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A Power-Efficient VLSI Design of a 4-Channel Independent
Component Analysis Processor for Portable Brain-Heart Monitoring
Systems

Student: Chih-Chung Fu Advisor: Dr. Wai-Chi Fang
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National Chiao Tung University

Abstract

Since the twenty-first century, -the-fast-increment of an aged population has
become a worldwide problem. Therefore, integrated health-care systems have become
an important topic for electricalengineers. In-this thesis; focusing on three application
scenarios including emergency medical care (e.g. EEG, EKG measurements on
ambulance or DOT for fast'Cerebralshemorrhage-check); long-term observation and
monitoring (for patients suffer from.chronic-ailment) and researches on brain and
cognitive science, we propose a preliminary design of an integrated health-care
system comprising electroencephalogram (EEG) and electrocardiogram (EKG) signal
analysis and processing together with diffuse optical tomography for brain imaging.
The significance of this system is to enable the practical development of such portable
health-care devices for brain heart monitoring.

Since the EEG is the feeblest one of all physiological electrical signals usually
contaminated by ocular artifacts (e.g. eye-blink artifact and eye-movement artifact),
the artifact removal techniques using independent component analysis (ICA) has been

developed for a long time. Because of the compelling computation complexity of ICA



algorithm directly inherits from the possible dependency in each channel, applications
that analyze EEG signals are usually heavily restricted by the off-line ICA
computation. One complete chapter is used to describe the design and implementation
of the 4-channel ICA processor employed in the proposed integrated system as the
EEG processing element. Since the two basic requirements for portable instruments
are low-power and low-cost, various design techniques and optimized specification
analyses like three-bank circular memory allocation, an mirrored non-linear lookup
unit and the operation pipelining between the ICA training and component extraction
are all adopted to reduce the power consumption and hardware cost. The designed
ICA processor is fabricated using UMC 90 nm CMOS technology, and the core area
of the chip is 0.58 mm?. Performance measurements»done by Agilent 93000 SoC
Tester have shown that when using-80 Hz sample rate, 0.5 MHz operation frequency
and 0.6 V core power, the-lowest power consumption of 0.312 mW is achieved under
the worst cast of 512 training iterations:

Together with an HRV and fNIR-DOT processor, the designed ICA processor is
integrated in an experimental brain®heart ‘'monitoring system. EEG, EKG and
near-infrared signals acquired from the analog front-end IC are processed in real-time
or bypassed according to user configurations. Processed data and raw data are
compressed by a lossless biomedical data compressor and sent to a remote science
station by a commercial Bluetooth module for further analysis, 3-D visualization and
remote diagnosis. The biomedical signal compressor achieves an average compression
ratio (CR) of 2.5 which is translated into power saving during wireless transmission.
The data flow in the system is mainly controlled by a prioritized data selector and a
three-stage backward handshaking mechanism, and the design can increase the

utilization of the output buffers inside each processor so that the data transmission

iv



buffer can be reduced. The ICA and HRV processor are verified by real EEG and

EKG signals while the DOT processor is verified by an experimental model.

Keywords: Infomax, Independent Component Analysis, EEG processing, Heart Rate
Variability, Diffuse Optical Tomography, Integrated Health-Care System, Bluetooth

Data Transmission, Portable System, Digital Signal Processing
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Chapter 1 Introduction

Since the twenty-first century, the fast increment of an aged population is
emerging as a preeminent worldwide phenomenon. Most of the elderly suffer from
chronic ailments and illnesses related to central nervous system (CNS) in their later
life. To ease the problems caused by insufficient nursing personnel, many health-care
systems focusing on biomedical signal processing and monitoring have been
developed. Traditional EEG measuring equipments require the patients to be confined
to a small area due to their large size, bringing tremendous inconvenience to them.
Therefore, integrated portable health-care systems have become an increasingly
important topic.
1.1 Three Common Human Health Indicaters

Recent studies have shown that-combined analysis-of EEG together with heart
rate variability or brain fNIR can aid in better diagnosis and treatment. For example
EEG and HRV data were jointly @nalyzed.for the automatic detection of seizures in
newborns [1] and sleep apneain hospital patients\[2], while the advantage of
combined analysis of EEG and fNIR data' for cognitive rehabilitation and post
traumatic stress syndrome was presented in [3]. Despite these studies indicating the
need for joint monitoring of brain fNIR, EEG and HRV, an integrated brain-heart
monitoring SoC solution has not been developed.
1.1.1 Electroencephalogram

Human cerebral cortex has a large amount of neurons, and the activities of these
neurons have some degree of regularity, so pairs of electrodes on the scalp can be
recorded from the cerebral cortex on the next generation of potential changes. The
potential changes are composed of the Electrical Rhythms and Transient Discharge.

These changes of waveform are called brain potential signal.
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Electroencephalogram (EEG) is a non-invasive tool for recording of electrical
activity along the scalp produced by the firing of neurons within the brain. EEG
measurement of different locations, frequency ranges, amplitudes, waveforms and
periodicities can be used to distinguish different generation of EEG. The EEG
provides important information about the health of the central nervous system (CNS),
particularly in the newborn [4]. In medical application of neurology, it is common to
use EEG to diagnose such as epileptic, coma, encephalopathy and brain death.

A typical voltage range of EEG signal is about 10 p\olt to 100 pVolt, and the
frequency domain is less than 100 Hz. In addition, there are five major bands of
continuous rhythmic sinusoidal EEG activity. They are recognized as o (delta, below
4Hz), 0 (theta, 4-8Hz), a (alpha, 8-12Hz), p (beta, 12-30Hz) and y (gamma, above
30Hz) waves, and their characteristics are listed.in Table 1.1. (activities below or
above these range is likely to be taken artifactual naoise, under standard clinical

recording techniques)

Table 1.1 Classification of the eontinuous rhythmic sinusoidal EEG activities

Frequenc Common
Type . y Amplitude | Description
Range (Hz) Range (V)
Delta is often associated with the very young
Delta (5) 0~4 - and certain encephalopathies and underlying
lesions. It is seen in stage 3 and 4 sleep.
_-"'f .\"\.
o x\\

Theta is associated with drowsiness,
childhood,  adolescence and  young
adulthood. This EEG frequency can
sometimes be produced by hyperventilation.
Theta (0) 4~7 Below 20 | Theta waves can be seen during hypnagogic
states such as trances, hypnosis, deep day
dreams, lucid dreaming and light sleep and
the preconscious state just upon waking, and
just before falling asleep.




a

.

L

Alpha (o)

20p ~ 80p

Alpha is characteristic of a relaxed, alert
state of consciousness. For alpha rhythms to
arise, usually the eyes need to be closed.
Alpha attenuates with drowsiness and open
eyes, and typically come from the occipital
(visual) cortex. An alpha-like normal variant
called mu is sometimes seen over the motor
cortex (central scalp) and attenuates with
movement, or rather with the intention to

mOovVve.

Beta (B)

12~ 30

Below 20

Beta rhythms with low amplitude or multiple
and varying frequencies is often associated
with factive, busy or anxious thinking and
active~concentration. Rhythmic beta with a
dominant set” of frequencies is associated
with_ various “pathologies and drug effects,
especially benzodiazepines.
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Gamma

(v)

30 ~ 100

Gamma rhythms,may be involved in higher
mental  activity, including perception,
problem solving, fear, and consciousness.
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In clinical experiments, EEG signal is displayed based on the location of the

electrode that affects the amplitude, phase and frequency. EEG measurements can be

divided into monopolar derivation and bipolar derivation. The monopolar derivation

uses a probe electrode and a reference electrode fixed on the scalp surface, and it

measures the relative value of the probe electrode and reference electrode. The bipolar

derivation is induced with two probe electrodes and a reference electrode fixed on the

scalp. The potential difference between the two probe electrodes detects EEG signal

reflects and acquires relatively small EEG amplitude.




EEG system is no longer limited to the interception and analysis of the signals.
Today, there are many proposed identification systems and human brain wave
techniques for medical diagnosis and treatments. For example, Fuzzy C-means (FCM)
algorithm can be used to identify epileptic seizures and cerebral palsy [5]. However
EEG signal is very sensitive, and very often may be contaminated by various
disturbances like ocular artifact, EMG and electrical noise from nearby instruments
[6], and they largely restricts the precision of the identifications and analysis.

Fortunately, this problem can be alleviated by algorithms the independent
component analysis (ICA) algorithm [7], which separates artifacts and noise from the
measured EEG signals. Wavelet [8] and Spatially-Constrained [9] techniques can be
used to identify the artifacts and.eliminate them. As a'result, we can derive clean EEG
signals after the noise channel is eliminated and remixed:" However, the computation
complexity is so intense_that real-time ICA analysis Is.not feasible for pc-based
bio-science station. Therefore, (in” recent. years, thewresearches on hardware
implementation of ICA engines are blooming.

1.1.2 Near-Infrared Spectrogram on Human Tissue

Since DOT (Diffuse Optical Tomography) technology is a kind of non-invasive
and real-time radiography, it has been widely used to detect tumors in the breast and
imaging the brain in recent years. Many researches are involved in DOT technology
and have made rapid progress and development. DOT can be used to detect
oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (Hb) concentration and
volume with bi-wavelength Near-Infrared. Therefore, in clinical application, the
main uses of DOT are monitoring blood flow, blood volume, oxygen saturation,
tumors within the brain, and detecting breast cancer [10]. By measuring different

characteristics of the diffused near-infrared, DOT can be generally divided into three
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main categories: the Continuous Wave (CW), Frequency Domain and Time Domain.

Table 1.2 Characteristics of the three main types of diffuse optical measurements

Type Advantages Disadvantages
1. Spatial resolution 1. High sampling rate
2. Penetration depth 2. Instrument size and weight
Time 3. Most accurate separation of | 3. Stabilization and cooling
Domain (TD) absorption and scattering | 4. Cost

coefficients
Example Uses: Imaging cerebral oxygenation and breast imaging

1. Relatively low sampling rate | 1. Penetration depth
2. Relatively accurate | 2. Instrument size and weight

Freqt_Jency separation of absorption and | 3. Cost
Domain (FD) X -
scattering coefficients

Example Uses: Cerebral and muscle oximetry, breast imaging

1. Low sampling rate 1. Penetration depth

2. Instrument size, weight and | 2. Difficult to separate
Continuous simplicity absorption and scattering
Wave (CW) | 3. Low cost coefficients

Example Uses:” Finger _pulse*. oximeter, functional brain
experiments; cerebrallhemaorrhage

Table 1.2 shows the :characteristics of different DO T systems. The CW system
provides advantages suchas low cast, high' portability, low power consumption and
computation overhead, although lack of depth-information [11]. The volume of the
CW-DOT system can be miniaturized-which.is“the biggest advantage than the other
algorithms. Therefore, there  exists the possibility —of implementing
hardware architecture for CW systems. However, little literature has been published
on hardware architecture of CW-DOT signal processing. Most of CW-DOT systems
post-process the signal by computer such as [12] and [13]. This will demolish the
feature of portability, and make it difficult to miniaturize the system.

1.1.3 Electrocardiogram

Electrocardiography (EKG) is an interpretation of the electrical activity of the
heart over time captured and externally recorded by skin electrodes [14]. It is a
noninvasive recording produced by an electrocardiographic device. The EKG is an

essential tool for health professionals in making a diagnosis of abnormal heart
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rhythms when one is suspected.

The EKG works mostly by detecting and amplifying the tiny electrical changes
on the skin that are caused when the heart muscle depolarizes during each heart beat.
Usually more than 2 electrodes are used and they can be combined into a number of
pairs. The output from each pair is known as a “lead” . Different types of EKG
measurements can be referred to by the number of leads that are recorded, for
example 3-lead, 5-lead or 12-lead EKGs. A 12-lead EKG is one in which 12 different
electrical signals are recorded at approximately the same time and will often be used
as a one-off recording of an EKG, typically printed out as a paper copy. 3- and 5-lead
ECGs tend to be monitored continuously .and viewed only on the screen of an
appropriate monitoring device;,for example during an operation or whilst being
transported in an ambulance:

A typical EKG waveform shown in Figure 1.1 1s composed of P peak, QRS peaks

and T peak. How these peaks in the. EKG are.originated is explained in Table 1.3.

QRS Duration

R
Atrial Ven't’}‘ncular Ventricular
Depolarisation Depolarisation Repolarisation

- 2

PR Interval

e QT Intverval ~ 2

Figure 1.1 Atypical EKG waveform



Table 1.3 Different peaks in a typical EKG waveform

Peak Origination and Description
P Systole (depolarization) of the atrium.
QRS Systole (depolarization) of the ventricle. The amplitudes of QRS

peaks are usually larger than P and T peaks, because the muscle
of the ventricle is stronger.

T Repolarization of the ventricle.

Intervals between each peak can indicate the health of heart. The most common used

three kinds of interval are listed in Table 1.4 with their usages and descriptions.

Table 1.4 Different types of peak interval that can be used to evaluate the health of
the heart

Interval Description

RR interval Two adjacent R peaks can represent for the heart rate. The normal
heart rate is between 50 bpm to 100 bpm (beat per minute).

PR interval It is usually 120 to 200 ms long. The PR interval reflects the time

the electrical impulse-takes to travel from the sinus node through

the AV node and entering the‘ventricles. The PR interval is

therefore a.good estimate of AV.nodefunction.

® A long PR-interval (of over 200ms) may indicate a first
degree heart block. -Prolongation-can be associated with
hyperkalemia or acute rheumatic fever.

® Asshort PR interval-may indicate a“pre-excitation syndrome
via-an accessory pathway that leads:to early activation of the
ventricles,. such as'-seen /4in  Wolff-Parkinson-White
syndrome:

® A variable PR-interval“may"indicate other types of heart
block.

QT interval The QT interval generally represents electrical depolarization and
repolarization of the left and right ventricles. A prolonged QT
interval is a risk factor for ventricular tachyarrhythmias and
sudden death.

Heart rate (HR) is a non-stationary value; it can vary as the body's need to absorb
oxygen and excrete carbon dioxide changes, such as during exercise or sleep. The
measurement of heart rate is used by medical professionals to assist in the diagnosis
and tracking of medical conditions. It is also used by individuals, such as athletes,
who are interested in monitoring their heart rate to gain maximum efficiency from

their training.



Heart rate variation (HRV) may contain indicators of current disease, or
warnings about impending cardiac diseases [14]; it has proved to be a valuable tool to
investigate the sympathetic and parasympathetic function of the ANS, especially in
diabetic and postinfarction patients [14]. Sympathetic activity is associated with the
low frequency range (0.04-0.15 Hz) while parasympathetic activity is associated with
the higher frequency range (0.15-0.4 Hz) of modulation frequencies of the HR. This
difference in frequency ranges allows HRV analysis to separate sympathetic and
parasympathetic contributions evidently [14].

On the other hand, time-frequency parameters calculated using wavelet transform
and extracted from the nocturnal heart period analysis appeared as powerful tools for
obstructive sleep apnoea syndrome-diagnosis. Time-frequency domain analysis of the
nocturnal HRV using waveélet decomposition: could, represent an efficient marker of
obstructive sleep apnoea syndrome [15].

1.2 The Need for an Integrated Health-Care Solution

In recent years, many portable bio-signal acquisition systems are proposed in
academic research, and in the business community, plenty of tiny bio-status recorder
systems have already been sold in the health-care market for years. A major
imperfection of such systems is that an integrated multiple bio-signals recording
device, for example simultaneously recording EEG, ECG and fNIR, is not proposed
lately. Data of multiple kinds of bio-signals recorded in synchronized timeline is
much more useful than single kind recorded bio-signal. For example, modern people
suffer more from the pressure living their life aberrantly, and many of them go to the
hospital for evaluation of their sleeping quality, because they experience insomnia. In
fact, according to one epidemiological study [16], about one-third of the adult

population exhibit at least one symptom of insomnia. In the sleeping quality
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evaluation process, the patients are required to be monitored by EEG, ECG, EMG,
fNIR, respiration, posture and sound. When the observing target need to go to the
restroom, he has to bring the EEG measuring headgear together with him, so it is very
inconvenient, and at the same time the recording is interrupted although the
information at the period is not really necessary. However, in such situation, an
integrated portable system with the ability to wirelessly transmit data to the science
station will bring the following advantages:

® Much more comfortable for the observing target

®  Short wiring for feeble physiological electrical signals

® Decrease the chance of inaccurate. measurement caused by the discomfort

® Decrease the chance of.sensor fall off

® Lower the cost

® Extend the applicable range of the system

Such systems allow the' observed. target. to.move freely around an area with
health-care science station service, while not losing the quality of the measurement.
Therefore, the integrated portable health-care 'device has become an inevitable trend.
In next section, three major target application scenarios will be point out, and in
chapter 4, a complete architecture for portable brain-heart monitoring system will be
proposed.
1.3 Application Scenarios

Before presentation of the detail design of the proposed system, three major target
application scenarios are shown below. The system targets the usage in emergency
condition, long-term medical observation and monitoring and potential researches on
brain function and cognitive science, and the implemented chip can be integrated in

portable devices in the following application scenarios.
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1.3.1 Emergency Use

Current brain imaging technologies used in hospitals are not useful in emergency
conditions. For example, we cannot equip a CT on an ambulance, but cerebral
hemorrhage is a common case for the car accident victims. When we can use portable
CW DOT devices on the ambulance to check if the patient suffers from cerebral
hemorrhage, the medical personnel on the ambulance can inform the medical team in
the hospital if cerebral hemorrhage happened on the patient.

Another common case happens when an infant falls over with his head knocking
on the ground. Sometimes brain injury is hard to find out without the help of medical
equipments, but people frequently ignore the possible dangerous behind this not to
mention a baby that can barely. talk. With the help of a cheap and portable DOT
device, we can avoid many‘tragedies-tike this:

1.3.2 Long-term Observation and Monitoring

The traditional electreencephalogram.acquisition systems and DOT systems are
very large in size and also wvery. heavy. Between’the patient and the acquisition
instruments, there are many connecting wires (one wire for each channel). Figure 1.2
in the next page shows the traditional electroencephalogram and DOT acquisition

instruments.
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(c) (d)
Figure 1.2 Traditional EEG measuring equipment (b) Traditional EEG System
enlargement at head part (c) Frequency Domain DOT System (d) Frequency domain
DOT system enlargement at head part

Such systems bring tremendous inconvenience to the patients especially in
long-term monitoring cases, for example the patients suffer from seizure or the
measuring object in the research of degenerative-brain diseases. For these patients,
wearing the wired headgear means-the restriction of ‘free movement. Furthermore,
these equipments are always located in facilities like hospitals and health-care centers,
so the patients and observing. targets are required.to stay«in a restricted area. Figure

1.3 shows an advanced setup“for.our brain monitoringSystem.

Wearable Brain-Heart

Monitoring System (Unlimited Power)
(Power Constrained) Portable Display

<

Base Station Remote Monitoring
and Diagnosis

BI oth Workstation
EK 802Mp.1 < /

Node

;

—~— —~—
Home Hospital

Figure 1.3 Application scenario for the proposed wearable brain monitoring
system

The system is interfaced with an analog front-end chip and a commercial
Bluetooth module. NIR, EEG and ECG signal are acquired, processed and transmitted

via the Bluetooth wireless link. Biomedical data received at the base station will be
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decompressed, displayed in real-time on the screen of the science station, and finally
stored into non-volatile storage media for further off-line processing, analysis and
diagnosis. In addition, the data can be sent from the base station to a remote
workstation for online monitoring and diagnosis by doctors in hospitals.
1.3.3 Research on Brain and Cognitive Science

The past researches have clearly shown that electroencephalogram (EEG)
contains important information about human cognitive process. Human brain
cognitive science has become a very important and challenging research direction
since the twenty-first century, and the related topic includes brain computer interface
[17], artificial intelligence, electronic prosthesis and even artificial neural tissues. Not
only has the electroencephalogram~shown its potential capabilities for human brain
cognitive research, the information-from functional near-infrared also provide cortical
hemodynamic response and shows which area‘of the brain is currently active. The
flexible nature of DOT, which uses.a‘wearable imaging/cap (Figure 1.2 (d)), makes it
well-suited to human brain studies in enriched environments and for a wide range of
behavioral paradigms and activations [18], including visual [19], during motor tasks
[20], somatosensory system [21], auditory [22][23], and language [24][25] Although
the instruments like Magnetic Resonance Imaging (MRI) and Positron Emission
Tomography (PET) together with multiple channel EEG signal can provide
significantly valuable brain activity information, but their high cost and huge size
result in the low availability for academic research.
1.4 Importance of this Work

A power and area efficient 4-channel ICA processor involved with various design
and optimization techniques is presented in this thesis. Low-power and low-cost make

it possible to be used in portable devices, which are usually constrained by the limited
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power consumption. Prolonged battery life also makes it possible to be integrated in
portable long-term observation and monitoring systems.

An experimentally integrated system which comprises a novel functional
near-infrared (fNIR) diffuse optical tomography system for taking brain image, an
independent component analysis (ICA) processor for artifact removal from
electroencephalogram (EEG) signal, and a heart rate variability (HRV) analysis
processor for electrocardiogram (ECG) signal is implemented. The significance of
this SoC is to enable practical developments of portable real-time brain-heart
monitoring systems.

1.5 Organization of the Thesis

The organization goes as,follows. In chapter-2,7a,hardware and power efficient
4-channel ICA processor is‘presented-from the theary of ICA to the tape-out summary
of the designed processor. Various design-and optimization techniques including
optimized data windowingy-3-bank circular.memory. allocation, an optimized mirrored
non-linear lookup unit and .operation pipelining~between the ICA training and
component extraction are all presented in section 2.2. Performance analysis of the
4-channel ICA processor using both certain super-gaussian random pattern and real
EEG signal with or without eye-blink artifacts is demonstrated and compared with
off-line result analyzed by EEGLab in section 2.3 with an example of eye-blink
artifact removal. In section 2.4, the tape-out summary of the designed ICA processor
using UMC 90nm CMOS technology is presented. In addition to functional
verification and power consumption analysis, an FPGA-based Testbed built to provide
an experiment and demonstration platform is shown in section 2.4.3.

In chapter 3, an experimental brain-heart monitoring system with the ICA

processor integrated is shown. Overall system architecture and specifications are
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documented in section 3.1 and 3.2. Three bio-signal processing processors that
perform ICA, DOT and HRV function are briefly described in section 3.3. From
section 3.4 to 3.6, designs and behaviors of the other system peripherals and data flow
control units are described in detail. Finally we conclude the current achievements

and the future works in chapter 4.
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Chapter 2 4-Channel Independent Component Analysis Processor

In this chapter, the design of a 4-channel independent component analysis (ICA)
processor adopted in the brain-heart monitoring system proposed in Chapter 3 is
shown. It is employed to perform artifact removal from 4-channel EEG signals. First,
the independent component analysis algorithm and the reason why the system
comprises an ICA processor are introduced and described in section 2.1. The design
of a hardware and power efficient 4-channel independent component analysis
processor is then shown in section 2.2. In section 2.3, the performance analysis using
super-gaussian random pattern and real EEG pattern recorded by NeuroScan system is
presented and described in detail to prove the validity of the designed processor, and
comparison with other hardware ICA-implementation are also done In section 2.3.
Finally in section 2.4, the physical-information, tape-out summary, chip testing and
power measurement of the fabricated chip using-UMC 90nm CMOS technology is
presented.

2.1 Independent Component Analysis

In recent years, independent. component-analysis (ICA) had been applied to
different signal processing applications, such as speech enhancement,
telecommunication, feature extraction and artifact removal from signals. In this
section, we will define and explain blind source separation (BSS) problem and
introduce the principles and the algorithm of ICA.

2.1.1 Blind Source Separation

Blind source separation (BSS), also known as blind signal separation, is the
separation of a set of signals from a set of mixed signals, without the aid of
information (or with very little information) about the source signals or the mixing

process. Blind signal separation relies on the assumption that the source signals do not
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correlate with each other. For example, the signals may be mutually statistically
independent or decorrelated. Blind signal separation thus separates a set of signals
into a set of other signals, such that the regularity of each resulting signal is
maximized, and the regularity between the signals is minimized (i.e. statistical
independence is maximized). In Figure 2.1, the problem definition of the blind source
separation (BSS) is shown. The original source signals are mixed in the path
transmitted to the sensors. Processed by the blind source separation, the unknown

source signals may be revealed again.

Mixtures of the
original source

S1(t) ( \
Environment >
S2(t) «Conductor BSS > Estimated
S3(t) =Air Algorithm —> Source
. =Scalp Components
sn(t) ——————3_ \ j————>

Figure 2.1 Problem definition of the blind source.separation (BSS)

Blind source separation (BSS) problems are untversal for signals acquired from
natural sources for example light/intensity,.sound.wave /and electrical potential. The
first problem of blind source separation (BSS) had.leen proposed to solve individual
speech at a noisy cocktail party. 1t“posed a Serious problem that humans cannot
understand their conversation when more than one person is speaking, and the
concept using ICA to separate the two independent speeches is shown in Figure 2.2.
There are also many similar problems, for example, EEG signals disturbed by artifacts,
a speech in a noisy environment, and the signals include various sources that we want

and do not want in the same location where sensors are placed.

®))) \_ (o)

ICA

') - )

Figure 2.2 The concept of using ICA for speech separation in a cocktail party
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2.1.2 Entropy and Mutual Information

Entropy and Mutual Information are the foundation of information maximization
algorithms that includes the Infomax independent component analysis (Infomax ICA)
algorithm chosen for the designed 4-channel ICA processor. Therefore, before
introduction to Infomax ICA algorithm, the concept of Entropy and Mutual
Information used are first clarified in this section.

The entropy is a function of random variable which tries to describe the
“unpredictability” of a random variable with non-negative values, and the value of
entropy becomes zero when the input random variable is “certain” when predicted.

The entropy function of a random variable X.is defined by:

HEX) = 5x P)log s (2.1)

The X in equation 2.1 is @'random-variable-and P(X) is'the probability distribution
function (PDF) of X, also.known as the probability ‘density function. The value of
entropy is not only influenced by. the‘value territory of the random variable, but also
influenced by the probability distribution.

The joint entropy is defined as the entropy of a joint probability distribution of
two or more random variables, or a multi-valued random variable. For two random

variables X and Y, the joint entropy is defined by

1
p(xy)

HX,Y) = Xxy p(x,y)log (2.2)

The conditional entropy is a statistics that summarizes the randomness of Y

given knowledge of X. It is defined by:

1
p(yIx)

H(Y[X) = Zxyp(y[x)log (2.3)

The conditional entropy H(Y|X) is H(Y) without H(X) and the conditional entropy

H(X|Y) is H(X) without H(Y). If there exists correlation between H(Y) and H(X),
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thenH(X,Y) < H(X) + H(Y), and if two random variables X and Y are statistically
independent, the joint entropy H(X,Y) equals to the sum of the independent entropies ,
that is HOX)+H(Y).

Mutual information is a quantity that measures a relationship between two
random variables that are sampled simultaneously. The mutual information of

two discrete random variables X and Y is defined by

[(X,Y) = 5y Ty p(x,y)log — 2 (24)

HX,Y)

I(X.Y) H(YIX)

H(X) H(Y)
Figure 2.3 Entropy relationship presented by the concept of set
From the concept to express entropy using set in Figure 2.3, we define the entropy
defined both in H(X) and H(Y) to be mutual information 1(X,Y), with

HOX,Y) = HOO)+H(Y[X) = H(Y)+H(X]Y)
=H(X)+H(Y)-1(X,Y) (2.5)

Therefore the mutual information is then defined as
1(X,Y)=H(X)-H(X[|Y)
=H(Y)-H(Y[X)
=H(X)+H(Y)-H(X,Y)

=H(X,Y)-H(X|Y)-H(Y|X) (2.6)
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Minimization of the mutual information will lead to the maximization of the
independence between the random variables, and if the mutual information between
two random variables is zero, the two random variables are statistically independent.
In the other hand, the smaller mutual information we derive, the more statistically
independent two random variables we will have. With this conclusion, we will
introduce the Infomax ICA algorithm using the concept in the next section.

2.1.3 Infomax ICA

Recently, blind source separation by Independent Component Analysis (ICA) has
received attention because of its potential applications in signal processing such as in
speech recognition systems, telecommunications and medical signal processing. The
goal of ICA is to recover independent sources given.only sensor observations that are
unknown linear mixtures of'the unebserved independent source signals. In contrast to
correlation-based transformations such as Principal Component Analysis (PCA), ICA
not only decorrelates the signals (2nd-order. statistics) but also reduces higher-order
statistical dependencies, attempting to make the signalsas independent as possible.

There have been two different fields of research considering the analysis of
independent components. On one hand, the study of separating mixed sources
observed in an array of sensors has been a classical and difficult signal processing
problem. The work on blind source separation by Jutten, Herault and Guerin (1988)
where result in an adaptive algorithm using simple feedback architecture, and its
learning rule was based on a neuromimetic approach that is able to separate
simultaneously unknown independent sources. Furthermore, Comon (1994)
introduced the concept of independent component analysis and proposed cost
functions related to the minimization of mutual information between the sensors. On

the other hand and in parallel to blind source separation studies unsupervised learning

19



rules based on information-theory have been proposed by Linsker (1992), Becker and
Hinton (1992) and others. This idea is to maximize the mutual information between
the inputs and outputs of a neural network. This approach is related to redundancy
reduction which was suggested by Barlow (1961) as a coding strategy in neurons.
Each neuron should encode features that are statistically independent from other
neurons. This leads to the notion of factorial code that has been explored for the visual
processing strategy by Attik (1992). Nadal and Parga (1994) showed that in the
low-noise case, the maximum of the mutual information between the input and output
of a neural processor implied that the output distribution was factorial. Roth and
Baram (1996) and Bell and Sejnowski.(1995) independently derived stochastic
gradient learning rules for this ‘maximization and applied them, respectively to
forecasting and time serieswanalysis;—and-the blind, separation of sources. Bell and
Sejnowski (1995) were the first explaining the-blind source separation problem from
an information-theoretic «~viewpoint.and...applying/ ‘them to separation and
deconvolution of sources.

Extensive simulations have been performed to demonstrate the power of the
learning algorithm. However, instantaneous mixing and unmixing simulations are
problems and the challenge lies in dealing with real world data. Makeig et al. (1996)
applied the original Infomax algorithm to EEG and ERP data showing that the
algorithm can extract EEG activations and isolate artifacts. Jung et al. (1997) show
that the extended Infomax algorithm is able to linearly decompose EEG artifacts such
as line noise, eye blinks, and cardiac noise into independent components with sub-
and super-Gaussian distributions. McKeown et. al. (1997) have used the extended
ICA algorithm to investigate task-related human brain activity in fMRI data. By

determining the brain regions that contained significant amounts of specific
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temporally independent components, they were able to specify the spatial distribution
of transiently task-related brain activations.

As previously described, ICA algorithm not only decorrelates a signal
(second-order statistical independence), but also reduce the dependency in higher
order statistics. In other words, the goal of independent component analysis is to find
a linear but not necessarily for the orthogonal coordinate system which can express
multi-dimensional data. The independent multivariate random processing is involved
in the various components of all the order of the statistics. The computation
complexity of the statistics over second-order is significantly high, so using an
adaptive learning unit which replaces. the .higher order calculation with adding a
non-linear function g( ) after each-component make.u(t) approaches to s(t). The g( )
can be single-tone non-decreasing-functions-with values*between 0 and 1, such as
sigmoid and hyperbolic tangent function. Bell-and Sejnowski (1995) [26] presented
the Infomax ICA algorithm, which is_suitable. for separation of super-Gaussian
sources.

The Infomax method performs dinear ICA based on a principle of maximum
information preservation. However, it can also be seen as a maximum likelihood
method, or as a method based on the minimization of mutual information between y =
g(u)(g( ) is sigmod function) The goal of Infomax ICA is to find an unmixing
weight W that can be used to estimate the independent component signals. The
adaptive learning ICA algorithm is shown in Figure 2.4. The input X is the signal
mixture, and U is calculated by

U = W*x (2.7)

The output Y is expressed by

<
I

g(u) (2.8)
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Figure 2.4  Adaptive learning independent component analysis

The information which output Y includes X is defined in equation 2.6.
ICYX)=HY)-HYX)

Where H(Y) is the entropy+of the-output, while H(Y]X)+is whatever information the

output has which didn’t come from the input. In the case, we have no noise, the

mapping between X and Y-is deterministic and H(Y|X) has its lowest possible value.

We differentiate equation 2.6 as'shown in equation2.9
0 o
—I(Y,X)=—H 2.9
I ) 29)
H(Y|X) do not rely on w, so the part % H(Y | X)is zero. The information transfer

between the input X and output Y is maximized by maximizing the joint entropy of
the output, H(Y). As discussed above, finding a function Y=f(X) that maximizes
I(X,Y) is equivalent to maximizing H(Y).

The equation for the joint entropy of the output Y is the sum of the individual
entropies minus the mutual information between them, and it’s a way of information

maximization that reduces statistical dependence. The equation is expressed as

H(Y)=H(D)+H(y2)+...4+H(yn) - 1(yL y2,...yn) (2.10)
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From Equation 2.10, maximizing the output entropy H(Y) is equivalent to minimizing
the mutual information of the extracted components y;, and individual outputs will
move towards the statistical independence. The transformation between y and u is a
monotonic transform, and information maximization uses this concept to achieve the
goal of ICA. The coefficient of adjustment from Infomax algorithm which was
proposed was based on the conventional rules of stochastic gradient method. Gradient
method will be introduced as follow.

First, consider an input variable, x, which passed through a transforming function,
g(x), to produce an output variable, y. The probability density function (PDF) of the

output p(y) can be expressed as a function of the PDF of the input p(x).

P(x)
py) = oy (2.11)
oX

The entropy of the output, H(y), IS given by

H(y)=sE(———)= 2.12
(=BG )jp(y) (y)y (2.12)

From equation 2.11 and 2.12, H(y).can be expressed@as
H(y)=E(l oy —E[l
(y)=E(In ax) [In p(x)] (2.13)

In order to maximize the entropy of y by changing W, maximizing the first term
which is the average log of how the input affects output need to be focused on. This
can be done by considering the training set of x to approximate the density p(x), and

deriving a stochastic gradient descent learning rule:

LOH 0y .0 Oy
awa S -2 02— 2y 2 2 (2.14)

Y is the output of sigmoid function, y = et and u=Wwx+Ww, in which the input
_|_

is multiplied by weight w and added to a biasw,, and the calculation is
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%y
OX

0 Ny _ m B
a—W(&)—Y(l y)A+wx(1-2y)) (2.16)

=wy(l-y) (2.15)

Equation 2.15 and 2.16 are the learning rule, and equation 2.17 summarize it as
AW oc W+ X(1—2Y) (2.17)
To see the advantages of approach in artificial neural networks, the analysis of

multi-input and multi-output can be described as follow. The input x is a vector in a

network, and a weight matrix W and a monotonically transformed output vector

y = g(Wx+w,), the multivariate probability density function of y can be written

p(y) =% (2.18)

where |J| is the absolute value of the-Jacobian of the transformation.

(M . ]
0% OX,,
] = det| : (2.19)
1 G 1
~ axi 6Xn |
For sigmoid function, y = — ,and u=Wx+w,, and 0] =Yy(l-y), so equation
l+e ou
2.18 can be written
J = (detW) [Tiz1yi (1 — y1) (2.20)

From equation 2.12, the joint entropy of the output is
1
H(y) = E[In——1=E[In|J[]- E[In p(x)] (2.21)
p(Y)
Weights can be adjusted to maximize H(y), as before, and they only affect the
Elln|J[].
oH(y) 0 0 0 n
AWoc —===—(In|J ) =—In|detW|+—1In| | |y.(L-V. 2.22
e aw( 13 1) oYY |detw| W [T.lvi@-y)l (2.22)
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For the full weight matrix, the definition of inverse of a matrix and the adjoint matrix,

adj W, is the transpose of the matrix of cofactors.
0
—In|detW|=W']" 2.23
- IndetW| = W] @.23)
The product splits up into a sum of log-terms, only one of which depends on

particular w.

Tyl = =TT 2T o (=290 24)

The resulting learning rules, equation 2.21 can be written

=[WT) " +(@1-2y)x'] (2.25)
Equation 2.25 involves the calculation . of_inverse matrix, so the computation
complexity is high. To solve this problem equation 2:25 is multiplied by W™W which

rescales the result and the new learning equation becomes

AW =[W ) " F@-2y)x" W'W =]1 + ([@=2y)u' W (2.26)
Because it avoids the calculation,of matrix inverse, the computation time is reduced
significantly.
2.2 Design of the 4-Channel ICA Processor
In physiological electrical signal measurement, the observed signals are always
the superposition of independent source signals. In addition, EEG signals are
especially vulnerable and easily contaminated by artifacts such as eye movement, eye
blink, power line noise and muscle (EMG) noise due to its signal strength of micro
volt scale which pose serious problems in analyzing and interpreting the EEG
recording [27]. ICA has already shown to be an effective, powerful and applicable
method for EEG de-noising, which is able to separate EEG components and artifact
components to different channels. Components recognized as the artifact can be

removed easily by generating a mixing matrix with the weight to the artifact channel
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set 0, and the remixed EEG signals will be clean with only small influence caused by
the artifact due to the limitation of the algorithm. To acquire clean EEG signal for
observation or analysis, a 4-channel ICA processor for artifact removal is designed
and employed in the proposed brain-heart monitoring system. With the designed ICA
processor, real-time applications using EEG signals become feasible and more robust.
2.2.1 Overall Architecture of the ICA Processor

Figure 2.5 shows the overall architecture of the four-channel ICA processor. It
comprises four main processing units: a first stage buffering and calculation unit (S1),
a whitening unit (WU) for calculation of the whitening matrix, an ICA training unit
(TU) for unmixing weight training, and, an ICA computation unit (CU) for
constructing the whitened unmixing weight matrix and the resulting components
extracted. Operation pipelining is' applied-between the data processing (S1, WU and
TU) and the ICA output_calculation (CU)." Therefore, the hardware can be used

efficiently.

/ STAGE1 (S1) \ /WhiteningUnit(WU)\

Vector CORDIC

Angel CORDIC

Convergence
Detect

SVD RAM

Nan-

Linear
Lookup
ROM

\ Calculation Unit (CU) /

Figure 2.5 Overall architecture of the designed four-channel ICA processor
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The algorithm can be divided into three stages:

1.

Pre-Processing Stage (performed by S1 and WU)

In the pre-processing stage, the raw EEG data is pre-processed by data centering
and whitening transformation. The whitening transformation is a decorrelation
method that converts the covariance matrix COV_X of a set of samples into the
identity matrix 1. This effectively creates new random variables that are
uncorrelated and have the same variances as the original random variables. The
method is called the whitening transform because it transforms the input matrix
closer towards white noise. After the decorrelation, training iteration need to
achieve convergence can be largely.decreased. The pre-processing is done in S1
and WU.

ICA Unmixing Weight*Training-Stage (perfarmed by TU)

The pre-processed data is then used by the TU to find.the best unmixing matrix
that achieves maximum. independence.between each component. The TU is
designed using the Infomax ICA algorithm deseribed in the section 2.1.3.
Component Computation Stage (performed by CU)

The components are extracted in this stage. The raw EEG data, the P matrix from
whitening unit (WU) and the W matrix from ICA training unit (TU) are all
required to perform the computation of the resulting components in ICA
computation unit (CU). In addition, a handshaking mechanism is implemented to

make the output interface flexible.

The calculation and the corresponding module designs are described in the

following sections in detailed, and the decision of window size and the design of the

training parameters will be explained and analyzed.
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2.2.2 Stage 1 Unit and the Data Windowing Technique
The stagel unit (S1) for buffering and data pre-processing shown in Figure 2.6
comprises an input buffering unit (IBU), a mean and covariance calculation unit

(MeanCov), and a data centering unit (CTR).

STAGEL1 (S1)
Input Buffering Unit (IBU) M
can CoV x>
Cov =
RAMI1
(32x40)
I —, ) \I
: RAM2 Centering
[EEC (32x40) (CTR) =t >
A
RAM3
(32x40) ICA
Calculation
nit (ICU
Memory Management Unit (ICV)
State Machine
Data Input Interface me==_Data Output Interface

mmmm=  Memory IO Control Signal === Data Request Handshaking

Figure 2.6 The architecture of STAGEL unit

The input buffering unit employs three interleaved SRAM modules to store and
manage the raw EEG sampled data. The three memory modules inside IBU are
identical with size equal to 32 words, and each word is 10 bits long. In Figure 2.6, the
internal connections of different function are distinguished by their color. The green
connections are the data input interface, and the blue connections are the data output
interface, while the red ones are the control signal used to perform the pipeline
scheduling scheme. The IBU functions as the data controller of the ICA processor that
supports the sliding window scheme and pipeline scheduling. The timing plot of the

sliding window scheme and pipeline scheduling scheme is shown in Figure 2.7.

28



32 samples

%

Window 0 l Window 2 } Window 4 | Wind‘0w6
|

Window 1 Window 3 Window 5 Window 7 Data
Input i .
Data XO X_l X2 X3 X_4 XS X6 X? Wll‘ldOWlng
(32/x) H : : . : . :
: : : : : MEM Space
RAMO [ ¥ | X:O i XB i X?) Allocation
RAMI . v Xil v x:4 v x7 (Time & Bank)
RAM?2 vV | x2 v x5
Operand Win 0| Win 1| Win 2 Win 4| Win 5
(S1,WU,TU) \\ \\ \\ \\ \\ \\
A A £ A A A .
Wunmix Ol.ltpl]t WO Wil W2 W3 w4 W5 So(:ﬁzlélatllf:ll‘lg
uin
Component WoPoxi | WiPixz | WaPaxs | WsPsxa | WaPaxs | WsPsxe
Out (CU)

Figure 2.7 The precise timing plot of the“sliding window scheme and pipeline
scheduling scheme

Figure 2.7 depicts the data:windowing technique,smemory bank allocation and the
operand scheduling used.in our design.“Data dependency constraints of the ICA
algorithm tremendously limit the degree of parallelization in off-line ICA algorithm,
so the overlapped sliding window-.scheme in.Figure 2.7 is adopted. Due to the
requirements for area and power optimization, memory size reduction is employed to
minimize the chip area and power consumption to acceptable levels at minimal
performance loss. As shown in Table 2.1, the option with window size of 512 with
half overlapping sliding window achieves 0.9208 in correlation coefficient using
super-gaussian random pattern sets. However, to implement the corresponding
architecture using the same memory management scheme, it takes 30.72 Kilo-bits of
memory size. It is not acceptable for portable devices that aims on low-power and
low-cost design. Therefore, a window size of 64 with 50% overlap and 0.8401
correlation is chosen. Only 3.84 Kilo-bits memory size is required for the chosen

window size, resulting 85% in savings compared with the one with window size of
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512, and the corresponding trade-off is correlation degradation from 0.92 to 0.84.

Table 2.1 Memory Complexity Reduction

Window | Sliding Window | Shift Average Training Iteration | Memory
Size Overlap Sample | Step | Correlation | of the first 4 win. | Size(Kb)
512 256 (50%) 256 0.9208 377,1,4,80 30.72

112 (87.5%) 16 0.8307 490, 101,7,1 5.76

128 96 (75%) 32 0.8336 490, 80,1,1 6.4
64 (50%) 64 0.8334 490, 50, 12, 1 7.68

64 32 (50%) 32 0.8401 512, 208, 170, 1 3.84

Therefore, we can find that 32 samples (half-window) are marked a x;, and the
window size is defined to be 64 samples as we chose in Figure 2.7. The operand for
all operations including data centering, whitening transform and the ICA training is
based on a full window of 64 samples, but for-the calculation of output components
which is done by the ICAycalculation unit (CU), the output size equals to the
non-overlapped part that.is a half-window 0f 32 samples. IBU starts the data
pre-processing and ICA training after-window O-filled with sampled data, while the
new samples in x; are stored.nto RAM 2 causing no-conflicts. Before x2 is filled up,
the calculation for the first unmixing-matrix-WQ0 can be finished using a minimum
0.817 MHz input clock at the worst case condition of 512 iterations limit designed in
ICA training unit (TU). In the worst case, it takes 203757 clock cycles to train for an
unmixing matrix W _ and this implies that the data sampled by a maximum sample rate
of 9.708K samples per second can be processed in time when 60 MHz clock
frequency is applied. After RAM 2 is filled up, x1 is still left inside RAM 1 before the
next half-window is fully allocated. Therefore, the components can be calculated and
outputted during the calculation for W1.

For off-line ICA algorithms, the resulting component of x1 is supposed to be

extracted using the W1, but if we keep x1 stored inside RAM 1 until W1 is derived, an
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additional memory module will be need, and it also cause a delay of 0.75 seconds
from x1 is sampled to the corresponding component output. To solve the two
problems, we first assume that after the convergence, W won’t change rapidly
afterwards. Under this assumption, we can apply the previous W for extraction of the

current data. Therefore the first component output is calculated as WOPOx1.

600
500 | -
400 - -

300 —~ -

\L e

o c
o 10 20 30 40 50 60 70
frame number

Number of training iterations

Figure 2.8 Iteration number the-training unit takes.to.achieve conversion in each
sliding window

As we can see from. the simulation result using the super-gaussian random
pattern we used for deciding.the window size in Figure 2.8, aside from the first
window that requires 512 iterations for exiting the‘training loop, iteration numbers are
usually 1 after the convergence. The correlation difference using this scheme is so
small that we can just ignore it. The scheme is also verified using real EEG signal
recorded using NeuroScan system shown in section 2.3.2. Using the proposed scheme,
memory access conflicts are avoided at window overlaps, while the component can be
outputted ahead of time by a half-window that is 0.25 seconds without additional
memory module needed.

Aside from data management, STAGE1 also performs the simple calculations
needed prior to whitening and ICA training and computation. The Mean_Cov unit
employs shared multiply-accumulate units for calculating the mean and covariance of

the EEG samples, while the centering unit utilizes four subtractors to remove the DC
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component of each EEG data channel.
The definition of the covariance of two vectors is shown in Equation 2.27.

Cov(X,Y) = E[(X — E[X])(Y — E[Y])] = E[XY] — E[X]E[Y] (2.27)
For the covariance between four vectors, a complete covariance matrix needs to

be computed as in Equation 2.28.

V1(1:64) Cov(V1,V1) Cov(V1,V2) Cov(V1,V3) Cov(V1,V4)

cou| [V2Q:68)| | _ |Cov(v2,v1) Cov(V2,v2) Cov(V2,V3) Cov(V2,V4) (2.29)
V3(1:64) Cov(V3,V1) Cov(V3,V2) Cov(V3,V3) Cov(V3,V4)|\"
V4(1: 64) Cov(V4,V1) Cov(V4,V2) Cov(V4,V3) Cov(V4,V4)

Var(V1,V1) Cov(V1,V2) Cov(V1,V3) Cov(V1,V4)
Cov(V2,V1) Var(V2,V2) Cov(V2,V3) Cov(V2,V4)
Cov(V3,V1) Cov(V3,V2) Var(V3,V3) Cov(V3,V4)
Cov(V4,V1) ¢ Cov(V4V2) Cov(V4,V3) Var(V4,V4)

In addition, because Cov(X,Y) equals to Cov(Y,X),<0nly the elements in the upper
triangle are required to be: calculated. Therefore;, we calculate the ten elements
sequentially using only one shared multiply-accumulate unit (MAC) as shown in
Figure 2.9. The colorful small blocks are registers used for accumulation of the

product of each combination hetween channels.

C [vi] [vi2] [vi3] [vis
INI T
INZ// A |Z [V [va3] [va \‘
=1 2
ST ==
NP V34
e/ ,9;- I
i [v4 ]

Operand Select State
Machine

Figure 2.9 Covariance matrix calculation using only one shared MAC operator
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After the sums of each combination are accumulated, average is easily acquired by
fixed-point shifting by 6 bits that is 64 times smaller. Finally, the ten elements in the
covariance matrix are calculated using Equation 2.27.

Since the mean values of data from each channel are calculated in MeanCov unit,
the mean values stored in V1, V2, V3 and V4 register can be used in data centering
unit (CTR). Therefore, after the accumulation, V1 to V4 is provided to CTR using
inter-module wire connection with a valid signal MEAN_VALID to inform the CTR
that mean values are available.

The data centering operation is expressed as Equation 2.29:
X_zm(i) = X(0) = EfX@} = X () — ~ 20y X () (2.29)
Where N is the decided window size.that.is'64;.and i is the values from 1 to 64

representing each elementstin a window.. A direct and parallel CTR unit is designed

using four subtractors shown'in Figure 2.10.

X1~X4
IN VALID ———

A 4

LA LA 4 y Y VY
\ Subl [\ Sub2 [\ Sub3 /\ Sub4 /

TR

X_ZM X1 ZM|x2 ZM|X3 zM|x4 zM
Valid - - - -

Figure 2.10  The architecture of the centering unit (CTR)
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2.2.3 Whitening Unit

The whitening transform is linear operation and always possible. After whitened,
the components of new vector z are uncorrelated and their variances equal to unity. In
other words, the covariance matrix of z equals to the identity matrix.

E{zzT} =1 (2.30)
One popular method for whitening is to use the eigen-value decomposition (EVD) of
the covariance matrix. D is the diagonal matrix of its eigenvalues and E is the
orthogonal matrix eigenvectors of covariance matrix of x. The decomposition can be
expressed as:

E{xxT} = EDET (2.31)

A= 0
( = =D ) (2.32)
0 - A

-1 -1
Our goal is to find the whitening matriX P =E{xx*}z/=EDz ET, and apply it to the

Where D is

centered data. Therefore, a Jacobi singular value.decomposition (JSVD) engine which
can be used to perform the EVD is employed in the whitening unit shown in Figure

2.11.

Whitening Unit

SVD Engine

IND.1(0.1)

Angle Angle |
RDIC 0 CORDIC 0
| COVaxa Parallel in/parallel out D 1
b INO(O. 1 OUTH0,1 .
INHiL Cordic| | Cordic | | Cordic | | Cordic St process Vx
N2 ouT 1]
IN3( 3 OUT )

v

X

100pog
101997
N
Y

\A J

Figure 2.11  The architecture of the whitening unit (WU)
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The SVD engine is designed using CORDICs [28]. There are two parallel angle
CORDIC and eight parallel vector CORDIC in the SVD engine. Vectors selected by
the state machine are sent to the parallel CORDIC engines. The parallel order of
operation is shown as following: (p,q)=(i,j))={(1,2),(3,4);(1,3),(2,4);(1,4);(2,3)}. The

detailed pipelining scheme is shown in Figure 2.12.

Clock Cycle

Unit 112 (3|4 |5|6|7|8]9 1011|1213
Angle CORDIC 0 S|IF|S|F|S|F|S|F|S|F|S|F
Angle CORDIC 1 S|IF|S|F|S|F|S|F|S|F|S|F
Vector CORDIC 0 S|F|S|F|S|F|S|F|S|F|S|F
Vector CORDIC 1 S|F|S|F|S|F|S|F|S|F|S|F
Vector CORDIC 2 S|IF|S|F|S|F|S|F|S|F|S|F
Vector CORDIC 3 S|F|S|F|S|F|S|F|S|F|S|F
Vector CORDIC 4 S|\F|S|F|S|F|S|F|S|F|S|F
Vector CORDIC 5 S|F|S|F|S|F|S|F|S|F|S|F
Vector CORDIC 6 S|F|S|F|S|F|S|F|S|F|S|F
Vector CORDIC 7 S|IF|S|F|S|F|S|F|S|F|S|F

Figure 2.12  Operation pipelining-for singular value decomposition

In the Figure, “S” represent for the start‘of calculation while the “F” means the
finish of the calculation. ‘Operations marked with different color are using different
part of the covariance matrix shown in‘Figure 2.13.

C11 C12 C13 C14- C11 C12 C13 C14- C11 C12 C13 C14-
1: C21 C22 C23 C24 2: C21 C22 C23 C24- 3: C21 C22 C23 C24-
. C31 C32 C33 C34- . C31 C32 C33 C34 . C31 C32 C33 C34—

C41 C42 C4-3 C44- C41 C42 C4—3 C4-4- C4-1 C4-2 C43 C44—

C11 C12 C13 C14- C11 C12 C13 C14- C11 C12 C13 C14-
4 C21 CZZ C23 C24- 5: C21 C22 C23 C24- 6 C21 C22 C23 C24-
. C31 C32 C33 C34- . C31 C32 C33 C34 . C31 C32 C33 C34—

C4-1 C4-2 C43 C44- C41 C42 C4-3 C4—4 C4-1 C4-2 C43 C44—

Figure 2.13  Operands for pipelined CORDIC operations

After few iterations for convergence the E and D matrices can be derived, and
they are multiplied together to generate the whitening matrix P by a single vector
product unit. Afterward, the centered data are also whitened using the same vector
product unit.

2.2.4 Infomax ICA Training Unit
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The ICA training unit is the most important part used to calculate the unmixing
matrix W, and most of computational time is consumed here due to the training
iteration loop. As the behavior of this unit depends on the input data, we design the
training parameters by using the MATLAB simulation result of super-gaussian
random pattern as we discussed in section 2.2.2. To recap the Infomax ICA algorithm,
the calculation step is listed below.

For initialization, W is first set to 4-by-4 identity matrix as shown below.

1 0 0 O
Wixa(0) = Iaxs = 8 (1) (1) 8
0 0 0 1
Afterward, when one window of pre-processed data is available, the following

calculation will be applied to“renew the unmixing matrix W. Note that Z is the
4-channel pre-processed data windew;-and-the-variable i is'the iteration number.

1. =1

2. Ugxea(1) = Waxa (D) Zaxen

3. Yaxea(D) = 9W) = —=5

4. AWy, (i) = Rlearning(l4x4 + (- 2)’)4x64uT64x4)W4x4

5. W(@i+1)=W(@) + AW, (i)

6. If((sum(abs(AW,x4(i)))< thresholdconvergence) || (I++==liMite_num))
Exit the loop
Else
Go back to step 2

In the equations in calculation steps, there are three constant parameters to be decided.
The learning rate Rieaming controls the speed of convergence. When the value of
Rieaming 1S too small, the learning time will be long. Furthermore, small Rieaming also
causes the unmixing weight locked at the local minimum in some cases. On the other

hand, the thresholdconvergence affects the property of convergence. When

36



thresholdconvergence iS t00 large, the calculated W is not good enough to be used as
unmixing matrix, but when threshold is too small, the training may never achieve the
convergence.

With intensive simulation in MATLAB, we find that in the working range of
thresholdconvergence aNd Rieaming, the values of them does not have much influence on
the correlation coefficient between the original source and the extracted components.
Therefore, the middle values are chosen for thresholdconvergence @Nd Rieaming. FOr the
limitation of the maximum iteration number limie num, We choose a relatively large
value compared with other work in the literature due to the smaller window size in
our design. We can see the iterations as_the. extension of the data length. The values of

the parameters are summarized in Table 2.2.

Table 2.2 Parameters forithe Infomax ICA training algorithm

Parameter Symbol Value
Learning Rate Ricarning 7.4768x10™
Convergence Threhold) .thresholdconyefgence 1.0012x10°®
Limitation of the max. ]
Iteration number liMite_num 512

From step 2 to step 4, large matrix additions and multiplications are used. For
hardware implementation, the operation for large matrix is decomposed as sum of
contributions. If we define the item (1 — 2y) el Tgaxa iN Step 4 t0 be Tuy,. We
can decompose the calculations to be:
Uaxga = [Whx1s Ut Wants o5 UG1] (2.33)
Yaxesa = [Yixﬁygxﬁ}’zxﬁ ---Fygﬁq] (2.34)

In Equation 2.34, each V! is derived using Equation 2.35:

Vit = g0 ) =—— (2.35)

1—e~ U4
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The key step of decomposition is shown in Equation 2.36:

Taxa = (1= 2Y)axeat gaxa = 264 T4]x4 (2.36)

Each T/ in Equation 2.36 equals to:
Tixs = (1~ 23’4x1) e u1><4 (2.37)
The modified Infomax ICA algorithm designed for hardware implementation is
written in pseudo code using MATLAB expression and shown below. This snippet is
the ICA training algorithm for a window of data assuming W already initialized or
keeping the old value calculated from the previous sliding window. The resulting

calculation steps for T,., from Equation 2.36 are in the internal for-loop from line 3

to line 7.

Modified Infomax ICA Training Algorithm for Hardware Implementation
1 Fori=1:512 % limjt num equals to 512
2 T = zero(4,4);
3. Forj=1:64 %.Calculate for T
4, u=W+*Z();
5 y = 1/(1-eA(-u)); % Non-linear function g
6 T =T+(1-2y)*u‘;
7 End % T ready
8. T = ((R*)+R*T)*W, % Store AW inT
9. W=W+T,; % Update W
10. If(T<= thresholdconvergence) % Convergence check
11. Break; % Reach covergence
12.  End

There are eight states in the main state machine of ICA training unit (TU), and

the state transfer chart is shown in Figure 2.14.

S_wait _cal_| | | A _cal_ | A S_compare S_output

state=0 = = = = = = state=7

\ # of 64 iteration Finite State Machine |

Figure 2.14  State transfer char of the main state machine in ICA training unit (TU)

The resulting architecture for ICA training unit is shown in Figure 2.15. The

matrix calculation requires many adders and multipliers, so one shared multiplier
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array composed of 16 16-bit scalar multipliers and one shared adder array composed
of 16 32-bit scalar adders. The number of adders and multipliers are analyzed and
optimized, so the shared operator arrays are utilized efficiently in the training process.
Note that a mirrored nonlinear lookup unit is designed to minimize the ROM size for
the lookups of non-linear function g(u). Control logic circuits can be classified into
two groups: data updating logic and data operation routing logic. The internal 4-bit

counter is used to implement a sub-state control.
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mg

OF

D 8 . L] .
: g ICA Training Uni

Mirrored o ?::D_ C a g Unit
~>{ Nonlinear : ;
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U_reg g [ 2 (16bit * 16bit)
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W reg & U% Operand A
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T reg =4 um . .
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Data Updating Data
Logic 4-bit counter Operation
& (internal state) Routing Logic

— >  Operand Feeding Path

Figure 2.15  Hardware architecture of the ICA training unit
Table 2.3 clearly shows the operation in each state, and the value updates of the
variable registers are also indicated.

Table 2.3  State, operation and data control in ICA training unit

Multiplier Variable
Operation Update

State Adder Operation Needed #Cycle
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For counter=0
T=mul_out
[RlearningyT] -
For counter=1~4
4 1s cal delw [mul;_out,mul;_out] [T(L:2).W] T(1,:)=add3_out 5
- = [add;_out,add;_out] [T(Z':)’W] T(2,:)=add6_out
[T(3':)’W] T(3,:)=add9_out
"y T(4,:)=add12_out
[T(4,).W]
5 | S_update W [W,T] - W=add_out
[mul;_out,mul;_out] _
6 | S_compare [add;_out,add; out] T= o
7 | S output - | 16

1

091

0.8

0.7

0 c
-10 -8

(@) (b)

Figure 2.16  (a) The original non-linear function g(u) used in Infomax ICA training
algorithm (b) 1-2*g(u)

In Equation 2.34, the double of the lookup value is subtracted from 1, and the function

f(u)=1-2*g(u) is plot in Figure 2.16 (b). The plot also present us the same property of
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anti-symmetric as g(u) has. Therefore, to save the additional subtraction, the value of
f(u) is stored in the ROM, instead of g(u).

The size of the ROM is decided from the MATLAB simulation result
summarized in Table 2.4. The lookup table ROM size can be reduced by 87.5% from
512 to 64 entries, with almost no loss in performance. As we can see from Figure 2.16
(b), the output is almost saturated when the input is a value larger than 7 or smaller
than -7. Therefore a ROM that stores 32 entries is generated, and the lookup range is
between +7 and -7. When the input value is out of the range, the mirrored non-linear
lookup unit will output the value of saturation that is +1 or -1. The resulting design of

the mirrored non-linear lookup unit is shown.in Figure 2.17.

Table 2.4 The simulation result of different ROM sizes

. Step Average #Training
ROM Size L Size | Correlation Iteration
Float 16 - 0.8612 502
512 16 1/16 0.8581 486
256 16 1/8 0.8588 503
128 16 1/4 0.8675 531
64 16 1/2 0.8704 -
128 8 1/8 0.8588 503
64 8 1/4 0.8655 535
32 8 1/2 0.8704 584
Mirrored Non-linear Lookup Unit
5°bI1111 —;:
u[10:6] S Lookup ROM
11[14:11]_)%r fay=1- 2 -.! = f(u)
500000 —>{ — l+e™
u[10:6] —| =
L

Figure 2.17  The architecture of the mirrored non-linear lookup unit in TU

2.2.5 ICA Computation Unit
The ICA computation unit architecture employs a shared scalar product to
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calculate the whitened unmixing matrix UW and independent component analysis
output ICA OUT. Equation 2.37 and 2.38 are the calculation step for the final
component outputs.
Woinmixing =W X p (2.37)

The W in Equation 2.37 is the output from the ICA training unit (TU) while the p is
whitening matrix previously derived in the whitening unit (WU).

ICA_OUT = Wynmixing X X (2.38)
Independent component estimtes are finally calculated by multiplying Wuynmixing With X.
The x is consistant with the expression in section 2.2.2 defined to be a half-window
data. Therefore, 32 non-overlapping extracted component samples are outputed each
time. The corresponding calculation flow chart issshown in Figure 2.18. Note that a
handshaking mechanism at'the output-is added to providea flexible output interface.

ﬁ-landshaking\\.
Mechanism

ready
Feceive

State (:
Wait for the

W matrix State 2:

from TU all Calculate for each
component ICA estimation
outputted

W _valid
UW ready

State 1:
Calculate for
the unmixing
Weights

Figure 2.18  Calculation flow char for the final ICA result

2.3 Performance Analysis of the 4-Channel ICA Processor

To analyze the performance of the designed 4-channel ICA processor, a
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Super-Gaussian random pattern generator is first created. Before application using
real EEG patterns, we have to know if the designed ICA processor can really separate
the independent components of Super-Gaussian, but we cannot know the original
components inside EEG signal not even the number of components mixed in the
measured EEG signals. Therefore, using a set of known pattern can at least confirm
the validity of the whole design. After demonstration of one set of know pattern, we
use four sets of real EEG pattern recorded using NeuroScan system to analysis the
performance compared with EEGLab [30]. Pattern 1 and 2 are relatively clean EEG
signals with only few eye-blink artifacts in the signal, and pattern 3 and 4 are
contaminated by eye-blink artifacts on an.average of one every 2.5 seconds.
2.3.1 Performance Analysis‘Using Super-Gaussian Pattern

Figure 2.19 (a) showssthe 4-channel super-gaussian random sources. In each
channel, 1024 samples are_generated. To verify the super-gaussianity of the sources,

the probability density funetions (PDF).are.also.shown in‘Figure 2.19 (b).
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Figure 2.19  (a) 4-channel super-gaussian random sources (b) Probability density
functions

The super-gaussian source in Figure 2.19 is mixed by a stationary mixing matrix
to generate the input pattern for our design. Figure 2.20 shows the waveforms of the

last two windows of the original source (a), mixed input pattern (b) and the extracted
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component (c) using the designed processor. We can easily indicate the channel
mapping between the original sources and the extracted independent components
from Figure 2.20 (a) and (c). For analysis of the non-stationary characteristics of ICA
output, the correlation coefficient of the ICA from two neighboring sliding windows
is evaluated. The average correlation is 0.86 between the original source signals and
extracted ICA components. The correlation variation of each 32 outputs is shown in
Figure 2.21, and the red line is the correlation variation of the result using EEGLab.
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Figure 2.20  (a) Original source signals (b) Mixed signals (c) Extracted ICA signals
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Figure 2.21  Correlation variation of each 32 outputs compared with EEGLab result

2.3.2 Performance Analysis Using Real EEG Patterns
The ability to separate the mixture of super-gaussian random signals does not

suggest the ability to find out the artifacts and components in real EEG signals. In this
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section, 4 real EEG patterns recorded from NeuroScan system are fed as input
patterns to the fabricated chip using the setup described in section 2.4.1. The patterns
had been recorded using sample rate of 128 Hz for total 24 seconds after stabilization
of the experimental subject. A high-pass filter and a low-pass filter of cut-off
frequencies equal to 0.15 Hz and 55 Hz are applied to the setup before recording. The
detailed information is listed in Table 2.5, and the channel location is mapped using

international 10-20 system of electrode placement standard for EEG measuring.

Table 2.5 Detailed pattern information for the 4 EEG patterns recorded

Pattern HPF | LPF | Duration Chl Ch2 Ch3 Ch4
(Hz) | (H2) (Sec) Loc. Loc. Loc. Loc.
Pattern 1 0.15 | 55 24 FP1 FP2 Fz C1l
Description | Clean and stable EEG with-normal eye-blink period
Pattern2 [ 015] 55 | .24~ | M1 cP1 | cpz | cCP2
Description | Clean and stable EEG-with normal eye-blink period
Pattern3 [ 0.15| 55 3/ 24— “FP1 |.FPZ | FP2 | VEO
Description | EEG with eye-blink artifacts on-an average of one every 2.5 seconds
Pattern4 | 0.15| 55=| 24 | FP1 | FPZ= | FP2 | VEO
Description | EEG with eye-blink artifacts'on an average of one every 2.5 seconds

2.3.2.1 Pattern 1 — Stable EEG.withoutArtifact

In Figure 2.22, the waveforms in the first column are the recorded EEG patterns,
and the waveforms in the second column are the extracted components using off-line
ICA algorithm performed by the latest EEGLab release. To compare with the off-line
ICA result using EEGLab, the components analyzed by the designed chip are shown
in the third column. Although the channel order are identical for the results using
EEGLab and the chip in pattern 1, the channel orders may be shuffled through the
algorithm in the other patterns, so the corresponding components are marked by the
same component number, and the correlations between the results from on-line
hardware calculation and off-line algorithm are also shown in the figure. Although the

data are windowed, the results have shown that each statistical independent
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component is locked in the same channel for different window.
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Figure 2.22  Time domain comparison between the off-line result from EEGLab
and on-line results for pattern 1 with original source EEG shown in the first column
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Figure 2.23  Frequency domain comparison between the off-line result from
EEGLab and on-line results for pattern 1
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Figure 2.24  Time-frequency analysis comparison between the off-line result from
EEGLab and on-line result for pattern.k

Frequency domain comparison and time-frequency comparison are shown in
Figure 2.23 and 2.24. An average correlation coefficientof 0.867 is achieved in the
first pattern. The time domain, frequency domain and time-frequency results all show
consistency between the off=line results.and.on-line.results:

2.3.2.2 Pattern 2 — Stable:EEG without Artifact
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Figure 2.25 Time domain comparison between the off-line result from EEGLab
and on-line results for pattern 2 with original source EEG shown in the first column
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Figure 2.26  Frequency domain comparison between the off-line result from
EEGLab and on-line results for pattern 2
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Figure 2.27  Time-frequency analysis comparison between the off-line result from
EEGLab and on-line result for pattern 2

Figure 2.25 to 2.27 shows the comparison between the off-line result from
EEGLab and the on-line result. Similar description is skipped for this pattern. For the
conclusion, an average correlation coefficient of 0.824 is achieved in the second
pattern. The time domain, frequency domain and time-frequency results all show

consistency between the off-line results and on-line results as the first pattern does.
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2.3.2.3 Pattern 3 — EEG Contaminated by Eye-Blink Artifact

From Figure 2.28 and Figure 2.32 we can easily tell that the recorded EEG
signals for pattern 3 and pattern 4 are heavily contaminated by eye-blink artifacts.
EEG signals recorded from location at FP1, FPZ, FP2 and VEO are chosen because
they are influenced more heavily by the eye-blink artifacts due to the spatial locality

to the eyes where the eye-blink artifacts originate.
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Figure 2.28  Time domain comparison between the off-line result from EEGLab
and on-line results for pattern 3 with original source EEG shown in the first column

Figure 2.28 has shown that except the component of eye-blink results in only
0.548 of correlation coefficient, the average correlation between the on-line result and
the off-line result for the other three components still achieves 0.84 in correlation. In
fact, correlation itself doesn’t represent the quality of the algorithm, so an example of
artifact removal using EEGLab and the result from the chip is shown in Figure 2.29.
The original EEG waveforms are shown in the first column, and the artifact-removed
results using EEGLab and the chip is shown in the second and third column. In the

recorded EEG, an eye-blink artifact appears from sample 20 to sample 40 marked by
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the red dotted lines. As we can see from the processed results, although the influence
of the eye-blink event is still obvious, the ratio between the artifact component and
the EEG components is definitely decreased. The on-line algorithm and off-line
algorithm show similar result for artifact removal, and this also prove the capability of

this design for the targeted application.
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Figure 2.29  An artifactrremoval example‘used to compare the off-line performance
using EEGLab and the on-line performance using the designed chip
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Figure 2.30  Frequency domain comparison between the off-line result from
EEGLab and on-line results for pattern 3
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Figure 2.31  Time-frequency analysis comparison between the off-line result from
EEGLab and on-line result for pattern.3

Frequency domain and time-frequency analysis‘are also done for the eye-blink
patterns. Frequency domaifnscomparisons-shown inwFigure 2.30, 2.31, 2.33 and 2.34
demonstrate more similar_results between the characteristics of the on-line algorithm
and off-line algorithm than«t does/inpattern.1.and pattern 2.

2.3.2.4 Pattern 4 — EEG Contaminated by Eye-Blink Artifact
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Figure 2.32  Time domain comparison between the off-line result from EEGLab
and on-line results for pattern 4 with original source EEG shown in the first column
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Figure 2.33  Frequency domain comparison between the off-line result from
EEGLab and on-line results for pattern 4
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Figure 2.34  Time-frequency analysis comparison between the off-line result from
EEGLab and on-line result for pattern 4

To summarize the performance analysis using real EEG signals, following points
are concluded:
® Since the 4-channel ICA processor is designed to perform artifact removal from
EEG signals, patterns recorded by NeuroScan system with and without eye-blink

artifacts are applied to verify the design.
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® All results are compared with the off-line algorithm performed by the latest
release of EEGLab.

® To compare our work with the other on-line ICA designs, we also applied
super-gaussian random patterns to the chip, and the result show that an average
correlation of 0.86 is achieved.

® From the results of pattern 3 and 4, we can tell that the same independent
components are locked at the same channel, even though the window is only 64
in length and may not contain any eye-blink artifact at some time. Locked
channel order brings tremendous advantage for artifact removal. No matter the
identification is done manually or_automatically, if the artifact is always locked
in the same channel, we need only one time identification.

2.3.3 Comparisons with Other-Works

Table 2.6 Comparisons using complexity-and average correlation coefficient
Shyu [31] Huang [32] This Work

Application EEG Speech EEG
Channel 4 2 4

Pre-Processing No Yes Yes

Memory (bits) 384,000 24,576 4,352
Equivalent Gate-Count N/A 315.5K 199.7K
ADC sample rate 64 Hz 16 KHz 128 Hz
ADC resolution 8 bits N/A 10 bits

Correlation >0.8 N/A 0.86

Data format Floating Floating Fixed
Algorithm Infomax Fast Infomax

Table 2.6 shows comparison of the proposed design with other works on ICA. In
our proposed design, the memory complexity is much lower while the average
correlation coefficient is higher. Target application for [31] and the proposed design
are the same, while the work in [32] is for speech separation thus need for much
higher sample rate. A big advantage for the proposed design is that only small amount

of memory is used result in lower power consumption and small area.
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2.4 UMC 90nm 4-Channel ICA Processor Tape-out

The proposed design is fabricated using UMC 90nm SPRVT 1P9M process
technology, the physical information of the chip is listed in Table 2.7. The power
consumptions of the two boundary working conditions are also included in the table.
For high efficiency condition, the system works at 60 MHz and powered by a 1.2 V
core voltage, and the chip consumes average 12.24 mW. For low power condition, the
system works at 0.817 MHz, the lowest boundary for successful completion of the
worst cast 512 training iterations, and powered by a 0.6 V core voltage, and it
consumes average 312 uW in this condition. In the low-power condition, the core
voltage approaches the threshold voltage of the MOS, and even lower power supply is

not possible without the involvement of sub-threshald technology.

Table 2.7 Physical information of the 4-channel ICA chip

Technology UMC 90nm SPHVT 1P9M
Pad/Core Voltage 2.5V [1.0V
Die Size 1.068 x 1,068 mm*
Core Area 0.760 X 0.760 mm*
Logic Gates 199.7K
On-Chip SRAM 544B
Operating Frequency Up to 60MHz
Power Consumption 312uW (0.817MHz CLK, 128Hz EEG, 0.6V)
12.24mW (60MHz CLK, 9.708KHz Input, 1.2V)
# PAD 55 pins (functional / power : 31 / 24)
Test Package 68 pin LCC package

Micrographic of the fabricated chip with module partitions marked by their
boundary is shown in Figure 2.35 (a). As we can see from Figure 2.35 (a), whitening
unit occupies about 50 percent of the core area, while the Infomax training unit takes
about 25 percent, and the memory size is optimized, so about 10 percent of core area
is filled by the SRAM. The test chips used in section 2.4.1 to 2.4.3 is packaged using
68-pin LCC package shown in Figure 2.35 (b) accompanied by the bonding map in

Figure 2.35 (c).
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Figure 2.35 (a) Micrograph of the fabricated 4-channel ICA processor (b) Chip
packaged by 68-pin LCC package (c) Bonding map

2.4.1 Functional Verification

For the functional test, the only thing we care about is that if the behavior of the
chip matches the result of post-layout simulation which is done before the fabrication
of the chip. Therefore, the functional test is done by applying the same super-gaussian
pattern described in section 2.3.1 to the Agilent 93000 SOC Tester in CIC using
normal condition that is applying 2.5 V for pad power and 1.0 V for core power, and
the system working frequency equals to 32 MHz as the frequency for RTL synthesis is.

The expected output pattern is generated using the original MATLAB code for
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architectural exploration and hardware design verification with fix-point format which

is identical to the behavior of the designed processor.

ICA Chip
l"_
9
]
4 RS
L _. DUT. Boach
Agilent 93000

Figure 2.36  Chip testing using.Agilent 9300 SOC Tester
The chip packaged by LCC=68 package-isfirstinsert to a DUT (design under test)

board, and the DUT board is then connected to the Agilent 93000 SOC tester in
Figure 2.36, and the pattern setup is done on a workstation connected with the tester.
The tester is able to automatically compare the chip output with the expected output
pattern, and once the result mismatches, the test process will abort and notice the user
the chip fails the specified pattern under current condition. Bypass mode and normal
mode for the ICA processor are both verified and successfully passed.
2.4.2 Power Consumption Analysis

In electrical engineering, a Shmoo plot [33] is a graphical display of the response

of a component or system varying over a range of conditions and inputs. It’s often
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used to represent the results of the testing of complex electronic systems such as
computers, ASICs or microprocessors. The plot usually shows the range of conditions
in which the device under test will operate. For example, when testing semiconductor
memory: voltages, temperature, and refresh rates can be varied over specified ranges
and only certain combinations of these factors will allow the device to operate. Plotted
on independent axes (voltage, temperature, refresh rates), the range of working values
will enclose a three-dimensional, usually oddly-shaped volume. Other examples of
conditions and inputs that can be varied include frequency, temperature, system- or
component-specific variables, and even varying knobs tweakable during silicon chip

fabrication producing parts of varying quality which are then used in the process.

- CoreVDD vs Freq. Shmoo

[ Shemee Phot -

| Edit_Format Doc
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- The maximum frequency is 60MHz

- The minimum core voltage is 0.6 V

Figure 2.37  Shmoo plot showing the boundary of the working condition using core
voltage and frequency as its axes

After the functional test is done, we still are interested by the boundary of the
working condition and the corresponding power consumptions. One Shmoo plot

shown in Figure 2.37 is scanned by the Agilent 93000 SOC tester with x-axis
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representing the system clock rate and y-axis representing the core voltage. The top
boundary of core voltage is limited to 1.2 V because the targeted application for this
chip requires power consumption as low as possible, and the lower boundary of the
system clock rate is limited to 0.5 MHz which merely satisfies the cycle count needed
to perform ICA training for maximum 512 times. The average power consumption of
eight working conditions are measured and listed in Table 2.8 and Figure 2.38 shows
more distinct ratio how the power consumption can be minimized. The measurement
shows minimum 0.312 mW is consumed to perform independent component analysis

using the chip with a lower sample rate of 80 Hz.

Table 2.8 Power consumption. table at different.working conditions

0.5MHz 5MHz 30MHz 60MHz
1.2V 4.392 mW 5.028 m\W/. 8.328 mW 12.24 mW
0.9v 1.323 mW 1.629 mW 3.312 mW -
0.6V 0.312 mW - - -
CorePower (mW)
A [12.24 *Core voltage 1.2V |
64% Saving
8.328 l
5.028
/ 4.392
»
60M 5M 0.5M Freq.
CorePow )
A 4392 *Freq. 0.5Mfz |
93% Saving
1.323
0.312
1.2V 0.9v 0.6V CO’re VDD
Figure 2.38  Power minimization
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2.4.3 A FPGA-Based Testbed

To apply different pattern for performance analysis of the design, we setup a
FPGA-based Testbed. One of the packaged chips is soldered to the self-made printed
circuit board (PCB) shown in Figure 2.39. The PCB is connected to a SMIMS (#* i)
FPGA board using a standard 40-pin IDE bus, and the described setup is shown in

Figure 2.40.

Figure 2.39  The self-

F

made Wsmdered on it

Figure 2.40  Connection between the FPGA board and the PCB
The FPGA is special and suitable for pattern feeding due to the design of a

software controlled data interface shown in Figure 2.41. The FPGA and host computer

is connected by a USB cable used for netlist downloading and run-time data exchange.
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Engineer can create user interface programs to do whatever he want with the interface,

for example input pattern feeding, output result fetching and hardware control.

User Application

1
SMIMS Engine
Software Application mode SDK

4 “}
- -
SMIMS Engine

Target FPGA

Hardware

User Circuit

Figure 2.41  Software controlled data exchange interface between the FPGA and a
host computer connected by USB

For the user end, SMIMS ‘software development kit (SDK) provides a dynamic
link library (DLL) file including the following basic-function listed in Table 2.9 for
data exchange between the host and FPGA. The argument iBoard in the table all
represent for the board number to control and-at'most’2 SMIMS FPGA boards can be

controlled by one host computer‘at atime:

Table 2.9 The data exchange functions provided by SMIMS SDK

Function Name and Prototype Description
bool SMIMS_VEX2_AppOpen Initialize the connection between host
(int iBoard, char * Serial) computer and the FPGA
bool SMIMS_ VEX2_AppClose Terminate the connection between
(int iBoard) host computer and the FPGA

bool SMIMS_ VEX2_AppFIFOReadData Read block data from the output
(int iBoard, WORD *Buffer, unsigned size) | FIFO on the FPGA

bool SMIMS_ VEX2_AppFIFOWriteData | Write block data to the input FIFO on
(int iBoard, WORD *Buffer, unsigned size) | the FPGA

bool SMIMS_VEX2_AppChannelSelector

(int iBoard, BYTE channel) A 8-bit bus for free use

bool SMIMS_VEX2_ProgramFPGA Download a netlist (.bit file) to the
(int iBoard, char * BitFile) FPGA

char * GetLastErrorMsg When error occurs user can get the
(int iBoard) error information using this function
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For the FPGA interface, the 1/0 port list is provided in Table 2.10.

Table 2.10 1/0O port list for the FPGA interface

Port Name Type | Width Description
APP _CLK In 1 System clock (48 Mhz)
APP_CS In 1 Becomes 1 after the connection is opened
APP_RSTN In 1 Raises for one cycle after programmed
CH In 8 A 8-bit bus for free use
APP_RD Out 1 Read signal to the input FIFO
APP_WR Out 1 Write signal to the output FIFO
APP_DI In 16 | Input data bus from the input FIFO
APP_DO Out 16 | Output data bus to the output FIFO
APP_FULL In 1 Indicates if the output FIFO is full
APP_EMPTY In 1 Indicates if the input FIFO is empty
APP_AlmostFULL In 1 Indicates the output FIFO is about to be full
APP_AIMoStEMPTY In 1 Indicates the input FIFO is about to be empty

Figure 2.42 and 2.43 are waveform examples for single cycle read/write.

1 2 3 4 5 B 7
CLK + L+ L+ L+ [t [+ [ ¢
cS IR A W
CH[7:0] PG\ Channel W
APP_RD W / \ i\
APP_DI[15.0] W X Data ¥,
APP_Empty N / i\
Figure 2.42  Waveform example for single cycle read operation

1 2 3 4 5 G
CLK + L+ L+ [+ [+ L_*
o s N

CHI7:0] Y Channel WX
APP_WR \ /T N

APP_DO[15:0] 10 W Data %X 4

APP_Ful W 2

Figure 2.43  Waveform example for single cycle write operation
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With SMIMS FPGA and its SDK, a FPGA-based Testbed is built to provde a

experiment platform able to perform fast performance analysis of the fabricated chip.

The hardware architecture is shown in Figure 2.44.
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SMIMS FPGA Board
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»] Data Forwarding

A

A

State Machine

Data Receiving

Q—'i

State Machine
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I
|
P
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Figure 2.44

=
I
I

Hardware architecture of the FPGA-based Testbed

The experiment flow char and the software flor char are shown in Figure 2.45.

On-line result and off-line result~are compared.and, analyed by MATLAB. The

generated results are the ones demonstrated in-section 2.3:

Input
Preparation

Subject
Stabilization

Data
Recording

Channel
Selection

Pattern Evaluation

EEGAnput Files N
v e
Off-line
EEGLab
Analysis Float to Fix
l Off-line Conversion
- v
Result Write First
-li 64 Samples
MATLAB Result | i e
Comparison and
Analysis

1

Write 32
Samples

v

Read 32
Outputs

v

Write
Result

Figure 2.45

patterns recorded from the NeuroScan system
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Chapter 3 Experimental Brain-Heart Monitoring SoC Tape-out

In chapter 1 the need for integrated health-care systems is already emphasized.
Three common human health indicators, EEG, EKG and near-infrared spectrogram,
are also pointed out to generate information suitable for joint analysis that is valuable
to be used in three potential scenarios. To enable the practical development of such
health-care systems, an experimental brain-heart monitoring SoC is integrated as a
preliminary version.
3.1 Overall System Architecture

The overall system architecture is shown in Figure 3.1. To start the system
function, the science station first sends a_.trigger command including the system
working mode and compressionsmode to activate the'whole system. The command is
decoded and evaluated by the system-control-unit (SCU);“and after the reset process,
an internal trigger signal .Is then sent to the front-end interface control unit (FICU).
Afterwards, time multiplexed data-acquisitions.are continuously triggered by two

system counters in FICU. Table 3:1 shows the front-end.specifications of the system.

Bendable Sensor Array Board for

The DSP chip for portable brain-heart monitoring system
NIR and EEG measurement

X Analog EEG | 4-chICA B
Front-End K Engine
/ Chip
3 EKG 7
% FICU > HR.\ > PDS
:> Engine
Time-Multiplexed >
ADC Interface NIR DOT
Engine
U A A

]
[
v| UART I'—)l System Control Unit I

Science Station | Bluetooth
Module

e

h 4

o (B _- A

’E—« !:' |OutputBuffer |<—| Lossless Compressor |
W]- "t

e

Figure 3.1 Digital signal processing chip architecture for the portable brain-heart
monitoring system
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Table 3.1 Specifications of the front-end circuits and working modes for the system

Parameter DOT Sub-System EEG Sub-System | EKG Sub-System
1 frame
Sample Rate(Hz) (24 sensor values) 128 256
#Sensor(Channel) 12 4 3
#NIR LED 6 - -
LPF cut-off freq.
(H2) 10 50 100
Gain (dB) - 250 5000
Output Range (V) | 0~2.2 (external sensor) | 0~2.5 (built-in IA) | 0~2.5 (built-in 1A)
ADC Resolution 10 bits
Digitized Data 0~900 0~1023 0~1023
Range
ADC Priority 3 1 2
ADC Order Only one sample at f -1 ~po cha.cha [ chi-cha-ch3
each time
PDS Priority DOT:4 EEG/ICA:2 EKG:1HRV:3
System Mode DOT/Off EEG/ICA/Off EKG/EKG+HRV/Off
. EKG:On/Off
Compression Mode On/Off On/Off HRV:Not Supported

Digitized raw bio-signals aressent;to both the prioritized data selector (PDS) and
the corresponding processors, ‘that is, the ICA;”HRV.and DOT processor. When the
processed data is available' from the~processors, PDS will check if the lossless
compressor is busy or not. When'theroutput-buffer and the compressor are available,
the queued data is then sent using-a fixed priority with their compression mode
settings. Compressed data is packed and sent through the Bluetooth wireless link
between the system and science station, and further display and signal processing can
be performed on the science station.

3.2 The Interface of the Analog Front-End Circuitry

The designed digital integrated SoC is interfaced with an analog front-end IC
designed for the biomedical signals, and the specification is already listed in Table 3.1
in the previous section. At the back-end of the AIC, there is a time-multiplexed
analog-to-digital convertor (ADC), and its behavior is shown in Figure 3.2. The

maximum master clock rate for the ADC is 1200 KHz. Analog-to-digital conversions
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are triggered by the Start_Conversion signal. The ADC requires constant 12 cycles to
finish one conversion including the one which Start_Conversion raises. After the
conversion is done at the twelfth cycle, the End-of-Conversion (EOC) signal will raise
for one cycle, and at the same cycle the digitized sample of the bio-medical signal is
ready to be read on the ADC_OUT[9:0] bus. In Figure 3.2, two complete
analog-to-digital conversions are shown with their valid values marked on the
waveform. For the digital integrated SoC, the end-of-conversion (EOC) signal can be

directly used as an INPUT_VALID signal.

Analog-to-Digital Conversion Simulation

ADC_1Z00K_CLE] [ J H [ ] ] [ H H H ] [

Sameecsion 1. i

o B ]
ADC_QUT[O] % ‘ 1 1

ADC_QUT[ L] ;; |0 I_].—
ac_ouriz] 0 0
ADC_OUT[3] j 1 1
ADC_OUT[4] i 0 0
ADC_QUT[5] E% 0 ’1—
wootie] 0 Fi—
ADC_QUT[ 7] 2 k ‘0 |
ADC_QUT[8] Ej ‘ 0 ’17
ADC_QUT[9] j‘ 0 : 1 :

Figure 3.2 Analog-to-digital conversion (ADC) simulation waveform

The AIC is interfaced to the designed system via the front-end interface control
unit (FICU). The 10 KHz and 1.2 MHz clocks are generated and provided to the AIC.
The data acquisition scheduling, detailed design and behavior of the FICU will be
described in section 3.5. In addition, channel selection table and detailed interface

connection is also provided in section 3.5.
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3.3 Three Bio-Signal Processing Processors

Besides the function of biomedical signal acquisition and raw data transmission,
we also developed three independent modules including the 4-channel independent
component analysis (ICA) processor, a heart-rate variability (HRV) analysis processor
and a near-infrared (NIR) diffuse optical tomography (DOT) processor for biomedical
signal analysis and image reconstruction of the absorption coefficients. The three
modules are used as hardware tools for easing the computation load on the science
station. The 4-channel ICA processor is already well presented in chapter 2, so only
emphasis of the importance to include the ICA processor in this system will be
supplemented in this section. Brief descriptions of the other two processors are also
given below, but the number of page for them will-be limited due to the focus on the
system design. Although the detailed- designs and key technology of the other two
processors will not be fully presented in this thesis, references to the corresponding
works will be listed at the end of each sub-section.
3.3.1 4-Channel ICA Processor

As we know from chapter 2, ‘computation complexity of the ICA algorithm is
tremendously high due to the dependency between each channel. As a consequence,
off-line ICA algorithm is usually applied to the EEG signal for artifact removal on
pc-based science station. In practical application, real-time ICA is much more useful
than off-line processing. Therefore, the 4-channel ICA processor described in chapter
2 is employed for real-time artifact removal, and it is valuable to be placed in the
system as a hardware accelerator.

The EEG signal acquired by the front-end interface control unit is forwarded to
the ICA processor if the system mode of ICA processor is activated. Afterward, the

ICA processor acts identically as we described in chapter 2, so redundant description
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is avoided for the ICA processor. Before we proceed to the monograph for the HRV
and DOT processor, the top module view of the ICA processor is shown in Figure 3.3,

and the 1/0 behavior of the ICA processor is depicted in the waveform in Figure 3.4.

4-Channel ICA Processor
for real-time EEG Analysis

—>| CLK

OUT_READY |e—
—>{ RESET
—>]| BYPASS OUT_VALID }—>

—>{ IN_VALID
OUT_DATA[15:0] o~
—\—>| EEG_IN[9:0]

Figure 3.3 The top modulewiew of the ICA processor

10 sequence of the ICA processor Is parallelized for port reduction, and the
resulting sequence is shown in Figure 3.4: The basic input.unit is 4 samples from each
channel, and the output=unit 1s" 128 component /values of estimation of one
half-window.

e The 4-Ch EEG s1gnal

1% : 1 s‘e([md :

Input Sequence

Clock f f S
RESET T § §
/ / 1/128 set.
BYPASS e i %
IN_VALID . / NS NI\
eec_ngo] EE G0 EEG20) EEGI0NXEEGA0)E INEE G111 EEG21 PEE G XEEGALT )
Elrst synchronized EEG data set (time E_]:) Sé‘c_ond synchronized EEG data set (nmehjﬂ
Output Sequence

Clock f f “ f f f f f f f f f f “ f f
owrvap N § / § N

EEG_IN%.0] -4ICA1[0]XICA2IOIXICA3[OIXICA4[OIXICA1IWI ICAZADXICASATXICAAI X ICATRD Y - ><|CA4[31).
F\rst output of component estimation Second output of component esnmat\on

¥

4 Total 32 sets of component outputs comsuming 4*32=128 cycles to output

Figure 3.4 The 10 sequence of the ICA processor
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3.3.2 Heart-Rate Variability Analysis Processor

Heart rate variability (HRV) is a physiological phenomenon where the time
interval between heart beats varies. It is measured by calculation of the variation in
the beat-to-beat interval. Methods used to detect heart beats include EKG, blood
pressure and photoplethysmograph (PPG). Among these methods, EKG analysis is
considered a superior ways to perform HRV analysis, because the signal is relatively
clear and stable. The R-peak of EKG introduced in section 1.1.3 is used for detection

of the heart beat, because it is easier to be detected.

QRS

i €— EKG Data
detection

2 Spectral
RR interval Analysis

. Normalization P
Calculation Lomb of HRV
Variance —> —_—

Periodogram

Extirpolation > FFTarray P>

Figure 3.5 Architecture of the HRV analysis processor

A novel frequency domain HRV-analysis-pracessor using a fast windowed Lomb
periodogram [34] is designed and employed in the system. The Lomb time-frequency
distribution (TFD) is suited for spectral analysis of unevenly spaced data and has been
applied to the analysis of heart rate variability. The HRV processor in Figure 3.5
comprises the hardware implementation of the Lomb TFD as well as a simple RR
interval calculation unit. In consideration of architecture simplicity and real-time
properties, the classical derivative-based QRS detection algorithm introduced by Pan
and Tompkins [35] was adopted as a baseline for the RR interval calculation unit. In
the RR interval calculation unit, EKG signals first pass through a set of linear

processes, including a band-pass filter comprising a cascaded low-pass and high-pass,
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and a derivative function. Non-linear transformation is then employed in form of a
signal amplitude squaring function. Finally, a threshold is applied to detect the
R-peaks of the QRS complexes. The RR intervals are then calculated from the
detected peaks and HRV analysis is performed. Better time-frequency analysis of
HRV is achieved through a de-normalized fast Lomb periodogram with a sliding
window configuration similar to the one applied to the ICA processor. RR intervals
detected in two minutes are analyzed to generate a 256-point complex spectrum in
each window.

The HRV processor is verified using the MIT/BIH database [36] and results of
the QRS detection algorithm were compared with offline simulations. The output of
the QRS detection algorithm and,the power spectrum.of the RR intervals are shown in

Figure 3.6 and 3.7 respectively.

Raw Data

1 1 1 1 1
gIO 2200 2400 2600 2800 3000 3200 3400 300 B0 4000
Output Pulse
dm 1 ] T 1 T ] Li 1 |

1 1 1 1 1 1
%III 2200 2400 2600 2800 3000 3200 3400 3600 3300 4000

Figure 3.6 Input and the resulting output from the QRS detection unit
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100

Frequency (Hz)

Figure 3.7 Time-frequency HRV analysis of-EKG.data from MIT-BIH arrhythmia
database using Lomb TFD

The top level module 'view is shown.in Figure 3.8. One sample will be put on the
EKG_DATA bus every 1/128 seconds synchronous to the IN_VALID signal. For every

minute, continuous 256 pomnt of complex spectrum-values-are output sequentially.

HRV Processor
for real-time ECG Analysis

——] CLK
OUT_READY j¢e——
—>1 RESET
s IN VALID OUT_VALID —>

—>| MODE[1:0]
OUT_DATA[15:0] |~ —

—\—>| EKG_DATA [9:0]

Figure 3.8 Top level module view of the HRV analysis processor
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3.3.3 Near-Infrared Diffuse Optical Tomography Processor

The DOT processor is designed using Continuous Wave (CW) algorithm [37]
comprising a sub-frame operation control circuit [38], a DOT reconstructor and an
image post-processor, and its overall architecture is shown in Figure 3.9 (a) while a
top level view is shown in Figure 3.9 (b). The CW DOT algorithm can be divided into
a forward model and its inverse problem. Forward model includes abundant optical
parameters and mathematic equations. Indeed, when the depth of the surface to be
calculated is fixed, the inverse matrix is always the same. Therefore, the
pre-calculated inverse matrices are stored in a look-up table. The DOT reconstructor

controlled by the sub-frame operation control circuit is mainly used to perform matrix

operations. Pixels reconstructed represent absorption coefficient variance au?, .
Normally, ., are too small to be-observed,-so'an‘image-post-processor is employed
to perform linear mapping, contrast enhancement and: color mapping so that we can

observe clear images on thesscience station.monitor.

Sub-Frame DOT Processor
Operation for real-time brain imaging
Control Circuit
—> CLK
Look-up - OUT READY Je—
Table Coefficients
(ROM) DOT Image . vl s
Reconst Post- Pixels »
Tight Input ructor Processor —| Il D -
. Components OUT_DATA[15:0] |2
Intensit Buffer =3 NIR_IN[9:0
(a) (b)

Figure 3.9 (a) The architecture of the DOT processor (b) Top level module view
of the DOT processor

To verify the proposed DOT processor, we use the experimental model shown in
Figure 3.10. The frame area is 4x6cm? and the volume of each voxel is (0.25cm)®. The
background medium is homogenous with . =0.0scm™ and the reduced scattering

coefficient 4@ =10cm™. Two kinds of inhomogeneous media were embedded at depth

of 0.5cm below the surface. The absorption coefficients of the inhomogeneous
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mediums A and B (yellow) are 0.21cm™ and 0.5cm™ respectively. The reconstructed

colored image using the processor is shown in Figure 3.10 (b).
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Figure 3.10 (a) An experimental model for the DOT processor (b) The
reconstructed image on the LCD of the development platform

To make sure the near-infrared doesn’t leak through the space between the LED
and the measuring surface, wedesigned the DOT.sensor array board using bendable
printed circuit board (PCB)=Aside from the NIR sensors and the bi-wavelength LEDs,
there is an analog multiplexer chip for selecting the channel to be digitized and a
decoder chip for selecting.the LED-to“emit near-infrared. The timing chart of 10

sequence is shown in Figure 8.11:

Clock ? I s TP s HY o I s B o\ IR S BN o\ A S IRP

RESET i\ i AR
Input
Sequence IN_VALID N
BYPASS
NIR_IN[2:0]
O ut P ut Clock
Sequence  out vaLD W

During Calculation

poT_oaTa R T 7 X3 X4 X 95 X o5 @

Figure 3.11  The timing chart of 10 sequence of the DOT processor
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3.4 System Control Unit
The system control unit (SCU) is responsible for the system initialization and the
generation of the gated clocks for the processors, and the flow chart of the system

initialization is shown in Figure 3.12.

System Reset

v

Wait for UART
trigger command

v

Send internal reset

v

Wait for
INIT_DONE
From COMP

v

Send ICA Send trigger signal to

clock FICU —

Send ICA
clock

Send HRV
clock

Gated Clock
Generation

System Mode
<7

Figure 3.12  Flow chart:ef the system initialization

When the external system reset is:Sent from, outside of the chip, the chip enters
inactive state. An activation‘command from the"UART module needs to be received to
activate the system, and the“ command-—includes the system modes and the

compression modes listed in Table 3.2.

Table 3.2 System activation command

Bit Mode Selection Clock Gating
0 Activate EEG analog to digital conversion ICA

1 Activate 4-channel ICA processor ICA

2 Activate EKG analog to digital conversion HRV

3 Activate HRV Processor HRV

4 Activate NIR ADC and DOT Processor DOT

5 Bypass EEG compression -

6 Bypass EKG compression -

7 Bypass DOT compression -

After the activation command, an internal reset is sent to every other module.
The reset process takes only one cycle for all modules inside the chip except the

compression module that requires 96 cycles for initialization, and the waveform in the
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duration is shown in Figure 3.13.

Figure 3.13  The duration from the system reset is sent to the end of initialization
inside the compression module

When the signal INIT_DONE from the compression is received, the SCU starts to
generate the clocks for the three processors according to the system mode received
from the UART module. If any one of the bio-signal acquisition is not activated or is
set to transmit the raw data, the clock to that processor will be turned off, so the
redundant power consumption can be saved by clock tree trimming. In the meanwhile,
a trigger signal is sent to the front-end interface control.unit (FICU), and then the data
acquisitions are automatically scheduled afterwards.

3.5 Front-End Interface Control Unit

The front-end interface control-tnit (FICU).is designed to actively acquire the

bio-medical signal from the analog front-end IC. The'eonnection between the analog

front-end IC and the proposed digital chip is shown in Figure 3.14.

AIC FICU Digital Signal
interface Processing Chip
AIC_CLK10K
ADC_CLK1200K
ADC_RESET
AlC ADC_START_CONVERSION
ADC_CHSEL
ADC_EOC FICU
ADC DATA
T 1
Flexible DOT Mlux DOT_CHSEL
Sensor Board Decoder LED SEL

Figure 3.14  Interface connection between the front-end interface control unit and
the analog front-end integrated chip
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Two clock dividers are built inside the FICU, and they are used to provide the 10
KHz and 1200 KHz clocks to the AIC. The 10 KHz clock is needed for the internal
chopper-stabilized differential difference instrumentation amplifier (CHDDA) and a
low-pass switched-capacitor filter (SC LPF). The 1200 KHz clock is provided as the
master clock of the analog-to-digital converter (ADC) for the AIC, and an active-high
reset signal which is synchronous to the master clock is also generated when the
system is reset.

The scheme of FICU and the main state machine for data conversion are shown
in Figure 3.15. Due to the fact that an analog multiplexer is used to perform channel
selection, after the ADC_CHSEL changes, the analog signal routed to the input of
ADC takes few cycles to getistable not to mention the ADC_CHSEL signal is
connected from outside of ‘the chip-that may-introduce much more delay time. As a
matter of fact, when we immediately start a conversion after ADC_CHSEL is changed,

invalid digital data will besconverted. Therefore,.an additional dummy conversion is

invited to solve this problem:.

256 Hz Waiting for 24 Hz
Counter trigger signal Counter
Schedule for EKG ¢
acquisition Schedule for

Data Acquisition DOT acquisition

o - ’ EEG :Di Scheduler
> flag

Schedule for Scheduled Event 1
EEG acquisition | Scheduled Event 2
Scheduled Event 3
Scheduled Event 4

--- at most 8 events---
Get the first scheduled event in the buffer ]

N

A-D Conversion State Machine

1 2 3 4 5
Channel %  Dummy b R Real » Send data to
Selection Conversion Wait for EOC Conversion Engine

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3.15  The scheme and state machine of FICU
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When a scheduled conversion is accepted, FICU first changes ADC_CHSEL to
select the specified channel to be converted, and then the dummy conversion is started
by sending ADC_START_CONVERSION. An analog-to-digital conversion takes total
12 cycles to complete. Right after the dummy conversion, a real conversion is started,
and a same process is taken to derive the valid data. When the conversion finishes, the
converted data is available on the 10-bit ADC_DATA bus and it is synchronous to the
ADC_EOC (end-of-conversion) as we previously discussed in section 3.2.

A model of the DOT sensor board is shown in Figure 3.16. Note that there are 6
near-infrared LEDs and twelve light intensity sensor for near-infrared on the sensor
board. Only one LED is turned on at _each_time to avoid interference not from the
nearby LED. Each time an LED'is turned on, the four light intensity values from
nearby sensors are acquirethand digitized:hy-the ADC. Therefore, before the image

reconstruction of one frame can be launched; total 24 sensor.values are converted.

Figure 3.16 A model of the DOT sensor board

Each time the last conversion for conversion numbers marked with the same color is
done for one LED, the LED_SEL is switched to the next LED in advance to avoid
possible unstable conversions after switching LEDs. For example, after conversion

eight is done, FICU will immediately switch the LED to the third one.
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The full channel mapping table of the ADC_CHSEL and DOT_CHSEL signal
provided to the analog multiplexer and the bendable DOT sensor board in the AIC is
listed in Table 3.3. After the conversions of near-infrared sensor values with

conversion numbers marked in red, the LED will be switch to the next one.

Table 3.3 Channel and conversion mapping controlled by ADC_CHSEL,
DOT_CHSEL and LED_SEL

ADC_CHSEL Selected Channel
000 (Ch1) EEG Channel 1
001 (Ch2) EEG Channel 2
010 (Ch3) EEG Channel 3
011 (Ch4) EEG Channel 4
100 (Ch5) EKG Channel 1
101 (Ch6) EKG Channel 2
110 (Ch7) EKG Channel 3
LED_SEL | DOT_CHSEL Sg'e“ted Dl
onversion

0 1

4 2

000 (LED 1) 1 3

5 4

1 5

5 6

001(LED 2) 5 7

6 8

2 9

010 (LED 3) > o

111 (Ch8) 7 12

4 13

8 14

011 (LED 4) 5 15

9 16

5 17

9 18

100 (LED 5) 5 19

10 20

6 21

10 22

101 (LED 6) 7 3

11 24
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3.6 Three-Stage Backward Handshaking Mechanism

The processed and raw data flow in the designed system is controlled by a

three-stage backward handshaking mechanism shown in Figure 3.17. Data flows

forward while the handshaking control propagates backward. When the output buffer

in the UART module is not full, the compressed data is forwarded to the output buffer

in UART for wireless transmission. Otherwise, the first stage handshaking mechanism

will hold the compression module from outputting compressed data. The second stage

handshaking works similarly to the first stage. The two conditions that activate the

second stage handshaking are listed below:

® The compression is busy compressing.the previous accepted data.

® The output buffer in UART ‘module is full*causing the data packing buffer in

compression module also full=tn-this condition, input data from the PDS is not

allowed, because no buffer space is available in‘the compression module.

FICU

< ICA _I_)
Engine |
> BUF
> | BUF > BUF |
R HRV —3|
> Engine : PDS COMP UART
P [
> BUF
< DOT I I I >
"l Engine
""""""""""""" Third Stage ~ Second Stage  First Stage |
Handshaking Handshaking Handshaking |
> — i

Figure 3.17

Three-stage backward handshaking mechanism

Similar to the first and second stage handshaking, the third stage handshaking doesn’t

allow data to pass when the second stage handshaking is active.
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Chapter 4 Conclusion and Future Works

4.1 Conclusions

In this thesis, a hardware and power efficient 4-channel ICA processor is
implemented using various techniques. Optimized data windowing, 3-bank circular
memory allocation and an optimized mirrored non-linear lookup unit have been
employed to reduce memory usage and power consumption. Operation pipelining
between the ICA training and component extraction not only shortens the output delay
by 0.25 seconds but also increases the hardware efficiency. A hardware efficient ICA
training unit which comprises shared multiplier and adder arrays and a data routing
matrix capable of pipelining the large matrix.operations is designed. All the employed
techniques and optimizations resultin a 95 percent reduction of power, an 85 percent
reduction of memory usagerand an-87.5 percent reduction of ROM size. In addition,
for the targeted application.using 128 Hz sample rate, a 0.817 MHz clock frequency is
needed under the worst case condition.of 512 iterations/in-each window. On the other
hand, when using 60 MHz clock'frequency, a maximum data rate produced by 9.708
K sample rate can be processed under the worst case condition.

Both super-gaussian random signals and real EEG signals are applied to evaluate
the performance of the designed processor. The result shows an average 0.86
correlation between the original super-gaussian source and the extracted ICA
components is achieved. Over 0.8 average correlation between off-line result and the
on-line processing using real EEG signals with or without eye-blink artifacts is also
demonstrated. An example of artifact removal has shown that similar results are
produced by our designed chip and the EEGLab.

The designed ICA processor is fabricated using UMC 90 nm technology. The

size of the core area is 780x780 g m® Functional verification and power
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measurements are done using Agilent 93000 SoC tester. Power measurements show
that a minimum 0.312 mW is consumed to perform independent component analysis
using the chip with sample rate of 80 Hz. In addition, the stable convergence property
of the ICA algorithm also provided us clues for designing a power efficiency
improved version of ICA processor that consumes only 20 percent of the original
power.

A preliminary portable brain-heart monitoring system comprises an fNIR-DOT
processor, a 4-channel ICA processor that achieves 0.86 of correlation and a HRV
analysis processor using Lomb periodogram is designed and integrated. Signals
acquired from the front-end sensor modules are processed in real-time or bypassed
according to user configurations; and are then losslessly compressed and packaged by
a biomedical signal compressor achieving-an-average 2.5°CR before being wirelessly
sent to a base-station with' a commercial-‘Bluetooth module, and the packaging
protocol adds only additional 5 percent.overhead. Internal-data flow is controlled by a
prioritized data selector that"ensures the output buffer,utilizations are not wasted in
the three processors so that the output buffer in"UART module can be reduced by
using a three stage handshaking mechanism. By integrating three biomedical systems
into a single chip, bulk associated with external circuitry is reduced. The ICA and
HRV processor are verified by real EEG and EKG signals while the DOT processor is

verified by an experimental model.
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4.2 Future Works

For the ICA processor, an automatic artifact removal scheme is an essential
function. The artifact removal process includes one step of artifact recognition.
Traditionally, the artifact component is recognized manually or semi-manually. This
process degrades the EEG system to an off-line analysis system. To overcome this
problem, automatic artifact recognition can be done using statistic analysis or wavelet
[39]. The number of channel in the ICA processor should also be raised for higher
precision, because there are definitely more than four components in the EEG signal.

For the integrated system, further power and cost efficiency can be achieved by
further integration of the AIC, DIC and.the wireless transmission module by using
system-in-package (SIP) technology. ICA designwith.more channels is possible by
using external memory chip: By integration of the system and the external memory
chip using SIP technology, the connection path of massive.amount of data exchange
can be shortened. Improvements for-the next.stage.also'include the adoption of more
advanced low-power techniques like power shut-off (PSO) and dynamic voltage and
frequency scaling (DVFS) that are ‘suitable ‘for “this system. With these advanced

techniques, the operation time of the system can be further prolonged.
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