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Abstract

Nowadays, the 3D image processing has become a trend in the related visual
processing field. Many automatic 2D to 3D conversion algorithms have been
proposed to solve the lack of 3D content. But there is still no fast algorithm that
converts single monocular images well.

In this thesis, we propose a. fast conversion algorithm that includes the image
segmentation, image classification, object-boundary tracing method, and 3D image
generation. The image segmentation adopts the watershed method to easily collect the
information of depth cue. Then, the image classification recovers the geometry of
scene in the image. With the depth cue and geometry information, the object boundary
tracing method is proposed to detect objects in image efficiently. Finally, the object
result is used to generate depth map and 3D anaglyph image.

To evaluate the results, we compare the stereo images with other 2D to 3D
conversion systems. Experiment result shows that the proposed 2D to 3D conversion
algorithm could perform better than the associated ones in the depth accuracy and

processing speed for converting monocular images.
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Chapter 1. Introduction

1.1.Background

Three-dimensional (3D) video provides a dramatic enhancement in the viewing
experience compared with two-dimensional (2D) video. 3D television (3D TV)
applications will bring another revolution in TV’s history. The successful introduction
of 3D TV to the consumer market relies on not only the technological advances but
also the availability of 3D content. Due to the lack of 3D content, converting 2D
video to 3D video is a promising solution to the 3D. TV industrialist, especially for the
traditional 2D videos

Recovering 3D information from 2D image 1s a basicproblem in computer vision.
Many depth cues can be used to extracted 3D information from 2D image, but each
cue has its own advantages and disadvantages for-different conditions.

Many depth cue fusion-based methods have been proposed to solve this problem.
Iinuma et al. [1] use the defocus cue to evaluate the depth by a single image and the
motion cue to convert the image. Cheng et al. [2] use the geometry cue and motion
cue to evaluate the depth. The simple concept and low computational complexity of
those methods have enabled it to be adopted real-time application. However, those
methods cannot perform well for the single monocular images and the scene with
complex motion.

Another approach is pattern recognition-based method. In this method, every
region in the image is categorized into several classes, and every region is assigned
depth according to types of the class. Battiato et al. [3] classify images into indoor,

1



outdoor with geometric elements, or outdoor without geometric elements, and use the
information collected in the classification step to estimate the depth. Even through
this method could generate the high quality result for single monocular image, this
method cannot perform well for many types of scenes. Hoiem et al. [4] classify image
as several classes. They use classified information, boundary and region, to detect the
objects of image, and assign a specific depth to each object according to its classes.
This method can generate high quality result for many types of scene, but its

boundary extraction and object detection suffer from high computational complexity.

1.2. Motivation and Contribution

Motivated by above issues, we propose an efficient 2D to 3D conversion algorithm
for monocular images in this thesis. This proposed algorithm includes image
segmentation, image classification, object boundary tracing method, and 3D image
generation. The image segmentation adopts the watershed method to collect the
information of depth cue. Due to -oversegmentation problem of watershed
segmentation, we use texture and color information to merge segments. Then, we
apply image classification to recover the geometry of scene in the image. In order to
detect object in the image efficiently, we propose the object boundary tracing method
that could quickly detect object boundary with geometry information. Finally, we
apply results of object segmentation and image classification to assign depth for each
object and synthesis stereo images by using the depth-based image rendering (DIBR)
algorithm.

The contributions of the thesis include

1. We propose an efficient 2D to 3D conversion algorithm.

2. We proposed an object boundary tracing algorithm to detect the objects of
2



single image.

1.3.Thesis Organization

In Chapter 2, we introduce existing important methods for a 2D to 3D conversion
system. In Chapter 3, we present the proposed object segmentation algorithm. In
addition, the details of the depth assignment algorithm and the depth-based image
rendering (DIBR) algorithm are illustrated. In Chapter 4, we compare the 3D results
with related work, and demonstrate the execution time. Finally, we give the conclusion

and future work of this thesis in Chapter 5.



Chapter 2. Previous Work

An important step in a 3D system is the 3D content generation. Several special
cameras have been designed to generate 3D content directly. A depth-range camera
[35] is an example, which is a conventional video camera with a laser element. A
depth-range camera can simultaneously capture a two-dimensional RGB image and a
depth map that could provide the depth information for the RGB image. This
technique described above can directly generate 3D content, but the amount of
traditional media data are in 2D format and demand depth information to be converted
to 3D videos. Therefore, a 2D to 3D video conversion algorithm is necessary.

There are many different 2D to 3D.conversion algorithm has been developed.
Each algorithm has its own strength and weaknesses. Most algorithms take advantage
of different depth cues to generate depth maps. In the following section, we will
introduce each depth cue and many 2D to 3D systems:that combine many depth cues
to recovery depth information.

The structure of the chapter is as follows. In 2.1, we introduce algorithms that use
a single depth cues. In 2.2, we introduce algorithms that use the depth cue
fusion-based method. In 2.3, we introduce algorithms that use the pattern

recognition-based method.

2.1.Various Depth Cues

Humans can straightforward determine depth from single monocular image
according to experiences, which contains many monocular cues, such as defocus,

texture gradients, linear perspective, contextual information. For example, objects in



images nearer or farther than focus are blurred, and sky in image is infinitely far away.
In addition, motion parallax also is useful information to determine the depth of object.
For the sequences with camera translational motion, the near objects move faster than
the far objects. Depth from those cues has been developed from several years. In the

Section 2.1, we introduce the principle and associated algorithms of each depth cue.

2.1.1. Depth from Camera Motion

With two images of the same scene captured from slightly different view point,
the depth from camera motion can be utilized to recover the depth of an object. The
relative motion between the viewing camera and the observed scene also provides an
binocular disparity cue for depth:perception. First, a set of corresponding points in a
pair of image is found. Then, we can: retrieve. depth information by using the
triangulation method when all camera parameters are known. If only intrinsic camera
parameters are known, the depth can be recovered to a scale factor. If no camera
parameters are known, the resulting depth-is correct up to a projective transform. In
most cases, no camera parameters are known from 2D video. Thus, we must recover
camera parameters by self-calibration [5].

The typical framework in [6] using the depth from camera motion is a three-stage
procedure, which is composed of feature tracking [7], structure from motion [8], and
dense reconstruction. This method can extract absolute depth from 2D video with
camera motion. However, in order to retrieve an accurate depth map in the dense
reconstruction stage, the stereo matching algorithms [9] [10] must be used but suffer
from high computational complexity. Another way to solve this problem is the
realistic stereo-view synthesis (RSVS) [11]. It combines both the structure from

motion and the idea of image-based rendering (IBR) [12] to achieve
5



photo-consistency without relying on dense depth estimation.
However, for still background, a scene may contain dynamic element, i.e.
independent moving object. Such condition is difficult to recover camera parameters

and extract depth information.

2.1.2. Individual Moving Objects

Individual moving object (IMOs) also is a depth cue in the 2D to 3D conversion
system. In some cases, motion vector maps can be directly used as depth maps. This
approximation holds when objects moving are with the same speed. Ideses et al. [13]
extract motion vector maps from compressed 2D video, and use this information to
compute depth map. However, there are many cases in which the approximation does
not hold. This happens when an object without motion ot not with constant speed.

Moving object segmentation also is a useful method for 2D to 3D conversion
system. In this approach Kunter et al. [14] extracts the foreground objects by moving
object segmentation algorithm [15], and assign depth for foreground objects. However,

multiple occluding objects or objects with only little motion are difficult to detect.

2.1.3. Defocus

Cameras and eyes have limited depth of focus, so images of objects nearer or
farther than focus are blurred. In other words, the amount of blur in an image is
directly related to image defocus caused by the optics of the eye or camera that
captures it, and can be formed a depth cue.

If a scene can be described by simply estimating which objects are in front, and
which are behind those objects but are not part of the background, and what is

completely in the background, we can estimate a relative depth map by taking into
6



account image blur and its relation to the focus degree in edges that compose objects.
The typical algorithm of the depth from focus cue [16] uses spatial frequency
measurement. When an object of an image is defocused, it will have a large
attenuation of its high spatial frequency, and when the object in a scene is focused, its
high frequency component will not be attenuated and hence its sharp detail will be
present as fast changes in the spatial frequency domain.
However, this method is just suitable for the close-up image, and it cannot

perform well for another images.

2.1.4. Linear Perspective

Linear perspective refers to the fact that parallel lines, such as railroad tracks,
appear to converge with distance, eventually reaching a vanishing point at horizon.
The more the lines converge, the farther away they appear to be. A representative
work is the gradient plane assignment approach proposed by Battiato et al. [3]. Their
method performs well for single images-containing sufficient objects of a rigid and
geometric appearance. In this method, first, the edge detection is employed to locate
the predominant lines in the image. Then, the intersection points of these lines are
determined. The intersection with the most intersection points in the neighborhood is
considered to be the vanishing point. The vanishing points are marked as the major
lines close to these. The major lines close to the vanishing point are assigned a larger
depth value and the density of the gradient planes is also higher.

This method is suitable for the man-made scene which contains many long and

parallel lines.



2.1.5. Texture

Texture also offers a good 3D impression because of the two key ingredients: the
distortion of individual texels and individual texture region. The latter is also called
texture gradient. For example, a tiled floor with parallel lines will appear to have tilted
lines in an image. The distant patches will have larger variations in the line
orientations, and nearby patches will have smaller variations in line orientations.
Similarly, a grass field when viewed at different distances will have different texture
gradient distributions.

Texture cue is useful information to detect the depth of planar surface. If the
surface is non-planar, shape-from-texture algorithms [19], [20] can be applied to
reconstruct the 3D shape of object surface. However, the current algorithms cannot be

applied to real-time application.

2.1.6. Relative Height

Relative height cue also offers the depth information of image. Generally, the
closer objects in real world are projected into the lower part in a 2D image plane.
Many photographic images, especially scenery images, have the height cue. Jung et al.
[21] proposed a real-time 2D-to-3D conversion framework using the relative height
cue, and many pattern recognition-based algorithms [22], [23], [27] also regard the

positions of image as a cue.

2.1.7. Statistical Patterns

Statistical patterns are the elements which occur repeatedly in images. When the

number or the dimension of the input data is large, the machine learning techniques
8



can be an effective way to solve the problems. In recent years, as a tool to estimate
depth maps, the machine learning has been receiving increasing interest. Especially
supervised learning applies training data with the ground truth to distinguish the
geometry of scene, depth of scene, and stage of scene. As well as a set of
representative and sufficient training data, good features and suitable classifiers are all
essential ingredients for satisfactory results. More details of statistical patterns method

1s described in Section 2.3.

2.2 Depth Cues Fusion-based Method

In Section 2.1, we introduce many depth cues from 2D video. Each cue can
recover depth information fromwideo sequence, but it has its own advantages and
disadvantages for different conditions. Séveral 2D to 3D systems fuse many depth
cues to solve this problem. In Section 2.2, we introduce two important fusion-based

methods for real-time application.

2.2.1. SANYO 2D to 3D Conversion Adaptive Algorithm

The 2D-to-3D image conversion technique using the “Modified Time Difference
method” (MTD) [24] had been developed in 1995. To convert from 2D video into 3D
video, the MTD select another frame to be a stereo-pair according for each frame.
The selection criterion is based on the object motion in the successive frames.

The 2D images, having the objects with simple horizontal motion, can be
converted into 3D images by the MTD well. However, it is not good for converting
from the still images or the images that have the objects with complicated motions. So
the technique converting from these 2D images into 3D images is required.

The “computed image depth method” (CID) [25] has been developed to solve this
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subject. The CID allows to converting from single monocular 2D images into 3D
images, and the CID uses the defocus cue to extract depth information. They compute
contrast, sharpness and chrominance of the image to extract the defocus cue. The
sharpness means the high frequency component of the image luminance. The contrast
means the middle frequency component of the image luminance. The chrominance
means the hue and tint of the image color. The 3D images are generated by computing
the depth cue of each separated area of the input 2D. In the CID, first the adjacent
areas, which have close color, are grouped according to the chrominance values. Then
the distance from the camera to the objects is computed, and it should be inversely
proportional to the contrast and sharpness values. The close-up images can be
converted into 3D images by the CID, but it is-not good for converting from other
types of images.

These techniques have been implemented into a single-chip LSI for the automatic
and real-time 2D-to-3D image conversion, -and can output 3D image according to

various 3D displays from various input images, like NTSC, PAL, HDTV, and VGA.

2.2.2. Hybrid Depth Cueing System

The hybrid depth cueing system [2] had been developed in 2009. The depth
generation method consists of the depth from motion parallax (DMP) and the depth
from geometrical perspective (DGP). And the depth fusion-based method is used to
combine DMP and DGP according to adapted weighting factors. Finally, the DIBR
renders multiple views with various view angles for 3D displays.

The DMP module is the central core of the system. The DMP consists of the
following two processes.

One is the camera motion analysis process, which analyzes cameras motions of
10



consecutive video frames. 4-parameter global motion estimation [36] is used between
all the continuous frame pairs. Then, the most suitable frame in frame buffer is
selected and is warped to form parallel view configuration with the current frame. The
other is the disparity estimation process that generates the depth map according to the
image pair. Block-based motion estimation is used between selected image pair.
Disparity map is retrieved when static scene with camera translational motion. When
the scene happen individual moving objects, motion vector is used as a depth cues.

The visual effect is that moving objects will pop-up and catch more attention. The

depth was estimated by \/MV ,* + MV °

In order to adapt this technique to the automatic and real-time 2D-to-3D image
conversion, they had improved. the DMP. to handle more complex motion cases than
the MTD. But the DMP could not perform well for the video that has changing focal
length or dynamic scene.

When the depth information cannot derive from the motion information,
monocular depth cue become an important issue in depth generation. Depth from
geometrical perspective (DGP) classifies the scene into multiple modes by scene line
structure detection. The major types are horizontal lines and vanishing lines. Fig. 2.1

shows multiple scene modes that DGP classifies.

Fig. 2.1. Multiple scene modes using depth from geometry [2]

But the DGP is only suitable for background region in the image. If the DMP
cannot work, the DGP is not good enough to generate good visual effect.
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Finally, fusion-based method is used to combine both depth maps. The weighting
factor is adjusted that depending on the camera motion analysis module. When
camera is panning depth can be retrieved from motion parallax efficiently. Weight for

DMP will adjust to larger.

2.3 Pattern Recognition-based Method

Even through the depth cues fusion-based methods mentioned in Section 2.2 could
be used for real-time application, they still have problem in depth from monocular
images. Pattern recognition-based methods are more suitable to solve this problem.
Nedovic et al. [18] categorize the input image into various types and limited number
of stages in each type to simplify the problem. But this method only computes the
background of depth map. Saxena et-al. [22] [23] also. presented a method to learn
absolute depth from single images based on low-level features, but this method only
suitable for outdoor scene. In the following, we introduce two methods. The first
method is proposed by Battiato et‘al. [3].-It-is suitable for real-time application, but it
cannot assign depth for all objects in the image. The second method is proposed by
Hoiem et al. [4]. This method is suitable for most cases of image, but it has high

computational complexity.

2.3.1 Depth-Map Generation by Image Classification

This algorithm [3] is performed on a single color image, and does not need any
prior knowledge about image content. It is also claimed to be fully unsupervised and
suitable for real-time applications. In this algorithm, two intermediate depth maps, the
qualitative depth map and the geometric depth map, are constructed.. In the end, these

two depth maps are combined together to generate the final depth map.
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generate geometric depth
map
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Depth map fusion

Fig. 2.2. block diagram of algorithm [3]

Fig. 2.2 shows the block diagram of -algorithm [3]. At first, mean shift
segmentation algorithm is usedto partition image. Then, in order to generate
qualitative depth map, color-based rules are used to identify six semantic regions: Sky,
Farthest Mountain, Far Mountain, Near Mountain, Land and Other. Each semantic
region is assigned a depth level, which corresponds to a certain gray level following
the trend: Gray of Sky < Gray of Furthest Mountain < Gray of Far Mountain < Gray
of Near Mountain < Gray of Land < Gray of Other.

In third stage, The qualitative depth map is then sampled column-wise. Each
column is represented by a label sequence, which is labeled from top to down, and
each region present in the column. After all the sequences in the image have been
generated, they are plugged into a counting process to obtain the number of accepted

sequences. Finally, they use the number of accepted sequences to classify the image
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into three categories: outdoor, outdoor with geometric appearance and indoor.

They also apply linear perspective cue. Different vanishing line detection
strategies are applied according to the category to which the image belongs. For
Outdoor scenes, the vanishing point is put in the center region of the image and a set
of vanishing lines passing through the vanishing points are generated. For the
categories Indoor and Outdoor with geometric appearance, a more complex technique
is applied. Edge detection and line detection are conducted to determine the main
straight lines. The vanishing point is chosen as the intersection point with the most
intersections around it while the vanishing lines are the predominant lines passing
close to the vanishing point.

After the vanish point detection, taking the position of the vanishing point into
account, a set of horizontal or vertical gradient planes is assigned to each neighboring
pair of vanishing lines. The resultant image is termed the geometric depth map. Then,
the qualitative depth map is checked for consistency. False classified semantic regions
are detected and corrected.

Finally, the final depth map of indoor category image is just the geometric depth
map. For outdoor without geometric appearance, the final depth map is qualitative
depth map. For the image category of outdoor with geometric appearance, the final
depth of pixel is assigned the depth value in the geometric depth map for all cases,
except when it is a sky, it then adopts the depth value in the qualitative depth map.

The natural images and man-made structure can be converted into 3D images by
this method. But it is not good for converting images that contain non-definition

object.
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2.3.2 Recovering Major Occlusion Boundaries

Single-view 3D reconstruction is a popular research in computer vision. Even
though they are not ready for real-time application due to high computation
complexity, their qualities are good enough to use. An algorithm of Hoiem [4] et al.
describes the property of the regions and boundaries in the image, and the 3D surfaces
of the scene using learned model. Their representation includes a wide variety of cues:
color, position, and alignment of region; strength and length of boundaries; 3D
surface orientation estimates; and depth estimate. In a conditional random field (CRF)
model, they also encode gestalt cues, such as continuity and closure, and enforce
consistency between our surface and boundary labels.

To provide an initial conservative hypothesis of the occlusion boundaries, they
apply the watershed segmentation algorithm to the soft boundary map provided by the
pB algorithm of Martin et al."[26].. This segmentation produces thousands of regions
that preserves nearly all true boundaries: In-training, they assign ground truth to this
initial hypothesis. Given a new image, their task is to group the small initial regions
into objects, and assign figure/ground labels to the remaining boundaries.

To get a final solution, they could simply compute cues over each region and
boundary, and perform a single segmentation and labeling step. However, the small
regions from the initial over-segmentation do not allow the more complicated cues,
such as depth, to be reliable. Furthermore, global reasoning with these initial
boundaries is ineffective because most of them are spurious texture edges.

Their solution is to gradually evolve their segmentation by iteratively computing
cues over the current segmentation and using them with our learned models to merge

regions that are likely to be part of the same object. In each iteration, the growing
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regions provide better spatial support for complex cues and global reasoning. And
better spatial support can improve their ability to determine whether remaining
boundaries are likely to be caused by occlusions. See Fig. 2.3 for an illustration. Each
iteration consists of three steps based on the image and the current segmentation: 1)
compute cues; 2) assign confidences to boundaries and regions; and 3) remove weak

boundaries, forming larger regions for the next segmentation.

Initial Segmentation ) Occlusion Cues Soft Boundary Map Mext Segmentation

Fig 2.3. Illustration of the recovering major occlusion boundaries algorithm. [4]
In most cases, 2D images can be converted into 3D images by this method, but it
is not good for real-time application. In their Matlab implementation, this algorithm
takes about 4 minutes for a”600x800 image on a 64-bit 2.6GHz Athalon running

Linux.
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3. 3D Image Construction from 2D Image

3.1. Algorithm Overview

Original
image

Left view

Right view

Fig. 3.1. Flow of the proposed 2D to 3D conversion system.
In this chapter, we propose a fast and effective 2D to 3D conversion algorithm
with the pattern recognition-based method. Fig. 3.1 illustrates the flow of the 2D to 3D
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conversion system, which consists of three main processes: object-based segmentation,
depth assignment, and 3D image construction.

For the object-based segmentation, we first use the watershed segmentation
algorithm to compute the initial segmentation. Even though the watershed
segmentation can preserve object boundary well, it has problems of over segmentation
and sensitivity to noise. Due to oversegmentation problem that produces from
watershed segmentation, fast neighbor merge process is used to solve this. At the third
step, we use the surface layout algorithm [10] to provide the geometric information
for object detection. At the fourth step, inspired by the recovering occlusion
boundaries method in [4], we propose the object boundary tracing method to detect
object efficiently. After the object boundary tracing method, there are still some
incomplete object segments.. Thus, we perform the constraint segmentation, which
builds some conditions to merge segments. After the constraint segmentation process,
the object-based segmentation is done.

Finally, we assign the depths to the objects, and use the DIBR algorithm [28] to

generate the images for left and right eyes.

3.2. Object-based Segmentation

3.2.1 Initial Segmentation

In the proposed 2D to 3D conversion system, a precise estimation of object
boundary is important. Thus a proper choice of image segmentation algorithm is also
important in our case. We adopt watershed image segmentation from all existing
image segmentation algorithms for the two reasons: (1) it can preserve edge in the

object boundary [37]; (2) it is suitable for fast application [38].
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Gradient computation
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Fig. 3.2. Flow of the initial segmentation process.

Fig. 3.2 shows the stages in the initial segmentation. The aim of the first stage is
to reduce noise in image, as well as to smooth image. At the second stage, the
gradient of the smoothed image is calculated using the Gaussian filter derivatives.
Then, the gradient magnitude is calculated.-At the final stage, the gradient magnitude
is thresholded appropriately and watershed transform produces an initial image

partition.

3.2.1.1. Noise Reduction and Gradient Computation

At the first stage of the initial segmentation, we use a Gaussian filter to smooth the
image slightly before computing image gradient. In order to compensate for
digitization artifacts, we always use a Gaussian with the o of 0.8. It does not produce
any visible change to the image but help remove artifacts.

At the second stage of the initial segmentation, the gradient field of the smoothed

image is computed. The derivitave of Gaussian with the ¢ of 1.0 and the support size
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of 9x9 is used to compute the gradient of the smoothed image L, and Ly. Finally, the
gradient magnitude image G(l) is calculated by following formula

G(p) = L) + |Ly ()] 3.1)
3.2.1.2. Watersheds Segmentation

In this stage, an initial image partitioned into primitive regions is obtained using
the image gradient magnitude and watershed algorithm. Watershed segmentation is a
popular and well known algorithm that extracts regions as catchment basins based on
the concept of topography. The gradient image of the input image is used as the
topographic surface in which the gradient value represents the altitude. The
segmentation of an image finds<the watershed line on the gradient image and thus
separates each region. In the following, we briefly describe the parallel watershed
transform proposed by Giovani et al. [29].

The algorithm is composed of the four major steps, finding the lowest neighbor of
each pixel (i.e. direct path of steepest descent), finding the nearest border of internal
pixels of plateaus, propagating uniformly from the borders, and minima labeling by
maximal neighbor address and pixel labeling by flooding from minima. Fig. 3.3
presents a parallel watershed transform, where | is the input image, and lab is the
output labeled image that is also used for storing addresses. The statement for all

denotes that every iteration can be processed in parallel.

// First Step
1: PLATEAU < o0
2:forallp € Ddo
if 3g € N(p) : I(q) < I(p) and 1(q) = minvg’eN(p)I(q’) then
lab(p) < -q
else
lab(p) < PLATEAU
end if
8: end for
// Second step
9: while lab is not stable do

W

AR A
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10:  lab’ < lab
11: forallp € D: lab(p) = PLATEAU do

12: if 3g € N(p) : lab(q) <=0 and I(q) = I(p) then
13: lab’(p) < -q
14: end if
15:  end for
16: lab < lab’
17: end while
// Third step

18: basins < 1
19:forp € Ddo
20:  if lab(p) = PLATEAU then

21: lab(p) < basins
22: basins < basins + 1
23: QUEUEPUSH(p)
24: while QUEUEEMPTY/( ) = False do
25: q < QUEUEPOP()
26: foru € N(q) do
27: if lab(u) = PLATEAU then
28: lab(u) < lab(p)
29: QUEUEPUSH(u)
30: end if
31: end for
32: end while
33:  endif
34: end for
// Fourth step

35:forp € Ddo
36: iflab(p) <=0 then

37: qg<p

38: while lab(g) <=0 do
39: q < -lab(q)
40: end while

41: u<p

42: whileu # gdo
43: V < u

44: u < -lab(u)
45: lab(v) < lab(q)
46: end while

47.  endif

48: end for

Fig. 3.3. Pseudo code of the parallel watershed transform [29].
The watershed transform is applied to the thresholded gradient magnitude image
Gr, where the pixels of G having value smaller than a given threshold T are set to zero.
That is

_{G(), if Gp)>T
Gr(P) _{ 0, otherwise (3.2)
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Due to thresholding, many of the regional minima of G located in homogeneous
region are replaced by fewer zero-valued regional minima in Gr. It could slightly limit
the size of the initial image partition is to prevent over-segmentation in homogeneous

region. Fig. 3.4 shows the results of the initial segmentation process.

(b)

Fig. 3.4. The results of the initial segmentation process. (a) original image. (b)

gradient.image. (c).initial segmentation.

3.2.2 Fast neighbor merge

In addition to the above over-segmentation reduction method, there still remain
neighboring regions that be merged into a meaningful segmentation, Fast neighbor
merge method is used to guarantee that segments are large enough.

Fig. 3.5 shows the stages of the Fast neighbor merge method. The aim of the first
stage is the cue computation. Those cues are color and texture. At the second stage,

we use those cues to decide whether the segment could be merged or not.
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Fig. 3.5. Flow of the Fast neighbor merge method.

3.2.2.1  Cues Computation

Saturation

0

Fig. 3.6. Illustration of the HSV color space.

In the fast neighbor merge algorithm, a precise estimation of color distance is
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important. Thus a proper choice of color space is important in our case. In our case we
consider the Hue-Saturation-Value (HSV) color space [30], because it is very similar
to the human perception of colors. Fig. 3.6 is Illustration of the HSV color space.
Conceptually, the HSV color space is a cone. Viewed from the circular side of the
cone, the hues are represented by the angle of each color in the cone relative to the 0°
line, which is traditionally assigned to be red. The saturation is represented as the
distance from the center of the circle. Highly saturated colors are on the outer edge of
the cone, whereas gray tones (which have no saturation) are at the center. The value is
determined by the colors vertical position in the cone. At the pointy end of the cone,
there is no brightness, so all colors are black. At the fat end of the cone are the
brightest colors.

Color transformation from RGB to-HSV color space is done by the following

max = max(r, g,b) (3.3)
min = min(r, g, b) (3.4)
( 0°%-if max = min
60° X (g —b)/(max —min) +0° if max=rand g = b
h = 1 60° X (g —b)/(max — min) + 360°, if max=rand g <b (3.5)
60° X (b —r)/(max —min) + 120°, if max =g
60° X (r — g)/(max — min) + 240°, if max = b
_{ 0, if max =0 (3.6)
~ l(max — min) /max = min/max, otherwise '
v = max (3.7)

Color difference E.;; between two points pi[hi, si, vi], pi[hj, Si, vi] in the HSV

space is given by the formula[31]
E..j=1-1/V5 ((vi — vj)z + (v;s; cos(h;) — s cos(hj))2 + (v;s; sin(hy) —

v/s/sin/y212 (3.9)
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For every segment, we compute average RGB value, and transform average RGB
value to HSV color space. Then, we compute color difference for every neighboring
segment.

Another cue is texture. Similarly to color, texture provides a cue for the geometric
class of a segment through its relationship to materials and objects in the world.

To represent texture, we apply a subset of the filter bank designed by Leung and
Malik [32]. We generated the filters with the following parameters: 19x19pixel
support, the scale of V2 for oriented and blob filters, and 6 orientations. For the filter
bank, there are 6 edges, 6 bars, 1 Gaussian, and 2 Laplacian of Gaussian filters.

We compute the histogram (over pixels within a segment) of maximum responses.
Then, we compute the symmetrized Kullback-Leibler divergence Er;; for every
neighboring segment.

Finally, we compute the cost function E which is' combine color and texture
information for every neighbor segments by the formula,

E = aEyij+PErij, (3.9)

where a, f are the weighting factors to control the amount of each energy.

3.2.2.2  Neighbor Merge

In this stage, we use connected components for segment merge. Connected
components are the simplest method of image segmentation. During the Connected
components process, if their cost E is smaller than some threshold values, two
neighboring segments are merged. The key parameter in the connected components
process is the threshold T. We use the following iterative method to determine the
threshold T:

1. An initial threshold T is chosen.
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2. If the cost of neighboring segment is smaller than the threshold T, we will merge
neighboring segment.

3. Turn up the threshold T.

4. Go back to step 2, and replace the threshold T. Keep repeating until the number of

segment is smaller than a constant Ns, 1000.

Fig. 3.7 shows the results of the fast neighbor merge process.

Fig. 3.7. The results of the fast neighbor merge process. (a) Original image. (b) Initial

segmentation. (¢) The result of this-process.

3.2.3 Surface Layout

Fig. 3.8. Surface layout [27]. On these images and elsewhere, main class labels are indicated
by colors (green=support, red=vertical, blue=sky) and subclass labels are indicated by
markings (left/up/right arrows for planar left/center/right, ‘O’ for porous, ‘X’ for solid).
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Surface layout proposed in [27] can label the image into geometry classes, which
coarsely describe the 3D scene orientation of each image region as shown in Fig. 3.8.
Every region in the image is categorized into one of three main classes: “support”,
“vertical”, and “sky”. Support surface are parallel to the ground and could potentially
support a solid object. Vertical surfaces are solid surfaces that are too steep to support
an object. The sky is the image region corresponding to the open air and clouds. Vertical
class is further categorized into one of five subclasses: “left”, “center”, “right”,
“porous”, and “solid”. Planar surfaces facing to the “left”, “center” or “right” of the
viewer, and non-planar surface that are either “porous” or “solid”.

We believe that surface layout representation is useful information for us to detect
object in the image. Fig. 3.9 shows the stages of the surface layout. At first, image is
partitioned to many superpixels, and-we compute cues for each superpixels. In order
to have better result, multiple segmentation is used, so same-label likelihood is
computed to be cost information for merge segment. After multiple segmentation,
homogeneity likelihood is computed for each segment, and it is used to determine that
segment is homogeneity or not. Label likelihood is also computed for each segment
and superpixel to determine that segment belongs to which category. Finally, Bayes
theorem applies label likelihood and homogeneity likelihood to compute the label
confidence for each superpixel. We will briefly describe the stages in following

section.
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Fig. 3.9. Flow of the surface layout.

3.2.3.1 Superpixels

The use of superpixels improves the computational efficiency of our algorithm, and
allows complex statistics to be computed for enhancing our knowledge of the image
structure. Different from original algorithm in [34], we adopt our initial segmentation

as superpixels.

3.2.3.2 Cues computation

To determine which orientation is most likely, we need to use all of the available
cues: location, color, texture, perspective. In Table 3.1, we list the set of statistics used

for classification.
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Table 3.1. Statistics computed to represent superpixels [27]

Surface Cues

Location

L1. Location: normalized x and y, mean

L2. Location: normalized x and y, 10th and 90th pctl

L3. Location: normalized y wrt estimated horizon, 10th, 90th pctl

L4. Location: whether segment is above, below, or straddles estimated horizon
L5. Shape: number of superpixels in segment

L6. Shape: normalized area in image

Color

C1. RGB values: mean

C2. HSV values: C1 in HSV space
C3. Hue: histogram (5 bins)

C4. Saturation: histogram (3 bins)

Texture
T1. LM filters: mean absolute response (15 filters)

T2. LM filters: histogram of maximum responses (15 bins)

Perspective

P1. Long Lines: (number of line pixels)/sqrt(area)

P2. Long Lines: percent of nearly parallel pairs of lines

P3. Line Intersections: histogram over 8 orientations,.entropy

P4. Line Intersections: percent right of image center

P5. Line Intersections: percent above image center

P6. Line Intersections: percent far from image center at 8 orientations

P7. Line Intersections: percent very far from image center at 8 orientations

P8. Vanishing Points: (num line pixels with vertical VP membership)/sqrt(area)
P9. Vanishing Points: (num line pixels with horizontal VP membership)/sqrt(area)
P10. Vanishing Points: percent of total line pixels with vertical VP membership
P11. Vanishing Points: x-pos of horizontal VP - segment center (0 if none)
P12. Vanishing Points: y-pos of highest/lowest vertical VP wrt segment center

P13. Vanishing Points: segment bounds wrt horizontal VP

P14. Gradient: x, y center of mass of gradient magnitude wrt segment center

3.2.3.3 Same-label Likelihoods

Same-label likelihoods learned from training images. The same-label classifier
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outputs an estimate of P (yi = yjll ) for the adjacent superpixels 7/ and j and image

data |. Here y; and y; are the superpixel label. The same-label classifier is based on
cue set L1, L6, C1-C4, and T1-T2 in Table 3.1. In Table 3.2 we list the set of statistics
used for computing same-label likelihoods.

Table 3.2. Statistics computed over pairs of superpixels

Boundary cues

Location

the absolute differences of the pixel location values x and y

Color

C1. the absolute differences of the mean RGB

C2. the absolute differences of the mean HSV

C3. the symmetrized Kullback-Leibler divergence of the hue

C4. the symmetrized Kullback-Leibler divergence of the saturation

Texture
T1. the absolute differences of the mean LM filter response

T2. he symmetrized Kullback-Leibler divergence of texture histogram

Shape
S1. the ratio of the area

S2. the fraction of the boundary length divided by the perimeter of the smaller superpixel

S3.the straightness of the boundary

3.2.3.4 Multiple Segmentations

The increased spatial support of superpixels provides much better classification
performance than for pixels. Large regions are required to effectively use the more
complex cues. We need to compute multiple segmentations and then use the increased
spatial support provided by each segment to better evaluate its quality. This method is

based on pairwise same-label likelihoods. A diverse sampling of segmentations is

produced by varying the number of segments /% and using a random initialization.
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3.2.3.5 Label Likelihood Computation

The label classifier is used to distinguish among the main classes and the

subclasses, and it is based on all of the listed cues. The label classifier output the

estimate of P (()7} |I, sj))for the segment Sj.

3.2.3.6 Homogeneity Likelihood Computation

The homogeneity classifier is used to determine whether a segment has a single or
is mixed, and it is based on all of the listed cues. The homogeneity classifier output

the estimate of P(sj |I ) for the segment s;.

Sl

Support Vertical Sky
gﬁ ' -
Left Center Right Porous Solid

Fig. 3.10. The result of the confidence images for each of the surface labels.

3.2.3.7 Label Confidences Computation

In final stage, we compute label confidences for each superpixel, and use

following formula:
P(yilD) o« X5 P(Fi|1,5;)P(s;]1) (3.10)

Fig. 3.10 shows the result of the confidence images for each of the surface labels.

31



3.2.4 Object Boundary Tracing Method

There are many features that could be used to detect the object boundary, and we
describe below. Adjacent regions have different colors or textures, or are misaligned;
long and smooth boundaries with strong color or texture gradients; two adjacent
regions have different 3D surface characteristics.

Until now, we extract many features that could be used to detect object, but how
to use them efficiently? Local method is difficult to distinguish the correct boundary,
while global method has high computational complexity due to much iteration.
Therefore, we propose an object boundary tracing method to solve this problem. Fig.
3.11 shows the stages of the objeet boundary tracing method. The aim of the first
stage is the initial boundary selection,-and ‘obvious object boundaries are labeled using
the rule-based method. At the second stage, the rest of object boundaries are traced
from the initial boundaries. At the third stage, segments without object boundary are

merged
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Fig. 3.11. Flow-of the'object boundary tracing method.

3.24.1 Initial Boundary Selection

There are many features that we compute before and could be used to detect
object boundary. As the situation is different, we should choose different features, so
we categorize every object boundary in the image into one of three classes: “gnd-vrt”,
“sky-vrt”, and “vrt-vrt” as in Table 3.3. For different class, we use a specific feature to
determine its initial boundaries.

Table 3.3. Features of initial boundary selection.

Class features

for all classes boundary smoothness

edge(color, texture)
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for “gnd-vrt” class only main label likelihood

for “sky-vrt” class only main label likelihood

for “vrt-vrt” class only sub-label likelihood

if event vrt-gnd-vrt

We use a set of rule to determine the initial boundary. For example given the
“sky-vrt” class of the boundary it belongs to initial object boundary if the following
condition is satisfied:
® (1 - P(Yi = yjll) + |mainlabels(i) — mainlabels(j)l) > 0.5 And

(mainlabels(i) > 0.3 or maingpe; () > 0.3)

The P(y; = yj|I ) denotes the same-label likelihood and the maingpe; (i)
denotes the sky label confidence. Similar conditions have been used in order to detect
the other classes of object boundary, more-detail formula that we show in appendix.
Fig 3.12 shows the result of the initial object boundary selection. The red fragments in

the image are selected initial object boundaries.

Fig 3.12. The result of the initial object boundary selection.

3.24.2  Object Boundary Tracer

The object boundary tracer of a boundary start from an initial object boundary and
selects a next object boundary. The selected object boundary should have high edge
value, and high label likelihood difference, and the property of the class of object

boundary, and the boundary orientation should not change rapidly. This process
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repeats until reaching to the border of image or the object boundary that already be

labeled. Fig. 3.13 shows a state of an object tracer in image domain.

Ay

Current boundary position

Next boundary position

v

Fig 3.13. A state«of an object tracerin image domain
We develop an energy function for the object boundary tracer. The energy function
is modeled by three constraints. The first is the boundary tracing constraint to trace
strong boundary. The second is the different label constraint to separate different
object. The third is the same label constraint to penalize significant surface label
changes in an object.
The following equation describe above three constraints.
Constraint 1: boundary tracing constraint:
E(i,j) = 1—P(y; = y|1), (3.11)
Constraint 2: different label constraint:
Equ(,)) = |P(y; = label,) — P(y; = label,)|, (3.12)

Constraint 3: same label constraint:
Eq(i,j) = max (P(y; = label,), P(y; = label,)), (3.13)

where label, is the current object label. /and /are the adjacent superpixels.
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y; and y; are the superpixel label. Then, the object boundary tracing problem
can be formulated as follows.
y = argmaxy{aEy(i,j) + BEu(i,)) + YEq (i, ))}, (3.14)
where a, [, y are the weighting factors to control the amount of each energy.
Then, we need to find the solution by solving the problem. Because we want to
save computation, we just use local method to minimize the cost function. Fig 3.14

shows the result of the object boundary tracing method. In Fig. 3.14(b), the white line

is the selected object boundary.

Fig 3.14. The result of the object boundary tracing method. (a) Original image. (b)

The result of the object boundary tracer..~(¢) The result of this stage.

3.2.5 Constraint Segmentation

Table 3.4. Events of constraint segmentation

Event 1: the color of the segment is similar to the other.

Event 2: the label confidence of the segment is similar to the other.
Event 3: the shape of the segment is similar to the other.

Event 4: the y axis position of the segment is similar to the other.
Event 5: the segment is inside of the other segment.

Event 6: the segment is small enough.

After object boundary tracing method, some segments in the image are not
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complete objects. There are many events that could help us merge those segments.
Table 3.4 lists theses event that we use. In order to merge them, we construct several
rules. We merge the segments, if the following conditions are satisfied.

Condition 1: Event 1 N Event 2

Condition 2: Event 1 N Event 2 N Event 6

Condition 3: Event 2 N Event3 N Event4

Condition 4: Event 2 N Event5

We seriatim check conditions, and merge the segments, after the constraint
segmentation process, the object segmentation is done. Fig. 3.15 shows the result of

the object segmentation.

(b)

Fig 3.15. The result of the object segmentation. (a) Original image. (b) The result of

the object boundary tracing method. (c) The result of this stage.

3.3 Depth Assignment

After the object segmentation stage, we assign the depth to the objects. Our model
in the 3-dimensional space consists of a ground plane and objects are orthogonal to
the ground and sky. In order to construct 3D image for binocular vision, the depth
assignment process output the disparity map d(x,y) in the range of 0-255, disparity

map is encoded the depth information. In our image coordinate system, the origin is
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located at the most left-up corner, and the x-axis toward right, and the y-axis toward

down.

Vertical labeled segment is non-planar
and not connected to ground label

Sky labeled segment

Vertical labeled segment
is planar

Ground-vertical
boundary is a line

Ground labeled segment

Fig. 3.16. illustration of each condition for depth assignment

We assign different depth for segment according to their conditions. Fig. 3.16
shows those conditions that we consider. Fig 3.18 shows the stages of the depth
assignment process. At first, for each region, we fit a set of line segments to the
ground-vertical boundary by using the Hough transform [33]. Those line segments are
used to determine that the vertical labeled vertical segments are planar or not. If
vertical labeled segments contain the line segment, it is planar. Otherwise vertical
labeled segment is non-planar. Then we begin to assign depth to each segment.

For the ground labeled segment, we compute disparity by the formula:

d(x,y) = (hpos — (H —y)/H)(255.0/hpos), (3.15)
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where H is the height of the image, and hpos is the position of the horizontal line in
the image that is computed by vanish point or the highest position of ground labeled
pixel.

For the vertical labeled segment that is connected with ground labeled segment, if

the ground-vertical boundary is a line, we use following formula:

d(x,y) = (hpos — (H — y;)/H)(255.0/hpos) (3.16)
yi= —(axx+c)/b (3.17)
I(x",y") =ax' + by +c, (3.18)

where [(x',y") is the linear equation of the line segment.

For the vertical labeled segment, if the segment is planar, we also use formula
(3.14) and (3.15). However the linear equation-is different. The slope of the linear
equation is decided by sub-class, and the line through the point that is the lowest
y-axis position of the segment in the image.

If the segment is non-planar, we use following formula,

d(x,y) = (hpos — (H — Yiowese/H))(255.0/hpos), (3.19)
where y;owest 15 the lowest y-axis position of the segment in the image.
After depth assignment process, the disparity map is computed. Fig. 3.17 shows the

result of depth assignment process.

(b}
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Fig. 3.17 The result of depth assignment process. (a) Original image. (b) Disparity

map.

Depth assignment

Find ground-vertical
houndary

4

Find best-fitting line
segments

;

yes
Ground label?

"IQ Depth gradient
A\ assignment

Sky label? —}'ES—*

I
no Constant depth

L J assignment

ves
Connect to ground? -~ l

l‘nn

yes no Ground-vertical
Planar label? boundary is a line?

no
yes l

Depth gradient Constant depth DEN]} gradient
assignment assignment assignment

Fig 3.18. Flow of the depth assignment process.

40



3.4 3D Image Construction for Binocular vision

DIBR

Depth smoothing

v

3-Warping

v

Hole-filling

Fig. 3:19 Flow of the' DIBR algorithm.

After we have the disparity map, we can generate left and right eye images by the
depth-based image rendering (DIBR) algorithm [28].

Fig. 3.19 shows the stages of ‘the DIBR-algorithm. The concept of DIBR on the
parallel camera configuration as shown in Fig. 3.20 . In this configuration, an object O
is observed at original center view Vc, and virtual left-eye view V.. This object is also
projected to Xc, Xr, and Xi in the image planes respectively. The relationship of the
projected position among views is

X=X+ b/2)f/Z and X, = X, — (b/2)f/Z, (3.20)
where Z is the depth of object from the view plane f is the focal length and b is the
baseline of Vr and Vi. Because we can’t know the camera parameter in original
2-dimensional video, we simplify the formula

X=X, + sd/2)and X, = X.— s(d/2), (3.21)
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where d is the disparity that compute from Section 3.3 and s is the scale factor that

could be adjusted by user.

e
! Lol
z ;
T # + +— image plana
Fl. ;
g @ @ view plane
L L L
— b2 — e b —

Fig. 3.20. Parallel camera configuration for virtual images warping [28]

If disparity map is given, we can render the virtual left-eye and right-eye view
images using the center view image. This rendering process is generally called 3D
warping. However, the warped virtual images incut many holes, which may be seen
by the right eye or left eye but occluded in the center view. To recover the holes, the
hole-filling method is added after the 3D warping process as shown in Fig. 3.19 . But
it suffers from serious texture distortion since the large holes cannot be recovered well.
The depth smoothing method is adopted before the 3D warping process. The aim of
the depth smoothing is to reduce the size of holes. In the depth smoothing stage,
directional Gaussian filter is used to reduce the geometric distortion, and apply filter

only on the hole-region. Fig. 3.21 shows the result of DIBR algorithm.
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Fig. 3.21. The result of DIBR algorithm. (a) Original image. (b) Disparity map. (c)

Rendered left view. (d) Rendered right view.
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4. Experimental Results and Analysis

4.1. Introduction

In this chapter, we show the experimental results of the proposed 2D to 3D
conversion system on test images. The experimental results contain 3D result and
execution time. The test images are used from the Internet. In addition to the 3D result
of our proposed system, we included the 3D result of the hybrid depth cueing system
[2] and the recovering major occlusion boundaries method [4] for comparison. The
source codes of recovering major «occlusion ‘-boundaries method for comparison is

provided from [4].

4.2. 3D Results

4.2.1. Our 3D Results

The proposed method has been tested using different types of scenarios. The
generated disparity maps, rendered left and right view images and anaglyph images
are showed from Fig 4.1 to Fig 4.11 for evaluation. Sequences in the Fig 4.1 and Fig
4.2 are standard MPEG-4 video test sequences. Other sequences are selected from the
databases of [4].

In the test image “flower garden” as shown in Fig. 4.1. It is tested for outdoor
scene. There are four major parts that should be partitioned. They are sky, ground,
tree, and building. The result of disparity map shows that depth of objects is correct.

In the test image “Hall monitor” as shown in Fig. 4.2. It is tested for indoor scene.
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There are five major parts that should be partitioned. They are ground, ceil, left wall,
right wall, and man. Even through objects in the image are not detected well, the order

of depth is correct. The result also shows that out system can handle planar surface.

Anaglyph

Disparity

Right view
map

Fig: 4.1. Flower garden sequence.

Hall_monitor

sequence Left view Anaglyph

Disparity

Right view
map

Fig. 4.2. Hall monitor sequence.
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Disparity

map Right view Anaglyph

Fig. 4.3. Building.

Outdoor0
sequence

Disparity
map

Right view Anaglyph

Fig. 4.4. Outdoor0 sequence.

Fig . 4.3 and Fig. 4.4 are tested for outdoor scene with geometry. In Fig. 4.3, the
major part in the image is building, and result of depth is correct. The chair in the
image is not detected well, because the geometry of result for the chair is ground label.
In Fig. 4.4, the order of depth is correct, but the woman in the image right side is
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merged with building. The mistake is caused by object boundary tracer.

Outdoor1
segeunce

Left view

Disparity

map Right view Anaglyph

Fig: 4.5-Ourdoor] sequence.

sceneryQ

Disparity
map

Right view Anaglyph

Fig. 4.6. Scenery0 sequence.
Fig. 4.5 and fig. 4.6 are tested for nature outdoor scene. The result of Fig. 4.5 is

good. In the fig 4.6, many birds in the image are not detected. It is because the
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geometry of result is wrong.

Disparity

map Right view Anaglyph

Fig. 4.7. Scenery1 sequence.

Left view
e TR e Ay
¥ FL 3 w@ i

s 7 A o

Disparity
map

Right view Anaglyph

Fig. 4.8. Walking sequence.
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structure

Disparity

map Right view Anaglyph

Fig. 4.9. Structure sequence.

sceneryl Disparity map

@)

Disparity map - Left view _ Right view

(c)
Fig. 4.10. Urban sequence.
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Disparity map Right view Anaglyph

Fig. 4.11. Alley sequence.

In Fig 4.7, Fig 4.8, and Fig 4.10 are tested for nature outdoor scene with people.
Results show that the people in the image are detected well, and even people wear
camouflage in the woods.

Fig 4.9 and Fig 4.11 are tested for man-made scene. The result of fig 4.9 is good.

Even through the order of depth in the fig 4.11 is correct, but woman in the image
right side is merged with tree, ground, and statue. This makes it impossible to

distinguish the depth of these objects in the anaglyph image.
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4.2.2.3D Result Comparison between Different Algorithms

In this section, we compare our method with the hybrid depth cueing system and
the recovering major occlusion boundaries method.

The 3D result of the hybrid depth cueing system is showed from Fig. 4.12 to Fig.
4.13. In flower garden sequence, Fig. 4.12(c) show the DMP, DGP, fused disparity
map, left view and right view, where DMP is depth from motion, DGP is depth from
single image. Compare with our method in Fig. 4.12(b), our disparity map is better,
because our depth of the building in the image is more accurate. If we only consider
the condition that is depth from single image, our method computes the depth of
objects is more accurate. Because the DGP can’t compute the depth of objects, it just
can compute the depth of the background. In the hall monitor sequence, the result of
the hybrid depth cueing system is better for the depth of background, but our method
just use single image to compute the depth of the scene. If their result misses motion

information, they could not compute the depth of man.

| §o=t

Flower garden Disparity map Left view Right view

(@) (b)

s % zﬁ &‘Eﬁ:“ ” .
DMP DGP Fused disparity map Left view Right view
(€)

Fig. 4.12. 3D results of flower garden sequence with different algorithms. (a) Original

image (b) Our proposed algorithm. (c) The hybrid depth cueing system.
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Hall monitor Disparity map Left view Right view

(b)

|
v
ikl

Fused disparity map Left view Right view

()
Fig. 4.13. 3D results of hall monitor sequence with different algorithms. (a) Original
image (b) Our proposed algorithm. (c) The hybrid depth cueing system.

The 3D result of the recovering major occlusion boundaries method is showed
from Fig. 4.14 to Fig. 4.18. In some cases, -our 3D results are comparable to the
recovering major occlusion boundaries method. In the urban sequence and sceneryl
sequence, our method can detect more complete objects than the recovering major
occlusion boundaries method. It is'becausethe tesult of our superpixels is better than
original method that is proposed by Felzenszwalb et al. [34]. Fig. 4.19 shows the
comparison between our method and Felzenszwalb’s method. In some case, compare
with the recovering major occlusion boundaries method, even through our method
cannot perform well on object boundaries, our execution time is faster. We will report
our execution time in Section 4.3. Major occlusion boundaries method also report
their execution time in [4], but they only implement matlab version. So we do not

compare execution time of our method with them.
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Walkin . Disparity map
@

Right view

Disparity map Left vie

(©
Fig. 4.14. 3D results of walking sequence with different algorithms. (a) Original image

(b) Our proposed algorithm. (c¢) The recovering major occlusion boundaries method.

sceneryl Disparity map

@)

Disparity map Left view Right view
(©)

Fig. 4.15. 3D results of sceneryl with different algorithms. (a) Original image (b) Our

proposed algorithm. (¢) The recovering major occlusion boundaries method.
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Disparity map

(b)

.._.A .I Hoe
Disparity map Left view Right view

(©

Fig. 4.16. 3D results of alley sequence with different algorithms. (a) Original image (b)

Our proposed algorithm. (¢) The recovering major occlusion boundaries method.

Disparity map

Disparity map Left view Right view

(c)

outdoor0

(@)

Fig. 4.17. 3D results of outdoor0 sequence with different algorithms. (a) Original
image (b) Our proposed algorithm. (c) The recovering major occlusion boundaries

method.
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sceneryl Disparity map Left view

@) ®

Disparity map - Left view _ Right view

(©

Fig. 4.18. 3D results of urban sequence with different algorithms. (a) Original image

(b) Our proposed algorithm. (¢) The recovering major occlusion boundaries method.

Fig. 4.19. Superpixels computation with different algorithms. (a) Original image (b)

Our proposed algorithm. (c¢) Felzenszwalb’s algorithm.
4.3. Execution Time

In this section we show the execution time of our proposed 2D to 3D conversion
system. The algorithm was tested on several images on sizes ranging from 352x288 to
1024x768, and had its performance measured on each step. The data presented
following is average of the experiments, scale to seconds (s). Because the texture
computation is time-consuming, texture computation is separated from the fast
neighbor merge process. Table 4.1 shows the performance for the algorithm,

processed on the CPU. These results were obtained on a computer with an Intel Core
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17 980, 3.33 GHz, and a 6-GB RAM, running Window 7. And we use the Microsoft
Visual C++ compiler, version 9.0. Table 4.1 shows that for the algorithm, the texture
computation is bottleneck, greatly degrading the speed performance, especially on

large images. But the texture computation is easy to be accelerated using parallel

processor.
Table 4.1. Execution time
352x288 640x480 800x600 1024x768

Initial segmentation 0.0625 0.2236 0.3496 0.6084
Texture computation 1.3492 4.7130 7.3423 12.015
Fast neighbor merge 0.0155 0.0711 0.2356 0.5295
Surface labeling 0.1480 0.3534 0.5153 0.6073
Object boundary tracer 0.0155 0.0456 0.0646 0.0605
Constraint segmentation 0.0000 0.0021 0.0026 0.0032
Depth assignment 0.0000 0.0107 0.0156 0.0197
Total times 1.5907 5.4090 7.6600 13.824

5. Conclusion and Future Works

5.1. Conclusion

In this thesis, we proposed the 2D to 3D conversion system which automatically
converts a single 2D image into the 3D effect images. This algorithm combines
object-based segmentation with depth assignment, so we can see the objects more
complete on the 3D display. We use watershed segmentation algorithm to generation

initial segmentation. Fast neighbor merge process is proposed to solve the problem of
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over-segmentation. In addition, the surface labeling algorithm is used to categorize
superpixels into appropriate classes. Furthermore, we proposed an object boundary
tracing method to detection objects of the image based on surface information. With
the proposed object boundary tracing method, the execution time is much reduced,
compared with the recovering major occlusion boundaries method.

Experimental results demonstrated that the proposed 2D to 3D conversion system
could achieve better quality of 3D image than the hybrid depth cueing system, and the

recovering major occlusion boundaries method.

5.2. Future work

There are two issues remained in-our 2D to 3D conversion system. First, there still
are many depth cues we can use. For example, considering the temporal domain
information, we can combine some video segmentation method that can help the
result of object segmentation ‘more accurate. ‘The other issue is computational speed of
our algorithm which still remains‘slow. Therefore, we will be working on optimizing
the speed of object segmentation algorithm in the future and porting the algorithm on

the parallel processor.
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Appendix

In this section, we briefly describe formula and parameter of object boundary
tracing method and constraint segmentation. In A.1, we introduce the detail formula
and parameter for object boundary tracing method. In A.2, we introduce the detail

formula and parameter for constraint segmentation.

Al

In the initial boundary selection process, we detect “sky-vrt”, “gnd-vrt”, and “vrt,
vrt” class of initial object boundaries. In the following, we list the formula for those
detectors.

For the “gnd-vrt” class of the boundary that belongs to initial object boundary if

the following conditions are satistied:

° /blxz + bl,?/bl, > 0.4 and

(1 —P(y; = }’j|1) + 2 |mainlabelg(i) - mainlabelg(i)| + |mainlabelv(i) -

mainlabelvy+2mainlabelsi—mainlabelsy>2.0 and

(mainlabelg (1) = maingper,, (i) > 0.4 or maingpe; ,(j) — mainigper,, (/)

> 0.4)

° /bzxz + bl,?/bl, > 0.4 and bl, > 20

and ((mainlabelg(i) > 0.4 and maingpe; (1) < 0.4) or (mainlabelg(j) >

0.4 and mainlabelsj<0.4
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The P(y; = yjll) denotes the same-label likelihood and the maing,pe; g(i)

denotes the ground label confidence. main;qpe;, (i) denotes the vertical label
confidence. mainqpe; (i) denotes the sky label confidence. bl, denotes the length
of boundary in x axis. bl, denotes the length of boundary in y axis. bl, denotes
total pixels of boundary.
For the “sky-vrt” class of the boundary that belongs to initial object boundary if
the following condition is satisfied:
o (1-P(y;= yj|1) + |mainlabels(i) - mainlabels(j)D > 0.5 And
(mainlabels(i) > 0.3 or maingpe; () > 0.3)
For the “vrt-vrt” class of the boundary that belongs to initial object boundary if the
following conditions are satisfied:
® 1-P(y;=y|l) >07and
|subiapery (@) — subggpery G+ |Sublabel(j)(i) — Subjgpe()) M| >0.4
® For the condition that two fragments of junction are ground label, if other
fragments of junction are satisfied the following formula are the “vrt-vrt” class of
initial object boundary.
1-P(y; = yi|I) + |subiapery(D) — subjapeiy ()|
+ |Sub1abel(j)(i) - Sublabel(j)(j)l <038

the subjqpeiiy(j) denotes the subclass of segment i label confidence for segment j.

A2

In the constraint segmentation process, if following conditions are satisfied, we

will merge segments.
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® Condition 1: Event 1 N Event 2

Event 1:

2 2 2
\/(Vi — V]-) + \/(sicos(hn) — sjcos(hn)) + \/(sisin(hn) — sjsin(hn)) < 0.6,
where h, s, v denote value of color in the HSV color space.
Event 2:

Main class; == Main class;

® Condition 2;: Event 1 N Event 2 N Event 6

Event 1:

2 2 2
\/(Vi — V]-) + \/(sicos(hn) — sjcos(h‘rr)) + J(sisin(hn) — sjsin(hn)) <1.2,
where h, s, v denote value of color in‘the HSV color space.
Event 2:

Main class; == Main class;

Event 3:

P, < 0.02TP, U P < 0.02TP,

TP, denotes total pixels in the image. P, denotes number of pixel in the segment i.

® Condition 3: Event 2 N Event3 N Event4
Event 2:

Main class; == Main class;

Event 3:
(IMax, (i) — Max, ()| + [Miny(i) — Miny()[)/(Min(Max, (i), Max(j)) — Max(Min,(i), Min,(j)) )

<15

Max, denotes the rightest position of the segment in the image. Min, denotes the
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leftest position of the segment in the image.
Event 4:
|Mean, (i) — Mean,(j)| < 0.1

Mean, denotes the mean value of the position at the x axis in the image.

® (Condition 4: Event 2 N Event5
Event 2:
Main class; == Main class; N subclass; == subclass;

Event 5:

(Segi U Seg]-area — Max(Segi, .. - Seg]-area))/Min(Segiarea , Seg]-area) <0.1
Segi, .., denotes area of bounding box of segment i

Table A:l. Events of constraint segmentation

Event 1: the color of the segment is similar to the other.

Event 2: the label confidence of the segment is similar to the other.
Event 3: the shape of the segment is similar to the other.

Event 4: the y axis position of the segment is similar to the other.
Event 5: the segment is inside of the other segment.

Event 6: the segment is small enough.
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