

國 立 交 通 大 學

電子工程學系 電子研究所

碩 士 論 文

使用於立體視差估算之快速圖形切割

演算法

Fast Graph Cuts Algorithm for Disparity

Estimation

 研 究 生： 周 正 偉

 指導教授： 杭 學 鳴

中華民國九十九年六月

使用於立體視差估算之快速圖形切割

演算法

Fast Graph Cuts Algorithm for Disparity Estimation

研 究 生：周 正 偉 Student: Cheng-Wei Chou

指導教授：杭 學 鳴 博士 Advisor: Dr. Hsueh-Ming Hang

國 立 交 通 大 學

電子工程學系 電子研究所

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of Master

in

Electronic Engineering

June 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年六月

 i

使用於立體視差估算之快速圖形切割

演算法

研究生: 周正偉 指導教授: 杭學鳴 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要摘要摘要摘要

 視差估算在 3D 視頻處理系統中是其中一個關鍵的因素。許多技術已經被提

出來計算視差圖，圖形切割演算法是一種公認較好的視差估算計畫。然而，圖形

切割演算法具有很高的計算複雜度。

 在這篇論文中，我們提出了一個用於視差估算的快速圖形切割演算法，有兩

個加速的技巧被提出：一個是提前終止規則，另一個是排出 α-β 交換對的搜索的

優先順序。我們的模擬結果表現，當我們跟原始方法比較，該演算法可以加速

68%的平均運算時間。同時，視差圖的品質可以保持在幾乎跟原始方法一樣。

 另一個加速技術，我們是採用多解析度的方法。一開始我們先對原始影像降

頻取樣，並針對低解析度的影像作視差估算，產生低解析度的視差圖。接著，我

 ii

們再對低解析度的視差圖做升頻取樣，並以此視差圖作為初始值去做原始解析度

的視差估測，我們去測試幾種降頻取樣及升頻取樣的方式，並找到最佳的組合。

我們的模擬顯示，多解析度的圖形切割演算法只使用原始計算時間的的 16%，而

壞像素的升幅只有 1%。我們研究的最後一個主題是使用多相機拍照的視差估

測，初步觀察顯示了一些有趣的結果，我們需要進一步的實驗才能發揮這主題的

優勢。

 iii

Fast Graph Cuts Algorithm for Disparity

Estimation

Student: Cheng-Wei Chou Advisor: Dr. Hsueh-Ming Hang

Department of Electronic Engineering &

Institute of Electronics

National Chiao Tung University

Abstract

Disparity estimation is one of the critical elements in a 3D video processing

system. Many techniques have been proposed to calculate the disparity map from a

pair of images and the graph cut (GC) algorithm is one of the recognized better

disparity estimation schemes. However, GC has a very high computational

complexity.

In this thesis, we propose a fast GC algorithm for disparity estimation purpose.

Two accelerating techniques are suggested: one is the early termination rule and the

other is prioritizing the α-β swap pair search order. Our simulations show that the

proposed fast GC algorithm can reduce 68% computing time on the average, when

compared with the original GC scheme. Meanwhile, its disparity estimation

performance is about the same as that of the original GC.

Another speed-up technique we adopt is the multi-resolution approach. The

 iv

original images are down-sampled and a low-resolution disparity map is first

estimated. Then, the low-resolution disparity map is up-sampled as the initial values

for estimating the disparity map of the original images. Several down-sampling and

up-sampling filters are tested to find the best combination. Our simulation shows that

the multi-resolution GC (MRGC) algorithm uses only 16% of the original computing

time and the bad pixel probability increases only by 1%. The last topic we investigate

is disparity estimation using multi-camera pictures. The initial exploration shows

some interesting results. Further investigation is needed to fully take the advantage of

multiple images recoded by a camera array.

 v

誌謝誌謝誌謝誌謝

 能夠完成碩士論文，我首先要感謝的是指導教授杭學鳴老師，在研究過程

中，經由老師耐心指導，學習到做研究的方法和應有的態度。除了在專業領域的

教導，老師也時常關心我們的身體健康。這兩年來，從老師身上不僅僅只學到專

業知識，更學到待人處事的方法。相信這些經驗將成為我人生中重要的瑰寶。

 研究過程中，非常感謝蔡彰哲學長的指導。從確定研究目標到完成實驗，學

長總是費盡心思的與我討論並給予意見。在我遇到問題的時候，帶著我找尋答

案，真的非常感謝蔡彰哲學長。非常感謝大師，無論在專業領域上，或是論文寫

作技巧，都給予我許多資訊與幫助，在大師循循善誘的教導下，讓我在碩士生涯

成長不少。此外，也非常感謝家揚、雄哥的幫助，以及眾多學長學弟同學們的陪

伴，讓我的碩士班生活更多采多姿。

 最後要感謝我的爸媽以及姊姊，在我求學生涯中默默的支持我，你們的溫暖

是我前進的動力。

 vi

Table of Contents

摘要 …………………………………………………………….. i

Abstract …………………………………………………………….. iii

致謝 ……………………………………………………………... v

Table of Contents …………………………………………………………….. vi

List of Figures …………………………………………………………….. viii

List of Tables …………………………………………………………….. x

Chapter 1 Introduction .. 1

1.1 Background .. 1

1.2 Motivation and Contributions .. 2

1.3 Organization of the Thesis ... 3

Chapter 2 Introduction of Computational Stereo ... 5

2.1 Overview .. 5

2.2 Epipolar Geometry ... 5

2.3 The General Structure of Matching Algorithm 6

2.3.1 Initial Matching Cost Computation ... 7

2.3.2 Cost Aggregation ... 8

2.3.3 Disparity Computation and Optimization .. 10

2.3.4 Disparity Refinement ... 13

2.4 A Taxonomy Evaluation ... 13

2.4.1 Overview of the Platform... 13

2.4.2 Quality Metrics .. 15

2.4.3 Test Data .. 16

Chapter 3 Energy Minimization by Graph Cuts .. 18

3.1 Overview .. 18

3.2 Max-Flow and Min-Cut Problem... 18

3.3 Push-Relabel Algorithm ... 20

3.4 Energy Minimization using Graph Cuts .. 23

3.4.1 The General Form of Energy Function .. 23

3.4.2 The - Swap Method ... 25

3.4.3 Multiway Cut Algorithm .. 29

Chapter 4 The - Swap Algorithm Speed-Up and Early Termination 32

4.1 Overview .. 32

4.2 Early Termination of Energy Minimization Process 32

4.3 Prioritizing the - Swap Pair Sequence .. 34

 vii

4.4 Simulation Results and Discussions .. 37

4.4.1 Experiment Environment Setting ... 37

4.4.2 Simulation Results ... 38

4.4.3 Analysis and Discussions ... 46

Chapter 5 Multi-Resolution Graph Cuts and Disparity Estimation for

Multi-Camera Array .. 48

5.1 Overview .. 48

5.2 Disparity Estimation using Multi-Resolution Graph Cuts 48

5.2.1 Image Down-Sampling .. 50

5.2.2 Disparity Map Up-sampling and Scaling ... 51

5.2.3 Neighborhood Graph Cuts ... 53

5.3 Disparity Estimation in Multi-Camera Array 54

5.4 Simulation Results and Discussions .. 56

5.4.1 Multi-Resolution Graph Cuts ... 56

5.4.2 Disparity Estimation in Multi-Camera Array 65

Chapter 6 Conclusions and Future Work .. 68

6.1 Conclusions .. 68

6.2 Future Work ... 69

 viii

List of Figures

Fig. 2-1 Stereo image geometry ... 6

Fig. 2-2 Process of the general stereo correspondence algorithms 7

Fig. 2-3 Disparity space image .. 7

Fig. 2-4 An illustration of the shiftable window .. 10

Fig. 2-5 Stereo matching using dynamic programming .. 12

Fig. 2-6 Program structure of the middlebury platform .. 14

Fig. 3-1 A simple example of the graph and the minimum cut (the red line) 19

Fig. 3-2 A simple example of push-relabel algorithm ... 22

Fig. 3-3 An example of a directed weighted graph ... 26

Fig. 3-4 An example of the graph for a 1D image ... 26

Fig. 3-5 Properties of a cut on the graph ... 28

Fig. 3-6 The change of disparity map after an - swap ... 28

Fig. 3-7 (a) An example of the graph with multiple terminals (b) An

induced graph by a multiway cut (dotted lines indicate cut edges) 30

Fig. 3-8 Flowchart of GC... 31

Fig. 4-1 Disparity distribution of the test image pair ‘sawtooth’ after the -th iteration

of the outer loop () .. 33

Fig. 4-2 E and in the energy minimization process of the test image pair ‘sawtooh’

.. 34

Fig. 4-3 RMS_error and Bad_pixel in the energy minimization process of ‘sawtooh’34

Fig. 4-4 Disparity distribution of ‘sawtooth’ after the 1
st
 outer-loop iteration 36

Fig. 4-5 Flow chart of our proposed fast GC ... 37

Fig. 4-6 Plot of computing time ... 39

Fig. 4-7 Plot of rms_error_all ... 40

Fig. 4-8 Plot of bad_pixels_all .. 41

Fig. 4-9 Disparity maps of ‘Map’ .. 44

Fig. 4-10 Disparity maps of ‘Sawtooth’ .. 44

Fig. 4-11 Disparity maps of ‘Tsukuba’ .. 45

Fig. 4-12 Disparity maps of ‘Venus’ .. 45

Fig. 5-1 Flowchart of MRGC .. 49

Fig. 5-2 An example of 4 to 1 pixel-skip down-sampling ... 50

Fig. 5-3 An example of disparity map up-sampling and scaling 51

Fig. 5-4 The up-sampling method of H.264 .. 52

Fig. 5-5 The disparity pair candidates in neighborhood graph cuts (a) (b) 53

Fig. 5-6 Multi-camera array ... 54

 ix

Fig. 5-7 Flowchart of GC for multi-camera pictures ... 55

Fig. 5-8 The scaling and shifting moves .. 55

Fig. 5-9 Plot of computing time comparison ... 58

Fig. 5-10 Plot of rms_error_all ... 59

Fig. 5-11 Plot of bad_pixels_all... 60

Fig. 5-12 Disparity maps of ‘Map’ .. 61

Fig. 5-13 Disparity maps of ‘Sawtooth’ .. 62

Fig. 5-14 Disparity maps of ‘Tsukuba’ .. 63

Fig. 5-15 Disparity maps of ‘Venus’ .. 64

Fig. 5-16 Disparity maps of “Sawtooth” ... 66

Fig. 5-17 Disparity maps of “Venus” ... 67

 x

List of Tables

Table 2-1 Match metrics for correspondence matching [6]... 9

Table 2-2 Descriptions of error metrics [5] ... 16

Table 2-3 Test data [5] ... 17

Table 3-1 Weight information of the edges ... 27

Table 4-1 The experiment environment setting ... 38

Table 4-2 Comparison of computing time ... 39

Table 4-3 Comparison of rms_error_all ... 40

Table 4-4 Comparison of bad_pixels_all .. 41

Table 4-5 Comparison of bad_pixels_nonocc ... 42

Table 4-6 Comparison of bad_pixels_textureless .. 42

Table 4-7 Comparison of bad_pixels_discont ... 43

Table 5-1 Computing time comparison ... 58

Table 5-2 Comparison of rms_error_all ... 59

Table 5-3 Comparison of bad_pixels_all .. 60

Table 5-4 Comparison of rms_error_all ... 65

Table 5-5 Comparison of bad_pixels_all .. 65

 1

Chapter 1 Introduction

1.1 Background

 Recently the ISO/IEC Moving Picture Expert Group (MPEG) initiated a

standardization process on free viewpoint television (FTV) [1]. As a new type of

interactive video system, FTV can synthesize 3 dimensional (3D) scenes at nearly any

(virtual) viewpoint and thus receives its name. An FTV system typically consists of

modules of multi-view video capture, image correction, depth map estimation, data

coding/decoding, and view synthesis. Specifically, the disparity estimation module is

an inevitable component of an FTV system, which is used in both multi-view scene

analysis and synthesis.

With the help of epipolar geometry [2], the general stereo correspondence

problem is simplified to disparity estimation (DE) [3][4][5] under the assumption of

dense camera array. Here, disparity refers to the location difference of the

corresponding objects along the epipolar lines on the two recorded images. For years,

most researchers have focused on improving the accuracy of DE, not on the speed

acceleration. With the emerging 3D TV and FTV, we focus on fast DE algorithms in

this study.

DE algorithm generally is divided into 4 stages: 1) initial matching cost

 2

calculation, 2) cost aggregation, 3) disparity computation and optimization, and 4)

disparity refinement. In this contribution, we use the absolute intensity difference

(with the Birchfield and Tomasi’s sampling insensitive dissimilarity measure) [5]

between the corresponding feature points as the initial matching cost. The cost

aggregation collects the initial matching cost by using a moving average filter in a

square window (box filter). Once the aggregated costs are computed, the disparity

computation and optimization module determines which discrete set of disparities best

represents the scene surface depth. Finally the disparity refinement step increases the

disparity accuracy to sub-pixel precision.

The stereo algorithm can be categorized as local and global approaches [5]. The

local approach focuses on the cost calculation and aggregation. The winner-take-all

method (WTA), which chooses the lowest aggregated cost as the selected disparity at

each pixel, is a simple disparity computation and optimization method used in the

local approach. In the global approach, we further consider the disparity smoothness

among neighboring pixels More sophisticated algorithms, such as dynamic

programming, simulated annealing, belief propagation (BP) and graph cut (GC), has

been suggested to offer better DE results.

1.2 Motivation and Contributions

 Among various global DE algorithms, GC and BP offer better DE results. The

 3

qualities of them are similar. According to Tappen and Freeman [7], the computational

time of the synchronous BP is much larger than GC, but the accelerated BP uses only

80% of the GC’s computational time. In this study, we choose GC because it can be

accelerated and may have advantages in computation. In addition, to our knowledge,

the fast graph cuts algorithms are rare in literature. Therefore, we propose methods to

accelerate GC algorithm.

GC and its variations [8]-[11] generally show admirable performance in their

disparity estimation quality. However, GC suffers from the huge amount of processing

time. Owing to its good DE performance, GC is chosen as the target algorithm for

speed-up. The major contributions in this thesis include the following items.

(1) An early termination process is proposed to save the computing time.

(2) We save computing time by prioritizing the - swap pair sequence.

(3) The computing time greatly increases with the image size and the disparity range.

We use multi-resolution graph cuts to reduce the computational complexity.

(4) We attempt to improve the disparity map for the multi-camera array.

1.3 Organization of the Thesis

 In chapter 2, we briefly introduce the background of computational stereo. In

chapter 3, we describe the graph cuts process that minimizes the energy function in

DE problem. Chapter 4 describes our proposal of the early termination and optimizing

 4

the - swap pair sequence. Simulations are conducted and the significant amount

of computing time saving is shown. Chapter 5 discusses the multi-resolution graph

cuts algorithm and our initial investigation on the disparity estimation on the

multi-camera array picture. Finally, brief summary and remarks on future work are

given in chapter 6.

 5

Chapter 2 Introduction of Computational

Stereo

2.1 Overview

 The concept of stereo correspondence is to find the correspondent point in the

image of the other view. Based on epi-polar geometry, the general stereo

correspondence problem is simplified to disparity estimation under the assumption of

dense camera array. The search region of the corresponding features between the left

and the right images can thus be reduced to the epi-polar lines. The goal of a stereo

correspondence algorithm is to produce a univalued function in disparity space

 that best describes the depth information of the surfaces in the scene.

2.2 Epipolar Geometry

 Fig. 2-1 shows a typical stereo image geometry in the 3D space. There are two

pinhole cameras viewing a 3D scene from difference view points. We place a virtual

image plane in front of each camera. The intersections between the baseline connects

two cameras and the two image planes are called epipole. The plane formed by any

point in the space and the base line is epipolar plane. The epipolar plane intersects

each camera's image plane, the intersection forms lines—the epipolar lines. Any point

P in the epipolar plane corresponds to points P1 and P2 which are the projections of

 6

point P onto the epiploar line. Therefore, if the two epipolar lines belong to the same

epipolar plane, for each point observed on one epipolar line must be observed on the

other epipolar line. We can use this property to reduce the search range from the

whole image to an epipolar line. This geometry property is called epipolar constraint.

Fig. 2-1 Stereo image geometry

2.3 The General Structure of Matching Algorithm

According to Scharstein and Szeliski [5], the stereo correspondence algorithms

generally consist of four parts:

1. Initial matching cost computation,

2. Cost aggregation,

3. Disparity computation and optimization,

4. Disparity refinement,

 7

Fig. 2-2 shows the general procedure of a stereo correspondence algorithm. The

output is the disparity map of an image pair input. The details of the four parts will be

discussed in the following sections.

Fig. 2-2 Process of the general stereo correspondence algorithms

2.3.1 Initial Matching Cost Computation

 The matching cost represents the dissimilarity between two pixels in our

correspondence problem. The range of the disparity candidates is called the disparity

range. The initial disparity space image (Fig. 2-3) consists of the

matching cost values over all pixels and all disparities.

Fig. 2-3 Disparity space image

 The most popular pixel-based match metrics are the squared intensity difference

(SD) and the absolute intensity difference (AD). The correspondence problem to find

 8

the best match between the candidate pixel and the reference pixel in the support

region . In addition, Birchfield and Tomasi proposed a matching cost sensitive to

image sampling [12][13]. The several match metrics are listed in Table 2-1 [6]. In our

platform, the parameter match_fn selects the matching cost function we use. The

general formula of matching cost computation can be written as

 (2.1)

where and represent the left (reference) and the right images, respectively.

2.3.2 Cost Aggregation

 After computing matching cost, we aggregate nearby pixel costs. Because the

disparity values of the neighboring pixels should often be consistent, we select a

support window to add up their costs. The cost aggregation can be formulated as

 (2.2)

where is the initial matching cost calculated in the previous step. The

function indicates the related weight of neighboring pixels contributing to the

aggregated cost. Although the cost aggregation can reduce the noise effect, it blurs the

edge of the object when aggregating the cost of difference objects. Therefore, how to

design a good aggregation scheme is an important topic. In our platform, the

parameter aggr_fn selects the aggregation method we use. Several aggregation

methods are described below:

 9

� Box filter: Use a separable moving average filter (add one right/bottom value,

subtract one left/top). The decision of the window size will affect the

performance and the computation time. If we want to implement real-time

matcher, we should consider the window size as a vital factor.

Table 2-1 Match metrics for correspondence matching [6]

Match Metric Definition

Normalized

Cross-Correlation

Sum of Squared

Difference

Normalized Sum

of Squared

Difference

Sum of Absolute

Difference

Mutual

Information

 and represent the intensity value of left and right image where

 is the index of pixel. represents the mean of intensity value in the support

window . is the probability density function and represents the disparity

value.

 10

� Binomial filter: The function is a separable FIR (finite-duration impulse

response) filter. We use the coefficients 1/16{1, 4, 6, 4, 1} proposed by Burt and

Adelson’s [14] Laplacian pyramid.

� Minimum filter: The function is a sliding window with a location bias (Fig.

2-4). We can use a box filter and its center is not the candidate pixel. But the

candidate pixel should be included in the shifted windows, it is called shiftable

window [15]. We choose the minimum aggregation cost among all the shiftable

windows in the pre-selected range. The shiftable window can avoid aggregating

the cost near object boundary.

Fig. 2-4 An illustration of the shiftable window

2.3.3 Disparity Computation and Optimization

 The disparity map can be obtained from the original matching cost or the

aggregated cost. In addition, the disparity computation method can be categorized into

 11

two types: the local and the global approaches. These two approaches are described as

follows.

In a local method, the matching cost or the cost aggregation are the key

components. The simplest local method is the Winner Take All (WTA) algorithm, in

which the disparity of each pixel is determined by minimizing the matching

cost or aggregated cost in the disparity search range , that is,

 (2.3)

Moreover, the disparity of each pixel is independently calculated.

In a global method, we define an energy function, which includes a data term and

a smooth term. The data term includes the cost function that we discuss previously,

and the smooth term represents the smoothness penalty of the disparity map. The

detail of the energy function will be discussed in section 3.1. One of the earlier

proposed global optimization methods is the dynamic programming (DP) [16]. The

dynamic programming scheme optimizes the energy function of each scanline

independently. Fig. 2-5 shows a stereo matching using dynamic programming for a

pair of corresponding scanline. We select the minimum path through the matrix of all

pairwise matching costs. The lowercase array represents the intensities along a

scanline of the left image. The uppercase array represents the intensities along a

corresponding scanline of the right image. The matches are indicated by M, and the

 12

partially occluded points are indicated by L or R, which based on the points only

visible in the left image or the right image. In this example, the disparity range is 0-4,

which indicated by the non-shaded boxes. The shaded boxes are disparities outside

this range. Although dynamic programming can optimize the horizontal global

information, the vertical correlation is not considered. The disparity maps produced

by dynamic programming may exhibit horizontal streaks, and it reduces the subjective

quality of the synthesized image.

R
ig

ht
 s

ca
nl

in
e

(u
pp

er
ca

se
 a

rr
ay

)

Fig. 2-5 Stereo matching using dynamic programming

For considering the vertical and horizontal information simultaneously, the

energy minimization using the so-called graph-cuts technique has been proposed. This

optimization algorithm performs well in disparity estimation. Unfortunately, the

 13

computation and the storage requirement for graph-cuts algorithm are enormous. The

detail of graph-cuts will be discussed in sections 3.2 and 3.3, and we will propose our

algorithm for reducing the computation time in chapter 4.

2.3.4 Disparity Refinement

 Most stereo correspondence algorithms produce an integer disparity map. The

integer disparity is not good enough for some applications, which require

good-quality synthesized images. To improve the synthesis result, many algorithms

apply a disparity refinement stage in the procedure of stereo correspondence

algorithms. In the disparity refinement stage, the sub-pixel disparity map can be

computed. We can increase the resolution of the disparity map with a little additional

computation. However, the goal of this research is to decrease the computation and

maintain the quality of the disparity map. Because we do not focus on the synthesis

result, we do not use the disparity refinement stage in the reference software (platform)

by setting the Boolean variable refine_subpix false.

2.4 A Taxonomy Evaluation

2.4.1 Overview of the Platform

 The source codes downloaded from the middlebury website are used as our

platform [5]. Fig. 2-6 depicts the program structure of the middlebury platform. In the

beginning, the main file calls the interpreCommandLine function which is included in

 14

the StereoIO file. In the interpreCommandLine function, the first step initializes the

entire parameters (StereoParameter.cpp), and then we adjust the values of parameters

specified by the configuration file or the command lines (ParameterIO.cpp). The next

step executes the stereo matching program (StereoMatcher.cpp), which is the primary

part in the platform. The stereo matching can be divided into four components as

depicted Fig. 2-2. They are initial matching cost computation, cost aggregation,

disparity computation (optimization), and disparity refinement. At the end, the

program evaluates the quality by comparing the computed disparity map and the

ground truth disparity map (StcEvaluate.cpp).

main.cpp

StereoIO.cpp

StereoParameters.cpp

ParameterIO.cpp

StereoMatcher.cpp

StcEvaluate.cpp

StcPreProcess.cpp

StcRawCosts.cpp

StcAggregate.cpp

StcRefine.cpp

BoxFilter.cpp

StcDiffusion.cpp

MinFilter.cpp

StcOptimize.cpp

StcOptDP.cpp

StcGraphcut.cpp

StcSimulAnn.cpp

StcOptSO.cpp

Fig. 2-6 Program structure of the middlebury platform

 15

2.4.2 Quality Metrics

 To evaluate the quality of a disparity map computed by a stereo algorithm, we

compute the following two quality metrics in our platform:

1. RMS (root-mean square) error between the computed disparity map and

the ground truth map can be written as

 (2.4)

where is the RMS error, is the total number of pixels and denotes the

image area.

2. Percentage of bad matching pixels can be written as

 (2.5)

where is the percentage of bad pixels and is a disparity error tolerance. We

simply adopt the default setting of the published platform and set in our

experiment.

 Besides computing the two quality metrics over the whale image, we also

compute the two quality metrics over three difference kinds of regions, which are

textureless regions , occluded regions and depth discontinuity regions . Their

symbols and descriptions are listed in Table 2-2.

 16

Table 2-2 Descriptions of error metrics [5]

PARAMETER NAME SYMBOL DESCRIPTION

rms_error_all RMS disparity error

rms_error_nonocc RMS disparity error (no occlusions)

rms_error_occ RMS disparity error (at occlusions)

rms_error_textureless RMS disparity error (textureless)

rms_error_textured RMS disparity error (textured)

rms_error_discont RMS disparity error (discontinuities)

bad_pixels_all Bad pixel percentage

bad_pixels_ nonocc Bad pixel percentage (no occlusions)

bad_pixels_ occ Bad pixel percentage (at occlusions)

bad_pixels_ textureless Bad pixel percentage (textureless)

bad_pixels_ textured Bad pixel percentage (textured)

bad_pixels_ discount Bad pixel percentage (discontinuities)

2.4.3 Test Data

 We download the test data on the middlebury website. The test data set we used

is shown in Table 2-3. The four sequences, which are map, tsukuba, sawtooth, and

venus, are the most commonly used ones for quality evaluation.

 17

Table 2-3 Test data [5]

 Map Sawtooth Tsukuba Venus

Image size

Input

Ground Truth

Occlusion and

discontinuities

Occlusion and

textureless

 18

Chapter 3 Energy Minimization by Graph Cuts

3.1 Overview

 In disparity estimation, the graph cuts and the belief propagation algorithms are

generally recognized as the better global optimization methods. Unfortunately, their

computation time is very high. Because we only focus on the graph cuts method, we

only describe the procedure of the graph cuts in this chapter. The maximum

flow/minimum cut (max-flow/min-cut) problem and an algorithm which solves the

max-flow/min-cut problem are introduced [17][18]. Based on the graph cuts, two

algorithms have been proposed for solving the stereo correspondence problem by

minimizing the energy function, namely and [8].

3.2 Max-Flow and Min-Cut Problem

 First, we glance at the graph theory. In Fig. 3-1, we show a simple example of a

graph . A directed graph is defined as a set of nodes (vertices)

and a set of directed edges that connect the nodes. In the graph, a source terminal

as and a sink terminal as are denoted. A cut is a set of edges such that

the two terminals become separated on the induced graph . A cut

can also be represented by which produces a partition of into and

, such that and .

 19

 A minimum cut is a cut whose cost is the minimum over all possible cuts of .

The minimum cut problem can be solved by finding a maximum flow from the source

 to the sink . In other words, the maximum source-to-sink flow is equal to the cost

of the minimum cut in . Maximum flow can be considered the maximum “amount

of water” that can be sent from the source to the sink, and the cost of edge can be

considered the capacity of a directed “pipe”.

 The algorithms to solve the maximum flow problem can be classed into two

groups: Ford-Fulkerson algorithm [19] and push-relabel algorithm [20]. The

Ford-Fulkerson algorithm examines the whole residual network to find an augmenting

path. The algorithm begins with no flow and runs iteratively. At each iteration, the

flow is increased by finding the augmenting path from the source to the sink in the

residual network. The process repeats until no further augmenting path we can find,

and the flow is the maximum flow.

Fig. 3-1 A simple example of the graph and the minimum cut (the red line)

 20

 If we used a breath-first search to implement the augmenting path calculation in

the Ford-Fulkerson algorithm, the bound of running time can be improved to

, where is the number of nodes and is the number of edges in the

graph. We call the Ford-Fulkerson algorithm so implemented the Edmonds-Karp

algorithm. Push-relabel algorithms look only at the node's neighbors in the residual

network and process one node at a time. Compared with the Ford-Fulkerson algorithm,

the push-relabel algorithms are local methods and a simple implementation that runs

in time. Besides, unlike the Ford-Fulkerson, the push-relabel algorithms

do not maintain the flow-conservation property throughout their execution. Therefore,

we use push-relabel algorithms in this research instead of the Ford-Fulkerson method.

We will describe the detail of push-relabel algorithms in the next section.

3.3 Push-Relabel Algorithm

 In a push-relabel algorithm, the directed edges correspond to pipes as the

Ford-Fulkerson algorithm, but the intuition of nodes is different from the

Ford-Fulkerson algorithm. The nodes, which can be regarded as the pipe junctions,

have two parameters. One is the accumulation of the fluid, and the other one is the

node heights. The node heights determine how flow is pushed. We only push flow

from a higher node to a lower node.

 In a push-relabel algorithm, there are two basic operations, the push operation

 21

and the relabel operation. The push operation performs pushing flow excess from a

node to one of its neighbors. The relabel operation can increase height of a node. We

will describe the flow of push-relabel algorithm by a simple example, which is

shown in Fig. 3-2. In Fig. 3-2 (a), a graph with nodes and directed edges is shown.

The number at the edge represents the cost (capacity of the pipe). In the beginning,

the parameters of each node are initialized as Fig. 3-2 (b). The height of the source

is set to the number of the nodes in the graph. The height of other nodes is initialized

to zero. In Fig. 3-2 (c), we employ the first push operation that saturate all outgoing

edges from the source . The flow follows the direction of the edges. When an edge

is saturated with flow along its original direction, we then change the direction of the

edge. Also, the flow accumulations, , of node V1 and V2 are changed to one and

two. Because the flow accumulations of node V1 and V2 cannot be pushed to the

other node after the first push operation, we must increase their height and this

processing is called relabel operation. The relabel operation is depicted in the Fig.

3-2 (d). After the relabel operation, we can push the flow accumulations of V1 and

V2 to the lower nodes as shown in Fig. 3-2 (e). We perform push operation and

relabel operation repetitively until there is no accumulation of flow in the each node

except for the sink , and the final graph is depicted in Fig. 3-2 (f).

 The maximum flow problem is solved when the final graph is obtained. The final

 22

Fig. 3-2 A simple example of push-relabel algorithm

 23

graph provides the minimum cut. A minimum cut separates the original graph into

two parts and , such that {all nodes reachable from source } and

.

3.4 Energy Minimization using Graph Cuts

 Disparity estimation using graph cuts outperforms many other optimization

methods. Before explaining how to compute the disparity map using graph cuts, we

introduce the general form of energy function. In addition, we will introduce a method

to minimize the energy function by graph cuts, - swap [8]. Finally, because the

disparity values are generally more 2 values, we need to build the graph many times,

which is called multiway cuts [9].

3.4.1 The General Form of Energy Function

 The general form of energy function can be written as

 (3.1)

where is a parameter, which controls the effect of the smooth energy term.

 The data energy term, , represents the dissimilarity between the left and

the right images when the disparity map is . The form of data energy term is

typically

 (3.2)

where is a pixel, is the set of total pixels in the left image, is the disparity

 24

value of pixel , and represents the cost when the disparity value of pixel

is . We can select different matching cost functions and different aggregation

methods to generate the cost array that was explained in section 2.3.1 and 2.3.2. The

data energy term is the summation of all costs when a disparity map is given.

 The smooth energy term, , measures the extent to which is not

piecewise smooth. If there are some non-smooth regions on the disparity map, we

should add some penalties on total energy. The smooth data term will make the

disparity map much smooth everywhere. The smooth energy term typically has the

form

 (3.3)

where is the set of interacting pairs of neighboring pixels, and is the

an interacting function, which has many different forms. In our platform, we use the

Potts model as our interacting function. The Potts model can be represented as

 (3.4)

where is 1 if the argument is true, and otherwise, 0, and is a penalty

constant. This model encourages disparity values consisting of several regions, where

pixels in the same region have equal disparity value. We also call it a piecewise

constant model.

 According to the previously introduced energy function in this section, we know

 25

the impact of energy function. We next describe how we minimize the energy function

by graph cuts in section 3.4.2.

3.4.2 The - Swap Method

First, we review some basic fact about graphs which is used to minimize the

energy function of disparity estimation. A directed weighted graph

consists of a set of nodes and a set of directed edge that connect them. The

nodes are usually composed of the pixel nodes and the terminal nodes. The pixel

nodes and the terminal nodes respectively correspond to the pixels in the image and

the disparity values which we can assign to pixels. In Fig. 3-3, we show a simple

example of a image with two disparity values. The two terminals are usually

called the source, s, and the sink, t. For more clearly seeing, we provide a simpler

illustration in Fig. 3-4, whose pixel nodes are arranged in 1D. The set of pixels in the

1D image is , where and . The weight

information of the edges is shown in Table 3-1. The edges can be classed into two

groups: t-links and n-links. The t-links (terminal links) connect each pixel node to the

terminals and , which is called and , respectively. The n-links (neighbor

links) connect each pair of pixels , that are neighbors (). The

symbol of the n-links is .

 26

s

t

p q

Fig. 3-3 An example of a directed weighted graph

Fig. 3-4 An example of the graph for a 1D image

 27

Table 3-1 Weight information of the edges

edge weight for

 From the Table 3-1, we know that the weight of edge is , which is the

data energy term. is the cost value of pixel , which is assigned a disparity

value . The edge is similarly defined. The weight of edge is ,

which is the smooth energy term. is an interacting function as we said

previously. When the graph is constructed, we find the minimum cut of the graph by

the push-relabel algorithm. We discuss the properties of a cut by a simple example in

Fig. 3-5. If the cut of Fig. 3-5 (a) is the minimum cut, we will assign disparity value

 to pixels and . The case of Fig. 3-5 (b) is similar to (a). If the cut of Fig. 3-5 (c)

is the minimum cut which includes the n-link, , we will assign disparity value

and to the pixels and , respectively.

 After finding the minimum cut of the graph, we can assign the disparity value to

each pixel in . The method that we adjust the disparity map is called - swap.

Fig. 3-6 (a) is an example of the initial disparity map. Although the disparity map is

always a gray level picture, we fill the region of disparity value with red (darkest)

color for illustration. After an - swap, the disparity map is modified to Fig. 3-6 (b).

The disparity map in (b) is much smoother than (a) in the regions of and ,

 28

because we minimize the energy function by graph cuts. However, a disparity map

may contain more than two disparity values. We cannot simply employ the graph cuts

once and, therefore, we will introduce the multiway cut algorithm to solve this

problem.

Fig. 3-5 Properties of a cut on the graph

Fig. 3-6 The change of disparity map after an - swap

 29

3.4.3 Multiway Cut Algorithm

 Because the number of disparity values is greater than two, there are multiple

terminals in the graph as shown in Fig. 3-7. The - swap method processes only

two terminals at a time, and, therefore, we must use multiway cut algorithm to solve

the problem. We describe the detail of multiway cut algorithm as follows.

(1) Start with an initial disparity map which may be given by the WTA method.

(2) Randomize the disparity sequence, and pick up two disparity values as the

terminals of the graph. Note that only the selected pixels can be the pixel nodes

in the graph.

(3) Employ the algorithm which we introduce previously to find the minimum cut.

(4) Repeat step (3) for every possible pair of disparity values.

(5) Repeat the step (3) and step (4) until the energy does not change.

After the total flow of multiway cut algorithm flow is computed, we reach a

sub-optimal total energy of the disparity map. Fig. 3-8 shows the flowchart of the GC

algorithm. (1) corresponds of to the S1, and (2) is composed of S2 and S3. (3) is equal

to S4. In addition, (4) and (5) are the inner and outer loop.

 30

p q

k

k

(a)

(b)

Fig. 3-7 (a) An example of the graph with multiple terminals (b) An

induced graph by a multiway cut (dotted lines indicate cut edges)

 31

Fig. 3-8 Flowchart of GC

 32

Chapter 4 The - Swap Algorithm Speed-Up

and Early Termination

4.1 Overview

 Among the global optimal algorithms, graph cuts (GC) and its variations [8]-[11]

generally show very good performance in their disparity estimation quality. Therefore,

GC is chosen as the target algorithm for speed up. The flowchart of the original GC is

shown in Fig. 3-8 which we was discussed in Chapter 3 previously. In this chapter, we

propose a fast GC algorithm for disparity estimation purpose. Two accelerating

techniques are suggested: one is the early termination rule, and the other prioritizes

the - swap pair search order.

4.2 Early Termination of Energy Minimization Process

 In this section, we examine the energy minimization process of GC to determine

an early termination threshold. First, we define a terminology to be used in the

following discussions. Fig. 4-1 shows the probability distribution of all possible

disparity values for a test image pair after the -th outer-loop iteration. This

probability distribution (sequence) forms a vector: . We measure the similarity

between two vectors by their inner product and thus theta , the angle between

and , is defined by (4.1).

 33

 (4.1)

 Fig. 4-2 shows the values E and after each outer-loop iteration on the test

image ‘sawtooth’, and Fig. 4-3 shows the RMS_error and Bad_pixel of the

corresponding disparity map. In the energy minimization process, GC monotonically

decreases E. However, the quality metrics slightly fluctuate when E reaches its

minimum. The other test image pairs show similar results. When the decrease in E is

small, further iterations may not necessarily improve the quality, even though the

energy level can be further lowered slightly. Therefore, we suggest an early

termination mechanism to save computation. The optimization process terminates

when the angle between and

is smaller than a given threshold

. That is, when the change between and is small, the

iteration stops.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

P
ro
b
a
b
ili
ty

Disparity

P
i-th

Fig. 4-1 Disparity distribution of the test image pair ‘sawtooth’ after the -th iteration

of the outer loop ()

 34

Energy v.s. Theta

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

WTA Run 0 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7

E
n
er

g
y

0

5

10

15

20

25

30

35

40

D
eg

re
e

Energy

Theta

Fig. 4-2 E and in the energy minimization process of the test image pair ‘sawtooh’

Quality Metrics

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

WTA Run 0 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7

P
er

ce
n
ta

ge

0

1

2

3

4

5

6

7

N
u
m

be
r

Bad_pixel

RMS_error

Fig. 4-3 RMS_error and Bad_pixel in the energy minimization process of ‘sawtooh’

4.3 Prioritizing the - Swap Pair Sequence

 The original GC scheme randomly selects a disparity pair from the

disparity candidate set and then does the - swap for all possible disparity

values. However, let and be a chosen disparity pair. If is the best

disparity pair for only a few nodes, this specific - swap has a limited impact on

minimizing the total energy but it consumes the computing power. Therefore, if we

find an effective strategy to prioritize the - swap pairs, i.e., the better matched

 35

pairs are tested first, then the total energy converges faster.

After each run of the outer loop, we obtain , , , and

for each node. Consequently, we have the disparity probability (the number of nodes

with a specific disparity divided by the number of all pixel nodes), , ,

and for each disparity value. Fig. 4-4 shows the disparity distribution of the

test image pair ‘sawtooth’. Part (a) is the probability after the first iteration (denoted

by). Part (b) is the probability difference between the first and the final

iterations (denoted by -), which represents the probability difference

needed to be adjusted by the iterative algorithm. Typically, there are only a few

objects in an image; therefore, the disparity distribution is dominated by a few

disparity values. Often, the dominated disparity values show up after the first couple

of iterations. That is, their probabilities are higher than the other disparities. Hinted by

this observation, the disparity probability distribution can be used as clues for

choosing the final disparity values. In this section, we prioritize the disparity pairs

 according to their probability although the other attributes such as ,

, and may also be used for prioritization purpose. We will discuss the

difference between them in the next section.

The benefits of prioritizing the - swap pair search order mainly come from

the early iterations of the outer loop. With the correctly prioritized disparity

 36

candidates, we reach the final goal much faster and thus save computation.

 Fig. 4-5 shows the flow chart of our proposed fast GC, which is the combination

of prioritizing the - swap pair sequence and the early termination (section 4.2)

technique. The modifications to the original GC scheme are steps 2, 7, and 8. In Step

2, we prioritize the disparity pair search order based on their disparity

probabilities.

0 5 10 15 20
0

0.05

0.1

0.15

0.2

P
ro
b
a
b
ili
ty

Disparity

(a) P
1-st

0 5 10 15 20
-0.02

-0.01

0

0.01

0.02

0.03

0.04

∆
 P
ro
b
a
b
ili
ty

Disparity

(b) P
final

 - P
1-st

Fig. 4-4 Disparity distribution of ‘sawtooth’ after the 1
st
 outer-loop iteration

We then perform the - swap sequentially according to the priority order

(probability) of disparity pairs. In step 7, we also calculate value. In the extra step

8, we check whether is larger than a given . If so, we run another iteration

of the outer loop. Otherwise, we terminate the optimization process. The value of

 is 1 (degree) in our experiment. It is empirically determined.

 37

S3: For each disparity pair (α,β)

S4: Find dInner=arg min Etotal(dJ) among dJ

within one α-β swap of d, EInner=minEtotal(dJ)

S6: EInner<E

Inner

 loop

N

End

S1: Determine disparity dWTA by WTA,

calculate EWTA = Etotal(dWTA),

and let d=dWTA, E=EWTA

S2: Sort the disparity d according to its

probability and prioritize the disparity pairs

(α,β) from high probability to low.

S5: Inner loop end

Y

 S7: d=dInner,

E=EInner,

calculate θ

Outer

Loop

Y

Begin

S8: θ> θthresholdN

Fig. 4-5 Flow chart of our proposed fast GC

4.4 Simulation Results and Discussions

 In this section, we will show the experiment environment setting and the

simulation results for different criterions. The improvement of our proposed algorithm

is also shown in this section. In addition, we will analyze and discuss the simulation

results.

4.4.1 Experiment Environment Setting

 We implement our proposed algorithm and test it on the test bed retrieved from

the Middlebury stereo vision web page. Four test image pairs – ‘Map’, ‘Sawtooth’,

‘Tsukuba’, and ‘Venus’ (all with ground truth disparity maps) – are in use. Our

simulation platform is a PC with Intel Core2Quad Q6600 and 4G RAM. The

 38

performances of the original GC and our proposed fast GC are measured by six

metrics: computing time, (rms_error_all), (bad_pixels_all),

(bad_pixels_nonocc), (bad_pixels_textureless), and (bad_pixels_discont).

Table 4-1 shows the important parameters in our implementation. The simulation

results of the original GC with the same setting are close to those in the Middilebury

web page.

Table 4-1 The experiment environment setting

Parameter Value Meaning

match_fn 1 Absolutely difference

match_max 1000 No truncation

match_interval 1 BT

opt_fn 4 GC

aggr_iter 0 No aggregation

opt_smoothness 20 Weight of smoothness term (λ)

opt_grad_thresh 8 Threshold for magnitude of

intensity gradient [22]

opt_grad_penalty 4 (Map, Tsubuka)

2 (Sawtooth, Venus)

Smoothness penalty factor if

gradient is too small [22]

4.4.2 Simulation Results

 The simulation results of prioritizing the - Swap pair sequence according to

the disparity probability (the number of nodes with a specific disparity divided by the

number of all nodes), , , and for each disparity value are shown

in detail in this section. In addition, we also represent the simulation results with early

termination in energy minimization process (ET), separately.

 39

Table 4-2 Comparison of computing time

Method

Computing time (sec) Average

Improvement

(%)
Map Sawtooth Tsukuba Venus

Original 83.52 156.39 93.88 131.16

Probability 41.45 121.13 38.02 96.86 36.02

 55.66 127.50 73.98 117.86 19.35

 50.83 101.89 39.27 85.97 40.22

 48.75 110.24 44.63 84.45 38.04

ET 38.31 65.30 75.78 71.58 46.02

Probability+ET 20.61 50.75 24.73 53.88 67.74

+ET 30.38 60.30 38.25 81.30 54.78

+ET 21.97 40.41 25.67 70.99 65.79

+ET 21.19 39.45 24.72 69.83 66.62

Improvement is where denotes the computing time of

method “ ” and denotes the computing time of the original

method.

Fig. 4-6 Plot of computing time

0

20

40

60

80

100

120

140

160

180

(s
ec

)

Map

Sawtooth

Tsukuba

Venus

 40

Table 4-3 Comparison of rms_error_all

Method
 Average

 (%) Map Sawtooth Tsukuba Venus

Original 4.10 1.48 1.30 1.48

Probability 4.11 1.49 1.28 1.45 -0.75

 3.85 1.49 1.28 1.45 -7.25

 4.02 1.48 1.28 1.45 -3.25

 3.85 1.47 1.28 1.49 -6.75

ET 4.05 1.49 1.30 1.39 -3.25

Probability+ET 4.12 1.49 1.28 1.45 -0.50

+ET 3.85 1.48 1.28 1.44 -7.75

+ET 4.01 1.48 1.28 1.45 -3.50

+ET 3.85 1.43 1.28 1.49 -7.75

 where denotes the RMS error of method

“ ” and denotes the RMS error of the original method.

Fig. 4-7 Plot of rms_error_all

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R

Map

Sawtooth

Tsukuba

Venus

 41

Table 4-4 Comparison of bad_pixels_all

Method
 (%) Average

 Map Sawtooth Tsukuba Venus

Original 5.45 3.94 4.16 3.50

Probability 5.53 3.93 4.20 4.50 0.28

 5.48 4.03 4.18 3.43 0.02

 5.48 3.91 4.12 3.62 0.02

 5.40 3.98 4.31 4.41 0.26

ET 5.43 3.96 4.16 3.50 0.00

Probability+ET 5.47 3.96 4.20 4.50 0.27

+ET 5.47 4.03 4.18 3.43 0.02

+ET 5.47 3.94 4.12 3.62 0.03

+ET 5.40 4.01 4.31 4.40 0.27

 where denotes the percentage of bad pixels

of method “ ” and denotes the percentage of bad pixels of

the original method.

Fig. 4-8 Plot of bad_pixels_all

0

1

2

3

4

5

6

B

Map

Sawtooth

Tsukuba

Venus

 42

Table 4-5 Comparison of bad_pixels_nonocc

Method
 (%) Average

 Map Sawtooth Tsukuba Venus

Original 0.38 1.34 2.00 1.87

Probability 0.41 1.34 2.03 2.81 0.250

 0.35 1.42 2.03 1.77 -0.005

 0.38 1.34 1.96 1.97 0.015

 0.32 1.38 2.16 2.77 0.260

ET 0.38 1.36 2.00 1.85 0.000

Probability+ET 0.40 1.36 2.04 2.82 0.258

+ET 0.35 1.43 2.02 1.77 -0.005

+ET 0.38 1.38 1.96 1.97 0.025

+ET 0.33 1.41 2.15 2.77 0.268

 where denotes the percentage of

non-occlusion bad pixels of method “ ” and denotes the

percentage of non-occlusion bad pixels of the original method.

Table 4-6 Comparison of bad_pixels_textureless

Method
 (%) Average

 Map Sawtooth Tsukuba Venus

Original 0.00 0.24 1.09 2.76

Probability 0.00 0.26 1.16 5.04 0.79

 0.00 0.26 1.15 2.63 -0.02

 0.00 0.25 1.11 3.83 0.37

 0.00 0.30 1.40 5.14 0.92

ET 0.00 0.24 1.09 2.50 -0.06

Probability+ET 0.00 0.26 1.16 5.04 0.79

+ET 0.00 0.26 1.15 2.63 -0.02

+ET 0.00 0.28 1.11 3.83 0.38

+ET 0.00 0.35 1.39 5.14 0.93

 where denotes the percentage of

texureless bad pixels of method “ ” and denotes the

percentage of texureless bad pixels of the original method.

 43

Table 4-7 Comparison of bad_pixels_discont

Method
 (%) Average

 (%) Map Sawtooth Tsukuba Venus

Original 3.82 6.23 9.87 7.22

Probability 4.55 6.55 10.15 7.28 0.35

 3.76 6.42 10.03 6.80 -0.38

 3.85 6.48 9.77 6.63 -0.07

 3.62 6.53 10.79 6.76 0.24

ET 3.85 6.28 9.87 6.62 -0.27

Probability+ET 4.49 6.54 10.15 7.28 0.46

+ET 3.76 6.43 10.00 6.66 -0.40

+ET 3.94 6.65 9.76 6.57 0.02

+ET 3.79 6.49 10.79 6.80 0.24

 where denotes the percentage of

non-occlusion bad pixels of method “ ” and denotes the

percentage of non-occlusion bad pixels of the original method.

 44

 Ground truth Original

 Probability+ET +ET

Fig. 4-9 Disparity maps of ‘Map’

 Ground truth Original

 Probability+ET +ET

Fig. 4-10 Disparity maps of ‘Sawtooth’

 45

 Ground truth Original

 Probability+ET +ET

Fig. 4-11 Disparity maps of ‘Tsukuba’

 Ground truth Original

 Probability+ET +ET

Fig. 4-12 Disparity maps of ‘Venus’

 46

4.4.3 Analysis and Discussions

 Table 4-2 and Fig. 4-6 show the computing time of the original GC and the

proposed methods. Improvement is calculated from one minus their ratio. In the

methods without early termination, the improvement of prioritizing the - swap

pair according to is the best. However, if the early termination is employed,

prioritizing the - swap pair according to probability has the least computing time.

In addition, we find that the improvement due to early termination only can reach

46%.

 Table 4-3 and Fig. 4-7 show the rms_error_all of the original GC and the

proposed methods. The improvement is calculated from their average performance on

4 image pairs. The rms_error_all slightly decreases in our methods. Prioritization

according to and can improve rms_error_all more than others with or

without the early termination. Table 4-4 and Fig. 4-8 show the bad_pixels_all of the

original GC and the proposed methods. Prioritization according to probability and

 are worse than the others. The degradation is dominated by the ‘Venus’.

However, its performance is still about the same as that of the original GC.

 Table 4-5, Table 4-6, and Table 4-7 show that different methods have different

performance for different types of images. For example, prioritization according to

 is the best performer in the texureless region. In conclusion, if we can tolerate

 47

the slight degradation of quality, we choose the probability prioritized method which

saves most computing time. On the other hand, if we allow a slightly higher

computing time to exchange for a better quality, we can choose the prioritized

method. In addition, the prioritized method is a good choice, because it

decreases a lot of computing time and only slightly degrades the quality.

 Fig. 4-9, Fig. 4-10, Fig. 4-11, and Fig. 4-12 show the disparity maps of the

ground truth, original GC, probability+ET, and +ET. The disparity maps

generated by the proposed methods generally are very close to the disparity map

produced by the original GC. After examing them closely, we find out that the

disparity map of +ET is a little bit better than that of probability+ET.

 48

Chapter 5 Multi-Resolution Graph Cuts and

Disparity Estimation for Multi-Camera

Array

5.1 Overview

 In disparity estimation, the graph cuts and the belief propagation algorithms

provide better disparity map quality. Unfortunately, their computation time is very

high. In this chapter, we use multi-resolution graph cuts to reduce the computing time.

Then, we estimate the disparity maps when the multi-camera array is in use.

5.2 Disparity Estimation using Multi-Resolution Graph Cuts

 In section 3.3, we describe the push-relabel algorithm which can solve the

max-flow/min-cut problem. The worst-case running time for this algorithm is

, where is the number of nodes and is the number of edges in the

graph. Because and increase with the image size, the running time of the

graph cuts algorithm greatly increases with the image size. In addition, the - swap

method constructs a graph of two terminals (disparity values) at a time. If the

disparity range is , we construct graph in total (all combinations).

Therefore, the running time also greatly increases with the disparity range when we

 49

use the - swap method.

 We can employ the multi-resolution graph cuts (MRGC) technique for reducing

the computation time. Fig. 5-1 shows the flowchart of MRGC. We first use the image

down-sampling technique to generate the low-resolution images. The right-side path

in the Fig. 5-1 is same as the original GC method except the image size and the

disparity range. If the disparity range of the original GC is in the

original resolution, the disparity range is in the low-resolution image.

After the low-resolution disparity map is obtained, we come back to the original

resolution image size. We up-sample the disparity map. Then, it becomes the initial

disparity map for the neighborhood graph cuts.

Fig. 5-1 Flowchart of MRGC

 50

The main components that are different from the original GC method are the image

down-sampling, disparity map up-sampling and scaling, and neighborhood graph cuts

operations. We describe the detail in the following sub-sections.

5.2.1 Image Down-Sampling

 In this section, we describe two down-sampling methods that we use in MRGC.

Fig. 5-2 shows an example of a simple down-sampling method. The sampling factor

is 2 for the width and the height. This method simply skips every other pixel in

one-dimension. Because of lacking prefitting, the low-resolution images after the

down-sampling may suffer the aliasing effect. Therefore, we attempt another method

to down-sample the original images. We use a sliding window whose coefficient is

depicted below for pre-fitting.

 (5.1)

4 5 5 4 5 8 8 9

3 4 5 5 6 8 9 8

3 4 5 5 6 8 8 9

3 3 8 9 5 5 9 8

4 3 8 7 7 3 5 5

4 3 8 6 7 3 5 6

5 4 8 8 8 4 3 5

3 3 4 5 5 3 4 4

4 5 5 8

3 5 6 8

4 8 7 5

5 8 8 3

downsample

Fig. 5-2 An example of 4 to 1 pixel-skip down-sampling

 51

Because the coefficients of the window are all integer and the sum of the coefficients

is 16, we can shift right four bits in calculation instead of using division. This filter

does not increase much computing time comparing to the simplest method. We will

compare the two methods in section 5.4 by simulation.

5.2.2 Disparity Map Up-sampling and Scaling

 In this section, we also describe two methods to up-sample the low-resolution

disparity map. Fig. 5-3 shows a simple up-sampling method that duplicates the pixel

value to its neighbors directly and multiplies the disparity value by 2. Thus, the

derived disparity map becomes the initial disparity map for the neighborhood graph

cuts. Because the disparity maps produced by the simple method may produce blocky

images, we can reduce artifacts by performing some types of linear or bilinear

interpolation in up-sampling. However, the interpolation process increases the

computation time and its quality improvement on the disparity map it uncertain.

8 8 10 10 10 10 16 16

8 8 10 10 10 10 16 16

6 6 10 10 12 12 16 16

6 6 10 10 12 12 16 16

8 8 16 16 14 14 10 10

8 8 16 16 14 14 10 10

10 10 16 16 16 16 6 6

10 10 16 16 16 16 6 6

4 5 5 8

3 5 6 8

4 8 7 5

5 8 8 3

Upsampling
and Scaling

Fig. 5-3 An example of disparity map up-sampling and scaling

 52

 We attempt to employ the up-sampling method of H.264 [23], which is shown in

Fig. 5-4. The pixel can be obtained from pixels , , , , , and by the

formula below.

 (5.2)

We can use pixels , , , , , and , to interpolate the pixel similarly.

 (5.3)

The coefficients of the interpolation filter are , which mimic the

sinc function. After the up-sampling interpolation process, we multiply the disparity

values by 2. In section 5.4, we will compare the two methods based on the simulation

results.

Fig. 5-4 The up-sampling method of H.264

 53

5.2.3 Neighborhood Graph Cuts

 In the original graph cuts, the number of graphs needed for constructing -

swap is the total combinations of disparity pairs selected from the disparity range. The

neighborhood graph cuts method reduces the number of constructing graph. Unlike

the original graph cuts, we use the disparity map obtained from the up-sampling and

scaling process as the initial disparity map. We assume that the disparity value of

each pixel only differ to its neighborhood disparity values by 1. Therefore, we try to

reduce the number of combinations of disparity pairs in - swap to reduce the

computing time. Fig. 5-5 shows the disparity pair combination of neighborhood graph

cuts. The gray nodes are the disparity values obtained from the scaling. The arrow

shows the value that the disparity value can change to. That is, we select two disparity

values to do the - swap.

Fig. 5-5 The disparity pair candidates in neighborhood graph cuts (a) (b)

Here, we depict two cases of the neighborhood graph cuts. In Fig. 5-5(a), the search

 54

range of neighborhood graph cuts is . In Fig. 5-5(b), the search range is and

their combination is nearly two times more than . Note that we cannot do -

swap with the same value. In section 5.4, we will compare the performance of these

two methods and show the computing time saved by using MRGC.

5.3 Disparity Estimation in Multi-Camera Array

 In this section, we propose a method for disparity estimation for multi-camera

picture. We pick up “sawtooth” and “venus” as our test data for the multi-camera

experiment.. The two test data sets both include nine images captured by nine cameras

(Fig. 5-6). We call them im0, im1, …, and im8. These images are captured by cam0,

cam1, …, and cam8, respectively.

Fig. 5-6 Multi-camera array

In the original method, we compute im2’s disparity map which is relative to im6. Now,

im4 is added into the proposed method. Fig. 5-7 shows the flowchart of our GC

 55

algorithm for multi-camera pictures. First, the im4’s disparity map relative to im6 is

computed by using the graph cuts algorithm. We use this to predict the disparity map

of im2 relative to im6, because the optical geometry tell us that the im2’s disparity

map relative to im6 is a shifted and scaled version of the im4’s disparity map relative

to im6. The results of scaling and shifting are shown in Fig. 5-8. This predicted

disparity map is need as the initial disparity map and refine it by the graph cuts

algorithm. In section 5.4, we will show the simulation results. The improvement of

this method is not significant.

Fig. 5-7 Flowchart of GC for multi-camera pictures

Fig. 5-8 The scaling and shifting moves

 56

5.4 Simulation Results and Discussions

 In this section, we will show the simulation results of MRGC and multi-camera

pictures. Thus, we will discuss the possible causes leading to the simulation results.

The experiment environment setting is the same as section 4.4. In MRGC, the scaling

factor is 2.

5.4.1 Multi-Resolution Graph Cuts

We first explain the symbols to appear in the following tables. MRGC()

indicates the multi-resolution graph cuts whose search range of neighborhood graph

cuts (NGC) is . Similarly, the search range of NGC of MRGC() is . In

MRGCD, the down-sampling method indicates the low-pass filter describe in formula

(5.1). Likewise, MRGCU denotes that its up-sampling method uses the H.264

up-sampling filter. In MRGCDU, both down-sampling and up-sampling processes

adopt the before mentioned filters.

Table 5-1 shows the computing time improvement by MRGC ranges from 81%

to 92%. MRGC() runs a little longer than MRGC(), because the search range is

wider. Table 5-2 and Table 5-3 show the image quality comparison of different

methods. Although the computation time of MRGC() is slightly larger than

MRGC(), its quality is much better. In addition, the down-sampling method of (5.1)

is better than the simple sample-skip method. However, if we replace the simple

 57

disparity map duplication method by the H.264 interpolation the method, the

computing time gets higher and the bad_pixels_all becomes worse. This may due to

the fact that the discontinuous region is critical for initial disparity map, and the H.264

up-sampling method blurs the initial disparity map.

 Fig. 5-12, Fig. 5-13, Fig. 5-14, and Fig. 5-15 show the disparity maps of different

methods. Obviously, the disparity map looks much smoother by down-sample the

original image by the formula (5.1). In addition, the disparity map of MRGC() is

much better than MRGC(). The MRGC() produces a disparity may close to the

original GC method.

Hierarchical graph cuts [24] is one of the few fast graph cuts algorithms found in

the literature. According to [24], the computing timing of the hierarchical graph cuts

is about 25% of the original GC on the test image “Tsukuba”. However, MRGC is

faster than the hierarchical graph cuts. Our method takes about 16% of the computing

time of the original GC. In addition, the quality of the hierarchical graph cuts is not

discussed in the paper. We are not sure about the quality degradation of this method.

 58

Table 5-1 Computing time comparison

Method

Computing time (sec) Average

Improvement

(%)
Map Sawtooth Tsukuba Venus

Original 83.52 156.39 93.88 131.16

MRGC() 5.27 10.28 6.83 14.52 92.06

MRGC() 7.84 23.45 18.78 27.14 83.39

MRGCD() 6.98 20.61 18.09 25.16 84.76

MRGCU() 13.97 25.44 25.20 30.75 79.49

MRGCDU() 13.13 24.81 22.20 29.61 80.70

Improvement is where denotes the computing time of

method “ ” and denotes the computing time of the original

method.

0

20

40

60

80

100

120

140

160

180

(s
ec

)

Map

Sawtooth

Tsukuba

Venus

Fig. 5-9 Plot of computing time comparison

 59

Table 5-2 Comparison of rms_error_all

Method
 Average

 (%) Map Sawtooth Tsukuba Venus

Original 4.10 1.48 1.30 1.48

MRGC() 4.31 1.69 1.60 1.63 21.75

MRGC() 4.19 1.62 1.53 1.54 13.00

MRGCD() 4.24 1.49 1.30 1.63 7.50

MRGCU() 4.17 1.59 1.54 1.51 11.25

MRGCDU() 4.28 1.46 1.26 1.60 6.00

 where denotes the RMS error of method

“ ” and denotes the RMS error of the original method.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R Map

Sawtooth

Tsukuba

Venus

Fig. 5-10 Plot of rms_error_all

 60

Table 5-3 Comparison of bad_pixels_all

Method
 (%) Average

 Map Sawtooth Tsukuba Venus

Original 5.45 3.94 4.16 3.50

MRGC() 8.38 10.09 7.75 7.15 4.08

MRGC() 6.16 4.87 7.07 5.22 1.57

MRGCD() 5.88 4.08 6.36 5.26 1.13

MRGCU() 7.32 5.42 7.50 5.77 2.24

MRGCDU() 7.31 4.22 5.94 4.69 1.28

 where denotes the percentage of bad pixels

of method “ ” and denotes the percentage of bad pixels of

the original method.

0

2

4

6

8

10

12

B Map

Sawtooth

Tsukuba

Venus

Fig. 5-11 Plot of bad_pixels_all

 61

Ground truth

 Original MRGC()

MRGC() MRGCD()

 MRGCU() MRGCDU()

Fig. 5-12 Disparity maps of ‘Map’

 62

Ground truth

Original MRGC()

MRGC() MRGCD()

MRGCU() MRGCDU()

Fig. 5-13 Disparity maps of ‘Sawtooth’

 63

Ground truth

 Original MRGC()

MRGC() MRGCD()

MRGCU() MRGCDU()

Fig. 5-14 Disparity maps of ‘Tsukuba’

 64

 Ground truth

Original MRGC()

MRGC() MRGCD()

MRGCU() MRGCDU()

Fig. 5-15 Disparity maps of ‘Venus’

 65

5.4.2 Disparity Estimation in Multi-Camera Array

 Table 5-4 and Table 5-5 show that the disparity estimation using our proposed

multi-camera scheme does method cannot improve the quality of disparity maps. Fig.

5-16 and Fig. 5-17 show the change of disparity map. The predicted disparity map

computed by scaling and shifting the im4’s disparity map relative to im6. We run the

graph cuts algorithm by using the predicted disparity map to be the initial disparity

map.

Table 5-4 Comparison of rms_error_all

Method
 Average

 (%) Sawtooth Venus

Original 1.48 1.48

Multi-cam 1.48 1.49 0.5

 where denotes the RMS error of method

“ ” and denotes the RMS error of the original method.

Table 5-5 Comparison of bad_pixels_all

Method
 (%) Average

 Sawtooth Venus

Original 3.94 3.50

Multi-cam 3.91 3.68 0.08

 where denotes the percentage of bad pixels

of method “ ” and denotes the percentage of bad pixels of

the original method.

 66

Ground truth

 Original im4’s disparity map relative to im6

 predicted by scaling and shifting im2’s disparity map relative to im6

Fig. 5-16 Disparity maps of “Sawtooth”

 67

Ground truth

Original im4’s disparity map relative to im6

predicted by scaling and shifting im2’s disparity map relative to im6

Fig. 5-17 Disparity maps of “Venus”

 68

Chapter 6 Conclusions and Future Work

6.1 Conclusions

 The Graph Cut (GC) algorithm is an effective disparity estimation algorithm. Yet,

it consumes a huge amount of computations due to its high complexity. The original

GC scheme randomizes the α-β swap pairing in the inner iteration loop and terminates

the iteration in outer loop when no further energy reduction is possible. Observing the

energy minimization process of GC, we propose two techniques to speed up GC. One

is the inclusion of an early termination mechanism in the outer iteration loop, and the

other is prioritizing the α-β swap pair search order in the inner iteration loop.

Simulation results show that our proposed fast GC can achieve up to 68% speed-up

(reduce 68% computing time) in computation while it preserves the high accuracy of

disparity map as measured by the RMS disparity error and the bad pixels probability.

 The worst case running time for the GC algorithm we use is , where

 is the number of nodes and is the number of edges. The running time greatly

increases with the image size and disparity range. We propose a multi-resolution

graph cuts (MRGC) to reduce the computing time, but it slightly decreases the quality

of disparity map. Simulation results show that the MRGC method may achieve up to

84% speed-up and increases 1% of bad pixel ratio. In addition, we attempt to improve

 69

the quality of disparity map by using the multi-camera picture. However, the

simulation results show that simple method has no contribution on disparity

estimation the improvement.

6.2 Future Work

 This thesis concentrates on reducing the computing time of GC algorithms, so

that real-time application and multi-camera application become possible. The other

reason we study the GC algorithm is its good performance. Potentially, we can further

improve the DE quality of the occlusion regions by modifying the energy function

designed for multi-camera image, since we have much more information in hands.

Furthermore, the 2D camera array that takes pictures of objects from different angles

(both horizontally and vertically) may help in both disparity estimation and new view

synthesis. This topic can be explored in the future.

 70

Bibliography

[1] M. Tanimoto and M. Wildeboer, “Frameworks for FTV coding,” Proc. Picture

Coding Symposium, pp. 1–4, 2009.

[2] M. Tanimoto, T. Fuji, and K. Suzuki, “Data format for FTV,” ISO/IEC

JTC1/SC29/WG11 M16093, Feb. 2009.

[3] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd

ed., Cambridge University Press, Mar. 2004.

[4] StereoMatcher software. [Online] Available: http://vision.middlebury.edu/stereo/.

[5] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame

stereo correspondence algorithms,” International Journal of Computer Vision,

vol. 47, pp. 7–42, Apr. 2002.

[6] M.Z. Brown et al., “Advances in computational stereo,” IEEE Transaction on

Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 993–1008, Aug.

2003.

[7] Tappen, M.F. and Freeman, W.T, “Comparison of graph cuts with belief

propagation for stereo, using identical MRF parameters,” IEEE International

Conference on Computer Vision, 2003.

[8] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via

graph cuts,” IEEE Transaction on Pattern Analysis and Machine Intelligence,

 71

vol. 23, no. 11, pp. 1222–1239, Nov. 2001.

[9] S. Birchfield and C. Tomasi, “Multiway cut for stereo and motion with slanted

surfaces,” Proc. Int’l Conf. Computer Vision, pp. 489–495, 1999.

[10] V. Kolmogorov and R. Zabih, “What energy functions can be minimized via

graph cuts?,” IEEE Transaction on Pattern Analysis and Machine Intelligence,

vol. 26, no. 2, pp. 147–159, Feb. 2004.

[11] Y. Boykov and V. Kolmogorov, “An experimental comparison of

min-cut/max-flow algorithms for energy minimization in vision,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp.

1124–1137, Sep. 2004.

[12] S. Birchfield and C. Tomasi, “Depth discontinuities by pixel-to-pixel stereo,”

Proc. Int’l Conf. Computer Vision, pp. 1073–1080, 1998.

[13] S. Birchfield and C. Tomasi, “A pixel dissimilarity measure that is insensitive to

image sampling,” IEEE Transaction on Pattern Analysis and Machine

Intelligence, vol. 20, no. 4, pp. 401–406, 1998.

[14] P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact image code,”

IEEE Transactions on Communications, vol. COM-31, no. 4, pp. 532–540, 1983.

[15] A. F. Bobick and S. S. Intille, “Large occlusion stereo,” International Journal of

Computer Vision, vol. 33, no. 3, pp. 181–200, 1999.

 72

[16] G. Van Meerbergen, M. Vergauwen, M. Pollefeys and L. Van Gool, “A

hierarchical symmetric stereo algorithm using dynamic programming,”

International Journal of Computer Vision, vol. 47, no. 1-3, pp 275–285, 2002.

[17] S. Roy, “Stereo without epipolar lines: A maximum-flow formulation,”

International Journal of Computer Vision, vol. 34, no. 2-3, pp. 147–162, Aug.

1999.

[18] T. Cormen, C. Leiserson, R. Rivest and C. Stein, “Maximum Flow,” Chapter 26

of Introduction to algorithms, 2nd edition, pp. 643-698, McGraw-Hill, 2005

[19] L. Ford and D. Fulkerson, Flows in Networks. Princeton University Press, 1962.

[20] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum-flow

problem,” Journal of the Association for Computing Machinery, vol. 35, no. 4,

pp. 921–940, Oct. 1988.

[21] G. Egnal, “Mutual information as a stereo correspondence measure,” Tech. Rep.

MS-CIS-00-20, University of Pennsylvania, 2000.

[22] O. Veksler. Efficient Graph-based Energy Minimization Methods in Computer

Vision. Ph.D. dissertation, Cornell University, 1999.

[23] I.E.G. Richardson, H.264 and MPEG-4 video compression: video coding for

next-generation, Wiley, 2003.

[24] S.B. Kang, R. Szeliski, and J. Chai. “Handling occlusions in dense multi-view

 73

stereo,” IEEE Conference on Computer Vision and Pattern Recognition, 2001.

Expanded version available as MSR-TR-2001-80.

 74

自傳自傳自傳自傳

 周正偉，1986 年 6 月 27 日出生於台北市。2008 年畢業於國立成功大學電機

工程學系，之後進去國立交通大學電子研究所攻讀碩士學位，研究方向是視差估

算，論文題目為「使用於立體視差估算之快速圖形切割演算法」。

	cover_page.pdf
	thesis.pdf

