
 

 

 

 

國 立 交 通 大 學 

 

電子工程學系  電子研究所碩士班 

 

碩 士 論 文 

 

 

 利用物件導向切割的二維至三維影像

轉換 
 

 
An Efficient 2D to 3D Image Conversion with Object-based 

Segmentation 

 

 

 
研 究 生: 陳奕均 

 

指導教授: 張添烜 

 
中華民國  九十九年  九月 

 



 

 

 

 

 

  



 

 

 

 

 

利用物件導向切割的二維至三維影像轉換 
 
An Efficient 2D to 3D Image Conversion with Object-based 

Segmentation 
 
 
 
 
 
 
研 究 生: 陳奕均                              Student: Yi‐Chun Chen 
指導教授: 張添烜  博士                        Advisor: Tian‐Sheuan Chang 
 

 

 

 

 

 

 

 

國  立  交  通  大  學 

電子工程學系  電子研究所碩士班 

碩  士  論  文 

 

 

 

 

 

 

 

 
A Thesis 

Submitted to Department of Electronics Engineering & Institute of Electronics 
College of Electrical and Computer Engineering 

National Chiao Tung University 
in Partial Fulfillment of the Requirements 

for the Degree of Master 
In 

Electronics Engineering 
September 2010 

Hsinchu, Taiwan, Republic of China 
 
 

中華民國  九十九年  九月 



 

 

 

 

 



 

 

i 

 

利用物件導向切割的二維至三維影像轉換 

 

研究生: 陳奕均                                  指導教授: 張添烜 博士 

 

國立交通大學電子工程學系 電子研究所碩士班 

 

摘  要 

 

    在現今的視覺處理相關領域中，三維影像處理已成為一個重要趨勢。許多自

動將二維影像轉換為三維的演算法已被提出，用以解決三維影像內容缺乏的問題。

然而現在仍沒有一個快速演算法，可以僅利用單張影像中的資訊，將影像做有效

的立體化。 

    本篇研究提出了一個快速轉換演算法，其中包含影像切割、影像分類、物件

邊緣追蹤以及三維影像計算等演算法。我們採用了分水嶺影像切割法(watershed 

segmentation)，使得深度資訊可以做有效的統整；而透過影像分類演算法，回復

影像中場景的幾何關係；另外，我們提出物件邊緣追蹤法，有效率的利用取得的

深度及幾何相關資訊偵測影像中不同物件的相關位置以及類別。最後我們用偵測

物件結果，產生深度圖以及紅藍立體影像。 

    在評量二維至三維轉換演算法的結果方面，我們與其他演算法做比較。實驗

結果顯示，我們提出的二維至三維轉換演算法，在僅有單張影像資訊的情況下，

所估測出的深度準確度及演算法運算速度的總合評估上，表現比其他相關演算法

優異。 
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An Efficient 2D to 3D Image Conversion with Object-based 

Segmentation 

Student: Yi-Chun Chen                               Advisor: Tian-Sheuan Chang 

 

Department of Electronics Engineering & Institute of Electronics 

National Chiao Tung University 

 

Abstract 

 

Nowadays, the 3D image processing has become a trend in the related visual 

processing field. Many automatic 2D to 3D conversion algorithms have been 

proposed to solve the lack of 3D content. But there is still no fast algorithm that 

converts single monocular images well. 

In this thesis, we propose a fast conversion algorithm that includes the image 

segmentation, image classification, object boundary tracing method, and 3D image 

generation. The image segmentation adopts the watershed method to easily collect the 

information of depth cue. Then, the image classification recovers the geometry of 

scene in the image. With the depth cue and geometry information, the object boundary 

tracing method is proposed to detect objects in image efficiently. Finally, the object 

result is used to generate depth map and 3D anaglyph image.  

To evaluate the results, we compare the stereo images with other 2D to 3D 

conversion systems. Experiment result shows that the proposed 2D to 3D conversion 

algorithm could perform better than the associated ones in the depth accuracy and 

processing speed for converting monocular images. 
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Chapter 1. Introduction 

1.1. Background 

Three-dimensional (3D) video provides a dramatic enhancement in the viewing 

experience compared with two-dimensional (2D) video. 3D television (3D TV) 

applications will bring another revolution in TV’s history. The successful introduction 

of 3D TV to the consumer market relies on not only the technological advances but 

also the availability of 3D content. Due to the lack of 3D content, converting 2D 

video to 3D video is a promising solution to the 3D TV industrialist, especially for the 

traditional 2D videos 

Recovering 3D information from 2D image is a basic problem in computer vision. 

Many depth cues can be used to extracted 3D information from 2D image, but each 

cue has its own advantages and disadvantages for different conditions.  

Many depth cue fusion-based methods have been proposed to solve this problem. 

Iinuma et al. [1] use the defocus cue to evaluate the depth by a single image and the 

motion cue to convert the image. Cheng et al. [2] use the geometry cue and motion 

cue to evaluate the depth. The simple concept and low computational complexity of 

those methods have enabled it to be adopted real-time application. However, those 

methods cannot perform well for the single monocular images and the scene with 

complex motion. 

Another approach is pattern recognition-based method. In this method, every 

region in the image is categorized into several classes, and every region is assigned 

depth according to types of the class. Battiato et al. [3] classify images into indoor, 
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outdoor with geometric elements, or outdoor without geometric elements, and use the 

information collected in the classification step to estimate the depth. Even through 

this method could generate the high quality result for single monocular image, this 

method cannot perform well for many types of scenes. Hoiem et al. [4] classify image 

as several classes. They use classified information, boundary and region, to detect the 

objects of image, and assign a specific depth to each object according to its classes. 

This method can generate high quality result for many types of scene, but its 

boundary extraction and object detection suffer from high computational complexity. 

1.2. Motivation and Contribution 

Motivated by above issues, we propose an efficient 2D to 3D conversion algorithm 

for monocular images in this thesis. This proposed algorithm includes image 

segmentation, image classification, object boundary tracing method, and 3D image 

generation. The image segmentation adopts the watershed method to collect the 

information of depth cue. Due to oversegmentation problem of watershed 

segmentation, we use texture and color information to merge segments. Then, we 

apply image classification to recover the geometry of scene in the image. In order to 

detect object in the image efficiently, we propose the object boundary tracing method 

that could quickly detect object boundary with geometry information. Finally, we 

apply results of object segmentation and image classification to assign depth for each 

object and synthesis stereo images by using the depth-based image rendering (DIBR) 

algorithm.  

The contributions of the thesis include 

1. We propose an efficient 2D to 3D conversion algorithm. 

2. We proposed an object boundary tracing algorithm to detect the objects of 
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single image. 

1.3. Thesis Organization 

In Chapter 2, we introduce existing important methods for a 2D to 3D conversion 

system. In Chapter 3, we present the proposed object segmentation algorithm. In 

addition, the details of the depth assignment algorithm and the depth-based image 

rendering (DIBR) algorithm are illustrated. In Chapter 4, we compare the 3D results 

with related work, and demonstrate the execution time. Finally, we give the conclusion 

and future work of this thesis in Chapter 5.  
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Chapter 2. Previous Work 

An important step in a 3D system is the 3D content generation. Several special 

cameras have been designed to generate 3D content directly. A depth-range camera 

[35] is an example, which is a conventional video camera with a laser element. A 

depth-range camera can simultaneously capture a two-dimensional RGB image and a 

depth map that could provide the depth information for the RGB image. This 

technique described above can directly generate 3D content, but the amount of 

traditional media data are in 2D format and demand depth information to be converted 

to 3D videos. Therefore, a 2D to 3D video conversion algorithm is necessary.  

There are many different 2D to 3D conversion algorithm has been developed. 

Each algorithm has its own strength and weaknesses. Most algorithms take advantage 

of different depth cues to generate depth maps. In the following section, we will 

introduce each depth cue and many 2D to 3D systems that combine many depth cues 

to recovery depth information. 

The structure of the chapter is as follows. In 2.1, we introduce algorithms that use 

a single depth cues. In 2.2, we introduce algorithms that use the depth cue 

fusion-based method. In 2.3, we introduce algorithms that use the pattern 

recognition-based method. 

2.1. Various Depth Cues 

Humans can straightforward determine depth from single monocular image 

according to experiences, which contains many monocular cues, such as defocus, 

texture gradients, linear perspective, contextual information. For example, objects in 
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images nearer or farther than focus are blurred, and sky in image is infinitely far away. 

In addition, motion parallax also is useful information to determine the depth of object. 

For the sequences with camera translational motion, the near objects move faster than 

the far objects. Depth from those cues has been developed from several years. In the 

Section 2.1, we introduce the principle and associated algorithms of each depth cue. 

2.1.1. Depth from Camera Motion 

With two images of the same scene captured from slightly different view point, 

the depth from camera motion can be utilized to recover the depth of an object. The 

relative motion between the viewing camera and the observed scene also provides an 

binocular disparity cue for depth perception. First, a set of corresponding points in a 

pair of image is found. Then, we can retrieve depth information by using the 

triangulation method when all camera parameters are known. If only intrinsic camera 

parameters are known, the depth can be recovered to a scale factor. If no camera 

parameters are known, the resulting depth is correct up to a projective transform. In 

most cases, no camera parameters are known from 2D video. Thus, we must recover 

camera parameters by self-calibration [5].  

The typical framework in [6] using the depth from camera motion is a three-stage 

procedure, which is composed of feature tracking [7], structure from motion [8], and 

dense reconstruction. This method can extract absolute depth from 2D video with 

camera motion. However, in order to retrieve an accurate depth map in the dense 

reconstruction stage, the stereo matching algorithms [9] [10] must be used but suffer 

from high computational complexity. Another way to solve this problem is the 

realistic stereo-view synthesis (RSVS) [11]. It combines both the structure from 

motion and the idea of image-based rendering (IBR) [12] to achieve 
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photo-consistency without relying on dense depth estimation. 

However, for still background, a scene may contain dynamic element, i.e. 

independent moving object. Such condition is difficult to recover camera parameters 

and extract depth information. 

2.1.2. Individual Moving Objects 

Individual moving object (IMOs) also is a depth cue in the 2D to 3D conversion 

system. In some cases, motion vector maps can be directly used as depth maps. This 

approximation holds when objects moving are with the same speed. Ideses et al. [13] 

extract motion vector maps from compressed 2D video, and use this information to 

compute depth map. However, there are many cases in which the approximation does 

not hold. This happens when an object without motion or not with constant speed.  

Moving object segmentation also is a useful method for 2D to 3D conversion 

system. In this approach Kunter et al. [14] extracts the foreground objects by moving 

object segmentation algorithm [15], and assign depth for foreground objects. However, 

multiple occluding objects or objects with only little motion are difficult to detect. 

2.1.3. Defocus 

Cameras and eyes have limited depth of focus, so images of objects nearer or 

farther than focus are blurred. In other words, the amount of blur in an image is 

directly related to image defocus caused by the optics of the eye or camera that 

captures it, and can be formed a depth cue. 

If a scene can be described by simply estimating which objects are in front, and 

which are behind those objects but are not part of the background, and what is 

completely in the background, we can estimate a relative depth map by taking into 
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account image blur and its relation to the focus degree in edges that compose objects. 

The typical algorithm of the depth from focus cue [16] uses spatial frequency 

measurement. When an object of an image is defocused, it will have a large 

attenuation of its high spatial frequency, and when the object in a scene is focused, its 

high frequency component will not be attenuated and hence its sharp detail will be 

present as fast changes in the spatial frequency domain. 

However, this method is just suitable for the close-up image, and it cannot 

perform well for another images. 

2.1.4. Linear Perspective 

Linear perspective refers to the fact that parallel lines, such as railroad tracks, 

appear to converge with distance, eventually reaching a vanishing point at horizon. 

The more the lines converge, the farther away they appear to be. A representative 

work is the gradient plane assignment approach proposed by Battiato et al. [3]. Their 

method performs well for single images containing sufficient objects of a rigid and 

geometric appearance. In this method, first, the edge detection is employed to locate 

the predominant lines in the image. Then, the intersection points of these lines are 

determined. The intersection with the most intersection points in the neighborhood is 

considered to be the vanishing point. The vanishing points are marked as the major 

lines close to these. The major lines close to the vanishing point are assigned a larger 

depth value and the density of the gradient planes is also higher. 

This method is suitable for the man-made scene which contains many long and 

parallel lines. 
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2.1.5. Texture 

Texture also offers a good 3D impression because of the two key ingredients: the 

distortion of individual texels and individual texture region. The latter is also called 

texture gradient. For example, a tiled floor with parallel lines will appear to have tilted 

lines in an image. The distant patches will have larger variations in the line 

orientations, and nearby patches will have smaller variations in line orientations. 

Similarly, a grass field when viewed at different distances will have different texture 

gradient distributions. 

Texture cue is useful information to detect the depth of planar surface. If the 

surface is non-planar, shape-from-texture algorithms [19], [20] can be applied to 

reconstruct the 3D shape of object surface. However, the current algorithms cannot be 

applied to real-time application. 

2.1.6. Relative Height 

Relative height cue also offers the depth information of image. Generally, the 

closer objects in real world are projected into the lower part in a 2D image plane. 

Many photographic images, especially scenery images, have the height cue. Jung et al. 

[21] proposed a real-time 2D-to-3D conversion framework using the relative height 

cue, and many pattern recognition-based algorithms [22], [23], [27] also regard the 

positions of image as a cue. 

2.1.7. Statistical Patterns 

Statistical patterns are the elements which occur repeatedly in images. When the 

number or the dimension of the input data is large, the machine learning techniques 
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can be an effective way to solve the problems. In recent years, as a tool to estimate 

depth maps, the machine learning has been receiving increasing interest. Especially 

supervised learning applies training data with the ground truth to distinguish the 

geometry of scene, depth of scene, and stage of scene. As well as a set of 

representative and sufficient training data, good features and suitable classifiers are all 

essential ingredients for satisfactory results. More details of statistical patterns method 

is described in Section 2.3. 

2.2 Depth Cues Fusion-based Method 

In Section 2.1, we introduce many depth cues from 2D video. Each cue can 

recover depth information from video sequence, but it has its own advantages and 

disadvantages for different conditions. Several 2D to 3D systems fuse many depth 

cues to solve this problem. In Section 2.2, we introduce two important fusion-based 

methods for real-time application. 

2.2.1. SANYO 2D to 3D Conversion Adaptive Algorithm 

The 2D-to-3D image conversion technique using the “Modified Time Difference 

method” (MTD) [24] had been developed in 1995. To convert from 2D video into 3D 

video, the MTD  select another frame to be a stereo-pair according for each frame. 

The selection criterion is based on the object motion in the successive frames. 

The 2D images, having the objects with simple horizontal motion, can be 

converted into 3D images by the MTD well. However, it is not good for converting 

from the still images or the images that have the objects with complicated motions. So 

the technique converting from these 2D images into 3D images is required. 

The “computed image depth method” (CID) [25] has been developed to solve this 
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subject. The CID allows to converting from single monocular 2D images into 3D 

images, and the CID uses the defocus cue to extract depth information. They compute 

contrast, sharpness and chrominance of the image to extract the defocus cue. The 

sharpness means the high frequency component of the image luminance. The contrast 

means the middle frequency component of the image luminance. The chrominance 

means the hue and tint of the image color. The 3D images are generated by computing 

the depth cue of each separated area of the input 2D. In the CID, first the adjacent 

areas, which have close color, are grouped according to the chrominance values. Then 

the distance from the camera to the objects is computed, and it should be inversely 

proportional to the contrast and sharpness values. The close-up images can be 

converted into 3D images by the CID, but it is not good for converting from other 

types of images. 

These techniques have been implemented into a single-chip LSI for the automatic 

and real-time 2D-to-3D image conversion, and can output 3D image according to 

various 3D displays from various input images, like NTSC, PAL, HDTV, and VGA. 

2.2.2. Hybrid Depth Cueing System 

The hybrid depth cueing system [2] had been developed in 2009. The depth 

generation method consists of the depth from motion parallax (DMP) and the depth 

from geometrical perspective (DGP). And the depth fusion-based method is used to 

combine DMP and DGP according to adapted weighting factors. Finally, the DIBR 

renders multiple views with various view angles for 3D displays. 

The DMP module is the central core of the system. The DMP consists of the 

following two processes.  

One is the camera motion analysis process, which analyzes cameras motions of 
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consecutive video frames. 4-parameter global motion estimation [36] is used between 

all the continuous frame pairs. Then, the most suitable frame in frame buffer is 

selected and is warped to form parallel view configuration with the current frame. The 

other is the disparity estimation process that generates the depth map according to the 

image pair. Block-based motion estimation is used between selected image pair. 

Disparity map is retrieved when static scene with camera translational motion. When 

the scene happen individual moving objects, motion vector is used as a depth cues. 

The visual effect is that moving objects will pop-up and catch more attention. The 

depth was estimated by 22
yx MVMV +  

In order to adapt this technique to the automatic and real-time 2D-to-3D image 

conversion, they had improved the DMP to handle more complex motion cases than 

the MTD. But the DMP could not perform well for the video that has changing focal 

length or dynamic scene.  

When the depth information cannot derive from the motion information, 

monocular depth cue become an important issue in depth generation. Depth from 

geometrical perspective (DGP) classifies the scene into multiple modes by scene line 

structure detection. The major types are horizontal lines and vanishing lines. Fig. 2.1 

shows multiple scene modes that DGP classifies. 

 

Fig. 2.1. Multiple scene modes using depth from geometry [2] 

But the DGP is only suitable for background region in the image. If the DMP 

cannot work, the DGP is not good enough to generate good visual effect. 
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Finally, fusion-based method is used to combine both depth maps. The weighting 

factor is adjusted that depending on the camera motion analysis module. When 

camera is panning depth can be retrieved from motion parallax efficiently. Weight for 

DMP will adjust to larger. 

2.3 Pattern Recognition-based Method 

Even through the depth cues fusion-based methods mentioned in Section 2.2 could 

be used for real-time application, they still have problem in depth from monocular 

images. Pattern recognition-based methods are more suitable to solve this problem. 

Nedovic et al. [18] categorize the input image into various types and limited number 

of stages in each type to simplify the problem. But this method only computes the 

background of depth map. Saxena et al. [22] [23] also presented a method to learn 

absolute depth from single images based on low-level features, but this method only 

suitable for outdoor scene. In the following, we introduce two methods. The first 

method is proposed by Battiato et al. [3]. It is suitable for real-time application, but it 

cannot assign depth for all objects in the image. The second method is proposed by 

Hoiem et al. [4]. This method is suitable for most cases of image, but it has high 

computational complexity. 

2.3.1 Depth-Map Generation by Image Classification 

This algorithm [3] is performed on a single color image, and does not need any 

prior knowledge about image content. It is also claimed to be fully unsupervised and 

suitable for real-time applications. In this algorithm, two intermediate depth maps, the 

qualitative depth map and the geometric depth map, are constructed.. In the end, these 

two depth maps are combined together to generate the final depth map. 
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Fig. 2.2. block diagram of algorithm [3] 

Fig. 2.2 shows the block diagram of algorithm [3]. At first, mean shift 

segmentation algorithm is used to partition image. Then, in order to generate 

qualitative depth map, color-based rules are used to identify six semantic regions: Sky, 

Farthest Mountain, Far Mountain, Near Mountain, Land and Other. Each semantic 

region is assigned a depth level, which corresponds to a certain gray level following 

the trend: Gray of Sky < Gray of Furthest Mountain < Gray of Far Mountain < Gray 

of Near Mountain < Gray of Land < Gray of Other. 

In third stage, The qualitative depth map is then sampled column-wise. Each 

column is represented by a label sequence, which is labeled from top to down, and 

each region present in the column. After all the sequences in the image have been 

generated, they are plugged into a counting process to obtain the number of accepted 

sequences. Finally, they use the number of accepted sequences to classify the image 
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into three categories: outdoor, outdoor with geometric appearance and indoor.  

They also apply linear perspective cue. Different vanishing line detection 

strategies are applied according to the category to which the image belongs. For 

Outdoor scenes, the vanishing point is put in the center region of the image and a set 

of vanishing lines passing through the vanishing points are generated. For the 

categories Indoor and Outdoor with geometric appearance, a more complex technique 

is applied. Edge detection and line detection are conducted to determine the main 

straight lines. The vanishing point is chosen as the intersection point with the most 

intersections around it while the vanishing lines are the predominant lines passing 

close to the vanishing point. 

After the vanish point detection, taking the position of the vanishing point into 

account, a set of horizontal or vertical gradient planes is assigned to each neighboring 

pair of vanishing lines. The resultant image is termed the geometric depth map. Then, 

the qualitative depth map is checked for consistency. False classified semantic regions 

are detected and corrected. 

Finally, the final depth map of indoor category image is just the geometric depth 

map. For outdoor without geometric appearance, the final depth map is qualitative 

depth map. For the image category of outdoor with geometric appearance, the final 

depth of pixel is assigned the depth value in the geometric depth map for all cases, 

except when it is a sky, it then adopts the depth value in the qualitative depth map. 

The natural images and man-made structure can be converted into 3D images by 

this method. But it is not good for converting images that contain non-definition 

object. 



 

 

15 

 

2.3.2 Recovering Major Occlusion Boundaries 

Single-view 3D reconstruction is a popular research in computer vision. Even 

though they are not ready for real-time application due to high computation 

complexity, their qualities are good enough to use. An algorithm of Hoiem [4] et al. 

describes the property of the regions and boundaries in the image, and the 3D surfaces 

of the scene using learned model. Their representation includes a wide variety of cues: 

color, position, and alignment of region; strength and length of boundaries; 3D 

surface orientation estimates; and depth estimate. In a conditional random field (CRF) 

model, they also encode gestalt cues, such as continuity and closure, and enforce 

consistency between our surface and boundary labels. 

To provide an initial conservative hypothesis of the occlusion boundaries, they 

apply the watershed segmentation algorithm to the soft boundary map provided by the 

pB algorithm of Martin et al. [26]. This segmentation produces thousands of regions 

that preserves nearly all true boundaries. In training, they assign ground truth to this 

initial hypothesis. Given a new image, their task is to group the small initial regions 

into objects, and assign figure/ground labels to the remaining boundaries.  

To get a final solution, they could simply compute cues over each region and 

boundary, and perform a single segmentation and labeling step. However, the small 

regions from the initial over-segmentation do not allow the more complicated cues, 

such as depth, to be reliable. Furthermore, global reasoning with these initial 

boundaries is ineffective because most of them are spurious texture edges.  

Their solution is to gradually evolve their segmentation by iteratively computing 

cues over the current segmentation and using them with our learned models to merge 

regions that are likely to be part of the same object. In each iteration, the growing 
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regions provide better spatial support for complex cues and global reasoning. And 

better spatial support can improve their ability to determine whether remaining 

boundaries are likely to be caused by occlusions. See Fig. 2.3 for an illustration. Each 

iteration consists of three steps based on the image and the current segmentation: 1) 

compute cues; 2) assign confidences to boundaries and regions; and 3) remove weak 

boundaries, forming larger regions for the next segmentation. 

 
Fig 2.3. Illustration of the recovering major occlusion boundaries algorithm. [4]  

In most cases, 2D images can be converted into 3D images by this method, but it 

is not good for real-time application. In their Matlab implementation, this algorithm 

takes about 4 minutes for a 600x800 image on a 64-bit 2.6GHz Athalon running 

Linux. 
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3. 3D Image Construction from 2D Image 

3.1. Algorithm Overview 

 
Fig. 3.1. Flow of the proposed 2D to 3D conversion system. 

In this chapter, we propose a fast and effective 2D to 3D conversion algorithm 

with the pattern recognition-based method. Fig. 3.1 illustrates the flow of the 2D to 3D 
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conversion system, which consists of three main processes: object-based segmentation, 

depth assignment, and 3D image construction.  

For the object-based segmentation, we first use the watershed segmentation 

algorithm to compute the initial segmentation. Even though the watershed 

segmentation can preserve object boundary well, it has problems of over segmentation 

and sensitivity to noise. Due to oversegmentation problem that produces from 

watershed segmentation, fast neighbor merge process is used to solve this. At the third 

step, we use the surface layout algorithm [10] to provide the geometric information 

for object detection. At the fourth step, inspired by the recovering occlusion 

boundaries method in [4], we propose the object boundary tracing method to detect 

object efficiently. After the object boundary tracing method, there are still some 

incomplete object segments. Thus, we perform the constraint segmentation, which 

builds some conditions to merge segments. After the constraint segmentation process, 

the object-based segmentation is done.  

Finally, we assign the depths to the objects, and use the DIBR algorithm [28] to 

generate the images for left and right eyes. 

3.2. Object-based Segmentation 

3.2.1 Initial Segmentation 

In the proposed 2D to 3D conversion system, a precise estimation of object 

boundary is important. Thus a proper choice of image segmentation algorithm is also 

important in our case. We adopt watershed image segmentation from all existing 

image segmentation algorithms for the two reasons: (1) it can preserve edge in the 

object boundary [37]; (2) it is suitable for fast application [38]. 
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Fig. 3.2. Flow of the initial segmentation process. 

Fig. 3.2 shows the stages in the initial segmentation. The aim of the first stage is 

to reduce noise in image, as well as to smooth image. At the second stage, the 

gradient of the smoothed image is calculated using the Gaussian filter derivatives. 

Then, the gradient magnitude is calculated. At the final stage, the gradient magnitude 

is thresholded appropriately and watershed transform produces an initial image 

partition. 

3.2.1.1. Noise Reduction and Gradient Computation 

At the first stage of the initial segmentation, we use a Gaussian filter to smooth the 

image slightly before computing image gradient. In order to compensate for 

digitization artifacts, we always use a Gaussian with the σ of 0.8. It does not produce 

any visible change to the image but help remove artifacts. 

At the second stage of the initial segmentation, the gradient field of the smoothed 

image is computed. The derivitave of Gaussian with the σ of 1.0 and the support size 
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of 9x9 is used to compute the gradient of the smoothed image L୶ and L୷. Finally, the 

gradient magnitude image G(I) is calculated by following formula 

ሻ݌ሺܩ ൌ |ሻ݌௫ሺܮ|  ൅  หܮ௬ሺ݌ሻห                   (3.1) 

3.2.1.2. Watersheds Segmentation 

In this stage, an initial image partitioned into primitive regions is obtained using 

the image gradient magnitude and watershed algorithm. Watershed segmentation is a 

popular and well known algorithm that extracts regions as catchment basins based on 

the concept of topography. The gradient image of the input image is used as the 

topographic surface in which the gradient value represents the altitude. The 

segmentation of an image finds the watershed line on the gradient image and thus 

separates each region. In the following, we briefly describe the parallel watershed 

transform proposed by Giovani et al. [29].  

The algorithm is composed of the four major steps, finding the lowest neighbor of 

each pixel (i.e. direct path of steepest descent), finding the nearest border of internal 

pixels of plateaus, propagating uniformly from the borders, and minima labeling by 

maximal neighbor address and pixel labeling by flooding from minima. Fig. 3.3 

presents a parallel watershed transform, where I is the input image, and lab is the 

output labeled image that is also used for storing addresses. The statement for all 

denotes that every iteration can be processed in parallel. 
// First Step 

1: PLATEAU ← +∞ 
2: for all p א D do 
3:   if ׌q א N(p) : I(q) < I(p) and I(q) = min׊q’אN(p)I(q’) then 
4:      lab(p) ← -q 
5:   else 
6:      lab(p) ← PLATEAU 
7:   end if 
8: end for 

// Second step 
9: while lab is not stable do 
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10:   lab’ ← lab 
11:   for all p א D : lab(p) = PLATEAU do 
12:     if ׌q א N(p) : lab(q) <= 0 and I(q) = I(p) then 
13:       lab’(p) ← -q 
14:     end if 
15:   end for 
16:   lab ← lab’ 
17: end while 

// Third step 
18: basins ← 1 
19: for p א D do 
20:   if lab(p) = PLATEAU then 
21:     lab(p) ← basins 
22:     basins ← basins + 1 
23:     QUEUEPUSH(p) 
24:     while QUEUEEMPTY( ) = False do 
25:       q ← QUEUEPOP( ) 
26:       for u א N(q) do 
27:         if lab(u) = PLATEAU then 
28:           lab(u) ← lab(p) 
29:           QUEUEPUSH(u) 
30:         end if 
31:       end for 
32:     end while 
33:   end if 
34: end for 

// Fourth step 
35: for p א D do 
36:   if lab(p) <= 0 then 
37:     q ← p 
38:     while lab(q) <= 0 do 
39:       q ← -lab(q) 
40:     end while 
41:     u ← p 
42:     while u ് q do 
43:       v ← u 
44:       u ← -lab(u) 
45:       lab(v) ← lab(q) 
46:     end while 
47:   end if 
48: end for 

Fig. 3.3. Pseudo code of the parallel watershed transform [29]. 

The watershed transform is applied to the thresholded gradient magnitude image 

GT, where the pixels of G having value smaller than a given threshold T are set to zero. 

That is  

ሻ݌ሺ்ܩ ൌ ൜ܩሺ݌ሻ, ሻ݌ሺܩ ݂݅ ൐ ܶ
0, ݁ݏ݅ݓݎ݄݁ݐ݋                    (3.2) 
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Due to thresholding, many of the regional minima of G located in homogeneous 

region are replaced by fewer zero-valued regional minima in GT. It could slightly limit 

the size of the initial image partition is to prevent over-segmentation in homogeneous 

region. Fig. 3.4 shows the results of the initial segmentation process. 

 

Fig. 3.4. The results of the initial segmentation process. (a) original image. (b) 

gradient image. (c) initial segmentation. 

3.2.2 Fast neighbor merge 

In addition to the above over-segmentation reduction method, there still remain 

neighboring regions that be merged into a meaningful segmentation, Fast neighbor 

merge method is used to guarantee that segments are large enough. 

Fig. 3.5 shows the stages of the Fast neighbor merge method. The aim of the first 

stage is the cue computation. Those cues are color and texture. At the second stage, 

we use those cues to decide whether the segment could be merged or not.  



 

 

23 

 

 

Fig. 3.5. Flow of the Fast neighbor merge method. 

3.2.2.1  Cues Computation 

 

Fig. 3.6. Illustration of the HSV color space. 

In the fast neighbor merge algorithm, a precise estimation of color distance is 
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important. Thus a proper choice of color space is important in our case. In our case we 

consider the Hue-Saturation-Value (HSV) color space [30], because it is very similar 

to the human perception of colors. Fig. 3.6 is Illustration of the HSV color space. 

Conceptually, the HSV color space is a cone. Viewed from the circular side of the 

cone, the hues are represented by the angle of each color in the cone relative to the 0° 

line, which is traditionally assigned to be red. The saturation is represented as the 

distance from the center of the circle. Highly saturated colors are on the outer edge of 

the cone, whereas gray tones (which have no saturation) are at the center. The value is 

determined by the colors vertical position in the cone. At the pointy end of the cone, 

there is no brightness, so all colors are black. At the fat end of the cone are the 

brightest colors.   

Color transformation from RGB to HSV color space is done by the following  

ݔܽ݉ ൌ ,ݎሺݔܽ݉ ݃, ܾሻ                     (3.3) 

݉݅݊ ൌ ݉݅݊ሺݎ, ݃, ܾሻ                      (3.4) 

݄ ൌ

ە
ۖ
۔

ۖ
ۓ

0°, ݂݅ max ൌ ݉݅݊
60° ൈ ሺ݃ െ ܾሻ ሺ݉ܽݔ െ ݉݅݊ሻ⁄ ൅ 0°, ݂݅ max ൌ ݃ ݀݊ܽ ݎ ൒ ܾ

60° ൈ ሺ݃ െ ܾሻ ሺ݉ܽݔ െ ݉݅݊ሻ⁄ ൅ 360°, ݂݅ max ൌ ݃ ݀݊ܽ ݎ ൏ ܾ
60° ൈ ሺܾ െ ሻݎ ሺ݉ܽݔ െ ݉݅݊ሻ⁄ ൅ 120°, ݂݅ max ൌ ݃ 
60° ൈ ሺݎ െ ݃ሻ ሺ݉ܽݔ െ ݉݅݊ሻ⁄ ൅ 240°, ݂݅ max ൌ ܾ

         (3.5) 

ݏ ൌ ൜ 0, ݂݅ max ൌ 0
ሺ݉ܽݔ െ ݉݅݊ሻ ⁄ݔܽ݉ ൌ ݉݅݊ ⁄ݔܽ݉ , ݁ݏ݅ݓݎ݄݁ݐ݋                  (3.6) 

ݒ ൌ  (3.7)                          ݔܽ݉

Color difference ܧ௖ ௜,௝ between two points pi[hi, si, vi], pj[hj, sj, vj]  in the HSV 

space is given by the formula[31] 

௖ ௜,௝ܧ ൌ  1 െ 1 √5⁄ ቀ൫ݒ௜ െ ௝൯ଶݒ ൅ ൫ݒ௜ݏ௜ cosሺ݄௜ሻ െ ௝ݏ௝ݒ cos൫ ௝݄൯൯ଶ ൅ ൫ݒ௜ݏ௜ sinሺ݄௜ሻ െ

 sin݄݆212 ,                   (3.8)݆ݏ݆ݒ
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For every segment, we compute average RGB value, and transform average RGB 

value to HSV color space. Then, we compute color difference for every neighboring 

segment. 

Another cue is texture. Similarly to color, texture provides a cue for the geometric 

class of a segment through its relationship to materials and objects in the world.  

To represent texture, we apply a subset of the filter bank designed by Leung and 

Malik [32]. We generated the filters with the following parameters: 19x19pixel 

support, the scale of √2 for oriented and blob filters, and 6 orientations. For the filter 

bank, there are 6 edges, 6 bars, 1 Gaussian, and 2 Laplacian of Gaussian filters.  

We compute the histogram (over pixels within a segment) of maximum responses. 

Then, we compute the symmetrized Kullback-Leibler divergence ்ܧ ௜,௝  for every 

neighboring segment. 

Finally, we compute the cost function E which is combine color and texture 

information for every neighbor segments by the formula, 

ܧ ൌ ௖ ௜,௝ܧߙ  ൅  ௜,௝,                          (3.9) ்ܧߚ 

where ߚ ,ߙ are the weighting factors to control the amount of each energy. 

3.2.2.2  Neighbor Merge 

In this stage, we use connected components for segment merge. Connected 

components are the simplest method of image segmentation. During the Connected 

components process, if their cost E is smaller than some threshold values, two 

neighboring segments are merged. The key parameter in the connected components 

process is the threshold T. We use the following iterative method to determine the 

threshold T: 

1. An initial threshold T is chosen. 
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2. If the cost of neighboring segment is smaller than the threshold T, we will merge 

neighboring segment. 

3. Turn up the threshold T. 

4. Go back to step 2, and replace the threshold T. Keep repeating until the number of 

segment is smaller than a constant NS, 1000. 

Fig. 3.7 shows the results of the fast neighbor merge process. 

 

Fig. 3.7. The results of the fast neighbor merge process. (a) Original image. (b) Initial 

segmentation. (c) The result of this process. 

 

3.2.3 Surface Layout 

 
Fig. 3.8. Surface layout [27]. On these images and elsewhere, main class labels are indicated 

by colors (green=support, red=vertical, blue=sky) and subclass labels are indicated by 

markings (left/up/right arrows for planar left/center/right, ‘O’ for porous, ‘X’ for solid). 
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Surface layout proposed in [27] can label the image into geometry classes, which 

coarsely describe the 3D scene orientation of each image region as shown in Fig. 3.8. 

Every region in the image is categorized into one of three main classes: “support”, 

“vertical”, and “sky”. Support surface are parallel to the ground and could potentially 

support a solid object. Vertical surfaces are solid surfaces that are too steep to support 

an object. The sky is the image region corresponding to the open air and clouds. Vertical 

class is further categorized into one of five subclasses: “left”, “center”, “right”, 

“porous”, and “solid”. Planar surfaces facing to the “left”, “center” or “right” of the 

viewer, and non-planar surface that are either “porous” or “solid”. 

We believe that surface layout representation is useful information for us to detect 

object in the image. Fig. 3.9 shows the stages of the surface layout. At first, image is 

partitioned to many superpixels, and we compute cues for each superpixels. In order 

to have better result, multiple segmentation is used, so same-label likelihood is 

computed to be cost information for merge segment. After multiple segmentation, 

homogeneity likelihood is computed for each segment, and it is used to determine that 

segment is homogeneity or not. Label likelihood is also computed for each segment 

and superpixel to determine that segment belongs to which category. Finally, Bayes 

theorem applies label likelihood and homogeneity likelihood to compute the label 

confidence for each superpixel. We will briefly describe the stages in following 

section. 
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Fig. 3.9. Flow of the surface layout. 

3.2.3.1 Superpixels 

The use of superpixels improves the computational efficiency of our algorithm, and 

allows complex statistics to be computed for enhancing our knowledge of the image 

structure. Different from original algorithm in [34], we adopt our initial segmentation 

as superpixels. 

3.2.3.2 Cues computation 

To determine which orientation is most likely, we need to use all of the available 

cues: location, color, texture, perspective. In Table 3.1, we list the set of statistics used 

for classification.  
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Table 3.1. Statistics computed to represent superpixels [27] 

Surface Cues 

Location 

L1. Location: normalized x and y, mean 

L2. Location: normalized x and y, 10th and 90th pctl 

L3. Location: normalized y wrt estimated horizon, 10th, 90th pctl 

L4. Location: whether segment is above, below, or straddles estimated horizon 

L5. Shape: number of superpixels in segment 

L6. Shape: normalized area in image 
Color 

C1. RGB values: mean 

C2. HSV values: C1 in HSV space 

C3. Hue: histogram (5 bins) 

C4. Saturation: histogram (3 bins) 
Texture 

T1. LM filters: mean absolute response (15 filters) 

T2. LM filters: histogram of maximum responses (15 bins) 
Perspective 

P1. Long Lines: (number of line pixels)/sqrt(area) 

P2. Long Lines: percent of nearly parallel pairs of lines 

P3. Line Intersections: histogram over 8 orientations, entropy 

P4. Line Intersections: percent right of image center 

P5. Line Intersections: percent above image center 

P6. Line Intersections: percent far from image center at 8 orientations 

P7. Line Intersections: percent very far from image center at 8 orientations 

P8. Vanishing Points: (num line pixels with vertical VP membership)/sqrt(area) 

P9. Vanishing Points: (num line pixels with horizontal VP membership)/sqrt(area) 

P10. Vanishing Points: percent of total line pixels with vertical VP membership 

P11. Vanishing Points: x-pos of horizontal VP - segment center (0 if none) 

P12. Vanishing Points: y-pos of highest/lowest vertical VP wrt segment center 

P13. Vanishing Points: segment bounds wrt horizontal VP 

P14. Gradient: x, y center of mass of gradient magnitude wrt segment center 

3.2.3.3 Same-label Likelihoods 

Same-label likelihoods learned from training images. The same-label classifier 
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outputs an estimate of ܲ൫ݕ௜ ൌ  ൯ for the adjacent superpixels i and j and imageܫ௝หݕ

data I. Here ݕ௜ and ݕ௝ are the superpixel label. The same-label classifier is based on 

cue set L1, L6, C1-C4, and T1-T2 in Table 3.1. In Table 3.2 we list the set of statistics 

used for computing same-label likelihoods. 

Table 3.2. Statistics computed over pairs of superpixels 

Boundary cues 
Location 

the absolute differences of the pixel location values x and y 

Color 

C1. the absolute differences of the mean RGB 

C2. the absolute differences of the mean HSV 

C3. the symmetrized Kullback-Leibler divergence of the hue 

C4. the symmetrized Kullback-Leibler divergence of the saturation 

Texture 

T1. the absolute differences of the mean LM filter response 

T2. he symmetrized Kullback-Leibler divergence of texture histogram 

Shape 

S1. the ratio of the area 

S2. the fraction of the boundary length divided by the perimeter of the smaller superpixel 

S3.the straightness of the boundary 

3.2.3.4 Multiple Segmentations  

The increased spatial support of superpixels provides much better classification 

performance than for pixels. Large regions are required to effectively use the more 

complex cues. We need to compute multiple segmentations and then use the increased 

spatial support provided by each segment to better evaluate its quality. This method is 

based on pairwise same-label likelihoods. A diverse sampling of segmentations is 

produced by varying the number of segments ns and using a random initialization. 
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3.2.3.5 Label Likelihood Computation 

The label classifier is used to distinguish among the main classes and the 

subclasses, and it is based on all of the listed cues. The label classifier output the 

estimate of ܲ ቀ൫ݕఫ෥ หܫ,  .௝ݏ ௝൯ቁfor the segmentݏ

3.2.3.6 Homogeneity Likelihood Computation 

The homogeneity classifier is used to determine whether a segment has a single or 

is mixed, and it is based on all of the listed cues. The homogeneity classifier output 

the estimate of ܲ൫ݏ௝หܫ൯ for the segment ݏ௝. 

 

Fig. 3.10. The result of the confidence images for each of the surface labels. 

3.2.3.7 Label Confidences Computation 

In final stage, we compute label confidences for each superpixel, and use 

following formula: 

ܲሺݕ௜|ܫሻ ן ∑ ܲ൫ݕప෥หܫ, ௜ד൯௦ೕܫ௝หݏ௝൯ܲ൫ݏ               (3.10) 

Fig. 3.10 shows the result of the confidence images for each of the surface labels. 
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3.2.4 Object Boundary Tracing Method 

There are many features that could be used to detect the object boundary, and we 

describe below. Adjacent regions have different colors or textures, or are misaligned; 

long and smooth boundaries with strong color or texture gradients; two adjacent 

regions have different 3D surface characteristics. 

Until now, we extract many features that could be used to detect object, but how 

to use them efficiently? Local method is difficult to distinguish the correct boundary, 

while global method has high computational complexity due to much iteration. 

Therefore, we propose an object boundary tracing method to solve this problem. Fig. 

3.11 shows the stages of the object boundary tracing method. The aim of the first 

stage is the initial boundary selection, and obvious object boundaries are labeled using 

the rule-based method. At the second stage, the rest of object boundaries are traced 

from the initial boundaries. At the third stage, segments without object boundary are 

merged  
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Fig. 3.11. Flow of the object boundary tracing method. 

3.2.4.1  Initial Boundary Selection 

There are many features that we compute before and could be used to detect 

object boundary. As the situation is different, we should choose different features, so 

we categorize every object boundary in the image into one of three classes: “gnd-vrt”, 

“sky-vrt”, and “vrt-vrt” as in Table 3.3. For different class, we use a specific feature to 

determine its initial boundaries.  

Table 3.3. Features of initial boundary selection. 

Class features 

for all classes boundary smoothness 

edge(color, texture) 
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for “gnd-vrt” class only main label likelihood 

for “sky-vrt” class only main label likelihood 

for “vrt-vrt” class only sub-label likelihood 

if event vrt-gnd-vrt 

We use a set of rule to determine the initial boundary. For example given the 

“sky-vrt” class of the boundary it belongs to initial object boundary if the following 

condition is satisfied: 

 ൫1 െ ܲ൫ݕ௜ ൌ ൯ܫ௝หݕ ൅  ห݉ܽ݅݊௟௔௕௘௟௦ሺ݅ሻ െ ݉ܽ݅݊௟௔௕௘௟௦ሺ݆ሻห൯ ൐   ݀݊ܣ  0.5

 ൫݉ܽ݅݊௟௔௕௘௟௦ሺ݅ሻ ൐ ௟௔௕௘௟௦ሺ݆ሻ݊݅ܽ݉ ݎ݋ 0.3 ൐ 0.3൯   

The ܲ൫ݕ௜ ൌ ൯ܫ௝หݕ  denotes the same-label likelihood and the ݉ܽ݅݊௟௔௕௘௟௦ሺ݅ሻ 

denotes the sky label confidence. Similar conditions have been used in order to detect 

the other classes of object boundary, more detail formula that we show in appendix. 

Fig 3.12 shows the result of the initial object boundary selection. The red fragments in 

the image are selected initial object boundaries. 

 

Fig 3.12. The result of the initial object boundary selection. 

3.2.4.2  Object Boundary Tracer 

The object boundary tracer of a boundary start from an initial object boundary and 

selects a next object boundary. The selected object boundary should have high edge 

value, and high label likelihood difference, and the property of the class of object 

boundary, and the boundary orientation should not change rapidly. This process 
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repeats until reaching to the border of image or the object boundary that already be 

labeled. Fig. 3.13 shows a state of an object tracer in image domain. 

x

y

Current boundary position

Next boundary position

 

Fig 3.13. A state of an object tracer in image domain 

We develop an energy function for the object boundary tracer. The energy function 

is modeled by three constraints. The first is the boundary tracing constraint to trace 

strong boundary. The second is the different label constraint to separate different 

object. The third is the same label constraint to penalize significant surface label 

changes in an object. 

The following equation describe above three constraints. 

Constraint 1: boundary tracing constraint:  

,௟௧ሺ݅ܧ ݆ሻ ൌ 1 െ ܲ൫ݕ௜ ൌ  ൯,                   (3.11)ܫ௝หݕ

Constraint 2: different label constraint:  

,ௗ௟ሺ݅ܧ ݆ሻ ൌ หܲሺݕ௜ ൌ ݈ܾ݈ܽ݁௫ሻ െ  ܲ൫ݕ௝ ൌ ݈ܾ݈ܽ݁௫൯ห,                    (3.12) 

Constraint 3: same label constraint:  

,௦௟ሺ݅ܧ ݆ሻ ൌ ݉ܽ ݔ ቀܲሺݕ௜ ൌ ݈ܾ݈ܽ݁௫ሻ, ܲ൫ݕ௝ ൌ ݈ܾ݈ܽ݁௫൯ቁ,                 (3.13) 

where ݈ܾ݈ܽ݁௫ is the current object label. i and j are the adjacent superpixels. 
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 ௝ are the superpixel label. Then, the object boundary tracing problemݕ ௜ andݕ

can be formulated as follows. 

ොݕ ൌ ݃ݎܽ ,௟௧ሺ݅ܧߙ௬ሼݔܽ݉ ݆ሻ ൅ ,ௗ௟ሺ݅ܧߚ ݆ሻ ൅ ,௦௟ሺ݅ܧߛ ݆ሻሽ,      (3.14) 

where ߛ  ,ߚ ,ߙ are the weighting factors to control the amount of each energy. 

Then, we need to find the solution by solving the problem. Because we want to 

save computation, we just use local method to minimize the cost function. Fig 3.14 

shows the result of the object boundary tracing method. In Fig. 3.14(b), the white line 

is the selected object boundary. 

 

Fig 3.14. The result of the object boundary tracing method. (a) Original image. (b) 

The result of the object boundary tracer.  (c) The result of this stage. 

3.2.5 Constraint Segmentation 

Table 3.4. Events of constraint segmentation 

Event 1: the color of the segment is similar to the other. 

Event 2: the label confidence of the segment is similar to the other. 

Event 3: the shape of the segment is similar to the other. 

Event 4: the y axis position of the segment is similar to the other. 

Event 5: the segment is inside of the other segment. 

Event 6: the segment is small enough. 

After object boundary tracing method, some segments in the image are not 
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complete objects. There are many events that could help us merge those segments. 

Table 3.4 lists theses event that we use. In order to merge them, we construct several 

rules. We merge the segments, if the following conditions are satisfied. 

Condition 1: 1 ݐ݊݁ݒܧ ת  2 ݐ݊݁ݒܧ

Condition 2: 1 ݐ݊݁ݒܧ ת 2 ݐ݊݁ݒܧ ת  6 ݐ݊݁ݒܧ

Condition 3: 2 ݐ݊݁ݒܧ ת ת 3ݐ݊݁ݒܧ  4ݐ݊݁ݒܧ

Condition 4: 2 ݐ݊݁ݒܧ ת  5ݐ݊݁ݒܧ

We seriatim check conditions, and merge the segments, after the constraint 

segmentation process, the object segmentation is done. Fig. 3.15 shows the result of 

the object segmentation. 

 

Fig 3.15. The result of the object segmentation. (a) Original image. (b) The result of 

the object boundary tracing method.  (c) The result of this stage. 

3.3 Depth Assignment 

After the object segmentation stage, we assign the depth to the objects. Our model 

in the 3-dimensional space consists of a ground plane and objects are orthogonal to 

the ground and sky. In order to construct 3D image for binocular vision, the depth 

assignment process output the disparity map ݀ሺݔ,  ሻ in the range of 0-255, disparityݕ

map is encoded the depth information. In our image coordinate system, the origin is 
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located at the most left-up corner, and the x-axis toward right, and the y-axis toward 

down.  

 

Fig. 3.16. illustration of each condition for depth assignment 

We assign different depth for segment according to their conditions. Fig. 3.16 

shows those conditions that we consider. Fig 3.18 shows the stages of the depth 

assignment process. At first, for each region, we fit a set of line segments to the 

ground-vertical boundary by using the Hough transform [33]. Those line segments are 

used to determine that the vertical labeled vertical segments are planar or not. If 

vertical labeled segments contain the line segment, it is planar. Otherwise vertical 

labeled segment is non-planar. Then we begin to assign depth to each segment. 

For the ground labeled segment, we compute disparity by the formula: 

݀ሺݔ, ሻݕ ൌ   ሺ݄ݏ݋݌ െ ሺܪ െ ሻݕ ⁄ܪ ሻሺ255.0 ⁄ݏ݋݌݄ ሻ,              (3.15) 
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where H is the height of the image, and hpos is the position of the horizontal line in 

the image that is computed by vanish point or the highest position of ground labeled 

pixel. 

For the vertical labeled segment that is connected with ground labeled segment, if 

the ground-vertical boundary is a line, we use following formula: 

݀ሺݔ, ሻݕ ൌ   ሺ݄ݏ݋݌ െ ሺܪ െ ௟ሻݕ ⁄ܪ ሻሺ255.0 ⁄ݏ݋݌݄ ሻ                   (3.16) 

௟ݕ ൌ  െሺܽ ൈ ݔ ൅ ܿሻ ܾ⁄                         (3.17) 

݈ሺݔԢ, Ԣሻݕ ൌ Ԣݔܽ ൅ Ԣݕܾ ൅ ܿ,                       (3.18) 

where ݈ሺݔԢ,  .Ԣሻ is the linear equation of the line segmentݕ

For the vertical labeled segment, if the segment is planar, we also use formula 

(3.14) and (3.15). However the linear equation is different. The slope of the linear 

equation is decided by sub-class, and the line through the point that is the lowest 

y-axis position of the segment in the image. 

If the segment is non-planar, we use following formula, 

݀ሺݔ, ሻݕ ൌ  ൫݄ݏ݋݌ െ ሺܪ െ ௟௢௪௘௦௧ݕ ⁄ܪ ሻ൯ሺ255.0 ⁄ݏ݋݌݄ ሻ,               (3.19) 

where ݕ௟௢௪௘௦௧ is the lowest y-axis position of the segment in the image. 

After depth assignment process, the disparity map is computed. Fig. 3.17 shows the 

result of depth assignment process. 
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Fig. 3.17 The result of depth assignment process. (a) Original image. (b) Disparity 

map. 

 

 

Fig 3.18. Flow of the depth assignment process. 
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3.4 3D Image Construction for Binocular vision 

 

Fig. 3.19 Flow of the DIBR algorithm. 

After we have the disparity map, we can generate left and right eye images by the 

depth-based image rendering (DIBR) algorithm [28].  

Fig. 3.19 shows the stages of the DIBR algorithm. The concept of DIBR on the 

parallel camera configuration as shown in Fig. 3.20 . In this configuration, an object O 

is observed at original center view Vc, and virtual left-eye view Vl. This object is also 

projected to Xc, Xr, and Xl in the image planes respectively. The relationship of the 

projected position among views is 

௟ܺ ൌ  ܺ௖ ൅ ሺܾ 2⁄ ሻ ݂ ܼ⁄  ܽ݊݀ ܺ௥ ൌ  ܺ௖ െ ሺܾ 2⁄ ሻ ݂ ܼ⁄  ,       (3.20) 

where Z is the depth of object from the view plane f is the focal length and b is the 

baseline of Vr and Vl. Because we can’t know the camera parameter in original 

2-dimensional video, we simplify the formula  

௟ܺ ൌ  ܺ௖ ൅ ሺ݀ݏ  2⁄ ሻ ܽ݊݀ ܺ௥ ൌ  ܺ௖ െ ሺ݀ݏ  2⁄ ሻ,          (3.21) 
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where d is the disparity that compute from Section 3.3 and s is the scale factor that 

could be adjusted by user. 

 

Fig. 3.20. Parallel camera configuration for virtual images warping [28] 

 

If disparity map is given, we can render the virtual left-eye and right-eye view 

images using the center view image. This rendering process is generally called 3D 

warping. However, the warped virtual images incur many holes, which may be seen 

by the right eye or left eye but occluded in the center view. To recover the holes, the 

hole-filling method is added after the 3D warping process as shown in Fig. 3.19 . But 

it suffers from serious texture distortion since the large holes cannot be recovered well. 

The depth smoothing method is adopted before the 3D warping process. The aim of 

the depth smoothing is to reduce the size of holes. In the depth smoothing stage, 

directional Gaussian filter is used to reduce the geometric distortion, and apply filter 

only on the hole-region. Fig. 3.21 shows the result of DIBR algorithm. 
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Fig. 3.21. The result of DIBR algorithm. (a) Original image. (b) Disparity map. (c) 

Rendered left view. (d) Rendered right view. 
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4. Experimental Results and Analysis 

4.1. Introduction 

In this chapter, we show the experimental results of the proposed 2D to 3D 

conversion system on test images. The experimental results contain 3D result and 

execution time. The test images are used from the Internet. In addition to the 3D result 

of our proposed system, we included the 3D result of the hybrid depth cueing system 

[2] and the recovering major occlusion boundaries method [4] for comparison. The 

source codes of recovering major occlusion boundaries method for comparison is 

provided from [4]. 

4.2.  3D Results 

4.2.1. Our 3D Results 

The proposed method has been tested using different types of scenarios. The 

generated disparity maps, rendered left and right view images and anaglyph images 

are showed from Fig 4.1 to Fig 4.11 for evaluation. Sequences in the Fig 4.1 and Fig 

4.2 are standard MPEG-4 video test sequences. Other sequences are selected from the 

databases of [4].  

In the test image “flower garden” as shown in Fig. 4.1. It is tested for outdoor 

scene.  There are four major parts that should be partitioned. They are sky, ground, 

tree, and building. The result of disparity map shows that depth of objects is correct.  

In the test image “Hall monitor” as shown in Fig. 4.2. It is tested for indoor scene. 
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There are five major parts that should be partitioned. They are ground, ceil, left wall, 

right wall, and man. Even through objects in the image are not detected well, the order 

of depth is correct. The result also shows that out system can handle planar surface. 

 

Fig. 4.1. Flower garden sequence. 

Hall_monitor 
sequence

Disparity 
map

AnaglyphLeft view

Right view
 

Fig. 4.2. Hall_monitor sequence. 
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Fig. 4.3. Building. 

 

Fig. 4.4. Outdoor0 sequence. 

Fig . 4.3 and Fig. 4.4 are tested for outdoor scene with geometry. In Fig. 4.3, the 

major part in the image is building, and result of depth is correct. The chair in the 

image is not detected well, because the geometry of result for the chair is ground label.  

In Fig. 4.4, the order of depth is correct, but the woman in the image right side is 
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merged with building. The mistake is caused by object boundary tracer. 

 

Fig. 4.5. Ourdoor1 sequence. 

 

Fig. 4.6. Scenery0 sequence. 

Fig. 4.5 and fig. 4.6 are tested for nature outdoor scene. The result of Fig. 4.5 is 

good. In the fig 4.6, many birds in the image are not detected. It is because the 
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geometry of result is wrong.  

scenery1

Disparity 
map Anaglyph

Left view

Right view
 

Fig. 4.7. Scenery1 sequence. 

 

Fig. 4.8. Walking sequence. 
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structure

Disparity 
map Anaglyph

Left view

Right view
 

Fig. 4.9. Structure sequence. 

scenery1
(a)

Disparity map Left view Right view
(b)

Disparity map Left view Right view
(c)  

Fig. 4.10. Urban sequence. 
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Fig. 4.11. Alley sequence. 

In Fig 4.7, Fig 4.8, and Fig 4.10 are tested for nature outdoor scene with people. 

Results show that the people in the image are detected well, and even people wear 

camouflage in the woods. 

Fig 4.9 and Fig 4.11 are tested for man-made scene. The result of fig 4.9 is good. 

Even through the order of depth in the fig 4.11 is correct, but woman in the image 

right side is merged with tree, ground, and statue. This makes it impossible to 

distinguish the depth of these objects in the anaglyph image. 
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4.2.2.3D Result Comparison between Different Algorithms 

In this section, we compare our method with the hybrid depth cueing system and 

the recovering major occlusion boundaries method.  

The 3D result of the hybrid depth cueing system is showed from Fig. 4.12 to Fig. 

4.13. In flower garden sequence, Fig. 4.12(c) show the DMP, DGP, fused disparity 

map, left view and right view, where DMP is depth from motion, DGP is depth from 

single image. Compare with our method in Fig. 4.12(b), our disparity map is better, 

because our depth of the building in the image is more accurate. If we only consider 

the condition that is depth from single image, our method computes the depth of 

objects is more accurate. Because the DGP can’t compute the depth of objects, it just 

can compute the depth of the background. In the hall monitor sequence, the result of 

the hybrid depth cueing system is better for the depth of background, but our method 

just use single image to compute the depth of the scene. If their result misses motion 

information, they could not compute the depth of man. 

 
Fig. 4.12. 3D results of flower garden sequence with different algorithms. (a) Original 

image (b) Our proposed algorithm. (c) The hybrid depth cueing system. 
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Fig. 4.13. 3D results of hall monitor sequence with different algorithms. (a) Original 

image (b) Our proposed algorithm. (c) The hybrid depth cueing system. 

The 3D result of the recovering major occlusion boundaries method is showed 

from Fig. 4.14 to Fig. 4.18. In some cases, our 3D results are comparable to the 

recovering major occlusion boundaries method. In the urban sequence and scenery1 

sequence, our method can detect more complete objects than the recovering major 

occlusion boundaries method. It is because the result of our superpixels is better than 

original method that is proposed by Felzenszwalb et al. [34]. Fig. 4.19 shows the 

comparison between our method and Felzenszwalb’s method. In some case, compare 

with the recovering major occlusion boundaries method, even through our method 

cannot perform well on object boundaries, our execution time is faster. We will report 

our execution time in Section 4.3. Major occlusion boundaries method also report 

their execution time in [4], but they only implement matlab version. So we do not 

compare execution time of our method with them.  
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Walking
(a)

Disparity map Left view Right view
(b)

Disparity map Left view Right view
(c)  

Fig. 4.14. 3D results of walking sequence with different algorithms. (a) Original image 

(b) Our proposed algorithm. (c) The recovering major occlusion boundaries method. 

scenery1
(a)

Disparity map Left view Right view
(b)

Disparity map Left view Right view
(c)  

Fig. 4.15. 3D results of scenery1 with different algorithms. (a) Original image (b) Our 

proposed algorithm. (c) The recovering major occlusion boundaries method. 
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Fig. 4.16. 3D results of alley sequence with different algorithms. (a) Original image (b) 

Our proposed algorithm. (c) The recovering major occlusion boundaries method. 

 

Fig. 4.17. 3D results of outdoor0 sequence with different algorithms. (a) Original 

image (b) Our proposed algorithm. (c) The recovering major occlusion boundaries 

method. 
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scenery1
(a)

Disparity map Left view Right view
(b)

Disparity map Left view Right view
(c)  

Fig. 4.18. 3D results of urban sequence with different algorithms. (a) Original image 

(b) Our proposed algorithm. (c) The recovering major occlusion boundaries method. 

 
Fig. 4.19. Superpixels computation with different algorithms. (a) Original image (b) 

Our proposed algorithm. (c) Felzenszwalb’s algorithm. 

4.3. Execution Time 

In this section we show the execution time of our proposed 2D to 3D conversion 

system. The algorithm was tested on several images on sizes ranging from 352x288 to 

1024x768, and had its performance measured on each step. The data presented 

following is average of the experiments, scale to seconds (s). Because the texture 

computation is time-consuming, texture computation is separated from the fast 

neighbor merge process. Table 4.1 shows the performance for the algorithm, 

processed on the CPU. These results were obtained on a computer with an Intel Core 
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i7 980, 3.33 GHz, and a 6-GB RAM, running Window 7. And we use the Microsoft 

Visual C++ compiler, version 9.0. Table 4.1 shows that for the algorithm, the texture 

computation is bottleneck, greatly degrading the speed performance, especially on 

large images. But the texture computation is easy to be accelerated using parallel 

processor. 

Table 4.1. Execution time 

 352x288 640x480 800x600 1024x768 

Initial segmentation 0.0625 0.2236 0.3496 0.6084 

Texture computation 1.3492 4.7130 7.3423 12.015 

Fast neighbor merge 0.0155 0.0711 0.2356 0.5295 

Surface labeling 0.1480 0.3534 0.5153 0.6073 

Object boundary tracer 0.0155 0.0456 0.0646 0.0605 

Constraint segmentation 0.0000 0.0021 0.0026 0.0032 

Depth assignment 0.0000 0.0107 0.0156 0.0197 

Total times 1.5907 5.4090 7.6600 13.824 

5. Conclusion and Future Works 

5.1. Conclusion 

In this thesis, we proposed the 2D to 3D conversion system which automatically 

converts a single 2D image into the 3D effect images. This algorithm combines 

object-based segmentation with depth assignment, so we can see the objects more 

complete on the 3D display. We use watershed segmentation algorithm to generation 

initial segmentation. Fast neighbor merge process is proposed to solve the problem of 
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over-segmentation. In addition, the surface labeling algorithm is used to categorize 

superpixels into appropriate classes. Furthermore, we proposed an object boundary 

tracing method to detection objects of the image based on surface information. With 

the proposed object boundary tracing method, the execution time is much reduced, 

compared with the recovering major occlusion boundaries method. 

Experimental results demonstrated that the proposed 2D to 3D conversion system 

could achieve better quality of 3D image than the hybrid depth cueing system, and the 

recovering major occlusion boundaries method. 

5.2. Future work 

There are two issues remained in our 2D to 3D conversion system. First, there still 

are many depth cues we can use. For example, considering the temporal domain 

information, we can combine some video segmentation method that can help the 

result of object segmentation more accurate. The other issue is computational speed of 

our algorithm which still remains slow. Therefore, we will be working on optimizing 

the speed of object segmentation algorithm in the future and porting the algorithm on 

the parallel processor. 
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Appendix  

In this section, we briefly describe formula and parameter of object boundary 

tracing method and constraint segmentation. In A.1, we introduce the detail formula 

and parameter for object boundary tracing method. In A.2, we introduce the detail 

formula and parameter for constraint segmentation. 

A.1 

In the initial boundary selection process, we detect “sky-vrt”, “gnd-vrt”, and “vrt, 

vrt” class of initial object boundaries. In the following, we list the formula for those 

detectors. 

For the “gnd-vrt” class of the boundary that belongs to initial object boundary if 

the following conditions are satisfied: 

 ටܾ݈௫
ଶ ൅ ܾ݈௬

ଶ ܾ݈௣ ൐ 0.4 ܽ݊݀ൗ  

ቀ1 െ ܲ൫ݕ௜ ൌ ൯ܫ௝หݕ ൅ 2 ቚ݉ܽ݅݊௟௔௕௘௟௚ሺ݅ሻ െ ݉ܽ݅݊௟௔௕௘௟௚ሺ݆ሻቚ ൅ ห݉ܽ݅݊௟௔௕௘௟௩ሺ݅ሻ െ

  ݀݊ܽ ൐2.0݆ݏെ݈ܾ݈݉ܽ݅݊ܽ݁݅ݏ൅2݈ܾ݈݆݉ܽ݅݊ܽ݁ݒ݈ܾ݈݁ܽ݊݅ܽ݉

ቀ݉ܽ݅݊௟௔௕௘௟௚ሺ݅ሻ െ ݉ܽ݅݊௟௔௕௘௟௩ሺ݅ሻ ൐ ௟௔௕௘௟௚ሺ݆ሻ݊݅ܽ݉ ݎ݋ 0.4 െ ݉ܽ݅݊௟௔௕௘௟௩ሺ݆ሻ

൐ 0.4൯ 

 ටܾ݈௫
ଶ ൅ ܾ݈௬

ଶ ܾ݈௣ ൐ 0.4 ܽ݊݀ൗ  ܾ݈௣ ൐ 20  

ܽ݊݀ ൬ቀ݉ܽ݅݊௟௔௕௘௟௚ሺ݅ሻ ൐ 0.4 ܽ݊݀ ݉ܽ݅݊௟௔௕௘௟௦ሺ݅ሻ ൏ 0.4ቁ ݎ݋  ቀ݉ܽ݅݊௟௔௕௘௟௚ሺ݆ሻ ൐

  ൏0.4݆ݏ݈ܾ݈݁ܽ݊݅ܽ݉ ݀݊ܽ 0.4
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The ܲ൫ݕ௜ ൌ ൯ܫ௝หݕ  denotes the same-label likelihood and the ݉ܽ݅݊௟௔௕௘௟௚ሺ݅ሻ 

denotes the ground label confidence. ݉ܽ݅݊௟௔௕௘௟௩ሺ݅ሻ  denotes the vertical label 

confidence. ݉ܽ݅݊௟௔௕௘௟௦ሺ݅ሻ denotes the sky label confidence. ܾ݈௫ denotes the length 

of boundary in x axis. ܾ݈௬ denotes the length of boundary in y axis. ܾ݈௣ denotes 

total pixels of boundary. 

For the “sky-vrt” class of the boundary that belongs to initial object boundary if 

the following condition is satisfied: 

  ൫1 െ ܲ൫ݕ௜ ൌ ൯ܫ௝หݕ ൅ ห݉ܽ݅݊௟௔௕௘௟௦ሺ݅ሻ െ ݉ܽ݅݊௟௔௕௘௟௦ሺ݆ሻห൯ ൐   ݀݊ܣ  0.5

 ൫݉ܽ݅݊௟௔௕௘௟௦ሺ݅ሻ ൐ ௟௔௕௘௟௦ሺ݆ሻ݊݅ܽ݉ ݎ݋ 0.3 ൐ 0.3൯ 

For the “vrt-vrt” class of the boundary that belongs to initial object boundary if the 

following conditions are satisfied: 

 1 െ ܲ൫ݕ௜ ൌ ൯ܫ௝หݕ  ൐ 0.7 ܽ݊݀  

หܾݑݏ௟௔௕௘௟ሺ௜ሻሺ݅ሻ െ ܾݑݏ௟௔௕௘௟ሺ௜ሻሺ݆ሻห ൅ หܾݑݏ௟௔௕௘௟ሺ௝ሻሺ݅ሻ െ ܾݑݏ௟௔௕௘௟ሺ௝ሻሺ݆ሻห  ൐ 0.4 

 For the condition that two fragments of junction are ground label, if other 

fragments of junction are satisfied the following formula are the “vrt-vrt” class of 

initial object boundary. 

1 െ ܲ൫ݕ௜ ൌ ൯ܫ௝หݕ  ൅  หܾݑݏ௟௔௕௘௟ሺ௜ሻሺ݅ሻ െ ௟௔௕௘௟ሺ௜ሻሺ݆ሻหܾݑݏ 

൅ หܾݑݏ௟௔௕௘௟ሺ௝ሻሺ݅ሻ െ ܾݑݏ௟௔௕௘௟ሺ௝ሻሺ݆ሻห  ൏ 0.8 

the ܾݑݏ௟௔௕௘௟ሺ௜ሻሺ݆ሻ denotes the subclass of segment i label confidence for segment j. 

A.2 

In the constraint segmentation process, if following conditions are satisfied, we 

will merge segments. 
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 Condition 1: 1 ݐ݊݁ݒܧ ת  2 ݐ݊݁ݒܧ

Event 1: 

ට൫v୧ െ v୨൯
ଶ ൅ ටቀs୧cosሺhπሻ െ s୨cosሺhπሻቁ

ଶ
൅ ටቀs୧sinሺhπሻ െ s୨sinሺhπሻቁ

ଶ
൏ 0.6, 

where h, s, v denote value of color in the HSV color space. 

Event 2: 

Main class୧  ൌൌ Main class୨ 

 

 Condition 2: 1 ݐ݊݁ݒܧ ת 2 ݐ݊݁ݒܧ ת  6 ݐ݊݁ݒܧ

Event 1: 

ට൫v୧ െ v୨൯
ଶ ൅ ටቀs୧cosሺhπሻ െ s୨cosሺhπሻቁ

ଶ
൅ ටቀs୧sinሺhπሻ െ s୨sinሺhπሻቁ

ଶ
൏ 1.2, 

where h, s, v denote value of color in the HSV color space. 

Event 2: 

Main class୧  ൌൌ Main class୨ 

Event 3: 

P୧ ൏ 0.02ܶ Iܲ ׫  P୨ ൏ 0.02ܶ Iܲ  

TPI denotes total pixels in the image. P୧ denotes number of pixel in the segment i. 

 

 Condition 3: 2 ݐ݊݁ݒܧ ת ת 3ݐ݊݁ݒܧ  4ݐ݊݁ݒܧ

Event 2: 

Main class୧  ൌൌ Main class୨ 

Event 3: 

ሺ|Max୶ሺiሻ െ  Max୶ሺjሻ| ൅ |Min୶ሺiሻ െ Min୶ሺjሻ|ሻ ቀMin൫Max୶ሺiሻ, Max୶ሺjሻ൯ െ  Max൫Min୶ሺiሻ, Min୶ሺjሻ൯ቁൗ

൏ 1.5 

Max୶ denotes the rightest position of the segment in the image. Min୶ denotes the 
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leftest position of the segment in the image. 

Event 4: 

|Mean୶ሺiሻ െ  Mean୶ሺjሻ| ൏ 0.1 

Mean୶ denotes the mean value of the position at the x axis in the image. 

 

 Condition 4: 2 ݐ݊݁ݒܧ ת  5ݐ݊݁ݒܧ

Event 2: 

Main class୧  ൌൌ Main class୨ ת  subclass୧  ൌൌ subclass୨  

Event 5: 

ቀSeg୧ ׫ Seg୨ୟ୰ୣୟ
െ  MaxሺSeg୧ୟ୰ୣୟ , Seg୨ୟ୰ୣୟ

ሻቁ MinሺSeg୧ୟ୰ୣୟ , Seg୨ୟ୰ୣୟ
ሻൗ ൏ 0.1  

Seg୧ୟ୰ୣୟ denotes area of bounding box of segment i 

Table A.1. Events of constraint segmentation 

Event 1: the color of the segment is similar to the other. 

Event 2: the label confidence of the segment is similar to the other. 

Event 3: the shape of the segment is similar to the other. 

Event 4: the y axis position of the segment is similar to the other. 

Event 5: the segment is inside of the other segment. 

Event 6: the segment is small enough. 
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