE, only bin

indices 0, 1, and 2 are taking into account, since in the next cycle, it will be transfer

into current SE, and thus the calculation for bin indices which are larger than 2 is

 58

redundant. As a result, instead of doubling the hardware to satisfy the requirement that

calculating CM memory addresses for current SE and next SE at the same time,

unnecessary calculation in the prediction module is removed and the hardware cost

overhead is thus suppressed. Finally, the result of BM will determine which one is

chosen for CL. Furthermore, because the CM provided for the first bin decoding

(CM_bin1) may comes from the SRAM or the Register port 1 (CM_S or CM_R1), and

CM provided for the second bin decoding (CM_bin2) may comes from the Register

port 1 or the Register port 2 (CM_R1 or CM_R2), an additional selective signal

(CM_sel) which is SE-dependent is also transmitted from MCS stage to TSBAD

stage.

4.2.3 Context Model Memory Design

In the proposed MCS stage design, to reach the destination of loading 3 specific

CMs and storing updated CMs in the same cycle, the design of CM memory shall be

considered carefully. On the premise that one clock domain is used, the first way to

implement CM memory is to use single-port SRAM. The advantage of single-port

SRAM is its low hardware cost. However, single-port SRAM can not perform read

operation and write operation simultaneously. Therefore, the operations of CL and CU

have to be separated, which results in extra one cycle. Yi et al. [11] proposed a

context model reservoir (CMR) structure to resolve the conflict between CL and CU

caused by structural hazard. CMR is a cache-liked structure. Several context models

that are probably used are cached in CMR. This allows the decoder to postpone CU

and enables the parallel processing of CS and CL. Although the CMR structure is

effective, the decoding is stalled for two cycles when CMR switching takes place.

Another way to implement CM memory is to use dual-port SRAM. The

hardware cost of dual-port SRAM is higher in comparison to single-port SRAM. In

 59

spite of the advantage that the read operation and write operation can be performed in

the same cycle, only one context model can be loaded at every access. Consequently,

one single dual-port SRAM can not meet our requirement. A Context Table

Reallocation Scheme is presented in [14] to read two CMs at once by dividing the CM

memory into two parts: a General Context Memory and Extended Context Memory.

However, it does not always work since the reallocation is only designed for specific

SEs.

Storing all context models in register is the most convenient way to implement

context model memory due to the access of register is extreme free. Nevertheless, the

expense of hardware cost is too high. Thus, we propose a more suitable approach to

implement the CM memory with hardware cost consideration while maintaining the

decoding performance. In the proposed flow, because the two-symbol decoding

procedure is restricted to a single SE only, the CL for some SEs are simple such as

flag-type SE that only one context model (CM_bin1) is necessary for TSABD and the

other context model (CM_bin2) is redundant. For example, there are three candidate

CMs used for decoding transform_size_8x8_flag. However, only one of them is

necessary for TSBAD since transform_size_8x8_flag is composed of one single bin.

Thus, the CL for the second bin can be skipped, and only one CM for the first bin has

to be concerned. For this type of SEs, a dual-port SRAM is sufficient to support CL

and CU. However, for the other SEs like significance map, the CL is much more

complicated. When decoding significance map, the next two bins to be decoded may

be two significant_coeff_flag (SIG[i], SIG[i + 1]), one significant_coeff_flag and one

last_significant_coeff_flag (SIG[i], LAST[i]), or one last_significant_coeff_flag and

one significant_coeff_flag (LAST[i], SIG[i + 1]). Therefore, two CMs of

significant_coeff_flag CM set and one CM of last_significant_coeff_flag CM set have

to be loaded from CM memory concurrently; moreover, two of them must be updated

 60

and write back. Because of the limitation of number of port of SRAM, it is impossible

to realize the desired purpose by a dual-port SRAM. It seems that all register based

memory is the only solution.

Fortunately, for the different complexities of CL, it is reasonable to load CMs

from different sources and assign them to TSBAD stage according to the SE type and

the bin indices of next two bins. As a result, we reorganize the 459 CMs by applying

the following principle. For every set of CMs, if two CMs of each set are never used

for TSBAD simultaneously, it is stored in dual-port SRAM; otherwise, it is stored in

registers. For instance, to satisfy the requirement for loading three CMs (one for

last_significant_coeff_flag and two for significant_coeff_flag) from the CM memory

and perform storing operation in the same cycle, significant_coeff_flag CM set can be

stored in register while last_significant_coeff_flag CM set can be stored in SRAM as

illustrated in Fig. 25. Guided by the principle, the organization of CM memory is

listed in Table 28 and Table 29. After memory addresses are derived, one CM is

loaded from SRAM and two CMs are loaded from register at the same time. Our

proposed hybrid CM memory, about half is dual-port SRAM and half is register, not

only avoids structural hazards caused by CM reading and writing but also reduces the

hardware cost overhead significantly in comparison to the implementation of all

register approach.

 61

Dual-port SRAM Register

Two-symbol
Decoding Engine

significant_flaglast_flag

SIG[i] + SIG[i+1]
or

SIG[i] + LAST[i]
or

LAST[i] + SIG[i+1]

1 CM for LAST[i] 2 CMs for SIG[i] and SIG[i+1]

Hybrid Memory

Figure 25. Memory operation in the significance map decoding process.

TABLE 28. CONTENT OF SRAM AFTER REORGANIZATION OF OUR PROPOSAL

Address CM Index Syntax Element

0-2 0-2 mb_type (SI)

3-5 11-13 mb_skip_flag (P/SP)

6-8 24-26 mb_skip_flag (B)

9-11 70-72 mb_field_decoding_flag

12-31 85-104 coded_block_flag

32-171

166-226,

338-398,

417-425,

451-459,

last_significant_coeff_flag

172-201

227-231,

237-241,

247-251,

257-261,

266-270,

426-430,

coeff_abs_level_minus1

(First bin)

202-204 399-401 transform_size_8x8_flag

 62

TABLE 29. CONTENT OF REGISTER AFTER REORGANIZATION OF OUR PROPOSAL

Address CM Index Syntax Element

0-7 3-10 mb_type (I)

8-14 14-20 mb_type (P/SP)

15-17 21-23 sub_mb_type (P/SP)

18-26 27-35 mb_type (B)

27-30 36-39 sub_mb_type (B)

31-44 40-53 Mvd

45-50 54-59 ref_idx

51-54 60-63 mb_qp_delta

55-58 64-67 intra_chroma_pred_mode

59 68 prev_intra_pred_mode_flag

60 69 rem_intra_pred_mode

61-72 73-84 coded_block_pattern

73-224

105-165,

277-337,

402-416,

436-450,

significant_coeff_flag

225-253

232-236,

242-246,

252-256,

262-265,

271-275,

431-435,

coeff_abs_level_minus1

(First bin excluded)

4.2.4 TSBAD Stage

In the TSBAD stage, first, CM_bin1 and CM_bin2 provided for the first bin

decoding and the second bin decoding, respectively, is chosen by the selective signal

(CM_sel). Afterward, in the bin decoding procedure, the updated CMs (CM_update1

and CM_update2) are written back into CM memory, and the decoding parameters,

interval range and coding offset, are refreshed. Eventually, the values of two bins are

passed to the BM module to derive the value of SE and check whether the current SE

decoding is done or not.

 63

Following the two-symbol binary arithmetic decoding engine, the final step of

this stage is the BM process that maps the constructed binary sequence to nonbinary

value. Therefore, the main critical path of this stage occurs in bin value decision of

TSBAD engine. In the binary arithmetic decoding procedure, two parameters should

be derived and delivered to decode the next bin. One is the updated range and the

other is the updated offset. In the traditional TSBAD engine, where two BADs are

cascaded directly, the inter-bin dependency of range (R) and offset (O) leads to an

unavoidably long critical path. In order to improve decoding performance, a new

mathematical transform method for TSBAD procedure is proposed to shorten the

critical path. In this thesis, only regular decoding is discussed since implementation of

bypass and terminate decoding is much simpler.

According to the H.264/AVC standard, the bin value decision is dependent on

OLPS. If OLPS is negative, the binVal is identified as MPS; otherwise, the binVal is

identified as LPS. For OLPS to be calculated, a sequential procedure is defined in the

standard like Fig. 26(a) shows. To obtain RMPS, it is necessary to run through a

256-to-1 multiplexer first and then do the subtraction. However, a mathematical

reordering method [15] can be adopted as follows:

LPSLPSMPSLPS RRORROROO)()(

In Eq. (3), although RMPS = R - RLPS can not be obtained until RLPS is selected by

accessing the look-up table, however, since both R and O are ready in the beginning,

the computation of (O - R) and the table look-up for RLPS can be operated in parallel.

As a result, benefited by the calculation reordering, a balanced structure can be

utilized for reducing the delay of bin value decision process as depicted in Fig. 26(b).

We extend the concept of Eq. (3) to two-symbol two-stage computation.

 64

According to Eq. (3), we perform the mathematical transform for the second bin

decision process as shown in Fig. 27, where R’LPS and O’LPS represent RLPS and OLPS

of the second stage, respectively. For the reason that OLPS and (O - R) are already

calculated in the first bin decision process, the delay of a subtractor can be further

eliminated. Note that OLPS and (O - R) have to be shifted 1 to 7 bits according to RLPS

since there is a renormalization process between the first bin and the second bin

decision procedure.

Fig. 28 shows the detailed architecture of proposed TSBAD engine. In the first

bin decision scheme, state index (stateIdx) and MPS value (valMPS) are extracted

from CM_bin1. The parameters with word “renorm” denote that they are left-shifted

by the renormalization process. The shift amount of MPS case is 0 or 1 depending on

the most significant bit of RMPS, whereas the shift amount of LPS case lies in the

range 1 to 7. To pass the shifted OLPS and (O - R) to the second bin decision scheme as

soon as possible, a table-driven selector is utilized to derive the shift amount of LPS

case. In the second bin decision scheme, both cases for previous bin being MPS and

LPS are calculated in parallel. With regard to CM_bin2, it has to be set to the updated

CM_bin1 when CM_bin2 and CM_bin1 are the same. For the reason that the second

bin decision process is a parallel working, on the premise that knowing what previous

bin is, instead of waiting the updated value of CM_bin1 is determined, we can access

RLPS table immediately and the delay of 64-to-1 multiplexer can be eliminated thus.

By using this feature, four possible LPS intervals are selected while performing the

first bin decoding procedure. As a result, the main critical path of the second bin

decoding is a 4-to-1 multiplexer and an adder. Finally, the value of the second bin is

chosen by the most significant bin of OLPS in the first bin part. Note that the updating

of R, O, and CM in the second bin decision scheme is not depicted since it is similar

to the one in the first bin decision scheme. With the proposed mathematical transform

 65

method, the critical path delay of TSBAD engine is further improved by 28% (from

3.14ns to 2.26ns) compared with the traditional TSBAD engine.

Figure 26. Mathematical reordering. (a) O – (R - RLPS). (b) (O - R) + RLPS.

LPSLPS

LPSMPS

LPSMPSMPS

RO

RRO

RRO

'

')(

')(

LPSO'

LPS

LPSLPSLPS

LPSLPSLPS

RRO

RRRRO

RRO

')(

')(

')(

LPSO'

Figure 27. Mathematical transform for the second bin decision process.

 66

RLPS

Table
ShiftNum

Table

∑

∑

∑

Shifter Shifter

RLPS

Table

∑

RLPS

Table

∑

valMPS valMPS

valMPSstateIdx R

stateIdx stateIdx

O

(R-O)

RLPS

RMPS

OLPS

Onew_1
Rnew_1

OLPS[9]

RMPS[8]

binVal_1

binVal_2
binValMPS_2

binValLPS_2

RMPS_renorm

RLPS_renorm
OLPS_renorm

OMPS_renorm

+
-

+
-

+
-

+
-+

+

shiftNumLPS

RLPS RLPS

OLPS OLPS

(R-O)_renorm

First Bin

Second Bin

CM
Trans
Table

CM_updated1

Figure 28. Architecture of proposed two-symbol arithmetic decoding engine.

4.2.5 Experimental Results

 Table 30 – Table 32 show the decoding performance of the proposed architecture

for different video sequences with different coding structure and QP. All the

sequences with resolution of HD 1920x1080, 4:2:0 color format and frame rate of 30

fps are encoded by H.264 reference software JM 12.2. With the prediction-based

 67

mechanism and SE merging method, the RTL simulation result shows that the

proposed design can decode 1.71 bins per cycle in average with the drop in decoding

speed between optima and actuality under 0.1 bins per cycle. Furthermore, for high

bit-rate coding such as QP equaling to 12, the actual decoding speed almost reaches

optimal decoding speed.

 According to the maximum macroblock processing rate (MB/s) constrain of

specified Level defined in the standard, the minimum working frequency requirement

for different Level in listed in Table 34. The result shows that our proposed CABAC

decoder can support Level 5.1real-time decoding.

 The synthesis results of the proposed architecture and a performance comparison

with previous works are shown in Table 33. By applying the mathematical transform

method, the proposed architecture can efficiently reduce the critical path delay and

allows the maximum working frequency to be about 264 MHz. The throughput of the

proposed design is 451.4 Mbins/sec in average, which is superior to other existing

designs. Although Lin’s design [13] can achieve higher average bin/cycle; however, it

requires roughly two times area overhead when compared to our design. With the

proposed hybrid CM memory architecture, the total gate count of our design is 42.37k,

which achieves 48.6% hardware cost reduction in comparison to the all register based

architecture.

TABLE 30. CABAC DECODING PERFORMANCE OF THE PROPOSED ARCHITECTURE WITH I

CODING STRUCTURE

Video Sequence

(I)
QP

Bitrate

(Mbps)

Throughput

(bin/s)
Decoding Cycle Penalty

Optimal

Decoding Speed

(bin/cycle)

Actual

Decoding Speed

(bin/cycle)

Pedestrian_area
28 16.26 21,186,892 12,624,603 670,968 1.678 1.594

20 49.82 66,633,779 36,914,531 876,602 1.805 1.763

 68

12 138.03 182,974,773 98,927,974 605,139 1.85 1.838

Riverbed

28 26.42 34,409,411 19,380,322 553,485 1.775 1.726

20 70.29 94,251,652 51,595,049 781,238 1.827 1.8

12 170.71 229,357,197 123,838,778 421,887 1.852 1.846

Rush_hour

28 8.78 11,213,016 6,741,175 318,614 1.663 1.588

20 28.12 38,699,528 21,545,044 654,886 1.796 1.743

12 111.16 151,595,001 81,372,224 679,297 1.863 1.848

Station2

28 19.7 24,381,140 13,942,414 496,822 1.749 1.689

20 58.64 77,158,534 42,358,072 816,608 1.822 1.787

12 152.41 203,271,631 109,701,718 451,180 1.853 1.845

Sunflower

28 17.12 21,086,788 12,373,604 634,349 1.704 1.621

20 39.64 49,516,552 28,037,895 786,138 1.766 1.718

12 109.78 148,622,187 80,223,469 433,019 1.853 1.843

Tractor

28 32.62 41,408,756 23,643,415 844,159 1.751 1.691

20 80.45 104,694,644 57,634,937 522,491 1.817 1.8

12 177.02 236,538,032 127,715,701 228,696 1.852 1.849

Average 1.79 1.76

TABLE 31. CABAC DECODING PERFORMANCE OF THE PROPOSED ARCHITECTURE WITH

IPPP CODING STRUCTURE

Video Sequence

(IPPP)
QP

Bitrate

(Mbps)

Throughput

(bin/s)
Decoding Cycle Penalty

Optimal

Decoding Speed

(bin/cycle)

Actual

Decoding Speed

(bin/cycle)

Pedestrian_area

28 6.24 8,243,604 5,096,931 399,656 1.617 1.5

20 29.54 39,925,740 22,531,263 1,021,723 1.772 1.695

12 125.65 167,323,465 90,263,065 734,579 1.854 1.839

Riverbed

28 25.6 33,793,858 19,033,689 577,882 1.775 1.723

20 69.18 93,001,166 50,914,635 815,699 1.827 1.798

12 170.25 229,139,086 123,698,211 431,383 1.852 1.846

Rush_hour

28 4.23 5,759,310 3,571,634 266,172 1.613 1.501

20 19.46 25,637,361 14,569,250 769,343 1.76 1.671

12 108.29 148,073,162 79,495,164 777,936 1.863 1.845

Station2

28 2.97 4,323,558 2,776,874 229,535 1.557 1.438

20 29.02 41,714,033 23,398,501 1,070,737 1.783 1.705

12 131.7 176,574,564 95,089,541 602,285 1.857 1.845

Sunflower 28 2.9 3,913,585 2,522,353 230,268 1.552 1.422

 69

20 11.51 14,473,353 8,612,806 670,697 1.68 1.559

12 87.76 116,421,680 63,687,024 1,082,948 1.828 1.797

Tractor

28 10.6 13,428,740 7,986,431 594,672 1.681 1.565

20 52.77 70,588,463 38,960,452 1,173,367 1.812 1.759

12 155.65 203,467,876 109,714,968 405,875 1.855 1.848

Average 1.75 1.69

TABLE 32. CABAC DECODING PERFORMANCE OF THE PROPOSED ARCHITECTURE WITH

IBBBP CODING STRUCTURE

Video Sequence

(IBBBP)
QP

Bitrate

(Mbps)

Throughput

(bin/s)
Decoding Cycle Penalty

Optimal

Decoding Speed

(bin/cycle)

Actual

Decoding Speed

(bin/cycle)

Pedestrian_area

28 6.18 7,996,797 4,963,851 403,129 1.611 1.49

20 26.48 33,865,563 19,296,701 957,390 1.755 1.672

12 122.27 158,460,245 85,712,717 706,222 1.849 1.834

Riverbed

28 25.95 33,157,233 18,739,109 613,915 1.769 1.713

20 69.51 90,186,496 49,414,413 799,758 1.825 1.796

12 170.56 221,804,661 119,855,332 419,247 1.851 1.844

Rush_hour

28 3.96 5,359,183 3,361,522 262,862 1.594 1.479

20 17.3 21,880,212 12,574,561 742,208 1.74 1.643

12 106.46 141,397,927 76,048,399 799,083 1.859 1.84

Station2

28 3.09 4,487,035 2,896,824 223,772 1.549 1.438

20 22.71 30,697,181 17,486,212 924,615 1.756 1.667

12 124.92 164,313,863 88,365,185 565,193 1.859 1.848

Sunflower

28 2.81 3,747,747 2,425,104 230,656 1.545 1.411

20 10.95 13,361,034 7,942,264 596,995 1.682 1.565

12 81.97 106,090,796 58,346,381 1,085,765 1.818 1.785

Tractor

28 10.2 12,561,227 7,479,415 548,993 1.679 1.565

20 51.34 65,822,524 36,557,868 1,087,536 1.801 1.748

12 152.29 194,679,968 104,946,453 362,293 1.855 1.849

Average 1.74 1.68

TABLE 33. CABAC DECODER IMPLEMENTATION RESULT COMPARISONS OF DIFFERENT

DESIGNS

 70

Specifications Proposed Lin [13] Chen [14] Chang [17]

Technology
UMC

90nm

UMC

90nm
0.13um

TSMC

0.18um

Max. Frequency 264 MHz 222 MHz 238 MHz 250 MHz

Gate Count 42,372b 82,445 43,600 35,615

Average bin/cycle 1.71 1.96 1.32 0.64

Throughputa

(Mbins/sec)
451.4 435.1 314.2 160.0

a. Throughput = (maximum frequency) * (average bin/cycle)

b. Hybrid CM memory included

TABLE 34. WORKING FREQUENCY FOR DIFFERENT LEVEL CONDITIONS

Level Max. MBs/frame Max. MB Processing Rate (MBs/s) Working Frequency

4 8192 245,760 44 MHz

4.1 8192 245,760 44 MHz

4.2 8704 522,240 92 MHz

5 22080 589,824 104 MHz

5.1 36864 983,040 173 MHz

 71

Chapter 5 EXTENDING TOWARDS SVC

 Recently, Scalable Video Coding (SVC), the next-generation video coding

standard inherited from the H.264/AVC has been standardized [18]. It provides spatial

scalability, temporal scalability, and quality scalability by transmitting a single

bitstream containing subset bitstreams which can be transmitted and decoded partially

depending on the transmission environments and decoding capabilities of endpoints

such as video devices with different screen resolution and power limitation. Relative

to the scalable profiles of prior video coding standards, the increased degree of

scalability supported by SVC achieves significant improvements in coding efficiency

and provides enhancement to transmission and storage applications. However, the

throughput requirement for entropy decoder becomes stricter. As a result, further

search for a suitable entropy decoder design for SVC is necessary.

5.1 Design Target and Design Challenges

 The parsing procedure of SVC is more complex than of H.264/AVC, moreover,

to support quality scalability, the two entropy decoding cores CAVLC decoder and

CABAC decoder we design for H.264/AVC have to be modified. In SVC, two

approaches are specified to provide SNR scalability: coarse-grain quality scalability

(CGS) and medium-grain quality scalability (MGS). For CGS coding, quality

refinement is achieved by applying different quantization parameter to quality

enhancement layer, and the differences between transform coefficients are encoded in

the slice data. In the definition of reference software, up to 7 CGS layers can be used

for SNR scalability. In addition, as difference of QP (DQ) rises, the residual blocks

 72

become denser. Even though the transform coefficients of quality enhancement layer

are general small, the large amount still imposes a higher throughput requirement on

entropy decoder for SVC than for H.264/AVC. With regard to MGS coding, the

transform coefficients can be partition into up to 16 MGS layers to achieve finer

granularity. However, the partition of transform coefficients changes the residual

block structure. Therefore, additional look-up tables are introduced in CAVLC and

VLC to maintain coding efficiency.

Our target is to develop a SVC entropy decoder which can support 3 spatial

layers, maximum resolution 1920x1080, 3 temporal layers, maximum frame rate 60

fps, and 3 CGS quality layers real-time SVC decoding at working frequency 135 MHz.

To conquer the barrier of throughput requirement, two sets of entropy decoder engine

are employed, one for quality layers and another one for non-quality layers. The detail

is presented in the following.

5.2 Proposed Entropy Decoder for SVC

Fig. 29 shows the system level architecture of proposed entropy decoder for SVC.

Since the context-based adaptive modeling for entropy decoder is limited in a single

slice, the two entropy decoding engines can work in parallel. To realize this

architecture, we have to distinguish quality enhancement layer bitstream from

non-quality enhancement layer bitstream. Fortunately, NAL units (slices) are

separated by start code 0x00000001 in H.264. Therefore, we employ the bitstream

scanner to quickly detect the start points of quality enhancement layers and

non-quality enhancement layers and transmitted the addresses to the bitstream

fetchers. Furthermore, to reduce the hardware cost overhead, a simplified CABAC

decoder for quality enhancement layer is proposed. In quality enhancement layer, only

 73

quality refinement information exists, while macroblock information is inherited from

base layer. As a result, only mb_skip_flag, coded_block_pattern,

transform_size_8x8_flag, mb_qp_delta, coded_block_flag, significance map, and

coeff_abs_level_minus1 SEs have to be decoded when decoding quality enhancement

layer. Consequently, to satisfy the strict throughput requirement while maintaining

low hardware cost, we propose a simplified CABAC decoder for decoding quality

enhancement layer. As shown in Table 35 and Table 36, unused CMs are removed

from the CM memory. The complete CM memory used for base layer is shown in

Table 37 and Table 38. To further reduce the hardware cost, unnecessary storage of

neighboring SEs used for context model selection is also removed. 120x99 bits

memory space using for storing upper macroblock information such as mvd and

mb_type can be saved. As to the CALVC decoder, since it is designed for decoding

residual block information inherently, no simplification can be performed. Table 39

summarizes the synthesis results of proposed entropy decoder. It was synthesized with

UMC 90nm technology with 135MHz. The simplified CABAC decoder can

significantly save the memory area that 82.5% hardware cost reduction of memory is

achieved in comparison to the original CABAC decoder.

 74

Figure 29. Framework of proposed entropy decoder for SVC.

TABLE 35. CONTENT OF SRAM FOR SVC QUALITY ENHANCEMENT LAYER

Address CM Index Syntax Element

0-2 11-13 mb_skip_flag (P/SP)

3-5 24-26 mb_skip_flag (B)

6-25 85-104 coded_block_flag

26-165

166-226,

338-398,

417-425,

451-459,

last_significant_coeff_flag

166-195

227-231,

237-241,

247-251,

257-261,

266-270,

426-430,

coeff_abs_level_minus1

(First bin)

196-198 399-401 transform_size_8x8_flag

 75

TABLE 36. CONTENT OF REGISTER FOR SVC QUALITY ENHANCEMENT LAYER

Address CM Index Syntax Element

0-3 60-63 mb_qp_delta

4-15 73-84 coded_block_pattern

16-167

105-165,

277-337,

402-416,

436-450,

significant_coeff_flag

168-196

232-236,

242-246,

252-256,

262-265,

271-275,

431-435,

coeff_abs_level_minus1

(First bin excluded)

TABLE 37. CONTENT OF SRAM FOR SVC BASE LAYER

Address CM Index Syntax Element

0-2 0-2 mb_type (SI)

3-5 11-13 mb_skip_flag (P/SP)

6-8 24-26 mb_skip_flag (B)

9-11 70-72 mb_field_decoding_flag

12-31 85-104 coded_block_flag

32-171

166-226,

338-398,

417-425,

451-459,

last_significant_coeff_flag

172-201

227-231,

237-241,

247-251,

257-261,

266-270,

426-430,

coeff_abs_level_minus1

(First bin)

202-204 399-401 transform_size_8x8_flag

205-207 1024-1026 base_mode_flag

208 1027 mation_prediction_flag_l0

 76

209 1028 mation_prediction_flag_l1

210 1029 residual_prediction_flag

TABLE 38. CONTENT OF REGISTER FOR SVC BASE LAYER

Address CM Index Syntax Element

0-7 3-10 mb_type (I)

8-14 14-20 mb_type (P/SP)

15-17 21-23 sub_mb_type (P/SP)

18-26 27-35 mb_type (B)

27-30 36-39 sub_mb_type (B)

31-44 40-53 Mvd

45-50 54-59 ref_idx

51-54 60-63 mb_qp_delta

55-58 64-67 intra_chroma_pred_mode

59 68 prev_intra_pred_mode_flag

60 69 rem_intra_pred_mode

61-72 73-84 coded_block_pattern

73-224

105-165,

277-337,

402-416,

436-450,

significant_coeff_flag

225-253

232-236,

242-246,

252-256,

262-265,

271-275,

431-435,

coeff_abs_level_minus1

(First bin excluded)

TABLE 39. SYNTHESIS RESULTS

Component Working Frequency
Area: Logic Part

(gate count)

Area: Memory Part

(bits)

CAVLC Decoder 135 MHz 11,726 5,520

CABAC Decoder 135 MHz 37,885a 14,400

Simplified CABAC Decoder 135 MHz 32,821a 2,520

 77

Neighbor Fetcher 135 MHz 27,723 W/O

Bitstream Scanner 135 MHz 9,248 W/O

Bitstream Fetcher 135 MHz 4,139 W/O

SE Parser 135 MHz 20,722b 16,704

a. Hybrid CM memory included

b. SE Register included

 78

Chapter 6 CONCLUSION AND FUTURE WORK

6.1 Conclusion

 In this thesis, to achieve high decoding performance and low hardware cost

real-time entropy decoding systems, a high-throughput and fully hardwired entropy

decoder for H.264/AVC is proposed. Our proposed entropy decoder architecture

makes six main contributions:

1) Unlike previous multi-symbol CAVLC decoding architecture, which only

accelerate the decoding procedure of run_before symbols, our proposed

CAVLC decoder can further elevate the throughput by applying the delay

balanced two-level decoding (DBTLD) architecture that can decode two level

symbols in one cycle and shortens the critical path delay by 21% in

comparison to the conventional approach of cascading two level decoders,

and allows the maximum working frequency to be about 390 MHz.

2) To further accelerate decoding procedure, a skipping mechanism is proposed

to remove redundant decoding processes and provide an early termination of

current residual block decoding procedure. Moreover, in the CAVLC

decoding procedure, since only one of coeff_token, trailing_ones_sing_flag,

level, total_zeros, and run_before decoding units is assigned to work in each

cycle, idled units are turned off by functional gating to reduce power

consumption.

3) A fully hardwired CABAC decoder design which combines SE parsing with

decoding is proposed. By taking advantage of the characteristics of SE

parsing flow and bin distribution among SEs, we design a prediction-based

 79

pipelined architecture to accelerate the CABAC decoding procedure without

stall for most case. The prediction hit rate can achieve 96.78% in average and

over 99% in high bit-rate coding.

4) Our proposed hybrid CM memory architecture not only avoids structural

hazards caused by CM reading and writing but also reduces the hardware

cost overhead significantly by 48.6% in comparison to the implementation of

all register approach.

5) With the proposed mathematical transform method, the critical path delay of

TSBAD engine is efficiently improved by 28% compared with the traditional

TSBAD engine, and allows the maximum working frequency to be about 264

MHz. The throughput of the proposed CABAC decoder can achieve 451.4

Mbins/sec in average.

6) We extend our entropy decoder towards SVC extension of H.264/AVC. At

the working frequency 135 MHz, our proposed entropy decoder can support

3 spatial layers, maximum resolution 1920x1080, 3 temporal layers,

maximum frame rate 60 fps, and 3 CGS quality layers real-time SVC

decoding.

6.2 Future Work

High Efficiency Video Coding (HEVC), so-called H.265 is currently under

development by Joint Collaborative Team on Video Coding (JCT-VC) of MPEG and

VCEG. As a successor to H.264/AVC, HEVC is targeted at next-generation HDTV

displays with Super Hi-Vision and aims to reduce bit-rate requirement by half in

comparison to H.264/AVC. However the improved coding efficiency usually

accompanies with the expense of increased computational complexity. As a result, to

 80

achieve real-time coding system, further search for a hardware-friendly entropy

coding algorithm is necessary.

 81

Reference

[1] “Draft ITU-T Recommendation and Final Draft International Standard of Joint

Video Specification (ITU-T Rec.H.264 jISO/IEC 14496-10 AVC),” in Joint Video

Team, Mar. 2003, Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG,

JVT-G050.

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the

H.264/AVC Video Coding Standard,” IEEE Trans. Circuits Syst. Video Technol.,

vol 13, no. 7, pp. 560-576, Jul. 2003.

[3] D. Marpe, H. Schwarz, and T. Wiegand, “Context-Based adaptive binary

arithmetic coding in the H.264/AVC video compression standard,” IEEE Trans.

Circuits Syst. Video Technol., vol 13, no. 7, pp. 620-636, Jul. 2003.

[4] H.-Y. Lin, Y.-H. Lu, B.-D. Liu, and J.-F. Yang, “A Highly Efficient VLSI

Architecture for H.264/AVC CAVLC Decoder,” IEEE Trans. Multimedia, vol 10,

no. 1, pp. 31-42, Jan. 2008.

[5] M. Alle, J. Biswas, and S. K. Namdy, “High Performance VLSI Architecture

Design for H.264 CAVLC Decoder,” in Proc. IEEE 17th Int. Conf.

Application-Specific Systems, Architectures Processors, Steam-boat Springs, CO,

Sep. 2006, pp. 317-322.

[6] T.-L Fang, “Architecture Design of CAVLC Decoder with Low Power and High

Throughput Consideration,” M.S. thesis, Department of Electrical Engineering,

National Central University, Jul. 2008.

[7] G.-S. Yu and T.-S. Chang, “A Zero-Skipping Multi-symbol CAVLC Decoder for

MPEG-4 AVC/H.264,” in Proc. Int. Symp. Circuits Syst., Island of Kos, Greece,

May 2006, pp. 5583-5586.

 82

[8] Y.-N. Wen, G.-L. Wu, S.-J. Chen, and Y.-H. Hu, “Multiple-Symbol Parallel

CAVLC Decoder for H.264/AVC,” in Proc. 2006 IEEE Asia Pacific Conf. Circuit

Syst., Singapore, Dec. 2006, pp. 1240-1243.

[9] G.-G. Lee, C.-C. Lo, Y.-C. Chen, H.-Y. Lin, and M.-J. Wang, “Low Complexity

and High Throughput VLSI Architecture for AVC/H.264 CAVLC Decoding,” IET

Image Processing, to be published.

[10] S.-Y. Tseng, and T.-W. Hsieh, “A Pattern-Search Method for H.264/AVC CAVLC

Decoding,” in Proc. 2006 IEEE Int. Conf. Multimedia Expo, Toronto, ON, Canada,

Jul. 2006, pp. 1073-1076.

[11] Y. Yi and I. C. Park, “High-Speed H.264/AVC CABAC decoding,” IEEE Trans.

Circuits Syst. Video Technol., vol. 17, no. 4, pp. 490-494, Apr. 2007.

[12] W. Son and I. C. Park, “Prediction-based Real-time CABAC Decoder for High

Definition H.264/AVC,” in Proc. Int. Symp. Circuits Syst., Seattle, WA, May 2008,

pp. 33-36.

[13] P.-C. Lin, T.-D. Chuang, and L.-G. Chen, “A branch selection multi-symbol high

throughput CABAC decoder architecture for H.264/AVC,” in Proc. Int. Symp.

Circuits Syst., Taipei, May 2009, pp. 365-368.

[14] J.-W. Chen, and Y.-L. Lin, “A High-performance Hardwired CABAC Decoder

for Ultra-high Resolution Video,” IEEE Trans. Consum. Electron., vol. 55, no. 3,

pp. 1614-1622, Aug. 2009.

[15] P. Zhang, “Fast CABAC decoding architecture,” ELECTRONICS LETTERS, vol.

44, no. 24, Nov. 2008.

[16] C. H. Kim and I. C. Park, “High Speed Decoding of Context-based Adaptive

Binary Arithmetic Codes Using Most Probable Symbol Prediction,” in Proc. IEEE

 83

ISCAS, Island of Kos, Greece, May 2006, pp. 1707-1710.

[17] Y.-T. Chang, “A novel pipeline architecture for H.264/AVC CABAC decoder,” in

Proc. 2008 IEEE Asia Pacific Conf. Circuit Syst., Dec. 2008, pp. 308–311.

[18] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding

extension of the H.264/AVC standard,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 17, no. 9, pp. 1103-1120, Sep. 2007.

 84

Biographical Notes

姓名：廖元歆

學歷：

 高雄市立高雄高級中學 (2001/09 – 2004/06)

 國立交通大學電機資訊學士班 (2004/09 – 2008/06)

 國立交通大學電子研究所系統組 (2008/09 – 2010/08)

著作：

Yuan-Hsin Liao, Gwo-Long Li, and Tian-Sheuan Chang, “A High Throughput VLSI

Design with Hybrid Memory Architecture for H.264/AVC CABAC Decoder, ” in

proceeding of IEEE International Symposium on Circuit and System, pp. 2007-2010,

May 2010.

