2 RAR AL B 2 Pk B 2

Fast Graph Cuts Algorithm for Disparity

Estimation

=

i 2 R T B 2 Peid B2 3
b JLNES

Fast Graph Cuts Algorithm for Disparity Estimation

oro4 R b3 Student: Cheng-Wei Chou

et

R R F g B Advisor: Dr. Hsueh-Ming Hang

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of Master
in
Electronic Engineering
June 2010

Hsinchu, Taiwan, Republic of China

PERRAY L ES

&% a2 HARLE o *

NV N

I

N
o

Fii: il By bEE B
i+ g
TI1MRE) BRI AL
R
WARE b

3D ARAT AT 4 s¥ X

o — B RAENTF o oF 5T SR
Mk EARLR o B BEE 2

=

A - AR RLBEFE - RA 0 B

— YRR E d WA MR G A
B 4e i P ITRLIE)

- BRSNS ¥ - AR o-f R n
l&i g B o 3\ ipe rf‘!’]fsy:%‘é%—% 2 IR é A2 R b,

B

W SER B R ek
68%:T $93F B PR o I pE o AR L B NS H T AR AT B R A

e R
oo BT A PREART 5 IRTR G o - B AR P AR AR
WP D EH BT R DR RTRLAGE

At MEITRILIE - BHF oA

PEEHMETR AL B A SR AR L BT S A A B2 RS R R
S L Rl AL PR B R DS N 2B R ARGl o
NPT PRI ADRA I RAFEE R R Y R ERFF S 16% @
BipF D igrd 1% APy abhid- BLIELRY S phRILL G

Bl BBE A T - B B R AP F R R P sk RS A e

B

il

Fast Graph Cuts Algorithm for Disparity
Estimation
Student: Cheng-Wei Chou Advisor: Dr. Hsueh-Ming Hang
Department of Electronic Engineering &

Institute of Electronics
National Chiao Tung University

Abstract

Disparity estimation is one of the critical elements in a 3D video processing
system. Many techniques have been proposed to calculate the disparity map from a
pair of images and the graph cut (GC) algorithm is one of the recognized better
disparity estimation schemes. However, GC has a very high computational
complexity.

In this thesis, we propose a fast GC algorithm for disparity estimation purpose.
Two accelerating techniques are suggested: one is the early termination rule and the
other is prioritizing the a-f swap pair search order. Our simulations show that the
proposed fast GC algorithm can reduce 68% computing time on the average, when
compared with the original GC scheme. Meanwhile, its disparity estimation
performance is about the same as that of the original GC.

Another speed-up technique we adopt is the multi-resolution approach. The

il

original images are down-sampled and a low-resolution disparity map is first

estimated. Then, the low-resolution disparity map is up-sampled as the initial values

for estimating the disparity map of the original images. Several down-sampling and

up-sampling filters are tested to find the best combination. Our simulation shows that

the multi-resolution GC (MRGC) algorithm uses only 16% of the original computing

time and the bad pixel probability increases only by 1%. The last topic we investigate

is disparity estimation using multi-camera pictures. The initial exploration shows

some interesting results. Further investigation is needed to fully take the advantage of

multiple images recoded by a camera array.

iv

—+
Bty

AR ALY 0 A g AR R MO B RRIE R 0]8R

AR I £

e

Soogd KFaE R F Y IR L ok R T A
Bl A FEMORA PSR A R KEFS A TR ST
oo (SFEFA AT F o PRESLERMF A LS LR AT o

L ERY Y RHEDTEL P AT PRI R R 8

RASPE G B EAB R E

sy A AT T AL AAFHBELAORET RN LRI R

R R P Est A L RN R Y S S T

BRURREHMADTEE Yo A A REF S R BB DL FFAN S P g el

Table of Contents

BB e i
ADSIIACE e il
R B v
Table of CONENS eineiti e vi
List Of FIgUIES oot viii
List of Tables ooooiii X
Chapter 1 INtroduction........icoeeiciceicsseicssnncssancsssnsssssssssassssssssssssssssssssssssssssssssssnssss 1
1.1 Back@round.........c.coovieiieiiiiiieieee e 1
1.2 Motivation and ContributionScccueeeuverieniieereeniieeiieeieeree e 2
1.3 Organization of the ThesiScccoevviriiiciieiieieceee e 3
Chapter 2 Introduction of Computational Stereoc.ccceeverecrveressrercssnresseressnenes 5
2.1 OVEIVICW ..ttt ettt ettt ettt ettt e bt et saee bt enneeneenneas 5
2.2 Epipolar GEOMELIYcveeiuiieiieiieeiierieeie ettt 5
2.3 The General Structure of Matching Algorithm............cccccceeeivieiienneenne. 6
2.3.1 Initial Matching Cost Computationcccecveevveercieenieeeieeneeeireenneenns 7
2.3.2 COSt AGEICEATION ..uveeevienieieiieeiieetteeteeeireeteestaeeseesaeeesseensaeenseesseeenseennns 8
2.3.3 Disparity Computation and Optimization............ccceceeeeeveereeereenenennnenn 10
234 Disparity Refinement..........cccoooviiiiiiiieiiieiieeeieeee e 13
24 A Taxonomy Evaluation...........ccceeeveerieiiiieiiienieeieciecieeeee e 13
24.1 Overview of the Platform..........cccooceviiiiniininiee 13
242 QUALILY MEEIICS ..evieniiieiiieeiiieiie ettt ettt e ee et eer e e e e enseeensaes 15
243 TSt DIAtA ... 16
Chapter 3 Energy Minimization by Graph Cutsccceevveeiciverccssnrcssnrcssnencsnns 18
3.1 OVEIVICW ..ottt ettt ettt et et et et sees 18
3.2 Max-Flow and Min-Cut Problem............ccccccvevviiiiieniiniieieeieeeeeen 18
33 Push-Relabel Algorithm...........cccoeeevieiiiiiiiieiieieeecee e 20
34 Energy Minimization using Graph Cutsccceeceevieeciienieeieeneennnen. 23
34.1 The General Form of Energy Function............ccoceeviiiciiinienieenieen. 23
342 The -3 Swap Method..........cccoeviivieiieiiieieeceeeeeeeeeeeee e 25
343 Multiway Cut AIZOTIthM.......c.cooiiiiieiieeiieieeeeeee e 29
Chapter 4 The «-3 Swap Algorithm Speed-Up and Early Termination 32
4.1 OVEIVICW ..ttt ettt sttt ettt et st ettt et sees 32
4.2 Early Termination of Energy Minimization Process..............ccccuvennee. 32
4.3 Prioritizing the -3 Swap Pair Sequencecccccevevveeieneenieneennne. 34

vi

4.4 Simulation Results and DiSCUSSIONScceerveerieriernienienieeienienieeieenen 37
44.1 Experiment Environment Setting............cceevevieevieenienciienieeieesee e 37
442 Simulation RESUILSeeoueriiriiiiiiieeeeeeeeee e 38
443 Analysis and DiSCUSSIONS.......c..ccvuerriieriierieeriieeieeiie e esree e eseee e eneas 46
Chapter 5 Multi-Resolution Graph Cuts and Disparity Estimation for
Multi-CaAmera ATTAY ...ccccrvercssricsssnncssansssssnssnsssses 48
5.1 OVEIVICW ..ttt ettt ettt sttt ettt et e bt ettt eneesees 48
52 Disparity Estimation using Multi-Resolution Graph Cuts................... 48
5.2.1 Image Down-Samplingccccovveriienieiiieiieie e 50
52.2 Disparity Map Up-sampling and Scaling............cccceevveeerienieeieennennnen. 51
5.2.3 Neighborhood Graph Cutsccceeecieiiieiierieeeeceeee e 53
53 Disparity Estimation in Multi-Camera Arraycccoeevevveeveeneeennnen. 54
54 Simulation Results and DiSCUSSIONScceevueerieriernienienieeienienieeieeen 56
54.1 Multi-Resolution Graph Cuts...........ccccvevvieeviierieeiiienieeieeeee e 56
54.2 Disparity Estimation in Multi-Camera ATrayccccceeeveereeeieeneeennnenn 65
Chapter 6 Conclusions and Future WorK.........ccecoeicnsnccssnicssnncsssnncssnncsssencsnes 68
6.1 CONCIUSIONS ...ttt et 68
6.2 Future WOorkcooooiiii e 69

vii

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

List of Figures

2-1 Stere0 IMAZE ZEOMEIIY..c..eeuieurirrieteriterteeienttete et steesteeaee st esreetesbeenbeeteebeeneens 6
2-2 Process of the general stereo correspondence algorithms.............ccccceeeeneenee 7
2-3 DiSParity SPACE IMAZEccuveereerureeeeeeiieeieesieeeteeseeeteesseeesseesseenseesnseesseesaseenne 7
2-4 An illustration of the shiftable Window............cccoooiiiiiiiiiiiniiee, 10
2-5 Stereo matching using dynamic programmingceceeeveevvereerersueneenneenne 12
2-6 Program structure of the middlebury platformcoccooieiiiiiiniiineee. 14
3-1 A simple example of the graph G and the minimum cut (the red line)......... 19
3-2 A simple example of push-relabel algorithmcccocoiiiiiinniinie. 22
3-3 An example of a directed weighted graphccccoooeeiiiiiiiiiiiiiee, 26
3-4 An example of the graph for a 1D image.......ccccceevvieiieniiieienieieeeeen 26
3-5 Properties of a cut on the graphcccooeeiiiiiiiiii e, 28
3-6 The change of disparity map after an -3 SWap......ccccceevevveieieiecieieenn, 28
3-7 (a) An example of the graph with multiple terminals £ = {0,1,...,k} (b) An
induced graph by a multiway cut (dotted lines indicate cut edges)..................... 30
3-8 Flowchart Of GC........cooiiiiiiiiii et 31
4-1 Disparity distribution of the test image pair ‘sawtooth’ after the i-th iteration

of the outer 100D (PM) ..o 33
4-2 E and @ in the energy minimization process of the test image pair ‘sawtooh’

.. 34
4-3 RMS error and Bad_pixel in the energy minimization process of ‘sawtooh’34
4-4 Disparity distribution of ‘sawtooth’ after the 1* outer-loop iteration 36
4-5 Flow chart of our proposed fast GC..........cccceeiiiiiiiiiiniieeeeeeeee e 37
4-6 Plot Of COMPULING TIMEC....cueiiiieiiieiierie ettt st 39
4-T Plot Of 7ms_error_Qllcccooviiiiiiiiiiiieeeee s 40
4-8 Plot of bad _pixels allccoocoeiiiiiiiiiiiiiie e 41
4-9 Disparity Mmaps Of ‘Map’coouieiieiiierie ettt 44
4-10 Disparity maps of ‘Sawtooth”ccciiiiiiiiiiiiie e 44
4-11 Disparity maps of “Tsukuba’cccciiiiiiiiiiiie e 45
4-12 Disparity maps Of “VENUSccoeiiiiiiiiiieie et 45
5-1 Flowchart of MRGCoooiiiiiiiicee e 49
5-2 An example of 4 to 1 pixel-skip down-sampling............cccceeveeriiiieeniennennne 50
5-3 An example of disparity map up-sampling and scaling.............ccccceerueenennne 51
5-4 The up-sampling method of H.264coooiiiiiiiiie e 52
5-5 The disparity pair candidates in neighborhood graph cuts (a)+1 (b)*1....... 53
5-6 MUIti-CAMETA QITAYeeeiuiieiieiieetieeie ettt te ettt sbee e bt e eeesbeesaee e 54

viii

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

5-7 Flowchart of GC for multi-camera piCtures..........ccccueeveereeerieeneeenee e 55
5-8 The scaling and shifting MOVES...........cociiriiiiiieiierii e 55
5-9 Plot of computing time COMPATISONc..eerueeriieeiiereeeiieeeeeieeeeeerieeeeeenieens 58
5-10 Plot of #ms_error Qllcocoeioieiiiiiiiiieeee et 59
5-11 Plot of bad _pixels ll..............ccooeeiiiiiiiiiiiiiieiie ettt 60
5-12 Disparity maps Of ‘Map’ ...c..oeiiiriiiiieeeeeeee et 61
5-13 Disparity maps of ‘Sawtooth’cccoeiiiiiiiiiiiee e 62
5-14 Disparity maps of “TSuKuba’cccceiiiiiiiiiiieeeeeeeee e 63
5-15 Disparity maps Of “VenUSccooieiiiiiieieiie et 64
5-16 Disparity maps of “Sawtooth”coooiiiiiiiiiiee e 66
5-17 Disparity maps Of “VeNUS™coouiiiiiiiieiierie et 67

ix

List of Tables

Table 2-1 Match metrics for correspondence matching [6].........cccceeveeriiieniiniiiennennnen. 9
Table 2-2 Descriptions of error Metrics [5]...ccvierveeeiiieriie et 16
Table 2-3 Test data [5]...ccciiieiiie et et et e et e e e e e 17
Table 3-1 Weight information of the €dgesc..cccevveviriniinininece 27
Table 4-1 The experiment environmMent SENG.........ceevveeruierieeriienieeiienieereeseeenieenns 38
Table 4-2 Comparison of cOMPULING tIME........ceeoviiriiriiieiieie e 39
Table 4-3 Comparison of 7ms_error _allcccocveveeciniiiniiiiniiniiicneeieeecnene 40
Table 4-4 Comparison of bad pixels allcccoccoveevinviininiiniiiniiinieincnens 41
Table 4-5 Comparison of bad pixels NONOCCcccocueveevinciniininiiiniineeeeseeen 42
Table 4-6 Comparison of bad pixels textureless.............c.cccuveveeeverciniecnencueneenns 42
Table 4-7 Comparison of bad pixels diSCONEccccoovevivviinciininiiniiniiicneenns 43
Table 5-1 Computing time COMPATISONc...eeueerrieriieeieetiereeeteesireesteeseeesieeseeesaeeens 58
Table 5-2 Comparison of 7ms_error _allcccoceeveeviniiniiiiiniinieicneeieeenene 59
Table 5-3 Comparison of bad pixels allcccoccocervinviininiiniiiniiiinieenecnene 60
Table 5-4 Comparison of rms_error_allc.ccccoceeveeiiniiininiiniiniiiinieeeecene 65
Table 5-5 Comparison of bad pixels allccccccceeveiviiviniiiniiiniiiiniiiinicneen 65

Chapter 1 Introduction

1.1 Background

Recently the ISO/IEC Moving Picture Expert Group (MPEG) initiated a
standardization process on free viewpoint television (FTV) [1]. As a new type of
interactive video system, FTV can synthesize 3 dimensional (3D) scenes at nearly any
(virtual) viewpoint and thus receives its name. An FTV system typically consists of
modules of multi-view video capture, image correction, depth map estimation, data
coding/decoding, and view synthesis. Specifically, the disparity estimation module is
an inevitable component of an FTV system, which is used in both multi-view scene
analysis and synthesis.

With the help of epipolar geometry [2], the general stereo correspondence
problem is simplified to disparity estimation (DE) [3][4][5] under the assumption of
dense camera array. Here, disparity refers to the location difference of the
corresponding objects along the epipolar lines on the two recorded images. For years,
most researchers have focused on improving the accuracy of DE, not on the speed
acceleration. With the emerging 3D TV and FTV, we focus on fast DE algorithms in
this study.

DE algorithm generally is divided into 4 stages: 1) initial matching cost

calculation, 2) cost aggregation, 3) disparity computation and optimization, and 4)

disparity refinement. In this contribution, we use the absolute intensity difference

(with the Birchfield and Tomasi’s sampling insensitive dissimilarity measure) [5]

between the corresponding feature points as the initial matching cost. The cost

aggregation collects the initial matching cost by using a moving average filter in a

square window (box filter). Once the aggregated costs are computed, the disparity

computation and optimization module determines which discrete set of disparities best

represents the scene surface depth. Finally the disparity refinement step increases the

disparity accuracy to sub-pixel precision.

The stereo algorithm can be categorized as local and global approaches [5]. The

local approach focuses on the cost calculation and aggregation. The winner-take-all

method (WTA), which chooses the lowest aggregated cost as the selected disparity at

each pixel, is a simple disparity computation and optimization method used in the

local approach. In the global approach, we further consider the disparity smoothness

among neighboring pixels More sophisticated algorithms, such as dynamic

programming, simulated annealing, belief propagation (BP) and graph cut (GC), has

been suggested to offer better DE results.

1.2 Motivation and Contributions

Among various global DE algorithms, GC and BP offer better DE results. The

qualities of them are similar. According to Tappen and Freeman [7], the computational
time of the synchronous BP is much larger than GC, but the accelerated BP uses only
80% of the GC’s computational time. In this study, we choose GC because it can be
accelerated and may have advantages in computation. In addition, to our knowledge,
the fast graph cuts algorithms are rare in literature. Therefore, we propose methods to
accelerate GC algorithm.

GC and its variations [8]-[11] generally show admirable performance in their
disparity estimation quality. However, GC suffers from the huge amount of processing
time. Owing to its good DE performance, GC is chosen as the target algorithm for
speed-up. The major contributions in this thesis include the following items.

(1) An early termination process is proposed to save the computing time.
(2) We save computing time by prioritizing the a-3 swap pair sequence.
(3) The computing time greatly increases with the image size and the disparity range.

We use multi-resolution graph cuts to reduce the computational complexity.

(4) We attempt to improve the disparity map for the multi-camera array.
1.3 Organization of the Thesis

In chapter 2, we briefly introduce the background of computational stereo. In

chapter 3, we describe the graph cuts process that minimizes the energy function in

DE problem. Chapter 4 describes our proposal of the early termination and optimizing

the a-3 swap pair sequence. Simulations are conducted and the significant amount

of computing time saving is shown. Chapter 5 discusses the multi-resolution graph

cuts algorithm and our initial investigation on the disparity estimation on the

multi-camera array picture. Finally, brief summary and remarks on future work are

given in chapter 6.

Chapter 2 Introduction of Computational

Stereo

2.1 Overview

The concept of stereo correspondence is to find the correspondent point in the
image of the other view. Based on epi-polar geometry, the general stereo
correspondence problem is simplified to disparity estimation under the assumption of
dense camera array. The search region of the corresponding features between the left
and the right images can thus be reduced to the epi-polar lines. The goal of a stereo
correspondence algorithm is to produce a univalued function in disparity space
d(x,y) that best describes the depth information of the surfaces in the scene.

2.2 Epipolar Geometry

Fig. 2-1 shows a typical stereo image geometry in the 3D space. There are two
pinhole cameras viewing a 3D scene from difference view points. We place a virtual
image plane in front of each camera. The intersections between the baseline connects
two cameras and the two image planes are called epipole. The plane formed by any
point in the space and the base line is epipolar plane. The epipolar plane intersects
each camera's image plane, the intersection forms lines—the epipolar lines. Any point

P in the epipolar plane corresponds to points P; and P, which are the projections of

point P onto the epiploar line. Therefore, if the two epipolar lines belong to the same
epipolar plane, for each point observed on one epipolar line must be observed on the
other epipolar line. We can use this property to reduce the search range from the

whole image to an epipolar line. This geometry property is called epipolar constraint.

. Image
Epipolar Planc?

Plane

Image

Planc] Camera 2

BaseLin

Camera |

Fig. 2-1 Stereo image geometry

2.3 The General Structure of Matching Algorithm

According to Scharstein and Szeliski [5], the stereo correspondence algorithms
generally consist of four parts:
1. Initial matching cost computation,
2. Cost aggregation,
3. Disparity computation and optimization,

4. Disparity refinement,

Fig. 2-2 shows the general procedure of a stereo correspondence algorithm. The

output is the disparity map of an image pair input. The details of the four parts will be

discussed in the following sections.

. Disparity computation L .
Cost aggregation e Disparity refinment

Initial matching cost
computation

Fig. 2-2 Process of the general stereo correspondence algorithms
2.3.1 Initial Matching Cost Computation
The matching cost represents the dissimilarity between two pixels in our
correspondence problem. The range of the disparity candidates is called the disparity
range. The initial disparity space image Cy(z,y,d) (Fig. 2-3) consists of the

matching cost values over all pixels and all disparities.

y

2

Fig. 2-3 Disparity space image

The most popular pixel-based match metrics are the squared intensity difference

(SD) and the absolute intensity difference (AD). The correspondence problem to find

the best match between the candidate pixel and the reference pixel in the support
region W. In addition, Birchfield and Tomasi proposed a matching cost sensitive to
image sampling [12][13]. The several match metrics are listed in Table 2-1 [6]. In our
platform, the parameter match fn selects the matching cost function we use. The
general formula of matching cost computation can be written as
Cost(z,y,d) = Matching(I(x,y) — [p(z — d,y)), (2.1)

where [; and [p represent the left (reference) and the right images, respectively.
2.3.2 Cost Aggregation

After computing matching cost, we aggregate nearby pixel costs. Because the

disparity values of the neighboring pixels should often be consistent, we select a

support window to add up their costs. The cost aggregation can be formulated as

Costoggr(z,y,d) = Z Z Costiir(x + 1,y 4+ j,d) - w(x,y,1,j), (2.2)

P

where Cost,;, is the initial matching cost calculated in the previous step. The w
function indicates the related weight of neighboring pixels contributing to the
aggregated cost. Although the cost aggregation can reduce the noise effect, it blurs the
edge of the object when aggregating the cost of difference objects. Therefore, how to
design a good aggregation scheme is an important topic. In our platform, the
parameter aggr fn selects the aggregation method we use. Several aggregation

methods are described below:

® Box filter: Use a separable moving average filter (add one right/bottom value,

subtract one left/top). The decision of the window size will affect the

performance and the computation time. If we want to implement real-time

matcher, we should consider the window size as a vital factor.

Table 2-1 Match metrics for correspondence matching [6]

Match Metric Definition

S (Lu(wv) = T) - Ualu - d,v) = Tp)

Normalized (u,v)EW
Cross-Correlation \/ Z (Ie(u,v) = T0)* - (Ir(u — d,v) — Ip)*
(u,v)EW

Sum of Squared

Z (Ir(u,v) — Ir(u —d, U))2

Difference (u,0)EW
Normalized Sum B B ,
<Zu,U(IL(u7 U) o IL)) (Zu:v(IR(uv ’U) o IR))
of Squared Z L .
()W \/Z“’f”(]L (U, U) -]L)2 \/Z’U.:U(‘[R(U” 'U) -]R)2
Difference
Sum of Absolute
> p(ww) — Ig(u— d,v)|
Difference (uv)eW
Mutual 10g< p (I (u,v) - Ip(u —d,v)))
Information p(Ir(u,v)) - p(Ip(u —d,v))

I (u,v) and Ir(u,v) represent the intensity value of left and right image where
(u,v) is the index of pixel. I, represents the mean of intensity value in the support
window W. p(:) is the probability density function and d represents the disparity

value.

® Binomial filter: The w function is a separable FIR (finite-duration impulse

response) filter. We use the coefficients 1/16{1, 4, 6, 4, 1} proposed by Burt and

Adelson’s [14] Laplacian pyramid.

® Minimum filter: The w function is a sliding window with a location bias (Fig.

2-4). We can use a box filter and its center is not the candidate pixel. But the

candidate pixel should be included in the shifted windows, it is called shiftable

window [15]. We choose the minimum aggregation cost among all the shiftable

windows in the pre-selected range. The shiftable window can avoid aggregating

the cost near object boundary.

Fig. 2-4 An illustration of the shiftable window

2.3.3 Disparity Computation and Optimization

The disparity map can be obtained from the original matching cost or the

aggregated cost. In addition, the disparity computation method can be categorized into

10

two types: the local and the global approaches. These two approaches are described as
follows.

In a local method, the matching cost or the cost aggregation are the key
components. The simplest local method is the Winner Take All (WTA) algorithm, in
which the disparity of each pixel d(z,v) is determined by minimizing the matching

cost or aggregated cost in the disparity search range [0, d,,,.], that is,

d(xz,y) =arg min Cost(x,y,d,), (2.3)
dnE[U,dmaa:]

Moreover, the disparity of each pixel is independently calculated.

In a global method, we define an energy function, which includes a data term and
a smooth term. The data term includes the cost function that we discuss previously,
and the smooth term represents the smoothness penalty of the disparity map. The
detail of the energy function will be discussed in section 3.1. One of the earlier
proposed global optimization methods is the dynamic programming (DP) [16]. The
dynamic programming scheme optimizes the energy function of each scanline
independently. Fig. 2-5 shows a stereo matching using dynamic programming for a
pair of corresponding scanline. We select the minimum path through the matrix of all
pairwise matching costs. The lowercase array represents the intensities along a
scanline of the left image. The uppercase array represents the intensities along a

corresponding scanline of the right image. The matches are indicated by M, and the

11

partially occluded points are indicated by L or R, which based on the points only
visible in the left image or the right image. In this example, the disparity range is 0-4,
which indicated by the non-shaded boxes. The shaded boxes are disparities outside
this range. Although dynamic programming can optimize the horizontal global
information, the vertical correlation is not considered. The disparity maps produced
by dynamic programming may exhibit horizontal streaks, and it reduces the subjective

quality of the synthesized image.

L\ ™ oo

Right scanline
(uppercase array)

Left scanline
(lowercase array)

Fig. 2-5 Stereo matching using dynamic programming
For considering the vertical and horizontal information simultaneously, the
energy minimization using the so-called graph-cuts technique has been proposed. This

optimization algorithm performs well in disparity estimation. Unfortunately, the

12

computation and the storage requirement for graph-cuts algorithm are enormous. The
detail of graph-cuts will be discussed in sections 3.2 and 3.3, and we will propose our
algorithm for reducing the computation time in chapter 4.
2.3.4 Disparity Refinement

Most stereo correspondence algorithms produce an integer disparity map. The
integer disparity is not good enough for some applications, which require
good-quality synthesized images. To improve the synthesis result, many algorithms
apply a disparity refinement stage in the procedure of stereo correspondence
algorithms. In the disparity refinement stage, the sub-pixel disparity map can be
computed. We can increase the resolution of the disparity map with a little additional
computation. However, the goal of this research is to decrease the computation and
maintain the quality of the disparity map. Because we do not focus on the synthesis
result, we do not use the disparity refinement stage in the reference software (platform)
by setting the Boolean variable refine subpix false.
2.4 A Taxonomy Evaluation
2.4.1 Overview of the Platform

The source codes downloaded from the middlebury website are used as our
platform [5]. Fig. 2-6 depicts the program structure of the middlebury platform. In the

beginning, the main file calls the interpreCommandLine function which is included in

13

the StereolO file. In the interpreCommandLine function, the first step initializes the

entire parameters (StereoParameter.cpp), and then we adjust the values of parameters

specified by the configuration file or the command lines (ParameterlO.cpp). The next

step executes the stereo matching program (StereoMatcher.cpp), which is the primary

part in the platform. The stereo matching can be divided into four components as

depicted Fig. 2-2. They are initial matching cost computation, cost aggregation,

disparity computation (optimization), and disparity refinement. At the end, the

program evaluates the quality by comparing the computed disparity map and the

ground truth disparity map (StcEvaluate.cpp).

main.cpp

InterpretCommandLine();

StereolO.cpp

/
ReadFromFile();

RelnitializeAlgP ; RunMatcher();
elnitializeAlgParams(); ReadFromCommandLine(); Y 0
StereoParameters.cpp ParameterlO.cpp
ComputerCorrespondence(); Evaluate();
StereoMatcher.cpp StcEvaluate.cpp
PreProcess(); S
RawCosts(); Aggregate(); Refine();
StcPreProcess.cpp StcRawCosts.cpp StcAggregate.cpp Optimize(); || StcRefine.cpp
) ; AggrDiffusion(); .. _. .
BoxFilter(); AggrBaysian(); MinFilter();
BoxFilter.cpp StcDiffusion.cpp MinFilter.cpp StcOptimize.cpp

/ptDP(); OptGraphCut(); OptSimulAnnl(); OptSO();
StcOptDP.cpp StcGraphcut.cpp StcSimulAnn.cpp StcOptSO.cpp

Fig. 2-6 Program structure of the middlebury platform

14

2.4.2 Quality Metrics

To evaluate the quality of a disparity map computed by a stereo algorithm, we
compute the following two quality metrics in our platform:
1. RMS (root-mean square) error between the computed disparity map d¢(z,y) and

the ground truth map dr(z,y) can be written as

1
= ¢ 7 2 Uelo) —drtr) 4

where R is the RMS error, IV is the total number of pixels and A denotes the
image area.

2. Percentage of bad matching pixels can be written as

B _% > f(a), where f(8,) = (2.5)

{1, it |de(x,y) —dp(x,y)| > dq
(w,y)€A

0, otherwise
where B is the percentage of bad pixels and 4, is a disparity error tolerance. We
simply adopt the default setting of the published platform and set d; = 1 in our
experiment.

Besides computing the two quality metrics over the whale image, we also
compute the two quality metrics over three difference kinds of regions, which are
textureless regions 7, occluded regions O and depth discontinuity regions D. Their

symbols and descriptions are listed in Table 2-2.

15

Table 2-2 Descriptions of error metrics [5]

PARAMETER NAME SYMBOL DESCRIPTION
rms_error_all R RMS disparity error
¥ms_error_nonocc Ry RMS disparity error (no occlusions)
rms_error_occ Ro RMS disparity error (at occlusions)
rms_error_textureless R~ RMS disparity error (textureless)
rms_error_textured Rt RMS disparity error (textured)
rms_error_discont Rp RMS disparity error (discontinuities)
bad pixels all B Bad pixel percentage
bad pixels nonocc By Bad pixel percentage (no occlusions)
bad _pixels occ Bo Bad pixel percentage (at occlusions)
bad pixels textureless B+ Bad pixel percentage (textureless)
bad pixels textured Br Bad pixel percentage (textured)
bad pixels discount Bp Bad pixel percentage (discontinuities)

2.4.3 Test Data

We download the test data on the middlebury website. The test data set we used

is shown in Table 2-3. The four sequences, which are map, tsukuba, sawtooth, and

venus, are the most commonly used ones for quality evaluation.

16

Table 2-3 Test data [5]

Map

Sawtooth

Tsukuba

Venus

Image size

(width x height)

284 x 216

434 x 380

384 x 288

434 x 383

Input

Ground Truth

Occlusion and

discontinuities

Occlusion and

textureless

17

Chapter 3 Energy Minimization by Graph Cuts

3.1 Overview

In disparity estimation, the graph cuts and the belief propagation algorithms are
generally recognized as the better global optimization methods. Unfortunately, their
computation time is very high. Because we only focus on the graph cuts method, we
only describe the procedure of the graph cuts in this chapter. The maximum
flow/minimum cut (max-flow/min-cut) problem and an algorithm which solves the
max-flow/min-cut problem are introduced [17][18]. Based on the graph cuts, two
algorithms have been proposed for solving the stereo correspondence problem by
minimizing the energy function, namely o-3 swap and a-expansion [8].

3.2 Max-Flow and Min-Cut Problem

First, we glance at the graph theory. In Fig. 3-1, we show a simple example of a
graph G. A directed graph G =< V. & > is defined as a set of nodes (vertices) V
and a set of directed edges £ that connect the nodes. In the graph, a source terminal
as s and a sink terminal as ¢ are denoted. A cut is a set of edges C C £ such that
the two terminals become separated on the induced graph G' =<V, & —C >. A cut
can also be represented by (S,7) which produces a partition of V into S and

T =V —S,suchthat s€ S and t € 7.

18

A minimum cut is a cut whose cost is the minimum over all possible cuts of G.

The minimum cut problem can be solved by finding a maximum flow from the source

5 to the sink ¢. In other words, the maximum source-to-sink flow is equal to the cost

of the minimum cut in G. Maximum flow can be considered the maximum “amount

of water” that can be sent from the source to the sink, and the cost of edge can be

considered the capacity of a directed “pipe”.

The algorithms to solve the maximum flow problem can be classed into two

groups: Ford-Fulkerson algorithm [19] and push-relabel algorithm [20]. The

Ford-Fulkerson algorithm examines the whole residual network to find an augmenting

path. The algorithm begins with no flow and runs iteratively. At each iteration, the

flow is increased by finding the augmenting path from the source to the sink in the

residual network. The process repeats until no further augmenting path we can find,

and the flow is the maximum flow.

Fig. 3-1 A simple example of the graph G and the minimum cut (the red line)

19

If we used a breath-first search to implement the augmenting path calculation in
the Ford-Fulkerson algorithm, the bound of running time can be improved to
O(NyNg), where Ny is the number of nodes and Ng is the number of edges in the
graph. We call the Ford-Fulkerson algorithm so implemented the Edmonds-Karp
algorithm. Push-relabel algorithms look only at the node's neighbors in the residual
network and process one node at a time. Compared with the Ford-Fulkerson algorithm,
the push-relabel algorithms are local methods and a simple implementation that runs
in O(N3Ng) time. Besides, unlike the Ford-Fulkerson, the push-relabel algorithms
do not maintain the flow-conservation property throughout their execution. Therefore,
we use push-relabel algorithms in this research instead of the Ford-Fulkerson method.
We will describe the detail of push-relabel algorithms in the next section.

3.3 Push-Relabel Algorithm
In a push-relabel algorithm, the directed edges correspond to pipes as the
Ford-Fulkerson algorithm, but the intuition of nodes is different from the
Ford-Fulkerson algorithm. The nodes, which can be regarded as the pipe junctions,
have two parameters. One is the accumulation of the fluid, and the other one is the
node heights. The node heights determine how flow is pushed. We only push flow
from a higher node to a lower node.

In a push-relabel algorithm, there are two basic operations, the push operation

20

and the relabel operation. The push operation performs pushing flow excess from a

node to one of its neighbors. The relabel operation can increase height of a node. We

will describe the flow of push-relabel algorithm by a simple example, which is

shown in Fig. 3-2. In Fig. 3-2 (a), a graph with nodes and directed edges is shown.

The number at the edge represents the cost (capacity of the pipe). In the beginning,

the parameters of each node are initialized as Fig. 3-2 (b). The height of the source s

is set to the number of the nodes in the graph. The height of other nodes is initialized

to zero. In Fig. 3-2 (c), we employ the first push operation that saturate all outgoing

edges from the source s. The flow follows the direction of the edges. When an edge

is saturated with flow along its original direction, we then change the direction of the

edge. Also, the flow accumulations, e, of node V; and V, are changed to one and

two. Because the flow accumulations of node V; and V, cannot be pushed to the

other node after the first push operation, we must increase their height and this

processing is called relabel operation. The relabel operation is depicted in the Fig.

3-2 (d). After the relabel operation, we can push the flow accumulations of V; and

V, to the lower nodes as shown in Fig. 3-2 (e). We perform push operation and

relabel operation repetitively until there is no accumulation of flow in the each node

except for the sink 7, and the final graph is depicted in Fig. 3-2 (f).

The maximum flow problem is solved when the final graph is obtained. The final

21

INITIAL

RELABEL

)

Fig. 3-2 A simple example of push-relabel algorithm

22

graph provides the minimum cut. A minimum cut separates the original graph G into
two parts & and 7, such that & ={all nodes reachable from source s} and
T=6G-6.
3.4 Energy Minimization using Graph Cuts

Disparity estimation using graph cuts outperforms many other optimization
methods. Before explaining how to compute the disparity map using graph cuts, we
introduce the general form of energy function. In addition, we will introduce a method
to minimize the energy function by graph cuts, -3 swap [8]. Finally, because the
disparity values are generally more 2 values, we need to build the graph many times,
which is called multiway cuts [9].
3.4.1 The General Form of Energy Function

The general form of energy function can be written as

E(f) = Eqata(f) + AEsmootn(f) (3.1

where A is a parameter, which controls the effect of the smooth energy term.

The data energy term, FEyut.(f), represents the dissimilarity between the left and

the right images when the disparity map is f. The form of data energy term is

typically

Eaata(f) =Y Dy(f5) (32)

peP

where p is a pixel, P is the set of total pixels in the left image, f, is the disparity

23

value of pixel p, and D,(f,) represents the cost when the disparity value of pixel p
is f,. We can select different matching cost functions and different aggregation
methods to generate the cost array that was explained in section 2.3.1 and 2.3.2. The
data energy term is the summation of all costs when a disparity map is given.

The smooth energy term, Ego0n(f), measures the extent to which f is not
piecewise smooth. If there are some non-smooth regions on the disparity map, we
should add some penalties on total energy. The smooth data term will make the
disparity map much smooth everywhere. The smooth energy term typically has the

form

Eamootnlf) = Y Voa(for fo) (3.3)

p.a}eN

where N s the set of interacting pairs of neighboring pixels, and V, ,(f, f,) is the
an interacting function, which has many different forms. In our platform, we use the
Potts model as our interacting function. The Potts model can be represented as

Voalfp: fo) = KX T(fp # fo), (3.4)
where T'(-) is 1 if the argument is true, and otherwise, 0, and K is a penalty
constant. This model encourages disparity values consisting of several regions, where
pixels in the same region have equal disparity value. We also call it a piecewise
constant model.

According to the previously introduced energy function in this section, we know

24

the impact of energy function. We next describe how we minimize the energy function
by graph cuts in section 3.4.2.
3.4.2 The a-3 Swap Method

First, we review some basic fact about graphs which is used to minimize the
energy function of disparity estimation. A directed weighted graph G =<V, & >
consists of a set of nodes V and a set of directed edge & that connect them. The
nodes are usually composed of the pixel nodes and the terminal nodes. The pixel
nodes and the terminal nodes respectively correspond to the pixels in the image and
the disparity values which we can assign to pixels. In Fig. 3-3, we show a simple
example of a 3 X 3 image with two disparity values. The two terminals are usually
called the source, s, and the sink, t. For more clearly seeing, we provide a simpler
illustration in Fig. 3-4, whose pixel nodes are arranged in 1D. The set of pixels in the
1D image is P,3 = P, U Ps, where P, = {p,7, s} and P3 = {q,...,w}. The weight
information of the edges is shown in Table 3-1. The edges can be classed into two
groups: t-links and n-links. The t-links (terminal links) connect each pixel node to the
terminals « and (3, which is called ¢; and tg, respectively. The n-links (neighbor
links) connect each pair of pixels {p, ¢} C Pag, that are neighbors ({p, ¢} € N). The

symbol of the n-links is €y, q}.

25

Fig. 3-3 An example of a directed weighted graph

Fig. 3-4 An example of the graph for a 1D image

26

Table 3-1 Weight information of the edges

edge weight for
tp Dp(a) P € Pap
f]ff DP(}g) b € 73()/,3
{p.a} Vg,) {p.¢} €N, p€Pag, g€ Pag

From the Table 3-1, we know that the weight of edge t; is D,(a), which is the
data energy term. D,(a) is the cost value of pixel p, which is assigned a disparity
value «. The edge t is similarly defined. The weight of edge €(pq) is Vpq(a,),
which is the smooth energy term. V) ,(«, 3) is an interacting function as we said
previously. When the graph is constructed, we find the minimum cut of the graph by
the push-relabel algorithm. We discuss the properties of a cut by a simple example in
Fig. 3-5. If the cut of Fig. 3-5 (a) is the minimum cut, we will assign disparity value
o topixels p and q. The case of Fig. 3-5 (b) is similar to (a). If the cut of Fig. 3-5 (¢)
is the minimum cut which includes the n-link, €, 3, we will assign disparity value (3
and « to the pixels p and q, respectively.

After finding the minimum cut of the graph, we can assign the disparity value to
each pixel in P.s. The method that we adjust the disparity map is called a-3 swap.
Fig. 3-6 (a) is an example of the initial disparity map. Although the disparity map is
always a gray level picture, we fill the region of disparity value « with red (darkest)
color for illustration. After an a-3 swap, the disparity map is modified to Fig. 3-6 (b).

The disparity map in (b) is much smoother than (a) in the regions of o and j3,

27

because we minimize the energy function by graph cuts. However, a disparity map

may contain more than two disparity values. We cannot simply employ the graph cuts

once and, therefore, we will introduce the multiway cut algorithm to solve this

problem.

P ty
cut \.""-,_\‘
p.a}
[p] 4]
B
tg tq
(a)

p q
la]
8
tg t
(®) (©)

Fig. 3-5 Properties of a cut on the graph

(a)

(b)

Fig. 3-6 The change of disparity map after an a-{3 swap

28

3.4.3 Multiway Cut Algorithm

Because the number of disparity values is greater than two, there are multiple

terminals in the graph as shown in Fig. 3-7. The a-3 swap method processes only

two terminals at a time, and, therefore, we must use multiway cut algorithm to solve

the problem. We describe the detail of multiway cut algorithm as follows.

(1) Start with an initial disparity map which may be given by the WTA method.

(2) Randomize the disparity sequence, and pick up two disparity values as the

terminals of the graph. Note that only the selected pixels can be the pixel nodes

in the graph.

(3) Employ the algorithm which we introduce previously to find the minimum cut.

(4) Repeat step (3) for every possible pair of disparity values.

(5) Repeat the step (3) and step (4) until the energy does not change.

After the total flow of multiway cut algorithm flow is computed, we reach a

sub-optimal total energy of the disparity map. Fig. 3-8 shows the flowchart of the GC

algorithm. (1) corresponds of to the S1, and (2) is composed of S2 and S3. (3) is equal

to S4. In addition, (4) and (5) are the inner and outer loop.

29

(b)

Fig. 3-7 (a) An example of the graph with multiple terminals £ = {0,1,...,k} (b) An

induced graph by a multiway cut (dotted lines indicate cut edges)

30

Begin

v
S1: Determine disparity d”'* by WTA,
calculate E" TA:Ew,a,(dW TA),
and let d=d""™ E=E"™
h 4
S2: Randomly determine the disparity pair

(0,[) sequence

v

F}(S3: For each disparity pair (a,f) T
v

Inner| S4: Find d™ =arg min Epyu(d’) among @ |Outer

loop | within one a-f swap of d, E™ =minE wu(d) loop

\ 4
S5: Inner loop end D
S7: &=
N
End

Fig. 3-8 Flowchart of GC

31

Chapter 4 The a-8 Swap Algorithm Speed-Up
and Early Termination

4.1 Overview

Among the global optimal algorithms, graph cuts (GC) and its variations [8]-[11]
generally show very good performance in their disparity estimation quality. Therefore,
GC is chosen as the target algorithm for speed up. The flowchart of the original GC is
shown in Fig. 3-8 which we was discussed in Chapter 3 previously. In this chapter, we
propose a fast GC algorithm for disparity estimation purpose. Two accelerating
techniques are suggested: one is the early termination rule, and the other prioritizes
the «-3 swap pair search order.
4.2 Early Termination of Energy Minimization Process

In this section, we examine the energy minimization process of GC to determine
an early termination threshold. First, we define a terminology to be used in the
following discussions. Fig. 4-1 shows the probability distribution of all possible
disparity values for a test image pair after the ¢-th outer-loop iteration. This
probability distribution (sequence) forms a vector: P* "™, We measure the similarity
between two vectors by their inner product and thus theta 0, the angle between P~

and POV~ is defined by (4.1).

32

. Ppi-th. P(z‘-l)—th
0 = cos ('Pi-th| . ‘P(i—l)-th|> (4.1)

Fig. 4-2 shows the values E and 6 after each outer-loop iteration on the test
image ‘sawtooth’, and Fig. 4-3 shows the RMS error and Bad pixel of the
corresponding disparity map. In the energy minimization process, GC monotonically
decreases E. However, the quality metrics slightly fluctuate when E reaches its
minimum. The other test image pairs show similar results. When the decrease in E is
small, further iterations may not necessarily improve the quality, even though the
energy level can be further lowered slightly. Therefore, we suggest an early
termination mechanism to save computation. The optimization process terminates
when the angle @ between P~ and PU~D='" js smaller than a given threshold

—th

Ouhreshold. That is, when the change between P~ and PU~D="" js small, the

iteration stops.

Pi-th

0.2

©
-
(&)

Probability
o

0.05

0 2 4 6 8 10 12 14 16 18 20
Disparity

Fig. 4-1 Disparity distribution of the test image pair ‘sawtooth’ after the i-th iteration

of the outer loop (P~

33

Energy v.s. Theta
7000000 40
6000000 B Energy| | 35
5000000 ——Theta | | 30
& 4000000 | 28
= 4 208
@ 3000000 4 SQ
2000000 410
1000000 l l l l 5
0 ‘ ‘ ‘ 0
WTA Run0O Runl Run2 Run3 Run4 RunS5 Run6 Run7

Fig. 4-2 E and 0 in the energy minimization process of the test image pair ‘sawtooh’

Quality Metrics
70.0% 7
60.0% r B Bad_pixel -6
—— RMS_error |
o 50.0% SM
g 40.0% 448
3 g
5 300% 1
20.0%)
10.0% I 11
0.0% [I O I I 0
WTA RunO Runl Run2 Run3 Run4 Run5 Run6 Run?7

Fig. 4-3 RMS _error and Bad_pixel in the energy minimization process of ‘sawtooh’
4.3 Prioritizing the a-3 Swap Pair Sequence
The original GC scheme randomly selects a disparity pair (a,) from the
disparity candidate set £ and then does the a-3 swap for all possible disparity
values. However, let o/ and (' be a chosen disparity pair. If (o, ') is the best
disparity pair for only a few nodes, this specific /-3 swap has a limited impact on
minimizing the total energy but it consumes the computing power. Therefore, if we

find an effective strategy to prioritize the a-3 swap pairs, i.e., the better matched

34

pairs are tested first, then the total energy converges faster.

After each run of the outer loop, we obtain d(,y), Fuua, Esmootn, and Eyopa
for each node. Consequently, we have the disparity probability (the number of nodes
with a specific disparity divided by the number of all pixel nodes), Eusta, Esmooth,
and FEio for each disparity value. Fig. 4-4 shows the disparity distribution of the
test image pair ‘sawtooth’. Part (a) is the probability after the first iteration (denoted
by P'™). Part (b) is the probability difference between the first and the final
iterations (denoted by Pi#_PL'=5") which represents the probability difference
needed to be adjusted by the iterative algorithm. Typically, there are only a few
objects in an image; therefore, the disparity distribution is dominated by a few
disparity values. Often, the dominated disparity values show up after the first couple
of iterations. That is, their probabilities are higher than the other disparities. Hinted by
this observation, the disparity probability distribution can be used as clues for
choosing the final disparity values. In this section, we prioritize the disparity pairs
(o, 3) according to their probability although the other attributes such as Fyua,
Egmooth, and Ei, may also be used for prioritization purpose. We will discuss the

difference between them in the next section.

The benefits of prioritizing the a-3 swap pair search order mainly come from

the early iterations of the outer loop. With the correctly prioritized disparity

35

candidates, we reach the final goal much faster and thus save computation.

Fig. 4-5 shows the flow chart of our proposed fast GC, which is the combination
of prioritizing the a-3 swap pair sequence and the early termination (section 4.2)
technique. The modifications to the original GC scheme are steps 2, 7, and 8. In Step

2, we prioritize the disparity pair («., () search order based on their disparity

probabilities.
(@) pl-st (b) pfinal _p1-st
0.2 0.04
0.03+
0.15
> E 0.02
= 3
] 0.1 8 0.01;]
2 - Il
o= o I
o ot -l J
005 LN | oo
-0.01¢ 1
o _002 L L L L
0 5 10 15 20 0 5 10 15 20

Disparity Disparity

Fig. 4-4 Disparity distribution of ‘sawtooth’ after the 1* outer-loop iteration
We then perform the «-{3 swap sequentially according to the priority order
(probability) of disparity pairs. In step 7, we also calculate & value. In the extra step
8, we check whether 6 is larger than a given @ nreshoid. If S0, we run another iteration
of the outer loop. Otherwise, we terminate the optimization process. The value of

Bhreshola 18 1° (degree) in our experiment. It is empirically determined.

36

S1: Determine disparity d”™ by WTA,
calculate E"™ = E,,,,,(d"™),
and let d=d""™, E=E"™

v
S2: Sort the disparity d according to its
probability and prioritize the disparity pairs
(0,) from high probability to low.
v

Tb(S3: For each disparity pair (a,5) T

v

Inner S4: Find d[”’w":ai’g min Etotal(dJ) among & Outer
loop | within one a-8 swap of d, E"r=minE (@)

Loop

v
S5 Inner loop end) Y
S7: d:dlnner’
Y» E:EInner’
calculate 0

Fig. 4-5 Flow chart of our proposed fast GC

4.4 Simulation Results and Discussions

In this section, we will show the experiment environment setting and the

simulation results for different criterions. The improvement of our proposed algorithm

is also shown in this section. In addition, we will analyze and discuss the simulation

results.

4.4.1 Experiment Environment Setting

We implement our proposed algorithm and test it on the test bed retrieved from

the Middlebury stereo vision web page. Four test image pairs — ‘Map’, ‘Sawtooth’,

‘Tsukuba’, and ‘Venus’ (all with ground truth disparity maps) — are in use. Our

simulation platform is a PC with Intel Core2Quad Q6600 and 4G RAM. The

37

performances of the original GC and our proposed fast GC are measured by six

metrics: computing time, R (rms_error all), B (bad pixels all), By

(bad_pixels_nonocc), Bz (bad_pixels textureless), and Bp (bad pixels discont).

Table 4-1 shows the important parameters in our implementation. The simulation

results of the original GC with the same setting are close to those in the Middilebury

web page.
Table 4-1 The experiment environment setting
Parameter Value Meaning
match_fn 1 Absolutely difference
match_max 1000 No truncation
match_interval 1 BT
opt_fn 4 GC
aggr iter 0 No aggregation
opt_smoothness 20 Weight of smoothness term (A)
opt_grad_thresh 8 Threshold for magnitude of
intensity gradient [22]
opt_grad_penalty 4 (Map, Tsubuka) Smoothness penalty factor if
2 (Sawtooth, Venus) gradient is too small [22]

4.4.2 Simulation Results

The simulation results of prioritizing the «-{ Swap pair sequence according to

the disparity probability (the number of nodes with a specific disparity divided by the

number of all nodes), Eusta, Lsmooth, and Eisar for each disparity value are shown

in detail in this section. In addition, we also represent the simulation results with early

termination in energy minimization process (ET), separately.

38

(sec)

Table 4-2 Comparison of computing time

Computing time (sec) Average
Method Improvement
Map | Sawtooth | Tsukuba | Venus
(%)
Original 83.52 | 156.39 93.88 | 131.16
Probability 41.45 | 121.13 38.02 | 96.86 36.02
Edata 55.66 | 127.50 73.98 | 117.86 19.35
Esmooth 50.83 | 101.89 39.27 | 85.97 40.22
Etotal 48.75 | 110.24 44.63 | 84.45 38.04
ET 38.31 65.30 75.78 | 71.58 46.02
Probability+ET | 20.61 50.75 2473 | 53.88 67.74
Egu,tET 30.38 60.30 38.25 | 81.30 54.78
Esmootn TET | 21.97 | 40.41 25.67 | 70.99 65.79
EiotatET 21.19 | 3945 2472 | 69.83 66.62
Improvement is 1 — p——" where 7, denotes the computing time of
method “X” and 7,,igina denotes the computing time of the original
method.
180

160 ‘4\
140

120

100 \¢

80 « =&= Map
60 \ == Sawtooth
\
\“*" — Tsukuba
40
X_A =>=\/enus
20 v v v
0
> A e R N R N
& & S & & N
\ (2 (9((\ N bq, 3 0\'
<© < R SR
N & &
N

Fig. 4-6 Plot of computing time

39

Table 4-3 Comparison of rms_error_all

Method n Average
Map | Sawtooth | Tsukuba | Venus AR (%)
Original 4.10 1.48 1.30 1.48
Probability 4.11 1.49 1.28 1.45 -0.75
Faata 3.85 1.49 1.28 1.45 -7.25
Esmooth 4.02 1.48 1.28 1.45 -3.25
Etotal 3.85 1.47 1.28 1.49 -6.75
ET 4.05 1.49 1.30 1.39 -3.25
Probability+ET | 4.12 1.49 1.28 1.45 -0.50
EiaratET 3.85 1.48 1.28 1.44 -7.75
EsmootnTET 4.01 1.48 1.28 1.45 -3.50
EioiatET 3.85 1.43 1.28 1.49 -7.75
AR = Rx — Royigina Where Rx denotes the RMS error of method
“X”and Rorigina denotes the RMS error of the original method.

4.5

4 _%*vﬁv%
3.5

3
2.5

) == Map
15 R——{ff—{——{——f el == Sawtooth
1 Tsukuba
0.5 =>&=\enus
0

P N P

N éo'b « Qﬁ’& < ‘0\\&\ @é@ 00\'\(\ <<,/\'o"'rb

< & &

Fig. 4-7 Plot of rms_error_all

40

Table 4-4 Comparison of bad_pixels_all

Method B (%) Average
Map | Sawtooth | Tsukuba | Venus AB
Original 5.45 3.94 4.16 3.50
Probability 5.53 3.93 4.20 4.50 0.28
Faata 5.48 4.03 4.18 3.43 0.02
Esimootn 5.48 3.91 4.12 3.62 0.02
Etotal 5.40 3.98 431 4.41 0.26
ET 5.43 3.96 4.16 3.50 0.00
Probability+ET | 5.47 3.96 4.20 4.50 0.27
Eyo1atET 5.47 4.03 4.18 3.43 0.02
EsmootntET 5.47 3.94 4.12 3.62 0.03
B tET 5.40 4.01 431 4.40 0.27
ADB = Bx — Bgiginal Where Bx denotes the percentage of bad pixels
of method “X” and B.ginai denotes the percentage of bad pixels of
the original method.

3 == Map
2 == Sawtooth
Tsukuba
1 =>&=\/enus
0
N Y A& A A
) ¢ ‘6\\\6 6’5@ 00{9 \9@ & "é N
N 2 <@ & <& & 2
o & <& S &F L
Q & &
Q¢

Fig. 4-8 Plot of bad_pixels_all

41

Table 4-5 Comparison of bad_pixels_nonocc

Method Bx (%) Average

Map | Sawtooth | Tsukuba | Venus A By
Original 0.38 1.34 2.00 1.87

Probability 0.41 1.34 2.03 2.81 0.250
Faata 0.35 1.42 2.03 1.77 -0.005
Esmooth 0.38 1.34 1.96 1.97 0.015
Etotal 0.32 1.38 2.16 2.77 0.260
ET 0.38 1.36 2.00 1.85 0.000
Probability+ET | 0.40 1.36 2.04 2.82 0.258
Eyo1atET 0.35 1.43 2.02 1.77 -0.005
E,ootnTET 0.38 1.38 1.96 1.97 0.025
B tET 0.33 1.41 2.15 2.77 0.268

ABgy = B@’X — Bg,original where BE,X denotes the percentage of
non-occlusion bad pixels of method “X” and Bg oigina denotes the

percentage of non-occlusion bad pixels of the original method.

Table 4-6 Comparison of bad pixels_textureless

Method Bz (%) Average

Map | Sawtooth | Tsukuba | Venus ADB~
Original 0.00 0.24 1.09 2.76

Probability 0.00 0.26 1.16 5.04 0.79
Edata 0.00 0.26 1.15 2.63 -0.02
Esmooth 0.00 0.25 1.11 3.83 0.37
Etotal 0.00 0.30 1.40 5.14 0.92
ET 0.00 0.24 1.09 2.50 -0.06
Probability+ET | 0.00 0.26 1.16 5.04 0.79
Eyara+tET 0.00 0.26 1.15 2.63 -0.02
Eomootn tET 0.00 0.28 1.11 3.83 0.38
Eio1atET 0.00 0.35 1.39 5.14 0.93

ABz = Byx — B jigima Where Brx denotes the percentage of
texureless bad pixels of method “X” and D7 ,sna denotes the

percentage of texureless bad pixels of the original method.

42

Table 4-7 Comparison of bad pixels_discont

Method Bp (%) Average
Map | Sawtooth | Tsukuba | Venus ABp (%)
Original 3.82 6.23 9.87 7.22

Probability 4.55 6.55 10.15 7.28 0.35
Faata 3.76 6.42 10.03 6.80 -0.38
Esmooth 3.85 6.48 9.77 6.63 -0.07
Etotal 3.62 6.53 10.79 6.76 0.24
ET 3.85 6.28 9.87 6.62 -0.27
Probability+ET | 4.49 6.54 10.15 7.28 0.46
EiaratET 3.76 6.43 10.00 6.66 -0.40
EootntET 3.94 6.65 9.76 6.57 0.02
EioiatET 3.79 6.49 10.79 6.80 0.24

ABp = Bpx — Bporigina Where Bpx denotes the percentage of
non-occlusion bad pixels of method “X” and Bp original denotes the

percentage of non-occlusion bad pixels of the original method.

43

AR

Ground truth Original

Probability+ET B ET

Fig. 4-9 Disparity maps of ‘Map’

Ground truth Original
Probability+ET EyaratET

Fig. 4-10 Disparity maps of ‘Sawtooth’

44

Original

Probability+ET B ET

Fig. 4-11 Disparity maps of ‘Tsukuba’

Ground truth Original
Probability+ET EyaratET

Fig. 4-12 Disparity maps of ‘Venus’

45

4.4.3 Analysis and Discussions

Table 4-2 and Fig. 4-6 show the computing time of the original GC and the

proposed methods. Improvement is calculated from one minus their ratio. In the

methods without early termination, the improvement of prioritizing the a-3 swap

pair according to E,,.0rn 18 the best. However, if the early termination is employed,

prioritizing the -3 swap pair according to probability has the least computing time.

In addition, we find that the improvement due to early termination only can reach

46%.

Table 4-3 and Fig. 4-7 show the rms_error all of the original GC and the

proposed methods. The improvement is calculated from their average performance on

4 image pairs. The rms_error_all slightly decreases in our methods. Prioritization

according to Eguq and Eyne can improve rms_error_all more than others with or

without the early termination. Table 4-4 and Fig. 4-8 show the bad pixels all of the

original GC and the proposed methods. Prioritization according to probability and

Eyotqr are worse than the others. The degradation is dominated by the ‘Venus’.

However, its performance is still about the same as that of the original GC.

Table 4-5, Table 4-6, and Table 4-7 show that different methods have different

performance for different types of images. For example, prioritization according to

Eqata 1s the best performer in the texureless region. In conclusion, if we can tolerate

46

the slight degradation of quality, we choose the probability prioritized method which

saves most computing time. On the other hand, if we allow a slightly higher

computing time to exchange for a better quality, we can choose the £y, prioritized

method. In addition, the £, prioritized method is a good choice, because it

decreases a lot of computing time and only slightly degrades the quality.

Fig. 4-9, Fig. 4-10, Fig. 4-11, and Fig. 4-12 show the disparity maps of the

ground truth, original GC, probability+ET, and Fqa: +ET. The disparity maps

generated by the proposed methods generally are very close to the disparity map

produced by the original GC. After examing them closely, we find out that the

disparity map of £+, TET is a little bit better than that of probability+ET.

47

Chapter S Multi-Resolution Graph Cuts and
Disparity Estimation for Multi-Camera
Array

5.1 Overview

In disparity estimation, the graph cuts and the belief propagation algorithms
provide better disparity map quality. Unfortunately, their computation time is very
high. In this chapter, we use multi-resolution graph cuts to reduce the computing time.
Then, we estimate the disparity maps when the multi-camera array is in use.

5.2 Disparity Estimation using Multi-Resolution Graph Cuts

In section 3.3, we describe the push-relabel algorithm which can solve the
max-flow/min-cut problem. The worst-case running time for this algorithm is
O(NENg), where Ny is the number of nodes and Ng is the number of edges in the
graph. Because Ny and Ng increase with the image size, the running time of the
graph cuts algorithm greatly increases with the image size. In addition, the a-3 swap
method constructs a graph of two terminals (disparity values) at a time. If the
disparity range is 0,1,2,...,n — 1, we construct C% graph in total (all combinations).

Therefore, the running time also greatly increases with the disparity range when we

48

use the a-f8 swap method.

We can employ the multi-resolution graph cuts (MRGC) technique for reducing
the computation time. Fig. 5-1 shows the flowchart of MRGC. We first use the image
down-sampling technique to generate the low-resolution images. The right-side path
in the Fig. 5-1 is same as the original GC method except the image size and the
disparity range. If the disparity range of the original GC is 0,1,2,...,n — 1 in the
original resolution, the disparity range is 0,1,2,...,5 in the low-resolution image.
After the low-resolution disparity map is obtained, we come back to the original

resolution image size. We up-sample the disparity map. Then, it becomes the initial

disparity map for the neighborhood graph cuts.

Original Tmage Image) Low-resolution
Downsampling Image

w
Matching Cost
Computaion

Matching Cost
Computaion

k.

Aggregation of Cost

Aggregation of Cost

v k.

Disparity Map
+— Upsampling and
Scaling

Neighborhood Graph
Cuts

Original Graph Cuts
(half disparity range)

End

Fig. 5-1 Flowchart of MRGC

49

The main components that are different from the original GC method are the image

down-sampling, disparity map up-sampling and scaling, and neighborhood graph cuts

operations. We describe the detail in the following sub-sections.

5.2.1 Image Down-Sampling

In this section, we describe two down-sampling methods that we use in MRGC.

Fig. 5-2 shows an example of a simple down-sampling method. The sampling factor

is 2 for the width and the height. This method simply skips every other pixel in

one-dimension. Because of lacking prefitting, the low-resolution images after the

down-sampling may suffer the aliasing effect. Therefore, we attempt another method

to down-sample the original images. We use a sliding window whose coefficient is

depicted below for pre-fitting.

(5.1)

[N
DN = DN
[N

3x3

304 05/5]6|8[8]09 40558
30308090515 98| gownsample | 3|5 6|8
413187 /7|3]5]5 418175
41318 617356 50883

Fig. 5-2 An example of 4 to 1 pixel-skip down-sampling

50

Because the coefficients of the window are all integer and the sum of the coefficients

is 16, we can shift right four bits in calculation instead of using division. This filter

does not increase much computing time comparing to the simplest method. We will

compare the two methods in section 5.4 by simulation.

5.2.2 Disparity Map Up-sampling and Scaling

In this section, we also describe two methods to up-sample the low-resolution

disparity map. Fig. 5-3 shows a simple up-sampling method that duplicates the pixel

value to its neighbors directly and multiplies the disparity value by 2. Thus, the

derived disparity map becomes the initial disparity map for the neighborhood graph

cuts. Because the disparity maps produced by the simple method may produce blocky

images, we can reduce artifacts by performing some types of linear or bilinear

interpolation in up-sampling. However, the interpolation process increases the

computation time and its quality improvement on the disparity map it uncertain.

§ | 8 | 10 | 10 | 10 | 10 | 16 | 16

g | 8 | 10 | 10 | 10 | 10 | 16 | 16

45|58 6 | 61010 12| 12]16] 16

305|638 Upsampling 6 6 1010 12]12]16] 16
and Scaling .

41875 g | s 16|16 14| 14|10 10

s | g8 |3 8 18 | 16/16]| 14| 14|10/ 10

101016 |16 116 |16 | 6 | 6

101016161616 6| 6

Fig. 5-3 An example of disparity map up-sampling and scaling

51

We attempt to employ the up-sampling method of H.264 [23], which is shown in
Fig. 5-4. The pixel i can be obtained from pixels a, b, ¢, d, e, and f by the
formula below.
i=round((1Xxa—-5xb+20xc+20xd-5xe+1xf)>5) (52
We can use pixels g, h, 2, j, k, and [, to interpolate the pixel m similarly.
m=round (1 x g—5xh+20xi+20xj—bxk+1x1)>5) (53)
The coefficients of the interpolation filter are (55, 52,2, 2, 52 35)» Which mimic the
sinc function. After the up-sampling interpolation process, we multiply the disparity

values by 2. In section 5.4, we will compare the two methods based on the simulation

results.

f

Fig. 5-4 The up-sampling method of H.264

52

5.2.3 Neighborhood Graph Cuts

In the original graph cuts, the number of graphs needed for constructing a-3
swap is the total combinations of disparity pairs selected from the disparity range. The
neighborhood graph cuts method reduces the number of constructing graph. Unlike
the original graph cuts, we use the disparity map obtained from the up-sampling and
scaling process as the initial disparity map. We assume that the disparity value f, of
each pixel only differ to its neighborhood disparity values by 1. Therefore, we try to
reduce the number of combinations of disparity pairs in -8 swap to reduce the
computing time. Fig. 5-5 shows the disparity pair combination of neighborhood graph
cuts. The gray nodes are the disparity values obtained from the scaling. The arrow
shows the value that the disparity value can change to. That is, we select two disparity

values to do the a-3 swap.

0 1 2 3 4 5 6 7 8 9

NN

(@

)

Fig. 5-5 The disparity pair candidates in neighborhood graph cuts (a)+1 (b)£1

Here, we depict two cases of the neighborhood graph cuts. In Fig. 5-5(a), the search

53

range of neighborhood graph cuts is +1. In Fig. 5-5(b), the search range is =1 and
their combination is nearly two times more than +1. Note that we cannot do «-f3
swap with the same value. In section 5.4, we will compare the performance of these
two methods and show the computing time saved by using MRGC.
5.3 Disparity Estimation in Multi-Camera Array

In this section, we propose a method for disparity estimation for multi-camera
picture. We pick up “sawtooth” and “venus” as our test data for the multi-camera
experiment.. The two test data sets both include nine images captured by nine cameras
(Fig. 5-6). We call them im0, im1, ..., and im8. These images are captured by cam0,

caml, ..., and cam8, respectively.

far object

near object

VARV \/ \/ VARV

cam(caml cam2 cam3 cam4 cam5 camé6 cam?7 cam8

Fig. 5-6 Multi-camera array

In the original method, we compute im2’s disparity map which is relative to im6. Now,

im4 is added into the proposed method. Fig. 5-7 shows the flowchart of our GC

54

algorithm for multi-camera pictures. First, the im4’s disparity map relative to im6 is

computed by using the graph cuts algorithm. We use this to predict the disparity map

of im2 relative to im6, because the optical geometry tell us that the im2’s disparity

map relative to im6 is a shifted and scaled version of the im4’s disparity map relative

to im6. The results of scaling and shifting are shown in Fig. 5-8. This predicted

disparity map is need as the initial disparity map and refine it by the graph cuts

algorithm. In section 5.4, we will show the simulation results. The improvement of

this method is not significant.

. im4's
im4 disparity map e
Original GC Scaling > Shifting
im6 —»f (relative to
im6)
t |
Initial disparity map Initial disparity map (predicted)
|
le—— im2
WTA Original GC
le—— im6
im6 im4 im2's disparity map

(relative to im6)

Fig. 5-7 Flowchart of GC for multi-camera pictures

scaling disparity: 10 shifing dispauity: 10

Im2's predicted disparity map relative to im6

im4's disparity map relative to im6

Fig. 5-8 The scaling and shifting moves

55

5.4 Simulation Results and Discussions

In this section, we will show the simulation results of MRGC and multi-camera

pictures. Thus, we will discuss the possible causes leading to the simulation results.

The experiment environment setting is the same as section 4.4. In MRGC, the scaling

factor is 2.

5.4.1 Multi-Resolution Graph Cuts

We first explain the symbols to appear in the following tables. MRGC(+1)

indicates the multi-resolution graph cuts whose search range of neighborhood graph

cuts (NGC) is +1. Similarly, the search range of NGC of MRGC(%1) is £1. In

MRGCD, the down-sampling method indicates the low-pass filter describe in formula

(5.1). Likewise, MRGCU denotes that its up-sampling method uses the H.264

up-sampling filter. In MRGCDU, both down-sampling and up-sampling processes

adopt the before mentioned filters.

Table 5-1 shows the computing time improvement by MRGC ranges from 81%

to 92%. MRGC(=1) runs a little longer than MRGC(+1), because the search range is

wider. Table 5-2 and Table 5-3 show the image quality comparison of different

methods. Although the computation time of MRGC(=£1) is slightly larger than

MRGC(+1), its quality is much better. In addition, the down-sampling method of (5.1)

is better than the simple sample-skip method. However, if we replace the simple

56

disparity map duplication method by the H.264 interpolation the method, the

computing time gets higher and the bad pixels all becomes worse. This may due to

the fact that the discontinuous region is critical for initial disparity map, and the H.264

up-sampling method blurs the initial disparity map.

Fig. 5-12, Fig. 5-13, Fig. 5-14, and Fig. 5-15 show the disparity maps of different

methods. Obviously, the disparity map looks much smoother by down-sample the

original image by the formula (5.1). In addition, the disparity map of MRGC(=*1) is

much better than MRGC(+1). The MRGC(=£1) produces a disparity may close to the

original GC method.

Hierarchical graph cuts [24] is one of the few fast graph cuts algorithms found in

the literature. According to [24], the computing timing of the hierarchical graph cuts

is about 25% of the original GC on the test image “Tsukuba”. However, MRGC is

faster than the hierarchical graph cuts. Our method takes about 16% of the computing

time of the original GC. In addition, the quality of the hierarchical graph cuts is not

discussed in the paper. We are not sure about the quality degradation of this method.

57

(sec)

Table 5-1 Computing time comparison

Computing time (sec) Average
Method Improvement
Map | Sawtooth | Tsukuba | Venus
(%)
Original 83.52 | 156.39 93.88 | 131.16
MRGC(+1) 5.27 10.28 6.83 14.52 92.06
MRGC(£1) 7.84 23.45 18.78 | 27.14 83.39
MRGCD(£1) | 6.98 20.61 18.09 | 25.16 84.76
MRGCU(£1) | 13.97 | 2544 25.20 | 30.75 79.49
MRGCDU(+£1) | 13.13 24.81 22.20 | 29.61 80.70
Improvement is 1 — Tmﬁml where 7, denotes the computing time of
method “X” and Toriginas denotes the computing time of the original
method.
180
160

140
120 X\
00 1\
80 \\ == Map
60 \ \ =fli—Sawtooth
\ Tsukuba
== \/enus

40
20 _W‘v ﬁ
——————

Fig. 5-9 Plot of computing time comparison

58

Table 5-2 Comparison of rms_error_all

R Average
Method
Map | Sawtooth | Tsukuba | Venus AR (%)
Original 4.10 1.48 1.30 1.48
MRGC(+1) 431 1.69 1.60 1.63 21.75
MRGC(£1) 4.19 1.62 1.53 1.54 13.00
MRGCD(£1) | 4.24 1.49 1.30 1.63 7.50
MRGCU(£1) | 4.17 1.59 1.54 1.51 11.25
MRGCDU(+£1) | 4.28 1.46 1.26 1.60 6.00
AR = Rx — Royigina Where Rx denotes the RMS error of method
“X”and Rorigina denotes the RMS error of the original method.

4.5

3.5

e 25

1.5

0.5

—.—Map

== Sawtooth

T = o o N Tsukuba

=36=\/enus

Fig. 5-10 Plot of rms_error_all

59

Table 5-3 Comparison of bad_pixels_all

B (%) Average
Method

Map | Sawtooth | Tsukuba | Venus AB

Original 5.45 3.94 4.16 3.50
MRGC(+1) 8.38 10.09 7.75 7.15 4.08
MRGC(£1) 6.16 4.87 7.07 522 1.57
MRGCD(+£1) | 5.88 4.08 6.36 5.26 1.13
MRGCU(+£1) | 7.32 5.42 7.50 5.77 2.24
MRGCDU(+£1) | 7.31 4.22 5.94 4.69 1.28

ADB = Bx — Bgiginal Where Bx denotes the percentage of bad pixels

of method “X” and B.gina denotes the percentage of bad pixels of

the original method.

12
\ AN
3 A\\
—_—
6 - / == Map
§ == Sawtooth
4 v
X Tsukuba
2 == \/enus
0
O N T S
& C
N\ o C Q N N
9) @5 @Qs(o QS?(/ QS’(J 600
A\ N\ &

Fig. 5-11 Plot of had pixels_all

60

Ground truth

Original MRGC(+1)

MRGC(+1) MRGCD(+1)

MRGCU(+1) MRGCDU(#1)

Fig. 5-12 Disparity maps of ‘Map’

61

Ground truth

Original MRGC(+1)

MRGC(+1) MRGCD(+1)

MRGCU(£1) MRGCDU(+1)

Fig. 5-13 Disparity maps of ‘Sawtooth’

62

Original MRGC(+1)

MRGC(+1) MRGCD(£1)

MRGCU(£1) MRGCDU(+1)

Fig. 5-14 Disparity maps of ‘Tsukuba’

63

Ground truth

Original MRGC(+1)

MRGC(+1) MRGCD(£1)

MRGCU(+1) MRGCDU(+1)

Fig. 5-15 Disparity maps of ‘Venus’

64

5.4.2 Disparity Estimation in Multi-Camera Array

Table 5-4 and Table 5-5 show that the disparity estimation using our proposed

multi-camera scheme does method cannot improve the quality of disparity maps. Fig.

5-16 and Fig. 5-17 show the change of disparity map. The predicted disparity map

computed by scaling and shifting the im4’s disparity map relative to im6. We run the

graph cuts algorithm by using the predicted disparity map to be the initial disparity

map.

Table 5-4 Comparison of rms_error_all

R Average
Method
Sawtooth Venus AR (%)
Original 1.48 1.48
Multi-cam 1.48 1.49 0.5

AR = Rx — Royigina Where Rx denotes the RMS error of method
“X”and Rorigina denotes the RMS error of the original method.

Table 5-5 Comparison of bad_pixels all

B (%) Average
Method
Sawtooth Venus AB
Original 3.94 3.50
Multi-cam 391 3.68 0.08

the original method.

ADB = Bx — Briginat Where Bx denotes the percentage of bad pixels

of method “X” and Bgina denotes the percentage of bad pixels of

65

Ground truth

Original im4’s disparity map relative to im6
predicted by scaling and shifting im2’s disparity map relative to im6

Fig. 5-16 Disparity maps of “Sawtooth”

66

Ground truth

Original im4’s disparity map relative to im6
predicted by scaling and shifting im2’s disparity map relative to im6

Fig. 5-17 Disparity maps of “Venus”

67

Chapter 6 Conclusions and Future Work

6.1 Conclusions

The Graph Cut (GC) algorithm is an effective disparity estimation algorithm. Yet,
it consumes a huge amount of computations due to its high complexity. The original
GC scheme randomizes the a-f swap pairing in the inner iteration loop and terminates
the iteration in outer loop when no further energy reduction is possible. Observing the
energy minimization process of GC, we propose two techniques to speed up GC. One
is the inclusion of an early termination mechanism in the outer iteration loop, and the
other is prioritizing the a-f swap pair search order in the inner iteration loop.
Simulation results show that our proposed fast GC can achieve up to 68% speed-up
(reduce 68% computing time) in computation while it preserves the high accuracy of
disparity map as measured by the RMS disparity error and the bad pixels probability.

The worst case running time for the GC algorithm we use is O(N3Ng), where
Ny is the number of nodes and Ng is the number of edges. The running time greatly
increases with the image size and disparity range. We propose a multi-resolution
graph cuts (MRGC) to reduce the computing time, but it slightly decreases the quality
of disparity map. Simulation results show that the MRGC method may achieve up to

84% speed-up and increases 1% of bad pixel ratio. In addition, we attempt to improve

68

the quality of disparity map by using the multi-camera picture. However, the

simulation results show that simple method has no contribution on disparity

estimation the improvement.

6.2 Future Work

This thesis concentrates on reducing the computing time of GC algorithms, so

that real-time application and multi-camera application become possible. The other

reason we study the GC algorithm is its good performance. Potentially, we can further

improve the DE quality of the occlusion regions by modifying the energy function

designed for multi-camera image, since we have much more information in hands.

Furthermore, the 2D camera array that takes pictures of objects from different angles

(both horizontally and vertically) may help in both disparity estimation and new view

synthesis. This topic can be explored in the future.

69

Bibliography

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

M. Tanimoto and M. Wildeboer, “Frameworks for FTV coding,” Proc. Picture

Coding Symposium, pp. 1-4, 2009.

M. Tanimoto, T. Fuji, and K. Suzuki, “Data format for FTV,” ISO/IEC

JTC1/SC29/WG11 M16093, Feb. 2009.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd

ed., Cambridge University Press, Mar. 2004.

StereoMatcher software. [Online] Available: http://vision.middlebury.edu/stereo/.

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame

stereo correspondence algorithms,” International Journal of Computer Vision,

vol. 47, pp. 7-42, Apr. 2002.

M.Z. Brown et al., “Advances in computational stereo,” IEEE Transaction on

Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 993-1008, Aug.

2003.

Tappen, M.F. and Freeman, W.T, “Comparison of graph cuts with belief

propagation for stereo, using identical MRF parameters,” IEEE International

Conference on Computer Vision, 2003.

Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via

graph cuts,” IEEE Transaction on Pattern Analysis and Machine Intelligence,

70

vol. 23, no. 11, pp. 1222-1239, Nov. 2001.

[9] S. Birchfield and C. Tomasi, “Multiway cut for stereo and motion with slanted

surfaces,” Proc. Int’l Conf. Computer Vision, pp. 489—495, 1999.

[10] V. Kolmogorov and R. Zabih, “What energy functions can be minimized via

graph cuts?,” IEEE Transaction on Pattern Analysis and Machine Intelligence,

vol. 26, no. 2, pp. 147-159, Feb. 2004.

[111Y. Boykov and V. Kolmogorov, “An experimental comparison of

min-cut/max-flow algorithms for energy minimization in vision,” I[EEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp.

1124-1137, Sep. 2004.

[12] S. Birchfield and C. Tomasi, “Depth discontinuities by pixel-to-pixel stereo,”

Proc. Int’l Conf. Computer Vision, pp. 1073—1080, 1998.

[13] S. Birchfield and C. Tomasi, “A pixel dissimilarity measure that is insensitive to

image sampling,” [EEE Transaction on Pattern Analysis and Machine

Intelligence, vol. 20, no. 4, pp. 401-406, 1998.

[14] P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact image code,”

IEEE Transactions on Communications, vol. COM-31, no. 4, pp. 532-540, 1983.

[15] A. F. Bobick and S. S. Intille, “Large occlusion stereo,” International Journal of

Computer Vision, vol. 33, no. 3, pp. 181-200, 1999.

71

[16] G. Van Meerbergen, M. Vergauwen, M. Pollefeys and L. Van Gool, “A

hierarchical symmetric stereo algorithm using dynamic programming,”

International Journal of Computer Vision, vol. 47, no. 1-3, pp 275-285, 2002.

[17] S. Roy, “Stereo without epipolar lines: A maximum-flow formulation,”

International Journal of Computer Vision, vol. 34, no. 2-3, pp. 147-162, Aug.

1999.

[18] T. Cormen, C. Leiserson, R. Rivest and C. Stein, “Maximum Flow,” Chapter 26

of Introduction to algorithms, 2nd edition, pp. 643-698, McGraw-Hill, 2005

[19] L. Ford and D. Fulkerson, Flows in Networks. Princeton University Press, 1962.

[20] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum-flow

problem,” Journal of the Association for Computing Machinery, vol. 35, no. 4,

pp. 921-940, Oct. 1988.

[21] G. Egnal, “Mutual information as a stereo correspondence measure,” Tech. Rep.

MS-CIS-00-20, University of Pennsylvania, 2000.

[22] O. Veksler. Efficient Graph-based Energy Minimization Methods in Computer

Vision. Ph.D. dissertation, Cornell University, 1999.

[23] LE.G. Richardson, H.264 and MPEG-4 video compression: video coding for

next-generation, Wiley, 2003.

[24] S.B. Kang, R. Szeliski, and J. Chai. “Handling occlusions in dense multi-view

72

stereo,” IEEE Conference on Computer Vision and Pattern Recognition, 2001.

Expanded version available as MSR-TR-2001-80.

73

BEE1986 60 2T p A2t st s 2008 E B ENEL FH L F T

—N

1A2F ko2 BEIRZIUL A ETIFTITHEALE Ay v dRAL R

B2 P L TR IMARL L2 EER P BFE

74

	cover_page.pdf
	thesis.pdf

