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整合於可攜式腦心監護系統之高能源效率 

4 通道獨立成份分析處理器 

 

學生：傅致中 指導教授：方偉騏 教授 

國立交通大學電子工程學系 電子研究所碩士班 

中文摘要 

近年來快速增加的老年人口比例已然成為各國必需面臨的重要問題，整合型

健康照護系統已經成為電子領域發展的重點。本論文由三個應用情境包括緊急醫

療需求(如救護車上之緊急量測)、長期觀測與照護(老年退化性疾病)與腦認知科

學的研究為出發點，提出一針對腦電訊號(EEG)、心電訊號(EKG)處理分析與擴

散光學腦部影像重建(DOT)所構成之整合型系統之雛型設計，進以推動針對此三

類系統的可攜性整合型醫療儀器之發展。 

由於生理電信號中最微弱的腦電信號通常與肌電信號(EMG)中的眼動信號

與眨眼信號一起混合並量測，以獨立成份分析為方法的人工雜訊濾除技術已發展

許久。但由於獨立成份分析的運算複雜度過高，腦波的應用通常受到離線運算的

嚴重限制。本論文針對所提出整合型系統中的腦電信號處理所使用的四通道即時

獨立成份分析器之設計與實作以一完整章節加以詳述。由於可攜式儀器的基本需

求即為低功率與低成本，多種設計技巧與最佳化規格分析如三重循環記憶體的配

置、鏡像非線性查表單元的設計與 ICA 訓練、成份萃取間的管線排程皆被用來

降低功率消耗與硬體成本。此 ICA 硬體設計已由聯電 90 奈米製程下線並測試。

晶片的核心面積為 0.58 平方毫米。量測數據顯示若使用 80 Hz 的取樣頻率，並

使用 0.5 MHz 的工作頻率與 0.6 V 的核心電壓時，可達到最低 0.312 毫瓦的功率

消耗。 

此獨立成份分析模組也與一心率變異率分析器、一擴散光學影像重建模組一
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同整合於一實驗性腦心監護系統之中。由前端訊號擷取模組所得到的生醫訊號被

傳送至相應的即時運算引擎進行分析處理，處理完的結果與原始訊號皆由一無損

失性生醫信號壓縮模組進行資料壓縮，再以一商業藍牙模組傳至臨近的生醫資訊

工作站進行 3D 顯像與遠端觀察與診斷。此生醫訊號壓縮模組的平均壓縮率可達

2.5，此壓縮率可被視為在無線傳輸上面的功率節省。系統中的資料流順序主要

由一固定優先權資料選擇器與一三級向後資料流控制機制所影響，而這樣的設計

也能提高各模組的輸出緩衝記憶體使用率，如此一來可以造成較少的傳輸緩衝記

憶體使用。獨立成份分析與心率變異率分析引擎皆以真實生理訊號驗證，並顯示

優良的分析結果。而腦影像重建引擎則以一模型來顯示其分析與真實情況的一致

性。 

 

 

 

關鍵字：資訊最大化、獨立成份分析、腦波訊號處理、心率變異率分析、擴散式

光學影像重建、整合型生醫系統、藍牙傳輸、可攜式系統、數位信號處

理 
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Abstract 

 Since the twenty-first century, the fast increment of an aged population has 

become a worldwide problem. Therefore, integrated health-care systems have become 

an important topic for electrical engineers. In this thesis, focusing on three application 

scenarios including emergency medical care (e.g. EEG, EKG measurements on 

ambulance or DOT for fast cerebral hemorrhage check), long-term observation and 

monitoring (for patients suffer from chronic ailment) and researches on brain and 

cognitive science, we propose a preliminary design of an integrated health-care 

system comprising electroencephalogram (EEG) and electrocardiogram (EKG) signal 

analysis and processing together with diffuse optical tomography for brain imaging. 

The significance of this system is to enable the practical development of such portable 

health-care devices for brain heart monitoring. 

 Since the EEG is the feeblest one of all physiological electrical signals usually 

contaminated by ocular artifacts (e.g. eye-blink artifact and eye-movement artifact), 

the artifact removal techniques using independent component analysis (ICA) has been 

developed for a long time. Because of the compelling computation complexity of ICA 
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algorithm directly inherits from the possible dependency in each channel, applications 

that analyze EEG signals are usually heavily restricted by the off-line ICA 

computation. One complete chapter is used to describe the design and implementation 

of the 4-channel ICA processor employed in the proposed integrated system as the 

EEG processing element. Since the two basic requirements for portable instruments 

are low-power and low-cost, various design techniques and optimized specification 

analyses like three-bank circular memory allocation, an mirrored non-linear lookup 

unit and the operation pipelining between the ICA training and component extraction 

are all adopted to reduce the power consumption and hardware cost. The designed 

ICA processor is fabricated using UMC 90 nm CMOS technology, and the core area 

of the chip is 0.58 mm
2
. Performance measurements done by Agilent 93000 SoC 

Tester have shown that when using 80 Hz sample rate, 0.5 MHz operation frequency 

and 0.6 V core power, the lowest power consumption of 0.312 mW is achieved under 

the worst cast of 512 training iterations. 

 Together with an HRV and fNIR-DOT processor, the designed ICA processor is 

integrated in an experimental brain heart monitoring system. EEG, EKG and 

near-infrared signals acquired from the analog front-end IC are processed in real-time 

or bypassed according to user configurations. Processed data and raw data are 

compressed by a lossless biomedical data compressor and sent to a remote science 

station by a commercial Bluetooth module for further analysis, 3-D visualization and 

remote diagnosis. The biomedical signal compressor achieves an average compression 

ratio (CR) of 2.5 which is translated into power saving during wireless transmission. 

The data flow in the system is mainly controlled by a prioritized data selector and a 

three-stage backward handshaking mechanism, and the design can increase the 

utilization of the output buffers inside each processor so that the data transmission 
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buffer can be reduced. The ICA and HRV processor are verified by real EEG and 

EKG signals while the DOT processor is verified by an experimental model. 

 

 

Keywords: Infomax, Independent Component Analysis, EEG processing, Heart Rate 

Variability, Diffuse Optical Tomography, Integrated Health-Care System, Bluetooth 

Data Transmission, Portable System, Digital Signal Processing 
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Chapter 1 Introduction 

Since the twenty-first century, the fast increment of an aged population is 

emerging as a preeminent worldwide phenomenon. Most of the elderly suffer from 

chronic ailments and illnesses related to central nervous system (CNS) in their later 

life. To ease the problems caused by insufficient nursing personnel, many health-care 

systems focusing on biomedical signal processing and monitoring have been 

developed. Traditional EEG measuring equipments require the patients to be confined 

to a small area due to their large size, bringing tremendous inconvenience to them. 

Therefore, integrated portable health-care systems have become an increasingly 

important topic. 

1.1 Three Common Human Health Indicators 

Recent studies have shown that combined analysis of EEG together with heart 

rate variability or brain fNIR can aid in better diagnosis and treatment. For example 

EEG and HRV data were jointly analyzed for the automatic detection of seizures in 

newborns [1] and sleep apnea in hospital patients [2], while the advantage of 

combined analysis of EEG and fNIR data for cognitive rehabilitation and post 

traumatic stress syndrome was presented in [3]. Despite these studies indicating the 

need for joint monitoring of brain fNIR, EEG and HRV, an integrated brain-heart 

monitoring SoC solution has not been developed. 

1.1.1 Electroencephalogram 

Human cerebral cortex has a large amount of neurons, and the activities of these 

neurons have some degree of regularity, so pairs of electrodes on the scalp can be 

recorded from the cerebral cortex on the next generation of potential changes. The 

potential changes are composed of the Electrical Rhythms and Transient Discharge. 

These changes of waveform are called brain potential signal. 
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Electroencephalogram (EEG) is a non-invasive tool for recording of electrical 

activity along the scalp produced by the firing of neurons within the brain. EEG 

measurement of different locations, frequency ranges, amplitudes, waveforms and 

periodicities can be used to distinguish different generation of EEG. The EEG 

provides important information about the health of the central nervous system (CNS), 

particularly in the newborn [4]. In medical application of neurology, it is common to 

use EEG to diagnose such as epileptic, coma, encephalopathy and brain death. 

 A typical voltage range of EEG signal is about 10 μVolt to 100 μVolt, and the 

frequency domain is less than 100 Hz. In addition, there are five major bands of 

continuous rhythmic sinusoidal EEG activity. They are recognized as δ (delta, below 

4Hz), θ (theta, 4-8Hz), α (alpha, 8-12Hz), β (beta, 12-30Hz) and γ (gamma, above 

30Hz) waves, and their characteristics are listed in Table 1.1. (activities below or 

above these range is likely to be taken artifactual noise, under standard clinical 

recording techniques) 

Table 1.1 Classification of the continuous rhythmic sinusoidal EEG activities 

Type 
Frequency 

Range (Hz) 

Common 

Amplitude 

Range (V) 

Description 

Delta (δ) 0 ~ 4 - 

Delta is often associated with the very young 

and certain encephalopathies and underlying 

lesions. It is seen in stage 3 and 4 sleep. 

 

Theta (θ) 4 ~ 7 Below 20μ 

Theta is associated with drowsiness, 

childhood, adolescence and young 

adulthood. This EEG frequency can 

sometimes be produced by hyperventilation. 

Theta waves can be seen during hypnagogic 

states such as trances, hypnosis, deep day 

dreams, lucid dreaming and light sleep and 

the preconscious state just upon waking, and 

just before falling asleep. 
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Alpha (α) 8 ~ 12 20μ ~ 80μ 

Alpha is characteristic of a relaxed, alert 

state of consciousness. For alpha rhythms to 

arise, usually the eyes need to be closed. 

Alpha attenuates with drowsiness and open 

eyes, and typically come from the occipital 

(visual) cortex. An alpha-like normal variant 

called mu is sometimes seen over the motor 

cortex (central scalp) and attenuates with 

movement, or rather with the intention to 

move. 

 

Beta (β) 12 ~ 30 Below 20μ 

Beta rhythms with low amplitude or multiple 

and varying frequencies is often associated 

with active, busy or anxious thinking and 

active concentration. Rhythmic beta with a 

dominant set of frequencies is associated 

with various pathologies and drug effects, 

especially benzodiazepines. 

 

Gamma 

(γ) 
30 ~ 100 - 

Gamma rhythms may be involved in higher 

mental activity, including perception, 

problem solving, fear, and consciousness. 

 

In clinical experiments, EEG signal is displayed based on the location of the 

electrode that affects the amplitude, phase and frequency. EEG measurements can be 

divided into monopolar derivation and bipolar derivation. The monopolar derivation 

uses a probe electrode and a reference electrode fixed on the scalp surface, and it 

measures the relative value of the probe electrode and reference electrode. The bipolar 

derivation is induced with two probe electrodes and a reference electrode fixed on the 

scalp. The potential difference between the two probe electrodes detects EEG signal 

reflects and acquires relatively small EEG amplitude. 
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EEG system is no longer limited to the interception and analysis of the signals. 

Today, there are many proposed identification systems and human brain wave 

techniques for medical diagnosis and treatments. For example, Fuzzy C-means (FCM) 

algorithm can be used to identify epileptic seizures and cerebral palsy [5]. However 

EEG signal is very sensitive, and very often may be contaminated by various 

disturbances like ocular artifact, EMG and electrical noise from nearby instruments 

[6], and they largely restricts the precision of the identifications and analysis. 

Fortunately, this problem can be alleviated by algorithms the independent 

component analysis (ICA) algorithm [7], which separates artifacts and noise from the 

measured EEG signals. Wavelet [8] and Spatially-Constrained [9] techniques can be 

used to identify the artifacts and eliminate them. As a result, we can derive clean EEG 

signals after the noise channel is eliminated and remixed. However, the computation 

complexity is so intense that real-time ICA analysis is not feasible for pc-based 

bio-science station. Therefore, in recent years, the researches on hardware 

implementation of ICA engines are blooming. 

1.1.2 Near-Infrared Spectrogram on Human Tissue 

Since DOT (Diffuse Optical Tomography) technology is a kind of non-invasive 

and real-time radiography, it has been widely used to detect tumors in the breast and 

imaging the brain in recent years. Many researches are involved in DOT technology 

and have made rapid progress and development. DOT can be used to detect 

oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (Hb) concentration and 

volume with bi-wavelength Near-Infrared. Therefore, in clinical application, the 

main uses of DOT are monitoring blood flow, blood volume, oxygen saturation, 

tumors within the brain, and detecting breast cancer [10]. By measuring different 

characteristics of the diffused near-infrared, DOT can be generally divided into three 
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main categories: the Continuous Wave (CW), Frequency Domain and Time Domain. 

Table 1.2 Characteristics of the three main types of diffuse optical measurements 

Type Advantages Disadvantages 

Time 

Domain (TD) 

1. Spatial resolution 

2. Penetration depth 

3. Most accurate separation of 

absorption and scattering 

coefficients 

1. High sampling rate 

2. Instrument size and weight 

3. Stabilization and cooling 

4. Cost 

Example Uses: Imaging cerebral oxygenation and breast imaging 

Frequency 

Domain (FD) 

1. Relatively low sampling rate 

2. Relatively accurate 

separation of absorption and 

scattering coefficients 

1. Penetration depth 

2. Instrument size and weight 

3. Cost 

Example Uses: Cerebral and muscle oximetry, breast imaging 

Continuous 

Wave (CW) 

1. Low sampling rate 

2. Instrument size, weight and 

simplicity 

3. Low cost 

1. Penetration depth 

2. Difficult to separate 

absorption and scattering 

coefficients 

Example Uses: Finger pulse oximeter, functional brain 

experiments, cerebral hemorrhage 

Table 1.2 shows the characteristics of different DOT systems. The CW system 

provides advantages such as low cost, high portability, low power consumption and 

computation overhead, although lack of depth information [11]. The volume of the 

CW-DOT system can be miniaturized which is the biggest advantage than the other 

algorithms.  Therefore, there exists the possibility of implementing 

hardware architecture for CW systems. However, little literature has been published 

on hardware architecture of CW-DOT signal processing. Most of CW-DOT systems 

post-process the signal by computer such as [12] and [13]. This will demolish the 

feature of portability, and make it difficult to miniaturize the system. 

1.1.3 Electrocardiogram 

Electrocardiography (EKG) is an interpretation of the electrical activity of the 

heart over time captured and externally recorded by skin electrodes [14]. It is a 

noninvasive recording produced by an electrocardiographic device. The EKG is an 

essential tool for health professionals in making a diagnosis of abnormal heart 
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rhythms when one is suspected. 

The EKG works mostly by detecting and amplifying the tiny electrical changes 

on the skin that are caused when the heart muscle depolarizes during each heart beat. 

Usually more than 2 electrodes are used and they can be combined into a number of 

pairs. The output from each pair is known as a “lead”. Different types of EKG 

measurements can be referred to by the number of leads that are recorded, for 

example 3-lead, 5-lead or 12-lead EKGs. A 12-lead EKG is one in which 12 different 

electrical signals are recorded at approximately the same time and will often be used 

as a one-off recording of an EKG, typically printed out as a paper copy. 3- and 5-lead 

ECGs tend to be monitored continuously and viewed only on the screen of an 

appropriate monitoring device, for example during an operation or whilst being 

transported in an ambulance. 

A typical EKG waveform shown in Figure 1.1 is composed of P peak, QRS peaks 

and T peak. How these peaks in the EKG are originated is explained in Table 1.3. 

 

Figure 1.1 A typical EKG waveform 
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Table 1.3 Different peaks in a typical EKG waveform 

Peak Origination and Description 

P Systole (depolarization) of the atrium. 

QRS Systole (depolarization) of the ventricle. The amplitudes of QRS 

peaks are usually larger than P and T peaks, because the muscle 

of the ventricle is stronger. 

T Repolarization of the ventricle. 

Intervals between each peak can indicate the health of heart. The most common used 

three kinds of interval are listed in Table 1.4 with their usages and descriptions. 

Table 1.4 Different types of peak interval that can be used to evaluate the health of 

the heart 

Interval Description 

RR interval Two adjacent R peaks can represent for the heart rate. The normal 

heart rate is between 50 bpm to 100 bpm (beat per minute). 

PR interval It is usually 120 to 200 ms long. The PR interval reflects the time 

the electrical impulse takes to travel from the sinus node through 

the AV node and entering the ventricles. The PR interval is 

therefore a good estimate of AV node function. 

 A long PR interval (of over 200 ms) may indicate a first 

degree heart block. Prolongation can be associated with 

hyperkalemia or acute rheumatic fever. 

 A short PR interval may indicate a pre-excitation syndrome 

via an accessory pathway that leads to early activation of the 

ventricles, such as seen in Wolff-Parkinson-White 

syndrome. 

 A variable PR interval may indicate other types of heart 

block. 

QT interval The QT interval generally represents electrical depolarization and 

repolarization of the left and right ventricles. A prolonged QT 

interval is a risk factor for ventricular tachyarrhythmias and 

sudden death. 

Heart rate (HR) is a non-stationary value; it can vary as the body's need to absorb 

oxygen and excrete carbon dioxide changes, such as during exercise or sleep. The 

measurement of heart rate is used by medical professionals to assist in the diagnosis 

and tracking of medical conditions. It is also used by individuals, such as athletes, 

who are interested in monitoring their heart rate to gain maximum efficiency from 

their training.  
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Heart rate variation (HRV) may contain indicators of current disease, or 

warnings about impending cardiac diseases [14]; it has proved to be a valuable tool to 

investigate the sympathetic and parasympathetic function of the ANS, especially in 

diabetic and postinfarction patients [14]. Sympathetic activity is associated with the 

low frequency range (0.04–0.15 Hz) while parasympathetic activity is associated with 

the higher frequency range (0.15–0.4 Hz) of modulation frequencies of the HR. This 

difference in frequency ranges allows HRV analysis to separate sympathetic and 

parasympathetic contributions evidently [14]. 

On the other hand, time-frequency parameters calculated using wavelet transform 

and extracted from the nocturnal heart period analysis appeared as powerful tools for 

obstructive sleep apnoea syndrome diagnosis. Time-frequency domain analysis of the 

nocturnal HRV using wavelet decomposition could represent an efficient marker of 

obstructive sleep apnoea syndrome [15]. 

1.2 The Need for an Integrated Health-Care Solution 

In recent years, many portable bio-signal acquisition systems are proposed in 

academic research, and in the business community, plenty of tiny bio-status recorder 

systems have already been sold in the health-care market for years. A major 

imperfection of such systems is that an integrated multiple bio-signals recording 

device, for example simultaneously recording EEG, ECG and fNIR, is not proposed 

lately. Data of multiple kinds of bio-signals recorded in synchronized timeline is 

much more useful than single kind recorded bio-signal. For example, modern people 

suffer more from the pressure living their life aberrantly, and many of them go to the 

hospital for evaluation of their sleeping quality, because they experience insomnia. In 

fact, according to one epidemiological study [16], about one-third of the adult 

population exhibit at least one symptom of insomnia. In the sleeping quality 
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evaluation process, the patients are required to be monitored by EEG, ECG, EMG, 

fNIR, respiration, posture and sound. When the observing target need to go to the 

restroom, he has to bring the EEG measuring headgear together with him, so it is very 

inconvenient, and at the same time the recording is interrupted although the 

information at the period is not really necessary. However, in such situation, an 

integrated portable system with the ability to wirelessly transmit data to the science 

station will bring the following advantages: 

 Much more comfortable for the observing target 

 Short wiring for feeble physiological electrical signals 

 Decrease the chance of inaccurate measurement caused by the discomfort 

 Decrease the chance of sensor fall off 

 Lower the cost 

 Extend the applicable range of the system 

Such systems allow the observed target to move freely around an area with 

health-care science station service, while not losing the quality of the measurement. 

Therefore, the integrated portable health-care device has become an inevitable trend. 

In next section, three major target application scenarios will be point out, and in 

chapter 4, a complete architecture for portable brain-heart monitoring system will be 

proposed. 

1.3 Application Scenarios 

Before presentation of the detail design of the proposed system, three major target 

application scenarios are shown below. The system targets the usage in emergency 

condition, long-term medical observation and monitoring and potential researches on 

brain function and cognitive science, and the implemented chip can be integrated in 

portable devices in the following application scenarios. 
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1.3.1 Emergency Use 

Current brain imaging technologies used in hospitals are not useful in emergency 

conditions. For example, we cannot equip a CT on an ambulance, but cerebral 

hemorrhage is a common case for the car accident victims. When we can use portable 

CW DOT devices on the ambulance to check if the patient suffers from cerebral 

hemorrhage, the medical personnel on the ambulance can inform the medical team in 

the hospital if cerebral hemorrhage happened on the patient. 

 Another common case happens when an infant falls over with his head knocking 

on the ground. Sometimes brain injury is hard to find out without the help of medical 

equipments, but people frequently ignore the possible dangerous behind this not to 

mention a baby that can barely talk. With the help of a cheap and portable DOT 

device, we can avoid many tragedies like this. 

1.3.2 Long-term Observation and Monitoring 

The traditional electroencephalogram acquisition systems and DOT systems are 

very large in size and also very heavy. Between the patient and the acquisition 

instruments, there are many connecting wires (one wire for each channel). Figure 1.2 

in the next page shows the traditional electroencephalogram and DOT acquisition 

instruments. 

 
(a) 

 
(b) 
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(c) 

 

(d) 

Figure 1.2 Traditional EEG measuring equipment (b) Traditional EEG System 

enlargement at head part (c) Frequency Domain DOT System (d) Frequency domain 

DOT system enlargement at head part 

Such systems bring tremendous inconvenience to the patients especially in 

long-term monitoring cases, for example the patients suffer from seizure or the 

measuring object in the research of degenerative brain diseases. For these patients, 

wearing the wired headgear means the restriction of free movement. Furthermore, 

these equipments are always located in facilities like hospitals and health-care centers, 

so the patients and observing targets are required to stay in a restricted area. Figure 

1.3 shows an advanced setup for our brain monitoring system. 

 

Figure 1.3 Application scenario for the proposed wearable brain monitoring 

system 

The system is interfaced with an analog front-end chip and a commercial 

Bluetooth module. NIR, EEG and ECG signal are acquired, processed and transmitted 

via the Bluetooth wireless link. Biomedical data received at the base station will be 
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decompressed, displayed in real-time on the screen of the science station, and finally 

stored into non-volatile storage media for further off-line processing, analysis and 

diagnosis. In addition, the data can be sent from the base station to a remote 

workstation for online monitoring and diagnosis by doctors in hospitals. 

1.3.3 Research on Brain and Cognitive Science 

The past researches have clearly shown that electroencephalogram (EEG) 

contains important information about human cognitive process. Human brain 

cognitive science has become a very important and challenging research direction 

since the twenty-first century, and the related topic includes brain computer interface 

[17], artificial intelligence, electronic prosthesis and even artificial neural tissues. Not 

only has the electroencephalogram shown its potential capabilities for human brain 

cognitive research, the information from functional near-infrared also provide cortical 

hemodynamic response and shows which area of the brain is currently active. The 

flexible nature of DOT, which uses a wearable imaging cap (Figure 1.2 (d)), makes it 

well-suited to human brain studies in enriched environments and for a wide range of 

behavioral paradigms and activations [18], including visual [19], during motor tasks 

[20], somatosensory system [21], auditory [22][23], and language [24][25] Although 

the instruments like Magnetic Resonance Imaging (MRI) and Positron Emission 

Tomography (PET) together with multiple channel EEG signal can provide 

significantly valuable brain activity information, but their high cost and huge size 

result in the low availability for academic research. 

1.4 Importance of this Work 

A power and area efficient 4-channel ICA processor involved with various design 

and optimization techniques is presented in this thesis. Low-power and low-cost make 

it possible to be used in portable devices, which are usually constrained by the limited 
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power consumption. Prolonged battery life also makes it possible to be integrated in 

portable long-term observation and monitoring systems. 

An experimentally integrated system which comprises a novel functional 

near-infrared (fNIR) diffuse optical tomography system for taking brain image, an 

independent component analysis (ICA) processor for artifact removal from  

electroencephalogram (EEG) signal, and a heart rate variability (HRV) analysis 

processor for electrocardiogram (ECG) signal is implemented. The significance of 

this SoC is to enable practical developments of portable real-time brain-heart 

monitoring systems. 

1.5 Organization of the Thesis 

The organization goes as follows. In chapter 2, a hardware and power efficient 

4-channel ICA processor is presented from the theory of ICA to the tape-out summary 

of the designed processor. Various design and optimization techniques including 

optimized data windowing, 3-bank circular memory allocation, an optimized mirrored 

non-linear lookup unit and operation pipelining between the ICA training and 

component extraction are all presented in section 2.2. Performance analysis of the 

4-channel ICA processor using both certain super-gaussian random pattern and real 

EEG signal with or without eye-blink artifacts is demonstrated and compared with 

off-line result analyzed by EEGLab in section 2.3 with an example of eye-blink 

artifact removal. In section 2.4, the tape-out summary of the designed ICA processor 

using UMC 90nm CMOS technology is presented. In addition to functional 

verification and power consumption analysis, an FPGA-based Testbed built to provide 

an experiment and demonstration platform is shown in section 2.4.3. 

In chapter 3, an experimental brain-heart monitoring system with the ICA 

processor integrated is shown. Overall system architecture and specifications are 
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documented in section 3.1 and 3.2. Three bio-signal processing processors that 

perform ICA, DOT and HRV function are briefly described in section 3.3. From 

section 3.4 to 3.6, designs and behaviors of the other system peripherals and data flow 

control units are described in detail. Finally we conclude the current achievements 

and the future works in chapter 4. 
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Chapter 2 4-Channel Independent Component Analysis Processor 

 In this chapter, the design of a 4-channel independent component analysis (ICA) 

processor adopted in the brain-heart monitoring system proposed in Chapter 3 is 

shown. It is employed to perform artifact removal from 4-channel EEG signals. First, 

the independent component analysis algorithm and the reason why the system 

comprises an ICA processor are introduced and described in section 2.1. The design 

of a hardware and power efficient 4-channel independent component analysis 

processor is then shown in section 2.2. In section 2.3, the performance analysis using 

super-gaussian random pattern and real EEG pattern recorded by NeuroScan system is 

presented and described in detail to prove the validity of the designed processor, and 

comparison with other hardware ICA implementation are also done In section 2.3. 

Finally in section 2.4, the physical information, tape-out summary, chip testing and 

power measurement of the fabricated chip using UMC 90nm CMOS technology is 

presented. 

2.1 Independent Component Analysis 

In recent years, independent component analysis (ICA) had been applied to 

different signal processing applications, such as speech enhancement, 

telecommunication, feature extraction and artifact removal from signals. In this 

section, we will define and explain blind source separation (BSS) problem and 

introduce the principles and the algorithm of ICA. 

2.1.1 Blind Source Separation 

Blind source separation (BSS), also known as blind signal separation, is the 

separation of a set of signals from a set of mixed signals, without the aid of 

information (or with very little information) about the source signals or the mixing 

process. Blind signal separation relies on the assumption that the source signals do not 
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correlate with each other.  For example, the signals may be mutually statistically 

independent or decorrelated. Blind signal separation thus separates a set of signals 

into a set of other signals, such that the regularity of each resulting signal is 

maximized, and the regularity between the signals is minimized (i.e. statistical 

independence is maximized). In Figure 2.1, the problem definition of the blind source 

separation (BSS) is shown. The original source signals are mixed in the path 

transmitted to the sensors. Processed by the blind source separation, the unknown 

source signals may be revealed again. 

 

Figure 2.1 Problem definition of the blind source separation (BSS) 

Blind source separation (BSS) problems are universal for signals acquired from 

natural sources for example light intensity, sound wave and electrical potential. The 

first problem of blind source separation (BSS) had been proposed to solve individual 

speech at a noisy cocktail party. It posed a serious problem that humans cannot 

understand their conversation when more than one person is speaking, and the 

concept using ICA to separate the two independent speeches is shown in Figure 2.2. 

There are also many similar problems, for example, EEG signals disturbed by artifacts, 

a speech in a noisy environment, and the signals include various sources that we want 

and do not want in the same location where sensors are placed. 

 

Figure 2.2 The concept of using ICA for speech separation in a cocktail party 
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2.1.2 Entropy and Mutual Information 

Entropy and Mutual Information are the foundation of information maximization 

algorithms that includes the Infomax independent component analysis (Infomax ICA) 

algorithm chosen for the designed 4-channel ICA processor. Therefore, before 

introduction to Infomax ICA algorithm, the concept of Entropy and Mutual 

Information used are first clarified in this section. 

The entropy is a function of random variable which tries to describe the 

“unpredictability” of a random variable with non-negative values, and the value of 

entropy becomes zero when the input random variable is “certain” when predicted. 

The entropy function of a random variable X is defined by: 

                    
 

                         (2.1) 

The X in equation 2.1 is a random variable and P(X) is the probability distribution 

function (PDF) of X, also known as the probability density function. The value of 

entropy is not only influenced by the value territory of the random variable, but also 

influenced by the probability distribution.  

The joint entropy is defined as the entropy of a joint probability distribution of 

two or more random variables, or a multi-valued random variable. For two random 

variables X and Y, the joint entropy is defined by 

                 
 

                            (2.2) 

 The conditional entropy is a statistics that summarizes the randomness of Y 

given knowledge of X. It is defined by: 

                 
 

                            (2.3) 

The conditional entropy H(Y|X) is H(Y) without H(X) and the conditional entropy 

H(X|Y) is H(X) without H(Y). If there exists correlation between H(Y) and H(X), 
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then                , and if two random variables X and Y are statistically 

independent, the joint entropy H(X,Y) equals to the sum of the independent entropies , 

that is H(X)+H(Y). 

Mutual information is a quantity that measures a relationship between two 

random variables that are sampled simultaneously. The mutual information of 

two discrete random variables X and Y is defined by 

                  
      

          
                (2.4) 

 

Figure 2.3 Entropy relationship presented by the concept of set 

From the concept to express entropy using set in Figure 2.3, we define the entropy 

defined both in H(X) and H(Y) to be mutual information I(X,Y), with 

H(X,Y) = H(X)+H(Y|X) = H(Y)+H(X|Y) 

=H(X)+H(Y)-I(X,Y)                        (2.5) 

Therefore the mutual information is then defined as 

 I(X,Y)=H(X)-H(X|Y)          

=H(Y)-H(Y|X)  

=H(X)+H(Y)-H(X,Y)  

=H(X,Y)-H(X|Y)-H(Y|X)                    (2.6) 
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Minimization of the mutual information will lead to the maximization of the 

independence between the random variables, and if the mutual information between 

two random variables is zero, the two random variables are statistically independent. 

In the other hand, the smaller mutual information we derive, the more statistically 

independent two random variables we will have. With this conclusion, we will 

introduce the Infomax ICA algorithm using the concept in the next section. 

2.1.3 Infomax ICA 

Recently, blind source separation by Independent Component Analysis (ICA) has 

received attention because of its potential applications in signal processing such as in 

speech recognition systems, telecommunications and medical signal processing. The 

goal of ICA is to recover independent sources given only sensor observations that are 

unknown linear mixtures of the unobserved independent source signals. In contrast to 

correlation-based transformations such as Principal Component Analysis (PCA), ICA 

not only decorrelates the signals (2nd-order statistics) but also reduces higher-order 

statistical dependencies, attempting to make the signals as independent as possible. 

There have been two different fields of research considering the analysis of 

independent components. On one hand, the study of separating mixed sources 

observed in an array of sensors has been a classical and difficult signal processing 

problem. The work on blind source separation by Jutten, Herault and Guerin (1988) 

where result in an adaptive algorithm using simple feedback architecture, and its 

learning rule was based on a neuromimetic approach that is able to separate 

simultaneously unknown independent sources. Furthermore, Comon (1994) 

introduced the concept of independent component analysis and proposed cost 

functions related to the minimization of mutual information between the sensors. On 

the other hand and in parallel to blind source separation studies unsupervised learning 
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rules based on information-theory have been proposed by Linsker (1992), Becker and 

Hinton (1992) and others. This idea is to maximize the mutual information between 

the inputs and outputs of a neural network. This approach is related to redundancy 

reduction which was suggested by Barlow (1961) as a coding strategy in neurons. 

Each neuron should encode features that are statistically independent from other 

neurons. This leads to the notion of factorial code that has been explored for the visual 

processing strategy by Attik (1992). Nadal and Parga (1994) showed that in the 

low-noise case, the maximum of the mutual information between the input and output 

of a neural processor implied that the output distribution was factorial. Roth and 

Baram (1996) and Bell and Sejnowski (1995) independently derived stochastic 

gradient learning rules for this maximization and applied them, respectively to 

forecasting and time series analysis, and the blind separation of sources. Bell and 

Sejnowski (1995) were the first explaining the blind source separation problem from 

an information-theoretic viewpoint and applying them to separation and 

deconvolution of sources.  

Extensive simulations have been performed to demonstrate the power of the 

learning algorithm. However, instantaneous mixing and unmixing simulations are 

problems and the challenge lies in dealing with real world data. Makeig et al. (1996) 

applied the original Infomax algorithm to EEG and ERP data showing that the 

algorithm can extract EEG activations and isolate artifacts. Jung et al. (1997) show 

that the extended Infomax algorithm is able to linearly decompose EEG artifacts such 

as line noise, eye blinks, and cardiac noise into independent components with sub- 

and super-Gaussian distributions. McKeown et. al. (1997) have used the extended 

ICA algorithm to investigate task-related human brain activity in fMRI data. By 

determining the brain regions that contained significant amounts of specific 
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temporally independent components, they were able to specify the spatial distribution 

of transiently task-related brain activations.  

As previously described, ICA algorithm not only decorrelates a signal 

(second-order statistical independence), but also reduce the dependency in higher 

order statistics. In other words, the goal of independent component analysis is to find 

a linear but not necessarily for the orthogonal coordinate system which can express 

multi-dimensional data. The independent multivariate random processing is involved 

in the various components of all the order of the statistics. The computation 

complexity of the statistics over second-order is significantly high, so using an 

adaptive learning unit which replaces the higher order calculation with adding a 

non-linear function g( ) after each component make u(t) approaches to s(t). The g( ) 

can be single-tone non-decreasing functions with values between 0 and 1, such as 

sigmoid and hyperbolic tangent function. Bell and Sejnowski (1995) [26] presented 

the Infomax ICA algorithm, which is suitable for separation of super-Gaussian 

sources.  

The Infomax method performs linear ICA based on a principle of maximum 

information preservation. However, it can also be seen as a maximum likelihood 

method, or as a method based on the minimization of mutual information between y = 

g(u)(g( ) is sigmod function)  The goal of Infomax ICA is to find an unmixing 

weight W that can be used to estimate the independent component signals. The 

adaptive learning ICA algorithm is shown in Figure 2.4. The input X is the signal 

mixture, and U is calculated by 

U = W*x                          (2.7) 

The output Y is expressed by 

Y = g(u)                           (2.8) 
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Figure 2.4 Adaptive learning independent component analysis 

The information which output Y includes X is defined in equation 2.6. 

I(Y,X)=H(Y)-H(Y|X) 

Where H(Y) is the entropy of the output, while H(Y|X) is whatever information the 

output has which didn‟t come from the input. In the case, we have no noise, the 

mapping between X and Y is deterministic and H(Y|X) has its lowest possible value. 

We differentiate equation 2.6 as shown in equation 2.9 

 , ( )I Y X H Y
w w

 


 
                    (2.9) 

H(Y|X) do not rely on w, so the part ( | )H Y X
w




is zero. The information transfer 

between the input X and output Y is maximized by maximizing the joint entropy of 

the output, H(Y). As discussed above, finding a function Y=f(X) that maximizes 

I(X,Y) is equivalent to maximizing H(Y). 

The equation for the joint entropy of the output Y is the sum of the individual 

entropies minus the mutual information between them, and it‟s a way of information 

maximization that reduces statistical dependence. The equation is expressed as  

  ( 1) ( 2) ..... ( ) ( 1, 2,.... )H Y H y H y H yn I y y yn            (2.10) 
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From Equation 2.10, maximizing the output entropy H(Y) is equivalent to minimizing 

the mutual information of the extracted components yi, and individual outputs will 

move towards the statistical independence. The transformation between y and u is a 

monotonic transform, and information maximization uses this concept to achieve the 

goal of ICA. The coefficient of adjustment from Infomax algorithm which was 

proposed was based on the conventional rules of stochastic gradient method. Gradient 

method will be introduced as follow. 

First, consider an input variable, x, which passed through a transforming function, 

g(x), to produce an output variable, y. The probability density function (PDF) of the 

output p(y) can be expressed as a function of the PDF of the input p(x). 

( )
( )

p x
p y

y

x






                             (2.11) 

The entropy of the output, H(y), is given by 

1 1
( ) ( ) ( ) ln

ln ( ) ln ( )
H y E p y dy

p y p y





                 (2.12) 

From equation 2.11 and 2.12, H(y) can be expressed as 

( ) (ln ) [ln ( )]
y

H y E E p x
x


 


                    (2.13) 

In order to maximize the entropy of y by changing W, maximizing the first term 

which is the average log of how the input affects output need to be focused on. This 

can be done by considering the training set of x to approximate the density p(x), and 

deriving a stochastic gradient descent learning rule: 

1(ln ) ( ) ( )
H y y y

w
w w x x w x

     
   

     
             (2.14) 

Y is the output of sigmoid function,
1

1 u
y

e



, and 0u wx w   in which the input 

is multiplied by weight w and added to a bias 0w , and the calculation is 
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(1 )
y

wy y
x


 


                         (2.15) 

( ) (1 )(1 (1 2 ))
y

y y wx y
w x

 
   

 
               (2.16) 

Equation 2.15 and 2.16 are the learning rule, and equation 2.17 summarize it as 

1 (1 2 )w w x y                         (2.17) 

To see the advantages of approach in artificial neural networks, the analysis of 

multi-input and multi-output can be described as follow. The input x is a vector in a 

network, and a weight matrix W and a monotonically transformed output vector 

0( )y g Wx w  , the multivariate probability density function of y can be written  

( )
( )

p x
p y

J
                         (2.18) 

where J
 
is the absolute value of the Jacobian of the transformation. 
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                     (2.19) 

For sigmoid function, 
1

1 u
y

e



 , and 0u Wx w  , and (1 )

y
y y

u


 


, so equation 

2.18 can be written 

           
 
                           (2.20) 

From equation 2.12, the joint entropy of the output is  

1
( ) [ln ] [ln ] [ln ( )]

( )
H y E E J E p x

p y
                 (2.21) 

Weights can be adjusted to maximize H(y), as before, and they only affect the

[ln ]E J . 

1

( )
(ln | |) ln det ln | (1 ) |

n

i ii

H y
w J W y y

w w W W 

   
     

   
      (2.22) 
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For the full weight matrix, the definition of inverse of a matrix and the adjoint matrix, 

adj W , is the transpose of the matrix of cofactors. 

1ln det [ ]TW W
W





                      (2.23) 

The product splits up into a sum of log-terms, only one of which depends on 

particular w. 

1

1 1 1
ln | (1 ) | ln | | ( ) ( ) (1 2 )

n n n T

i ii i i

y y y
y y y x

W W x x W x



  

     
    

     
    (2.24) 

The resulting learning rules, equation 2.21 can be written 

1[( ) (1 2 ) ]T TW W y x                      (2.25) 

Equation 2.25 involves the calculation of inverse matrix, so the computation 

complexity is high. To solve this problem equation 2.25 is multiplied by W
T
W which 

rescales the result and the new learning equation becomes 

1[( ) (1 2 ) ] [ (1 2 ) ]T T T TW W y x W W I y u W              (2.26) 

Because it avoids the calculation of matrix inverse, the computation time is reduced 

significantly. 

2.2 Design of the 4-Channel ICA Processor 

In physiological electrical signal measurement, the observed signals are always 

the superposition of independent source signals. In addition, EEG signals are 

especially vulnerable and easily contaminated by artifacts such as eye movement, eye 

blink, power line noise and muscle (EMG) noise due to its signal strength of micro 

volt scale which pose serious problems in analyzing and interpreting the EEG 

recording [27]. ICA has already shown to be an effective, powerful and applicable 

method for EEG de-noising, which is able to separate EEG components and artifact 

components to different channels. Components recognized as the artifact can be 

removed easily by generating a mixing matrix with the weight to the artifact channel 
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set 0, and the remixed EEG signals will be clean with only small influence caused by 

the artifact due to the limitation of the algorithm. To acquire clean EEG signal for 

observation or analysis, a 4-channel ICA processor for artifact removal is designed 

and employed in the proposed brain-heart monitoring system. With the designed ICA 

processor, real-time applications using EEG signals become feasible and more robust. 

2.2.1 Overall Architecture of the ICA Processor 

Figure 2.5 shows the overall architecture of the four-channel ICA processor. It 

comprises four main processing units: a first stage buffering and calculation unit (S1), 

a whitening unit (WU) for calculation of the whitening matrix, an ICA training unit 

(TU) for unmixing weight training, and an ICA computation unit (CU) for 

constructing the whitened unmixing weight matrix and the resulting components 

extracted. Operation pipelining is applied between the data processing (S1, WU and 

TU) and the ICA output calculation (CU). Therefore, the hardware can be used 

efficiently.  

 

Figure 2.5 Overall architecture of the designed four-channel ICA processor 
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The algorithm can be divided into three stages: 

1. Pre-Processing Stage (performed by S1 and WU) 

In the pre-processing stage, the raw EEG data is pre-processed by data centering 

and whitening transformation. The whitening transformation is a decorrelation 

method that converts the covariance matrix COV_X of a set of samples into the 

identity matrix I. This effectively creates new random variables that are 

uncorrelated and have the same variances as the original random variables. The 

method is called the whitening transform because it transforms the input matrix 

closer towards white noise. After the decorrelation, training iteration need to 

achieve convergence can be largely decreased. The pre-processing is done in S1 

and WU. 

2. ICA Unmixing Weight Training Stage (performed by TU) 

The pre-processed data is then used by the TU to find the best unmixing matrix 

that achieves maximum independence between each component. The TU is 

designed using the Infomax ICA algorithm described in the section 2.1.3. 

3. Component Computation Stage (performed by CU) 

The components are extracted in this stage. The raw EEG data, the P matrix from 

whitening unit (WU) and the W matrix from ICA training unit (TU) are all 

required to perform the computation of the resulting components in ICA 

computation unit (CU). In addition, a handshaking mechanism is implemented to 

make the output interface flexible. 

 

The calculation and the corresponding module designs are described in the 

following sections in detailed, and the decision of window size and the design of the 

training parameters will be explained and analyzed. 
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2.2.2 Stage 1 Unit and the Data Windowing Technique 

The stage1 unit (S1) for buffering and data pre-processing shown in Figure 2.6 

comprises an input buffering unit (IBU), a mean and covariance calculation unit 

(MeanCov), and a data centering unit (CTR). 

 

Figure 2.6 The architecture of STAGE1 unit 

The input buffering unit employs three interleaved SRAM modules to store and 

manage the raw EEG sampled data. The three memory modules inside IBU are 

identical with size equal to 32 words, and each word is 10 bits long. In Figure 2.6, the 

internal connections of different function are distinguished by their color. The green 

connections are the data input interface, and the blue connections are the data output 

interface, while the red ones are the control signal used to perform the pipeline 

scheduling scheme. The IBU functions as the data controller of the ICA processor that 

supports the sliding window scheme and pipeline scheduling. The timing plot of the 

sliding window scheme and pipeline scheduling scheme is shown in Figure 2.7. 
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Figure 2.7 The precise timing plot of the sliding window scheme and pipeline 

scheduling scheme 

Figure 2.7 depicts the data windowing technique, memory bank allocation and the 

operand scheduling used in our design. Data dependency constraints of the ICA 

algorithm tremendously limit the degree of parallelization in off-line ICA algorithm, 

so the overlapped sliding window scheme in Figure 2.7 is adopted. Due to the 

requirements for area and power optimization, memory size reduction is employed to 

minimize the chip area and power consumption to acceptable levels at minimal 

performance loss. As shown in Table 2.1, the option with window size of 512 with 

half overlapping sliding window achieves 0.9208 in correlation coefficient using 

super-gaussian random pattern sets. However, to implement the corresponding 

architecture using the same memory management scheme, it takes 30.72 Kilo-bits of 

memory size. It is not acceptable for portable devices that aims on low-power and 

low-cost design. Therefore, a window size of 64 with 50% overlap and 0.8401 

correlation is chosen. Only 3.84 Kilo-bits memory size is required for the chosen 

window size, resulting 85% in savings compared with the one with window size of 
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512, and the corresponding trade-off is correlation degradation from 0.92 to 0.84. 

Table 2.1 Memory Complexity Reduction 

Window 

Size 

Sliding Window 

Overlap Sample 

Shift 

Step 

Average 

Correlation 

Training Iteration 

of the first 4 win. 

Memory 

Size(Kb) 

512 256 (50%) 256 0.9208 377, 1, 4, 80 30.72 

128 

112 (87.5%) 16 0.8307 490, 101, 7, 1 5.76 

96 (75%) 32 0.8336 490, 80, 1, 1 6.4 

64 (50%) 64 0.8334 490, 50, 12, 1 7.68 

64 32 (50%) 32 0.8401 512, 208, 170, 1 3.84 

 Therefore, we can find that 32 samples (half-window) are marked a xi, and the 

window size is defined to be 64 samples as we chose in Figure 2.7. The operand for 

all operations including data centering, whitening transform and the ICA training is 

based on a full window of 64 samples, but for the calculation of output components 

which is done by the ICA calculation unit (CU), the output size equals to the 

non-overlapped part that is a half-window of 32 samples. IBU starts the data 

pre-processing and ICA training after window 0 filled with sampled data, while the 

new samples in x2 are stored into RAM 2 causing no conflicts. Before x2 is filled up, 

the calculation for the first unmixing matrix W0 can be finished using a minimum 

0.817 MHz input clock at the worst case condition of 512 iterations limit designed in 

ICA training unit (TU). In the worst case, it takes 203757 clock cycles to train for an 

unmixing matrix W  ̧and this implies that the data sampled by a maximum sample rate 

of 9.708K samples per second can be processed in time when 60 MHz clock 

frequency is applied. After RAM 2 is filled up, x1 is still left inside RAM 1 before the 

next half-window is fully allocated. Therefore, the components can be calculated and 

outputted during the calculation for W1. 

 For off-line ICA algorithms, the resulting component of x1 is supposed to be 

extracted using the W1, but if we keep x1 stored inside RAM 1 until W1 is derived, an 
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additional memory module will be need, and it also cause a delay of 0.75 seconds 

from x1 is sampled to the corresponding component output. To solve the two 

problems, we first assume that after the convergence, W won‟t change rapidly 

afterwards. Under this assumption, we can apply the previous W for extraction of the 

current data. Therefore the first component output is calculated as W0P0x1. 

 

Figure 2.8 Iteration number the training unit takes to achieve conversion in each 

sliding window 

As we can see from the simulation result using the super-gaussian random 

pattern we used for deciding the window size in Figure 2.8, aside from the first 

window that requires 512 iterations for exiting the training loop, iteration numbers are 

usually 1 after the convergence. The correlation difference using this scheme is so 

small that we can just ignore it. The scheme is also verified using real EEG signal 

recorded using NeuroScan system shown in section 2.3.2. Using the proposed scheme, 

memory access conflicts are avoided at window overlaps, while the component can be 

outputted ahead of time by a half-window that is 0.25 seconds without additional 

memory module needed. 

Aside from data management, STAGE1 also performs the simple calculations 

needed prior to whitening and ICA training and computation.  The Mean_Cov unit 

employs shared multiply-accumulate units for calculating the mean and covariance of 

the EEG samples, while the centering unit utilizes four subtractors to remove the DC 
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component of each EEG data channel. 

The definition of the covariance of two vectors is shown in Equation 2.27. 

                                             (2.27) 

For the covariance between four vectors, a complete covariance matrix needs to 

be computed as in Equation 2.28. 

     

        
        
        
        

    

                    
                    

                    
                    

                    
                    

                    
                    

  (2.28) 

 

  

                    
                    

                    
                    

                    
                    

                    
                    

   

In addition, because Cov(X,Y) equals to Cov(Y,X), only the elements in the upper 

triangle are required to be calculated. Therefore, we calculate the ten elements 

sequentially using only one shared multiply-accumulate unit (MAC) as shown in 

Figure 2.9. The colorful small blocks are registers used for accumulation of the 

product of each combination between channels. 

 

Figure 2.9 Covariance matrix calculation using only one shared MAC operator 
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After the sums of each combination are accumulated, average is easily acquired by 

fixed-point shifting by 6 bits that is 64 times smaller. Finally, the ten elements in the 

covariance matrix are calculated using Equation 2.27. 

 Since the mean values of data from each channel are calculated in MeanCov unit, 

the mean values stored in V1, V2, V3 and V4 register can be used in data centering 

unit (CTR). Therefore, after the accumulation, V1 to V4 is provided to CTR using 

inter-module wire connection with a valid signal MEAN_VALID to inform the CTR 

that mean values are available. 

The data centering operation is expressed as Equation 2.29: 

                          
 

 
      

       (2.29) 

Where N is the decided window size that is 64, and i is the values from 1 to 64 

representing each elements in a window. A direct and parallel CTR unit is designed 

using four subtractors shown in Figure 2.10. 

 

Figure 2.10 The architecture of the centering unit (CTR) 
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2.2.3 Whitening Unit 

The whitening transform is linear operation and always possible. After whitened, 

the components of new vector z are uncorrelated and their variances equal to unity. In 

other words, the covariance matrix of z equals to the identity matrix. 

                (2.30) 

One popular method for whitening is to use the eigen-value decomposition (EVD) of 

the covariance matrix. D is the diagonal matrix of its eigenvalues and E is the 

orthogonal matrix eigenvectors of covariance matrix of x. The decomposition can be 

expressed as: 

                    (2.31) 

Where D is 

 
    
   
    

          (2.32) 

Our goal is to find the whitening matrix         
  

    
  

   , and apply it to the 

centered data. Therefore, a Jacobi singular value decomposition (JSVD) engine which 

can be used to perform the EVD is employed in the whitening unit shown in Figure 

2.11. 

 

Figure 2.11 The architecture of the whitening unit (WU) 
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The SVD engine is designed using CORDICs [28]. There are two parallel angle 

CORDIC and eight parallel vector CORDIC in the SVD engine. Vectors selected by 

the state machine are sent to the parallel CORDIC engines. The parallel order of 

operation is shown as following: (p,q)=(i,j)={(1,2),(3,4);(1,3),(2,4);(1,4);(2,3)}. The 

detailed pipelining scheme is shown in Figure 2.12. 

 Clock Cycle 

Unit 1 2 3 4 5 6 7 8 9 10 11 12 13 

Angle CORDIC 0 S F S F S F S F S F S F  

Angle CORDIC 1 S F S F S F S F S F S F  

Vector CORDIC 0  S F S F S F S F S F S F 

Vector CORDIC 1  S F S F S F S F S F S F 

Vector CORDIC 2  S F S F S F S F S F S F 

Vector CORDIC 3  S F S F S F S F S F S F 

Vector CORDIC 4  S F S F S F S F S F S F 

Vector CORDIC 5  S F S F S F S F S F S F 

Vector CORDIC 6  S F S F S F S F S F S F 

Vector CORDIC 7  S F S F S F S F S F S F 

Figure 2.12 Operation pipelining for singular value decomposition 

In the Figure, “S” represent for the start of calculation while the “F” means the 

finish of the calculation. Operations marked with different color are using different 

part of the covariance matrix shown in Figure 2.13. 
 

    

      

      

      

      

      

      

      

      

         

      

      

      

      

      

      

      

      

         

      

      

      

      

      

      

      

      

  

    

      

      

      

      

      

      

      

      

        

      

      

      

      

      

      

      

      

        

      

      

      

      

      

      

      

      

  

Figure 2.13 Operands for pipelined CORDIC operations 
 

After few iterations for convergence the E and D matrices can be derived, and 

they are multiplied together to generate the whitening matrix P by a single vector 

product unit. Afterward, the centered data are also whitened using the same vector 

product unit. 

2.2.4 Infomax ICA Training Unit 
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The ICA training unit is the most important part used to calculate the unmixing 

matrix W, and most of computational time is consumed here due to the training 

iteration loop. As the behavior of this unit depends on the input data, we design the 

training parameters by using the MATLAB simulation result of super-gaussian 

random pattern as we discussed in section 2.2.2. To recap the Infomax ICA algorithm, 

the calculation step is listed below. 

For initialization, W is first set to 4-by-4 identity matrix as shown below. 

              

  
  

  
  

  
  

  
  

  

Afterward, when one window of pre-processed data is available, the following 

calculation will be applied to renew the unmixing matrix W. Note that Z is the 

4-channel pre-processed data window, and the variable i is the iteration number. 

1. i=1 

2.                       

3.               
 

         

4.                                    
 
          

5.                      

6. If((                  < thresholdconvergence) || (i++==limite_num)) 

Exit the loop 

Else 

Go back to step 2 

In the equations in calculation steps, there are three constant parameters to be decided. 

The learning rate Rlearning controls the speed of convergence. When the value of 

Rlearning is too small, the learning time will be long. Furthermore, small Rlearning also 

causes the unmixing weight locked at the local minimum in some cases. On the other 

hand, the thresholdconvergence affects the property of convergence. When 
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thresholdconvergence is too large, the calculated W is not good enough to be used as 

unmixing matrix, but when threshold is too small, the training may never achieve the 

convergence. 

With intensive simulation in MATLAB, we find that in the working range of 

thresholdconvergence and Rlearning, the values of them does not have much influence on 

the correlation coefficient between the original source and the extracted components. 

Therefore, the middle values are chosen for thresholdconvergence and Rlearning. For the 

limitation of the maximum iteration number limite_num, we choose a relatively large 

value compared with other work in the literature due to the smaller window size in 

our design. We can see the iterations as the extension of the data length. The values of 

the parameters are summarized in Table 2.2. 

Table 2.2 Parameters for the Infomax ICA training algorithm 

Parameter Symbol Value 

Learning Rate Rlearning 7.4768x10
-4

 

Convergence Threhold thresholdconvergence 1.0012x10
-8

 

Limitation of the max. 

Iteration number 
limite_num 512 

From step 2 to step 4, large matrix additions and multiplications are used. For 

hardware implementation, the operation for large matrix is decomposed as sum of 

contributions. If we define the item            
 
     in step 4 to be     . We 

can decompose the calculations to be: 

           
      

      
        

       (2.33) 

           
      

      
        

        (2.34) 

In Equation 2.34, each y
j
 is derived using Equation 2.35: 

    
 

    
 
  

 

              (2.35) 



 

38 

 

The key step of decomposition is shown in Equation 2.36: 

                
 
          

   
         (2.36) 

Each T
j
 in Equation 2.36 equals to: 

    
 

         
 

       
   

        (2.37) 

The modified Infomax ICA algorithm designed for hardware implementation is 

written in pseudo code using MATLAB expression and shown below. This snippet is 

the ICA training algorithm for a window of data assuming W already initialized or 

keeping the old value calculated from the previous sliding window. The resulting 

calculation steps for      from Equation 2.36 are in the internal for-loop from line 3 

to line 7. 

Modified Infomax ICA Training Algorithm for Hardware Implementation 

1.  For i = 1:512 % limite_num equals to 512 

2.   T = zero(4,4);  

3.   For j = 1:64 % Calculate for T 

4.    u = W*Z(:,i);  

5.    y = 1/(1-e^(-u)); % Non-linear function g 

6.    T = T+(1-2y)*u„;  

7.   End % T ready 

8.   T = ((R*I)+R*T)*W; % Store    in T 

9.   W=W+T; % Update W 

10.   If(T<= thresholdconvergence) % Convergence check 

11.    Break; % Reach covergence 

12.  End  

There are eight states in the main state machine of ICA training unit (TU), and 

the state transfer chart is shown in Figure 2.14. 

S_wait

state=0

S_cal_u

state=1

S_update_T

state=3

S_lookup_y

state=2

Finite State Machine

S_cal_delW

state=4

S_update_w

state=5

S_compare

state=6

S_output

state=7

# of 64 iteration

 

Figure 2.14 State transfer char of the main state machine in ICA training unit (TU) 

The resulting architecture for ICA training unit is shown in Figure 2.15. The 

matrix calculation requires many adders and multipliers, so one shared multiplier 
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array composed of 16 16-bit scalar multipliers and one shared adder array composed 

of 16 32-bit scalar adders. The number of adders and multipliers are analyzed and 

optimized, so the shared operator arrays are utilized efficiently in the training process. 

Note that a mirrored nonlinear lookup unit is designed to minimize the ROM size for 

the lookups of non-linear function g(u). Control logic circuits can be classified into 

two groups: data updating logic and data operation routing logic. The internal 4-bit 

counter is used to implement a sub-state control. 

 

Figure 2.15 Hardware architecture of the ICA training unit 

Table 2.3 clearly shows the operation in each state, and the value updates of the 

variable registers are also indicated. 

Table 2.3 State, operation and data control in ICA training unit 

State Adder Operation 
Multiplier 

Operation 

Variable 

Update 
Needed #Cycle 
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[OpA,OpB] 

0 S_wait - - 
T=I4x4 

u=Z4x1 
1 

1 S_cal_u 
[muli_out,mulj_out] 

[addi_out,addj_out] 
[W,u] 

u1=add3_out 

u2=add6_out 

u3=add9_out 

u4=add12_out 

1 

2 S_lookup_y - - 

p1=Looup(u1) 

p2=Looup(u2) 

p3=Looup(u3) 

p4=Looup(u4) 

4 

3 S_update_T [T,mul_out] [p,u] 
u= Z4x1 

T=add_out 
1 

4 S_cal_delW 
[muli_out,mulj_out] 

[addi_out,addj_out] 

For counter=0 

[Rlearning,T] 

For counter=1~4 

[T(1,:),W] 

[T(2,:),W] 

[T(3,:),W] 

[T(4,:),W] 

T=mul_out 

 

T(1,:)=add3_out 

T(2,:)=add6_out 

T(3,:)=add9_out 

T(4,:)=add12_out 

5 

5 S_update_W [W,T] - W=add_out  

6 S_compare 
[muli_out,mulj_out] 

[addi_out,addj_out] 
[T,T] T= I4x4  

7 S_output - - - 16 

The ROM size of the mirrored non-linear lookup unit in Figure 2.15 is optimized 

using the anti-symmetric property [29]. The non-linear function used in Infomax ICA 

algorithm is a sigmoid function      
 

     . The function is plot in Figure 2.16 (a). 

The anti-symmetric property of this function allows us to store only half of the values. 

As a result, the area of the ROM is also reduced to about half of the original area. 

  
(a) (b) 

Figure 2.16 (a) The original non-linear function g(u) used in Infomax ICA training 

algorithm (b) 1-2*g(u) 

In Equation 2.34, the double of the lookup value is subtracted from 1, and the function 

f(u)=1-2*g(u) is plot in Figure 2.16 (b). The plot also present us the same property of 
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anti-symmetric as g(u) has. Therefore, to save the additional subtraction, the value of 

f(u) is stored in the ROM, instead of g(u). 

The size of the ROM is decided from the MATLAB simulation result 

summarized in Table 2.4. The lookup table ROM size can be reduced by 87.5% from 

512 to 64 entries, with almost no loss in performance. As we can see from Figure 2.16 

(b), the output is almost saturated when the input is a value larger than 7 or smaller 

than -7. Therefore a ROM that stores 32 entries is generated, and the lookup range is 

between +7 and -7. When the input value is out of the range, the mirrored non-linear 

lookup unit will output the value of saturation that is +1 or -1. The resulting design of 

the mirrored non-linear lookup unit is shown in Figure 2.17. 

Table 2.4 The simulation result of different ROM sizes 

ROM Size L 
Step 

Size 

Average 

Correlation 

#Training 

Iteration 

Float 16 - 0.8612 502 

512 16 1/16 0.8581 486 

256 16 1/8 0.8588 503 

128 16 1/4 0.8675 531 

64 16 1/2 0.8704 - 

128 8 1/8 0.8588 503 

64 8 1/4 0.8655 535 

32 8 1/2 0.8704 584 

 

Figure 2.17 The architecture of the mirrored non-linear lookup unit in TU 

2.2.5 ICA Computation Unit 

The ICA computation unit architecture employs a shared scalar product to 
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calculate the whitened unmixing matrix UW and independent component analysis 

output ICA_OUT. Equation 2.37 and 2.38 are the calculation step for the final 

component outputs. 

                     (2.37) 

The W in Equation 2.37 is the output from the ICA training unit (TU) while the p is 

whitening matrix previously derived in the whitening unit (WU). 

                           (2.38) 

Independent component estimtes are finally calculated by multiplying Wunmixing with x. 

The x is consistant with the expression in section 2.2.2 defined to be a half-window 

data. Therefore, 32 non-overlapping extracted component samples are outputed each 

time. The corresponding calculation flow chart is shown in Figure 2.18. Note that a 

handshaking mechanism at the output is added to provide a flexible output interface. 

 

Figure 2.18 Calculation flow char for the final ICA result 

2.3 Performance Analysis of the 4-Channel ICA Processor 

To analyze the performance of the designed 4-channel ICA processor, a 
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Super-Gaussian random pattern generator is first created. Before application using 

real EEG patterns, we have to know if the designed ICA processor can really separate 

the independent components of Super-Gaussian, but we cannot know the original 

components inside EEG signal not even the number of components mixed in the 

measured EEG signals. Therefore, using a set of known pattern can at least confirm 

the validity of the whole design. After demonstration of one set of know pattern, we 

use four sets of real EEG pattern recorded using NeuroScan system to analysis the 

performance compared with EEGLab [30]. Pattern 1 and 2 are relatively clean EEG 

signals with only few eye-blink artifacts in the signal, and pattern 3 and 4 are 

contaminated by eye-blink artifacts on an average of one every 2.5 seconds. 

2.3.1 Performance Analysis Using Super-Gaussian Pattern 

Figure 2.19 (a) shows the 4-channel super-gaussian random sources. In each 

channel, 1024 samples are generated. To verify the super-gaussianity of the sources, 

the probability density functions (PDF) are also shown in Figure 2.19 (b). 

 
(a) 

 
(b) 

Figure 2.19 (a) 4-channel super-gaussian random sources (b) Probability density 

functions 

The super-gaussian source in Figure 2.19 is mixed by a stationary mixing matrix 

to generate the input pattern for our design. Figure 2.20 shows the waveforms of the 

last two windows of the original source (a), mixed input pattern (b) and the extracted 
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component (c) using the designed processor. We can easily indicate the channel 

mapping between the original sources and the extracted independent components 

from Figure 2.20 (a) and (c). For analysis of the non-stationary characteristics of ICA 

output, the correlation coefficient of the ICA from two neighboring sliding windows 

is evaluated. The average correlation is 0.86 between the original source signals and 

extracted ICA components. The correlation variation of each 32 outputs is shown in 

Figure 2.21, and the red line is the correlation variation of the result using EEGLab. 

 

(a) 

 

(b) 

 

(c) 

Figure 2.20 (a) Original source signals (b) Mixed signals (c) Extracted ICA signals 

 
Figure 2.21 Correlation variation of each 32 outputs compared with EEGLab result 

2.3.2 Performance Analysis Using Real EEG Patterns 

The ability to separate the mixture of super-gaussian random signals does not 

suggest the ability to find out the artifacts and components in real EEG signals. In this 
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section, 4 real EEG patterns recorded from NeuroScan system are fed as input 

patterns to the fabricated chip using the setup described in section 2.4.1. The patterns 

had been recorded using sample rate of 128 Hz for total 24 seconds after stabilization 

of the experimental subject. A high-pass filter and a low-pass filter of cut-off 

frequencies equal to 0.15 Hz and 55 Hz are applied to the setup before recording. The 

detailed information is listed in Table 2.5, and the channel location is mapped using 

international 10-20 system of electrode placement standard for EEG measuring. 

Table 2.5 Detailed pattern information for the 4 EEG patterns recorded 

Pattern 
HPF 

(Hz) 

LPF

(Hz) 

Duration 

(Sec) 

Ch1 

Loc. 

Ch2 

Loc. 

Ch3 

Loc. 

Ch4 

Loc. 

Pattern 1 0.15 55 24 FP1 FP2 FZ C1 

Description Clean and stable EEG with normal eye-blink period 

Pattern 2 0.15 55 24 M1 CP1 CPZ CP2 

Description Clean and stable EEG with normal eye-blink period 

Pattern 3 0.15 55 24 FP1 FPZ FP2 VE0 

Description EEG with eye-blink artifacts on an average of one every 2.5 seconds 

Pattern 4 0.15 55 24 FP1 FPZ FP2 VE0 

Description EEG with eye-blink artifacts on an average of one every 2.5 seconds 

 

2.3.2.1 Pattern 1 – Stable EEG without Artifact 

In Figure 2.22, the waveforms in the first column are the recorded EEG patterns, 

and the waveforms in the second column are the extracted components using off-line 

ICA algorithm performed by the latest EEGLab release. To compare with the off-line 

ICA result using EEGLab, the components analyzed by the designed chip are shown 

in the third column. Although the channel order are identical for the results using 

EEGLab and the chip in pattern 1, the channel orders may be shuffled through the 

algorithm in the other patterns, so the corresponding components are marked by the 

same component number, and the correlations between the results from on-line 

hardware calculation and off-line algorithm are also shown in the figure. Although the 

data are windowed, the results have shown that each statistical independent 
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component is locked in the same channel for different window. 

 

Figure 2.22 Time domain comparison between the off-line result from EEGLab 

and on-line results for pattern 1 with original source EEG shown in the first column 

 

Figure 2.23 Frequency domain comparison between the off-line result from 

EEGLab and on-line results for pattern 1 
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Figure 2.24 Time-frequency analysis comparison between the off-line result from 

EEGLab and on-line result for pattern 1 

Frequency domain comparison and time-frequency comparison are shown in 

Figure 2.23 and 2.24. An average correlation coefficient of 0.867 is achieved in the 

first pattern. The time domain, frequency domain and time-frequency results all show 

consistency between the off-line results and on-line results. 

2.3.2.2 Pattern 2 – Stable EEG without Artifact 

 

Figure 2.25 Time domain comparison between the off-line result from EEGLab 

and on-line results for pattern 2 with original source EEG shown in the first column 
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Figure 2.26 Frequency domain comparison between the off-line result from 

EEGLab and on-line results for pattern 2 

 

Figure 2.27 Time-frequency analysis comparison between the off-line result from 

EEGLab and on-line result for pattern 2 

Figure 2.25 to 2.27 shows the comparison between the off-line result from 

EEGLab and the on-line result. Similar description is skipped for this pattern. For the 

conclusion, an average correlation coefficient of 0.824 is achieved in the second 

pattern. The time domain, frequency domain and time-frequency results all show 

consistency between the off-line results and on-line results as the first pattern does. 
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2.3.2.3 Pattern 3 – EEG Contaminated by Eye-Blink Artifact 

From Figure 2.28 and Figure 2.32 we can easily tell that the recorded EEG 

signals for pattern 3 and pattern 4 are heavily contaminated by eye-blink artifacts. 

EEG signals recorded from location at FP1, FPZ, FP2 and VE0 are chosen because 

they are influenced more heavily by the eye-blink artifacts due to the spatial locality 

to the eyes where the eye-blink artifacts originate. 

 

Figure 2.28 Time domain comparison between the off-line result from EEGLab 

and on-line results for pattern 3 with original source EEG shown in the first column 

Figure 2.28 has shown that except the component of eye-blink results in only 

0.548 of correlation coefficient, the average correlation between the on-line result and 

the off-line result for the other three components still achieves 0.84 in correlation. In 

fact, correlation itself doesn‟t represent the quality of the algorithm, so an example of 

artifact removal using EEGLab and the result from the chip is shown in Figure 2.29. 

The original EEG waveforms are shown in the first column, and the artifact-removed 

results using EEGLab and the chip is shown in the second and third column. In the 

recorded EEG, an eye-blink artifact appears from sample 20 to sample 40 marked by 
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the red dotted lines. As we can see from the processed results, although the influence 

of the eye-blink event is still obvious, the ratio between the artifact component and 

the EEG components is definitely decreased. The on-line algorithm and off-line 

algorithm show similar result for artifact removal, and this also prove the capability of 

this design for the targeted application. 

 

Figure 2.29 An artifact removal example used to compare the off-line performance 

using EEGLab and the on-line performance using the designed chip 

 

Figure 2.30 Frequency domain comparison between the off-line result from 

EEGLab and on-line results for pattern 3 
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Figure 2.31 Time-frequency analysis comparison between the off-line result from 

EEGLab and on-line result for pattern 3 

Frequency domain and time-frequency analysis are also done for the eye-blink 

patterns. Frequency domain comparisons shown in Figure 2.30, 2.31, 2.33 and 2.34 

demonstrate more similar results between the characteristics of the on-line algorithm 

and off-line algorithm than it does in pattern 1 and pattern 2. 

2.3.2.4 Pattern 4 – EEG Contaminated by Eye-Blink Artifact 

 

Figure 2.32 Time domain comparison between the off-line result from EEGLab 

and on-line results for pattern 4 with original source EEG shown in the first column 
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Figure 2.33 Frequency domain comparison between the off-line result from 

EEGLab and on-line results for pattern 4 

 

Figure 2.34 Time-frequency analysis comparison between the off-line result from 

EEGLab and on-line result for pattern 4 

To summarize the performance analysis using real EEG signals, following points 

are concluded: 

 Since the 4-channel ICA processor is designed to perform artifact removal from 

EEG signals, patterns recorded by NeuroScan system with and without eye-blink 

artifacts are applied to verify the design. 
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 All results are compared with the off-line algorithm performed by the latest 

release of EEGLab. 

 To compare our work with the other on-line ICA designs, we also applied 

super-gaussian random patterns to the chip, and the result show that an average 

correlation of 0.86 is achieved. 

 From the results of pattern 3 and 4, we can tell that the same independent 

components are locked at the same channel, even though the window is only 64 

in length and may not contain any eye-blink artifact at some time. Locked 

channel order brings tremendous advantage for artifact removal. No matter the 

identification is done manually or automatically, if the artifact is always locked 

in the same channel, we need only one time identification. 

2.3.3 Comparisons with Other Works 

Table 2.6 Comparisons using complexity and average correlation coefficient 

 Shyu [31] Huang [32] This Work 

Application EEG Speech EEG 

Channel 4 2 4 

Pre-Processing No Yes Yes 

Memory (bits) 384,000 24,576 4,352 

Equivalent Gate-Count N/A 315.5K 199.7K 

ADC sample rate 64 Hz 16 KHz 128 Hz 

ADC resolution 8 bits N/A 10 bits 

Correlation > 0.8 N/A 0.86 

Data format Floating Floating Fixed 

Algorithm Infomax Fast Infomax 

Table 2.6 shows comparison of the proposed design with other works on ICA. In 

our proposed design, the memory complexity is much lower while the average 

correlation coefficient is higher. Target application for [31] and the proposed design 

are the same, while the work in [32] is for speech separation thus need for much 

higher sample rate. A big advantage for the proposed design is that only small amount 

of memory is used result in lower power consumption and small area. 
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2.4 UMC 90nm 4-Channel ICA Processor Tape-out 

The proposed design is fabricated using UMC 90nm SPRVT 1P9M process 

technology, the physical information of the chip is listed in Table 2.7. The power 

consumptions of the two boundary working conditions are also included in the table. 

For high efficiency condition, the system works at 60 MHz and powered by a 1.2 V 

core voltage, and the chip consumes average 12.24 mW. For low power condition, the 

system works at 0.817 MHz, the lowest boundary for successful completion of the 

worst cast 512 training iterations, and powered by a 0.6 V core voltage, and it 

consumes average 312 uW in this condition. In the low-power condition, the core 

voltage approaches the threshold voltage of the MOS, and even lower power supply is 

not possible without the involvement of sub-threshold technology. 

Table 2.7 Physical information of the 4-channel ICA chip 

Technology UMC 90nm SPHVT 1P9M 

Pad/Core Voltage 2.5V / 1.0V 

Die Size 1.068 x 1.068 mm
2 

Core Area 0.760 x 0.760 mm
2 

Logic Gates 199.7K 

On-Chip SRAM 544B 

Operating Frequency Up to 60MHz 

Power Consumption 
312uW (0.817MHz CLK, 128Hz EEG, 0.6V) 

12.24mW (60MHz CLK, 9.708KHz Input, 1.2V) 

# PAD 55 pins (functional / power : 31 / 24) 

Test Package 68 pin LCC package 

Micrographic of the fabricated chip with module partitions marked by their 

boundary is shown in Figure 2.35 (a). As we can see from Figure 2.35 (a), whitening 

unit occupies about 50 percent of the core area, while the Infomax training unit takes 

about 25 percent, and the memory size is optimized, so about 10 percent of core area 

is filled by the SRAM. The test chips used in section 2.4.1 to 2.4.3 is packaged using 

68-pin LCC package shown in Figure 2.35 (b) accompanied by the bonding map in 

Figure 2.35 (c). 
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(a) 

  
(b) (c) 

Figure 2.35 (a) Micrograph of the fabricated 4-channel ICA processor (b) Chip 

packaged by 68-pin LCC package (c) Bonding map 

2.4.1 Functional Verification 

For the functional test, the only thing we care about is that if the behavior of the 

chip matches the result of post-layout simulation which is done before the fabrication 

of the chip. Therefore, the functional test is done by applying the same super-gaussian 

pattern described in section 2.3.1 to the Agilent 93000 SOC Tester in CIC using 

normal condition that is applying 2.5 V for pad power and 1.0 V for core power, and 

the system working frequency equals to 32 MHz as the frequency for RTL synthesis is. 

The expected output pattern is generated using the original MATLAB code for 
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architectural exploration and hardware design verification with fix-point format which 

is identical to the behavior of the designed processor. 

 

Figure 2.36 Chip testing using Agilent 9300 SOC Tester 

The chip packaged by LCC-68 package is first insert to a DUT (design under test) 

board, and the DUT board is then connected to the Agilent 93000 SOC tester in 

Figure 2.36, and the pattern setup is done on a workstation connected with the tester. 

The tester is able to automatically compare the chip output with the expected output 

pattern, and once the result mismatches, the test process will abort and notice the user 

the chip fails the specified pattern under current condition. Bypass mode and normal 

mode for the ICA processor are both verified and successfully passed. 

2.4.2 Power Consumption Analysis 

In electrical engineering, a Shmoo plot [33] is a graphical display of the response 

of a component or system varying over a range of conditions and inputs. It‟s often 
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used to represent the results of the testing of complex electronic systems such as 

computers, ASICs or microprocessors. The plot usually shows the range of conditions 

in which the device under test will operate. For example, when testing semiconductor 

memory: voltages, temperature, and refresh rates can be varied over specified ranges 

and only certain combinations of these factors will allow the device to operate. Plotted 

on independent axes (voltage, temperature, refresh rates), the range of working values 

will enclose a three-dimensional, usually oddly-shaped volume. Other examples of 

conditions and inputs that can be varied include frequency, temperature, system- or 

component-specific variables, and even varying knobs tweakable during silicon chip 

fabrication producing parts of varying quality which are then used in the process. 

 

Figure 2.37 Shmoo plot showing the boundary of the working condition using core 

voltage and frequency as its axes 

After the functional test is done, we still are interested by the boundary of the 

working condition and the corresponding power consumptions. One Shmoo plot 

shown in Figure 2.37 is scanned by the Agilent 93000 SOC tester with x-axis 
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representing the system clock rate and y-axis representing the core voltage. The top 

boundary of core voltage is limited to 1.2 V because the targeted application for this 

chip requires power consumption as low as possible, and the lower boundary of the 

system clock rate is limited to 0.5 MHz which merely satisfies the cycle count needed 

to perform ICA training for maximum 512 times. The average power consumption of 

eight working conditions are measured and listed in Table 2.8 and Figure 2.38 shows 

more distinct ratio how the power consumption can be minimized. The measurement 

shows minimum 0.312 mW is consumed to perform independent component analysis 

using the chip with a lower sample rate of 80 Hz. 

 

Table 2.8 Power consumption table at different working conditions 

 0.5MHz 5MHz 30MHz 60MHz 

1.2V 4.392 mW 5.028 mW 8.328 mW 12.24 mW 

0.9V 1.323 mW 1.629 mW 3.312 mW - 

0.6V 0.312 mW - - - 

 

 

Figure 2.38 Power minimization 
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2.4.3 A FPGA-Based Testbed 

To apply different pattern for performance analysis of the design, we setup a 

FPGA-based Testbed. One of the packaged chips is soldered to the self-made printed 

circuit board (PCB) shown in Figure 2.39. The PCB is connected to a SMIMS (北瀚) 

FPGA board using a standard 40-pin IDE bus, and the described setup is shown in 

Figure 2.40. 

 

Figure 2.39 The self-made PCB with the packaged chip soldered on it 

 

Figure 2.40 Connection between the FPGA board and the PCB 

The FPGA is special and suitable for pattern feeding due to the design of a 

software controlled data interface shown in Figure 2.41. The FPGA and host computer 

is connected by a USB cable used for netlist downloading and run-time data exchange. 
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Engineer can create user interface programs to do whatever he want with the interface, 

for example input pattern feeding, output result fetching and hardware control. 

 

Figure 2.41 Software controlled data exchange interface between the FPGA and a 

host computer connected by USB 

For the user end, SMIMS software development kit (SDK) provides a dynamic 

link library (DLL) file including the following basic function listed in Table 2.9 for 

data exchange between the host and FPGA. The argument iBoard in the table all 

represent for the board number to control and at most 2 SMIMS FPGA boards can be 

controlled by one host computer at a time. 

Table 2.9 The data exchange functions provided by SMIMS SDK 

Function Name and Prototype Description 

bool SMIMS_VEX2_AppOpen 

(int iBoard, char * Serial) 

Initialize the connection between host 

computer and the FPGA 

bool SMIMS_ VEX2_AppClose 

(int iBoard) 

Terminate the connection between 

host computer and the FPGA 

bool SMIMS_ VEX2_AppFIFOReadData 

(int iBoard, WORD *Buffer, unsigned size) 

Read block data from the output 

FIFO on the FPGA 

bool SMIMS_ VEX2_AppFIFOWriteData 

(int iBoard, WORD *Buffer, unsigned size) 

Write block data to the input FIFO on 

the FPGA 

bool SMIMS_VEX2_AppChannelSelector 

(int iBoard, BYTE channel) 
A 8-bit bus for free use 

bool SMIMS_VEX2_ProgramFPGA 

(int iBoard, char * BitFile) 

Download a netlist (.bit file) to the 

FPGA 

char * GetLastErrorMsg 

(int iBoard) 

When error occurs user can get the 

error information using this function 
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For the FPGA interface, the I/O port list is provided in Table 2.10. 

Table 2.10 I/O port list for the FPGA interface 

Port Name Type Width Description 

APP_CLK In 1 System clock (48 Mhz) 

APP_CS In 1 Becomes 1 after the connection is opened 

APP_RSTN In 1 Raises for one cycle after programmed 

CH In 8 A 8-bit bus for free use 

APP_RD Out 1 Read signal to the input FIFO 

APP_WR Out 1 Write signal to the output FIFO 

APP_DI In 16 Input data bus from the input FIFO 

APP_DO Out 16 Output data bus to the output FIFO 

APP_FULL In 1 Indicates if the output FIFO is full  

APP_EMPTY In 1 Indicates if the input FIFO is empty 

APP_AlmostFULL In 1 Indicates the output FIFO is about to be full 

APP_AlmostEMPTY In 1 Indicates the input FIFO is about to be empty 

Figure 2.42 and 2.43 are waveform examples for single cycle read/write. 

 

Figure 2.42 Waveform example for single cycle read operation 

 

Figure 2.43 Waveform example for single cycle write operation 
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With SMIMS FPGA and its SDK, a FPGA-based Testbed is built to provde a 

experiment platform able to perform fast performance analysis of the fabricated chip. 

The hardware architecture is shown in Figure 2.44. 

 

Figure 2.44 Hardware architecture of the FPGA-based Testbed 

The experiment flow char and the software flor char are shown in Figure 2.45. 

On-line result and off-line result are compared and analyed by MATLAB. The 

generated results are the ones demonstrated in section 2.3. 

 

Figure 2.45 Flow char for the experiment for performance analysis using real EEG 

patterns recorded from the NeuroScan system 
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Chapter 3 Experimental Brain-Heart Monitoring SoC Tape-out 

 In chapter 1 the need for integrated health-care systems is already emphasized. 

Three common human health indicators, EEG, EKG and near-infrared spectrogram, 

are also pointed out to generate information suitable for joint analysis that is valuable 

to be used in three potential scenarios. To enable the practical development of such 

health-care systems, an experimental brain-heart monitoring SoC is integrated as a 

preliminary version. 

3.1 Overall System Architecture 

The overall system architecture is shown in Figure 3.1. To start the system 

function, the science station first sends a trigger command including the system 

working mode and compression mode to activate the whole system. The command is 

decoded and evaluated by the system control unit (SCU), and after the reset process, 

an internal trigger signal is then sent to the front-end interface control unit (FICU). 

Afterwards, time multiplexed data acquisitions are continuously triggered by two 

system counters in FICU. Table 3.1 shows the front-end specifications of the system. 

 

Figure 3.1 Digital signal processing chip architecture for the portable brain-heart 

monitoring system 
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Table 3.1 Specifications of the front-end circuits and working modes for the system 

Parameter DOT Sub-System EEG Sub-System EKG Sub-System 

Sample Rate(Hz) 
1 frame 

(24 sensor values) 
128 256 

#Sensor(Channel) 12 4 3 

#NIR LED 6 - - 

LPF cut-off freq. 

(Hz) 
10 50 100 

Gain (dB) - 250 5000 

Output Range (V) 0~2.2 (external sensor) 0~2.5 (built-in IA) 0~2.5 (built-in IA) 

ADC Resolution 10 bits 

Digitized Data 

Range 
0~900 0~1023 0~1023 

ADC Priority 3 1 2 

ADC Order 
Only one sample at 

each time 
Ch1-Ch2-Ch3-Ch4 Ch1-Ch2-Ch3 

PDS Priority DOT:4 EEG/ICA:2 EKG : 1 HRV : 3 

System Mode DOT/Off EEG/ICA/Off EKG/EKG+HRV/Off 

Compression Mode On/Off On/Off 
EKG:On/Off 

HRV:Not Supported 

Digitized raw bio-signals are sent to both the prioritized data selector (PDS) and 

the corresponding processors, that is, the ICA, HRV and DOT processor. When the 

processed data is available from the processors, PDS will check if the lossless 

compressor is busy or not. When the output buffer and the compressor are available, 

the queued data is then sent using a fixed priority with their compression mode 

settings. Compressed data is packed and sent through the Bluetooth wireless link 

between the system and science station, and further display and signal processing can 

be performed on the science station.  

3.2 The Interface of the Analog Front-End Circuitry 

The designed digital integrated SoC is interfaced with an analog front-end IC 

designed for the biomedical signals, and the specification is already listed in Table 3.1 

in the previous section. At the back-end of the AIC, there is a time-multiplexed 

analog-to-digital convertor (ADC), and its behavior is shown in Figure 3.2. The 

maximum master clock rate for the ADC is 1200 KHz. Analog-to-digital conversions 
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are triggered by the Start_Conversion signal. The ADC requires constant 12 cycles to 

finish one conversion including the one which Start_Conversion raises. After the 

conversion is done at the twelfth cycle, the End-of-Conversion (EOC) signal will raise 

for one cycle, and at the same cycle the digitized sample of the bio-medical signal is 

ready to be read on the ADC_OUT[9:0] bus. In Figure 3.2, two complete 

analog-to-digital conversions are shown with their valid values marked on the 

waveform. For the digital integrated SoC, the end-of-conversion (EOC) signal can be 

directly used as an INPUT_VALID signal. 

 

Figure 3.2 Analog-to-digital conversion (ADC) simulation waveform 

The AIC is interfaced to the designed system via the front-end interface control 

unit (FICU). The 10 KHz and 1.2 MHz clocks are generated and provided to the AIC. 

The data acquisition scheduling, detailed design and behavior of the FICU will be 

described in section 3.5. In addition, channel selection table and detailed interface 

connection is also provided in section 3.5. 
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3.3 Three Bio-Signal Processing Processors 

Besides the function of biomedical signal acquisition and raw data transmission, 

we also developed three independent modules including the 4-channel independent 

component analysis (ICA) processor, a heart-rate variability (HRV) analysis processor 

and a near-infrared (NIR) diffuse optical tomography (DOT) processor for biomedical 

signal analysis and image reconstruction of the absorption coefficients. The three 

modules are used as hardware tools for easing the computation load on the science 

station. The 4-channel ICA processor is already well presented in chapter 2, so only 

emphasis of the importance to include the ICA processor in this system will be 

supplemented in this section. Brief descriptions of the other two processors are also 

given below, but the number of page for them will be limited due to the focus on the 

system design. Although the detailed designs and key technology of the other two 

processors will not be fully presented in this thesis, references to the corresponding 

works will be listed at the end of each sub-section. 

3.3.1 4-Channel ICA Processor 

As we know from chapter 2, computation complexity of the ICA algorithm is 

tremendously high due to the dependency between each channel. As a consequence, 

off-line ICA algorithm is usually applied to the EEG signal for artifact removal on 

pc-based science station. In practical application, real-time ICA is much more useful 

than off-line processing. Therefore, the 4-channel ICA processor described in chapter 

2 is employed for real-time artifact removal, and it is valuable to be placed in the 

system as a hardware accelerator. 

The EEG signal acquired by the front-end interface control unit is forwarded to 

the ICA processor if the system mode of ICA processor is activated. Afterward, the 

ICA processor acts identically as we described in chapter 2, so redundant description 
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is avoided for the ICA processor. Before we proceed to the monograph for the HRV 

and DOT processor, the top module view of the ICA processor is shown in Figure 3.3, 

and the I/O behavior of the ICA processor is depicted in the waveform in Figure 3.4. 

  

Figure 3.3 The top module view of the ICA processor 

IO sequence of the ICA processor is parallelized for port reduction, and the 

resulting sequence is shown in Figure 3.4. The basic input unit is 4 samples from each 

channel, and the output unit is 128 component values of estimation of one 

half-window. 

 

Figure 3.4 The IO sequence of the ICA processor 
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3.3.2 Heart-Rate Variability Analysis Processor 

Heart rate variability (HRV) is a physiological phenomenon where the time 

interval between heart beats varies. It is measured by calculation of the variation in 

the beat-to-beat interval. Methods used to detect heart beats include EKG, blood 

pressure and photoplethysmograph (PPG). Among these methods, EKG analysis is 

considered a superior ways to perform HRV analysis, because the signal is relatively 

clear and stable. The R-peak of EKG introduced in section 1.1.3 is used for detection 

of the heart beat, because it is easier to be detected. 

 

Figure 3.5 Architecture of the HRV analysis processor 

A novel frequency domain HRV analysis processor using a fast windowed Lomb 

periodogram [34] is designed and employed in the system. The Lomb time-frequency 

distribution (TFD) is suited for spectral analysis of unevenly spaced data and has been 

applied to the analysis of heart rate variability. The HRV processor in Figure 3.5 

comprises the hardware implementation of the Lomb TFD as well as a simple RR 

interval calculation unit. In consideration of architecture simplicity and real-time 

properties, the classical derivative-based QRS detection algorithm introduced by Pan 

and Tompkins [35] was adopted as a baseline for the RR interval calculation unit. In 

the RR interval calculation unit, EKG signals first pass through a set of linear 

processes, including a band-pass filter comprising a cascaded low-pass and high-pass, 
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and a derivative function. Non-linear transformation is then employed in form of a 

signal amplitude squaring function. Finally, a threshold is applied to detect the 

R-peaks of the QRS complexes. The RR intervals are then calculated from the 

detected peaks and HRV analysis is performed. Better time-frequency analysis of 

HRV is achieved through a de-normalized fast Lomb periodogram with a sliding 

window configuration similar to the one applied to the ICA processor. RR intervals 

detected in two minutes are analyzed to generate a 256-point complex spectrum in 

each window. 

The HRV processor is verified using the MIT/BIH database [36] and results of 

the QRS detection algorithm were compared with offline simulations. The output of 

the QRS detection algorithm and the power spectrum of the RR intervals are shown in 

Figure 3.6 and 3.7 respectively. 

 

 

Figure 3.6 Input and the resulting output from the QRS detection unit 
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Figure 3.7 Time-frequency HRV analysis of EKG data from MIT-BIH arrhythmia 

database using Lomb TFD 

The top level module view is shown in Figure 3.8. One sample will be put on the 

EKG_DATA bus every 1/128 seconds synchronous to the IN_VALID signal. For every 

minute, continuous 256 point of complex spectrum values are output sequentially. 

 

Figure 3.8 Top level module view of the HRV analysis processor 
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3.3.3 Near-Infrared Diffuse Optical Tomography Processor 

 The DOT processor is designed using Continuous Wave (CW) algorithm [37] 

comprising a sub-frame operation control circuit [38], a DOT reconstructor and an 

image post-processor, and its overall architecture is shown in Figure 3.9 (a) while a 

top level view is shown in Figure 3.9 (b). The CW DOT algorithm can be divided into 

a forward model and its inverse problem. Forward model includes abundant optical 

parameters and mathematic equations. Indeed, when the depth of the surface to be 

calculated is fixed, the inverse matrix is always the same. Therefore, the 

pre-calculated inverse matrices are stored in a look-up table. The DOT reconstructor 

controlled by the sub-frame operation control circuit is mainly used to perform matrix 

operations. Pixels reconstructed represent absorption coefficient variance
,

a

x y . 

Normally, 
,

a

x y are too small to be observed, so an image post-processor is employed 

to perform linear mapping, contrast enhancement and color mapping so that we can 

observe clear images on the science station monitor. 

 
 

(a) (b) 

Figure 3.9 (a) The architecture of the DOT processor (b) Top level module view 

of the DOT processor 

To verify the proposed DOT processor, we use the experimental model shown in 

Figure 3.10. The frame area is 4x6cm
2
 and the volume of each voxel is (0.25cm)

3
. The 

background medium is homogenous with 10.05bg

a cm   and the reduced scattering 

coefficient ' 110bg

s cm  . Two kinds of inhomogeneous media were embedded at depth 

of 0.5cm below the surface. The absorption coefficients of the inhomogeneous 
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mediums A and B (yellow) are 0.21cm
-1

 and 0.5cm
-1

 respectively. The reconstructed 

colored image using the processor is shown in Figure 3.10 (b). 

  
(a) (b) 

Figure 3.10 (a) An experimental model for the DOT processor (b) The 

reconstructed image on the LCD of the development platform 

To make sure the near-infrared doesn‟t leak through the space between the LED 

and the measuring surface, we designed the DOT sensor array board using bendable 

printed circuit board (PCB). Aside from the NIR sensors and the bi-wavelength LEDs, 

there is an analog multiplexer chip for selecting the channel to be digitized and a 

decoder chip for selecting the LED to emit near-infrared. The timing chart of IO 

sequence is shown in Figure 3.11. 

 

Figure 3.11 The timing chart of IO sequence of the DOT processor 
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3.4 System Control Unit 

The system control unit (SCU) is responsible for the system initialization and the 

generation of the gated clocks for the processors, and the flow chart of the system 

initialization is shown in Figure 3.12.  

System Reset

Wait for UART 
trigger command

Send internal reset

Wait for 
INIT_DONE
From COMP

Send trigger signal to 
FICU

Gated Clock
Generation

Send ICA 
clock

System ModeSend HRV 
clock

Send ICA 
clock

 

Figure 3.12 Flow chart of the system initialization 

When the external system reset is sent from outside of the chip, the chip enters 

inactive state. An activation command from the UART module needs to be received to 

activate the system, and the command includes the system modes and the 

compression modes listed in Table 3.2. 

Table 3.2 System activation command 

Bit Mode Selection Clock Gating 

0 Activate EEG analog to digital conversion ICA 

1 Activate 4-channel ICA processor ICA 

2 Activate EKG analog to digital conversion HRV 

3 Activate HRV Processor HRV 

4 Activate NIR ADC and DOT Processor DOT 

5 Bypass EEG compression - 

6 Bypass EKG compression - 

7 Bypass DOT compression - 

 After the activation command, an internal reset is sent to every other module. 

The reset process takes only one cycle for all modules inside the chip except the 

compression module that requires 96 cycles for initialization, and the waveform in the 
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duration is shown in Figure 3.13. 

 

Figure 3.13 The duration from the system reset is sent to the end of initialization 

inside the compression module 

When the signal INIT_DONE from the compression is received, the SCU starts to 

generate the clocks for the three processors according to the system mode received 

from the UART module. If any one of the bio-signal acquisition is not activated or is 

set to transmit the raw data, the clock to that processor will be turned off, so the 

redundant power consumption can be saved by clock tree trimming. In the meanwhile, 

a trigger signal is sent to the front-end interface control unit (FICU), and then the data 

acquisitions are automatically scheduled afterwards. 

3.5 Front-End Interface Control Unit 

The front-end interface control unit (FICU) is designed to actively acquire the 

bio-medical signal from the analog front-end IC. The connection between the analog 

front-end IC and the proposed digital chip is shown in Figure 3.14. 

 

Figure 3.14 Interface connection between the front-end interface control unit and 

the analog front-end integrated chip 
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Two clock dividers are built inside the FICU, and they are used to provide the 10 

KHz and 1200 KHz clocks to the AIC. The 10 KHz clock is needed for the internal 

chopper-stabilized differential difference instrumentation amplifier  (CHDDA) and a 

low-pass switched-capacitor filter (SC LPF). The 1200 KHz clock is provided as the 

master clock of the analog-to-digital converter (ADC) for the AIC, and an active-high 

reset signal which is synchronous to the master clock is also generated when the 

system is reset. 

The scheme of FICU and the main state machine for data conversion are shown 

in Figure 3.15. Due to the fact that an analog multiplexer is used to perform channel 

selection, after the ADC_CHSEL changes, the analog signal routed to the input of 

ADC takes few cycles to get stable not to mention the ADC_CHSEL signal is 

connected from outside of the chip that may introduce much more delay time. As a 

matter of fact, when we immediately start a conversion after ADC_CHSEL is changed, 

invalid digital data will be converted. Therefore, an additional dummy conversion is 

invited to solve this problem.  

Waiting for 

trigger signal

256 Hz

Counter

24 Hz

Counter

Sys_clk

24MHz

EEG

flag

Schedule for EKG 

acquisition

Schedule for

EEG acquisition

Schedule for 

DOT acquisition

Scheduled Event 1

Data Acquisition 

Scheduler

Scheduled Event 3

Scheduled Event 2

Scheduled Event 4

… at most 8 events…
Get the first scheduled event in the buffer

A-D Conversion State Machine

1

Channel 

Selection

2

Dummy

Conversion

3

Wait for EOC

4

Real

Conversion

5

Send data to 

Engine

 

Figure 3.15 The scheme and state machine of FICU 



 

76 

 

When a scheduled conversion is accepted, FICU first changes ADC_CHSEL to 

select the specified channel to be converted, and then the dummy conversion is started 

by sending ADC_START_CONVERSION. An analog-to-digital conversion takes total 

12 cycles to complete. Right after the dummy conversion, a real conversion is started, 

and a same process is taken to derive the valid data. When the conversion finishes, the 

converted data is available on the 10-bit ADC_DATA bus and it is synchronous to the 

ADC_EOC (end-of-conversion) as we previously discussed in section 3.2.  

 A model of the DOT sensor board is shown in Figure 3.16. Note that there are 6 

near-infrared LEDs and twelve light intensity sensor for near-infrared on the sensor 

board. Only one LED is turned on at each time to avoid interference not from the 

nearby LED. Each time an LED is turned on, the four light intensity values from 

nearby sensors are acquired and digitized by the ADC. Therefore, before the image 

reconstruction of one frame can be launched, total 24 sensor values are converted. 

 

Figure 3.16 A model of the DOT sensor board 

Each time the last conversion for conversion numbers marked with the same color is 

done for one LED, the LED_SEL is switched to the next LED in advance to avoid 

possible unstable conversions after switching LEDs. For example, after conversion 

eight is done, FICU will immediately switch the LED to the third one. 
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The full channel mapping table of the ADC_CHSEL and DOT_CHSEL signal 

provided to the analog multiplexer and the bendable DOT sensor board in the AIC is 

listed in Table 3.3. After the conversions of near-infrared sensor values with 

conversion numbers marked in red, the LED will be switch to the next one. 

Table 3.3 Channel and conversion mapping controlled by ADC_CHSEL, 

DOT_CHSEL and LED_SEL 

ADC_CHSEL Selected Channel 

000 (Ch1) EEG Channel 1 

001 (Ch2) EEG Channel 2 

010 (Ch3) EEG Channel 3 

011 (Ch4) EEG Channel 4 

100 (Ch5) EKG Channel 1 

101 (Ch6) EKG Channel 2 

110 (Ch7) EKG Channel 3 

111 (Ch8) 

LED_SEL DOT_CHSEL 
Selected DOT 

Conversion 

000 (LED 1) 

0 1 

4 2 

1 3 

5 4 

001(LED 2) 

1 5 

5 6 

2 7 

6 8 

010 (LED 3) 

2 9 

6 10 

3 11 

7 12 

011 (LED 4) 

4 13 

8 14 

5 15 

9 16 

100 (LED 5) 

5 17 

9 18 

6 19 

10 20 

101 (LED 6) 

6 21 

10 22 

7 23 

11 24 
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3.6 Three-Stage Backward Handshaking Mechanism 

The processed and raw data flow in the designed system is controlled by a 

three-stage backward handshaking mechanism shown in Figure 3.17. Data flows 

forward while the handshaking control propagates backward. When the output buffer 

in the UART module is not full, the compressed data is forwarded to the output buffer 

in UART for wireless transmission. Otherwise, the first stage handshaking mechanism 

will hold the compression module from outputting compressed data. The second stage 

handshaking works similarly to the first stage. The two conditions that activate the 

second stage handshaking are listed below: 

 The compression is busy compressing the previous accepted data. 

 The output buffer in UART module is full causing the data packing buffer in 

compression module also full. In this condition, input data from the PDS is not 

allowed, because no buffer space is available in the compression module. 

 

Figure 3.17 Three-stage backward handshaking mechanism 

Similar to the first and second stage handshaking, the third stage handshaking doesn‟t 

allow data to pass when the second stage handshaking is active. 
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Chapter 4 Conclusion and Future Works 

4.1 Conclusions 

In this thesis, a hardware and power efficient 4-channel ICA processor is 

implemented using various techniques. Optimized data windowing, 3-bank circular 

memory allocation and an optimized mirrored non-linear lookup unit have been 

employed to reduce memory usage and power consumption. Operation pipelining 

between the ICA training and component extraction not only shortens the output delay 

by 0.25 seconds but also increases the hardware efficiency. A hardware efficient ICA 

training unit which comprises shared multiplier and adder arrays and a data routing 

matrix capable of pipelining the large matrix operations is designed. All the employed 

techniques and optimizations result in a 95 percent reduction of power, an 85 percent 

reduction of memory usage and an 87.5 percent reduction of ROM size. In addition, 

for the targeted application using 128 Hz sample rate, a 0.817 MHz clock frequency is 

needed under the worst case condition of 512 iterations in each window. On the other 

hand, when using 60 MHz clock frequency, a maximum data rate produced by 9.708 

K sample rate can be processed under the worst case condition. 

Both super-gaussian random signals and real EEG signals are applied to evaluate 

the performance of the designed processor. The result shows an average 0.86 

correlation between the original super-gaussian source and the extracted ICA 

components is achieved. Over 0.8 average correlation between off-line result and the 

on-line processing using real EEG signals with or without eye-blink artifacts is also 

demonstrated. An example of artifact removal has shown that similar results are 

produced by our designed chip and the EEGLab. 

 The designed ICA processor is fabricated using UMC 90 nm technology. The 

size of the core area is 780x780 μ m
2
. Functional verification and power 
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measurements are done using Agilent 93000 SoC tester. Power measurements show 

that a minimum 0.312 mW is consumed to perform independent component analysis 

using the chip with sample rate of 80 Hz. In addition, the stable convergence property 

of the ICA algorithm also provided us clues for designing a power efficiency 

improved version of ICA processor that consumes only 20 percent of the original 

power. 

A preliminary portable brain-heart monitoring system comprises an fNIR-DOT 

processor, a 4-channel ICA processor that achieves 0.86 of correlation and a HRV 

analysis processor using Lomb periodogram is designed and integrated. Signals 

acquired from the front-end sensor modules are processed in real-time or bypassed 

according to user configurations, and are then losslessly compressed and packaged by 

a biomedical signal compressor achieving an average 2.5 CR before being wirelessly 

sent to a base-station with a commercial Bluetooth module, and the packaging 

protocol adds only additional 5 percent overhead. Internal data flow is controlled by a 

prioritized data selector that ensures the output buffer utilizations are not wasted in 

the three processors so that the output buffer in UART module can be reduced by 

using a three stage handshaking mechanism. By integrating three biomedical systems 

into a single chip, bulk associated with external circuitry is reduced. The ICA and 

HRV processor are verified by real EEG and EKG signals while the DOT processor is 

verified by an experimental model.  
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4.2 Future Works 

For the ICA processor, an automatic artifact removal scheme is an essential 

function. The artifact removal process includes one step of artifact recognition. 

Traditionally, the artifact component is recognized manually or semi-manually. This 

process degrades the EEG system to an off-line analysis system. To overcome this 

problem, automatic artifact recognition can be done using statistic analysis or wavelet 

[39]. The number of channel in the ICA processor should also be raised for higher 

precision, because there are definitely more than four components in the EEG signal. 

For the integrated system, further power and cost efficiency can be achieved by 

further integration of the AIC, DIC and the wireless transmission module by using 

system-in-package (SIP) technology. ICA design with more channels is possible by 

using external memory chip. By integration of the system and the external memory 

chip using SIP technology, the connection path of massive amount of data exchange 

can be shortened. Improvements for the next stage also include the adoption of more 

advanced low-power techniques like power shut-off (PSO) and dynamic voltage and 

frequency scaling (DVFS) that are suitable for this system. With these advanced 

techniques, the operation time of the system can be further prolonged. 
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