

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

 利用物件導向切割的二維至三維影像

轉換

An Efficient 2D to 3D Image Conversion with Object-based

Segmentation

研 究 生: 陳奕均

指導教授: 張添烜

中華民國 九十九年 九月

利用物件導向切割的二維至三維影像轉換

An Efficient 2D to 3D Image Conversion with Object-based

Segmentation

研 究 生: 陳奕均 Student: Yi‐Chun Chen
指導教授: 張添烜 博士 Advisor: Tian‐Sheuan Chang

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of Master
In

Electronics Engineering
September 2010

Hsinchu, Taiwan, Republic of China

中華民國 九十九年 九月

i

利用物件導向切割的二維至三維影像轉換

研究生: 陳奕均 指導教授: 張添烜 博士

國立交通大學電子工程學系 電子研究所碩士班

摘 要

 在現今的視覺處理相關領域中，三維影像處理已成為一個重要趨勢。許多自

動將二維影像轉換為三維的演算法已被提出，用以解決三維影像內容缺乏的問題。

然而現在仍沒有一個快速演算法，可以僅利用單張影像中的資訊，將影像做有效

的立體化。

 本篇研究提出了一個快速轉換演算法，其中包含影像切割、影像分類、物件

邊緣追蹤以及三維影像計算等演算法。我們採用了分水嶺影像切割法(watershed

segmentation)，使得深度資訊可以做有效的統整；而透過影像分類演算法，回復

影像中場景的幾何關係；另外，我們提出物件邊緣追蹤法，有效率的利用取得的

深度及幾何相關資訊偵測影像中不同物件的相關位置以及類別。最後我們用偵測

物件結果，產生深度圖以及紅藍立體影像。

 在評量二維至三維轉換演算法的結果方面，我們與其他演算法做比較。實驗

結果顯示，我們提出的二維至三維轉換演算法，在僅有單張影像資訊的情況下，

所估測出的深度準確度及演算法運算速度的總合評估上，表現比其他相關演算法

優異。

ii

iii

An Efficient 2D to 3D Image Conversion with Object-based

Segmentation

Student: Yi-Chun Chen Advisor: Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

Nowadays, the 3D image processing has become a trend in the related visual

processing field. Many automatic 2D to 3D conversion algorithms have been

proposed to solve the lack of 3D content. But there is still no fast algorithm that

converts single monocular images well.

In this thesis, we propose a fast conversion algorithm that includes the image

segmentation, image classification, object boundary tracing method, and 3D image

generation. The image segmentation adopts the watershed method to easily collect the

information of depth cue. Then, the image classification recovers the geometry of

scene in the image. With the depth cue and geometry information, the object boundary

tracing method is proposed to detect objects in image efficiently. Finally, the object

result is used to generate depth map and 3D anaglyph image.

To evaluate the results, we compare the stereo images with other 2D to 3D

conversion systems. Experiment result shows that the proposed 2D to 3D conversion

algorithm could perform better than the associated ones in the depth accuracy and

processing speed for converting monocular images.

iv

v

誌 謝

首先，要感謝我的指導教授－張添烜博士，給予我的教導。讓我可以擁有許

多軟硬體的相關知識。在研究上，給予我充分的發揮空間並適時的給我建議與協

助。而這兩年的支持與鼓勵，引導了我以正確的態度來面對問題。

謝謝我的口試委員，交大資工蔡淳仁教授以及台大電機簡韶逸教授。由於你

們寶貴的意見，讓我的碩士論文更加完備。

感謝 VSP 實驗室的成員們，特別要感謝指導我兩年的曾宇晟學長，引領我入

門，學習相關的基本知識。以及當我研究遇到困境時，耐心的與我討論。給予我

許多意見與協助。謝謝李國龍學長、王國振學長分享給我許多經驗，使我了解許

多新的事物。謝謝陳之悠學長、許博淵學長、沈孟維學長、蔡政君學長、黃筱珊

學姐，教導我許多硬體知識以及工具的應用。感謝許博雄同學兩年的 IC 競賽組

隊參加，使我們有美好的回憶。感謝洪瑩蓉同學，每次的小組討論，總是讓我在

研究領域知識上有所成長。感謝廖元歆同學和陳宥辰同學，陪伴我一起度過兩年

的碩士生涯。感謝吳英佑、溫孟勳、邱亮齊、曹克嘉學弟和你們在實驗室相處的

日子，真的很快樂。

感謝我的家人們，爸媽和哥哥，溫暖的家庭永遠是我最好的依靠。感謝我的

女友陪伴我度過碩士生涯，有妳在身邊總是讓我生活感到踏實。

最後再謝謝所有愛我以及所有我愛的人，在此，把此論文獻給您。

vi

vii

Contents

Chapter 1. Introduction .. 1

1.1. Background .. 1
1.2. Motivation and Contribution .. 2
1.3. Thesis Organization ... 3

Chapter 2. Previous Work .. 4
2.1. Various Depth Cues .. 4

2.1.1. Depth from Camera Motion ... 5
2.1.2. Individual Moving Object .. 6
2.1.3. Defocus .. 6
2.1.4. Linear Perspective .. 7
2.1.5. Texture ... 8
2.1.6. Relative height ... 8
2.1.7. Statistical Pattern ... 8

2.2. Depth Cues Fusion-based Method ... 9
2.2.1. SANYO 2D to 3D Conversion Adaptive Algorithm 9
2.2.2. The Hybrid Depth Cueing System ... 10

2.3. Pattern Recognition-based Method .. 12
2.3.1. Depth-Map Generation by Image Classification 12
2.3.2. Recovering Major Occlusion Boundaries 14

Chapter 3. 3D Image Construction from 2D Image... 17
3.1. Algorithm Overview .. 17
3.2. Object-based Segmentation ... 18

3.2.1. Initail Segmentation ... 18
3.2.1.1. Noise Reduction and Gradint Computation 19
3.2.1.2. Watershed Segmentation .. 20

3.2.2. Fast Neighbor merge .. 22
3.2.2.1. Cues Computation .. 23
3.2.2.2. Neighbor Merge ... 25

3.2.3. Surface Layout ... 26
3.2.3.1. Superpixels ... 28
3.2.3.2. Cues Computation .. 28
3.2.3.3. Same-Label Likelihoods .. 29
3.2.3.4. Multiple Segmentations ... 30
3.2.3.5. Label Likelihood Computation 31
3.2.3.6. Homogeneity Likelihood Computation 31

viii

3.2.3.7. Label Confidences Computation 31
3.2.4. Object Boundary Tracing Method ... 32

3.2.4.1. Initial Boundary Selection ... 33
3.2.4.2. Object Boundary Tracer ... 34

3.2.5. Constraint Segmentation .. 36
3.3. Depth Assignment .. 37
3.4. 3D Image Construction for Binocular Vision 41

Chapter 4. Experimental Results and Analysis .. 44
4.1. Introduction .. 44
4.2. 3D Results .. 44

4.2.1. Our 3D Results ... 44
4.2.2. 3D Result Comparison between Different Algorithm 51

4.3. Execution Time .. 55
Chapter 5. Conclusion and Future Works .. 56

5.1. Conclusion ... 56
5.2. Future work .. 57

Reference ... 58
Appendix ... 63

ix

List of Figures

Fig. 2.1. Multiple scene modes using depth from geometry[2] .. 11

Fig. 2.2. Block diagram of algorithm[3].. ... 13

Fig. 2.3. Illustration of the recovering major occlusion boundaries algorithm[4].. 16

Fig. 3.1. Flow of the proposed 2D to 3D conversion system .. 17

Fig. 3.2. Flow of the initial segmentation process. ... 19

Fig. 3.3. Pseudo code of the parallel watershed transform [29]. ... 21

Fig. 3.4. The results of the initial segmentation process. (a) original image. (b) gradient image. (c) initial

segmentation. ... 22

Fig. 3.5. Flow of the Fast neighbor merge method. .. 23

Fig. 3.6. Illustration of the HSV color space. ... 23

Fig. 3.7. The results of the fast neighbor merge process. (a) Original image. (b) Initial segmentation. (c)

The result of this process.. ... 26

Fig. 3.8. Surface layout. On these images and elsewhere, main class labels are indicated by colors

(green=support, red=vertical, blue=sky) and subclass labels are indicated by markings

(left/up/right arrows for planar left/center/right, ‘O’ for porous, ‘X’ for solid)[27]. 26

Fig. 3.9. Flow of the surface layout.. .. 28

Fig. 3.10. The result of the confidence images for each of the surface labels.. 31

Fig. 3.11. Flow of the object boundary tracing method. ... 33

Fig. 3.12. The result of the initial object boundary selection.. .. 34

Fig. 3.13. A state of an object tracer in image domain.. .. 35

Fig. 3.14. The result of the object boundary tracing method. (a) Original image. (b) The result of the

object boundary tracer. (c) The result of this stage. ... 36

Fig. 3.15. The result of the object segmentation. (a) Original image. (b) The result of the object boundary

tracing method. (c) The result of this stage. .. 37

Fig. 3.16. Illustration of each condition for depth assignment. .. 38

Fig. 3.17. The result of depth assignment process. (a) Original image. (b) Disparity map. 39

Fig. 3.18. Flow of the Depth assignment process.. ... 40

Fig. 3.19. Flow of the DIBR algorithm. ... 41

Fig. 3.20. Parallel camera configuration for virtual images warping[28]. .. 42

Fig. 3.21. The result of DIBR algorithm. (a) Original image. (b) Disparity map. (c) Rendered left view.

(d) Rendered right view. .. 43

Fig. 4.1. Flower garden sequence ... 45

Fig. 4.2. Hall_monitor sequence. .. 45

Fig. 4.3. Building sequence .. 46

x

Fig. 4.4. Outdoor0 sequence ... 46

Fig. 4.5. Ourdoor1 sequence ... 47

Fig. 4.6. Scenery0 sequence ... 47

Fig. 4.7. Scenery1 sequence ... 48

Fig. 4.8. Walking sequence. .. 48

Fig. 4.9. Structure sequence.. 49

Fig. 4.10. Urban sequence. ... 49

Fig. 4.11. Alley sequence. .. 50

Fig. 4.12. 3D results of flower garden sequence with different algorithms. (a) Original image (b) Our

proposed algorithm. (c) The hybrid depth cueing system. ... 51

Fig. 4.13. 3D results of hall monitor sequence with different algorithms. (a) Original image (b) Our

proposed algorithm. (c) The hybrid depth cueing system. ... 52

Fig. 4.14. 3D results of walking sequence with different algorithms. (a) Original image (b) Our

proposed algorithm. (c) The recovering major occlusion boundaries method. 53

Fig. 4.15. 3D results of scenery1 with different algorithms. (a) Original image (b) Our proposed

algorithm. (c) The recovering major occlusion boundaries method. 53

Fig. 4.16. 3D results of alley sequence with different algorithms. (a) Original image (b) Our proposed

algorithm. (c) The recovering major occlusion boundaries method. 54

Fig. 4.17. 3D results of outdoor0 sequence with different algorithms. (a) Original image (b) Our

proposed algorithm. (c) The recovering major occlusion boundaries method. 54

Fig. 4.18. 3D results of urban sequence with different algorithms. (a) Original image (b) Our proposed

algorithm. (c) The recovering major occlusion boundaries method. 55

Fig. 4.19. Superpixels computation with different algorithms. (a) Original image (b) Our proposed

algorithm. (c) Felzenszwalb’s algorithm. .. 55

xi

List of Tables

Table 3.1. Statistics computed to represent superpixels. .. 29

Table 3.2. Statistics computed over pairs of superpixels .. 30

Table 3.2. Features of initial bounday selection ... 33

Table 3.3. Event of constraint segmentation ... 36

Table 4.1. Execution time ... 37

Table A.1. Event of constraint segmentation .. 66

xii

1

Chapter 1. Introduction

1.1. Background

Three-dimensional (3D) video provides a dramatic enhancement in the viewing

experience compared with two-dimensional (2D) video. 3D television (3D TV)

applications will bring another revolution in TV’s history. The successful introduction

of 3D TV to the consumer market relies on not only the technological advances but

also the availability of 3D content. Due to the lack of 3D content, converting 2D

video to 3D video is a promising solution to the 3D TV industrialist, especially for the

traditional 2D videos

Recovering 3D information from 2D image is a basic problem in computer vision.

Many depth cues can be used to extracted 3D information from 2D image, but each

cue has its own advantages and disadvantages for different conditions.

Many depth cue fusion-based methods have been proposed to solve this problem.

Iinuma et al. [1] use the defocus cue to evaluate the depth by a single image and the

motion cue to convert the image. Cheng et al. [2] use the geometry cue and motion

cue to evaluate the depth. The simple concept and low computational complexity of

those methods have enabled it to be adopted real-time application. However, those

methods cannot perform well for the single monocular images and the scene with

complex motion.

Another approach is pattern recognition-based method. In this method, every

region in the image is categorized into several classes, and every region is assigned

depth according to types of the class. Battiato et al. [3] classify images into indoor,

2

outdoor with geometric elements, or outdoor without geometric elements, and use the

information collected in the classification step to estimate the depth. Even through

this method could generate the high quality result for single monocular image, this

method cannot perform well for many types of scenes. Hoiem et al. [4] classify image

as several classes. They use classified information, boundary and region, to detect the

objects of image, and assign a specific depth to each object according to its classes.

This method can generate high quality result for many types of scene, but its

boundary extraction and object detection suffer from high computational complexity.

1.2. Motivation and Contribution

Motivated by above issues, we propose an efficient 2D to 3D conversion algorithm

for monocular images in this thesis. This proposed algorithm includes image

segmentation, image classification, object boundary tracing method, and 3D image

generation. The image segmentation adopts the watershed method to collect the

information of depth cue. Due to oversegmentation problem of watershed

segmentation, we use texture and color information to merge segments. Then, we

apply image classification to recover the geometry of scene in the image. In order to

detect object in the image efficiently, we propose the object boundary tracing method

that could quickly detect object boundary with geometry information. Finally, we

apply results of object segmentation and image classification to assign depth for each

object and synthesis stereo images by using the depth-based image rendering (DIBR)

algorithm.

The contributions of the thesis include

1. We propose an efficient 2D to 3D conversion algorithm.

2. We proposed an object boundary tracing algorithm to detect the objects of

3

single image.

1.3. Thesis Organization

In Chapter 2, we introduce existing important methods for a 2D to 3D conversion

system. In Chapter 3, we present the proposed object segmentation algorithm. In

addition, the details of the depth assignment algorithm and the depth-based image

rendering (DIBR) algorithm are illustrated. In Chapter 4, we compare the 3D results

with related work, and demonstrate the execution time. Finally, we give the conclusion

and future work of this thesis in Chapter 5.

4

Chapter 2. Previous Work

An important step in a 3D system is the 3D content generation. Several special

cameras have been designed to generate 3D content directly. A depth-range camera

[35] is an example, which is a conventional video camera with a laser element. A

depth-range camera can simultaneously capture a two-dimensional RGB image and a

depth map that could provide the depth information for the RGB image. This

technique described above can directly generate 3D content, but the amount of

traditional media data are in 2D format and demand depth information to be converted

to 3D videos. Therefore, a 2D to 3D video conversion algorithm is necessary.

There are many different 2D to 3D conversion algorithm has been developed.

Each algorithm has its own strength and weaknesses. Most algorithms take advantage

of different depth cues to generate depth maps. In the following section, we will

introduce each depth cue and many 2D to 3D systems that combine many depth cues

to recovery depth information.

The structure of the chapter is as follows. In 2.1, we introduce algorithms that use

a single depth cues. In 2.2, we introduce algorithms that use the depth cue

fusion-based method. In 2.3, we introduce algorithms that use the pattern

recognition-based method.

2.1. Various Depth Cues

Humans can straightforward determine depth from single monocular image

according to experiences, which contains many monocular cues, such as defocus,

texture gradients, linear perspective, contextual information. For example, objects in

5

images nearer or farther than focus are blurred, and sky in image is infinitely far away.

In addition, motion parallax also is useful information to determine the depth of object.

For the sequences with camera translational motion, the near objects move faster than

the far objects. Depth from those cues has been developed from several years. In the

Section 2.1, we introduce the principle and associated algorithms of each depth cue.

2.1.1. Depth from Camera Motion

With two images of the same scene captured from slightly different view point,

the depth from camera motion can be utilized to recover the depth of an object. The

relative motion between the viewing camera and the observed scene also provides an

binocular disparity cue for depth perception. First, a set of corresponding points in a

pair of image is found. Then, we can retrieve depth information by using the

triangulation method when all camera parameters are known. If only intrinsic camera

parameters are known, the depth can be recovered to a scale factor. If no camera

parameters are known, the resulting depth is correct up to a projective transform. In

most cases, no camera parameters are known from 2D video. Thus, we must recover

camera parameters by self-calibration [5].

The typical framework in [6] using the depth from camera motion is a three-stage

procedure, which is composed of feature tracking [7], structure from motion [8], and

dense reconstruction. This method can extract absolute depth from 2D video with

camera motion. However, in order to retrieve an accurate depth map in the dense

reconstruction stage, the stereo matching algorithms [9] [10] must be used but suffer

from high computational complexity. Another way to solve this problem is the

realistic stereo-view synthesis (RSVS) [11]. It combines both the structure from

motion and the idea of image-based rendering (IBR) [12] to achieve

6

photo-consistency without relying on dense depth estimation.

However, for still background, a scene may contain dynamic element, i.e.

independent moving object. Such condition is difficult to recover camera parameters

and extract depth information.

2.1.2. Individual Moving Objects

Individual moving object (IMOs) also is a depth cue in the 2D to 3D conversion

system. In some cases, motion vector maps can be directly used as depth maps. This

approximation holds when objects moving are with the same speed. Ideses et al. [13]

extract motion vector maps from compressed 2D video, and use this information to

compute depth map. However, there are many cases in which the approximation does

not hold. This happens when an object without motion or not with constant speed.

Moving object segmentation also is a useful method for 2D to 3D conversion

system. In this approach Kunter et al. [14] extracts the foreground objects by moving

object segmentation algorithm [15], and assign depth for foreground objects. However,

multiple occluding objects or objects with only little motion are difficult to detect.

2.1.3. Defocus

Cameras and eyes have limited depth of focus, so images of objects nearer or

farther than focus are blurred. In other words, the amount of blur in an image is

directly related to image defocus caused by the optics of the eye or camera that

captures it, and can be formed a depth cue.

If a scene can be described by simply estimating which objects are in front, and

which are behind those objects but are not part of the background, and what is

completely in the background, we can estimate a relative depth map by taking into

7

account image blur and its relation to the focus degree in edges that compose objects.

The typical algorithm of the depth from focus cue [16] uses spatial frequency

measurement. When an object of an image is defocused, it will have a large

attenuation of its high spatial frequency, and when the object in a scene is focused, its

high frequency component will not be attenuated and hence its sharp detail will be

present as fast changes in the spatial frequency domain.

However, this method is just suitable for the close-up image, and it cannot

perform well for another images.

2.1.4. Linear Perspective

Linear perspective refers to the fact that parallel lines, such as railroad tracks,

appear to converge with distance, eventually reaching a vanishing point at horizon.

The more the lines converge, the farther away they appear to be. A representative

work is the gradient plane assignment approach proposed by Battiato et al. [3]. Their

method performs well for single images containing sufficient objects of a rigid and

geometric appearance. In this method, first, the edge detection is employed to locate

the predominant lines in the image. Then, the intersection points of these lines are

determined. The intersection with the most intersection points in the neighborhood is

considered to be the vanishing point. The vanishing points are marked as the major

lines close to these. The major lines close to the vanishing point are assigned a larger

depth value and the density of the gradient planes is also higher.

This method is suitable for the man-made scene which contains many long and

parallel lines.

8

2.1.5. Texture

Texture also offers a good 3D impression because of the two key ingredients: the

distortion of individual texels and individual texture region. The latter is also called

texture gradient. For example, a tiled floor with parallel lines will appear to have tilted

lines in an image. The distant patches will have larger variations in the line

orientations, and nearby patches will have smaller variations in line orientations.

Similarly, a grass field when viewed at different distances will have different texture

gradient distributions.

Texture cue is useful information to detect the depth of planar surface. If the

surface is non-planar, shape-from-texture algorithms [19], [20] can be applied to

reconstruct the 3D shape of object surface. However, the current algorithms cannot be

applied to real-time application.

2.1.6. Relative Height

Relative height cue also offers the depth information of image. Generally, the

closer objects in real world are projected into the lower part in a 2D image plane.

Many photographic images, especially scenery images, have the height cue. Jung et al.

[21] proposed a real-time 2D-to-3D conversion framework using the relative height

cue, and many pattern recognition-based algorithms [22], [23], [27] also regard the

positions of image as a cue.

2.1.7. Statistical Patterns

Statistical patterns are the elements which occur repeatedly in images. When the

number or the dimension of the input data is large, the machine learning techniques

9

can be an effective way to solve the problems. In recent years, as a tool to estimate

depth maps, the machine learning has been receiving increasing interest. Especially

supervised learning applies training data with the ground truth to distinguish the

geometry of scene, depth of scene, and stage of scene. As well as a set of

representative and sufficient training data, good features and suitable classifiers are all

essential ingredients for satisfactory results. More details of statistical patterns method

is described in Section 2.3.

2.2 Depth Cues Fusion-based Method

In Section 2.1, we introduce many depth cues from 2D video. Each cue can

recover depth information from video sequence, but it has its own advantages and

disadvantages for different conditions. Several 2D to 3D systems fuse many depth

cues to solve this problem. In Section 2.2, we introduce two important fusion-based

methods for real-time application.

2.2.1. SANYO 2D to 3D Conversion Adaptive Algorithm

The 2D-to-3D image conversion technique using the “Modified Time Difference

method” (MTD) [24] had been developed in 1995. To convert from 2D video into 3D

video, the MTD select another frame to be a stereo-pair according for each frame.

The selection criterion is based on the object motion in the successive frames.

The 2D images, having the objects with simple horizontal motion, can be

converted into 3D images by the MTD well. However, it is not good for converting

from the still images or the images that have the objects with complicated motions. So

the technique converting from these 2D images into 3D images is required.

The “computed image depth method” (CID) [25] has been developed to solve this

10

subject. The CID allows to converting from single monocular 2D images into 3D

images, and the CID uses the defocus cue to extract depth information. They compute

contrast, sharpness and chrominance of the image to extract the defocus cue. The

sharpness means the high frequency component of the image luminance. The contrast

means the middle frequency component of the image luminance. The chrominance

means the hue and tint of the image color. The 3D images are generated by computing

the depth cue of each separated area of the input 2D. In the CID, first the adjacent

areas, which have close color, are grouped according to the chrominance values. Then

the distance from the camera to the objects is computed, and it should be inversely

proportional to the contrast and sharpness values. The close-up images can be

converted into 3D images by the CID, but it is not good for converting from other

types of images.

These techniques have been implemented into a single-chip LSI for the automatic

and real-time 2D-to-3D image conversion, and can output 3D image according to

various 3D displays from various input images, like NTSC, PAL, HDTV, and VGA.

2.2.2. Hybrid Depth Cueing System

The hybrid depth cueing system [2] had been developed in 2009. The depth

generation method consists of the depth from motion parallax (DMP) and the depth

from geometrical perspective (DGP). And the depth fusion-based method is used to

combine DMP and DGP according to adapted weighting factors. Finally, the DIBR

renders multiple views with various view angles for 3D displays.

The DMP module is the central core of the system. The DMP consists of the

following two processes.

One is the camera motion analysis process, which analyzes cameras motions of

11

consecutive video frames. 4-parameter global motion estimation [36] is used between

all the continuous frame pairs. Then, the most suitable frame in frame buffer is

selected and is warped to form parallel view configuration with the current frame. The

other is the disparity estimation process that generates the depth map according to the

image pair. Block-based motion estimation is used between selected image pair.

Disparity map is retrieved when static scene with camera translational motion. When

the scene happen individual moving objects, motion vector is used as a depth cues.

The visual effect is that moving objects will pop-up and catch more attention. The

depth was estimated by 22
yx MVMV +

In order to adapt this technique to the automatic and real-time 2D-to-3D image

conversion, they had improved the DMP to handle more complex motion cases than

the MTD. But the DMP could not perform well for the video that has changing focal

length or dynamic scene.

When the depth information cannot derive from the motion information,

monocular depth cue become an important issue in depth generation. Depth from

geometrical perspective (DGP) classifies the scene into multiple modes by scene line

structure detection. The major types are horizontal lines and vanishing lines. Fig. 2.1

shows multiple scene modes that DGP classifies.

Fig. 2.1. Multiple scene modes using depth from geometry [2]

But the DGP is only suitable for background region in the image. If the DMP

cannot work, the DGP is not good enough to generate good visual effect.

12

Finally, fusion-based method is used to combine both depth maps. The weighting

factor is adjusted that depending on the camera motion analysis module. When

camera is panning depth can be retrieved from motion parallax efficiently. Weight for

DMP will adjust to larger.

2.3 Pattern Recognition-based Method

Even through the depth cues fusion-based methods mentioned in Section 2.2 could

be used for real-time application, they still have problem in depth from monocular

images. Pattern recognition-based methods are more suitable to solve this problem.

Nedovic et al. [18] categorize the input image into various types and limited number

of stages in each type to simplify the problem. But this method only computes the

background of depth map. Saxena et al. [22] [23] also presented a method to learn

absolute depth from single images based on low-level features, but this method only

suitable for outdoor scene. In the following, we introduce two methods. The first

method is proposed by Battiato et al. [3]. It is suitable for real-time application, but it

cannot assign depth for all objects in the image. The second method is proposed by

Hoiem et al. [4]. This method is suitable for most cases of image, but it has high

computational complexity.

2.3.1 Depth-Map Generation by Image Classification

This algorithm [3] is performed on a single color image, and does not need any

prior knowledge about image content. It is also claimed to be fully unsupervised and

suitable for real-time applications. In this algorithm, two intermediate depth maps, the

qualitative depth map and the geometric depth map, are constructed.. In the end, these

two depth maps are combined together to generate the final depth map.

13

Fig. 2.2. block diagram of algorithm [3]

Fig. 2.2 shows the block diagram of algorithm [3]. At first, mean shift

segmentation algorithm is used to partition image. Then, in order to generate

qualitative depth map, color-based rules are used to identify six semantic regions: Sky,

Farthest Mountain, Far Mountain, Near Mountain, Land and Other. Each semantic

region is assigned a depth level, which corresponds to a certain gray level following

the trend: Gray of Sky < Gray of Furthest Mountain < Gray of Far Mountain < Gray

of Near Mountain < Gray of Land < Gray of Other.

In third stage, The qualitative depth map is then sampled column-wise. Each

column is represented by a label sequence, which is labeled from top to down, and

each region present in the column. After all the sequences in the image have been

generated, they are plugged into a counting process to obtain the number of accepted

sequences. Finally, they use the number of accepted sequences to classify the image

14

into three categories: outdoor, outdoor with geometric appearance and indoor.

They also apply linear perspective cue. Different vanishing line detection

strategies are applied according to the category to which the image belongs. For

Outdoor scenes, the vanishing point is put in the center region of the image and a set

of vanishing lines passing through the vanishing points are generated. For the

categories Indoor and Outdoor with geometric appearance, a more complex technique

is applied. Edge detection and line detection are conducted to determine the main

straight lines. The vanishing point is chosen as the intersection point with the most

intersections around it while the vanishing lines are the predominant lines passing

close to the vanishing point.

After the vanish point detection, taking the position of the vanishing point into

account, a set of horizontal or vertical gradient planes is assigned to each neighboring

pair of vanishing lines. The resultant image is termed the geometric depth map. Then,

the qualitative depth map is checked for consistency. False classified semantic regions

are detected and corrected.

Finally, the final depth map of indoor category image is just the geometric depth

map. For outdoor without geometric appearance, the final depth map is qualitative

depth map. For the image category of outdoor with geometric appearance, the final

depth of pixel is assigned the depth value in the geometric depth map for all cases,

except when it is a sky, it then adopts the depth value in the qualitative depth map.

The natural images and man-made structure can be converted into 3D images by

this method. But it is not good for converting images that contain non-definition

object.

15

2.3.2 Recovering Major Occlusion Boundaries

Single-view 3D reconstruction is a popular research in computer vision. Even

though they are not ready for real-time application due to high computation

complexity, their qualities are good enough to use. An algorithm of Hoiem [4] et al.

describes the property of the regions and boundaries in the image, and the 3D surfaces

of the scene using learned model. Their representation includes a wide variety of cues:

color, position, and alignment of region; strength and length of boundaries; 3D

surface orientation estimates; and depth estimate. In a conditional random field (CRF)

model, they also encode gestalt cues, such as continuity and closure, and enforce

consistency between our surface and boundary labels.

To provide an initial conservative hypothesis of the occlusion boundaries, they

apply the watershed segmentation algorithm to the soft boundary map provided by the

pB algorithm of Martin et al. [26]. This segmentation produces thousands of regions

that preserves nearly all true boundaries. In training, they assign ground truth to this

initial hypothesis. Given a new image, their task is to group the small initial regions

into objects, and assign figure/ground labels to the remaining boundaries.

To get a final solution, they could simply compute cues over each region and

boundary, and perform a single segmentation and labeling step. However, the small

regions from the initial over-segmentation do not allow the more complicated cues,

such as depth, to be reliable. Furthermore, global reasoning with these initial

boundaries is ineffective because most of them are spurious texture edges.

Their solution is to gradually evolve their segmentation by iteratively computing

cues over the current segmentation and using them with our learned models to merge

regions that are likely to be part of the same object. In each iteration, the growing

16

regions provide better spatial support for complex cues and global reasoning. And

better spatial support can improve their ability to determine whether remaining

boundaries are likely to be caused by occlusions. See Fig. 2.3 for an illustration. Each

iteration consists of three steps based on the image and the current segmentation: 1)

compute cues; 2) assign confidences to boundaries and regions; and 3) remove weak

boundaries, forming larger regions for the next segmentation.

Fig 2.3. Illustration of the recovering major occlusion boundaries algorithm. [4]

In most cases, 2D images can be converted into 3D images by this method, but it

is not good for real-time application. In their Matlab implementation, this algorithm

takes about 4 minutes for a 600x800 image on a 64-bit 2.6GHz Athalon running

Linux.

17

3. 3D Image Construction from 2D Image

3.1. Algorithm Overview

Fig. 3.1. Flow of the proposed 2D to 3D conversion system.

In this chapter, we propose a fast and effective 2D to 3D conversion algorithm

with the pattern recognition-based method. Fig. 3.1 illustrates the flow of the 2D to 3D

18

conversion system, which consists of three main processes: object-based segmentation,

depth assignment, and 3D image construction.

For the object-based segmentation, we first use the watershed segmentation

algorithm to compute the initial segmentation. Even though the watershed

segmentation can preserve object boundary well, it has problems of over segmentation

and sensitivity to noise. Due to oversegmentation problem that produces from

watershed segmentation, fast neighbor merge process is used to solve this. At the third

step, we use the surface layout algorithm [10] to provide the geometric information

for object detection. At the fourth step, inspired by the recovering occlusion

boundaries method in [4], we propose the object boundary tracing method to detect

object efficiently. After the object boundary tracing method, there are still some

incomplete object segments. Thus, we perform the constraint segmentation, which

builds some conditions to merge segments. After the constraint segmentation process,

the object-based segmentation is done.

Finally, we assign the depths to the objects, and use the DIBR algorithm [28] to

generate the images for left and right eyes.

3.2. Object-based Segmentation

3.2.1 Initial Segmentation

In the proposed 2D to 3D conversion system, a precise estimation of object

boundary is important. Thus a proper choice of image segmentation algorithm is also

important in our case. We adopt watershed image segmentation from all existing

image segmentation algorithms for the two reasons: (1) it can preserve edge in the

object boundary [37]; (2) it is suitable for fast application [38].

19

Fig. 3.2. Flow of the initial segmentation process.

Fig. 3.2 shows the stages in the initial segmentation. The aim of the first stage is

to reduce noise in image, as well as to smooth image. At the second stage, the

gradient of the smoothed image is calculated using the Gaussian filter derivatives.

Then, the gradient magnitude is calculated. At the final stage, the gradient magnitude

is thresholded appropriately and watershed transform produces an initial image

partition.

3.2.1.1. Noise Reduction and Gradient Computation

At the first stage of the initial segmentation, we use a Gaussian filter to smooth the

image slightly before computing image gradient. In order to compensate for

digitization artifacts, we always use a Gaussian with the σ of 0.8. It does not produce

any visible change to the image but help remove artifacts.

At the second stage of the initial segmentation, the gradient field of the smoothed

image is computed. The derivitave of Gaussian with the σ of 1.0 and the support size

20

of 9x9 is used to compute the gradient of the smoothed image L୶ and L୷. Finally, the

gradient magnitude image G(I) is calculated by following formula

ሻ݌ሺܩ ൌ |ሻ݌௫ሺܮ| ൅ หܮ௬ሺ݌ሻห (3.1)

3.2.1.2. Watersheds Segmentation

In this stage, an initial image partitioned into primitive regions is obtained using

the image gradient magnitude and watershed algorithm. Watershed segmentation is a

popular and well known algorithm that extracts regions as catchment basins based on

the concept of topography. The gradient image of the input image is used as the

topographic surface in which the gradient value represents the altitude. The

segmentation of an image finds the watershed line on the gradient image and thus

separates each region. In the following, we briefly describe the parallel watershed

transform proposed by Giovani et al. [29].

The algorithm is composed of the four major steps, finding the lowest neighbor of

each pixel (i.e. direct path of steepest descent), finding the nearest border of internal

pixels of plateaus, propagating uniformly from the borders, and minima labeling by

maximal neighbor address and pixel labeling by flooding from minima. Fig. 3.3

presents a parallel watershed transform, where I is the input image, and lab is the

output labeled image that is also used for storing addresses. The statement for all

denotes that every iteration can be processed in parallel.
// First Step

1: PLATEAU ← +∞
2: for all p א D do
3: if ׌q א N(p) : I(q) < I(p) and I(q) = min׊q’אN(p)I(q’) then
4: lab(p) ← -q
5: else
6: lab(p) ← PLATEAU
7: end if
8: end for

// Second step
9: while lab is not stable do

21

10: lab’ ← lab
11: for all p א D : lab(p) = PLATEAU do
12: if ׌q א N(p) : lab(q) <= 0 and I(q) = I(p) then
13: lab’(p) ← -q
14: end if
15: end for
16: lab ← lab’
17: end while

// Third step
18: basins ← 1
19: for p א D do
20: if lab(p) = PLATEAU then
21: lab(p) ← basins
22: basins ← basins + 1
23: QUEUEPUSH(p)
24: while QUEUEEMPTY() = False do
25: q ← QUEUEPOP()
26: for u א N(q) do
27: if lab(u) = PLATEAU then
28: lab(u) ← lab(p)
29: QUEUEPUSH(u)
30: end if
31: end for
32: end while
33: end if
34: end for

// Fourth step
35: for p א D do
36: if lab(p) <= 0 then
37: q ← p
38: while lab(q) <= 0 do
39: q ← -lab(q)
40: end while
41: u ← p
42: while u ് q do
43: v ← u
44: u ← -lab(u)
45: lab(v) ← lab(q)
46: end while
47: end if
48: end for

Fig. 3.3. Pseudo code of the parallel watershed transform [29].

The watershed transform is applied to the thresholded gradient magnitude image

GT, where the pixels of G having value smaller than a given threshold T are set to zero.

That is

ሻ݌ሺ்ܩ ൌ ൜ܩሺ݌ሻ, ሻ݌ሺܩ ݂݅ ൐ ܶ
0, ݁ݏ݅ݓݎ݄݁ݐ݋ (3.2)

22

Due to thresholding, many of the regional minima of G located in homogeneous

region are replaced by fewer zero-valued regional minima in GT. It could slightly limit

the size of the initial image partition is to prevent over-segmentation in homogeneous

region. Fig. 3.4 shows the results of the initial segmentation process.

Fig. 3.4. The results of the initial segmentation process. (a) original image. (b)

gradient image. (c) initial segmentation.

3.2.2 Fast neighbor merge

In addition to the above over-segmentation reduction method, there still remain

neighboring regions that be merged into a meaningful segmentation, Fast neighbor

merge method is used to guarantee that segments are large enough.

Fig. 3.5 shows the stages of the Fast neighbor merge method. The aim of the first

stage is the cue computation. Those cues are color and texture. At the second stage,

we use those cues to decide whether the segment could be merged or not.

23

Fig. 3.5. Flow of the Fast neighbor merge method.

3.2.2.1 Cues Computation

Fig. 3.6. Illustration of the HSV color space.

In the fast neighbor merge algorithm, a precise estimation of color distance is

24

important. Thus a proper choice of color space is important in our case. In our case we

consider the Hue-Saturation-Value (HSV) color space [30], because it is very similar

to the human perception of colors. Fig. 3.6 is Illustration of the HSV color space.

Conceptually, the HSV color space is a cone. Viewed from the circular side of the

cone, the hues are represented by the angle of each color in the cone relative to the 0°

line, which is traditionally assigned to be red. The saturation is represented as the

distance from the center of the circle. Highly saturated colors are on the outer edge of

the cone, whereas gray tones (which have no saturation) are at the center. The value is

determined by the colors vertical position in the cone. At the pointy end of the cone,

there is no brightness, so all colors are black. At the fat end of the cone are the

brightest colors.

Color transformation from RGB to HSV color space is done by the following

ݔܽ݉ ൌ ,ݎሺݔܽ݉ ݃, ܾሻ (3.3)

݉݅݊ ൌ ݉݅݊ሺݎ, ݃, ܾሻ (3.4)

݄ ൌ

ە
ۖ
۔

ۖ
ۓ

0°, ݂݅ max ൌ ݉݅݊
60° ൈ ሺ݃ െ ܾሻ ሺ݉ܽݔ െ ݉݅݊ሻ⁄ ൅ 0°, ݂݅ max ൌ ݃ ݀݊ܽ ݎ ൒ ܾ

60° ൈ ሺ݃ െ ܾሻ ሺ݉ܽݔ െ ݉݅݊ሻ⁄ ൅ 360°, ݂݅ max ൌ ݃ ݀݊ܽ ݎ ൏ ܾ
60° ൈ ሺܾ െ ሻݎ ሺ݉ܽݔ െ ݉݅݊ሻ⁄ ൅ 120°, ݂݅ max ൌ ݃
60° ൈ ሺݎ െ ݃ሻ ሺ݉ܽݔ െ ݉݅݊ሻ⁄ ൅ 240°, ݂݅ max ൌ ܾ

 (3.5)

ݏ ൌ ൜ 0, ݂݅ max ൌ 0
ሺ݉ܽݔ െ ݉݅݊ሻ ⁄ݔܽ݉ ൌ ݉݅݊ ⁄ݔܽ݉ , ݁ݏ݅ݓݎ݄݁ݐ݋ (3.6)

ݒ ൌ (3.7) ݔܽ݉

Color difference ܧ௖ ௜,௝ between two points pi[hi, si, vi], pj[hj, sj, vj] in the HSV

space is given by the formula[31]

௖ ௜,௝ܧ ൌ 1 െ 1 √5⁄ ቀ൫ݒ௜ െ ௝൯ଶݒ ൅ ൫ݒ௜ݏ௜ cosሺ݄௜ሻ െ ௝ݏ௝ݒ cos൫ ௝݄൯൯ଶ ൅ ൫ݒ௜ݏ௜ sinሺ݄௜ሻ െ

 sin݄݆212 , (3.8)݆ݏ݆ݒ

25

For every segment, we compute average RGB value, and transform average RGB

value to HSV color space. Then, we compute color difference for every neighboring

segment.

Another cue is texture. Similarly to color, texture provides a cue for the geometric

class of a segment through its relationship to materials and objects in the world.

To represent texture, we apply a subset of the filter bank designed by Leung and

Malik [32]. We generated the filters with the following parameters: 19x19pixel

support, the scale of √2 for oriented and blob filters, and 6 orientations. For the filter

bank, there are 6 edges, 6 bars, 1 Gaussian, and 2 Laplacian of Gaussian filters.

We compute the histogram (over pixels within a segment) of maximum responses.

Then, we compute the symmetrized Kullback-Leibler divergence ்ܧ ௜,௝ for every

neighboring segment.

Finally, we compute the cost function E which is combine color and texture

information for every neighbor segments by the formula,

ܧ ൌ ௖ ௜,௝ܧߙ ൅ ௜,௝, (3.9) ்ܧߚ

where ߚ ,ߙ are the weighting factors to control the amount of each energy.

3.2.2.2 Neighbor Merge

In this stage, we use connected components for segment merge. Connected

components are the simplest method of image segmentation. During the Connected

components process, if their cost E is smaller than some threshold values, two

neighboring segments are merged. The key parameter in the connected components

process is the threshold T. We use the following iterative method to determine the

threshold T:

1. An initial threshold T is chosen.

26

2. If the cost of neighboring segment is smaller than the threshold T, we will merge

neighboring segment.

3. Turn up the threshold T.

4. Go back to step 2, and replace the threshold T. Keep repeating until the number of

segment is smaller than a constant NS, 1000.

Fig. 3.7 shows the results of the fast neighbor merge process.

Fig. 3.7. The results of the fast neighbor merge process. (a) Original image. (b) Initial

segmentation. (c) The result of this process.

3.2.3 Surface Layout

Fig. 3.8. Surface layout [27]. On these images and elsewhere, main class labels are indicated

by colors (green=support, red=vertical, blue=sky) and subclass labels are indicated by

markings (left/up/right arrows for planar left/center/right, ‘O’ for porous, ‘X’ for solid).

27

Surface layout proposed in [27] can label the image into geometry classes, which

coarsely describe the 3D scene orientation of each image region as shown in Fig. 3.8.

Every region in the image is categorized into one of three main classes: “support”,

“vertical”, and “sky”. Support surface are parallel to the ground and could potentially

support a solid object. Vertical surfaces are solid surfaces that are too steep to support

an object. The sky is the image region corresponding to the open air and clouds. Vertical

class is further categorized into one of five subclasses: “left”, “center”, “right”,

“porous”, and “solid”. Planar surfaces facing to the “left”, “center” or “right” of the

viewer, and non-planar surface that are either “porous” or “solid”.

We believe that surface layout representation is useful information for us to detect

object in the image. Fig. 3.9 shows the stages of the surface layout. At first, image is

partitioned to many superpixels, and we compute cues for each superpixels. In order

to have better result, multiple segmentation is used, so same-label likelihood is

computed to be cost information for merge segment. After multiple segmentation,

homogeneity likelihood is computed for each segment, and it is used to determine that

segment is homogeneity or not. Label likelihood is also computed for each segment

and superpixel to determine that segment belongs to which category. Finally, Bayes

theorem applies label likelihood and homogeneity likelihood to compute the label

confidence for each superpixel. We will briefly describe the stages in following

section.

28

Fig. 3.9. Flow of the surface layout.

3.2.3.1 Superpixels

The use of superpixels improves the computational efficiency of our algorithm, and

allows complex statistics to be computed for enhancing our knowledge of the image

structure. Different from original algorithm in [34], we adopt our initial segmentation

as superpixels.

3.2.3.2 Cues computation

To determine which orientation is most likely, we need to use all of the available

cues: location, color, texture, perspective. In Table 3.1, we list the set of statistics used

for classification.

29

Table 3.1. Statistics computed to represent superpixels [27]

Surface Cues

Location

L1. Location: normalized x and y, mean

L2. Location: normalized x and y, 10th and 90th pctl

L3. Location: normalized y wrt estimated horizon, 10th, 90th pctl

L4. Location: whether segment is above, below, or straddles estimated horizon

L5. Shape: number of superpixels in segment

L6. Shape: normalized area in image
Color

C1. RGB values: mean

C2. HSV values: C1 in HSV space

C3. Hue: histogram (5 bins)

C4. Saturation: histogram (3 bins)
Texture

T1. LM filters: mean absolute response (15 filters)

T2. LM filters: histogram of maximum responses (15 bins)
Perspective

P1. Long Lines: (number of line pixels)/sqrt(area)

P2. Long Lines: percent of nearly parallel pairs of lines

P3. Line Intersections: histogram over 8 orientations, entropy

P4. Line Intersections: percent right of image center

P5. Line Intersections: percent above image center

P6. Line Intersections: percent far from image center at 8 orientations

P7. Line Intersections: percent very far from image center at 8 orientations

P8. Vanishing Points: (num line pixels with vertical VP membership)/sqrt(area)

P9. Vanishing Points: (num line pixels with horizontal VP membership)/sqrt(area)

P10. Vanishing Points: percent of total line pixels with vertical VP membership

P11. Vanishing Points: x-pos of horizontal VP - segment center (0 if none)

P12. Vanishing Points: y-pos of highest/lowest vertical VP wrt segment center

P13. Vanishing Points: segment bounds wrt horizontal VP

P14. Gradient: x, y center of mass of gradient magnitude wrt segment center

3.2.3.3 Same-label Likelihoods

Same-label likelihoods learned from training images. The same-label classifier

30

outputs an estimate of ܲ൫ݕ௜ ൌ ൯ for the adjacent superpixels i and j and imageܫ௝หݕ

data I. Here ݕ௜ and ݕ௝ are the superpixel label. The same-label classifier is based on

cue set L1, L6, C1-C4, and T1-T2 in Table 3.1. In Table 3.2 we list the set of statistics

used for computing same-label likelihoods.

Table 3.2. Statistics computed over pairs of superpixels

Boundary cues
Location

the absolute differences of the pixel location values x and y

Color

C1. the absolute differences of the mean RGB

C2. the absolute differences of the mean HSV

C3. the symmetrized Kullback-Leibler divergence of the hue

C4. the symmetrized Kullback-Leibler divergence of the saturation

Texture

T1. the absolute differences of the mean LM filter response

T2. he symmetrized Kullback-Leibler divergence of texture histogram

Shape

S1. the ratio of the area

S2. the fraction of the boundary length divided by the perimeter of the smaller superpixel

S3.the straightness of the boundary

3.2.3.4 Multiple Segmentations

The increased spatial support of superpixels provides much better classification

performance than for pixels. Large regions are required to effectively use the more

complex cues. We need to compute multiple segmentations and then use the increased

spatial support provided by each segment to better evaluate its quality. This method is

based on pairwise same-label likelihoods. A diverse sampling of segmentations is

produced by varying the number of segments ns and using a random initialization.

31

3.2.3.5 Label Likelihood Computation

The label classifier is used to distinguish among the main classes and the

subclasses, and it is based on all of the listed cues. The label classifier output the

estimate of ܲ ቀ൫ݕఫ෥ หܫ, .௝ݏ ௝൯ቁfor the segmentݏ

3.2.3.6 Homogeneity Likelihood Computation

The homogeneity classifier is used to determine whether a segment has a single or

is mixed, and it is based on all of the listed cues. The homogeneity classifier output

the estimate of ܲ൫ݏ௝หܫ൯ for the segment ݏ௝.

Fig. 3.10. The result of the confidence images for each of the surface labels.

3.2.3.7 Label Confidences Computation

In final stage, we compute label confidences for each superpixel, and use

following formula:

ܲሺݕ௜|ܫሻ ן ∑ ܲ൫ݕప෥หܫ, ௜ד൯௦ೕܫ௝หݏ௝൯ܲ൫ݏ (3.10)

Fig. 3.10 shows the result of the confidence images for each of the surface labels.

32

3.2.4 Object Boundary Tracing Method

There are many features that could be used to detect the object boundary, and we

describe below. Adjacent regions have different colors or textures, or are misaligned;

long and smooth boundaries with strong color or texture gradients; two adjacent

regions have different 3D surface characteristics.

Until now, we extract many features that could be used to detect object, but how

to use them efficiently? Local method is difficult to distinguish the correct boundary,

while global method has high computational complexity due to much iteration.

Therefore, we propose an object boundary tracing method to solve this problem. Fig.

3.11 shows the stages of the object boundary tracing method. The aim of the first

stage is the initial boundary selection, and obvious object boundaries are labeled using

the rule-based method. At the second stage, the rest of object boundaries are traced

from the initial boundaries. At the third stage, segments without object boundary are

merged

33

Fig. 3.11. Flow of the object boundary tracing method.

3.2.4.1 Initial Boundary Selection

There are many features that we compute before and could be used to detect

object boundary. As the situation is different, we should choose different features, so

we categorize every object boundary in the image into one of three classes: “gnd-vrt”,

“sky-vrt”, and “vrt-vrt” as in Table 3.3. For different class, we use a specific feature to

determine its initial boundaries.

Table 3.3. Features of initial boundary selection.

Class features

for all classes boundary smoothness

edge(color, texture)

34

for “gnd-vrt” class only main label likelihood

for “sky-vrt” class only main label likelihood

for “vrt-vrt” class only sub-label likelihood

if event vrt-gnd-vrt

We use a set of rule to determine the initial boundary. For example given the

“sky-vrt” class of the boundary it belongs to initial object boundary if the following

condition is satisfied:

 ൫1 െ ܲ൫ݕ௜ ൌ ൯ܫ௝หݕ ൅ ห݉ܽ݅݊௟௔௕௘௟௦ሺ݅ሻ െ ݉ܽ݅݊௟௔௕௘௟௦ሺ݆ሻห൯ ൐ ݀݊ܣ 0.5

 ൫݉ܽ݅݊௟௔௕௘௟௦ሺ݅ሻ ൐ ௟௔௕௘௟௦ሺ݆ሻ݊݅ܽ݉ ݎ݋ 0.3 ൐ 0.3൯

The ܲ൫ݕ௜ ൌ ൯ܫ௝หݕ denotes the same-label likelihood and the ݉ܽ݅݊௟௔௕௘௟௦ሺ݅ሻ

denotes the sky label confidence. Similar conditions have been used in order to detect

the other classes of object boundary, more detail formula that we show in appendix.

Fig 3.12 shows the result of the initial object boundary selection. The red fragments in

the image are selected initial object boundaries.

Fig 3.12. The result of the initial object boundary selection.

3.2.4.2 Object Boundary Tracer

The object boundary tracer of a boundary start from an initial object boundary and

selects a next object boundary. The selected object boundary should have high edge

value, and high label likelihood difference, and the property of the class of object

boundary, and the boundary orientation should not change rapidly. This process

35

repeats until reaching to the border of image or the object boundary that already be

labeled. Fig. 3.13 shows a state of an object tracer in image domain.

x

y

Current boundary position

Next boundary position

Fig 3.13. A state of an object tracer in image domain

We develop an energy function for the object boundary tracer. The energy function

is modeled by three constraints. The first is the boundary tracing constraint to trace

strong boundary. The second is the different label constraint to separate different

object. The third is the same label constraint to penalize significant surface label

changes in an object.

The following equation describe above three constraints.

Constraint 1: boundary tracing constraint:

,௟௧ሺ݅ܧ ݆ሻ ൌ 1 െ ܲ൫ݕ௜ ൌ ൯, (3.11)ܫ௝หݕ

Constraint 2: different label constraint:

,ௗ௟ሺ݅ܧ ݆ሻ ൌ หܲሺݕ௜ ൌ ݈ܾ݈ܽ݁௫ሻ െ ܲ൫ݕ௝ ൌ ݈ܾ݈ܽ݁௫൯ห, (3.12)

Constraint 3: same label constraint:

,௦௟ሺ݅ܧ ݆ሻ ൌ ݉ܽ ݔ ቀܲሺݕ௜ ൌ ݈ܾ݈ܽ݁௫ሻ, ܲ൫ݕ௝ ൌ ݈ܾ݈ܽ݁௫൯ቁ, (3.13)

where ݈ܾ݈ܽ݁௫ is the current object label. i and j are the adjacent superpixels.

36

 ௝ are the superpixel label. Then, the object boundary tracing problemݕ ௜ andݕ

can be formulated as follows.

ොݕ ൌ ݃ݎܽ ,௟௧ሺ݅ܧߙ௬ሼݔܽ݉ ݆ሻ ൅ ,ௗ௟ሺ݅ܧߚ ݆ሻ ൅ ,௦௟ሺ݅ܧߛ ݆ሻሽ, (3.14)

where ߛ ,ߚ ,ߙ are the weighting factors to control the amount of each energy.

Then, we need to find the solution by solving the problem. Because we want to

save computation, we just use local method to minimize the cost function. Fig 3.14

shows the result of the object boundary tracing method. In Fig. 3.14(b), the white line

is the selected object boundary.

Fig 3.14. The result of the object boundary tracing method. (a) Original image. (b)

The result of the object boundary tracer. (c) The result of this stage.

3.2.5 Constraint Segmentation

Table 3.4. Events of constraint segmentation

Event 1: the color of the segment is similar to the other.

Event 2: the label confidence of the segment is similar to the other.

Event 3: the shape of the segment is similar to the other.

Event 4: the y axis position of the segment is similar to the other.

Event 5: the segment is inside of the other segment.

Event 6: the segment is small enough.

After object boundary tracing method, some segments in the image are not

37

complete objects. There are many events that could help us merge those segments.

Table 3.4 lists theses event that we use. In order to merge them, we construct several

rules. We merge the segments, if the following conditions are satisfied.

Condition 1: 1 ݐ݊݁ݒܧ ת 2 ݐ݊݁ݒܧ

Condition 2: 1 ݐ݊݁ݒܧ ת 2 ݐ݊݁ݒܧ ת 6 ݐ݊݁ݒܧ

Condition 3: 2 ݐ݊݁ݒܧ ת ת 3ݐ݊݁ݒܧ 4ݐ݊݁ݒܧ

Condition 4: 2 ݐ݊݁ݒܧ ת 5ݐ݊݁ݒܧ

We seriatim check conditions, and merge the segments, after the constraint

segmentation process, the object segmentation is done. Fig. 3.15 shows the result of

the object segmentation.

Fig 3.15. The result of the object segmentation. (a) Original image. (b) The result of

the object boundary tracing method. (c) The result of this stage.

3.3 Depth Assignment

After the object segmentation stage, we assign the depth to the objects. Our model

in the 3-dimensional space consists of a ground plane and objects are orthogonal to

the ground and sky. In order to construct 3D image for binocular vision, the depth

assignment process output the disparity map ݀ሺݔ, ሻ in the range of 0-255, disparityݕ

map is encoded the depth information. In our image coordinate system, the origin is

38

located at the most left-up corner, and the x-axis toward right, and the y-axis toward

down.

Fig. 3.16. illustration of each condition for depth assignment

We assign different depth for segment according to their conditions. Fig. 3.16

shows those conditions that we consider. Fig 3.18 shows the stages of the depth

assignment process. At first, for each region, we fit a set of line segments to the

ground-vertical boundary by using the Hough transform [33]. Those line segments are

used to determine that the vertical labeled vertical segments are planar or not. If

vertical labeled segments contain the line segment, it is planar. Otherwise vertical

labeled segment is non-planar. Then we begin to assign depth to each segment.

For the ground labeled segment, we compute disparity by the formula:

݀ሺݔ, ሻݕ ൌ ሺ݄ݏ݋݌ െ ሺܪ െ ሻݕ ⁄ܪ ሻሺ255.0 ⁄ݏ݋݌݄ ሻ, (3.15)

39

where H is the height of the image, and hpos is the position of the horizontal line in

the image that is computed by vanish point or the highest position of ground labeled

pixel.

For the vertical labeled segment that is connected with ground labeled segment, if

the ground-vertical boundary is a line, we use following formula:

݀ሺݔ, ሻݕ ൌ ሺ݄ݏ݋݌ െ ሺܪ െ ௟ሻݕ ⁄ܪ ሻሺ255.0 ⁄ݏ݋݌݄ ሻ (3.16)

௟ݕ ൌ െሺܽ ൈ ݔ ൅ ܿሻ ܾ⁄ (3.17)

݈ሺݔԢ, Ԣሻݕ ൌ Ԣݔܽ ൅ Ԣݕܾ ൅ ܿ, (3.18)

where ݈ሺݔԢ, .Ԣሻ is the linear equation of the line segmentݕ

For the vertical labeled segment, if the segment is planar, we also use formula

(3.14) and (3.15). However the linear equation is different. The slope of the linear

equation is decided by sub-class, and the line through the point that is the lowest

y-axis position of the segment in the image.

If the segment is non-planar, we use following formula,

݀ሺݔ, ሻݕ ൌ ൫݄ݏ݋݌ െ ሺܪ െ ௟௢௪௘௦௧ݕ ⁄ܪ ሻ൯ሺ255.0 ⁄ݏ݋݌݄ ሻ, (3.19)

where ݕ௟௢௪௘௦௧ is the lowest y-axis position of the segment in the image.

After depth assignment process, the disparity map is computed. Fig. 3.17 shows the

result of depth assignment process.

40

Fig. 3.17 The result of depth assignment process. (a) Original image. (b) Disparity

map.

Fig 3.18. Flow of the depth assignment process.

41

3.4 3D Image Construction for Binocular vision

Fig. 3.19 Flow of the DIBR algorithm.

After we have the disparity map, we can generate left and right eye images by the

depth-based image rendering (DIBR) algorithm [28].

Fig. 3.19 shows the stages of the DIBR algorithm. The concept of DIBR on the

parallel camera configuration as shown in Fig. 3.20 . In this configuration, an object O

is observed at original center view Vc, and virtual left-eye view Vl. This object is also

projected to Xc, Xr, and Xl in the image planes respectively. The relationship of the

projected position among views is

௟ܺ ൌ ܺ௖ ൅ ሺܾ 2⁄ ሻ ݂ ܼ⁄ ܽ݊݀ ܺ௥ ൌ ܺ௖ െ ሺܾ 2⁄ ሻ ݂ ܼ⁄ , (3.20)

where Z is the depth of object from the view plane f is the focal length and b is the

baseline of Vr and Vl. Because we can’t know the camera parameter in original

2-dimensional video, we simplify the formula

௟ܺ ൌ ܺ௖ ൅ ሺ݀ݏ 2⁄ ሻ ܽ݊݀ ܺ௥ ൌ ܺ௖ െ ሺ݀ݏ 2⁄ ሻ, (3.21)

42

where d is the disparity that compute from Section 3.3 and s is the scale factor that

could be adjusted by user.

Fig. 3.20. Parallel camera configuration for virtual images warping [28]

If disparity map is given, we can render the virtual left-eye and right-eye view

images using the center view image. This rendering process is generally called 3D

warping. However, the warped virtual images incur many holes, which may be seen

by the right eye or left eye but occluded in the center view. To recover the holes, the

hole-filling method is added after the 3D warping process as shown in Fig. 3.19 . But

it suffers from serious texture distortion since the large holes cannot be recovered well.

The depth smoothing method is adopted before the 3D warping process. The aim of

the depth smoothing is to reduce the size of holes. In the depth smoothing stage,

directional Gaussian filter is used to reduce the geometric distortion, and apply filter

only on the hole-region. Fig. 3.21 shows the result of DIBR algorithm.

43

Fig. 3.21. The result of DIBR algorithm. (a) Original image. (b) Disparity map. (c)

Rendered left view. (d) Rendered right view.

44

4. Experimental Results and Analysis

4.1. Introduction

In this chapter, we show the experimental results of the proposed 2D to 3D

conversion system on test images. The experimental results contain 3D result and

execution time. The test images are used from the Internet. In addition to the 3D result

of our proposed system, we included the 3D result of the hybrid depth cueing system

[2] and the recovering major occlusion boundaries method [4] for comparison. The

source codes of recovering major occlusion boundaries method for comparison is

provided from [4].

4.2. 3D Results

4.2.1. Our 3D Results

The proposed method has been tested using different types of scenarios. The

generated disparity maps, rendered left and right view images and anaglyph images

are showed from Fig 4.1 to Fig 4.11 for evaluation. Sequences in the Fig 4.1 and Fig

4.2 are standard MPEG-4 video test sequences. Other sequences are selected from the

databases of [4].

In the test image “flower garden” as shown in Fig. 4.1. It is tested for outdoor

scene. There are four major parts that should be partitioned. They are sky, ground,

tree, and building. The result of disparity map shows that depth of objects is correct.

In the test image “Hall monitor” as shown in Fig. 4.2. It is tested for indoor scene.

45

There are five major parts that should be partitioned. They are ground, ceil, left wall,

right wall, and man. Even through objects in the image are not detected well, the order

of depth is correct. The result also shows that out system can handle planar surface.

Fig. 4.1. Flower garden sequence.

Hall_monitor
sequence

Disparity
map

AnaglyphLeft view

Right view

Fig. 4.2. Hall_monitor sequence.

46

Fig. 4.3. Building.

Fig. 4.4. Outdoor0 sequence.

Fig . 4.3 and Fig. 4.4 are tested for outdoor scene with geometry. In Fig. 4.3, the

major part in the image is building, and result of depth is correct. The chair in the

image is not detected well, because the geometry of result for the chair is ground label.

In Fig. 4.4, the order of depth is correct, but the woman in the image right side is

47

merged with building. The mistake is caused by object boundary tracer.

Fig. 4.5. Ourdoor1 sequence.

Fig. 4.6. Scenery0 sequence.

Fig. 4.5 and fig. 4.6 are tested for nature outdoor scene. The result of Fig. 4.5 is

good. In the fig 4.6, many birds in the image are not detected. It is because the

48

geometry of result is wrong.

scenery1

Disparity
map Anaglyph

Left view

Right view

Fig. 4.7. Scenery1 sequence.

Fig. 4.8. Walking sequence.

49

structure

Disparity
map Anaglyph

Left view

Right view

Fig. 4.9. Structure sequence.

scenery1
(a)

Disparity map Left view Right view
(b)

Disparity map Left view Right view
(c)

Fig. 4.10. Urban sequence.

50

Fig. 4.11. Alley sequence.

In Fig 4.7, Fig 4.8, and Fig 4.10 are tested for nature outdoor scene with people.

Results show that the people in the image are detected well, and even people wear

camouflage in the woods.

Fig 4.9 and Fig 4.11 are tested for man-made scene. The result of fig 4.9 is good.

Even through the order of depth in the fig 4.11 is correct, but woman in the image

right side is merged with tree, ground, and statue. This makes it impossible to

distinguish the depth of these objects in the anaglyph image.

51

4.2.2.3D Result Comparison between Different Algorithms

In this section, we compare our method with the hybrid depth cueing system and

the recovering major occlusion boundaries method.

The 3D result of the hybrid depth cueing system is showed from Fig. 4.12 to Fig.

4.13. In flower garden sequence, Fig. 4.12(c) show the DMP, DGP, fused disparity

map, left view and right view, where DMP is depth from motion, DGP is depth from

single image. Compare with our method in Fig. 4.12(b), our disparity map is better,

because our depth of the building in the image is more accurate. If we only consider

the condition that is depth from single image, our method computes the depth of

objects is more accurate. Because the DGP can’t compute the depth of objects, it just

can compute the depth of the background. In the hall monitor sequence, the result of

the hybrid depth cueing system is better for the depth of background, but our method

just use single image to compute the depth of the scene. If their result misses motion

information, they could not compute the depth of man.

Fig. 4.12. 3D results of flower garden sequence with different algorithms. (a) Original

image (b) Our proposed algorithm. (c) The hybrid depth cueing system.

52

Fig. 4.13. 3D results of hall monitor sequence with different algorithms. (a) Original

image (b) Our proposed algorithm. (c) The hybrid depth cueing system.

The 3D result of the recovering major occlusion boundaries method is showed

from Fig. 4.14 to Fig. 4.18. In some cases, our 3D results are comparable to the

recovering major occlusion boundaries method. In the urban sequence and scenery1

sequence, our method can detect more complete objects than the recovering major

occlusion boundaries method. It is because the result of our superpixels is better than

original method that is proposed by Felzenszwalb et al. [34]. Fig. 4.19 shows the

comparison between our method and Felzenszwalb’s method. In some case, compare

with the recovering major occlusion boundaries method, even through our method

cannot perform well on object boundaries, our execution time is faster. We will report

our execution time in Section 4.3. Major occlusion boundaries method also report

their execution time in [4], but they only implement matlab version. So we do not

compare execution time of our method with them.

53

Walking
(a)

Disparity map Left view Right view
(b)

Disparity map Left view Right view
(c)

Fig. 4.14. 3D results of walking sequence with different algorithms. (a) Original image

(b) Our proposed algorithm. (c) The recovering major occlusion boundaries method.

scenery1
(a)

Disparity map Left view Right view
(b)

Disparity map Left view Right view
(c)

Fig. 4.15. 3D results of scenery1 with different algorithms. (a) Original image (b) Our

proposed algorithm. (c) The recovering major occlusion boundaries method.

54

Fig. 4.16. 3D results of alley sequence with different algorithms. (a) Original image (b)

Our proposed algorithm. (c) The recovering major occlusion boundaries method.

Fig. 4.17. 3D results of outdoor0 sequence with different algorithms. (a) Original

image (b) Our proposed algorithm. (c) The recovering major occlusion boundaries

method.

55

scenery1
(a)

Disparity map Left view Right view
(b)

Disparity map Left view Right view
(c)

Fig. 4.18. 3D results of urban sequence with different algorithms. (a) Original image

(b) Our proposed algorithm. (c) The recovering major occlusion boundaries method.

Fig. 4.19. Superpixels computation with different algorithms. (a) Original image (b)

Our proposed algorithm. (c) Felzenszwalb’s algorithm.

4.3. Execution Time

In this section we show the execution time of our proposed 2D to 3D conversion

system. The algorithm was tested on several images on sizes ranging from 352x288 to

1024x768, and had its performance measured on each step. The data presented

following is average of the experiments, scale to seconds (s). Because the texture

computation is time-consuming, texture computation is separated from the fast

neighbor merge process. Table 4.1 shows the performance for the algorithm,

processed on the CPU. These results were obtained on a computer with an Intel Core

56

i7 980, 3.33 GHz, and a 6-GB RAM, running Window 7. And we use the Microsoft

Visual C++ compiler, version 9.0. Table 4.1 shows that for the algorithm, the texture

computation is bottleneck, greatly degrading the speed performance, especially on

large images. But the texture computation is easy to be accelerated using parallel

processor.

Table 4.1. Execution time

 352x288 640x480 800x600 1024x768

Initial segmentation 0.0625 0.2236 0.3496 0.6084

Texture computation 1.3492 4.7130 7.3423 12.015

Fast neighbor merge 0.0155 0.0711 0.2356 0.5295

Surface labeling 0.1480 0.3534 0.5153 0.6073

Object boundary tracer 0.0155 0.0456 0.0646 0.0605

Constraint segmentation 0.0000 0.0021 0.0026 0.0032

Depth assignment 0.0000 0.0107 0.0156 0.0197

Total times 1.5907 5.4090 7.6600 13.824

5. Conclusion and Future Works

5.1. Conclusion

In this thesis, we proposed the 2D to 3D conversion system which automatically

converts a single 2D image into the 3D effect images. This algorithm combines

object-based segmentation with depth assignment, so we can see the objects more

complete on the 3D display. We use watershed segmentation algorithm to generation

initial segmentation. Fast neighbor merge process is proposed to solve the problem of

57

over-segmentation. In addition, the surface labeling algorithm is used to categorize

superpixels into appropriate classes. Furthermore, we proposed an object boundary

tracing method to detection objects of the image based on surface information. With

the proposed object boundary tracing method, the execution time is much reduced,

compared with the recovering major occlusion boundaries method.

Experimental results demonstrated that the proposed 2D to 3D conversion system

could achieve better quality of 3D image than the hybrid depth cueing system, and the

recovering major occlusion boundaries method.

5.2. Future work

There are two issues remained in our 2D to 3D conversion system. First, there still

are many depth cues we can use. For example, considering the temporal domain

information, we can combine some video segmentation method that can help the

result of object segmentation more accurate. The other issue is computational speed of

our algorithm which still remains slow. Therefore, we will be working on optimizing

the speed of object segmentation algorithm in the future and porting the algorithm on

the parallel processor.

58

Reference

[1] T. Iinuma, H. Murata, S. Yamashita, and K. Oyamada, “Natural Stereo Depth

Creation Methodology for a Real-time 2D-to-3D Image Conversion,” SID

Symposium Digest of Technical Papers, pp. 1212-1215, 2000.

[2] C. C. Cheng, T. L. Chung, Y. M. Ysai, and L. G. Chen, “Hybrid Depth Cueing

for 2D-To-3D Conversion System,” in Proc. of Stereoscopic Displays and

Application XX, 2009

[3] S. Battiato, A. Capra, S. Curti, and M. L. Cascia, "3D Stereoscopic Image Pairs

by Depth-Map Generation," in Proc. of International Symposium on 3D Data

Processing, Visualization and Transmission (3DPVT), pp. 124-131, 2004.

[4] D. Hoiem, A. Stein, A. A. Efros, and M. Hebert, “Recovering occlusion

boundaries from a single image,” in Proc. of IEEE International Conference on

Computer Vision (ICCV), 2007.

[5] R. I. Hartley, and A. Zisserman, “Multiple Views Geometry in Computer Vision,”

Cambridge University Press: Cambridge, UK, 2000.

[6] M. Pollefeys, L. V. Gool, and M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, R.

Koch, “Visual modeling with a hand-held camera,” International Journal of

Computer Vision , vol. 59, no.3, pp. 207-232, 2004.

[7] C. Tomasi and T. Kanade, “Detection and tracking of point features,” Carnegie

Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-CS-91-132, Apr. 1991.

[8] T. Jebara, A. Azarbayejani, A. Pentland, 3D structure from 2D motion, IEEE

Signal Process. Mag. 16 (3) (1999) 66–84.

59

[9] M.Z. Brown, D. Burschka, and G. Hager, “Advances in Computational Stereo,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no.8,

pp. 993-1008,2003.

[10] D. Scharstein and R. Szeliski, "A Taxonomy and Evaluation of Dense

Two-Frame Stereo Correspondence Algorithms," International Journal of

Computer Vision (IJCV), vol. 47, pp. 7-42, 2002.

[11] S. Knorr, T. Sikora, “An image-based rendering (IBR) approach for realistic

stereo view synthesis of TV broadcast based on structure from motion,” in Proc.

of IEEE International Conference on Image Processing (ICIP), San Antonio,

USA, 2007.

[12] L.MacMillan, “An Image based approach to three-dimensional computer

graphics,” Ph.D. Dissertation, 1997, University of North Carolina.

[13] I. Ideses, L. P. Yaroslavsky, and B. Fishbain, “Real-time 2D to 3D video

conversion,” Journal of Real-Time Image Processing, vol.2, no. 1, pp. 3–9,

2007.

[14] M. Kunter, S. Knoor, A. Krutz, T. SiKora, “Unsupervised object segmentation

for 2D to 3D conversion,” in Proc. of SPIE, vol. 7237, 2009

[15] A. Krutz, M. Kunter, M. Mandal, M. Frater, and T. Sikora, “Motion-based

Object Segmentation using Sprites and Anisotropic Diffusion”, 8th International

Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS),

2007.

[16] S. A. Valencia, R. M. Rodríguez-Dagnino, “Synthesizing Stereo 3D Views from

Focus Cues in Monoscopic 2D images,” in Proc. SPIE, vol. 5006, pp. 377-388,

2003.

[17] J.M. Geusebroek and A.W.M. Smeulders, “A six-stimulus theory for stochastic

60

texture,” International Journal of Computer Vision (IJCV), vol. 62, pp. 7–16,

2005.

[18] V. Nedovic, A. W. M. Smeulders, A. Redert, J. M. Geusebroek, “Depth

estimation via stage classification,” in Proc. of 3DTV conference, pp 77-80, 2008

[19] D. A. Forsyth, D.A. “Shape from texture and integrability,” in Proc. of

International Conference on Computer Vision (ICCV), vol. 2, pp. 447-452, 2001,

[20] A. M. Loh, R. Hartley “Shape from Non-Homogeneous, Non-Stationary,

Anisotropic, Perspective texture”, in Proc. of the British Machine Vision

Conference, 2005

[21] Y. J. Jung, A. Baik, J. Kim, and D. Park, “A novel 2D-to-3D conversion

technique based on relative height depth cue,” in Proc. of SPIE, vol. 7237, 2009

[22] A. Saxena, S. H. Chung, and A. Y. Ng, “Learning depth from single monocular

images,” In NIPS, vol. 18, 2005

[23] A. Saxena, S. H. Chung, and A. Y. Ng, “3-D depth reconstruction from a single

still image,” in Proc. of International Journal of Computer Vision (IJCV), vol.76

no. 1, 2007

[24] T. Okino, H. Murata, K. Taima, T. Iinuma, and K. Oketani, "New television with

2D to 3D image conversion technologies," in Proc. of SPIE , Stereoscopic

Displays and Virtual Reality Systems III, Vol. 2653, pp. 96-103, 1996.

[25] H. Murata, Y. Mori, S. Yamashita, A. Maenaka, S. Okada, K. Pyamada, and S.

Kishimoto, "A real- Time Image Conversion Technique Using Computed Image

Depth," SID Symposium Digest of Technical Papers, vol. 29, pp. 919-922, 1998

[26] Martin, C. Fowlkes and J. Malik, “Learning to detect natural image boundaries

using local brightness, color and texture cues,” IEEE Transactions on Pattern

Analysis and Machine Intelligence,” vol. 26, no. 5, pp. 530–549, 2004

61

[27] D. Hoiem, A. Efros, and M. Hebert, “Recovering surface layout from an image,”

International Journal of Computer Vision (IJCV), vol. 75, no. 1, pp. 151–172,

2007.

[28] Y. R. Horng, Y. C. Tseng, T. S. Chang, “Stereoscopic Images Generation with

Directional Gaussian Filter,” in Proceedings of IEEE International Symposium

on Circuits and Systems, pp. 2650-2653, 2010.

[29] A. Koሷ rbes, R. Lotufo, G. B. Vitor, and J. V. Ferreira, “A proposal for a parallel

watershed transform algorithm for real-time segmentation,” in proc. of Workshop

de Vis ෤ܽo Computacional WVC’, 2009.

[30] A. R. Smith, “Color gamut transform pairs,” Computer Graphics, Vol. 12, pp.

12-19, 1978.

[31] J. R. Smith and S. F. Chang, "VisualSEEk: A fully automated content-based

image query system", in proc. of ACM Multimedia Conference, pp. 87 - 98, 1996.

[32] T. Leung and J. Malik, “Representing and recognizing the visual appearance of

materials using threedimensional textons,” International Journal of Computer

Vision (IJCV), vol. 43, no. 1, pp. 29–44, 2001.

[33] D.H. Ballard, "Generalizing the Hough Transform to Detect Arbitrary Shapes",

Pattern Recognition, vol.13, no.2, pp.111-122, 1981

[34] P. Felzenszwalb and D. Huttenlocher. “Efficient graph-based image

segmentation, “International Journal of Computer Vision (IJCV), vol.59, no.2,

2004.

[35] J. L. Schneiter, N. R. Corby , US Patent No. 4,963,017 , “Variable depth range

camera”, General Electric Company, schenectedy, N.Y, 1990

[36] Y. Su, M. T. Sun, and V. Hsu, “Global motion estimation from coarsely sampled

motion vector field and the applications,” in Proc. International Symposium on

62

Circuits and System (ISCAS),, vol. 2, pp. 628–631, 2003

[37] S. Makrogiannis, G. Economou, and S. Fotopoulos, “A region dissimilarity

relation that combines feature-space and spatial information for color image

segmentation,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 35, no. 1, pp.

44–53, 2005.

[38] D. B. K. Trieu, and T. Maruyama, T, “Real-time image segmentation based on a

parallel and pipelined watershed algorithm.,“ Journal of Real-Time Image

Processing, vol. 2, no. 4, pp. 319–329, 2007

63

Appendix

In this section, we briefly describe formula and parameter of object boundary

tracing method and constraint segmentation. In A.1, we introduce the detail formula

and parameter for object boundary tracing method. In A.2, we introduce the detail

formula and parameter for constraint segmentation.

A.1

In the initial boundary selection process, we detect “sky-vrt”, “gnd-vrt”, and “vrt,

vrt” class of initial object boundaries. In the following, we list the formula for those

detectors.

For the “gnd-vrt” class of the boundary that belongs to initial object boundary if

the following conditions are satisfied:

 ටܾ݈௫
ଶ ൅ ܾ݈௬

ଶ ܾ݈௣ ൐ 0.4 ܽ݊݀ൗ

ቀ1 െ ܲ൫ݕ௜ ൌ ൯ܫ௝หݕ ൅ 2 ቚ݉ܽ݅݊௟௔௕௘௟௚ሺ݅ሻ െ ݉ܽ݅݊௟௔௕௘௟௚ሺ݆ሻቚ ൅ ห݉ܽ݅݊௟௔௕௘௟௩ሺ݅ሻ െ

 ݀݊ܽ ൐2.0݆ݏെ݈ܾ݈݉ܽ݅݊ܽ݁݅ݏ൅2݈ܾ݈݆݉ܽ݅݊ܽ݁ݒ݈ܾ݈݁ܽ݊݅ܽ݉

ቀ݉ܽ݅݊௟௔௕௘௟௚ሺ݅ሻ െ ݉ܽ݅݊௟௔௕௘௟௩ሺ݅ሻ ൐ ௟௔௕௘௟௚ሺ݆ሻ݊݅ܽ݉ ݎ݋ 0.4 െ ݉ܽ݅݊௟௔௕௘௟௩ሺ݆ሻ

൐ 0.4൯

 ටܾ݈௫
ଶ ൅ ܾ݈௬

ଶ ܾ݈௣ ൐ 0.4 ܽ݊݀ൗ ܾ݈௣ ൐ 20

ܽ݊݀ ൬ቀ݉ܽ݅݊௟௔௕௘௟௚ሺ݅ሻ ൐ 0.4 ܽ݊݀ ݉ܽ݅݊௟௔௕௘௟௦ሺ݅ሻ ൏ 0.4ቁ ݎ݋ ቀ݉ܽ݅݊௟௔௕௘௟௚ሺ݆ሻ ൐

 ൏0.4݆ݏ݈ܾ݈݁ܽ݊݅ܽ݉ ݀݊ܽ 0.4

64

The ܲ൫ݕ௜ ൌ ൯ܫ௝หݕ denotes the same-label likelihood and the ݉ܽ݅݊௟௔௕௘௟௚ሺ݅ሻ

denotes the ground label confidence. ݉ܽ݅݊௟௔௕௘௟௩ሺ݅ሻ denotes the vertical label

confidence. ݉ܽ݅݊௟௔௕௘௟௦ሺ݅ሻ denotes the sky label confidence. ܾ݈௫ denotes the length

of boundary in x axis. ܾ݈௬ denotes the length of boundary in y axis. ܾ݈௣ denotes

total pixels of boundary.

For the “sky-vrt” class of the boundary that belongs to initial object boundary if

the following condition is satisfied:

 ൫1 െ ܲ൫ݕ௜ ൌ ൯ܫ௝หݕ ൅ ห݉ܽ݅݊௟௔௕௘௟௦ሺ݅ሻ െ ݉ܽ݅݊௟௔௕௘௟௦ሺ݆ሻห൯ ൐ ݀݊ܣ 0.5

 ൫݉ܽ݅݊௟௔௕௘௟௦ሺ݅ሻ ൐ ௟௔௕௘௟௦ሺ݆ሻ݊݅ܽ݉ ݎ݋ 0.3 ൐ 0.3൯

For the “vrt-vrt” class of the boundary that belongs to initial object boundary if the

following conditions are satisfied:

 1 െ ܲ൫ݕ௜ ൌ ൯ܫ௝หݕ ൐ 0.7 ܽ݊݀

หܾݑݏ௟௔௕௘௟ሺ௜ሻሺ݅ሻ െ ܾݑݏ௟௔௕௘௟ሺ௜ሻሺ݆ሻห ൅ หܾݑݏ௟௔௕௘௟ሺ௝ሻሺ݅ሻ െ ܾݑݏ௟௔௕௘௟ሺ௝ሻሺ݆ሻห ൐ 0.4

 For the condition that two fragments of junction are ground label, if other

fragments of junction are satisfied the following formula are the “vrt-vrt” class of

initial object boundary.

1 െ ܲ൫ݕ௜ ൌ ൯ܫ௝หݕ ൅ หܾݑݏ௟௔௕௘௟ሺ௜ሻሺ݅ሻ െ ௟௔௕௘௟ሺ௜ሻሺ݆ሻหܾݑݏ

൅ หܾݑݏ௟௔௕௘௟ሺ௝ሻሺ݅ሻ െ ܾݑݏ௟௔௕௘௟ሺ௝ሻሺ݆ሻห ൏ 0.8

the ܾݑݏ௟௔௕௘௟ሺ௜ሻሺ݆ሻ denotes the subclass of segment i label confidence for segment j.

A.2

In the constraint segmentation process, if following conditions are satisfied, we

will merge segments.

65

 Condition 1: 1 ݐ݊݁ݒܧ ת 2 ݐ݊݁ݒܧ

Event 1:

ට൫v୧ െ v୨൯
ଶ ൅ ටቀs୧cosሺhπሻ െ s୨cosሺhπሻቁ

ଶ
൅ ටቀs୧sinሺhπሻ െ s୨sinሺhπሻቁ

ଶ
൏ 0.6,

where h, s, v denote value of color in the HSV color space.

Event 2:

Main class୧ ൌൌ Main class୨

 Condition 2: 1 ݐ݊݁ݒܧ ת 2 ݐ݊݁ݒܧ ת 6 ݐ݊݁ݒܧ

Event 1:

ට൫v୧ െ v୨൯
ଶ ൅ ටቀs୧cosሺhπሻ െ s୨cosሺhπሻቁ

ଶ
൅ ටቀs୧sinሺhπሻ െ s୨sinሺhπሻቁ

ଶ
൏ 1.2,

where h, s, v denote value of color in the HSV color space.

Event 2:

Main class୧ ൌൌ Main class୨

Event 3:

P୧ ൏ 0.02ܶ Iܲ ׫ P୨ ൏ 0.02ܶ Iܲ

TPI denotes total pixels in the image. P୧ denotes number of pixel in the segment i.

 Condition 3: 2 ݐ݊݁ݒܧ ת ת 3ݐ݊݁ݒܧ 4ݐ݊݁ݒܧ

Event 2:

Main class୧ ൌൌ Main class୨

Event 3:

ሺ|Max୶ሺiሻ െ Max୶ሺjሻ| ൅ |Min୶ሺiሻ െ Min୶ሺjሻ|ሻ ቀMin൫Max୶ሺiሻ, Max୶ሺjሻ൯ െ Max൫Min୶ሺiሻ, Min୶ሺjሻ൯ቁൗ

൏ 1.5

Max୶ denotes the rightest position of the segment in the image. Min୶ denotes the

66

leftest position of the segment in the image.

Event 4:

|Mean୶ሺiሻ െ Mean୶ሺjሻ| ൏ 0.1

Mean୶ denotes the mean value of the position at the x axis in the image.

 Condition 4: 2 ݐ݊݁ݒܧ ת 5ݐ݊݁ݒܧ

Event 2:

Main class୧ ൌൌ Main class୨ ת subclass୧ ൌൌ subclass୨

Event 5:

ቀSeg୧ ׫ Seg୨ୟ୰ୣୟ
െ MaxሺSeg୧ୟ୰ୣୟ , Seg୨ୟ୰ୣୟ

ሻቁ MinሺSeg୧ୟ୰ୣୟ , Seg୨ୟ୰ୣୟ
ሻൗ ൏ 0.1

Seg୧ୟ୰ୣୟ denotes area of bounding box of segment i

Table A.1. Events of constraint segmentation

Event 1: the color of the segment is similar to the other.

Event 2: the label confidence of the segment is similar to the other.

Event 3: the shape of the segment is similar to the other.

Event 4: the y axis position of the segment is similar to the other.

Event 5: the segment is inside of the other segment.

Event 6: the segment is small enough.

67

作 者 簡 歷

姓名: 陳奕均

籍貫: 台北縣

學歷:

台北市立松山高級中學 (民國 90年 09月 ~ 民國 93年 06月)

國立交通大學電子工程學系 學士 (民國 93年 09月 ~ 民國 97年 06月)

國立交通大學電子所系統組 碩士 (民國 97年 09月 ~ 民國 99年 09月)

