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H.264/AVC 及 SVC 熵解碼器之分析與設計 

 

研究生：廖元歆                          指導教授：張添烜博士 

 

國立交通大學 

電子工程學系電子研究所碩士班 

 

摘    要 

 

    近年來，由於 H.264/AVC 較以前的視訊標準有更佳的編碼效率，至今已被

廣泛使用在視訊應用系統中。要想實現高解析度畫面即時解碼，熵解碼器的效能

需求非常的高。因此，我們需要設計一個高效能的積體電路來加速熵解碼器的解

碼速度。 

    本篇研究提出一個適用於 H.264/AVC 以及 SVC 的高產量熵解碼器硬體設

計。首先，我們提出一個延遲均衡的雙符號內容適應性變動長度解碼器，並將解

碼程序中多餘的解碼步驟省略以加速解碼的進行。工作頻率相較於傳統的設計可

提高 21%，而整體產量相較於我們之前的設計可提升28.2%。接著，針對H.264/AVC

的另一種亂度編碼，我們提出一個以混合式記憶體為架構之高產量內容適應性二

元算數解碼器。在整個解碼架構中，我們將語法單元剖析及其解碼進行合併，並

提出以混合式記憶體為架構的雙符號平行解碼技術來加速解碼速度。更進一步

的，我們利用一個有效率的預測機制以及透過數學上的轉換來提升解碼效能。 

    基於聯華電子 90 奈米製程，我們的內容適應性變動長度解碼器的最高工作

頻率可達 390 MHz，13.88k 個邏輯閘。而我們的內容適應性二元算數解碼器的

最高工作頻率可達 264 MHz，42.37k 個邏輯閘。我們的解碼器在節省了 48.6%的
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硬體成本下的產量為每秒 451.4 百萬個符號，高於其他已被發表的設計。此外，

我們將硬體設計拓展到 SVC。在工作頻率 135 MHz 下，我們所提出的熵解碼器可

支援 3 層解析度，最高 1920x1080、三層播放頻率、最高每秒 60 張畫面、以及

三層畫面品質的及時解碼。 
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Abstract 

 

In recent years, the state-of-the-art video coding standard H.264/AVC which 

provides better compression efficiency for video images than the earlier standards has 

been widely adopted in current video application system. To satisfy the heavy 

performance requirement on real-time H.264/AVC decoding systems especially for 

large-scale video sequences, VLSI implementation of the entropy decoder is 

necessary since it dominates the overall decoder system performance. 

In this thesis, we propose a high-throughput and fully hardwired entropy decoder 

for H.264/AVC and its scalable extension. First, we present a delay balanced 

two-level CAVLC decoder with 21% shorter critical path delay in comparison to 

traditional two-level decoder. Furthermore, a skipping mechanism is adopted to 

remove unnecessary decoding processes. The overall CAVLC throughput is 28.2% 

better than our previous design. Second, for the CABAC decoder, we propose a high 

throughput CABAC decoding design which combines SE parsing and decoding with a 

new hybrid memory two-symbol parallel decoding technique to accelerate the 

decoding speed while reducing the hardware cost. Further speedup is achieved to 
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avoid stalls for most of the cases by the prediction-based method. In addition, an 

efficient mathematical transform method is also proposed to further decrease the 

critical path delay of two-symbol binary arithmetic decoding procedure by 28%.  

The proposed entropy decoder is implemented by UMC 90nm technology and 

experimental results show that our CAVLC decoder can operate at 390 MHz with 

13.88k gate count, besides, our CABAC decoder can operate at 264 MHz with 42.37k 

gate count, and the throughput is 451.4 Mbin/sec, which surpasses previous design 

with 48.6% hardware cost saving. Furthermore, we extend our entropy decoder 

towards SVC extension of H.264/AVC. At the working frequency 135 MHz, our 

proposed entropy decoder can support 3 spatial layers, maximum resolution 

1920x1080, 3 temporal layers, maximum frame rate 60 fps, and 3 CGS quality layers 

real-time SVC decoding.  
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Chapter 1 INTRODUCTION 

 

    H.264/AVC is the state-of-the-art video coding standard developed by the Joint 

Video Team (JVT) of ISO/IEC Moving Picture Experts Group and the ITU-T Video 

Coding Experts Group (MPEG and VCEG). With many advanced techniques, it 

provides better compression efficiency for video than the earlier MPEG-4 and H.263 

standards do. Recently, H.264/AVC has been widely adopted in current video 

application system such as Blu-ray Disc, Youtube, television service, and real-time 

videoconferencing. 

    H.264/AVC specifies two entropy coding tools: Context-based Adaptive Variable 

Length Coding (CAVLC), and Context-based Adaptive Binary Arithmetic Coding 

(CABAC) [1], [2]. Both methods employ context-based adaptive modeling in their 

entropy coding framework and achieve better compression efficiency compared to 

previous video coding standards. In CAVLC, an adaptive VLC table switching 

method depending on already coded symbols is used, and in CABAC, an adaptive 

probability model estimation technique is utilized for binary arithmetic coding. For 

the reason that the adaptation of CAVLC can not perfectly match actually conditional 

symbol statistics and the limitation of 1 bit/symbol imposed on variable length codes, 

CABAC can achieve averaged bit-rate savings of 9% to 14% at the cost of higher 

computation complexity in comparison to CAVLC [3]. 

 

1.1 Motivation and Contribution 

    In recent years, as network transmission speed rises and high-definition 

television gains popularity, the demand for better visual quality grows fast. That 

means video application system is expected to support high-definition (HD) resolution 
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encoding and decoding. In addition to the heavy decoding requirement of H.264/AVC, 

this trend leads to the result that more data has to be processed in the same time for 

video decoders, and makes it more difficult to work in real-time for CPUs. In that 

event, it is necessary to accelerate the decoding speed of entropy decoder with 

hardware since its throughput dominates the overall decoder system performance. 

However, the inherently strong data dependency significantly restricts the throughput 

of entropy decoder and is generally considered as the main design challenge in 

hardware implementation. In order to achieve high decoding performance and low 

hardware cost real-time entropy decoding systems, a fully hardwired entropy decoder 

is proposed in this thesis. 

 

1.2 Thesis Organization 

    The rest of this thesis is organized as follows. We briefly describe the entropy 

codec (CAVLC and CABAC) and their design challenges in hardware implementation 

in Chapter 2 and Chapter 3, respectively. In Chapter 4, the proposed entropy decoding 

architecture is presented and we provide simulation results to demonstrate the 

performance of our entropy decoder design. In Chapter 5, we extend our proposed 

entropy decoder towards the Scalable Video Coding (SVC) extension of the 

H.264/AVC standard. Finally, the conclusion is given in Chapter 6. 



 3

Chapter 2 OVERVIEW OF CAVLC 

 

Variable-length coding (VLC) is an entropy coding method that converts each 

data symbol to a variable length codeword, and achieves data compression by 

utilizing the various probabilities of occurrence of data symbols. Symbols with high 

probabilities of occurrence are represented by short codewords while symbols with 

low probabilities of occurrence are represented by long codewords. There are two 

constrains on the VLC, one is that the bit string must consist of integral number of 

bits, another one is that each codeword must be uniquely decodable.  

 

2.1 Context-based Adaptive Variable Length Coding 

    CAVLC and Exp-Golomb coding are the baseline entropy coding methods of 

H.264/AVC. In spite of the advantage of Exp-Golomb coding in computational 

efficiency, the compression efficiency is not good enough for real application alone. 

To enhance the compression efficiency, a more efficient entropy coding technique 

CAVLC is designed for encoding quantized transformed coefficients of 4 x 4 and 2 x 

2 residual blocks by taking advantage of several characteristics of quantized blocks. 

After decorrelated by the Discrete Cosine Transform (DCT) and quantization, most of 

the quantized coefficients are zero while a few nonzero coefficients are clustered 

around the top left of the block. Afterward, by a reordering, nonzero coefficients are 

grouped together and the level of nonzero coefficients tends to be larger at the low 

frequencies (start of the reordered array) and smaller toward the high frequencies (end 

of the reordered array). Moreover, high-frequency nonzero coefficients are often a 

series of ±1 (TrailingOnes). To efficiently represent the large number of zeros, a 
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run-level coding technique can be applied to reduce the redundancy of the data 

symbols. However, Run and Level are not quite correlated. Consequently, to achieve 

better compression efficiency, Run and Level are coding separately in CAVLC. 

Distinct from conventional VLC that VLC table is unique; CAVLC switches 

VLC tables for different syntax elements relying on already transmitted symbols. That 

is why it is named context-based adaptive. Although better compression efficiency is 

achieved by exploiting inter-symbol redundancies, the rise in computational 

complexity and data dependency imposed on the CAVLC decoder makes it hard to be 

speeded up by parallelism and pipelining. In the following, the decoding flow of 

CAVLC alone with its design challenges is discussed in more detail. 

 

2.1.1 CAVLC Decoding Flow 

A residual block is represented by five types of SEs in CAVLC. These syntax 

elements are defined as follows: 

1) coeff_token: This syntax element indicates the total number of nonzero 

coefficients (TotalCoeffs) including TrialingOnes. Since the coding units of 

CAVLC are 4 x 4 and 2 x 2 blocks, TotalCoeffs can be any value from 0 to 16 

and TrialingOnes can be anything from 0 to 3. There are three 

variable-length codeword tables and a fixed-length codeword table using for 

coding coeff_token. The choice of look-up table depends on the total number 

of nonzero coefficients to the left and on top of the current block, nA and nB 

respectively.  

2) trailing_ones_sing_flag: This 1-bit syntax element indicates the sign of 

TrialingOnes, and is coded in reverse order. 

3) level: The syntax element level represents the value of remaining nonzero 

coefficients and is also coded in reverse order. Each level is composed of a 
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prefix part (level_prefix) and a suffix part (suffix_part). 

4) total_zeros: The sum of zero coefficients, except for zeros after the last 

nonzero coefficient, is represented by this syntax element. The choice of 

VLC table depends on the total number of nonzero coefficients of the current 

block. 

5) run_before: Number of zeros preceding each nonzero coefficient is encoded 

as this syntax element. The VLC table for coding each run_before is chosen 

according to the number of zeros left (zerosLeft). 

    Fig. 1 shows the flow diagram of CAVLC decoding. The decoding process 

consists of six steps: coeff_token parsing, trailing_ones_sing_flag parsing, level 

parsing, total_zeros parsing, run_before parsing, and residual block reconstruction. 

Table 1 shows an example for the decoding procedure of a CAVLC coded residual 

block as depicted in Fig. 2 and its corresponding decoded information. The input 

bitstream provided for CAVLC decoder is “00001000_11100101_11101101”, after 

the decoding procedure, the 4 x 4 residual block, “0, 3, 0, 1, -1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 

0, 0”, is reconstructed. 
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Figure 1.  CAVLC decoding flow. 
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0 3 -1 0

0 1 0

0 0 0

0 0 0 0

-1

1

Reordered block: 0, 3, 0, 1, -1, -1, 0, 1, 0...

4 x 4 residual block

Encoded CAVLC bitstream: 000010001110010111101101  

Figure 2.  Transmitted bitstream for a 4 x 4 residual block. 

 

TABLE 1. CAVLC DECODING PROCEDURE FOR THE 4 X 4 RESIDUAL BLOCK DEPICTED 

IN FIG. 2 

Bitstream: 000010001110010111101101 

Syntax Element Codeword Value Output Array 

coeff_token 100 TotalCoeffs = 5, TrailingOnes = 3 N/A 

TrailingOne sign 0 + 1 

TrailingOne sign 1 − -1, 1 

TrailingOne sign 1 − -1, -1, 1 

level 1 +1 1, -1, -1, 1 

level 0010 +3 3, 1, -1, -1, 1 

total_zeros 111 3 3, 1, -1, -1, 1 

run_before 10 1 3, 1, -1, -1, 0, 1 

run_before 1 0 3, 1, -1, -1, 0, 1 

run_before 1 0 3, 1, -1, -1, 0, 1 

run_before 01 1 3, 0, 1, -1, -1, 0, 1

Reconstructed block: 0, 3, 0, 1, -1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 

 

2.2 Design Challenges and Related Works 

In hardware implementation, the VLC decoding can be realized as a finite state 

machine in essence. One bit or several bits of bitstream are scanned in each clock 
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cycle. According to the chosen VLC table, if the bit string matches a codeword, the 

corresponding value is returned. Otherwise, more bits will be scanned in the next 

cycle. Since the bitstream boundary between successive codewords is unknown until 

the codeword length of the former one is detected, the decoding procedure is 

inherently sequential and thus the throughput of CAVLC decoder is therefore hard to 

be elevated. 

Intuitively, multi-symbol decoding is an effective way to raise throughput, 

especially for trailing_ones_sing_flag, level, and run_before parsing stages which are 

critical loops in the CAVLC decoding procedure. However, the main obstacle to 

parallel decoding is how to break the recursive dependencies between codewords. In 

trailing_ones_sing_flag parsing stage, since the number of TrailingOnes is already 

derived in coeff_token parsing stage, [4] and [5] implemented the parsing procedure in 

a single cycle. In level parsing stage, two level decoders are cascaded to produce two 

level symbols in one cycle [6]. However, it induces a huge critical path delay. In 

run_before parsing stage, since the codewords of VLC table used for run_before is 

much less and shorter than others, the data dependency obstacle is much easier to be 

overcome, and thus several efficient multi-run_before decoding architectures had 

proposed to boost the throughput of CAVLC decoder. When run_before is equal to 0, 

the corresponding codeword is composed of “1” bits. Therefore by counting the bit 

length of the series of “1” bits of input bitstream, multiple run_before symbols valued 

0 can be parsed in one cycle [6]. This method is effective in the high bit-rate coding 

but inefficient in the low bit-rate coding where the residual blocks are very sparse. 

Since the sub VLC tables of run_before are separated by zerosLeft, unless zerosLeft is 

larger than 6, the zerosLeft for choosing the next run_before look-up table is 

predictable. By utilizing this character, Yu et al. [7] proposed a combined look-up 

table for decoding successive two run_before symbols at the same time. At the 
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expense of significant hardware cost raise, Wen et al. [8] adopted a bit-position VLC 

decoding approach that all run_before symbols are decoded using less than 3 cycles in 

one block to achieve high throughput. Lee et al. [9] presented a multi-symbol decoder 

that can decode three run_before symbols in one cycle. Furthermore, a pattern-search 

method had been reported in [10]. In this method, a block can be reconstructed 

directly without performing CAVLC decoding procedure if a pattern is matched in a 

pre-established look-up table.  

For the two critical loops, level parsing process and run_before parsing process, 

which mainly affect the overall decoding performance, a lot of techniques have been 

proposed to speed up run_before parsing process, whereas there are few effective 

ways to improve level parsing performance. In this thesis, a highly efficient two-level 

decoding architecture is proposed to expedite the CAVLC decoding speed. 
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Chapter 3 OVERVIEW OF CABAC 

 

For a data symbol with probability of occurrence P to be encoded, the theoretical 

optimum number of bits is log2(1 / P). It is usually a fraction instead of an integer. As 

a result, in essence, entropy coding based on integral number of bits long codewords 

can not achieve optimal data compression. As a practical alternative, arithmetic 

coding provides a technique that can encode a sequence of data symbols into a single 

fractional number and thus can more closely approach the theoretical optima. 

 

3.1 Arithmetic Coding 

The arithmetic coding algorithm is a recursive subdivision of an interval based 

on the probability of occurrence of encoded symbols. In the encoding procedure, first, 

the range (0.0, 1.0) is subdivided into subranges depending on the probability of 

occurrence of each symbol as Fig. 3 shows. Then, whenever a symbol is encoded, the 

new rage is set to the corresponding subrange. Finally, the sequence of data symbols 

can be represented by any fractional number in the final range. An example for 

encoding the sequence (C, B, C, E) is presented in Fig. 4. After the first symbol is 

encoded, the new range is (0.3, 0.7), and the next new range is (0.34, 0.42). 

Progressively, the initial range becomes smaller. At the end of sequence of data 

symbols, a number 0.394 which lies within the final rage (0.3928, 0.396) is outputted. 
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Figure 3.  Example for interval subdivision. 

 

 

Figure 4.  Recursive interval subdivision for the sequence (C, B, C, E). 

 

In the decoding procedure, each symbol is decoded depending on the subrange 

where the input number falls. Then, the new range is updated to this subrange. Table 2 

shows an example for decoding a fractional number 0.394 encoded by the encoding 

Symbol Probability )/1(log2 P Subrange

A 0.1 3.32 (0.0, 0.1)

B 0.2 2.32 (0.1, 0.3)

C 0.4 1.32 (0.3, 0.7)

D 0.2 2.32 (0.7, 0.9)

E 0.1 3.32 (0.9, 1.0)
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procedure mentioned above. When decoding the first symbol, because 0.394 falls 

within the subrange (0.3, 0.7), it is decoded as (C). Then, range is set to the subrange 

which belongs to (C). The next symbol is decoded as (B) since 0.394 lies within the 

subrange (0.34, 0.42), and so on. The decoding does not halt until the entire sequence 

of data symbols (C, B, C, E) is decoded.  

 

TABLE 2. DECODING PROCUDURE FOR INPUT NUMBER 0.394 

 

3.2 Context-based Adaptive Binary Arithmetic Coding 

In spite of the fact that the algorithm of arithmetic coding is simple in definition, 

the hardware and software implementations suffer from its high computational 

complexity. The limited throughput (symbols/second) is generally considered as its 

main disadvantage. To solve this problem while maintaining the compression 

efficiency, CABAC introduces an adaptive binary arithmetic coding technique 

combined with well-designed context models. Furthermore, the interval is subdivided 

by using addition and look-up take to avoid multiplication operation, and the 

Decoding Procedure Range Subrange Decoded Symbol

1) Set the initial range (0.0, 1.0)   

2) Find the subrange where the number falls

  and decode the symbol 

 (0.3, 0.7) (C) 

3) Set the new range (0.3, 0.7)   

4) Find the subrange where the number falls

  and decode the symbol 

 (0.34, 0.42) (B) 

5) Set the new range (0.34, 0.42)   

6) Find the subrange where the number falls

  and decode the symbol 

 (0.364, 0.396) (C) 

7) Set the new range (0.364, 0.396)   

8) Find the subrange where the number falls

  and decode the symbol 

 (0.3928, 0.396) (E) 
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probabilities updating is simplified by look-up table.  

Fig. 5 shows the block diagram of CABAC encoding process. The encoding 

process consists of three steps: binarization, context modeling, and binary arithmetic 

coding [2]. In the first step, a syntax element is transferred from non-binary value into 

a series of binary bins, called a bin string. For each bin to be encoded, two coding 

modes are candidates. In the regular mode, a context model representing probability 

model is first selected according to previous encoded syntax elements. Then, based on 

the context model, the bin value is encoded by the regular coding engine, and context 

model updating follows. In the bypass mode, a bypass coding engine without the 

usage of context model is executed to speed up the encoding process. The three 

functional blocks are discussed in more detail in the following.  

 

 

Figure 5.  CABAC encoder block diagram. 

 

3.2.1 Binarization 

The binarization design in CABAC depends on a few code trees that provide a 

simple computation to derive codewords. There are four types of binarization process 

specified in CABAC: the unary (U) binarization process, the truncated unary (TU) 

binarization process, the fixed-length (FL) binarization process, and the concatenated 
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unary/ k-th order Exp-Golomb (UEGk) binarization process. However, there is an 

exception. Instead of computing by means of a structured coding scheme, look-up 

tables are used for mapping macroblock types and submacroblock types into binary 

sequences. 

Table 3 shows the bin strings of U binarization. For each unsigned integer valued 

syntax element x, the bin string consists of x “1” bits followed by a terminating “0” 

bit. 

 

TABLE 3. UNARY BINARIZATION 

Value of syntax element (x) Bin string 

0 0

1 1 0

2 1 1 0

3 1 1 1 0

4 1 1 1 1 0

5 1 1 1 1 1 0

… … … … … … … …

Bin index 0 1 2 3 4 5 …

 

The bin strings of TU binarization are shown in Table 4. A number cMax is 

defined for mapping x with [0, cMax]. For x < cMax the bin strings are the same as U 

codes, whereas x = cMax the bin string is given by a bin string of length cMax with 

“1” bits only.  

 

TABLE 4. TRUNCATED UNARY BINARIZATION 

Value of syntax element (x) Bin string (cMax = 7)

0 0
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1 1 0

2 1 1 0

3 1 1 1 0

4 1 1 1 1 0

5 1 1 1 1 1 0

6 1 1 1 1 1 1 0

7 1 1 1 1 1 1 1

Bin index 0 1 2 3 4 5 6

 

As shown in Table 5, the bin strings of FL binarization are given by 

fixedLength-bit binary representations, where fixedLength = Ceil( Log2( cMax + 1 ) ). 

The FL binarization process is mainly applied to the syntax elements which are nearly 

uniform distribution.  

 

TABLE 5. FIXED-LENGTH BINARIZATION 

Value of syntax element (x) Bin string (cMax = 7)

0 0 0 0 

1 0 0 1 

2 0 1 0 

3 0 1 1 

4 1 0 0 

5 1 0 1 

6 1 1 0 

7 1 1 1 

Bin index 0 1 2 

 

The UEGk binarization process is applied to absolute values of motion vector 

differences (MVD) and absolute values of transform coefficient levels (ABS_LEVEL). 

The UEGk bin string consists of a prefix and a suffix code word. The prefix bit string 

is constructed by TU binarizaton process with cMax = Min( uCoff, Abs( x ) ) , where 
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ucoff is the cutoff value which also represents the maximum length of the prefix bit 

string. After the prefix part is obtained, if Abs( x ) is larger than or equal to the cutoff 

value, the EGk binarization process is invoked to derive the suffix part. The first part 

of EGk code is formed with a unary code with l(y) = Floor( log2( y / 2k + 1 ) ). The 

second part is constructed as the binary representation of y + 2k( 1- 2l(y) ) with ( k + 

l(y) ) bits. The pseudo code of computational procedure is depicted in Fig. 6. Table 6 

shows the bin strings for MVD valued from 0 to 13, where the prefix parts are in gray 

shadow. 

 

if( Abs( x ) >= uCoff ) { 

 y = Abs( x ) – uCoff 

 while( 1 ) { 

  //unary first part of EGk 

  if( y >= (1 << k) ) { 

   put( 1 ) 

   y = y – (1 << k) 

   k++ 

}  

else { 

 put( 0 ) //terminating “0” of first part 

 while( k-- ) //binary second part of EGk 

  put( (y >> k) & 1 ) 

 break 

} 

 } 

} 

Figure 6.  Pseudo code for k-th order Exp-Golomb code construction. 

 

TABLE 6. UEG3 BINARIZATION FOR ABSOLUTE VALUES OF MOTION VECTOR 

DIFFERENCES 

| MVD | Bin string (uCoff = 9) 
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Prefix (TU code) Suffix (EG3 code) 

0 0   

1 1 0  

2 1 1 0  

3 1 1 1 0  

4 1 1 1 1 0  

5 1 1 1 1 1 0  

6 1 1 1 1 1 1 0  

7 1 1 1 1 1 1 1 0  

8 1 1 1 1 1 1 1 1 0  

9 1 1 1 1 1 1 1 1 1 0 0 0 0  

10 1 1 1 1 1 1 1 1 1 0 0 0 1  

11 1 1 1 1 1 1 1 1 1 0 0 1 0  

12 1 1 1 1 1 1 1 1 1 0 0 1 1  

13 1 1 1 1 1 1 1 1 1 0 1 0 0  

… … … … … … … … … … … … … … … 

Bin index 0 1 2 3 4 5 6 7 8 9 10 11 12 … 

 

3.2.2 Context Modeling 

The probability models supplying for binary arithmetic coding is an important 

part since it dominates the overall coding efficiency. Consequently, the context model 

has to be selected by taking into account conditional probability estimation and keep 

updated during encoding. In CABAC, to reduce the complexity requirement, only the 

neighbors of current syntax element are involved in context model selection such that 

only a few choices are left. 

 

TABLE 7. SYNTAX ELEMENTS AND CORRESPONDING CONTEXT INDICES 

Syntax Element 
Slice Type 

I/SI P/SP B 

mb_skip_flag    11–13 24–26 

mb_field_decoding_flag 70–72 70–72 70–72 

end_of_slice_flag 276 276 276 
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mb_type 0/3–10 14–20 27–35 

transform_size_8x8_flag 399–401 399–401 399–401 

coded_block_pattern 73–84 73–84 73–84 

mb_qp_delta 60–63 60–63 60–63 

prev_intra4x4_pred_mode_flag 68 68 68 

rem_intra4x4_pred_mode 69 69 69 

prev_intra8x8_pred_mode_flag 68 68 68 

rem_intra8x8_pred_mode 69 69 69 

intra_chroma_pred_mode 64–67 64–67 64–67 

ref_idx   54–59 54–59 

mvd (horizontal)   40–46 40–46 

mvd (vertical)   47–53 47–53 

sub_mb_type   21–23 36–39 

coded_block_flag 85–104 85–104 85–104 

significant_coeff_flag 
105–165, 

277–337

105–165, 

277–337

105–165, 

277–337 

last_significant_coeff_flag 
166–226, 

338–398

166–226, 

338–398

166–226, 

338–398 

coeff_abs_level_minus1 227–275 227–275 227–275 

significant_coeff_flag (8x8) 
402–416, 

436–450

402–416, 

436–450

402–416, 

436–450 

last_significant_coeff_flag (8x8)
417–425, 

451–459

417–425, 

451–459

417–425, 

451–459 

coeff_abs_level_minus1 (8x8) 426–435 426–435 426–435 

 

All context models are listed in Table 7. Each context model, which contains a 

6-bit probability state and the value of most probable symbol, is identified by a 

context index (ctxIdx). The calculation of ctxIdx is defined as 

ctxIdxIncctxCatctxIdxBasectxIdx  

where ctxIdxBase denotes the base context index, which is defined as the lower 

value of the range contained in Table 7, ctxCat represents context category, which is 

only valid for syntax elements of residual type and is given in Table 8, and ctxIdxInc 

denotes the context index increment, which is derived based on bin index (binIdx), 
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previously encoded bins, or neighboring syntax elements to the left and on top of the 

current syntax element, as illustrated in Fig. 7.  

 

TABLE 8. CONTEXT CATEGORY DEPENDING ON SYNTAX ELEMENTS AND BLOCK TYPES 

Syntax element 

Context category (ctxCat) 

Luma-16x16

DC 

Luma-16x16

AC 
Luma-4x4

Chroma

DC 

Chroma 

AC 
Luma-8x8 

coded_block_flag 0 4 8 12 16 0 

significant_coeff_flag 0 15 29 44 47 0 

last_significant_coeff_flag 0 15 29 44 47 0 

coeff_abs_level_minus1 0 10 20 30 39 0 

 

      

   B .  

  A C   

      

Figure 7.  Neighboring syntax elements involved in context model selection of current 

syntax element. 

 

3.2.3 Adaptive Binary Arithmetic Coding 

Binary arithmetic coding is based on the principle of progressive interval 

subdivision. In terms of symbols to be encoded, only most probable symbol and least 

probable symbol (MPS and LPS) with probabilities of occurrence PMPS and PLPS are 

specified. Based on this setting, the given interval represented by a lower bound (L) 

and an interval range (R) is subdivided into RMPS and RLPS as follows: 

LPSMPS

LPSLPS

RRR

PRR
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However, the computational requirement of multiplication operations becomes 

the bottleneck that limits the overall throughput. To solve this problem, a novel 

multiplication-free solution with negligible performance degradation is developed in 

CABAC.  

Motivated by introducing some approximations of the range R or of the 

probability PLPS in substitution for their actual values, the basic idea of the new 

multiplication-free binary arithmetic coding scheme for H.264/AVC relies on the 

assumption that the estimated probabilities of each context model can be represented 

by a sufficiently limited set of representative values [3]. Total 128 probability states 

are effectively used for representing the approximate probability estimation of each 

context model. Each probability state is composed of a 6-bit state index (stateIdx) 

indicating the LPS probability and a 1-bit value that represent the MPS value 

(valMPS). The numbering of state index is guided by the principle that with state 

index equaling to 0 corresponds an LPS probability value of 0.5, the higher the 

number of state index, the lower LPS probability value is assigned. Whenever the 

encoding procedure of each symbol is completed, the context model updating process 

is executed to keep context models “up to date”. The determination of probability 

updating is illustrated in Fig. 8. In practical implementation, the transition of 

probability states can be realized by a table-based transition process. This continuous 

update makes the binary arithmetic coding engine adaptive. 
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Figure 8.  Probability transition rule. 
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Fig. 9 shows the flow diagram of binary arithmetic encoding process. Two 

coding modes are specified in CABAC, one is regular coding mode, where probability 

estimation is utilized, and another one called bypass coding mode is used to encode 

symbols with approximately uniform probability distribution. 

 

rangeIdx = (R >> 6) & 3
RLPS = TabRangeLPS[stateIdx][rangeIdx]

R = R - RLPS

binVal != 
valMPS

L = L + R
R = RLPS

stateIdx != 0

valMPS = 1 - valMPS

stateIdx = transIdxLPS[stateIdx] stateIdx = transIdxMPS[stateIdx]

Done

Encode
Rugular

Yes

No

Yes

No

Encode
Bypass

L = L << 1

L = L + R
R = RLPS

(a)

Done

Yes

(b)

Renormalization

Renormalization

binVal != 
valMPS

 

Figure 9.  Flow diagram of binary arithmetic encoding process. (a) Regular coding 

mode. (b) Bypass coding mode. 

 

Fig. 9(a) illustrates the regular coding mode. In the first step, with a table which 

contains 64 x 4 pre-computed LPS subranges, the interval range is subdivided 

depending on the state index and range without multiplication operation. Then, 

according to the given bin value (binVal), the corresponding process is performed. 
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Finally, since the interval range has to stay within [28, 29] to keep a fixed precision, a 

renormalization process is necessary if the updated interval range R is smaller than 

0x100. Fig. 10 shows the flow diagram of renormalization process. The output bits are 

recursively generated during the renormalization. If the interval range is in the bottom 

half, PutBit(0) is performed; else if the interval range is in the top half, PutBit(1) is 

performed; otherwise bitsOutstanding (BO) is increased by 1. 

With regard to bypass coding mode, the probability distribution of symbol to be 

encoded is nearly uniform. That means RLPS = RMPS = R/2. Consequently, the usage of 

context model is not required and the subdivision operation can be simplified to 

accelerate the encoding speed. Furthermore, only one-loop renormalization process 

using double decision thresholds without doubling R and L is performed in the final 

step. The flow diagram of bypass coding mode is depicted in Fig. 9(b).  

 

Renormalization

R < 256

L = L - 256
BO = BO + 1

Done

(a)

L < 256

L >= 512

L = L - 512

R = R << 1
L = L << 1

PutBit(B)

firstBitFlag != 0

firstBitFlag = 0 WriteBits(B, 1)

BO > 0

WriteBits(1-B, 1)
BO = BO - 1

Done

(b)

No

Yes No

Yes

No

Yes

Yes
Yes

No

No

PutBit(0) PutBit(1)

 

Figure 10.  Flowchart of (a) renormalization process and (b) PutBit(B). 
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3.3 CABAC Decoding Algorithm Overview 

In CABAC, every syntax element (SE) is composed of a series of bins. Given the 

bitstream, combined with syntax element parsing, the object of CABAC decoder is to 

transfer the decoded bin string into actual value and return it. Fig. 11 depicts the 

generic CABAC parsing process. Prior to decoding a new slice, an initialization 

process is performed that all context models are initialized depending on the slice type 

and quantization parameter, moreover, the interval range and coding offset are reset to 

0x1FE and first 9 bits of the bitstream, respectively. In the parsing flow, each syntax 

element is parsed sequentially. After the type of syntax element is decided, depending 

on the bin index, the corresponding bin decoding process is executed. Finally, the 

constructed bin string is de-binarized. If any codeword is matched, the corresponding 

value is returned and the decoding procedure for current syntax element is complete. 
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Figure 11.  CABAC parsing process. 

 

In the hardware realization, the bin decoding process consists of four elementary 

steps: context selection (CS), context model loading (CL), binary arithmetic decoding 

(BAD), and binarization matching (BM). In the first step, context index which acts as 

the context model address is calculated. After the address is obtained, a context model 

(CM) loaded from CM memory is passed to the BAD stage. In BAD stage, a bin is 
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decoded to be MPS or LPS according to a probability model provided by the CM. 

Afterward, the constructed bin string is de-binarized in the final stage to decide 

whether the decoding process of current SE is finished or not, and the context model 

update (CU) process takes place at the same time. 

To read the specific context model from the context model memory, the memory 

address must be calculated first. Generally, the memory address of each context model 

is the same as its corresponding context index. However, the organization of context 

models in H.264/AVC is clearly not the most economical. Therefore, reorganization is 

allowed to achieve better performance as designer’s wish. 

In the binary arithmetic decoding procedure, most symbols are decoded by the 

regular bin decision process depending on the location of coding offset. Fig. 12(a) 

shows the flowchart of regular decoding process. In the first step, according to the 

state index provided by context model and current interval range, LPS subrange is 

selected from a look-up table and MPS subrange is calculated as RMPS = R – RLPS. 

Then, by comparing the coding offset (O) with the MPS subrange (RMPS), if the 

coding offset falls within the LPS subrange, the bin is identified as LPS. Otherwise, if 

the coding offset falls within the MPS subrange, the bin is identified as MPS. In the 

meanwhile, R and O are assigned to the corresponding subinterval, and the probability 

state is transferred in the end. 
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Figure 12.  Flow diagram of (a) regualr bin decision process, (b) renormalization 

process, and (c) bypass bin decision process. 

 

A renormalization operation is required whenever the interval range (R) is out of 

its legal range (R < 0x100). Fig. 12(b) depicts the flowchart of renormalization. 

Recursively, the left-shift of R and O does not halt until R is larger than or equal to 

0x100. During the renormalization procedure, the input bits coming from bitstream 

are appended to coding offset.  

Besides, the other symbols with approximately uniform probability distribution 

are decoded by bypass bin decision process. The flowchart of bypass decoding 

process can be seen in Fig. 12(c).  

 

3.4 Design Challenges and Related Works 
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In hardware implementation, to achieve high throughput, pipelined architecture 

and parallel architecture are considered helpful methods generally. Since every bin is 

decoded by the same chain of operations (CS→CL→BAD→BM and CU), the 

decoding performance can be elevated by exploiting the pipelining scheme presented 

in [11] . Fig. 13 shows a 4-stage pipelining CABAC decoder design. However, the 

boost of throughput is limited by the pipeline stalling caused by data hazards. Take 

significance map (significant_coeff_flag and last_significant_coeff_flag) which 

occupies the major portion of syntax elements in slice data for example, as shown in 

Fig. 14, the choice of the bin right after significant_coeff_flag and corresponding 

context model depends on the current bin value since the bin may be 

significant_coeff_flag or last_significant_coeff_flag. As a result, two cycles are 

unavoidable to resolve this data hazards. 

 

 

Figure 13.  Pipelining scheme of CABAC decoding. 
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Figure 14.  Data hazard caused by significance map. (a) 4x4 residual block. (b) 

Flow diagram of the CABAC decoding scheme for significance map. (c) Example for 

decodong the significance map. (d) Illustration of cycle stall of CABAC decoding. 

 

To relieve the performance degradation originated in syntax element switching 

overhead, a prediction-based pipelined architecture was proposed in [12], where the 

correlation between successive SEs are exploited to achieve higher prediction 

accuracy in comparison to the prediction that just predicts current symbol to be MPS. 

Furthermore, multi-symbol decoding architecture design is also an effective way to 
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speed up decoding procedure. A parallel decoding method was proposed to enhance 

decoding performance by predicting that the current symbol is MPS [16]. The 

architecture in [13] employed a branch selection two-symbol parallel decoding 

technique to resolve data dependency problem, and can process two bins within one 

cycle for general cases, but suffers from high area cost. Chen et al. [14] proposed a 

fully hardwired CABAC decoder that is capable of decoding at most two bins in one 

cycle for certain syntax elements: coeff_abs_level_minus1, significant_coeff_flag, 

last_significant_coeff_flag, and mvd.  

    However, in some works such as [15], [16], their architecture only focuses on bin 

decoding process, while leaving SE parsing to another processor. Although the 

separation of SE parsing and decoding makes the implementation of CABAC 

decoding much simpler, it results in that the actual throughput can not reach its 

theoretical maximum, since whenever SE switching takes place, the context model 

has to be reloaded. 

    A fully hardwired CABAC decoder design which combines SE parsing with 

decoding is proposed in this thesis. The characteristics of SE parsing flow and bin 

distribution among SEs are analyzed to design the decoding architecture which not 

only can decode multiple bins in one cycle without stalls for most cases but also can 

keep low hardware cost by employing hybrid context model memory architecture. 

Moreover, with the efficient mathematical transform method for two-symbol binary 

arithmetic decoding (TSBAD) engine, the decoding speed can be further elevated. 
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Chapter 4 PROPOSED ENTROPY DECODER 

 

    Fig. 15 shows the system level architecture of proposed entropy decoder for 

H.264/AVC. It contains a CAVLC decoder, a CABAC decoder, a SE parser, a 

neighboring information fetcher, a bitstream fetcher, and a memory controller. 

According to the entropy coding mode, the SE parser chooses the corresponding 

decoder to decode SEs. When entropy_coding_mode_flag is equal to 0, SEs of 

residual blocks are decoded by using the CAVLC decoding scheme, and other SEs are 

decoded by using the VLC decoding scheme which is included in the CAVLC decoder. 

When entropy_coding_mode_flag is equal to 1, SEs lying at macroblock layer and 

below are decoded using the CABAC decoder, and other SEs belonging to slice layer 

and above are decoded by the VLC decoder.  

In the entropy decoding procedure, the bitstream fetcher reads bitstream which is 

stored in external memory by the memory controller and transmits it to the CAVLC 

decoder and the CABAC decoder. The neighboring data involving in entropy 

decoding process, such as total_coeff and mvd used for calculating nC and ctxIdxInc, 

are stored in the upper macroblock information memory. Furthermore, if entropy 

coding mode is binary arithmetic coding, in the beginning of decoding each slice, all 

the CMs are reset to the initial values stored in ROM. Whenever a SE is decoded, if it 

is related to the remaining SE parsing flow, it will be buffered in the SE register. The 

detail of our proposed entropy decoder is presented in the following. 
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Figure 15.  Framework of proposed entropy decoder. 

 

4.1 Proposed CAVLC Decoder 

It is apparent that the greatest obstacle to further boosting the throughput of 

CAVLC decoder originates in level parsing procedure which is based on arithmetic 

operations and accounts for a critical loop in the whole CAVLC decoding procedure. 

In terms of multi-level decoding, since the inter-codeword dependency and succession 

of arithmetic operations lead to an unavoidably long critical path, we can not gain 

throughput from cascading level decoders directly. Moreover, the inter-level 

dependency of suffixLength which can not be calculated until the value of current 

level is determined makes it unable to exploit pipeline structure. It seems both 

multi-symbol decoding and pipelining scheme are not workable for level decoding 

process.  

Our destination is to find a method that can break the inter-level dependency and 

the inter-codeword dependency. If this goal is reached, we can make a breakthrough 
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and thus the CAVLC decoding performance can be further improved. Consequently, 

first of all, we investigate the characteristics of level decoding flow. 

 

4.1.1 Analysis  

Fig. 16 shows the flowchart of level decoding procedure defined in the 

H.264/AVC standard. The decoding procedure can be divided into two parts: the first 

part is bitstream scanning process and the second part is for computing the value of 

level. The bit string of each level is formed with level_prefix and level_suffix as 

]_][01...0[

]_][_[

_

suffixlevel

suffixlevelprefixlevel

bitStringlevel


 

where level_prefix consists of a series of “0” bits followed by a terminating “1” bit. 

The value of level_prefix is constrained in the range 0 to 15 in general profiles. In the 

bitstream scanning process, after the value of level_prefix is determined by detecting 

the leading zeros in the bitstream, the parameter levelSuffixSize which represented the 

bit length of level_suffix is calculated as 

 

if(level_prefix = = 15) 

                              levelSuffixSize = 12 

                          else if(level_prefix = =14 && suffixLength = = 0) 

                              levelSuffixSize = 4 

                          else 

                              levelSuffixSize = suffixLength             
 

Based on the levelSuffixSize, bits belonging to level_suffix are scanned, and the 

initial value of levelCode is calculated as 

suffixlevelthsuffixLengprefixlevellevelCode _)_(  
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    In the second part, levelCode is adjusted in case of special conditions. If 

level_prefix is equal to 15 and suffixLength is equal to 0, levelCode will be increased 

by 15, and if the number of TrailingOnes is less than 3, the first levelCode in the level 

decoding procedure will be increased by 2. Once the final value of levelCode is 

obtained, the value of level will be determined as: if levelCode is even, level = 

(levelCode + 2) / 2. Otherwise, level = (-levelCode - 1) / 2. Finally, since the absolute 

value of level tends to be larger in the level decoding procedure, to obtain high 

compression efficiency, adaptive probability model is used depending on previous 

decoded level. As a result, by examining the absolute value of decoded level, if it is 

larger than the thresholds listed in Table 9, suffixLength must be modified to a more 

suitable value since small suffixLength is fit for small level; large suffixLength is just 

the opposite. 

The main barriers to exploit parallel decoding are inter-level dependency of 

suffixLength and the unknown demarcation between successive codewords. Although 

the codeword length can be derived in the first part of level decoding procedure as 

follows:  

xSizelevelSuffiprefixlevelngthCodewordLe  1_ 

, the updated suffixLength which affect the levelSuffixSize of next level can not be 

obtained until the value of current level is determined. However, a modified 

suffixLength detector (MSD) algorithm was presented to advance the computation of 

suffixLength prior to the determination of the value of current level [4]. Fig. 17 depicts 

the MSD decoding procedure, the input signal of MSD is level_prefix instead of the 

value of level. From the current decoding information and the level_prefix, the 

suffixLength provided for next level decoding process can be calculated in the first 

part. With this efficient algorithm, the level decoding process can be realized as Fig. 
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18 shows. However, despite the fact that the MSD algorithm shortens the critical path 

delay of level decoding process, multi-level decoding based on cascaded level 

decoders still leads to an unavoidably long critical path, and thus remains unsuitable 

for implementation. 

In our approach, to further expedite the throughput of CAVLC decoder, instead 

of straight cascading level decoders, we take advantage of MSD algorithm to exploit a 

highly performance two-level decoding architecture. In general case, the 

levelSuffixSize which indicates the codeword length of level_suffix is equal to 

suffixLength. Consequently, the start point of next level codeword in the bitstream can 

be decided as soon as the level_prefix decoding has finished. Moreover, the 

adjustment of levelCode in the second part is only applied to the first level of the 

residual block. It means that those two special conditional branches can be skipped in 

the second level decoding. Base on these two features, we propose a delay balanced 

two-level decoding (DBTLD) architecture that efficiently shortens the critical path in 

comparison to traditional design that cascades two level decoders directly.  
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Figure 16.  Original level decoding procedure defined in H.264/AVC standard. 

 

TABLE 9. THRESHOLD VALUE FOR SUFFIXLENGTH TRANSITION 

Current suffixLength Threshold value to modify suffixLength 

0 0 

1 3 
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2 6 

3 12 

4 24 

5 48 

6 N/A 

 

 

Figure 17.  MSD decoding procedure. 
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Figure 18.  Modified level decoding procedure with MSD algorithm. 

 

4.1.2 Proposed Delay Balanced Two-level Decoder Architecture 

Fig. 19 shows the block diagram of proposed DBTLD architecture. The second 

level decoding process is designed for the general case that levelSuffixSize is equal to 

suffixLength. Since the codeword length of first level can be determined immediately 

after the level_prefix is decoded, and the examination process of levelCode increment 
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is unnecessary for the second level decoding process, a balanced structure can be 

obtained.  

The first level decoding process is the same as Fig. 18 shows. For bitstream 

supplying for the second level decoding process, the input bitstream is shifted 

according to suffixLength and level_prefix_1. Afterward, instead of generating 

levelSuffixSize_2, the level_suffix_2 is parsed directly by fetching the output of first 

suffixLength_1 detector (SD_1) which is referred to the MSD algorithm. Finally, 

without checking the two special cases for increasing levelCode_2, the level mapping 

process is performed straight. Compared to the conventional approach of cascading 

two MSD algorithm based level decoders, the critical path delay of proposed DBTLD 

engine is improved by 21% (from 3.25ns to 2.56ns). 
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Figure 19.  Proposed delay balanced two-level decoding architecture. 

 

4.1.3 CAVLC Decoding Architecture Design 

Based on the DBTLD engine, the CAVLC decoding architecture is designed as 

shown in Fig. 20. In the trailing_ones_sing_flag decoding unit, all sign flags are 

scanned in one cycle. After level decoding procedure is done, all nonzero coefficients 

are stored in a 16-entry deep and 13-bit wide output buffer. Finally, in the run_before 

decoding unit, whenever a run_before symbol is decoded, the corresponding level is 

transmitted to its actual position in the output buffer. Since only one output buffer is 
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used instead of storing level and run_before information separately, to regularize the 

data transmission of output buffer, the prediction-based run_before look-up table 

combination method [7] is employed that two run_before symbols are decoded in one 

cycle except when only one run_before symbol left. Fig. 21 shows the architecture of 

residual block reconstruction. After TrailingOnes and levels are pushed in the output 

buffer in order, in each cycle, one or two level symbols are moved to their final 

locations respectively depending on the coeffsLeft and zerosLeft information. The 

movement starts from the last coefficient and ends until no more run_befores are 

decoded. The parameters coeffsLeft denotes the remaining number of nonzero 

coefficients needs to be moved, and zerosLeft represents the remaining number of 

zeros to be decoded. Table 10 shows an example for the reconstruction process. In the 

beginning, all nonzero coefficients are arranged in order, output buffer index 0 to 

(TotalCoeffs – 1). After total_zeros is decoded, coefficients are moved to the indices 

which are calculated as (coeffsLeft + zerosLeft – 1) in reverse order, and the value of 

the original position of the moved coefficient is replaced by 0. In this example, first, 

the last coefficient 1 is moved to index 8 (6 + 3 - 1), and the coefficient -1 is moved to 

index 6 (5 + 2 - 1). In the next cycle, only the one run_before symbol is valid since no 

more zeros left to be decoded, and the coefficients -2 is moved to index 4 (4 + 1 - 1).  

To further accelerate the decoding procedure, skipping mechanism is employed 

to remove redundant decoding processes: 

1) Zero block skip: When TotalCoeffs is equal to 0, the remaining decoding 

processes are skipped since nonzero coefficients do not exist in the block. 

2) Level skip: When TotalCoeffs is equal to TrailingOnes, the level decoding 

procedure is skipped since there has no nonzero coefficients left to be 

decoded. 

3) Total zeros skip: When TotalCoeffs is equal to maximum number of 
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coefficients (maxNumCoeff), the total_zeros decoding procedure and 

run_before decoding procedure is bypassed because there are no zero 

coefficients to be decoded. 

4) Run skip: When total_zeros is equal to 0 or TotalCoeffs is equal to 1, 

run_before decoding procedure is not necessary. 

Moreover, in the CAVLC decoding procedure, because coeff_token, 

trailing_ones_sing_flag, level, total_zeros, and run_before decoding units are not 

performed simultaneously, only one of them is designated to work in each cycle, to 

save power consumption, idled units are turned off by functional gating. 

 

 

Figure 20.  Proposed CAVLC decoder. 
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Figure 21.  Residual block reconstruction architecture. 

 

TABLE 10. EXAMPLE OF RESIDUAL BLOCK RECONSTRUCTION PROCESS 

Decoded Symbol coeffsLeft zerosLeft Output Buffer 

total_zeros = 3 x x 4 3 2 -2 -1 1 0 0 0 0 0 0 0 0 0 0

run_before_1 = 1  

run_before_2 = 1 
6 3 4 3 2 -2 0 0 -1 0 1 0 0 0 0 0 0 0

run_before_1 = 1  

run_before_2 = x 
4 1 4 3 2 0 -2 0 -1 0 1 0 0 0 0 0 0 0

 

4.1.4 Experimental Results 

    Table 11 shows the decoding performance of the proposed CAVLC decoder for 

different video sequences. To compare with previous works fair, we use the same 

testing environment that all the sequences with resolution of QCIF (176 x 144) are 

intra coded. The RTL simulation result shows in the low bit-rate coding like high QP 

or simple image, since the residual block is very sparse, Lee’s design [9] which only 

focus on boosting run_before decoding procedure can achieve higher decoding speed. 

However, in the high bit-rate coding, the demand for high decoding speed is actually 

necessary, our proposed design that takes both level and run_before decoding 

procedures into consideration prevails over other existing designs.  

The synthesis results of the proposed CAVLC decoder and a comparison of 
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hardware cost and decoding speed with other existing work are shown in Table 12. 

The proposed CAVLC decoder is synthesized with UMC 90nm. We enhance the 

throughput by exploiting multi-symbol decoding scheme for both level and 

run_before symbols while allowing the maximum working frequency to be about 390 

MHz with 13.88k gate count. Lin’s design [4] has minimum hardware cost, however, 

its decoding speed of the two main critical loops, level decoding procedure and 

run_before decoding procedure that dominate the overall decoding performance, is 

only one symbol per cycle, which is merely half in comparison to our design. By 

applying the prediction-based run_before look-up table combination method [7], two 

run_bofore symbols can be decoded in each cycle. Furthermore, with the DBTLD 

engine, not only two level symbols can be decoded at the same cycle, but also 21% 

critical path delay is saved in comparison to the traditional two-level decoder. Table 

13 shows the maximum frame rates (frames per second) for different Level limits 

defined in the H.264/AVC standard. According to the definition and the throughput of 

our design, we list the minimum working frequency requirement of Level in Table 14. 

The result shows that our proposed CAVLC decoder can achieve real-time decoding 

for all Level conditions. 

 

TABLE 11. COMPARISON OF CAVLC DECODING PERFORMANCE 

Video Sequence QP Bitrate(Mbps)
Average cycle/MB 

Proposed Yu [7] Lee [9] Tsai [6] 

Akiyo 

28 0.59 44 50 N/A 39 

20 1.13 75 93 N/A N/A 

12 2 117 154 N/A 143 

Foreman 

28 0.83 58 68 N/A N/A 

20 1.76 116 151 N/A N/A 

12 3.12 182 259 N/A N/A 

Mobile 28 2.21 145 194 135 150 
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20 3.66 203 300 211 N/A 

12 5.32 233 367 264 241 

News 

28 0.83 58 70 49 N/A 

20 1.53 95 125 87 N/A 

12 2.58 141 195 138 N/A 

Stefan 

28 1.5 102 133 97 106 

20 2.58 150 214 154 N/A 

12 3.94 188 282 204 201 

Average    127.13 177 148.8 146.67 

Reduction (%)      28.18 14.56 13.32 

 

TABLE 12. CAVLC DECODER IMPLEMENTATION RESULT COMPARISONS OF DIFFERENT 

DESIGNS 

Specifications Proposed Lin [4] Yu [7] Lee [9] Alle [5] Tsai [6] 

Technology 90nm 0.18um 0.18um 0.18um 0.13um 0.13um 0.18um 

Max. Frequency 385 MHz 193 MHz 213 MHz 125 MHz 125MHz 250MHz 160 MHz

Area: Logic Part 

(gate count) 
13,544 14,373 6,771 13,192 15,602 17,202 13,189 

Area: Memory Part 

(bits) 
W/O W/O W/O W/O 5,120 W/O 

Average cycle/MB 127.13 N/A 177 148.8 N/A 146.67 

     

TABLE 13. MAXIMUM FRAME RATES FOR SOME EXAMPLE FRAME SIZES 
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Level   1 1b 1.1 1.2 1.3 2 2.1 2.2 3 3.1 3.2 4 4.1 4.2 5 5.1

Max 

MBs/frame 
  99 99 396 396 396 396 792 1620 1620 3600 5120 8192 8192 8704 22080 36864

                   

Format 
Resolution 

(W x H) 

MBs

Total
                

SQCIF 128x96 48 30.9 30.9 62.5 125.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0

QCIF 176x144 99 15.0 15.0 30.3 60.6 120.0 120.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0

QVGA 320x240 300 - - 10.0 20.0 39.6 39.6 66.0 67.5 135.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0

525 SIF 352x240 330 - - 9.1 18.2 36.0 36.0 60.0 61.4 122.7 172.0 172.0 172.0 172.0 172.0 172.0 172.0

CIF 352x288 396 - - 7.6 15.2 30.0 30.0 50.0 51.1 102.3 172.0 172.0 172.0 172.0 172.0 172.0 172.0

525 HHR 352x480 660 - - - - - - 30.0 30.7 61.4 163.6 172.0 172.0 172.0 172.0 172.0 172.0

625 HHR 352x576 792 - - - - - - 25.0 25.6 51.1 136.4 172.0 172.0 172.0 172.0 172.0 172.0

VGA 640x480 1200 - - - - - - - 16.9 33.8 90.0 172.0 172.0 172.0 172.0 172.0 172.0

525 4SIF 704x480 1320 - - - - - - - 15.3 30.7 81.8 163.6 172.0 172.0 172.0 172.0 172.0

525 SD 720x480 1350 - - - - - - - 15.0 30.0 80.0 160.0 172.0 172.0 172.0 172.0 172.0

4CIF 704x576 1584 - - - - - - - 12.8 25.6 68.2 136.4 155.2 155.2 172.0 172.0 172.0

625 SD 720x576 1620 - - - - - - - 12.5 25.0 66.7 133.3 151.7 151.7 172.0 172.0 172.0

SVGA 800x600 1900 - - - - - - - - - 56.8 113.7 129.3 129.3 172.0 172.0 172.0

XGA 1024x768 3072 - - - - - - - - - 35.2 70.3 80.0 80.0 172.0 172.0 172.0

720p HD 1280x720 3600 - - - - - - - - - 30.0 60.0 68.3 68.3 145.1 163.8 172.0

4VGA 1280x960 4800 - - - - - - - - - - 45.0 51.2 51.2 108.8 122.9 172.0

SXGA 1280x1024 5120 - - - - - - - - - - 42.2 48.0 48.0 102.0 115.2 172.0

525 16SIF 1408x960 5280 - - - - - - - - - - - 46.5 46.5 98.9 111.7 172.0

16CIF 1408x1152 6336 - - - - - - - - - - - 38.8 38.8 82.4 93.1 155.2

4SVGA 1600x1200 7500 - - - - - - - - - - - 32.8 32.8 69.6 78.6 131.1

1080 HD 1920x1088 8160 - - - - - - - - - - - 30.1 30.1 64.0 72.3 120.5

2Kx1K 2048x1024 8192 - - - - - - - - - - - 30.0 30.0 63.8 72.0 120.0

2Kx1080 2048x1088 8704 - - - - - - - - - - - - - 60.0 67.8 112.9

4XGA 2048x1536 12288 - - - - - - - - - - - - - - 48.0 80.0

16VGA 2560x1920 19200 - - - - - - - - - - - - - - 30.7 51.2

3616x1536 3616x1536 21696 - - - - - - - - - - - - - - 27.2 45.3

3672x1536 3680x1536 22080 - - - - - - - - - - - - - - 26.7 44.5

4Kx2K 4096x2048 32768 - - - - - - - - - - - - - - - 30.0

4096x2304 4096x2304 36864 - - - - - - - - - - - - - - - 26.7
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TABLE 14. WORKING FREQUENCY FOR DIFFERENT LEVEL CONDITIONS 

Level Max. MBs/frame Max. MB Processing Rate (MBs/s) Working Frequency 

1 99 1,458 0.19 MHz 

1b 99 1,458 0.19 MHz 

1.1 396 3,000 0.39 MHz 

1.2 396 6,000 0.77 MHz 

1.3 396 11,880 1.52 MHz 

2 396 11,880 1.52 MHz 

2.1 792 19,800 2.52 MHz 

2.2 1,620 20,250 2.58 MHz 

3 1,620 40,500 5.15 MHz 

3.1 3,600 108,000 13.73 MHz 

3.2 5,120 216,000 27.46 MHz 

4 8,192 245,760 31.25 MHz 

4.1 8,192 245,760 31.25 MHz 

4.2 8,704 522,240 66.4 MHz 

5 22,080 589,824 74.95 MHz 

5.1 36,864 983,040 125.13 MHz 

 

4.2 Proposed CABAC Decoder 

    Since it is obvious that the main obstacle to adopting pipelining scheme for 

CABAC decoder comes from data hazards, the design of pipelining stages shall be 

considered carefully. We are concerned about whether there are factors that dominate 

the decoding performance. If the answer is affirmative, we can adjust our design to 

those cases for achieving better decoding performance. Consequently, first of all, we 

investigate the characteristics of SE parsing flow and bin distribution among SEs.  

 

4.2.1 Analysis 

The SE parsing flow is mainly dependent on conditional branches as illustrated 

in Fig. 22. Branches denoted by “*” indicate that the condition of branch and the 

current SE value are independent. In other words, the next SE type to be decoded 
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right after current SE can be decided before the current SE decoding is completed. 

Therefore, for this kind of branches, the context models used for decoding the next SE 

can be prepared in advance to prevent pipelining stall. However, most branches 

denoted by “#” are dependent on the current SE value. Not until the current SE value 

is ascertained can the next SE type be determined.  

Table 15 – Table 23 list the analyzed results of bin distribution based on the 

video sequences with HD 1920x1080, 4:2:0 color format and frame rate 30 fps 

encoded by H.264/AVC reference software JM 12.2. From the statistic, we can 

observe that the proportion of significant_coeff_flag and last_significant_coeff_flag 

can reach up to 50% of total bins. Furthermore, the SE switching rate (number of 

decoded SEs / number of decoded bins) is about 68% in average (see Table 24 – Table 

26), and over 90% of SE switches comes from the significance map. Consequently, it 

is apparent that how to deal with significant_coeff_flag and 

last_significant_coeff_flag is the key to solve the problem invoked by data hazards. 

Fig. 23 shows the architecture of our proposed CABAC decoder design. In our 

architecture, we divide the chain of operations into two stages, modified context 

model selection (MCS) stage and TSBAD stage. MCS stage contains CS and CL. 

TSBAD stage includes a two-symbol decoding engine and CU. The detailed 

description of the architecture is presented in the following subchapter. 
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Figure 22.  SE parsing flow for the H.264/AVC. 

 

TABLE 15. STATISTICAL RESULT OF BIN DISTRIBUTION WITH I CODING STRUCTURE AND 

QP28 

Syntax Element 
Video Sequence (I_QP28) Average

(%) Pedesttrian_area Riverbed Rush_hour Station2 Sunflower Tractor 

mb_type 2.48 0.88 7.12 1.88 2.15 0.77 2.55 

mb_skip_flag 0 0 0 0 0 0 0 

intra_pred_mode 9.93 8.24 11.52 11.19 12.18 6.42 9.91 

mvd 0 0 0 0 0 0 0 

coded_block_pattern 5.04 3.91 6.75 4.6 5.82 3.3 4.9 

coded_block_flag 5.91 2.96 3.9 3.17 5.35 4.5 4.3 

significant_coeff_flag 28.64 29.85 19.26 28.12 19.63 29.78 25.88

last_significant_coeff_flag 12.5 14.09 12.01 13.79 13.51 14.52 13.4 

coeff_abs_level_minus1 30.33 36.78 30.68 32.96 35.87 37.9 34.09
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TABLE 16. STATISTICAL RESULT OF BIN DISTRIBUTION WITH I CODING STRUCTURE AND 

QP20 

Syntax Element 
Video Sequence (I_QP20) Average

(%) Pedesttrian_area Riverbed Rush_hour Station2 Sunflower Tractor 

mb_type 0.49 0.27 0.84 0.43 0.56 0.26 0.48 

mb_skip_flag 0 0 0 0 0 0 0 

intra_pred_mode 4.94 4.24 6.69 5.38 6.36 3.48 5.18 

mvd 0 0 0 0 0 0 0 

coded_block_pattern 2.02 1.54 3.4 1.74 2.89 1.37 2.16 

coded_block_flag 3.58 2.93 3.28 3.23 4.53 2.89 3.41 

significant_coeff_flag 37.78 33.84 39.29 35.31 24.12 31.05 33.57

last_significant_coeff_flag 13.62 14.04 11.7 14.26 14.3 14.83 13.79

coeff_abs_level_minus1 35.77 41.9 31.83 38.18 44.78 44.98 39.57

 

TABLE 17. STATISTICAL RESULT OF BIN DISTRIBUTION WITH I CODING STRUCTURE AND 

QP12 

Syntax Element 
Video Sequence (I_QP12) Average

(%) Pedesttrian_area Riverbed Rush_hour Station2 Sunflower Tractor 

mb_type 0.15 0.11 0.23 0.17 0.19 0.11 0.16 

mb_skip_flag 0 0 0 0 0 0 0 

intra_pred_mode 3.18 3.37 3.62 3.26 3.86 2.57 3.31 

mvd 0 0 0 0 0 0 0 

coded_block_pattern 0.78 0.64 0.89 0.67 0.96 0.61 0.76 

coded_block_flag 2.2 2.02 2.44 2.03 2.5 1.81 2.17 

significant_coeff_flag 31 27.31 36.17 29.41 31.98 25.74 30.27

last_significant_coeff_flag 15.92 15.32 15.62 15.83 13.76 14.87 15.22

coeff_abs_level_minus1 46.1 50.73 40.27 48.09 45.92 53.78 47.48

 

TABLE 18. STATISTICAL RESULT OF BIN DISTRIBUTION WITH IPPP CODING STRUCTURE 

AND QP28 

Syntax Element Video Sequence (IPPP_QP28) Average
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Pedesttrian_area Riverbed Rush_hour Station2 Sunflower Tractor (%) 

mb_type 5.59 1.58 8.8 7.35 6.16 3.77 5.54 

mb_skip_flag 2.87 0.7 4.11 5.47 6.05 1.76 3.49 

intra_pred_mode 6.76 7.92 3.67 4.82 3.7 1.83 4.78 

mvd 8.11 0.86 21.6 12.92 16.13 15.4 12.50

coded_block_pattern 8.54 3.98 9.78 11.33 10.83 6.87 8.56 

coded_block_flag 5.33 2.86 2.22 3.82 3.86 4.78 3.81 

significant_coeff_flag 20.62 29.28 14.36 17.91 14.88 24.77 20.3 

last_significant_coeff_flag 10.3 13.75 7.97 8.19 8.48 10.83 9.92 

coeff_abs_level_minus1 24.88 35.82 19.15 19.65 20.49 25.63 24.27

 

TABLE 19. STATISTICAL RESULT OF BIN DISTRIBUTION WITH IPPP CODING STRUCTURE 

AND QP20 

Syntax Element 
Video Sequence (IPPP_QP20) Average

(%) Pedesttrian_area Riverbed Rush_hour Station2 Sunflower Tractor 

mb_type 1.49 0.54 2.51 1.51 3.65 0.95 1.78 

mb_skip_flag 0.59 0.25 0.92 0.57 1.64 0.34 0.72 

intra_pred_mode 2.75 4.17 3.16 0.99 1.44 0.7 2.2 

mvd 3.8 0.1 11.69 5.46 11.98 4.79 6.3 

coded_block_pattern 3.04 1.56 4.46 2.87 6.93 1.95 3.47 

coded_block_flag 4.79 2.92 3.92 4.86 5.39 4.03 4.32 

significant_coeff_flag 39.71 33.49 32.7 45.85 26.74 39.4 36.32

last_significant_coeff_flag 12.06 13.99 10.88 11.24 11.08 13.8 12.18

coeff_abs_level_minus1 29.48 41.75 26.58 24.53 27.17 32.71 30.37

 

TABLE 20. STATISTICAL RESULT OF BIN DISTRIBUTION WITH IPPP CODING STRUCTURE 

AND QP12 

Syntax Element 
Video Sequence (IPPP_QP12) Average

(%) Pedesttrian_area Riverbed Rush_hour Station2 Sunflower Tractor 

mb_type 0.37 0.21 0.4 0.38 0.59 0.32 0.38 

mb_skip_flag 0.14 0.1 0.16 0.13 0.2 0.12 0.14 

intra_pred_mode 1.97 3.36 3.42 1.49 1.54 0.88 2.11 

mvd 0.77 0.01 0.68 1.11 3.98 1.45 1.33 

coded_block_pattern 0.86 0.64 0.93 0.79 1.23 0.71 0.86 
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coded_block_flag 2.22 2.01 2.47 1.96 3.84 1.65 2.36 

significant_coeff_flag 34.46 27.3 36.83 34.92 38.19 31.13 33.81

last_significant_coeff_flag 16.51 15.29 15.72 17.02 14.71 16.61 15.98

coeff_abs_level_minus1 42.05 50.58 38.63 41.61 34.62 46.61 42.35

 

TABLE 21. STATISTICAL RESULT OF BIN DISTRIBUTION WITH IBBBP CODING 

STRUCTURE AND QP28 

Syntax Element 
Video Sequence (IBBBP_QP28) Average

(%) Pedesttrian_area Riverbed Rush_hour Station2 Sunflower Tractor 

mb_type 7.34 3.83 10.22 8.38 6.29 4.31 6.73 

mb_skip_flag 2.86 0.69 4.26 5.09 6.1 1.82 3.47 

intra_pred_mode 6.25 7.34 3.96 4.89 4.39 2.42 4.88 

mvd 6.74 2.02 20.35 13.92 14.21 14.23 11.91

coded_block_pattern 9.09 3.89 10.46 12.53 11.31 6.37 8.94 

coded_block_flag 5.62 3.04 2.67 3.74 3.9 5.01 4 

significant_coeff_flag 19.09 28.07 12.62 15.94 13.92 22.98 18.77

last_significant_coeff_flag 10.03 13.29 7.37 7.46 8.3 10.82 9.55 

coeff_abs_level_minus1 25.29 34.66 18.18 18.32 20.69 26.46 23.93

 

TABLE 22. STATISTICAL RESULT OF BIN DISTRIBUTION WITH IBBBP CODING 

STRUCTURE AND QP20 

Syntax Element 
Video Sequence (IBBBP_QP20) Average

(%) Pedesttrian_area Riverbed Rush_hour Station2 Sunflower Tractor 

mb_type 2.37 1.45 4.1 2.48 3.95 1.39 2.62 

mb_skip_flag 0.67 0.25 1.04 0.74 1.71 0.35 0.79 

intra_pred_mode 3.19 4.02 2.98 1.6 2.12 1.32 2.54 

mvd 3.39 0.33 13.41 6.74 11.05 4.47 6.57 

coded_block_pattern 3.24 1.55 4.77 3.2 6.44 1.99 3.53 

coded_block_flag 5.33 2.9 4.48 5.59 5.49 4.3 4.68 

significant_coeff_flag 35.68 33.01 28.04 40.48 23.73 35.81 32.79

last_significant_coeff_flag 12.16 13.85 10.62 11.12 11.25 13.87 12.15

coeff_abs_level_minus1 31.07 41.4 26.44 24.97 29.29 34.86 31.34
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TABLE 23. STATISTICAL RESULT OF BIN DISTRIBUTION WITH IBBBP CODING 

STRUCTURE AND QP12 

Syntax Element 
Video Sequence (IBBBP_QP12) Average

(%) Pedesttrian_area Riverbed Rush_hour Station2 Sunflower Tractor 

mb_type 0.68 0.6 0.98 0.66 1.03 0.55 0.75 

mb_skip_flag 0.14 0.1 0.16 0.14 0.22 0.12 0.15 

intra_pred_mode 1.95 3.35 2.82 1.2 1.58 1.16 2.01 

mvd 0.78 0.04 1.33 1.36 3.27 1.51 1.38 

coded_block_pattern 0.87 0.64 0.9 0.82 1.32 0.72 0.88 

coded_block_flag 2.58 2.03 2.61 2.05 4.42 1.77 2.58 

significant_coeff_flag 34.38 27.19 36.79 35.89 36.93 30.72 33.65

last_significant_coeff_flag 16.39 15.24 15.65 16.84 14.58 16.14 15.81

coeff_abs_level_minus1 41.49 50.31 37.94 40.34 35.51 46.69 42.05

 

 

Figure 23.  Proposed CABAC decoder architecture. 

 

4.2.2 MCS Stage 
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The main idea of MCS stage is to select CMs for decoding the next two bins. To 

simplify and regularize the MCS process, we restrict the two-symbol decoding to a 

single SE only so that the bin index of the first bin is always even and the second bin 

is always odd for all SEs. This restriction also matches the property of SE parser that 

can only parse SEs one by one. As a result, the assignment of CMs to next two bins is 

regular, and the calculation of CM addresses becomes much simpler. However, this 

restriction still results in drastic performance degradation due to frequent syntax 

element switching. To reduce the performance degradation while avoiding being 

burdened with hardware cost overhead, we propose an approach to predict the type of 

next SE. Since the high correlation between the features of image in spatial domain, 

the value of current SE is predictable by referring to the neighboring SEs. Thus by 

assuming that the value of current SE is the same as its latest value, we can effectively 

predict what type of SE is coming next. With the proposed scheme, the penalty of 

prediction miss is merely one cycle as illustrated in Fig. 24. Benefited by the proposed 

prediction-based method, we can achieve about 80% prediction accuracy in average 

as shown in Table 24 – Table 26. Note that Hit Rate = (number of prediction hits) / 

(number of decoded SEs). 

To further improve the accuracy of prediction, we merge all symbols of the 

significance map which is composed of significant_coeff_flag and 

last_significant_coeff_flag as an individual SE by exploiting their decoding regularity 

since significant_coeff_flag and last_significant_coeff_flag account for over 90% of 

prediction miss. As a result, predictions for the branches right after 

significant_coeff_flag and last_significant_coeff_flag are not necessary anymore. 

Compared with the predictor which does not perform SE merging, the combination of 

SE merging method and prediction-based method can achieve about 17% higher 

prediction accuracy in average, as shown in Table 24 – Table 26. Moreover, for high 
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bit-rate coding such as QP equaling to 12, the prediction accuracy can reach over 

99%. 

After applying the SE merging method, the bin index transition of significance 

map can be summarized in Table 27, and the binarization matching condition becomes 

when current bin is last_significant_coeff_flag and its bin value is 1, or the current bin 

index meets the final bin index (((binIdx % 2 = 1) && (binVal = 1)) || (binIdx = 

numCoeff - 1) ). From this table, we can observe that only one case that nextBinIdx 

equals to (binIdx + 2) takes place when current symbol is significant_coeff_flag and 

its bin value is 0 ((binIdx % 2 = 0) && (binVal = 1)). As a result, CM selection and 

assignment for significance map can still only depend on the bin index of next two 

bins. 

 

 

Figure 24.  Pipeline scheduling of (a) prediction miss and (b) prediction hit. 
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TABLE 24. IMPROVEMENT OF PREDICTION ACCURACY USING THE PROPOSED METHODS 

WITH I CODEING STRUCTURE 

Video Sequence 

(I) 

Q

P

SE Switching 

Rate 

(%) 

Hit Rate (%) 

Without SE Merging With SE Merging 

Pedesttrian_are

a 

28 72.89 79.08 95.66 

20 74.06 80.53 98.22 

12 67.88 80.73 99.51 

Riverbed 

28 70.04 80.89 97.7 

20 68.98 82.08 98.8 

12 62.66 82.54 99.71 

Rush_hour 

28 65.66 81.45 95.67 

20 73.78 82.68 97.71 

12 72.96 78.95 99.39 

Station2 

28 71.29 79.01 97.14 

20 72.15 81.07 98.53 

12 65.76 81.66 99.66 

Sunflower 

28 65.71 81.32 95.42 

20 64.1 83.3 97.52 

12 65.33 82.65 99.55 

Tractor 

28 71.01 80.12 97.13 

20 67.39 82.81 99.26 

12 59.61 83.53 99.84 

Average 68.4 81.36 98.13 

 

TABLE 25. IMPROVEMENT OF PREDICTION ACCURACY USING THE PROPOSED METHODS 

WITH IPPP CODEING STRUCTURE 

Video Sequence 

(IPPP) 

Q

P

SE Switching 

Rate 

(%) 

Hit Rate (%) 

Without SE Merging With SE Merging 

Pedesttrian_are

a 

28 65.95 79.47 92.65 

20 75.38 79.48 96.6 

12 72.24 79.09 99.39 
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Riverbed 

28 69.36 80.85 97.53 

20 68.73 81.98 98.72 

12 62.66 82.54 99.7 

Rush_hour 

28 55.23 79.8 91.63 

20 67.77 79.39 95.57 

12 73.98 78.6 99.29 

Station2 

28 63.73 79.67 91.67 

20 79.36 78.2 96.77 

12 73.15 79.17 99.53 

Sunflower 

28 61.66 79.77 90.46 

20 67.01 77.8 93.09 

12 74.95 78.02 98.76 

Tractor 

28 64.46 77.5 93.13 

20 75.01 78.08 97.78 

12 67.86 81.16 99.71 

Average 68.81 79.48 96.22 

 

TABLE 26. IMPROVEMENT OF PREDICTION ACCURACY USING THE PROPOSED METHODS 

WITH IBBBP CODEING STRUCTURE 

Video 

Sequence 

(IBBBP) 

Q

P

SE Switching Rate 

(%) 

Hit Rate (%) 

Without SE Merging With SE Merging

Pedesttrian_are

a 

28 64.11 79.65 92.14 

20 72.68 79.4 96.11 

12 72.3 78.93 99.38 

Riverbed 

28 67.09 80.66 97.24 

20 67.87 81.97 98.69 

12 62.47 82.54 99.7 

Rush_hour 

28 54.4 80.68 90.98 

20 64.16 79.35 94.71 

12 73.73 78.37 99.23 

Station2 

28 61.45 80.58 91.88 

20 75.94 78.23 96.03 

12 73.82 78.84 99.53 

Sunflower 
28 61.46 79.96 89.99 

20 64.56 78.7 93.08 
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12 73.89 78.59 98.61 

Tractor 

28 63.18 78.02 93.08 

20 72.16 79.07 97.71 

12 66.78 81.31 99.72 

Average 67.34 79.71 95.99 

 

TABLE 27. BIN INDEX TRANSITION RELATION IN SIGNIFICANCE MAP 

Current Flag Bin Value Next Flag Next binIdx

SIG[i] 0 SIG[i+1] binIdx + 2 

SIG[i] 1 LAST[i] binIdx + 1 

LAST[i] 0 SIG[i+1] binIdx + 1 

LAST[i] 1 X X 

a. i denotes scanning position 

b. SIG denotes significant_coeff_flag 

c. LAST denotes last_significant_coeff_flag 

 

To sum up, for successive two bins, the position of the second bin in a SE may 

be binIdx_plus1 (binIdx + 1) or binIdx_plus2 (binIdx + 2). It means that by giving two 

possible CMs, the second bin can be decoded according to the necessary CM chosen 

by its actual bin index. Furthermore, by means of the prediction-based mechanism, 

the CMs of predicted next SE and the CMs of current SE can be calculated in parallel. 

In the end that the value of current SE is confirmed, if the actual result matches what 

we presume, the CABAC decoder can keep processing without stall. Otherwise, the 

pipeline has to be stalled for recalculating the context models of next SE. Therefore, 

we employ two CS modules to calculate SRAM memory address (Addr_SRAM) and 

Register memory addresses (Addr1_REG and Addr2_REG) in parallel, one for current 

SE and another one for predicted next SE. For the CS module of next SE, only bin 

indices 0, 1, and 2 are taking into account, since in the next cycle, it will be transfer 

into current SE, and thus the calculation for bin indices which are larger than 2 is 
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redundant. As a result, instead of doubling the hardware to satisfy the requirement that 

calculating CM memory addresses for current SE and next SE at the same time, 

unnecessary calculation in the prediction module is removed and the hardware cost 

overhead is thus suppressed. Finally, the result of BM will determine which one is 

chosen for CL. Furthermore, because the CM provided for the first bin decoding 

(CM_bin1) may comes from the SRAM or the Register port 1 (CM_S or CM_R1), and 

CM provided for the second bin decoding (CM_bin2) may comes from the Register 

port 1 or the Register port 2 (CM_R1 or CM_R2), an additional selective signal 

(CM_sel) which is SE-dependent is also transmitted from MCS stage to TSBAD 

stage. 

 

4.2.3 Context Model Memory Design 

In the proposed MCS stage design, to reach the destination of loading 3 specific 

CMs and storing updated CMs in the same cycle, the design of CM memory shall be 

considered carefully. On the premise that one clock domain is used, the first way to 

implement CM memory is to use single-port SRAM. The advantage of single-port 

SRAM is its low hardware cost. However, single-port SRAM can not perform read 

operation and write operation simultaneously. Therefore, the operations of CL and CU 

have to be separated, which results in extra one cycle. Yi et al. [11] proposed a 

context model reservoir (CMR) structure to resolve the conflict between CL and CU 

caused by structural hazard. CMR is a cache-liked structure. Several context models 

that are probably used are cached in CMR. This allows the decoder to postpone CU 

and enables the parallel processing of CS and CL. Although the CMR structure is 

effective, the decoding is stalled for two cycles when CMR switching takes place.  

Another way to implement CM memory is to use dual-port SRAM. The 

hardware cost of dual-port SRAM is higher in comparison to single-port SRAM. In 
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spite of the advantage that the read operation and write operation can be performed in 

the same cycle, only one context model can be loaded at every access. Consequently, 

one single dual-port SRAM can not meet our requirement. A Context Table 

Reallocation Scheme is presented in [14] to read two CMs at once by dividing the CM 

memory into two parts: a General Context Memory and Extended Context Memory. 

However, it does not always work since the reallocation is only designed for specific 

SEs. 

Storing all context models in register is the most convenient way to implement 

context model memory due to the access of register is extreme free. Nevertheless, the 

expense of hardware cost is too high. Thus, we propose a more suitable approach to 

implement the CM memory with hardware cost consideration while maintaining the 

decoding performance. In the proposed flow, because the two-symbol decoding 

procedure is restricted to a single SE only, the CL for some SEs are simple such as 

flag-type SE that only one context model (CM_bin1) is necessary for TSABD and the 

other context model (CM_bin2) is redundant. For example, there are three candidate 

CMs used for decoding transform_size_8x8_flag. However, only one of them is 

necessary for TSBAD since transform_size_8x8_flag is composed of one single bin. 

Thus, the CL for the second bin can be skipped, and only one CM for the first bin has 

to be concerned. For this type of SEs, a dual-port SRAM is sufficient to support CL 

and CU. However, for the other SEs like significance map, the CL is much more 

complicated. When decoding significance map, the next two bins to be decoded may 

be two significant_coeff_flag (SIG[i], SIG[i + 1]), one significant_coeff_flag and one 

last_significant_coeff_flag (SIG[i], LAST[i]), or one last_significant_coeff_flag and 

one significant_coeff_flag (LAST[i], SIG[i + 1]). Therefore, two CMs of 

significant_coeff_flag CM set and one CM of last_significant_coeff_flag CM set have 

to be loaded from CM memory concurrently; moreover, two of them must be updated 
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and write back. Because of the limitation of number of port of SRAM, it is impossible 

to realize the desired purpose by a dual-port SRAM. It seems that all register based 

memory is the only solution. 

Fortunately, for the different complexities of CL, it is reasonable to load CMs 

from different sources and assign them to TSBAD stage according to the SE type and 

the bin indices of next two bins. As a result, we reorganize the 459 CMs by applying 

the following principle. For every set of CMs, if two CMs of each set are never used 

for TSBAD simultaneously, it is stored in dual-port SRAM; otherwise, it is stored in 

registers. For instance, to satisfy the requirement for loading three CMs (one for 

last_significant_coeff_flag and two for significant_coeff_flag) from the CM memory 

and perform storing operation in the same cycle, significant_coeff_flag CM set can be 

stored in register while last_significant_coeff_flag CM set can be stored in SRAM as 

illustrated in Fig. 25. Guided by the principle, the organization of CM memory is 

listed in Table 28 and Table 29. After memory addresses are derived, one CM is 

loaded from SRAM and two CMs are loaded from register at the same time. Our 

proposed hybrid CM memory, about half is dual-port SRAM and half is register, not 

only avoids structural hazards caused by CM reading and writing but also reduces the 

hardware cost overhead significantly in comparison to the implementation of all 

register approach. 
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Dual-port SRAM Register

Two-symbol 
Decoding Engine

significant_flaglast_flag

SIG[i] + SIG[i+1]
or

SIG[i] + LAST[i]
or

LAST[i] + SIG[i+1]

1 CM for LAST[i] 2 CMs for SIG[i] and SIG[i+1]

Hybrid Memory
 

Figure 25.  Memory operation in the significance map decoding process. 

 

TABLE 28. CONTENT OF SRAM AFTER REORGANIZATION OF OUR PROPOSAL 

Address CM Index Syntax Element 

0-2 0-2 mb_type (SI) 

3-5 11-13 mb_skip_flag (P/SP) 

6-8 24-26 mb_skip_flag (B) 

9-11 70-72 mb_field_decoding_flag 

12-31 85-104 coded_block_flag 

32-171 

166-226,

338-398,

417-425,

451-459,

last_significant_coeff_flag

172-201 

227-231,

237-241,

247-251,

257-261,

266-270,

426-430,

coeff_abs_level_minus1 

(First bin) 

202-204 399-401 transform_size_8x8_flag 
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TABLE 29. CONTENT OF REGISTER AFTER REORGANIZATION OF OUR PROPOSAL 

Address CM Index Syntax Element 

0-7 3-10 mb_type (I) 

8-14 14-20 mb_type (P/SP) 

15-17 21-23 sub_mb_type (P/SP) 

18-26 27-35 mb_type (B) 

27-30 36-39 sub_mb_type (B) 

31-44 40-53 Mvd 

45-50 54-59 ref_idx 

51-54 60-63 mb_qp_delta 

55-58 64-67 intra_chroma_pred_mode 

59 68 prev_intra_pred_mode_flag

60 69 rem_intra_pred_mode 

61-72 73-84 coded_block_pattern 

73-224 

105-165,

277-337,

402-416,

436-450,

significant_coeff_flag 

225-253 

232-236,

242-246,

252-256,

262-265,

271-275,

431-435,

coeff_abs_level_minus1 

(First bin excluded) 

 

4.2.4 TSBAD Stage 

In the TSBAD stage, first, CM_bin1 and CM_bin2 provided for the first bin 

decoding and the second bin decoding, respectively, is chosen by the selective signal 

(CM_sel). Afterward, in the bin decoding procedure, the updated CMs (CM_update1 

and CM_update2) are written back into CM memory, and the decoding parameters, 

interval range and coding offset, are refreshed. Eventually, the values of two bins are 

passed to the BM module to derive the value of SE and check whether the current SE 

decoding is done or not.  



 63

Following the two-symbol binary arithmetic decoding engine, the final step of 

this stage is the BM process that maps the constructed binary sequence to nonbinary 

value. Therefore, the main critical path of this stage occurs in bin value decision of 

TSBAD engine. In the binary arithmetic decoding procedure, two parameters should 

be derived and delivered to decode the next bin. One is the updated range and the 

other is the updated offset. In the traditional TSBAD engine, where two BADs are 

cascaded directly, the inter-bin dependency of range (R) and offset (O) leads to an 

unavoidably long critical path. In order to improve decoding performance, a new 

mathematical transform method for TSBAD procedure is proposed to shorten the 

critical path. In this thesis, only regular decoding is discussed since implementation of 

bypass and terminate decoding is much simpler. 

According to the H.264/AVC standard, the bin value decision is dependent on 

OLPS. If OLPS is negative, the binVal is identified as MPS; otherwise, the binVal is 

identified as LPS. For OLPS to be calculated, a sequential procedure is defined in the 

standard like Fig. 26(a) shows. To obtain RMPS, it is necessary to run through a 

256-to-1 multiplexer first and then do the subtraction. However, a mathematical 

reordering method [15] can be adopted as follows:  

LPSLPSMPSLPS RRORROROO  )()( 

In Eq. (3), although RMPS = R - RLPS can not be obtained until RLPS is selected by 

accessing the look-up table, however, since both R and O are ready in the beginning, 

the computation of (O - R) and the table look-up for RLPS can be operated in parallel. 

As a result, benefited by the calculation reordering, a balanced structure can be 

utilized for reducing the delay of bin value decision process as depicted in Fig. 26(b). 

We extend the concept of Eq. (3) to two-symbol two-stage computation. 
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According to Eq. (3), we perform the mathematical transform for the second bin 

decision process as shown in Fig. 27, where R’LPS and O’LPS represent RLPS and OLPS 

of the second stage, respectively. For the reason that OLPS and (O - R) are already 

calculated in the first bin decision process, the delay of a subtractor can be further 

eliminated. Note that OLPS and (O - R) have to be shifted 1 to 7 bits according to RLPS 

since there is a renormalization process between the first bin and the second bin 

decision procedure.  

Fig. 28 shows the detailed architecture of proposed TSBAD engine. In the first 

bin decision scheme, state index (stateIdx) and MPS value (valMPS) are extracted 

from CM_bin1. The parameters with word “renorm” denote that they are left-shifted 

by the renormalization process. The shift amount of MPS case is 0 or 1 depending on 

the most significant bit of RMPS, whereas the shift amount of LPS case lies in the 

range 1 to 7. To pass the shifted OLPS and (O - R) to the second bin decision scheme as 

soon as possible, a table-driven selector is utilized to derive the shift amount of LPS 

case. In the second bin decision scheme, both cases for previous bin being MPS and 

LPS are calculated in parallel. With regard to CM_bin2, it has to be set to the updated 

CM_bin1 when CM_bin2 and CM_bin1 are the same. For the reason that the second 

bin decision process is a parallel working, on the premise that knowing what previous 

bin is, instead of waiting the updated value of CM_bin1 is determined, we can access 

RLPS table immediately and the delay of 64-to-1 multiplexer can be eliminated thus. 

By using this feature, four possible LPS intervals are selected while performing the 

first bin decoding procedure. As a result, the main critical path of the second bin 

decoding is a 4-to-1 multiplexer and an adder. Finally, the value of the second bin is 

chosen by the most significant bin of OLPS in the first bin part. Note that the updating 

of R, O, and CM in the second bin decision scheme is not depicted since it is similar 

to the one in the first bin decision scheme. With the proposed mathematical transform 
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method, the critical path delay of TSBAD engine is further improved by 28% (from 

3.14ns to 2.26ns) compared with the traditional TSBAD engine. 

 

 

Figure 26.  Mathematical reordering. (a) O – (R - RLPS). (b) (O - R) + RLPS. 
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Figure 27.  Mathematical transform for the second bin decision process. 
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Figure 28.  Architecture of proposed two-symbol arithmetic decoding engine. 

 

4.2.5 Experimental Results 

    Table 30 – Table 32 show the decoding performance of the proposed architecture 

for different video sequences with different coding structure and QP. All the 

sequences with resolution of HD 1920x1080, 4:2:0 color format and frame rate of 30 

fps are encoded by H.264 reference software JM 12.2. With the prediction-based 
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mechanism and SE merging method, the RTL simulation result shows that the 

proposed design can decode 1.71 bins per cycle in average with the drop in decoding 

speed between optima and actuality under 0.1 bins per cycle. Furthermore, for high 

bit-rate coding such as QP equaling to 12, the actual decoding speed almost reaches 

optimal decoding speed. 

    According to the maximum macroblock processing rate (MB/s) constrain of 

specified Level defined in the standard, the minimum working frequency requirement 

for different Level in listed in Table 34. The result shows that our proposed CABAC 

decoder can support Level 5.1real-time decoding. 

    The synthesis results of the proposed architecture and a performance comparison 

with previous works are shown in Table 33. By applying the mathematical transform 

method, the proposed architecture can efficiently reduce the critical path delay and 

allows the maximum working frequency to be about 264 MHz. The throughput of the 

proposed design is 451.4 Mbins/sec in average, which is superior to other existing 

designs. Although Lin’s design [13] can achieve higher average bin/cycle; however, it 

requires roughly two times area overhead when compared to our design. With the 

proposed hybrid CM memory architecture, the total gate count of our design is 42.37k, 

which achieves 48.6% hardware cost reduction in comparison to the all register based 

architecture.  

 

TABLE 30. CABAC DECODING PERFORMANCE OF THE PROPOSED ARCHITECTURE WITH I 

CODING STRUCTURE 

Video Sequence 

(I) 
QP 

Bitrate 

(Mbps) 

Throughput

(bin/s) 
Decoding Cycle Penalty

Optimal 

Decoding Speed 

(bin/cycle) 

Actual 

Decoding Speed

(bin/cycle) 

Pedestrian_area 
28 16.26 21,186,892 12,624,603 670,968 1.678 1.594 

20 49.82 66,633,779 36,914,531 876,602 1.805 1.763 
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12 138.03 182,974,773 98,927,974 605,139 1.85 1.838 

Riverbed 

28 26.42 34,409,411 19,380,322 553,485 1.775 1.726 

20 70.29 94,251,652 51,595,049 781,238 1.827 1.8 

12 170.71 229,357,197 123,838,778 421,887 1.852 1.846 

Rush_hour 

28 8.78 11,213,016 6,741,175 318,614 1.663 1.588 

20 28.12 38,699,528 21,545,044 654,886 1.796 1.743 

12 111.16 151,595,001 81,372,224 679,297 1.863 1.848 

Station2 

28 19.7 24,381,140 13,942,414 496,822 1.749 1.689 

20 58.64 77,158,534 42,358,072 816,608 1.822 1.787 

12 152.41 203,271,631 109,701,718 451,180 1.853 1.845 

Sunflower 

28 17.12 21,086,788 12,373,604 634,349 1.704 1.621 

20 39.64 49,516,552 28,037,895 786,138 1.766 1.718 

12 109.78 148,622,187 80,223,469 433,019 1.853 1.843 

Tractor 

28 32.62 41,408,756 23,643,415 844,159 1.751 1.691 

20 80.45 104,694,644 57,634,937 522,491 1.817 1.8 

12 177.02 236,538,032 127,715,701 228,696 1.852 1.849 

Average         1.79 1.76 

 

TABLE 31. CABAC DECODING PERFORMANCE OF THE PROPOSED ARCHITECTURE WITH 

IPPP CODING STRUCTURE 

Video Sequence 

(IPPP) 
QP 

Bitrate 

(Mbps) 

Throughput

(bin/s) 
Decoding Cycle Penalty

Optimal 

Decoding Speed 

(bin/cycle) 

Actual 

Decoding Speed

(bin/cycle) 

Pedestrian_area 

28 6.24 8,243,604 5,096,931 399,656 1.617 1.5 

20 29.54 39,925,740 22,531,263 1,021,723 1.772 1.695 

12 125.65 167,323,465 90,263,065 734,579 1.854 1.839 

Riverbed 

28 25.6 33,793,858 19,033,689 577,882 1.775 1.723 

20 69.18 93,001,166 50,914,635 815,699 1.827 1.798 

12 170.25 229,139,086 123,698,211 431,383 1.852 1.846 

Rush_hour 

28 4.23 5,759,310 3,571,634 266,172 1.613 1.501 

20 19.46 25,637,361 14,569,250 769,343 1.76 1.671 

12 108.29 148,073,162 79,495,164 777,936 1.863 1.845 

Station2 

28 2.97 4,323,558 2,776,874 229,535 1.557 1.438 

20 29.02 41,714,033 23,398,501 1,070,737 1.783 1.705 

12 131.7 176,574,564 95,089,541 602,285 1.857 1.845 

Sunflower 28 2.9 3,913,585 2,522,353 230,268 1.552 1.422 
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20 11.51 14,473,353 8,612,806 670,697 1.68 1.559 

12 87.76 116,421,680 63,687,024 1,082,948 1.828 1.797 

Tractor 

28 10.6 13,428,740 7,986,431 594,672 1.681 1.565 

20 52.77 70,588,463 38,960,452 1,173,367 1.812 1.759 

12 155.65 203,467,876 109,714,968 405,875 1.855 1.848 

Average          1.75 1.69 

 

TABLE 32. CABAC DECODING PERFORMANCE OF THE PROPOSED ARCHITECTURE WITH 

IBBBP CODING STRUCTURE 

Video Sequence 

(IBBBP) 
QP 

Bitrate 

(Mbps) 

Throughput

(bin/s) 
Decoding Cycle Penalty

Optimal 

Decoding Speed 

(bin/cycle) 

Actual 

Decoding Speed

(bin/cycle) 

Pedestrian_area 

28 6.18 7,996,797 4,963,851 403,129 1.611 1.49 

20 26.48 33,865,563 19,296,701 957,390 1.755 1.672 

12 122.27 158,460,245 85,712,717 706,222 1.849 1.834 

Riverbed 

28 25.95 33,157,233 18,739,109 613,915 1.769 1.713 

20 69.51 90,186,496 49,414,413 799,758 1.825 1.796 

12 170.56 221,804,661 119,855,332 419,247 1.851 1.844 

Rush_hour 

28 3.96 5,359,183 3,361,522 262,862 1.594 1.479 

20 17.3 21,880,212 12,574,561 742,208 1.74 1.643 

12 106.46 141,397,927 76,048,399 799,083 1.859 1.84 

Station2 

28 3.09 4,487,035 2,896,824 223,772 1.549 1.438 

20 22.71 30,697,181 17,486,212 924,615 1.756 1.667 

12 124.92 164,313,863 88,365,185 565,193 1.859 1.848 

Sunflower 

28 2.81 3,747,747 2,425,104 230,656 1.545 1.411 

20 10.95 13,361,034 7,942,264 596,995 1.682 1.565 

12 81.97 106,090,796 58,346,381 1,085,765 1.818 1.785 

Tractor 

28 10.2 12,561,227 7,479,415 548,993 1.679 1.565 

20 51.34 65,822,524 36,557,868 1,087,536 1.801 1.748 

12 152.29 194,679,968 104,946,453 362,293 1.855 1.849 

Average          1.74 1.68 

 

TABLE 33. CABAC DECODER IMPLEMENTATION RESULT COMPARISONS OF DIFFERENT 

DESIGNS 
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Specifications Proposed Lin [13] Chen [14] Chang [17] 

Technology 
UMC 

90nm 

UMC 

90nm 
0.13um 

TSMC 

0.18um 

Max. Frequency 264 MHz 222 MHz 238 MHz 250 MHz 

Gate Count 42,372b 82,445 43,600 35,615 

Average bin/cycle 1.71 1.96 1.32 0.64 

Throughputa 

(Mbins/sec) 
451.4 435.1 314.2 160.0 

a. Throughput = (maximum frequency) * (average bin/cycle) 

b. Hybrid CM memory included 

 

TABLE 34. WORKING FREQUENCY FOR DIFFERENT LEVEL CONDITIONS 

Level Max. MBs/frame Max. MB Processing Rate (MBs/s) Working Frequency 

4 8192 245,760 44 MHz 

4.1 8192 245,760 44 MHz 

4.2 8704 522,240 92 MHz 

5 22080 589,824 104 MHz 

5.1 36864 983,040 173 MHz 
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Chapter 5 EXTENDING TOWARDS SVC 

 

    Recently, Scalable Video Coding (SVC), the next-generation video coding 

standard inherited from the H.264/AVC has been standardized [18]. It provides spatial 

scalability, temporal scalability, and quality scalability by transmitting a single 

bitstream containing subset bitstreams which can be transmitted and decoded partially 

depending on the transmission environments and decoding capabilities of endpoints 

such as video devices with different screen resolution and power limitation. Relative 

to the scalable profiles of prior video coding standards, the increased degree of 

scalability supported by SVC achieves significant improvements in coding efficiency 

and provides enhancement to transmission and storage applications. However, the 

throughput requirement for entropy decoder becomes stricter. As a result, further 

search for a suitable entropy decoder design for SVC is necessary.  

 

5.1 Design Target and Design Challenges 

    The parsing procedure of SVC is more complex than of H.264/AVC, moreover, 

to support quality scalability, the two entropy decoding cores CAVLC decoder and 

CABAC decoder we design for H.264/AVC have to be modified. In SVC, two 

approaches are specified to provide SNR scalability: coarse-grain quality scalability 

(CGS) and medium-grain quality scalability (MGS). For CGS coding, quality 

refinement is achieved by applying different quantization parameter to quality 

enhancement layer, and the differences between transform coefficients are encoded in 

the slice data. In the definition of reference software, up to 7 CGS layers can be used 

for SNR scalability. In addition, as difference of QP (DQ) rises, the residual blocks 
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become denser. Even though the transform coefficients of quality enhancement layer 

are general small, the large amount still imposes a higher throughput requirement on 

entropy decoder for SVC than for H.264/AVC. With regard to MGS coding, the 

transform coefficients can be partition into up to 16 MGS layers to achieve finer 

granularity. However, the partition of transform coefficients changes the residual 

block structure. Therefore, additional look-up tables are introduced in CAVLC and 

VLC to maintain coding efficiency.  

Our target is to develop a SVC entropy decoder which can support 3 spatial 

layers, maximum resolution 1920x1080, 3 temporal layers, maximum frame rate 60 

fps, and 3 CGS quality layers real-time SVC decoding at working frequency 135 MHz. 

To conquer the barrier of throughput requirement, two sets of entropy decoder engine 

are employed, one for quality layers and another one for non-quality layers. The detail 

is presented in the following.  

 

5.2 Proposed Entropy Decoder for SVC 

Fig. 29 shows the system level architecture of proposed entropy decoder for SVC. 

Since the context-based adaptive modeling for entropy decoder is limited in a single 

slice, the two entropy decoding engines can work in parallel. To realize this 

architecture, we have to distinguish quality enhancement layer bitstream from 

non-quality enhancement layer bitstream. Fortunately, NAL units (slices) are 

separated by start code 0x00000001 in H.264. Therefore, we employ the bitstream 

scanner to quickly detect the start points of quality enhancement layers and 

non-quality enhancement layers and transmitted the addresses to the bitstream 

fetchers. Furthermore, to reduce the hardware cost overhead, a simplified CABAC 

decoder for quality enhancement layer is proposed. In quality enhancement layer, only 
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quality refinement information exists, while macroblock information is inherited from 

base layer. As a result, only mb_skip_flag, coded_block_pattern, 

transform_size_8x8_flag, mb_qp_delta, coded_block_flag, significance map, and 

coeff_abs_level_minus1 SEs have to be decoded when decoding quality enhancement 

layer. Consequently, to satisfy the strict throughput requirement while maintaining 

low hardware cost, we propose a simplified CABAC decoder for decoding quality 

enhancement layer. As shown in Table 35 and Table 36, unused CMs are removed 

from the CM memory. The complete CM memory used for base layer is shown in 

Table 37 and Table 38. To further reduce the hardware cost, unnecessary storage of 

neighboring SEs used for context model selection is also removed. 120x99 bits 

memory space using for storing upper macroblock information such as mvd and 

mb_type can be saved. As to the CALVC decoder, since it is designed for decoding 

residual block information inherently, no simplification can be performed. Table 39 

summarizes the synthesis results of proposed entropy decoder. It was synthesized with 

UMC 90nm technology with 135MHz. The simplified CABAC decoder can 

significantly save the memory area that 82.5% hardware cost reduction of memory is 

achieved in comparison to the original CABAC decoder. 
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Figure 29.  Framework of proposed entropy decoder for SVC. 

 

TABLE 35. CONTENT OF SRAM FOR SVC QUALITY ENHANCEMENT LAYER 

Address CM Index Syntax Element 

0-2 11-13 mb_skip_flag (P/SP) 

3-5 24-26 mb_skip_flag (B) 

6-25 85-104 coded_block_flag 

26-165 

166-226,

338-398,

417-425,

451-459,

last_significant_coeff_flag

166-195 

227-231,

237-241,

247-251,

257-261,

266-270,

426-430,

coeff_abs_level_minus1 

(First bin) 

196-198 399-401 transform_size_8x8_flag 
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TABLE 36. CONTENT OF REGISTER FOR SVC QUALITY ENHANCEMENT LAYER 

Address CM Index Syntax Element 

0-3 60-63 mb_qp_delta 

4-15 73-84 coded_block_pattern 

16-167 

105-165,

277-337,

402-416,

436-450,

significant_coeff_flag 

168-196 

232-236,

242-246,

252-256,

262-265,

271-275,

431-435,

coeff_abs_level_minus1

(First bin excluded) 

 

TABLE 37. CONTENT OF SRAM FOR SVC BASE LAYER 

Address CM Index Syntax Element 

0-2 0-2 mb_type (SI) 

3-5 11-13 mb_skip_flag (P/SP) 

6-8 24-26 mb_skip_flag (B) 

9-11 70-72 mb_field_decoding_flag 

12-31 85-104 coded_block_flag 

32-171 

166-226, 

338-398, 

417-425, 

451-459, 

last_significant_coeff_flag

172-201 

227-231, 

237-241, 

247-251, 

257-261, 

266-270, 

426-430, 

coeff_abs_level_minus1 

(First bin) 

202-204 399-401 transform_size_8x8_flag 

205-207 1024-1026 base_mode_flag 

208 1027 mation_prediction_flag_l0
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209 1028 mation_prediction_flag_l1

210 1029 residual_prediction_flag 

 

TABLE 38. CONTENT OF REGISTER FOR SVC BASE LAYER 

Address CM Index Syntax Element 

0-7 3-10 mb_type (I) 

8-14 14-20 mb_type (P/SP) 

15-17 21-23 sub_mb_type (P/SP) 

18-26 27-35 mb_type (B) 

27-30 36-39 sub_mb_type (B) 

31-44 40-53 Mvd 

45-50 54-59 ref_idx 

51-54 60-63 mb_qp_delta 

55-58 64-67 intra_chroma_pred_mode 

59 68 prev_intra_pred_mode_flag

60 69 rem_intra_pred_mode 

61-72 73-84 coded_block_pattern 

73-224 

105-165,

277-337,

402-416,

436-450,

significant_coeff_flag 

225-253 

232-236,

242-246,

252-256,

262-265,

271-275,

431-435,

coeff_abs_level_minus1 

(First bin excluded) 

 

TABLE 39. SYNTHESIS RESULTS 

Component Working Frequency
Area: Logic Part

(gate count) 

Area: Memory Part

(bits) 

CAVLC Decoder 135 MHz 11,726 5,520 

CABAC Decoder 135 MHz 37,885a 14,400 

Simplified CABAC Decoder 135 MHz 32,821a 2,520 
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Neighbor Fetcher 135 MHz 27,723 W/O 

Bitstream Scanner 135 MHz 9,248 W/O 

Bitstream Fetcher 135 MHz 4,139 W/O 

SE Parser 135 MHz 20,722b 16,704 

a. Hybrid CM memory included 

b. SE Register included 
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Chapter 6 CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion 

    In this thesis, to achieve high decoding performance and low hardware cost 

real-time entropy decoding systems, a high-throughput and fully hardwired entropy 

decoder for H.264/AVC is proposed. Our proposed entropy decoder architecture 

makes six main contributions: 

1) Unlike previous multi-symbol CAVLC decoding architecture, which only 

accelerate the decoding procedure of run_before symbols, our proposed 

CAVLC decoder can further elevate the throughput by applying the delay 

balanced two-level decoding (DBTLD) architecture that can decode two level 

symbols in one cycle and shortens the critical path delay by 21% in 

comparison to the conventional approach of cascading two level decoders, 

and allows the maximum working frequency to be about 390 MHz. 

2) To further accelerate decoding procedure, a skipping mechanism is proposed 

to remove redundant decoding processes and provide an early termination of 

current residual block decoding procedure. Moreover, in the CAVLC 

decoding procedure, since only one of coeff_token, trailing_ones_sing_flag, 

level, total_zeros, and run_before decoding units is assigned to work in each 

cycle, idled units are turned off by functional gating to reduce power 

consumption. 

3) A fully hardwired CABAC decoder design which combines SE parsing with 

decoding is proposed. By taking advantage of the characteristics of SE 

parsing flow and bin distribution among SEs, we design a prediction-based 
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pipelined architecture to accelerate the CABAC decoding procedure without 

stall for most case. The prediction hit rate can achieve 96.78% in average and 

over 99% in high bit-rate coding. 

4) Our proposed hybrid CM memory architecture not only avoids structural 

hazards caused by CM reading and writing but also reduces the hardware 

cost overhead significantly by 48.6% in comparison to the implementation of 

all register approach. 

5) With the proposed mathematical transform method, the critical path delay of 

TSBAD engine is efficiently improved by 28% compared with the traditional 

TSBAD engine, and allows the maximum working frequency to be about 264 

MHz. The throughput of the proposed CABAC decoder can achieve 451.4 

Mbins/sec in average. 

6) We extend our entropy decoder towards SVC extension of H.264/AVC. At 

the working frequency 135 MHz, our proposed entropy decoder can support 

3 spatial layers, maximum resolution 1920x1080, 3 temporal layers, 

maximum frame rate 60 fps, and 3 CGS quality layers real-time SVC 

decoding. 

 

6.2 Future Work 

High Efficiency Video Coding (HEVC), so-called H.265 is currently under 

development by Joint Collaborative Team on Video Coding (JCT-VC) of MPEG and 

VCEG. As a successor to H.264/AVC, HEVC is targeted at next-generation HDTV 

displays with Super Hi-Vision and aims to reduce bit-rate requirement by half in 

comparison to H.264/AVC. However the improved coding efficiency usually 

accompanies with the expense of increased computational complexity. As a result, to 
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achieve real-time coding system, further search for a hardware-friendly entropy 

coding algorithm is necessary.
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