H.264/AVC % SVCF [#78 B2 A $7 8324 2+
Analysis and Design of Entropy Decoder for
H.264/AVC and Scalable Extension

R ERE KR

AN A

PES R 4 L4 #

H.264/AVC % SVCY j2 48 B 2 A 47 822 3+

Analysis and Design of Entropy Decoder for
H.264/AVC and Scalable Extension

Student : Yuan-Hsin Liao

Advisor : Dr. Tian-Sheuan Chang

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master of Science
in
Electronics Engineering
August 2010
Hsinchu, Taiwan, Republic of China

a*jfg\@j] 4 L4 & AN

H.264/AVC % SVC % {245 B2 A 45 82 3% 3+
R fo W aE L

&K o d 2 H264/AVC $a m i iR { Eehdamgond 0 15 e A
RGLi ™ AARUET o sde & B IR R TR & G T RS 0 W AR B kil
BORILA hF o Tl AR R R R R AT TR K eid R E DR

AR LR M- B 2> H264/AVC W2 SVC 03 &

e p ko AR - BERSEEORLEN FEREREE RFHE TR
FEARR ¥ 5 ARNfRAG A BRE vE L be i JRAR EDIE (T o 1 TEHE S AP OT B LK T
#B 210 m FAA B AP RO 2w ARk T e 28 2% ¥ £ 5 1L 264/AVC
Y - P RGAATRN - PR ESERELFEL I AL TR
AR EERE o AFBRBERY APRFEE A2 A B ELE T
BOUVEENERMIFRIEPRT FRARIE A EBBER - &%
0 AN IF - B o F IR RE A R S T i R RS v o

AnEmELF 90 2 K W APp FRR/EEFERABFBHEORE 2

5
4a

¥ i 390 MHz > 13,88k B B4ER - @ AP ap 3 Bl ~ 8 KfEg Ea

—

1 P 5V aE 264 Mz > 42. 3Tk B B8R o A PR B s 4 0 48, 6%

7
=

A 2Thgd 554014 FF B R 320 H 8 2 g £ ankzto gt o
AP RAT B K3 AR B T SVC e fea TEaE S 130 Mz ™ 0 A i R iR BT
L33 KRR 0 R F 1920x1080 ~ = B IE ARk - R F F A 60 kA G ~ 122

2R &G SR PRI

il

Analysis and Design of Entropy Decoder for
H.264/AVC and Scalable Extension

Student: Yuan-Hsin Liao Advisor: Dr. Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao-Tung University
Abstract

In recent years, the state-of-the-art video coding standard H.264/AVC which
provides better compression efficiency for video images than the earlier standards has
been widely adopted in current video application system. To satisfy the heavy
performance requirement on teal-time H.264/AVC decoding systems especially for
large-scale video sequences, VLSI implementation of the entropy decoder is
necessary since it dominates the overall decoder system performance.

In this thesis, we propose a high-throughput and fully hardwired entropy decoder
for H.264/AVC and its scalable extension. First, we present a delay balanced
two-level CAVLC decoder with 21% shorter critical path delay in comparison to
traditional two-level decoder. Furthermore, a skipping mechanism is adopted to
remove unnecessary decoding processes. The overall CAVLC throughput is 28.2%
better than our previous design. Second, for the CABAC decoder, we propose a high
throughput CABAC decoding design which combines SE parsing and decoding with a
new hybrid memory two-symbol parallel decoding technique to accelerate the

decoding speed while reducing the hardware cost. Further speedup is achieved to

il

avoid stalls for most of the cases by the prediction-based method. In addition, an
efficient mathematical transform method is also proposed to further decrease the
critical path delay of two-symbol binary arithmetic decoding procedure by 28%.

The proposed entropy decoder is implemented by UMC 90nm technology and
experimental results show that our CAVLC decoder can operate at 390 MHz with
13.88k gate count, besides, our CABAC decoder can operate at 264 MHz with 42.37k
gate count, and the throughput is 451.4 Mbin/sec, which surpasses previous design
with 48.6% hardware cost saving. Furthermore, we extend our entropy decoder
towards SVC extension of H.264/AVC. At the working frequency 135 MHz, our
proposed entropy decoder can support 3 spatial layers, maximum resolution
1920x1080, 3 temporal layers, maximum frame rate 60 fps, and 3 CGS quality layers

real-time SVC decoding.

v

B LR R A P B R E AR L - b B EHT) A %L

EkFE S G PN Y L Q@R A A3 L b G H A KRR 3] g

B ARl gait] FRapGLARER B AR SRS RS
Fprs ERBANCBLFP-7 LA TP IETFRIFE LA F

TFIAECFETHRFEORHS A AT R AR B ARE KEPTT O

LR oRit MR LF2E -

EFALBMIRIOR P R B#E REE L o e %JF{#&%%

eEmY i S AR MR R F R Y X K EN o T 2

BEH - EHETREL bEGIME RO E @ L %0 Apy il

@ﬁﬁi§§£\€ﬁW§£* BEENE P EY > Rt R EN
BR AR HIT 1 S @A A RBRIA TR LT R A
PEETIERY EAEI T RSNG4 A ET G R P T
5,:,\g);ﬂgg\,‘1;_35”&%{,\ig*ﬁg’ﬁé;ia_\;gggxrﬁa&i;wﬁ11::113351;):/]%%
1@uﬁﬁ%%éﬁ%@ﬂ%ﬁoéﬁﬁw’ﬁiﬂ@@ﬁﬁﬁﬁ%—ﬁﬁ%@
27 o RBL - YA - RPEEOPFELLIA - AR LT

BSAERIN DB AMNME L APL o RPAFEMY s £ %50
SUEAEE & =23 o

e R T AR LD

Contents

CHAPTER 1 INTRODUCTIONoiiiiii ittt 1
1.1 Motivation and CONtIIDULIONc.eiuirtiiieeieieietete sttt st ettt et et et e teseesbesaeeneeneeneas 1
1.2 ThesiS OTZANIZAtIONeeuieuieieiiete ettt ettt ettt ae st e et e e sbeetesbeebeeseeneansenseteabeeseeneeneensensanean 2

CHAPTER 2 OVERVIEW OF CAVLC ...t 3
2.1 Context-based Adaptive Variable Length Coding.........ccccoviririeiriinieie e 3

2.1.1 CAVLC DECOUING FIOW....cuiiiiiiiiiiiicieiesic st ettt srenne e enaeeeneas 4
2.2 Design Challenges and Related WOTKSccueriiiiiiiriiiiieceeie et 7

CHAPTER 3 OVERVIEW OF CABAC.......co et 10
3.1 ATTHNMELIC COINE ..ttt ettt ettt ettt ae st e st et et et e tesaeebeeseeneeneeneeneenes 10
3.2 Context-based Adaptive Binary Arithmetic COdINgcccceiiriririeieieieree e 12

3.2, 1 BINATIZALION.cveiiiecrecses ettt 13
3.2.2 ContexXt MOABIINGcuveuveierieriesie s 80 0 i i sttt sttt besneere e e enaennens 17
3.2.3 Adaptive Binary Arithmetic COUINGcccvresiviiaitr i ereriesese e e e eree e e sre e ereeneens 19
3.3 CABAC Decoding Algorithm O VerVIEW L.coueeieee e i ettt eeceiteee et see b eee e nes 23
3.4 Design Challenges and Related WOrks «iu e .. iuereadteoii e i 26

CHAPTER 4 PROPOSED ENTROPY DECODERc....ooiiiiiiieeeeeeee 30

4.1 Proposed CAVLC DeCOder ... ot ottt it it it i dhas ettt ettt ve e e seveesaaeessaeeenns 31
N Y -] 1 e SRR 32
4.1.2 Proposed Delay Balanced Two-level Decoder ArchiteCturecooevveverevevivviesnseseennns 37
4.1.3 CAVLC Decoding ArchiteCture DESIGNccveveiierireiteeeeieeieseese e sre e se e se e sresre e anens 39
4.1.4 EXPErimental RESUILS.........coiiiieiieieieie ettt sttt st st sneena e e eneaneas 42

4.2 Proposed CABAC DECOURTceovvieieeiiciiecieecie ettt et ettt te b eebesteesteesteeseesseesnesreesseesseenseans 46
Y - 1] 1SR 46
O Y O T =T S 52
4.2.3 Context Model MemOry DESIGNcveveieieiirese st eeeeee ettt snaene e es 58
4.2, 4 TSBAD SEAQEeieeieeie et eeieeteesee s e e s e e e s e s e sreestaenteanteestesseesseesteesteeseeaneeaneeaneeaneenseentennee e 62
4.2.5 EXPErimental RESUILS......cc.oiiiiiieeiie ettt e 66

CHAPTER 5 EXTENDING TOWARDS SVC.....cooiiiiiieieeiee e 71
5.1 Design target and Design Challengesccceeieirieieniiriee ettt 71
5.2 Proposed Entropy Decoder for SVC ...t 72

CHAPTER 6 CONCLUSION AND FUTURE WORKcoooiiiiiiieie e 78
6.1 CONCIUSION ...ttt ettt ettt ettt e et et e e bt e et ebeeaeene e s et e nbesbeebeeeeeneeneeneenes 78

vi

0.2 FULUIE WOTK ...ttt et e e e e et e s s et e e e eat et e s eaaaeeseaaaeeeeenteeesnaeeesaneaeeeas 79
REFERENGCEo ittt ebebabeb e aebssabebebebebsbebsbsbsssbabessssbebessbessreserees 81
BIOGRAPHICAL NOTES ...t bvbebabebabebebsbsbeseseseseressrsrererees 84

vii

List of Figures

(Chapter2)
Fig. 1 CAVLC deCOdiNG flOWocoviiiiieiieiieitieitieieete ettt ete et sseesaeesteebeessesssesssesssesseesseensessaessnenses 6
Fig. 2 Transmitted bitstream for a 4 x 4 residual BIOCKcccooiieiiiiiiii e 7
(Chapter3)
Fig. 3 Example for interval SUDAIVISIONc.cccviiiiiiiiieiiieieeie ettt steesiee e esessaessaesseesseenseens 11
Fig. 4 Recursive interval subdivision for the sequence (C, B, C, E) .c.cooveiiiiiiiiiiiieeeeeeeee 11
Fig. 5 CABAC encoder block diagram...........ccivcviiiiiieniieiieiieieetiesieeieeve e steesae e e eaessnesseesseesseenseens 13
Fig. 6 Pseudo code for k-th order Exp-Golomb code constructioncoeceveeveenerienienceneeieeeenne 16
Fig. 7 Neighboring syntax elements involved in context model selection of current syntax

CLEITICTIL ...ttt a et ettt e bbbt a e st et et b st b e eae bt et nee 19
Fig. 8 Probability transition TUL.........ceoueiieiieieie ettt ettt et e neesae e e e ens 20
Fig. 9 Flow diagram of binary arithmetic-encoding process. (a) Regular coding mode. (b)

Bypass COAING MOAE ueeeit e ioimiimissneansseaesnsesstensestasssdereeseessesssesssesseessesssesssesssesseesseessesssesses 21
Fig. 10 Flowchart of (a) renormalization process and (b) PutBit(B):...........cccoceerieiiriiniinieieeeieene 22
Fig. 11 CABAC Parsing flOW ..o eeeeeeeeiesiiesseaiteesiianeesnesueeseeeess s e enteesseessesssesssesseeseessesssesssssseessesssenns 24
Fig. 12 Flow diagram of (a) regular bin decision process, (b) renormalization process, and (c)

DYpass bin dECISION PIrOCESS - uuiuitinreeueeueeeerueereeessfostas et enteeneesseesseesseessesneesneesneesseanseeseenseeneesaeans 26
Fig. 13 Pipelining scheme of CABAC deCOING......cccoiiiiiiiiiiiieiieeieeieeieete ettt ere e eeesveesse s e 27
Fig. 14 Data hazard caused by significance map. (a) 4x4 residual block. (b) Flow diagram of

the CABAC decoding scheme for significance map. (c) Example for decoding the

significance map. (d) Illustration of cycle stall of CABAC decodingcccceeeevvenieecuennnennen. 28
(Chapter4)
Fig. 15 Framework of proposed entropy deCOer..........cceouieriiiviieiieieriieiieie ettt ees 31
Fig. 16 Original level decoding procedure defined in H.264/AVC standard............ccccoevoveiieininnienens 35
Fig. 17 MSD decoding ProCEAUIE.cccviiieiieirieiieie e etteeteesteeteeebeseaesteesseessesssesssesseesseesseessesseessesssenns 36
Fig. 18 Modified level decoding procedure with MSD algorithm............ccocceeririiiieniinier e 37
Fig. 19 Proposed delay balanced two-level decoding architecture..........ccevveriiecieicieneeneerieeieeeeeeeiens 39
Fig. 20 Proposed CAVLC deCOMETcccuiiiiiiieiieiiee ettt ettt st eneesneesaeeneeens 41
Fig. 21 Residual block reconstruction archit@Ctureoccveveeriieiieiinieneeie e e ereereees 42
Fig. 22 SE parsing flow for the H.204/AVCcc.coiriiiiiiieieieneeeeteeeese ettt 48

Fig. 23 Proposed CABAC decoder archit@Cture...........ooveruieriieiiieiieeiesiieieeie et 52
Fig. 24 Pipeline scheduling of (a) prediction miss and (b) prediction hit.........c.ccocevveririenininicnenienene. 54
Fig. 25 Memory operation in the significance map decoding ProCess..........cceeervuerreereereeseesenieneeneenns 61
Fig. 26 Mathematical reordering. (a) O-(R-Rpps). (b) (O-R)HTRLpS...veervieiieiiiieriieniieieeie e eee e 65
Fig. 27 Mathematical transform for the second bin deciSion ProCess..........ccevverierienerreriieseeneereeeeeane 65
Fig. 28 Architecture of proposed two-symbol arithmetic decoding engine............cccceceeereeiienienienenenne. 66
(Chapter5)

Fig. 29 Framework of proposed entropy decoder for SVCccooiiiiiiiiiiiiiee e 74

X

List of

(Chapter2)
Table 1

(Chapter3)
Table 2

Table 3
Table 4
Table 5
Table 6
Table 7

Table 8

(Chapter4)
Table 9

Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17

Table 18

Table 19

Table 20

Table 21

Table 22

Tables

CAVLC DECODING PROCEDURE FOR THE 4 X 4 RESIDUAL BLOCK DEPICTED IN FIG. 2.............. 7
DECODING PROCUDURE FOR INPUT NUMBERctttiiiitiieeeiiieeeieeeesieeeeeireeeenseeessnnneeessseessnnns 12
UNARY BINARIZATIONciiiiiiiiiiiiiteeiiitee ettt eitt e e sttt e e ettt e s ettt e e sttt e e sabteessabbeeesbbeeesabaeesannaeas 14
TRUNCATED UNARY BINARIZATIONctiiieiiiieeeiiieeeeiieeeeiteeeesieeeesnseeeesnsseeeessseessssnesssnsseesnnnns 14
FIXED-LENGTH BINARIZATION ..ccuitttiiiitteeniieeeeiiteesriiteeeetteeesitteessabteeesabteessnsaeesannneessnbaeessnes 15
UEG3 BINARIZATION FOR ABSOLUTE VALUES OF MOTION VEXTOR DIFFERENCES 16
SYNTAX ELEMENT AND CORRESPONDING CONTEXT INDICES ...ccuvveeviieiieiiieeieesieeeieesveeneneens 17
CONTEXT CATEGORY DEPENDING ON SYNTAX ELEMENTS AND BLOCK TYPEScceevvveiennnne. 19
THRESHOLD VALUE FOR/SUFFIXLEENGTH TRANSITION . ..ciuvveeruveerereenieeniieenreensreenseessneesseesnnes 35
EXAMPLE OF RESIDUAL:BLOCK RECONSTRUCTION PROCESS.....ccc.eeivieiniiiinieiniiienieeiieeieee 42
COMPARISON OF CAVLEC DECODING PERFORMANCE ...ttt eeseveerereesreenireesreensseesneessseesseennnes 43
CAVLC DECODER IMPLEMENTATION RESULT COMPARISONS DIFFERENT DESIGNS 44
MAXIMUM FRAME RATES FOR‘'SOME- EXAMPEE FRAME SIZESc.ooeviiiiniieniienieenieeeie e 44
WORKING FREQUENCY FOR DIFFERENT LEVEL CONDITIONSuuvvieieiueeeeeeueeeeeeiteeeeeeaeeeeeeneeeens 46
STATISTICAL RESULT OF BIN DISTRIBUTION WITH I CODING STRUCTURE AND QP28............... 48
STATISTICAL RESULT OF BIN DISTRIBUTION WITH I CODING STRUCTURE AND QP20.............. 49
STATISTICAL RESULT OF BIN DISTRIBUTION WITH I CODING STRUCTURE AND QP12.............. 49
STATISTICAL RESULT OF BIN DISTRIBUTION WITH IPPP CODING STRUCTURE AND

Table 23 STATISTICAL RESULT OF BIN DISTRIBUTION WITH IBBBP CODING STRUCTURE AND

Table 24 IMPROVEMENT OF PREDICTION ACCURACY USING THE PROPOSED METHODS WITH I

CODING STRUCTURE ...ceeeiiiitttiteieeeeeeeeitteeeeeeeeeeitareeeeeeeeesaaseesseseeesssreseseseeesssrereseseeessssarreeeeeeains 55

Table 25 IMPROVEMENT OF PREDICTION ACCURACY USING THE PROPOSED METHODS WITH

TPPP CODING STRUCTUREuutttiiieeeiittteeeeeeeeeeeiaeeeeeeeeseessaeeeeeeesssssssseeseessssssnssseeesssssssssasseesssssnns 55

Table 26 IMPROVEMENT OF PREDICTION ACCURACY USING THE PROPOSED METHODS WITH

IBBBP CODING STRUCTURE -..c.cveeuteiiiinitinitenieeteetteeteeitesteesteesieentesneesieesbeesseeseenseensesenesanesseensees 56
Table 27 BIN INDEX TRANSITION RELATION IN SIGNIFICANCE MAP......cccceeitimiiiitieniieieeie e 57
Table 28 CONTENT OF SRAM AFTER REORGANIZATION OF OUR PROPOSALcoeeuveieniiniiniinienieeiieeennen 61
Table 29 CONTENT OF REGISTER AFTER REORGANIZATION OF OUR PROPOSAL......c.cevvveiiriiiieiieieenne 62

Table 30 CABAC DECODING PERFORMANCE OF THE PROPOSED ARCHITECTURE WITH I CODING

STRUCTURE «.uvtvvteeeeeeeeeitteeee e e eeeetaee e e e e eeeeeaaaeeeeeeeeeseasaseeeeeeeasasaseseeeeeesttareeeeeeesattareseeeeeensssrreeeeas 67

Table 31 CABAC DECODING PERFORMANCE OF THE PROPOSED ARCHITECTURE WITH IPPP

CODING STRUCTURE ...eeeiiiiinreeaie Soh s sontees e stanbe st ineeeeeseessaeseesesesesssseeeeeessssssnsseseesssssssssssssesesssnns 68

Table 32 CABAC DECODING PERFORMANCE OF THE-PROPOSED ARCHITECTURE WITH IBBBP

CODING STRUCTURE ...ciuuesfeenneesiiemaeson se iassinatenstsdtesheeesbonusioneenseensesssesssesseesseenseenseesessnesseneensees 69
Table 33 CABAC DECODER IMPLEMENTATION RESULT COMPARISONS OF DIFFERENT DESIGNS 69
Table 34 WORKING FREQUENCY FOR DIFFERENT LEVEL CONDITIONScceeovviieeireeeeineeeeeeieeeeennneeeeenneees 70
(Chapter5)
Table 35 CONTENT OF SRAM FOR SVC QUALITY ENHANCEMENT LAYER ...ccvveitieiieiiiienie e 74
Table 36 CONTENT OF REGISTER FOR SVC QUALITY ENHANCEMENT LAYERcovieviiienieiienieeieennenns 75
Table 37 CONTENT OF SRAM FOR SVC BASE LAYER ...eeuvtiitiieeiieiiee ettt 75
Table 38 CONTENT OF REGISTER FOR SVC BASE LAYERccutiuiiiiiiiiiiinierierceeteeeese e 76
Table 39 SYNTHESIS RESULTSctiuiitieiietieie ettt ettt ettt ettt et e e et e st e saeeseemeeeneeeneesneenaeeneeens 76

X1

Chapter 1 INTRODUCTION

H.264/AVC is the state-of-the-art video coding standard developed by the Joint
Video Team (JVT) of ISO/IEC Moving Picture Experts Group and the ITU-T Video
Coding Experts Group (MPEG and VCEG). With many advanced techniques, it
provides better compression efficiency for video than the earlier MPEG-4 and H.263
standards do. Recently, H.264/AVC has been widely adopted in current video
application system such as Blu-ray Disc, Youtube, television service, and real-time
videoconferencing.

H.264/AVC specifies two entropy coding tools: Context-based Adaptive Variable
Length Coding (CAVLC), and.Context-based Adaptive Binary Arithmetic Coding
(CABAC) [1], [2]. Both methods employ context-based adaptive modeling in their
entropy coding framework and achieve better compression efficiency compared to
previous video coding standards. In CAVLC, an adaptive VLC table switching
method depending on already coded symbols is used, and in CABAC, an adaptive
probability model estimation technique is utilized for binary arithmetic coding. For
the reason that the adaptation of CAVLC can not perfectly match actually conditional
symbol statistics and the limitation of 1 bit/symbol imposed on variable length codes,
CABAC can achieve averaged bit-rate savings of 9% to 14% at the cost of higher

computation complexity in comparison to CAVLC [3].

1.1 Motivation and Contribution

In recent years, as network transmission speed rises and high-definition
television gains popularity, the demand for better visual quality grows fast. That
means video application system is expected to support high-definition (HD) resolution

1

encoding and decoding. In addition to the heavy decoding requirement of H.264/AVC,
this trend leads to the result that more data has to be processed in the same time for
video decoders, and makes it more difficult to work in real-time for CPUs. In that
event, it is necessary to accelerate the decoding speed of entropy decoder with
hardware since its throughput dominates the overall decoder system performance.
However, the inherently strong data dependency significantly restricts the throughput
of entropy decoder and is generally considered as the main design challenge in
hardware implementation. In order to achieve high decoding performance and low
hardware cost real-time entropy decoding systems, a fully hardwired entropy decoder

is proposed in this thesis.

1.2 Thesis Organization

The rest of this thesis 1s organized as follows. We briefly describe the entropy
codec (CAVLC and CABAC)-and their design challenges in hardware implementation
in Chapter 2 and Chapter 3, respectively. In Chapter 4, the proposed entropy decoding
architecture is presented and we provide simulation results to demonstrate the
performance of our entropy decoder design. In Chapter 5, we extend our proposed
entropy decoder towards the Scalable Video Coding (SVC) extension of the

H.264/AVC standard. Finally, the conclusion is given in Chapter 6.

Chapter 2 OVERVIEW OF CAVLC

Variable-length coding (VLC) is an entropy coding method that converts each
data symbol to a variable length codeword, and achieves data compression by
utilizing the various probabilities of occurrence of data symbols. Symbols with high
probabilities of occurrence are represented by short codewords while symbols with
low probabilities of occurrence are represented by long codewords. There are two
constrains on the VLC, one is that the bit string must consist of integral number of

bits, another one is that each codeword must be uniquely decodable.

2.1 Context-based Adaptive Variable Length Coding

CAVLC and Exp-Golomb coding are the baseline entropy coding methods of
H.264/AVC. In spite of the advantage of Exp-Golomb coding in computational
efficiency, the compression efficiency is not good enough for real application alone.
To enhance the compression efficiency, a more efficient entropy coding technique
CAVLC is designed for encoding quantized transformed coefficients of 4 x 4 and 2 x
2 residual blocks by taking advantage of several characteristics of quantized blocks.
After decorrelated by the Discrete Cosine Transform (DCT) and quantization, most of
the quantized coefficients are zero while a few nonzero coefficients are clustered
around the top left of the block. Afterward, by a reordering, nonzero coefficients are
grouped together and the level of nonzero coefficients tends to be larger at the low
frequencies (start of the reordered array) and smaller toward the high frequencies (end
of the reordered array). Moreover, high-frequency nonzero coefficients are often a

series of =1 (TrailingOnes). To efficiently represent the large number of zeros, a

run-level coding technique can be applied to reduce the redundancy of the data
symbols. However, Run and Level are not quite correlated. Consequently, to achieve
better compression efficiency, Run and Level are coding separately in CAVLC.
Distinct from conventional VLC that VLC table is unique; CAVLC switches
VLC tables for different syntax elements relying on already transmitted symbols. That
is why it is named context-based adaptive. Although better compression efficiency is
achieved by exploiting inter-symbol redundancies, the rise in computational
complexity and data dependency imposed on the CAVLC decoder makes it hard to be
speeded up by parallelism and pipelining. In the following, the decoding flow of

CAVLC alone with its design challenges is discussed in more detail.

2.1.1 CAVLC Decoding Flow

A residual block is represented by five types of SEs in CAVLC. These syntax

elements are defined as follows:

1) coeff_token: This syntax element indicates the total number of nonzero
coefficients (TotalCoeffs) including TrialingOnes. Since the coding units of
CAVLC are 4 x 4 and 2 x 2 blocks, TotalCoeffs can be any value from 0 to 16
and TrialingOnes can be anything from 0 to 3. There are three
variable-length codeword tables and a fixed-length codeword table using for
coding coeff_token. The choice of look-up table depends on the total number
of nonzero coefficients to the left and on top of the current block, nA and nB
respectively.

2) trailing_ones_sing flag: This 1-bit syntax element indicates the sign of
TrialingOnes, and is coded in reverse order.

3) level: The syntax element level represents the value of remaining nonzero

coefficients and is also coded in reverse order. Each level is composed of a

4

prefix part (level_prefix) and a suffix part (suffix_part).

4) total_zeros: The sum of zero coefficients, except for zeros after the last
nonzero coefficient, is represented by this syntax element. The choice of
VLC table depends on the total number of nonzero coefficients of the current
block.

5) run_before: Number of zeros preceding each nonzero coefficient is encoded
as this syntax element. The VLC table for coding each run_before is chosen
according to the number of zeros left (zerosLeft).

Fig. 1 shows the flow diagram of CAVLC decoding. The decoding process
consists of six steps: coeff token parsing, trailing_ones_sing_flag parsing, level
parsing, total_zeros parsing, run_before parsing, and residual block reconstruction.
Table 1 shows an example for the decoding procedure of a CAVLC coded residual
block as depicted in Fig. 2 and its corresponding decoded information. The input
bitstream provided for CAVLC decoder is “00001000.11100101 111011017, after
the decoding procedure, the 4 x 4 residual block, “0,3,0, 1,-1,-1,0,1,0,0, 0, 0, 0, 0,

0, 07, is reconstructed.

Bit-Stream

i

Parse
coeff token

L

A

Parse
trailing ones sing flag

».

Parse
level prefix

A

Parse
level suffix

Parse
total zeros

»

Parse
run_before

A

Reconstruct
Residual Block

Inverse Transform (IT) &
Inverse Quantization (1Q)

e Derive TotalCoeffs and TrailingOnes

® Derive sign of TrailingOnes

® Derive level

e Deriverotal zeros

® Derive run_before

e Derivereconstructed residual block

Figure 1. CAVLC decoding flow.

4 x 4 residual block

03 | -+--0

' o000

O@ 0{:,,,,0

Reordered block: 0, 3,0, 1, -1,-1,0, 1, O...
Encoded CAVLC bitstream: 000010001110010111101101

Figure 2. Transmitted bitstream for a 4 x 4 residual block.

TABLE 1. CAVLC DECODING PROCEDURE FOR.THE 4 X 4 RESIDUAL BLOCK DEPICTED
IN F1G. 2

Bitstream: 000010001110010111101101

Syntax Element |Codeword Value Output Array
coeff_token 100 TotalCoeffs=5, TrailingOnes =3 |N/A
TrailingOne sign |0 + 1
TrailingOne sign |1 - -1, 1
TrailingOne sign |1 - -1,-1,1
level 1 +1 1,-1,-1,1
level 0010 +3 3,1,-1,-1, 1
total_zeros 111 3 3,1,-1,-1, 1
run_before 10 1 3,1,-1,-1,0, 1
run_before 1 0 3,1,-1,-1,0, 1
run_before 1 0 3,1,-1,-1,0, 1
run_before 01 1 3,0,1,-1,-1,0, 1

Reconstructed block: 0, 3,0, 1,-1,-1,0,1,0,0,0,0,0,0,0,0

2.2 Design Challenges and Related Works

In hardware implementation, the VLC decoding can be realized as a finite state

machine in essence. One bit or several bits of bitstream are scanned in each clock

cycle. According to the chosen VLC table, if the bit string matches a codeword, the
corresponding value is returned. Otherwise, more bits will be scanned in the next
cycle. Since the bitstream boundary between successive codewords is unknown until
the codeword length of the former one is detected, the decoding procedure is
inherently sequential and thus the throughput of CAVLC decoder is therefore hard to
be elevated.

Intuitively, multi-symbol decoding is an effective way to raise throughput,
especially for trailing_ones_sing_flag, level, and run_before parsing stages which are
critical loops in the CAVLC decoding procedure. However, the main obstacle to
parallel decoding is how to break the recursive dependencies between codewords. In
trailing_ones_sing_flag parsing stage; since the number of TrailingOnes is already
derived in coeff_token parsing.stage, [4] and [5] implemented the parsing procedure in
a single cycle. In level parsing stage, two level decoders.are cascaded to produce two
level symbols in one cycle [6]. However, it induces a huge critical path delay. In
run_before parsing stage, since<the.codewords of VLC table used for run_before is
much less and shorter than others, the data dependency obstacle is much easier to be
overcome, and thus several efficient multi-run_before decoding architectures had
proposed to boost the throughput of CAVLC decoder. When run_before is equal to 0,
the corresponding codeword is composed of “1” bits. Therefore by counting the bit
length of the series of “1” bits of input bitstream, multiple run_before symbols valued
0 can be parsed in one cycle [6]. This method is effective in the high bit-rate coding
but inefficient in the low bit-rate coding where the residual blocks are very sparse.
Since the sub VLC tables of run_before are separated by zerosLeft, unless zerosLeft is
larger than 6, the zerosLeft for choosing the next run_before look-up table is
predictable. By utilizing this character, Yu et al. [7] proposed a combined look-up

table for decoding successive two run_before symbols at the same time. At the

8

expense of significant hardware cost raise, Wen et al. [8] adopted a bit-position VLC
decoding approach that all run_before symbols are decoded using less than 3 cycles in
one block to achieve high throughput. Lee et al. [9] presented a multi-symbol decoder
that can decode three run_before symbols in one cycle. Furthermore, a pattern-search
method had been reported in [10]. In this method, a block can be reconstructed
directly without performing CAVLC decoding procedure if a pattern is matched in a
pre-established look-up table.

For the two critical loops, level parsing process and run_before parsing process,
which mainly affect the overall decoding performance, a lot of techniques have been
proposed to speed up run_before parsing process, whereas there are few effective
ways to improve level parsing performance. In'this thesis, a highly efficient two-level

decoding architecture is proposed to-expedite the CAVLC decoding speed.

Chapter 3 OVERVIEW OF CABAC

For a data symbol with probability of occurrence P to be encoded, the theoretical
optimum number of bits is log,(1 / P). It is usually a fraction instead of an integer. As
a result, in essence, entropy coding based on integral number of bits long codewords
can not achieve optimal data compression. As a practical alternative, arithmetic
coding provides a technique that can encode a sequence of data symbols into a single

fractional number and thus can more closely approach the theoretical optima.

3.1 Arithmetic Coding

The arithmetic coding algorithm-is a recursive subdivision of an interval based
on the probability of occurrence of encoded symbols. In the encoding procedure, first,
the range (0.0, 1.0) is subdivided into subranges depending on the probability of
occurrence of each symbol as Fig. 3-.shows. Then; whenever a symbol is encoded, the
new rage is set to the corresponding subrange. Finally, the sequence of data symbols
can be represented by any fractional number in the final range. An example for
encoding the sequence (C, B, C, E) is presented in Fig. 4. After the first symbol is
encoded, the new range is (0.3, 0.7), and the next new range is (0.34, 0.42).
Progressively, the initial range becomes smaller. At the end of sequence of data

symbols, a number 0.394 which lies within the final rage (0.3928, 0.396) is outputted.

10

Symbol | Probability | log,(1/P) | Subrange
A 0.1 3.32 (0.0,0.1)
B 0.2 2.32 (0.1,0.3)
C 0.4 1.32 (0.3,0.7)
D 0.2 2.32 (0.7,0.9)
E 0.1 3.32 (0.9, 1.0)

Total range

< >
0.1 0.3 0.7 0.9 1.0

@a (B © D ()

Figure 3. Example for interval subdivision.

0.1— . X —

0.0 ——— 03 —— 0.34 —— 0.364

Figure 4. Recursive interval subdivision for the sequence (C, B, C, E).

In the decoding procedure, each symbol is decoded depending on the subrange
where the input number falls. Then, the new range is updated to this subrange. Table 2

shows an example for decoding a fractional number 0.394 encoded by the encoding

11

procedure mentioned above. When decoding the first symbol, because 0.394 falls
within the subrange (0.3, 0.7), it is decoded as (C). Then, range is set to the subrange
which belongs to (C). The next symbol is decoded as (B) since 0.394 lies within the
subrange (0.34, 0.42), and so on. The decoding does not halt until the entire sequence

of data symbols (C, B, C, E) is decoded.

TABLE 2. DECODING PROCUDURE FOR INPUT NUMBER 0.394
Decoding Procedure Range Subrange Decoded Symbol

1) Set the initial range (0.0, 1.0)

2) Find the subrange where the number falls (0.3,0.7) ©
and decode the symbol

3) Set the new range (0.3,/0:7)

4) Find the subrange where the number falls (0.34,0.42) (B)
and decode the symbol

5) Set the new range (0.34, 0.42)

6) Find the subrange where the number falls (0.364, 0.396) ©)
and decode the symbol

7) Set the new range (0.364, 0.396)

8) Find the subrange where the number falls (0.3928, 0.396) (E)

and decode the symbol

3.2 Context-based Adaptive Binary Arithmetic Coding

In spite of the fact that the algorithm of arithmetic coding is simple in definition,
the hardware and software implementations suffer from its high computational
complexity. The limited throughput (symbols/second) is generally considered as its
main disadvantage. To solve this problem while maintaining the compression
efficiency, CABAC introduces an adaptive binary arithmetic coding technique
combined with well-designed context models. Furthermore, the interval is subdivided

by using addition and look-up take to avoid multiplication operation, and the

12

probabilities updating is simplified by look-up table.

Fig. 5 shows the block diagram of CABAC encoding process. The encoding
process consists of three steps: binarization, context modeling, and binary arithmetic
coding [2]. In the first step, a syntax element is transferred from non-binary value into
a series of binary bins, called a bin string. For each bin to be encoded, two coding
modes are candidates. In the regular mode, a context model representing probability
model is first selected according to previous encoded syntax elements. Then, based on
the context model, the bin value is encoded by the regular coding engine, and context
model updating follows. In the bypass mode, a bypass coding engine without the
usage of context model is executed to speed up the encoding process. The three

functional blocks are discussed in more detail ifi the following.

bin value for context model update

non-binary valued bin loop aver. L/ bin value, -
syntax element . . string bins bin Context caniext nma"e.f-_ 2! |
Binarizer Modeler > Coding
Engine
coded bits
regular regular
syntax
element bitstream
> bypass bypass
binary valued T Rypass coded bits
syntax element - > i n
bin value Coding Engine

Figure 5. CABAC encoder block diagram.

3.2.1 Binarization

The binarization design in CABAC depends on a few code trees that provide a
simple computation to derive codewords. There are four types of binarization process
specified in CABAC: the unary (U) binarization process, the truncated unary (TU)

binarization process, the fixed-length (FL) binarization process, and the concatenated

13

unary/ k-th order Exp-Golomb (UEGKk) binarization process. However, there is an
exception. Instead of computing by means of a structured coding scheme, look-up
tables are used for mapping macroblock types and submacroblock types into binary
sequences.

Table 3 shows the bin strings of U binarization. For each unsigned integer valued

syntax element X, the bin string consists of x “1” bits followed by a terminating “0”

bit.

TABLE 3. UNARY BINARIZATION

Value of syntax element (X) Bin string

DN W N = O
— = == = O
| = | e | = D

Bin index 0[1(2]31]4]5]...

The bin strings of TU binarization are shown in Table 4. A number cMax is
defined for mapping x with [0, cMax]. For x < cMax the bin strings are the same as U
codes, whereas X = cMax the bin string is given by a bin string of length cMax with

“1” bits only.

TABLE 4. TRUNCATED UNARY BINARIZATION

Value of syntax element (X)Bin string (CMax = 7)

0 0

14

1 10

2 1/11]0

3 1/1]1]0

4 I1{1{1{1]0

5 Ij1rj1{1j1/0

6 Ijrjr{1{1j1jo

7 Ljrj1r{1j1|1y1
Bin index 0/112]|3(4]5]6

As shown in Table 5, the bin strings of FL binarization are given by
fixedLength-bit binary representations, where fixedLength = Ceil(Log2(cMax + 1)).
The FL binarization process is mainly applied to the syntax elements which are nearly

uniform distribution.

TABLE 5. FIXED-LENGTH BINARIZATION
Value of syntax element (X)Bin string«(cMax = 7)
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1
Bin index 0 1 2

The UEGk binarization process is applied to absolute values of motion vector
differences (MVD) and absolute values of transform coefficient levels (ABS LEVEL).
The UEGKk bin string consists of a prefix and a suffix code word. The prefix bit string

is constructed by TU binarizaton process with cMax = Min(uCoff, Abs(x)) , where

15

ucoff is the cutoff value which also represents the maximum length of the prefix bit
string. After the prefix part is obtained, if Abs(X) is larger than or equal to the cutoff
value, the EGk binarization process is invoked to derive the suffix part. The first part
of EGk code is formed with a unary code with I(y) = Floor(logx('y / 2+ 1)). The
second part is constructed as the binary representation of y + 2k(1- 2'0)) with (k +
I(y)) bits. The pseudo code of computational procedure is depicted in Fig. 6. Table 6
shows the bin strings for MVD valued from 0 to 13, where the prefix parts are in gray

shadow.

if(Abs(x) >=uCoff) {
y = Abs(x) — uCoff
while(1) {
llunary first part of EGk
if(y >=(1 <<k)){

put(1)
y=y - (@ <<k
k++
}
else {
put(0) //terminating “0” of first part
while(k--) //binary second part of EGk
put((y >>k) & 1)
break
}

}

Figure 6. Pseudo code for k-th order Exp-Golomb code construction.

TABLE 6. UEG3 BINARIZATION FOR ABSOLUTE VALUES OF MOTION VECTOR
DIFFERENCES
| MVD | Bin string (uCoff = 9)

16

Prefix (TU code) Suffix (EG3 code)
0 0
1 110
2 1/1]0
3 1|1(1]0
4 1|1|1({1]0
5 Lj1|1{1]1]0
6 L(1{1|1{1{1/0
7 Ly1{1|1{1|1[1]0
8 (1111|1110
9 L(1{1|1{1|L[{1|[Lf1{0[0]|O]|O
10 L(1{1j1{1|1f1|{Lf1[{0|0]|0O]1
11 L{1{L|1{1|L[{1|[Lf1{O[O0O]|1]O
12 Ty1{Lj1{1|Lf1|{Lf1{O|O0]|1]1
13 I(1{1|1{1|1{1|Lf1{0O|1]|0]|O
Bin index| 0 |1 [213 (4|5 (6|7 (89 [10|11|12]...

3.2.2 Context Modeling

The probability models supplying for binary-atithmetic coding is an important
part since it dominates the overall coding efficiency. Consequently, the context model
has to be selected by taking into account conditional probability estimation and keep
updated during encoding. In CABAC, to reduce the complexity requirement, only the
neighbors of current syntax element are involved in context model selection such that

only a few choices are left.

TABLE 7. SYNTAX ELEMENTS AND CORRESPONDING CONTEXT INDICES
Slice Type
Syntax Element
I/SI P/SP B
mb_skip flag 11-13 24-26
mb_field decoding flag 70-72 70-72 70-72
end of slice flag 276 276 276

17

mb_type 0/3-10 | 1420 | 27-35

transform_size 8x8 flag 399401 | 399401 | 399401
coded block pattern 73-84 73-84 73-84
mb_qp delta 60-63 60-63 60-63
prev_intra4x4 pred mode flag 68 68 68
rem_intra4x4 pred mode 69 69 69
prev_intra8x8 pred mode flag 68 68 68
rem_intra8x8 pred mode 69 69 69
intra_chroma pred mode 64-67 64-67 64-67
ref idx 54-59 54-59
mvd (horizontal) 4046 40-46
mvd (vertical) 47-53 47-53
sub_mb_type 21-23 36-39
coded block flag 85-104 | 85-104 | 85-104

105-165, | 105-165, | 105-165,
277-337 | 277-337 | 277-337
166-226; | 166226, | 166226,
338-398 | 338-398 | 338-398
coeff abs level minusl 227275 | 227-275 | 227-275

significant coeff flag

last_significant. coeff flag

402-416, | 402416, | 402416,
436-450/|'436-450 | 436-450
417-425,[417-425, | 417-425,
451-459 | 451-459 | 451-459
coeff abs_level minusl (8x8) | 426435 | 426435 | 426435

significant coeff flag (8x8)

last_significant coeftf flag (8x8)

All context models are listed in Table 7. Each context model, which contains a
6-bit probability state and the value of most probable symbol, is identified by a

context index (ctxldx). The calculation of ctxldx is defined as
ctxldx = ctxldxBase+ ctxCat + ctxldxInc (1)

where ctxldxBase denotes the base context index, which is defined as the lower
value of the range contained in Table 7, ctxCat represents context category, which is
only valid for syntax elements of residual type and is given in Table 8, and ctxldxInc

denotes the context index increment, which is derived based on bin index (binldx),

18

previously encoded bins, or neighboring syntax elements to the left and on top of the

current syntax element, as illustrated in Fig. 7.

TABLE 8. CONTEXT CATEGORY DEPENDING ON SYNTAX ELEMENTS AND BLOCK TYPES

Context category (CtxCat)

Syntax element Luma-16x16|Luma-16x16 Chroma|Chroma
Luma-4x4 Luma-8x8
DC AC DC AC
coded block flag 0 4 8 12 16 0
significant coeff flag 0 15 29 44 47 0
last_significant coeff flag 0 15 29 44 47 0
coeff abs_level minusl 0 10 20 30 39 0
B
A C

Figure 7. Neighboring syntax elements involved in context model selection of current

syntax element.

3.2.3 Adaptive Binary Arithmetic Coding

Binary arithmetic coding is based on the principle of progressive interval
subdivision. In terms of symbols to be encoded, only most probable symbol and least
probable symbol (MPS and LPS) with probabilities of occurrence Pyps and Pyps are
specified. Based on this setting, the given interval represented by a lower bound (L)

and an interval range (R) is subdivided into Ryps and Ry ps as follows:

Rips = Rx Ppg

)
Rups = R—Rips

19

However, the computational requirement of multiplication operations becomes
the bottleneck that limits the overall throughput. To solve this problem, a novel
multiplication-free solution with negligible performance degradation is developed in
CABAC.

Motivated by introducing some approximations of the range R or of the
probability Prps in substitution for their actual values, the basic idea of the new
multiplication-free binary arithmetic coding scheme for H.264/AVC relies on the
assumption that the estimated probabilities of each context model can be represented
by a sufficiently limited set of representative values [3]. Total 128 probability states
are effectively used for representing the approximate probability estimation of each
context model. Each probability state is composed of a 6-bit state index (Stateldx)
indicating the LPS probability and a 1-bit value that represent the MPS value
(valMPS). The numbering of state index is guided by the principle that with state
index equaling to 0 corresponds an LPS probability .value of 0.5, the higher the
number of state index, the lower LPS probability value is assigned. Whenever the
encoding procedure of each symbol is completed, the context model updating process
is executed to keep context models “up to date”. The determination of probability
updating is illustrated in Fig. 8. In practical implementation, the transition of
probability states can be realized by a table-based transition process. This continuous

update makes the binary arithmetic coding engine adaptive.

Max(e - Py, Pg,), if current bin is MPS

Pnew =
a-Py +(1-a), if current bin is LPS

1
" =(O.01875j63 - 0.095
0.5

Figure 8. Probability transition rule.

20

Fig. 9 shows the flow diagram of binary arithmetic encoding process. Two
coding modes are specified in CABAC, one is regular coding mode, where probability
estimation is utilized, and another one called bypass coding mode is used to encode

symbols with approximately uniform probability distribution.

Encode Encode
Rugular Bypass
rangeldx = (R >>6) & 3 ‘ L=L<<1 ‘
Ry ps = TabRangeLPS[stateldx][rangeldx]
R=R-Rpps

binVal !=
valMPS

L=L+R
R=Ryps
L=L+R
R=Rpps +
‘ ‘ Renormalization ‘ ‘
No
stateldx !=0
Yes ‘ valMPS = 1 - vaIMPS ‘
] (b)
v .

stateldx = transIdxLPS[stateldx] stateldx = transIdxMPS[stateldx]
[J

¥

H Renormalization ‘ ‘

()

Figure 9. Flow diagram of binary arithmetic encoding process. (a) Regular coding

mode. (b) Bypass coding mode.

Fig. 9(a) illustrates the regular coding mode. In the first step, with a table which
contains 64 x 4 pre-computed LPS subranges, the interval range is subdivided
depending on the state index and range without multiplication operation. Then,

according to the given bin value (binVal), the corresponding process is performed.

21

Finally, since the interval range has to stay within [2°, 2°] to keep a fixed precision, a
renormalization process is necessary if the updated interval range R is smaller than
0x100. Fig. 10 shows the flow diagram of renormalization process. The output bits are
recursively generated during the renormalization. If the interval range is in the bottom
half, PutBit(0) is performed; else if the interval range is in the top half, PutBit(1) is
performed; otherwise bitsOutstanding (BO) is increased by 1.

With regard to bypass coding mode, the probability distribution of symbol to be
encoded is nearly uniform. That means Ry ps = Ryps = R/2. Consequently, the usage of
context model is not required and the subdivision operation can be simplified to
accelerate the encoding speed. Furthermore, only one-loop renormalization process
using double decision thresholds without doubling R and L is performed in the final

step. The flow diagram of bypass coding mode is depicted in Fig. 9(b).

Renormalization PutBit(B)

WriteBits(1-B, 1)
BO=BO- 1

A 4
PutBit(0) PutBit(1)

R=R<<1
L=L<<1 (b)

l
()

Figure 10. Flowchart of (a) renormalization process and (b) PutBit(B).

22

3.3 CABAC Decoding Algorithm Overview

In CABAC, every syntax element (SE) is composed of a series of bins. Given the
bitstream, combined with syntax element parsing, the object of CABAC decoder is to
transfer the decoded bin string into actual value and return it. Fig. 11 depicts the
generic CABAC parsing process. Prior to decoding a new slice, an initialization
process is performed that all context models are initialized depending on the slice type
and quantization parameter, moreover, the interval range and coding offset are reset to
Ox1FE and first 9 bits of the bitstream, respectively. In the parsing flow, each syntax
element is parsed sequentially. After the type of syntax element is decided, depending
on the bin index, the corresponding bin decoding process is executed. Finally, the
constructed bin string is de-binarized. If any codeword is matched, the corresponding

value is returned and the decoding procedure for current syntax element is complete.

23

CABAC
Parsing

>

Initialize
Context Models

A
Initialize
R and O

<

y

Determine SE Type

binldx =-1

binldx++

y

Context Selection
Context-Model Loading

v

Binary Arithmetic Decoding

No

Binarization Matching

Figure 11. CABAC parsing process.

In the hardware realization, the bin decoding process consists of four elementary
steps: context selection (CS), context model loading (CL), binary arithmetic decoding
(BAD), and binarization matching (BM). In the first step, context index which acts as
the context model address is calculated. After the address is obtained, a context model

(CM) loaded from CM memory is passed to the BAD stage. In BAD stage, a bin is

24

decoded to be MPS or LPS according to a probability model provided by the CM.
Afterward, the constructed bin string is de-binarized in the final stage to decide
whether the decoding process of current SE is finished or not, and the context model
update (CU) process takes place at the same time.

To read the specific context model from the context model memory, the memory
address must be calculated first. Generally, the memory address of each context model
is the same as its corresponding context index. However, the organization of context
models in H.264/AVC is clearly not the most economical. Therefore, reorganization is
allowed to achieve better performance as designer’s wish.

In the binary arithmetic decoding procedure, most symbols are decoded by the
regular bin decision process depending on the¢ docation of coding offset. Fig. 12(a)
shows the flowchart of regular decoding process. In the first step, according to the
state index provided by context model and current interval range, LPS subrange is
selected from a look-up table and MPS subrange is calculated as Ryps = R — Ryps.
Then, by comparing the coding offset (O) with the MPS subrange (Rwmps), if the
coding offset falls within the LPS subrange, the bin is identified as LPS. Otherwise, if
the coding offset falls within the MPS subrange, the bin is identified as MPS. In the
meanwhile, R and O are assigned to the corresponding subinterval, and the probability

state is transferred in the end.

25

Decode
Rugular

I

rangeldx = (R >>6) & 3
Ry ps = TabRangeL.PS[stateldx][rangeldx]
R=R-Ryps

binVal = lvalMPS
O0=0-R
R =Ryps

binVal = vaIMPS

Yes ‘ valMPS =1 - valMPS ‘

e

Y

A

stateldx = transIdxLPS[stateldx]

stateldx = transIdxMPS[stateldx]

[

(@)

Renormalization

I

Renormalization

R=R<<1
0=0<<1
O =0 read_bits(1)

Decode
Bypass

0=0<<1
O =0 read bits(1)

Figure 12. Flow diagram of (a) regualr bin decision process, (b) renormalization

process, and (c) bypass bin decision process.

A renormalization operation is required whenever the interval range (R) is out of

its legal range (R < 0x100). Fig. 12(b) depicts the flowchart of renormalization.

Recursively, the left-shift of R and O does not halt until R is larger than or equal to

0x100. During the renormalization procedure, the input bits coming from bitstream

are appended to coding offset.

Besides, the other symbols with approximately uniform probability distribution

are decoded by bypass bin decision process. The flowchart of bypass decoding

process can be seen in Fig. 12(c).

3.4 Design Challenges and Related Works

26

In hardware implementation, to achieve high throughput, pipelined architecture
and parallel architecture are considered helpful methods generally. Since every bin is
decoded by the same chain of operations (CS—CL—-BAD—BM and CU), the
decoding performance can be elevated by exploiting the pipelining scheme presented
in [11] . Fig. 13 shows a 4-stage pipelining CABAC decoder design. However, the
boost of throughput is limited by the pipeline stalling caused by data hazards. Take
significance map (significant coeff flag and last significant coeff flag) which
occupies the major portion of syntax elements in slice data for example, as shown in
Fig. 14, the choice of the bin right after significant coeff flag and corresponding
context model depends on the current bin value since the bin may be
significant coeff flag or last significant coeft flag. As a result, two cycles are

unavoidable to resolve this data hazards.

" A M o)

— +— BM
CS+—+ — CL— —BAD| ©on
—
CM Address oM Updated CM

Figure 13. Pipelining scheme of CABAC decoding.

27

Decode
coded block flag

No
coded block flag==

8 0 1 1
Yes 310 0 0
scanningPosition = 0 0 0 0 0
< 0 0 0 0
v
No scanningPosition < (®)
numCoeff - 1
Yes Scanning Position 0 1 2 3 4 5 6
A 4
Decode significant_coeff flag Transform coefficient levels| 8 0] -3]0 0 1 1
significant_coeff flag 1 0= 1 0= 0=>1 1
last_significant_coeff flag | 0 0 0 1
©
Decode last_significant coeff flag
BM
CS CL BAD
CuU
Yes binval CM depends on previous binVal
ast significant coeff flag== v
stall stall Cs CL BAD
CuU
No «
A
scanningPosition++ @
\

}

Done

(2)

Figure 14. Data hazard caused by significance map. (a) 4x4 residual block. (b)
Flow diagram of the CABAC decoding scheme for significance map. (c) Example for
decodong the significance map. (d) [llustration of cycle stall of CABAC decoding.

To relieve the performance degradation originated in syntax element switching
overhead, a prediction-based pipelined architecture was proposed in [12], where the
correlation between successive SEs are exploited to achieve higher prediction
accuracy in comparison to the prediction that just predicts current symbol to be MPS.

Furthermore, multi-symbol decoding architecture design is also an effective way to

28

speed up decoding procedure. A parallel decoding method was proposed to enhance
decoding performance by predicting that the current symbol is MPS [16]. The
architecture in [13] employed a branch selection two-symbol parallel decoding
technique to resolve data dependency problem, and can process two bins within one
cycle for general cases, but suffers from high area cost. Chen et al. [14] proposed a
fully hardwired CABAC decoder that is capable of decoding at most two bins in one
cycle for certain syntax elements: coeff abs level minusl, significant coeff flag,
last_significant coeff flag, and mvd.

However, in some works such as [15], [16], their architecture only focuses on bin
decoding process, while leaving SE parsing to another processor. Although the
separation of SE parsing and decoding makes the implementation of CABAC
decoding much simpler, it results in that the actual throughput can not reach its
theoretical maximum, since.whenever SE switching takes place, the context model
has to be reloaded.

A fully hardwired CABAC decoder design which combines SE parsing with
decoding is proposed in this thesis. The characteristics of SE parsing flow and bin
distribution among SEs are analyzed to design the decoding architecture which not
only can decode multiple bins in one cycle without stalls for most cases but also can
keep low hardware cost by employing hybrid context model memory architecture.
Moreover, with the efficient mathematical transform method for two-symbol binary

arithmetic decoding (TSBAD) engine, the decoding speed can be further elevated.

29

Chapter 4 PROPOSED ENTROPY DECODER

Fig. 15 shows the system level architecture of proposed entropy decoder for
H.264/AVC. It contains a CAVLC decoder, a CABAC decoder, a SE parser, a
neighboring information fetcher, a bitstream fetcher, and a memory controller.
According to the entropy coding mode, the SE parser chooses the corresponding
decoder to decode SEs. When entropy coding mode flag is equal to 0, SEs of
residual blocks are decoded by using the CAVLC decoding scheme, and other SEs are
decoded by using the VLC decoding scheme which is included in the CAVLC decoder.
When entropy coding mode flag is equal to 1, SEs lying at macroblock layer and
below are decoded using the CABAC decoder, and other SEs belonging to slice layer
and above are decoded by the.VLC decoder.

In the entropy decoding procedure, the bitstream fetcher reads bitstream which is
stored in external memory by the.memory controller and transmits it to the CAVLC
decoder and the CABAC decoder. The neighboring data involving in entropy
decoding process, such as total_coeff and mvd used for calculating nC and ctxldxInc,
are stored in the upper macroblock information memory. Furthermore, if entropy
coding mode is binary arithmetic coding, in the beginning of decoding each slice, all
the CMs are reset to the initial values stored in ROM. Whenever a SE is decoded, if it
is related to the remaining SE parsing flow, it will be buffered in the SE register. The

detail of our proposed entropy decoder is presented in the following.

30

External Memory
(DRAM)

4

A

Memory Controller

A

A

Bitstream | | caBac | Cl‘r’lrl‘tt;’;fzzdt:’od:l
Fetcher Decoder (ROM)
A A y
SE Register
A
y
l—» SE Parser |«
y
CAVLC L Neighbor Upper MB Info
Decoder < Fetcher b Memory
(SRAM)
Figure 15. Framework of proposed entropy decoder.

4.1 Proposed CAVLC-Decoder

It is apparent that the greatest obstacle to further boosting the throughput of
CAVLC decoder originates in level parsing procedure which is based on arithmetic
operations and accounts for a critical loop in the whole CAVLC decoding procedure.
In terms of multi-level decoding, since the inter-codeword dependency and succession
of arithmetic operations lead to an unavoidably long critical path, we can not gain
throughput from cascading level decoders directly. Moreover, the inter-level
dependency of suffixLength which can not be calculated until the value of current
level is determined makes it unable to exploit pipeline structure. It seems both
multi-symbol decoding and pipelining scheme are not workable for level decoding
process.

Our destination is to find a method that can break the inter-level dependency and

the inter-codeword dependency. If this goal is reached, we can make a breakthrough

31

and thus the CAVLC decoding performance can be further improved. Consequently,

first of all, we investigate the characteristics of level decoding flow.

4.1.1 Analysis

Fig. 16 shows the flowchart of level decoding procedure defined in the
H.264/AVC standard. The decoding procedure can be divided into two parts: the first
part is bitstream scanning process and the second part is for computing the value of

level. The bit string of each level is formed with level_prefix and level_suffix as

level bitString
=[level prefix][level suffix] (3)
=[0.:01][level. suffix]

where level_prefix consists of a series of “0” bits followed by a terminating “1” bit.
The value of level_prefix is constrained in the range'0 to-15 in general profiles. In the
bitstream scanning process, after.the value of level prefix is determined by detecting
the leading zeros in the bitstream, the parameter levelSuffixSize which represented the

bit length of level_suffix is calculated as

if(level_prefix == 15)
levelSuffixSize = 12

else if(level_prefix = =14 && suffixLength == 0)
levelSuffixSize = 4

else
levelSuffixSize = suffixLength 4)

Based on the levelSuffixSize, bits belonging to level_suffix are scanned, and the

initial value of levelCode is calculated as

levelCode = (level prefix << suffixLength) +level _suffix Q)

32

In the second part, levelCode is adjusted in case of special conditions. If
level_prefix is equal to 15 and suffixLength is equal to 0, levelCode will be increased
by 15, and if the number of TrailingOnes is less than 3, the first levelCode in the level
decoding procedure will be increased by 2. Once the final value of levelCode is
obtained, the value of level will be determined as: if levelCode is even, level =
(levelCode + 2) / 2. Otherwise, level = (-levelCode - 1) / 2. Finally, since the absolute
value of level tends to be larger in the level decoding procedure, to obtain high
compression efficiency, adaptive probability model is used depending on previous
decoded level. As a result, by examining the absolute value of decoded level, if it is
larger than the thresholds listed in Table 9, suffixLength must be modified to a more
suitable value since small suffixLength is fit for:small level; large suffixLength is just
the opposite.

The main barriers to exploit parallel decoding are inter-level dependency of
suffixLength and the unknown demarcation between successive codewords. Although
the codeword length can be derived in the first part of level decoding procedure as

follows:

CodewordLength = level _ prefix+1+ levelSuffixSize (6)

, the updated suffixLength which affect the levelSuffixSize of next level can not be
obtained until the value of current level is determined. However, a modified
suffixLength detector (MSD) algorithm was presented to advance the computation of
suffixLength prior to the determination of the value of current level [4]. Fig. 17 depicts
the MSD decoding procedure, the input signal of MSD is level prefix instead of the
value of level. From the current decoding information and the level_prefix, the
suffixLength provided for next level decoding process can be calculated in the first

part. With this efficient algorithm, the level decoding process can be realized as Fig.

33

18 shows. However, despite the fact that the MSD algorithm shortens the critical path
delay of level decoding process, multi-level decoding based on cascaded level
decoders still leads to an unavoidably long critical path, and thus remains unsuitable
for implementation.

In our approach, to further expedite the throughput of CAVLC decoder, instead
of straight cascading level decoders, we take advantage of MSD algorithm to exploit a
highly performance two-level decoding architecture. In general case, the
levelSuffixSize which indicates the codeword length of level suffix is equal to
suffixLength. Consequently, the start point of next level codeword in the bitstream can
be decided as soon as the level prefix decoding has finished. Moreover, the
adjustment of levelCode in the second part is only applied to the first level of the
residual block. It means that those two special conditional branches can be skipped in
the second level decoding. Base on these two features, we propose a delay balanced
two-level decoding (DBTLD) architecture that efficiently shortens the critical path in

comparison to traditional design-that cascades two-level decoders directly.

34

bitstream suffixLength_init

<=7

First Part v suffixLength

level_prefix

levelCode =
level prefix << suffixLength

Generator

level_suffix

|

|

|

|

|

|

|

| levelSuffixSize
|

|

|

|

|

|

| levelCode += level suffix
|

Second Part

Yes suffixLength == 0

& level prefix ==

levelCode += 415

Yes i == TrailingOnes
£ && TrailingOnes < 3

|
|
|
|
|
|
|
|
|
|
|| levelCode +=2
| No
|
|
|
|
|
|
|
|
|
|
|

‘ »

level calculator

level

Y

suffixLength
Detector

Figure 16. Original level decoding procedure defined in H.264/AVC standard.

TABLE 9. THRESHOLD VALUE FOR SUFFIXLENGTH TRANSITION

Current suffixLength|Threshold value to modify suffixLength
0 0
1 3

35

2 6

3 12
4 24
5 48
6 N/A

Yes

suffixLenfth +=2 suffixLenfth += 2 suffixLenfth += 2

MSD _I: (I == TrailingOnes && TrailingOnes < 3 && level prefix > 3) || (level prefix > 5)
MSD _2: (I == TrailingOnes && TrailingOnes < 3 && suffixLength==1 && level prefix > 1) || (level prefix > 2)

Figure 17. MSD decoding procedure.

36

bitstream suffixLength init

__________________________ 9
| First Part , suffixLength |
| level prefix I
|
| levelCode = :
| level prefix << suffixLength |
| |
| ' v |
I levelSuffixSize suffixLength I
| Generator Detector |
| |
| |
| |
| level suffix |
| |
| levelCode += level suffix |
| |
e e o o o o o e | e o —— —— —— — — — — — — — — -—
r— """ """ -~~~ “~"“"7""¥7=-—"”""”""”"-"”"”"”"”"”""”= 1

Second Part

suffixlength ==
& level prefix ==

Yes

levelCode += 15

i && TrailingOnes < 3

levelCode +=2

No

>

4

level calculator

|

|

|

|

|

|

|

| -
| Yes i == TrailingOnes
|

|

|

|

|

|

|

|

Figure 18. Modified level decoding procedure with MSD algorithm.

4.1.2 Proposed Delay Balanced Two-level Decoder Architecture

Fig. 19 shows the block diagram of proposed DBTLD architecture. The second
level decoding process is designed for the general case that levelSuffixSize is equal to
suffixLength. Since the codeword length of first level can be determined immediately

after the level_prefix is decoded, and the examination process of levelCode increment

37

is unnecessary for the second level decoding process, a balanced structure can be
obtained.

The first level decoding process is the same as Fig. 18 shows. For bitstream
supplying for the second level decoding process, the input bitstream is shifted
according to suffixLength and level prefix_1. Afterward, instead of generating
levelSuffixSize_2, the level_suffix_2 is parsed directly by fetching the output of first
suffixLength_1 detector (SD_1) which is referred to the MSD algorithm. Finally,
without checking the two special cases for increasing levelCode_2, the level mapping
process is performed straight. Compared to the conventional approach of cascading
two MSD algorithm based level decoders, the critical path delay of proposed DBTLD

engine is improved by 21% (from 3.25ns.to 2.56ns).

38

suffixLength_init bitstream

4 A A,

level_prefix_1 Lyl Bitstream
levelCode_1 = I Shifter

level prefix_1 << suffixLength

I
' |
' |
' |
: |
| suffixLength 2 I
| ¢ A :
I suffixLength levelSuffixSize level_prefix_2 suffixLength I
I Detector Generator I — Detector |
| evelCode 2=
| ‘ ’—> level prefix 2 <<suffixLength 1) I
I suffixLength_1 I
| , , |
| level_suffix_1 level_suffix_2 |
' |
I levelCode_1 += level_suffix_1 levelCode 2 +=level suffix 2 I
gy g P J
__ 3

suffixLength == 0 &
level prefix 1 ==15

levelCode 1 +=15

£ && TrailingOnes <3

levelCode 1 +=2

I I
I I
I I
I I
I I
I I
I I
I I
| Yes i == TrailingOnes |
I I
I I
I I
I I
I I
I I
I I
I I
I I

‘ No
'V A,
level calculator level calculator
level 1 level 2
Figure 19. Proposed delay balanced two-level decoding architecture.

4.1.3 CAVLC Decoding Architecture Design

Based on the DBTLD engine, the CAVLC decoding architecture is designed as
shown in Fig. 20. In the trailing_ones_sing_flag decoding unit, all sign flags are
scanned in one cycle. After level decoding procedure is done, all nonzero coefficients
are stored in a 16-entry deep and 13-bit wide output buffer. Finally, in the run_before
decoding unit, whenever a run_before symbol is decoded, the corresponding level is

transmitted to its actual position in the output buffer. Since only one output buffer is

39

used instead of storing level and run_before information separately, to regularize the
data transmission of output buffer, the prediction-based run_before look-up table
combination method [7] is employed that two run_before symbols are decoded in one
cycle except when only one run_before symbol left. Fig. 21 shows the architecture of
residual block reconstruction. After TrailingOnes and levels are pushed in the output
buffer in order, in each cycle, one or two level symbols are moved to their final
locations respectively depending on the coeffsLeft and zerosLeft information. The
movement starts from the last coefficient and ends until no more run_befores are
decoded. The parameters coeffsLeft denotes the remaining number of nonzero
coefficients needs to be moved, and zerosLeft represents the remaining number of
zeros to be decoded. Table 10 showsan example for the reconstruction process. In the
beginning, all nonzero coefficients are arranged in order, output buffer index 0 to
(TotalCoeffs — 1). After total_zeros is decoded, coefficients are moved to the indices
which are calculated as (coeffsLeft + zerosLeft — 1) in reverse order, and the value of
the original position of the moved coefficient is replaced by 0. In this example, first,
the last coefficient 1 is moved to index 8 (6 + 3 - 1), and the coefficient -1 is moved to
index 6 (5 + 2 - 1). In the next cycle, only the one run_before symbol is valid since no
more zeros left to be decoded, and the coefficients -2 is moved to index 4 (4 + 1 - 1).
To further accelerate the decoding procedure, skipping mechanism is employed
to remove redundant decoding processes:
1) Zero block skip: When TotalCoeffs is equal to 0, the remaining decoding
processes are skipped since nonzero coefficients do not exist in the block.
2) Level skip: When TotalCoeffs is equal to TrailingOnes, the level decoding
procedure is skipped since there has no nonzero coefficients left to be
decoded.

3) Total zeros skip: When TotalCoeffs is equal to maximum number of

40

coefficients (maxNumCoeff), the total zeros decoding procedure and

run_before decoding procedure is bypassed because there are no zero

coefficients to be decoded.

4) Run skip: When total_zeros is equal to 0 or TotalCoeffs is equal to 1,

run_before decoding procedure is not necessary.

Moreover,

in the

CAVLC decoding procedure,

because

coeff_token,

trailing_ones_sing_flag, level, total _zeros, and run_before decoding units are not

performed simultaneously, only one of them is designated to work in each cycle, to

save power consumption, idled units are turned off by functional gating.

bitstream

. |
Bitstream Fetcher
: i ! load request
| Bufferl Buffer2 :
! |
: 4 > l codeLength
| Barrel Shifter : Accumulator «
| I nC,
__________________ maxNumCoeff,
block type
enable
i i L]
coeff token TrailingOnes DBTLD run_before Controller Output
Decoder Decoder Engine Decoder ontrofie Buffer
T A A A
symbols
Figure 20. Proposed CAVLC decoder.

41

Reconstructed

> Residual

> Output
ili — Buffer
TrailingOnes, sutter
level 1, level 2 |_> (16x13)
run_before_1,
run_before 2 Controller

Block

Figure 21. Residual block reconstruction architecture.
TABLE 10. EXAMPLE OF RESIDUAL BLOCK RECONSTRUCTION PROCESS
Decoded Symbol coeffsLeft | zerosLeft Output Buffer
total_zeros =3 X X 41312|-2|-1]1/0|0(0]0]0|0
run_before_1=1
- - 6 3 41312(-2/0(0}-1{0[1(0(0|0
run_before 2=1
run_before_1=1
- - 4 1 4131210(-2/0|-1]0]1{0(0|0
run_before 2 =x

4.1.4 Experimental Results

Table 11 shows the decoding performance of the proposed CAVLC decoder for
different video sequences. To compare with previous works fair, we use the same
testing environment that all the sequences with resolution of QCIF (176 x 144) are
intra coded. The RTL simulation result shows in the low bit-rate coding like high QP
or simple image, since the residual block is very sparse, Lee’s design [9] which only
focus on boosting run_before decoding procedure can achieve higher decoding speed.
However, in the high bit-rate coding, the demand for high decoding speed is actually

necessary, our proposed design that takes both level and run_before decoding

procedures into consideration prevails over other existing designs.

The synthesis results of the proposed CAVLC decoder and a comparison of

42

hardware cost and decoding speed with other existing work are shown in Table 12.
The proposed CAVLC decoder is synthesized with UMC 90nm. We enhance the
throughput by exploiting multi-symbol decoding scheme for both level and
run_before symbols while allowing the maximum working frequency to be about 390
MHz with 13.88k gate count. Lin’s design [4] has minimum hardware cost, however,
its decoding speed of the two main critical loops, level decoding procedure and
run_before decoding procedure that dominate the overall decoding performance, is
only one symbol per cycle, which is merely half in comparison to our design. By
applying the prediction-based run_before look-up table combination method [7], two
run_bofore symbols can be decoded in each cycle. Furthermore, with the DBTLD
engine, not only two level symbols. can be decoded at the same cycle, but also 21%
critical path delay is saved in.comparison to the traditional two-level decoder. Table
13 shows the maximum frame rates (frames per second) for different Level limits
defined in the H.264/AVC standard: According to the definition and the throughput of
our design, we list the minimumworking frequeney requirement of Level in Table 14.
The result shows that our proposed CAVLC decoder can achieve real-time decoding

for all Level conditions.

TABLE 11. COMPARISON OF CAVLC DECODING PERFORMANCE
Average cycle/MB
Video Sequence|QP|Bitrate(Mbps)
Proposed|Yu [7]|Lee [9](Tsai [6]

28 0.59 44 50 | N/A 39
Akiyo 20 1.13 75 93 | NJA | N/A
12 2 117 154 | N/A | 143
28 0.83 58 68 | NJA | N/A
Foreman 20 1.76 116 151 | N/A | N/A
12 3.12 182 259 | N/A | N/A
Mobile 28 2.21 145 194 | 135 150

43

20 3.66 203 300 | 211 | N/A

12 5.32 233 367 | 264 | 241

28 0.83 58 70 49 N/A

News 20 1.53 95 125 | 87 N/A

12 2.58 141 195 | 138 | N/A

28 1.5 102 133 | 97 106

Stefan 20 2.58 150 214 | 154 | N/A

12 3.94 188 282 | 204 | 201
Average 127.13 | 177 | 148.8 | 146.67
Reduction (%) 28.18 | 14.56 | 13.32

TABLE 12. CAVLC DECODER IMPLEMENTATION RESULT COMPARISONS OF DIFFERENT
DESIGNS
Specifications Proposed Lin [4] Yu[7] Lee [9] | Alle[5] | Tsai[6]
Technology 90nm 0.18um~| 0.18um 0.18um | 0.13um | 0.13um | 0.18um
Max. Frequency | 385 MHz | 193 MHz|-213 MHz | 125 MHz | 125MHz | 250MHz | 160 MHz
Area: Logic Part
13,544 14,373 6,771 13,192 15,602 17,202 13,189
(gate count)
Area: Memory Part
W/O W/O W/0O W/O 5,120 W/O
(bits)
Average cycle/MB 127.13 N/A 177 148.8 N/A 146.67
TABLE 13. MAXIMUM FRAME RATES FOR SOME EXAMPLE FRAME SIZES

44

Level 1 [1j|11] 12 1.3 2 2.1 2.2 3 31 | 32 4 41 | 4.2 5 51
Max
99 [99 (396 | 396 | 396 | 396 | 792 | 1620 | 1620 | 3600 | 5120 | 8192 | 8192 | 8704 | 22080 | 36864
MBs/frame
Resolution | MBs
Format
(WxH) | Total
SQCIF 128x96 48 [30.9(30.9|62.5[125.0(172.0(172.0|172.0{172.0|172.0{172.0|172.0|172.0|172.0| 172.0| 172.0 | 172.0
QCIF 176x144 99 [15.0]15.0/30.3| 60.6 [120.0{120.0|172.0{172.0|172.0{172.0|172.0|172.0|172.0|172.0| 172.0 | 172.0
QVGA 320x240 | 300 | - - |10.0] 20.0 | 39.6 | 39.6 | 66.0 | 67.5 |135.0|172.0|172.0172.0172.0 |172.0 | 172.0 | 172.0
525 SIF 352x240 330 - - | 9.1 182 |36.0 | 36.0 | 60.0| 614 (122.7(172.0{172.0|172.0|172.0(172.0| 172.0 | 172.0
CIF 352x288 396 - - | 7.6 152 | 30.0 | 30.0 | 50.0 | 51.1 {102.3(172.0]172.0|172.0|172.0|172.0| 172.0 | 172.0
525 HHR | 352x480 660 - - - - - - 30.0 | 30.7 | 61.4 [163.6]172.0|172.0(172.0(172.0| 172.0 | 172.0
625 HHR 352x576 792 - - - - - - 25.0 | 25.6 | 51.1 |136.4|172.0|172.0(172.0{172.0| 172.0 | 172.0
VGA 640x480 | 1200 | - - - - - - - 16.9 | 33.8 | 90.0 {172.0(172.0|172.0|172.0| 172.0 | 172.0
525 4SIF 704x480 | 1320 | - - - - - - - 15.3 1 30.7 | 81.8 [163.6(172.0|172.0|172.0| 172.0 | 172.0
525 SD 720x480 | 1350 | - - - - - - - 15:0 | 30.0 | 80.0 |160.0|172.0(172.0(172.0| 172.0 | 172.0
4CIF 704x576 | 1584 | - - - - - = - 12.8.]125.6 | 68.2 [136.4(155.2|1552|172.0| 172.0 | 172.0
625 SD 720x576 | 1620 | - - - - = - - 12.5. 25.0 [66.7 | 133.3|151.7 [151.7(172.0| 172.0 | 172.0
SVGA 800x600 | 1900 | - - - - - - - - - |'56.8 | 113.7|129.3(129.3|172.0 | 172.0 | 172.0
XGA 1024x768 | 3072 | - - - - - - - - -0 |35.2| 703 | 80.0 | 80.0 [172.0 172.0 | 172.0
720p HD | 1280x720 | 3600 | - - - - - - - - =] 300 60.0 | 68.3 | 68.3 |145.1|163.8 |172.0
4VGA 1280x960 | 4800 | - - - - - - - - - - 450 | 51.2 | 51.2 | 108.8| 122.9 | 172.0
SXGA 1280x1024 | 5120 | - - - - - - - - - - 422 | 48.0 | 48.0 |102.0| 115.2 | 172.0
525 16SIF | 1408x960 | 5280 | - - - - - - - - - - - 46.5 | 46.5 | 989 | 111.7 | 172.0
16CIF | 1408x1152 | 6336 | - - - - - - - - - - - | 38.8|38.8 824|931 [1552
4SVGA | 1600x1200 | 7500 | - - - - - - - - - - - 1328328696 | 78.6 |131.1
1080 HD | 1920x1088 | 8160 | - - - - - - - - - - - 301301640 | 723 | 1205
2Kx1K |2048x1024 | 8192 | - - - - - - - - - - - 130.0 (300|638]| 72.0 | 120.0
2Kx1080 |2048x1088 | 8704 | - - - - - - - - - - - - - | 600 | 67.8 [112.9
4XGA | 2048x1536 | 12288 - - - - - - - - - - - - - - 48.0 | 80.0
16VGA | 2560x1920 | 19200 - - - - - - - - - - - - - - 30.7 | 51.2
3616x1536 | 3616x1536 21696 | - - - - - - - - - - - - - - 272 | 453
3672x1536 | 3680x1536 | 22080 | - - - - - - - - - - - - - - 26.7 | 44.5
4Kx2K | 4096x2048 [32768| - | - | - - - . . - - - . . . B - | 300
4096x2304 | 4096x2304 36864 | - | - | - - - . . - - - B . . B - | 267

45

TABLE 14. WORKING FREQUENCY FOR DIFFERENT LEVEL CONDITIONS

LevelMax. MBs/frame|Max. MB Processing Rate (MBs/s)|Working Frequency
1 99 1,458 0.19 MHz
1b 99 1,458 0.19 MHz
1.1 396 3,000 0.39 MHz
1.2 396 6,000 0.77 MHz
1.3 396 11,880 1.52 MHz
2 396 11,880 1.52 MHz

2.1 792 19,800 2.52 MHz
2.2 1,620 20,250 2.58 MHz
3 1,620 40,500 5.15 MHz
3.1 3,600 108,000 13.73 MHz
3.2 5,120 216,000 27.46 MHz
4 8,192 245,760 31.25 MHz
4.1 8,192 245,760 31.25 MHz
4.2 8,704 522,240 66.4 MHz
5 22,080 589,824 74.95 MHz
5.1 36,864 983,040 125.13 MHz

4.2 Proposed CABAC Decoder

Since it is obvious that the main obstacle to adopting pipelining scheme for
CABAC decoder comes from data hazards, the design of pipelining stages shall be
considered carefully. We are concerned about whether there are factors that dominate
the decoding performance. If the answer is affirmative, we can adjust our design to
those cases for achieving better decoding performance. Consequently, first of all, we

investigate the characteristics of SE parsing flow and bin distribution among SEs.

4.2.1 Analysis

The SE parsing flow is mainly dependent on conditional branches as illustrated
in Fig. 22. Branches denoted by “*” indicate that the condition of branch and the

current SE value are independent. In other words, the next SE type to be decoded

46

right after current SE can be decided before the current SE decoding is completed.
Therefore, for this kind of branches, the context models used for decoding the next SE
can be prepared in advance to prevent pipelining stall. However, most branches
denoted by “#” are dependent on the current SE value. Not until the current SE value
is ascertained can the next SE type be determined.

Table 15 — Table 23 list the analyzed results of bin distribution based on the
video sequences with HD 1920x1080, 4:2:0 color format and frame rate 30 fps
encoded by H.264/AVC reference software JM 12.2. From the statistic, we can
observe that the proportion of significant coeff flag and last significant coeff flag
can reach up to 50% of total bins. Furthermore, the SE switching rate (number of
decoded SEs / number of decoded bins) is about 68% in average (see Table 24 — Table
26), and over 90% of SE switches comes from the significance map. Consequently, it
is apparent that how " to deal ~ with significant coeff flag and
last significant coeff flag is the key to solve the problem invoked by data hazards.

Fig. 23 shows the architecture.of our proposed CABAC decoder design. In our
architecture, we divide the chain of operations into two stages, modified context
model selection (MCS) stage and TSBAD stage. MCS stage contains CS and CL.
TSBAD stage includes a two-symbol decoding engine and CU. The detailed

description of the architecture is presented in the following subchapter.

47

TABLE 15.

Syntax Element

Parsing
:)
‘ mb_skip_flag ‘ ‘ transform_size 8x8 flag ‘
‘ mb_field decoding flag ‘ ‘ mb_qp_delta ‘
>i<
‘ mb_type ‘ ‘ coded block flag ‘
y # } X 7l
‘ transform_size 8x8 flag ‘ ‘ sub_mb_type ‘ v
e ol ‘ significant_coedd_flag ‘
v v
‘ prev_intra_pred_mode_flag ‘ ‘ ref idx_10 ‘ #
‘ last_significant coedd_flag ‘
*
‘ rem_intra_pred_mode ‘ Y #
. ‘ ref_idx_11 ‘
‘ coeff abs level minisl ‘
‘ Intra_chroma pred mode ‘ =
Y
‘ mvd 10 ‘
‘ end of slice flag ‘
*
.
‘ mvd_11 ‘ 4
Done

A

‘ coded block ‘pattern ‘

s}

Figure 22.

SE parsing flow for the H.264/AVC.

STATISTICAL RESULT OF BIN DISTRIBUTION WITH I CODING STRUCTURE AND
QP28
Video Sequence (I_QP28) Average
Syntax Element
Pedesttrian_area|Riverbed|Rush_hour|Station2|Sunflower|Tractor| (%)
mb_type 2.48 0.88 7.12 1.88 2.15 0.77 2.55
mb_skip flag 0 0 0 0 0 0 0
intra_pred_mode 9.93 8.24 11.52 11.19 12.18 6.42 9.91
mvd 0 0 0 0 0 0 0
coded block pattern 5.04 391 6.75 4.6 5.82 33 4.9
coded block flag 591 2.96 3.9 3.17 5.35 4.5 43
significant_coeff flag 28.64 29.85 19.26 28.12 19.63 | 29.78 | 25.88
last significant coeff flag 12.5 14.09 12.01 13.79 13.51 1452 | 134
coeff abs_level minusl 30.33 36.78 30.68 32.96 35.87 37.9 | 34.09

48

TABLE 16. STATISTICAL RESULT OF BIN DISTRIBUTION WITH I CODING STRUCTURE AND
QP20
Video Sequence (I_QP20) Average
Syntax Element
Pedesttrian_area |Riverbed|Rush_hour|Station2|Sunflower|Tractor| (%)
mb_type 0.49 0.27 0.84 0.43 0.56 026 | 048
mb_skip flag 0 0 0 0 0 0 0
intra_pred mode 4.94 4.24 6.69 5.38 6.36 3.48 5.18
mvd 0 0 0 0 0 0 0
coded block pattern 2.02 1.54 34 1.74 2.89 1.37 | 2.16
coded_block flag 3.58 293 3.28 3.23 4.53 2.89 | 341
significant coeff flag 37.78 33.84 39.29 35.31 24.12 | 31.05 | 33.57
last_significant coeff flag 13.62 14.04 11.7 14.26 14.3 14.83 | 13.79
coeff abs level minusl 35.77 4129 31.83 38.18 | 44.78 | 44.98 | 39.57

TABLE 17. STATISTICAL RESULT OF BIN DISTRIBUTION WITH I CODING STRUCTURE AND
QP12
Video Sequence (1L QP12) Average
Syntax Element
Pedesttrian_atea|Riverbed|{Rush hour|Station2|Sunflower|Tractor| (%)
mb_type 0.15 0.11 0.23 0.17 0.19 0.11 | 0.16
mb_skip flag 0 0 0 0 0 0 0
intra_pred_mode 3.18 3.37 3.62 3.26 3.86 2.57 | 331
mvd 0 0 0 0 0 0 0
coded block pattern 0.78 0.64 0.89 0.67 0.96 0.61 0.76
coded block flag 2.2 2.02 2.44 2.03 2.5 1.81 2.17
significant _coeff flag 31 27.31 36.17 29.41 31.98 | 25.74| 30.27
last_significant coeff flag 15.92 15.32 15.62 15.83 13.76 | 14.87 | 15.22
coeff abs_level minusl 46.1 50.73 40.27 48.09 4592 | 53.78 | 47.48

TABLE 18.

AND QP28

STATISTICAL RESULT OF BIN DISTRIBUTION WITH IPPP CODING STRUCTURE

Syntax Element

Video Sequence (IPPP_QP28)

Average

49

Pedesttrian_area |[Riverbed|Rush hour|Station2 |Sunflower|Tractor| (%)

mb_type 5.59 1.58 8.8 7.35 6.16 377 | 5.54
mb_skip_flag 2.87 0.7 4.11 5.47 6.05 1.76 | 3.49
intra_pred mode 6.76 7.92 3.67 4.82 3.7 1.83 | 4.78
mvd 8.11 0.86 21.6 12.92 16.13 154 | 12.50

coded block pattern 8.54 3.98 9.78 11.33 10.83 6.87 | 8.56
coded_block flag 533 2.86 222 3.82 3.86 478 | 3.81
significant_coeff flag 20.62 29.28 14.36 17.91 1488 | 2477 | 203
last_significant_coeff flag 10.3 13.75 7.97 8.19 8.48 10.83 | 9.92
coeff abs_level minusl 24 .88 35.82 19.15 19.65 20.49 | 25.63 | 24.27

TABLE 19. STATISTICAL RESULT OF BIN DISTRIBUTION WITH IPPP CODING STRUCTURE
AND QP20
Video Sequence (IPPP_QP20) Average
Syntax Element
Pedesttrian‘.area |Riverbed|Rush hotir|Station2 |Sunflower | Tractor| (%)
mb_type 1.49 0.54 2.51 1.51 3.65 095 | 1.78
mb_skip flag 0:59 0.25 0.92 0.57 1.64 034 | 0.72
intra_pred mode 2415 417 3.16 0.99 1.44 0.7 2.2
mvd 38 0.1 11.69 5.46 11.98 | 4.79 6.3
coded block pattern 3.04 1.56 4.46 2.87 6.93 1.95 | 347
coded_block_flag 4.79 2.92 3.92 4.86 5.39 4.03 | 432
significant coeff flag 39.71 33.49 32.7 4585 | 26.74 39.4 | 36.32
last_significant coeff flag 12.06 13.99 10.88 11.24 11.08 13.8 | 12.18
coeff abs_level minusl 29.48 41.75 26.58 24.53 27.17 | 32.71 | 30.37

TABLE 20. STATISTICAL RESULT OF BIN DISTRIBUTION WITH IPPP CODING STRUCTURE
AND QP12
Video Sequence (IPPP_QP12) Average
Syntax Element
Pedesttrian_area [Riverbed|Rush_hour|Station2|Sunflower|Tractor| (%)
mb_type 0.37 0.21 0.4 0.38 0.59 032 | 038
mb_skip_flag 0.14 0.1 0.16 0.13 0.2 0.12 | 0.14
intra_pred _mode 1.97 3.36 342 1.49 1.54 0.88 | 2.11
mvd 0.77 0.01 0.68 1.11 3.98 1.45 1.33
coded block pattern 0.86 0.64 0.93 0.79 1.23 0.71 0.86

50

coded block flag 222 2.01 2.47 1.96 3.84 1.65 | 2.36
significant_coeff flag 34.46 27.3 36.83 3492 | 38.19 |31.13| 33.81
last_significant_coeff flag 16.51 15.29 15.72 17.02 14.71 16.61 | 15.98
coeff abs level minusl 42.05 50.58 38.63 41.61 34.62 | 46.61 | 42.35
TABLE 21. STATISTICAL RESULT OF BIN DISTRIBUTION WITH IBBBP CODING
STRUCTURE AND QP28
Video Sequence (IBBBP_QP28) Average
Syntax Element
Pedesttrian_area [Riverbed|Rush_hour|Station2|Sunflower|Tractor| (%)
mb_type 7.34 3.83 10.22 8.38 6.29 431 | 6.73
mb_skip flag 2.86 0.69 4.26 5.09 6.1 1.82 | 347
intra_pred_mode 6.25 7.34 3.96 4.89 4.39 242 | 488
mvd 6.74 2.02 20.35 13.92 1421 | 14.23 | 11.91
coded_block_pattern 9.09 3.89 10.46 12.53 11.31 637 | 8.94
coded_block_flag 5.62 3.04 2.67 3.74 3.9 5.01 4
significant coeff flag 19:09 28.07 12.62 15.94 13.92 | 2298 | 18.77
last_significant coeff flag 10.03 13.29 7.37 7.46 8.3 10.82 | 9.55
coeff abs_level minusl 25.29 34:66 18.18 18.32 | 20.69 |26.46 | 23.93
TABLE 22. STATISTICAL RESULT OF BIN DISTRIBUTION WITH IBBBP CODING
STRUCTURE AND QP20
Video Sequence (IBBBP_QP20) Average
Syntax Element
Pedesttrian_area [Riverbed|Rush_hour|Station2|Sunflower|Tractor| (%)
mb_type 2.37 1.45 4.1 2.48 3.95 1.39 | 2.62
mb_skip_flag 0.67 0.25 1.04 0.74 1.71 035 | 0.79
intra_pred mode 3.19 4.02 2.98 1.6 2.12 1.32 | 2.54
mvd 3.39 0.33 13.41 6.74 11.05 447 | 6.57
coded block pattern 3.24 1.55 4.77 32 6.44 1.99 | 3.53
coded block flag 533 29 4.48 5.59 5.49 4.3 4.68
significant_coeff flag 35.68 33.01 28.04 40.48 23.73 | 35.81 | 32.79
last_significant_coeff flag 12.16 13.85 10.62 11.12 11.25 | 13.87 | 12.15
coeff abs level minusl 31.07 41.4 26.44 2497 | 29.29 |34.86| 31.34

51

TABLE 23.

STATISTICAL RESULT OF BIN DISTRIBUTION WITH IBBBP CODING

STRUCTURE AND QP12
Video Sequence (IBBBP_QP12) Average
Syntax Element
Pedesttrian_area |Riverbed|Rush_hour|Station2|Sunflower|Tractor| (%)
mb_type 0.68 0.6 0.98 0.66 1.03 0.55 0.75
mb_skip flag 0.14 0.1 0.16 0.14 0.22 0.12 0.15
intra_pred_mode 1.95 3.35 2.82 1.2 1.58 1.16 | 2.01
mvd 0.78 0.04 1.33 1.36 3.27 1.51 1.38
coded block pattern 0.87 0.64 0.9 0.82 1.32 0.72 | 0.88
coded block flag 2.58 2.03 2.61 2.05 4.42 1.77 2.58
significant_coeff flag 34.38 27.19 36.79 35.89 36.93 | 30.72 | 33.65
last significant coeff flag 16.39 15.24 15.65 16.84 1458 | 16.14 | 15.81
coeff abs_level minusl 41.49 50.31 37.94 40.34 3551 | 46.69 | 42.05
MCS Stage = TSBAD Stage
CM_S
Context Model
> Memory
SE_type_next — —» 1~ PR\ "
0 — Context Selection ™ ‘ ‘
1 —» (Next SE) Ly CM_update1
5 L |, Addr_SRAM OM_R1
Addr1_REG = S| context Model CM_R2
Addr2 REG Memory 4
M sel (Register) o A — —
SE_type_curr —» —»
» Context Selection [TS T CM_update2
p» (CurrentSE) |) vy
> —» |
4] CM_bint
CM_bin2
v
» | » Two-symbol | —p—
] Binary
Arithmetic
Decoding —
Updated
range, offset \
binVal_1 binVal_2
nextBinldx_plus2
U Binarization
nextBinldx_plus1 . — Matching
nextBinldx
binldxPlus2_flag

Figure 23.

4.2.2 MCS Stage

52

Match

Proposed CABAC decoder architecture.

The main idea of MCS stage is to select CMs for decoding the next two bins. To
simplify and regularize the MCS process, we restrict the two-symbol decoding to a
single SE only so that the bin index of the first bin is always even and the second bin
is always odd for all SEs. This restriction also matches the property of SE parser that
can only parse SEs one by one. As a result, the assignment of CMs to next two bins is
regular, and the calculation of CM addresses becomes much simpler. However, this
restriction still results in drastic performance degradation due to frequent syntax
element switching. To reduce the performance degradation while avoiding being
burdened with hardware cost overhead, we propose an approach to predict the type of
next SE. Since the high correlation between the features of image in spatial domain,
the value of current SE is predictable by referring to the neighboring SEs. Thus by
assuming that the value of current SE is the same as its latest value, we can effectively
predict what type of SE is coming next. With the proposed scheme, the penalty of
prediction miss is merely one cycleas illustrated in Fig. 24. Benefited by the proposed
prediction-based method, we can achieve about 80% prediction accuracy in average
as shown in Table 24 — Table 26. Note that Hit Rate = (number of prediction hits) /
(number of decoded SEs).

To further improve the accuracy of prediction, we merge all symbols of the
significance map which is composed of significant coeff flag and
last significant coeff flag as an individual SE by exploiting their decoding regularity
since significant_coeff flag and last significant coeff flag account for over 90% of
prediction miss. As a result, predictions for the branches right after
significant coeff flag and last significant coeff flag are not necessary anymore.
Compared with the predictor which does not perform SE merging, the combination of
SE merging method and prediction-based method can achieve about 17% higher

prediction accuracy in average, as shown in Table 24 — Table 26. Moreover, for high

53

bit-rate coding such as QP equaling to 12, the prediction accuracy can reach over
99%.

After applying the SE merging method, the bin index transition of significance
map can be summarized in Table 27, and the binarization matching condition becomes
when current bin is last_significant coeff flag and its bin value is 1, or the current bin
index meets the final bin index (((binldx % 2 = 1) && (binVal = 1)) || (binldx =
numCoeff - 1)). From this table, we can observe that only one case that nextBinldx
equals to (binldx + 2) takes place when current symbol is significant coeff flag and
its bin value is 0 ((binldx % 2 = 0) && (binVal = 1)). As a result, CM selection and
assignment for significance map can still only depend on the bin index of next two

bins.

0 MCS TSBAD

1 MCS TSBAD
2 New Syntax Element | MCS Stall
3 MCS TSBAD

(@)

0 MCS TSBAD

1 MCS TSBAD

N

New Syntax Element | MCS TSBAD

3 MCS TSBAD

(b)

Figure 24. Pipeline scheduling of (a) prediction miss and (b) prediction hit.

54

TABLE 24. IMPROVEMENT OF PREDICTION ACCURACY USING THE PROPOSED METHODS
WITH [CODEING STRUCTURE

. SE Switching Hit Rate (%)
Video Sequence| Q Rate
) P %) Without SE Merging | With SE Merging
28 72.89 79.08 95.66
Pedesttrian_are

- 120 74.06 80.53 98.22

. 12 67.88 80.73 99.51

28 70.04 80.89 97.7

Riverbed |20 68.98 82.08 98.8

12 62.66 82.54 99.71

28 65.66 81.45 95.67

Rush hour |20 73.78 82.68 97.71
12 72.96 78.95 99.39

28 71.29 79.01 97.14

Station2 20 7215 81.07 98.53
12 65.76 81.66 99.66
28 65.71 81.32 95.42
Sunflower |20 64.1 83.3 97.52
12 65.33 82.65 99.55

28 71.01 80.12 97.13
Tractor 20 67.39 82.81 99.26
12 59.61 83.53 99.84

Average 68.4 81.36 98.13

TABLE 25. IMPROVEMENT OF PREDICTION ACCURACY USING THE PROPOSED METHODS

WITH IPPP CODEING STRUCTURE

. SE Switching Hit Rate (%)
Video Sequence| Q Rat
ate
(IPPP) p %) Without SE Merging | With SE Merging
0
, 28 65.95 79.47 92.65
Pedesttrian_are
— 120 75.38 79.48 96.6
a
12 72.24 79.09 99.39

55

28 69.36 80.85 97.53

Riverbed |20 68.73 81.98 98.72

12 62.66 82.54 99.7

28 55.23 79.8 91.63

Rush _hour |20 67.77 79.39 95.57

12 73.98 78.6 99.29

28 63.73 79.67 91.67

Station2 20 79.36 78.2 96.77

12 73.15 79.17 99.53

28 61.66 79.77 90.46

Sunflower |20 67.01 77.8 93.09

12 74.95 78.02 98.76

28 64.46 77.5 93.13

Tractor 20 75.01 78.08 97.78

12 67.86 81.16 99.71

Average 68.81 79.48 96.22
TABLE 26. IMPROVEMENT OF-PREDICTION ACCURACY USING THE PROPOSED METHODS

WITHIBBBP CODEING STRUCTURE

Video % Hit Rate (%)
Q| SE Switching Rate
Sequence | (%) Without SE Merging | With SE Mergi
(IBBBP) 0 1thou erging 1 erging
) 28 64.11 79.65 92.14
Pedesttrian are
- 120 72.68 79.4 96.11
a
12 72.3 78.93 99.38
28 67.09 80.66 97.24
Riverbed |20 67.87 81.97 98.69
12 62.47 82.54 99.7
28 54.4 80.68 90.98
Rush _hour |20 64.16 79.35 94.71
12 73.73 78.37 99.23
28 61.45 80.58 91.88
Station2 20 75.94 78.23 96.03
12 73.82 78.84 99.53
28 61.46 79.96 89.99
Sunflower
20 64.56 78.7 93.08

56

12 73.89 78.59 98.61
28 63.18 78.02 93.08
Tractor 20 72.16 79.07 97.71
12 66.78 81.31 99.72
Average 67.34 79.71 95.99
TABLE 27. BIN INDEX TRANSITION RELATION IN SIGNIFICANCE MAP
Current Flag | Bin Value | Next Flag | Next binldx
SIG[i] 0 SIG[i+1] | binldx +2
SIG[i] 1 LASTIi] | binldx+1
LASTI[i] 0 SIG[i+1] | binldx +1
LASTI[i] 1 X X
a. 1 denotes scanning position

b. SIG denotes significant coeff flag

c. . LAST denotes last significant coeff flag

To sum up, for successive two bins, the position of the second bin in a SE may
be binldx_plusl (binldx + 1) orbinldx_plus2 (binldx+2). It means that by giving two
possible CMs, the second bin can be decoded according to the necessary CM chosen
by its actual bin index. Furthermore, by means of the prediction-based mechanism,
the CMs of predicted next SE and the CMs of current SE can be calculated in parallel.
In the end that the value of current SE is confirmed, if the actual result matches what
we presume, the CABAC decoder can keep processing without stall. Otherwise, the
pipeline has to be stalled for recalculating the context models of next SE. Therefore,
we employ two CS modules to calculate SRAM memory address (Addr_SRAM) and
Register memory addresses (Addrl_REG and Addr2_REG) in parallel, one for current
SE and another one for predicted next SE. For the CS module of next SE, only bin
indices 0, 1, and 2 are taking into account, since in the next cycle, it will be transfer

into current SE, and thus the calculation for bin indices which are larger than 2 is

57

redundant. As a result, instead of doubling the hardware to satisfy the requirement that
calculating CM memory addresses for current SE and next SE at the same time,
unnecessary calculation in the prediction module is removed and the hardware cost
overhead is thus suppressed. Finally, the result of BM will determine which one is
chosen for CL. Furthermore, because the CM provided for the first bin decoding
(CM_binl) may comes from the SRAM or the Register port 1 (CM_S or CM_R1), and
CM provided for the second bin decoding (CM_bin2) may comes from the Register
port 1 or the Register port 2 (CM_R1 or CM_R2), an additional selective signal
(CM_sel) which is SE-dependent is also transmitted from MCS stage to TSBAD

stage.

4.2.3 Context Model Memory Design

In the proposed MCS stage design, to reach the destination of loading 3 specific
CMs and storing updated CMs in the same cycle, the design of CM memory shall be
considered carefully. On the premise that one clock domain is used, the first way to
implement CM memory is to use single-port SRAM. The advantage of single-port
SRAM is its low hardware cost. However, single-port SRAM can not perform read
operation and write operation simultaneously. Therefore, the operations of CL and CU
have to be separated, which results in extra one cycle. Yi et al. [11] proposed a
context model reservoir (CMR) structure to resolve the conflict between CL and CU
caused by structural hazard. CMR is a cache-liked structure. Several context models
that are probably used are cached in CMR. This allows the decoder to postpone CU
and enables the parallel processing of CS and CL. Although the CMR structure is
effective, the decoding is stalled for two cycles when CMR switching takes place.

Another way to implement CM memory is to use dual-port SRAM. The

hardware cost of dual-port SRAM is higher in comparison to single-port SRAM. In

58

spite of the advantage that the read operation and write operation can be performed in
the same cycle, only one context model can be loaded at every access. Consequently,
one single dual-port SRAM can not meet our requirement. A Context Table
Reallocation Scheme is presented in [14] to read two CMs at once by dividing the CM
memory into two parts: a General Context Memory and Extended Context Memory.
However, it does not always work since the reallocation is only designed for specific
SEs.

Storing all context models in register is the most convenient way to implement
context model memory due to the access of register is extreme free. Nevertheless, the
expense of hardware cost is too high. Thus, we propose a more suitable approach to
implement the CM memory with hardware cost consideration while maintaining the
decoding performance. In the proposed flow, because the two-symbol decoding
procedure is restricted to a single SE only, the CL for some SEs are simple such as
flag-type SE that only one context model (CM_bin1) is necessary for TSABD and the
other context model (CM_bin2) is redundant. For'example, there are three candidate
CMs used for decoding transform size 8x8 flag. However, only one of them is
necessary for TSBAD since transform_size 8x8 flag is composed of one single bin.
Thus, the CL for the second bin can be skipped, and only one CM for the first bin has
to be concerned. For this type of SEs, a dual-port SRAM is sufficient to support CL
and CU. However, for the other SEs like significance map, the CL is much more
complicated. When decoding significance map, the next two bins to be decoded may
be two significant_coeff flag (SIG[i], SIG[i + 1]), one significant coeff flag and one
last significant coeff flag (SIG[i], LASTI[i]), or one last significant coeff flag and
one significant coeff flag (LAST[i], SIG[i + 1]). Therefore, two CMs of
significant coeff flag CM set and one CM of last_significant coeff flag CM set have

to be loaded from CM memory concurrently; moreover, two of them must be updated

59

and write back. Because of the limitation of number of port of SRAM, it is impossible
to realize the desired purpose by a dual-port SRAM. It seems that all register based
memory is the only solution.

Fortunately, for the different complexities of CL, it is reasonable to load CMs
from different sources and assign them to TSBAD stage according to the SE type and
the bin indices of next two bins. As a result, we reorganize the 459 CMs by applying
the following principle. For every set of CMs, if two CMs of each set are never used
for TSBAD simultaneously, it is stored in dual-port SRAM; otherwise, it is stored in
registers. For instance, to satisfy the requirement for loading three CMs (one for
last significant coeff flag and two for significant coeff flag) from the CM memory
and perform storing operation in the same cycle, significant coeftf flag CM set can be
stored in register while last significant coeff flag CM.set can be stored in SRAM as
illustrated in Fig. 25. Guided by the principle, the organization of CM memory is
listed in Table 28 and Table 29. After memory addresses are derived, one CM is
loaded from SRAM and two CMs.are loaded from register at the same time. Our
proposed hybrid CM memory, about half is dual-port SRAM and half is register, not
only avoids structural hazards caused by CM reading and writing but also reduces the
hardware cost overhead significantly in comparison to the implementation of all

register approach.

60

Two-symbol
Decoding Engine

SIG[i] + SIG[i+1]
or
SIG[i] + LASTIi]
or
LASTIi] + SIG[i+1]

1 CM for LASTYi] Z X 2 CMs for SIGi] and SIG[i+1]

last_flag

Dual-port SRAM

significant flag

Register

Figure 25. Memory operation in the significance map decoding process.
TABLE 28. CONTENT OF SRAM AFTER REORGANIZATION OF OUR PROPOSAL
Address [€M Index Syntax Element
0-2 0-2 mb_type(SI)
3-5 11-13 mb_skip ' flag (P/SP)
6-8 24-26 mb_skip flag (B)
9-11 70-72 mb field decoding flag
12-31 85-104 coded block flag
166-226,
32-171 338-398, last_significant coeff flag
417-425, - - -
451-459,
227-231,
237-241,
172201 247-251, coeff_abs‘_leve'l_minus 1
257-261, (First bin)
266-270,
426-430,
202-204 | 399-401 | transform size 8x8 flag

61

TABLE 29. CONTENT OF REGISTER AFTER REORGANIZATION OF OUR PROPOSAL

Address | CM Index Syntax Element
0-7 3-10 mb_type (I)
8-14 14-20 mb_type (P/SP)
15-17 21-23 sub_mb_type (P/SP)
18-26 27-35 mb_type (B)
27-30 36-39 sub_mb_type (B)
31-44 40-53 Mvd
45-50 54-59 ref idx
51-54 60-63 mb_qp_delta
55-58 64-67 intra_chroma pred mode
59 68 prev_intra_pred mode flag
60 69 rem_intra_pred mode
61-72 73-84 coded block pattern
105-165,
73-224 1 significant. coeff flag
402-416, - -
436-450,
232-236,
242-246,
75253 252-256;, coeff_abs'_level_minusl
262-265, (First bin excluded)
271-275,
431-435,

4.2.4 TSBAD Stage

In the TSBAD stage, first, CM_binl and CM_bin2 provided for the first bin
decoding and the second bin decoding, respectively, is chosen by the selective signal
(CM_sel). Afterward, in the bin decoding procedure, the updated CMs (CM_updatel
and CM_update2) are written back into CM memory, and the decoding parameters,
interval range and coding offset, are refreshed. Eventually, the values of two bins are
passed to the BM module to derive the value of SE and check whether the current SE

decoding is done or not.

62

Following the two-symbol binary arithmetic decoding engine, the final step of
this stage is the BM process that maps the constructed binary sequence to nonbinary
value. Therefore, the main critical path of this stage occurs in bin value decision of
TSBAD engine. In the binary arithmetic decoding procedure, two parameters should
be derived and delivered to decode the next bin. One is the updated range and the
other is the updated offset. In the traditional TSBAD engine, where two BADs are
cascaded directly, the inter-bin dependency of range (R) and offset (O) leads to an
unavoidably long critical path. In order to improve decoding performance, a new
mathematical transform method for TSBAD procedure is proposed to shorten the
critical path. In this thesis, only regular decoding is discussed since implementation of
bypass and terminate decoding is much simpler.

According to the H.264/AVC standard, the bin value decision is dependent on
Orps. If Opps is negative, the binVal is identified as MPS; otherwise, the binVal is
identified as LPS. For Orps to be calculated, a sequential procedure is defined in the
standard like Fig. 26(a) shows: To obtain Ryps; it is necessary to run through a
256-to-1 multiplexer first and then do the subtraction. However, a mathematical

reordering method [15] can be adopted as follows:

Ops =0 —Ryps =O—(R=Rp5) =(0O-R) + R ¢ 3)

In Eq. (3), although Ryps = R - Rrps can not be obtained until Ryps is selected by
accessing the look-up table, however, since both R and O are ready in the beginning,
the computation of (O - R) and the table look-up for Ryps can be operated in parallel.
As a result, benefited by the calculation reordering, a balanced structure can be
utilized for reducing the delay of bin value decision process as depicted in Fig. 26(b).

We extend the concept of Eq. (3) to two-symbol two-stage computation.

63

According to Eq. (3), we perform the mathematical transform for the second bin
decision process as shown in Fig. 27, where R’ ps and O’ ps represent Ryps and Opps
of the second stage, respectively. For the reason that O;ps and (O - R) are already
calculated in the first bin decision process, the delay of a subtractor can be further
eliminated. Note that Oy ps and (O - R) have to be shifted 1 to 7 bits according to Ry ps
since there is a renormalization process between the first bin and the second bin
decision procedure.

Fig. 28 shows the detailed architecture of proposed TSBAD engine. In the first
bin decision scheme, state index (stateldx) and MPS value (valMPS) are extracted
from CM_binl. The parameters with word “renorm” denote that they are left-shifted
by the renormalization process. The shift amount of MPS case is 0 or 1 depending on
the most significant bit of Ryps, whereas the shift amount of LPS case lies in the
range 1 to 7. To pass the shifted Oy ps and (O - R) to the second bin decision scheme as
soon as possible, a table-driven selector is utilized to derive the shift amount of LPS
case. In the second bin decision'scheme, both cases for previous bin being MPS and
LPS are calculated in parallel. With regard to CM_bin2, it has to be set to the updated
CM_binl when CM_bin2 and CM_binl are the same. For the reason that the second
bin decision process is a parallel working, on the premise that knowing what previous
bin is, instead of waiting the updated value of CM_binl is determined, we can access
Rrps table immediately and the delay of 64-to-1 multiplexer can be eliminated thus.
By using this feature, four possible LPS intervals are selected while performing the
first bin decoding procedure. As a result, the main critical path of the second bin
decoding is a 4-to-1 multiplexer and an adder. Finally, the value of the second bin is
chosen by the most significant bin of Opps in the first bin part. Note that the updating
of R, O, and CM in the second bin decision scheme is not depicted since it is similar

to the one in the first bin decision scheme. With the proposed mathematical transform

64

method, the critical path delay of TSBAD engine is further improved by 28% (from

3.14ns to 2.26ns) compared with the traditional TSBAD engine.

Ovps Ovps
(a) (b)

Figure 26. Mathematical reordering. (a) O «.(R - Ryps). (b) (O - R) + Rpps.

if previous bin is MPS then
O'Lps = (Qups = Ryps) + R'ips
=(O=Ryps) +R'(ps
=Opps +R'ips
else
O'Lps = (Opps —Rips)+ R'ips
=(O—R+Rpps =Rips)+ R' s
=(O0-R)+R' 5

Figure 27. Mathematical transform for the second bin decision process.

65

| - -
| First Bin stateldx R) valMPS I

I
I

I
I |—> CM CM _updated! |
I » Trans —» |
I » Table |
I
| * v v v |
| RLPS ShiftNum y |

>

| Table Table > binVal I :
| Rips shiftNumLPS =><>—>
| A |
| v- |
| 3)< !
| J Ovrps[9] I
| Rups) I
| v Y Rlws[8] vy v v :
I Shifter > Shifter |
| Rips_renorm (R-O)_renorm |
| Opps_[renorm Ny |
| Owps_renorm Ruvps_renorm >
| > > Ry 1 |
| » — Oy 1|
| — |
Lo] ey ___]
T O | RN, T T T T T T T T T 1
| Second Bin stateldx stateldx |
| v v |
[Ryips Rips [
| Table Table |
I I
I I
I I
I I
I I
I I
I I
I I
I I
I valMPS valMPS I
I I
: > binval 2 :
I I
I I
e o — e —— — .}

Figure 28. Architecture of proposed two-symbol arithmetic decoding engine.

4.2.5 Experimental Results

Table 30 — Table 32 show the decoding performance of the proposed architecture
for different video sequences with different coding structure and QP. All the
sequences with resolution of HD 1920x1080, 4:2:0 color format and frame rate of 30

fps are encoded by H.264 reference software JM 12.2. With the prediction-based

66

mechanism and SE merging method, the RTL simulation result shows that the
proposed design can decode 1.71 bins per cycle in average with the drop in decoding
speed between optima and actuality under 0.1 bins per cycle. Furthermore, for high
bit-rate coding such as QP equaling to 12, the actual decoding speed almost reaches
optimal decoding speed.

According to the maximum macroblock processing rate (MB/s) constrain of
specified Level defined in the standard, the minimum working frequency requirement
for different Level in listed in Table 34. The result shows that our proposed CABAC
decoder can support Level 5.1real-time decoding.

The synthesis results of the proposed architecture and a performance comparison
with previous works are shown in Table 33. By applying the mathematical transform
method, the proposed architecture can efficiently reduce the critical path delay and
allows the maximum working frequency to be about 264.MHz. The throughput of the
proposed design is 451.4 Mbins/sec in _average, which.is superior to other existing
designs. Although Lin’s design [13].can achieve higher average bin/cycle; however, it
requires roughly two times area overhead when compared to our design. With the
proposed hybrid CM memory architecture, the total gate count of our design is 42.37k,
which achieves 48.6% hardware cost reduction in comparison to the all register based

architecture.

TABLE 30. CABAC DECODING PERFORMANCE OF THE PROPOSED ARCHITECTURE WITH I
CODING STRUCTURE

Optimal Actual
Video Sequence Bitrate | Throughput
QP Decoding Cycle| Penalty | Decoding Speed | Decoding Speed
D (Mbps)| (bin/s)
(bin/cycle) (bin/cycle)
28| 16.26 | 21,186,892 | 12,624,603 670,968 1.678 1.594
Pedestrian_area
20| 49.82 | 66,633,779 | 36,914,531 876,602 1.805 1.763

67

12(138.03|182,974,773| 98,927,974 |605,139 1.85 1.838

2826.42 | 34,409,411 | 19,380,322 |553,485 1.775 1.726

Riverbed 20| 70.29 | 94,251,652 | 51,595,049 |781,238 1.827 1.8
12(170.71|229,357,197| 123,838,778 |421,887 1.852 1.846

28| 8.78 | 11,213,016 | 6,741,175 |318,614 1.663 1.588

Rush_hour |20 28.12 | 38,699,528 | 21,545,044 |654,886 1.796 1.743
12|111.16]151,595,001| 81,372,224 {679,297 1.863 1.848

28| 19.7 | 24,381,140 | 13,942,414 496,822 1.749 1.689

Station2 20| 58.64 | 77,158,534 | 42,358,072 |816,608 1.822 1.787
12(152.41|203,271,631| 109,701,718 |451,180 1.853 1.845

28| 17.12 | 21,086,788 | 12,373,604 |634,349 1.704 1.621

Sunflower |20| 39.64 | 49,516,552 | 28,037,895 |786,138 1.766 1.718
12(109.78|148,622,187| 80,223,469 433,019 1.853 1.843

28| 32.62 | 41,408,756 | 23,643,415 |844,159 1.751 1.691

Tractor 20| 80.45 |104,694,644| 57,634,937 522,491 1.817 1.8
12(177.02|236,538,032] « 127,715,701 /|228,696 1.852 1.849

Average 1.79 1.76

TABLE 31. CABAC DECODING PERFORMANCE OF THE PROPOSED ARCHITECTURE WITH
IPPP CODING STRUCTURE
Optimal Actual
Video Sequence Bitrate | Throughput
QP Decoding Cycle| Penalty |Decoding Speed |Decoding Speed
(IPPP) (Mbps)| (bin/s)
(bin/cycle) (bin/cycle)

28| 6.24 | 8,243,604 5,096,931 399,656 1.617 1.5
Pedestrian_area |20 | 29.54 | 39,925,740 | 22,531,263 |1,021,723 1.772 1.695
121125.65(167,323,465| 90,263,065 | 734,579 1.854 1.839

28| 25.6 |33,793,858 | 19,033,689 | 577,882 1.775 1.723

Riverbed |20] 69.18 | 93,001,166 | 50,914,635 | 815,699 1.827 1.798
121170.25|229,139,086| 123,698,211 | 431,383 1.852 1.846

28| 4.23 | 5,759,310 3,571,634 266,172 1.613 1.501

Rush_hour 20| 19.46 | 25,637,361 | 14,569,250 | 769,343 1.76 1.671
12]108.29|148,073,162| 79,495,164 | 777,936 1.863 1.845

28| 2.97 | 4,323,558 2,776,874 229,535 1.557 1.438

Station2 20| 29.02 | 41,714,033 | 23,398,501 1,070,737 1.783 1.705
12| 131.7 |176,574,564| 95,089,541 | 602,285 1.857 1.845

Sunflower (28| 2.9 | 3,913,585 2,522,353 230,268 1.552 1.422

68

20| 11.51 | 14,473,353 | 8,612,806 | 670,697 1.68 1.559
12| 87.76 [116,421,680 63,687,024 |1,082,948 1.828 1.797
28| 10.6 |13,428,740 | 7,986,431 | 594,672 1.681 1.565
Tractor 20| 52.77 | 70,588,463 | 38,960,452 |1,173,367 1.812 1.759
12]155.65(203,467,876| 109,714,968 | 405,875 1.855 1.848
Average 1.75 1.69
TABLE 32. CABAC DECODING PERFORMANCE OF THE PROPOSED ARCHITECTURE WITH

IBBBP CODING STRUCTURE

Video Sequence Bitrate | Throughput Optimal Actual

QP Decoding Cycle| Penalty |Decoding Speed |Decoding Speed
(IBBBP) (Mbps)| (bin/s)
(bin/cycle) (bin/cycle)

28| 6.18 | 7,996,797 4,963,851 403,129 1.611 1.49

Pedestrian_area |20| 26.48 | 33,865,563 | 19,296,701 . | 957,390 1.755 1.672

12122.27|158,460,245| 85,712,717 ~706,222 1.849 1.834

282595 (33,157,233 | -18,739,109 | 613,915 1.769 1.713

Riverbed 20| 69.51 | 90,186,496 | 49,414,413 | 799,758 1.825 1.796

121170.56|221,804,661| 119,855,332 | 419,247 1.851 1.844

28| 3.96 | 5,359,183 3,361,522 262,862 1.594 1.479

Rush_hour (20| 17.3 | 21,880,212 |\ 12,574,561 | 742,208 1.74 1.643

121106.46|141,397,927| © 76,048,399 | 799,083 1.859 1.84

28| 3.09 | 4,487,035 2,896,824 223,772 1.549 1.438

Station2 20| 22.71 | 30,697,181 | 17,486,212 | 924,615 1.756 1.667

12{124.92|164,313,863| 88,365,185 | 565,193 1.859 1.848

28| 2.81 | 3,747,747 2,425,104 230,656 1.545 1.411

Sunflower |20 10.95 | 13,361,034 | 7,942,264 596,995 1.682 1.565

12| 81.97 |106,090,796| 58,346,381 1,085,765 1.818 1.785

28| 10.2 | 12,561,227 | 17,479,415 548,993 1.679 1.565

Tractor 20| 51.34 | 65,822,524 | 36,557,868 1,087,536 1.801 1.748

121152.29(194,679,968| 104,946,453 | 362,293 1.855 1.849

Average 1.74 1.68
TABLE 33. CABAC DECODER IMPLEMENTATION RESULT COMPARISONS OF DIFFERENT

DESIGNS

69

Specifications Proposed Lin [13] Chen [14] Chang [17]
Technology UMC UMC 0.13um TSMC
90nm 90nm 0.18um
Max. Frequency 264 MHz 222 MHz 238 MHz 250 MHz
Gate Count 42,372 82,445 43,600 35,615
Average bin/cycle 1.71 1.96 1.32 0.64
Throughput®
(Mbins/sec) 451.4 435.1 314.2 160.0
a. Throughput = (maximum frequency) * (average bin/cycle)
b. Hybrid CM memory included
TABLE 34. WORKING FREQUENCY FOR DIFFERENT LEVEL CONDITIONS
Level|Max. MBs/frame{Max. MB Processing Rate (MBs/s)|Working Frequency
4 8192 245,760 44 MHz
4.1 8192 245,760 44 MHz
4.2 8704 522,240 92 MHz
5 22080 589,824 104 MHz
5.1 36864 983,040 173 MHz

70

Chapter 5 EXTENDING TOWARDS SVC

Recently, Scalable Video Coding (SVC), the next-generation video coding
standard inherited from the H.264/AVC has been standardized [18]. It provides spatial
scalability, temporal scalability, and quality scalability by transmitting a single
bitstream containing subset bitstreams which can be transmitted and decoded partially
depending on the transmission environments and decoding capabilities of endpoints
such as video devices with different screen resolution and power limitation. Relative
to the scalable profiles of prior video coding standards, the increased degree of
scalability supported by SVC achieves significant improvements in coding efficiency
and provides enhancement to.transmission and storage applications. However, the
throughput requirement for.entropy decoder becomes stricter. As a result, further

search for a suitable entropy decoder design for SVC is necessary.

5.1 Design Target and Design Challenges

The parsing procedure of SVC is more complex than of H.264/AVC, moreover,
to support quality scalability, the two entropy decoding cores CAVLC decoder and
CABAC decoder we design for H.264/AVC have to be modified. In SVC, two
approaches are specified to provide SNR scalability: coarse-grain quality scalability
(CGS) and medium-grain quality scalability (MGS). For CGS coding, quality
refinement is achieved by applying different quantization parameter to quality
enhancement layer, and the differences between transform coefficients are encoded in
the slice data. In the definition of reference software, up to 7 CGS layers can be used

for SNR scalability. In addition, as difference of QP (DQ) rises, the residual blocks

71

become denser. Even though the transform coefficients of quality enhancement layer
are general small, the large amount still imposes a higher throughput requirement on
entropy decoder for SVC than for H.264/AVC. With regard to MGS coding, the
transform coefficients can be partition into up to 16 MGS layers to achieve finer
granularity. However, the partition of transform coefficients changes the residual
block structure. Therefore, additional look-up tables are introduced in CAVLC and
VLC to maintain coding efficiency.

Our target is to develop a SVC entropy decoder which can support 3 spatial
layers, maximum resolution 1920x1080, 3 temporal layers, maximum frame rate 60
fps, and 3 CGS quality layers real-time SVC decoding at working frequency 135 MHz.
To conquer the barrier of throughputrequiremeént, two sets of entropy decoder engine
are employed, one for quality layers and another one for non-quality layers. The detail

is presented in the following.

5.2 Proposed Entropy Decoder for SVC

Fig. 29 shows the system level architecture of proposed entropy decoder for SVC.
Since the context-based adaptive modeling for entropy decoder is limited in a single
slice, the two entropy decoding engines can work in parallel. To realize this
architecture, we have to distinguish quality enhancement layer bitstream from
non-quality enhancement layer bitstream. Fortunately, NAL units (slices) are
separated by start code 0x00000001 in H.264. Therefore, we employ the bitstream
scanner to quickly detect the start points of quality enhancement layers and
non-quality enhancement layers and transmitted the addresses to the bitstream
fetchers. Furthermore, to reduce the hardware cost overhead, a simplified CABAC

decoder for quality enhancement layer is proposed. In quality enhancement layer, only

72

quality refinement information exists, while macroblock information is inherited from
base layer. As a result, only mb skip flag, coded block pattern,
transform_size 8x8 flag, mb qp delta, coded block flag, significance map, and
coeff abs level minusl SEs have to be decoded when decoding quality enhancement
layer. Consequently, to satisfy the strict throughput requirement while maintaining
low hardware cost, we propose a simplified CABAC decoder for decoding quality
enhancement layer. As shown in Table 35 and Table 36, unused CMs are removed
from the CM memory. The complete CM memory used for base layer is shown in
Table 37 and Table 38. To further reduce the hardware cost, unnecessary storage of
neighboring SEs used for context model selection is also removed. 120x99 bits
memory space using for storing upper. macroblock information such as mvd and
mb_type can be saved. As to.the CALVC decoder, since it is designed for decoding
residual block information inherently, no simplification.can be performed. Table 39
summarizes the synthesis results of proposed entropy decoder. It was synthesized with
UMC 90nm technology withs 135MHz. The simplified CABAC decoder can
significantly save the memory area that 82.5% hardware cost reduction of memory is

achieved in comparison to the original CABAC decoder.

73

External Memory
(DRAM)

A

A

‘ Memory Controller ‘

r—-=Foooe- I

| | | |
I Bitstream ! Bitstream | Bitstream I
Fetcher i Scanner	Fetcher		
b	t		
v		<	
CAVLC Simplified		Cor}t.exF Mf)del	CABAC CAVLC
CABAC > Initialization [——»f			
Decoder Decoder	(ROM)	Decoder Decoder	
I A I I T A I			
	l		
. I	-		
Neighbor Neighbor			
: Fetcher : s i Fetcher :			
	I		
Upper MB Info I	Upper MB Info		
Memory I SE Register	Memory		
(SRAM) I	(SRAM)		
.		.	
L _ _ForQuality Layer _ _, L _For Non-Quality Layer_ _|

Figure 29. Framework of proposed entropy decoder for SVC.

TABLE 35. CONTENT OF SRAM FOR-SVE QUALITY ENHANCEMENT LAYER
Address | CM Index Syntax Element
0-2 11-13 mb' skip flag (P/SP)
3-5 24-26 mb_skip flag (B)
6-25 85-104 coded block flag
166-226,
26-165 338-398, last_significant coeff flag
417-425, - - -
451-459,
227-231,
237-241,
166195 247-251, coeff_abs'_levejl_minus 1
257-261, (First bin)
266-270,
426-430,
196-198 | 399-401 | transform size 8x8 flag

74

TABLE 36. CONTENT OF REGISTER FOR SVC QUALITY ENHANCEMENT LAYER
Address | CM Index Syntax Element
0-3 60-63 mb_gp delta
4-15 73-84 coded block pattern
105-165,
16-167 277-337, significant_coeff flag
402-416, - -
436-450,
232-236,
242-246,
168196 252-256, coeft.“_abs._level_minusl
262-265, (First bin excluded)
271-275,
431-435,
TABLE 37. CONTENTOF SRAM FOR SVC BASE LAYER
Address | €M Index Syntax Element
0-2 0-2 mb_type.(SI)
3-5 11-13 mb_skip flag (P/SP)
6-8 24-26 mb-skip flag (B)
9-11 70-72 mb field decoding flag
12-31 85-104 coded block flag
166-226,
32-171 338-398, last_significant coeff flag
417-425, - - -
451-459,
227-231,
237-241,
172901 247-251, coeff_abs._leveil_minus 1
257-261, (First bin)
266-270,
426-430,
202-204 | 399-401 transform_size 8x8 flag
205-207 | 1024-1026 base mode flag
208 1027 mation_prediction flag 10

75

209 1028 mation_prediction_flag 11

210 1029 residual_prediction flag
TABLE 38. CONTENT OF REGISTER FOR SVC BASE LAYER
Address | CM Index Syntax Element
0-7 3-10 mb_type (I)

8-14 14-20 mb_type (P/SP)
15-17 21-23 sub_mb_type (P/SP)
18-26 27-35 mb_type (B)

27-30 36-39 sub_mb_type (B)
31-44 40-53 Mvd
45-50 54-59 ref idx
51-54 60-63 mb_qp_delta
55-58 64-67 intra chroma pred mode
59 68 prev_intra pred mode flag
60 69 rem_intra pred mode
61-72 73-84 coded block pattern
105-165,
73-224) significant_coeff flag
402-416, 2 -
436-450,
232-236,
242-246,
75.253 252-256, coeff._abs'_level_minusl
262-265, (First bin excluded)
271-275,
431-435,

TABLE 39. SYNTHESIS RESULTS

Area: Logic Part|Area: Memory Part

Component Working Frequenc
P & e Y (gate count) (bits)
CAVLC Decoder 135 MHz 11,726 5,520
CABAC Decoder 135 MHz 37,885% 14,400

Simplified CABAC Decoder 135 MHz 32,821% 2,520

76

Neighbor Fetcher 135 MHz 27,723 W/O

Bitstream Scanner 135 MHz 9,248 W/0O

Bitstream Fetcher 135 MHz 4,139 W/O
SE Parser 135 MHz 20,722° 16,704

77

a. Hybrid CM memory included

b. SE Register included

Chapter 6 CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, to achieve high decoding performance and low hardware cost

real-time entropy decoding systems, a high-throughput and fully hardwired entropy

decoder for H.264/AVC is proposed. Our proposed entropy decoder architecture

makes six main contributions:

1)

2)

3)

Unlike previous multi-symbol CAVLC decoding architecture, which only
accelerate the decoding procedure of run_before symbols, our proposed
CAVLC decoder can further elevate the throughput by applying the delay
balanced two-level decoding (DBTLD) architecture that can decode two level
symbols in one cycle and shortens the critical path delay by 21% in
comparison to the conventional approach.of cascading two level decoders,
and allows the maximum werking frequency to be about 390 MHz.

To further accelerate decoding procedure, a skipping mechanism is proposed
to remove redundant decoding processes and provide an early termination of
current residual block decoding procedure. Moreover, in the CAVLC
decoding procedure, since only one of coeff_token, trailing_ones_sing_flag,
level, total_zeros, and run_before decoding units is assigned to work in each
cycle, idled units are turned off by functional gating to reduce power
consumption.

A fully hardwired CABAC decoder design which combines SE parsing with
decoding is proposed. By taking advantage of the characteristics of SE

parsing flow and bin distribution among SEs, we design a prediction-based

78

pipelined architecture to accelerate the CABAC decoding procedure without
stall for most case. The prediction hit rate can achieve 96.78% in average and
over 99% in high bit-rate coding.

4) Our proposed hybrid CM memory architecture not only avoids structural
hazards caused by CM reading and writing but also reduces the hardware
cost overhead significantly by 48.6% in comparison to the implementation of
all register approach.

5) With the proposed mathematical transform method, the critical path delay of
TSBAD engine is efficiently improved by 28% compared with the traditional
TSBAD engine, and allows the maximum working frequency to be about 264
MHz. The throughput of the proposed CABAC decoder can achieve 451.4
Mbins/sec in average.

6) We extend our entropy decoder towards SVC extension of H.264/AVC. At
the working frequency 135:MHz, our proposed entropy decoder can support
3 spatial layers, maximum resolution 1920x1080, 3 temporal layers,
maximum frame rate 60 fps, and 3 CGS quality layers real-time SVC

decoding.

6.2 Future Work

High Efficiency Video Coding (HEVC), so-called H.265 is currently under
development by Joint Collaborative Team on Video Coding (JCT-VC) of MPEG and
VCEG. As a successor to H.264/AVC, HEVC is targeted at next-generation HDTV
displays with Super Hi-Vision and aims to reduce bit-rate requirement by half in
comparison to H.264/AVC. However the improved coding efficiency usually

accompanies with the expense of increased computational complexity. As a result, to

79

achieve real-time coding system, further search for a hardware-friendly entropy

coding algorithm is necessary.

v

\ 796

Reference

[1] “Draft ITU-T Recommendation and Final Draft International Standard of Joint
Video Specification (ITU-T Rec.H.264 jJISO/IEC 14496-10 AVC),” in Joint Video
Team, Mar. 2003, Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG,

JVT-GO050.

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the
H.264/AVC Video Coding Standard,” IEEE Trans. Circuits Syst. Video Technol.,

vol 13, no. 7, pp. 560-576, Jul. 2003.

[3] D. Marpe, H. Schwarz, and T. Wiegand, “Context-Based adaptive binary
arithmetic coding in the H.264/AVC video compression standard,” IEEE Trans.

Circuits Syst. Video Technol.; vol 13, no. 7, pp. 620-636, Jul. 2003.

[4] H.-Y. Lin, Y.-H. Lu, B.-D. Liu, and J.<F. Yang, “A Highly Efficient VLSI
Architecture for H.264/AVC. CAVLC Decoder,” IEEE Trans. Multimedia, vol 10,

no. 1, pp. 31-42, Jan. 2008.

[5] M. Alle, J. Biswas, and S. K. Namdy, “High Performance VLSI Architecture
Design for H.264 CAVLC Decoder,” in Proc. IEEE 17th Int. Conf.
Application-Specific Systems, Architectures Processors, Steam-boat Springs, CO,

Sep. 2006, pp. 317-322.

[6] T.-L Fang, “Architecture Design of CAVLC Decoder with Low Power and High
Throughput Consideration,” M.S. thesis, Department of Electrical Engineering,

National Central University, Jul. 2008.

[7] G-S. Yu and T.-S. Chang, “A Zero-Skipping Multi-symbol CAVLC Decoder for
MPEG-4 AVC/H.264,” in Proc. Int. Symp. Circuits Syst., Island of Kos, Greece,
May 2006, pp. 5583-5586.

81

[8] Y.--N. Wen, G-L. Wu, S.-J. Chen, and Y.-H. Hu, “Multiple-Symbol Parallel
CAVLC Decoder for H.264/AVC,” in Proc. 2006 IEEE Asia Pacific Conf. Circuit

Syst., Singapore, Dec. 2006, pp. 1240-1243.

[9] G-G. Lee, C.-C. Lo, Y.-C. Chen, H.-Y. Lin, and M.-J. Wang, “Low Complexity
and High Throughput VLSI Architecture for AVC/H.264 CAVLC Decoding,” IET

Image Processing, to be published.

[10] S.-Y. Tseng, and T.-W. Hsieh, “A Pattern-Search Method for H.264/AVC CAVLC
Decoding,” in Proc. 2006 IEEE Int. Conf. Multimedia Expo, Toronto, ON, Canada,

Jul. 2006, pp. 1073-1076.

[I1TY. Yi and L. C. Park, “High-Speed H.264/AVC CABAC decoding,” IEEE Trans.

Circuits Syst. Video Technol.;.vol. 17, no. 4, pp. 490-494, Apr. 2007.

[12] W. Son and I. C. Park,“Prediction-based Real-tim¢e CABAC Decoder for High
Definition H.264/AVC,” in Proc. 'Int. Symp. Circuits Syst., Seattle, WA, May 2008,

pp. 33-36.

[13] P--C. Lin, T.-D. Chuang, and L.-G. Chen, “A branch selection multi-symbol high
throughput CABAC decoder architecture for H.264/AVC,” in Proc. Int. Symp.

Circuits Syst., Taipei, May 2009, pp. 365-368.

[14] J.-W. Chen, and Y.-L. Lin, “A High-performance Hardwired CABAC Decoder
for Ultra-high Resolution Video,” IEEE Trans. Consum. Electron., vol. 55, no. 3,

pp. 1614-1622, Aug. 2009.

[15] P. Zhang, “Fast CABAC decoding architecture,” ELECTRONICS LETTERS, vol.

44, no. 24, Nov. 2008.

[16] C. H. Kim and I. C. Park, “High Speed Decoding of Context-based Adaptive

Binary Arithmetic Codes Using Most Probable Symbol Prediction,” in Proc. IEEE

82

ISCAS, Island of Kos, Greece, May 2006, pp. 1707-1710.

[17] Y.-T. Chang, “A novel pipeline architecture for H.264/AVC CABAC decoder,” in

Proc. 2008 IEEE Asia Pacific Conf. Circuit Syst., Dec. 2008, pp. 308-311.

[18] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding
extension of the H.264/AVC standard,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 17, no. 9, pp. 1103-1120, Sep. 2007.

&3

Biographical Notes

Fh:
P By &Y (2001/09 — 2004/06)
R~ B3 ? gL T (2004/09 — 2008/06)
R FFTFIET AT e (2008/09 — 2010/08)
¥ir:

Yuan-Hsin Liao, Gwo-Long Li, and Tian-Sheuan Chang, “A High Throughput VLSI
Design with Hybrid Memory Architecture for H.264/AVC CABAC Decoder, ” in
proceeding of IEEE International Symposium on Circuit and System, pp. 2007-2010,

May 2010.

84

