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使用於立體視差估算之快速圖形切割 

演算法 

研究生: 周正偉 指導教授: 杭學鳴 博士 

    

國立交通大學 

電子工程學系 電子研究所碩士班    

    

摘要摘要摘要摘要    

    

    視差估算在 3D 視頻處理系統中是其中一個關鍵的因素。許多技術已經被提

出來計算視差圖，圖形切割演算法是一種公認較好的視差估算計畫。然而，圖形

切割演算法具有很高的計算複雜度。 

    在這篇論文中，我們提出了一個用於視差估算的快速圖形切割演算法，有兩

個加速的技巧被提出：一個是提前終止規則，另一個是排出 α-β 交換對的搜索的

優先順序。我們的模擬結果表現，當我們跟原始方法比較，該演算法可以加速

68%的平均運算時間。同時，視差圖的品質可以保持在幾乎跟原始方法一樣。 

    另一個加速技術，我們是採用多解析度的方法。一開始我們先對原始影像降

頻取樣，並針對低解析度的影像作視差估算，產生低解析度的視差圖。接著，我
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們再對低解析度的視差圖做升頻取樣，並以此視差圖作為初始值去做原始解析度

的視差估測，我們去測試幾種降頻取樣及升頻取樣的方式，並找到最佳的組合。

我們的模擬顯示，多解析度的圖形切割演算法只使用原始計算時間的的 16%，而

壞像素的升幅只有 1%。我們研究的最後一個主題是使用多相機拍照的視差估

測，初步觀察顯示了一些有趣的結果，我們需要進一步的實驗才能發揮這主題的

優勢。 
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Fast Graph Cuts Algorithm for Disparity 

Estimation 

Student: Cheng-Wei Chou Advisor: Dr. Hsueh-Ming Hang 

 

Department of Electronic Engineering & 

Institute of Electronics 

National Chiao Tung University 

 

Abstract 

Disparity estimation is one of the critical elements in a 3D video processing 

system. Many techniques have been proposed to calculate the disparity map from a 

pair of images and the graph cut (GC) algorithm is one of the recognized better 

disparity estimation schemes. However, GC has a very high computational 

complexity.  

In this thesis, we propose a fast GC algorithm for disparity estimation purpose. 

Two accelerating techniques are suggested: one is the early termination rule and the 

other is prioritizing the α-β swap pair search order. Our simulations show that the 

proposed fast GC algorithm can reduce 68% computing time on the average, when 

compared with the original GC scheme. Meanwhile, its disparity estimation 

performance is about the same as that of the original GC. 

Another speed-up technique we adopt is the multi-resolution approach. The 
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original images are down-sampled and a low-resolution disparity map is first 

estimated. Then, the low-resolution disparity map is up-sampled as the initial values 

for estimating the disparity map of the original images. Several down-sampling and 

up-sampling filters are tested to find the best combination. Our simulation shows that 

the multi-resolution GC (MRGC) algorithm uses only 16% of the original computing 

time and the bad pixel probability increases only by 1%. The last topic we investigate 

is disparity estimation using multi-camera pictures. The initial exploration shows 

some interesting results. Further investigation is needed to fully take the advantage of 

multiple images recoded by a camera array. 
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Chapter 1 Introduction 

1.1 Background 

    Recently the ISO/IEC Moving Picture Expert Group (MPEG) initiated a 

standardization process on free viewpoint television (FTV) [1]. As a new type of 

interactive video system, FTV can synthesize 3 dimensional (3D) scenes at nearly any 

(virtual) viewpoint and thus receives its name. An FTV system typically consists of 

modules of multi-view video capture, image correction, depth map estimation, data 

coding/decoding, and view synthesis. Specifically, the disparity estimation module is 

an inevitable component of an FTV system, which is used in both multi-view scene 

analysis and synthesis.  

With the help of epipolar geometry [2], the general stereo correspondence 

problem is simplified to disparity estimation (DE) [3][4][5] under the assumption of 

dense camera array. Here, disparity refers to the location difference of the 

corresponding objects along the epipolar lines on the two recorded images. For years, 

most researchers have focused on improving the accuracy of DE, not on the speed 

acceleration. With the emerging 3D TV and FTV, we focus on fast DE algorithms in 

this study. 

DE algorithm generally is divided into 4 stages: 1) initial matching cost 
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calculation, 2) cost aggregation, 3) disparity computation and optimization, and 4) 

disparity refinement. In this contribution, we use the absolute intensity difference 

(with the Birchfield and Tomasi’s sampling insensitive dissimilarity measure) [5] 

between the corresponding feature points as the initial matching cost. The cost 

aggregation collects the initial matching cost by using a moving average filter in a 

square window (box filter). Once the aggregated costs are computed, the disparity 

computation and optimization module determines which discrete set of disparities best 

represents the scene surface depth. Finally the disparity refinement step increases the 

disparity accuracy to sub-pixel precision. 

The stereo algorithm can be categorized as local and global approaches [5]. The 

local approach focuses on the cost calculation and aggregation. The winner-take-all 

method (WTA), which chooses the lowest aggregated cost as the selected disparity at 

each pixel, is a simple disparity computation and optimization method used in the 

local approach. In the global approach, we further consider the disparity smoothness 

among neighboring pixels More sophisticated algorithms, such as dynamic 

programming, simulated annealing, belief propagation (BP) and graph cut (GC), has 

been suggested to offer better DE results.  

1.2 Motivation and Contributions 

    Among various global DE algorithms, GC and BP offer better DE results. The 
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qualities of them are similar. According to Tappen and Freeman [7], the computational 

time of the synchronous BP is much larger than GC, but the accelerated BP uses only 

80% of the GC’s computational time. In this study, we choose GC because it can be 

accelerated and may have advantages in computation. In addition, to our knowledge, 

the fast graph cuts algorithms are rare in literature. Therefore, we propose methods to 

accelerate GC algorithm.  

GC and its variations [8]-[11] generally show admirable performance in their 

disparity estimation quality. However, GC suffers from the huge amount of processing 

time. Owing to its good DE performance, GC is chosen as the target algorithm for 

speed-up. The major contributions in this thesis include the following items. 

(1) An early termination process is proposed to save the computing time. 

(2) We save computing time by prioritizing the -  swap pair sequence. 

(3) The computing time greatly increases with the image size and the disparity range. 

We use multi-resolution graph cuts to reduce the computational complexity. 

(4) We attempt to improve the disparity map for the multi-camera array. 

1.3 Organization of the Thesis 

    In chapter 2, we briefly introduce the background of computational stereo. In 

chapter 3, we describe the graph cuts process that minimizes the energy function in 

DE problem. Chapter 4 describes our proposal of the early termination and optimizing 
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the -  swap pair sequence. Simulations are conducted and the significant amount 

of computing time saving is shown. Chapter 5 discusses the multi-resolution graph 

cuts algorithm and our initial investigation on the disparity estimation on the 

multi-camera array picture. Finally, brief summary and remarks on future work are 

given in chapter 6. 



 5

Chapter 2 Introduction of Computational 

Stereo 

2.1 Overview 

    The concept of stereo correspondence is to find the correspondent point in the 

image of the other view. Based on epi-polar geometry, the general stereo 

correspondence problem is simplified to disparity estimation under the assumption of 

dense camera array. The search region of the corresponding features between the left 

and the right images can thus be reduced to the epi-polar lines. The goal of a stereo 

correspondence algorithm is to produce a univalued function in disparity space  

 that best describes the depth information of the surfaces in the scene.  

2.2 Epipolar Geometry 

    Fig. 2-1 shows a typical stereo image geometry in the 3D space. There are two 

pinhole cameras viewing a 3D scene from difference view points. We place a virtual 

image plane in front of each camera. The intersections between the baseline connects 

two cameras and the two image planes are called epipole. The plane formed by any 

point in the space and the base line is epipolar plane. The epipolar plane intersects 

each camera's image plane, the intersection forms lines—the epipolar lines. Any point 

P in the epipolar plane corresponds to points P1 and P2 which are the projections of 
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point P onto the epiploar line. Therefore, if the two epipolar lines belong to the same 

epipolar plane, for each point observed on one epipolar line must be observed on the 

other epipolar line. We can use this property to reduce the search range from the 

whole image to an epipolar line. This geometry property is called epipolar constraint. 

 

Fig. 2-1 Stereo image geometry 

2.3 The General Structure of Matching Algorithm 

According to Scharstein and Szeliski [5], the stereo correspondence algorithms 

generally consist of four parts:  

1.  Initial matching cost computation,  

2.  Cost aggregation, 

3.  Disparity computation and optimization, 

4.  Disparity refinement, 
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Fig. 2-2 shows the general procedure of a stereo correspondence algorithm. The 

output is the disparity map of an image pair input. The details of the four parts will be 

discussed in the following sections. 

 

Fig. 2-2 Process of the general stereo correspondence algorithms 

2.3.1 Initial Matching Cost Computation 

    The matching cost represents the dissimilarity between two pixels in our 

correspondence problem. The range of the disparity candidates is called the disparity 

range. The initial disparity space image  (Fig. 2-3) consists of the 

matching cost values over all pixels and all disparities. 

 

Fig. 2-3 Disparity space image 

    The most popular pixel-based match metrics are the squared intensity difference 

(SD) and the absolute intensity difference (AD). The correspondence problem to find 
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the best match between the candidate pixel and the reference pixel in the support 

region . In addition, Birchfield and Tomasi proposed a matching cost sensitive to 

image sampling [12][13]. The several match metrics are listed in Table 2-1 [6]. In our 

platform, the parameter match_fn selects the matching cost function we use. The 

general formula of matching cost computation can be written as  

  (2.1) 

where  and  represent the left (reference) and the right images, respectively. 

2.3.2 Cost Aggregation 

    After computing matching cost, we aggregate nearby pixel costs. Because the 

disparity values of the neighboring pixels should often be consistent, we select a 

support window to add up their costs. The cost aggregation can be formulated as 

  (2.2) 

where  is the initial matching cost calculated in the previous step. The  

function indicates the related weight of neighboring pixels contributing to the 

aggregated cost. Although the cost aggregation can reduce the noise effect, it blurs the 

edge of the object when aggregating the cost of difference objects. Therefore, how to 

design a good aggregation scheme is an important topic. In our platform, the 

parameter aggr_fn selects the aggregation method we use. Several aggregation 

methods are described below: 
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� Box filter: Use a separable moving average filter (add one right/bottom value, 

subtract one left/top). The decision of the window size will affect the 

performance and the computation time. If we want to implement real-time 

matcher, we should consider the window size as a vital factor. 

Table 2-1 Match metrics for correspondence matching [6] 

Match Metric Definition 

Normalized 

Cross-Correlation 

 

Sum of Squared 

Difference 

 

Normalized Sum 

of Squared 

Difference 

 

Sum of Absolute 

Difference 

 

Mutual 

Information  
 

 and  represent the intensity value of left and right image where 

 is the index of pixel.  represents the mean of intensity value in the support 

window .  is the probability density function and  represents the disparity 

value. 
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� Binomial filter: The  function is a separable FIR (finite-duration impulse 

response) filter. We use the coefficients 1/16{1, 4, 6, 4, 1} proposed by Burt and 

Adelson’s [14] Laplacian pyramid. 

� Minimum filter: The  function is a sliding window with a location bias (Fig. 

2-4). We can use a box filter and its center is not the candidate pixel. But the 

candidate pixel should be included in the shifted windows, it is called shiftable 

window [15]. We choose the minimum aggregation cost among all the shiftable 

windows in the pre-selected range. The shiftable window can avoid aggregating 

the cost near object boundary. 

 

Fig. 2-4 An illustration of the shiftable window 

2.3.3 Disparity Computation and Optimization 

    The disparity map can be obtained from the original matching cost or the 

aggregated cost. In addition, the disparity computation method can be categorized into 
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two types: the local and the global approaches. These two approaches are described as 

follows. 

In a local method, the matching cost or the cost aggregation are the key 

components. The simplest local method is the Winner Take All (WTA) algorithm, in 

which the disparity of each pixel  is determined by minimizing the matching 

cost or aggregated cost in the disparity search range , that is, 

  (2.3) 

Moreover, the disparity of each pixel is independently calculated.  

In a global method, we define an energy function, which includes a data term and 

a smooth term. The data term includes the cost function that we discuss previously, 

and the smooth term represents the smoothness penalty of the disparity map. The 

detail of the energy function will be discussed in section 3.1. One of the earlier 

proposed global optimization methods is the dynamic programming (DP) [16]. The 

dynamic programming scheme optimizes the energy function of each scanline 

independently. Fig. 2-5 shows a stereo matching using dynamic programming for a 

pair of corresponding scanline. We select the minimum path through the matrix of all 

pairwise matching costs. The lowercase array represents the intensities along a 

scanline of the left image. The uppercase array represents the intensities along a 

corresponding scanline of the right image. The matches are indicated by M, and the 
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partially occluded points are indicated by L or R, which based on the points only 

visible in the left image or the right image. In this example, the disparity range is 0-4, 

which indicated by the non-shaded boxes. The shaded boxes are disparities outside 

this range. Although dynamic programming can optimize the horizontal global 

information, the vertical correlation is not considered. The disparity maps produced 

by dynamic programming may exhibit horizontal streaks, and it reduces the subjective 

quality of the synthesized image. 
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Fig. 2-5 Stereo matching using dynamic programming 

For considering the vertical and horizontal information simultaneously, the 

energy minimization using the so-called graph-cuts technique has been proposed. This 

optimization algorithm performs well in disparity estimation. Unfortunately, the 
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computation and the storage requirement for graph-cuts algorithm are enormous. The 

detail of graph-cuts will be discussed in sections 3.2 and 3.3, and we will propose our 

algorithm for reducing the computation time in chapter 4. 

2.3.4 Disparity Refinement 

    Most stereo correspondence algorithms produce an integer disparity map. The 

integer disparity is not good enough for some applications, which require 

good-quality synthesized images. To improve the synthesis result, many algorithms 

apply a disparity refinement stage in the procedure of stereo correspondence 

algorithms. In the disparity refinement stage, the sub-pixel disparity map can be 

computed. We can increase the resolution of the disparity map with a little additional 

computation. However, the goal of this research is to decrease the computation and 

maintain the quality of the disparity map. Because we do not focus on the synthesis 

result, we do not use the disparity refinement stage in the reference software (platform) 

by setting the Boolean variable refine_subpix false. 

2.4 A Taxonomy Evaluation 

2.4.1 Overview of the Platform 

    The source codes downloaded from the middlebury website are used as our 

platform [5]. Fig. 2-6 depicts the program structure of the middlebury platform. In the 

beginning, the main file calls the interpreCommandLine function which is included in 
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the StereoIO file. In the interpreCommandLine function, the first step initializes the 

entire parameters (StereoParameter.cpp), and then we adjust the values of parameters 

specified by the configuration file or the command lines (ParameterIO.cpp). The next 

step executes the stereo matching program (StereoMatcher.cpp), which is the primary 

part in the platform. The stereo matching can be divided into four components as 

depicted Fig. 2-2. They are initial matching cost computation, cost aggregation, 

disparity computation (optimization), and disparity refinement. At the end, the 

program evaluates the quality by comparing the computed disparity map and the 

ground truth disparity map (StcEvaluate.cpp). 

 
main.cpp 

 
StereoIO.cpp 

 
StereoParameters.cpp 

 
ParameterIO.cpp 

 
StereoMatcher.cpp 

 
StcEvaluate.cpp 

 
StcPreProcess.cpp 

 
StcRawCosts.cpp 

 
StcAggregate.cpp 

 
StcRefine.cpp 

 
BoxFilter.cpp 

 
StcDiffusion.cpp 

 
MinFilter.cpp  

StcOptimize.cpp 

 
StcOptDP.cpp 

 
StcGraphcut.cpp 

 
StcSimulAnn.cpp 

 
StcOptSO.cpp 

 

Fig. 2-6 Program structure of the middlebury platform 
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2.4.2 Quality Metrics 

    To evaluate the quality of a disparity map computed by a stereo algorithm, we 

compute the following two quality metrics in our platform:  

1. RMS (root-mean square) error between the computed disparity map  and 

the ground truth map  can be written as 

  (2.4) 

where  is the RMS error,  is the total number of pixels and  denotes the 

image area. 

2. Percentage of bad matching pixels can be written as 

  (2.5) 

where  is the percentage of bad pixels and  is a disparity error tolerance. We 

simply adopt the default setting of the published platform and set  in our 

experiment. 

    Besides computing the two quality metrics over the whale image, we also 

compute the two quality metrics over three difference kinds of regions, which are 

textureless regions , occluded regions  and depth discontinuity regions . Their 

symbols and descriptions are listed in Table 2-2. 
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Table 2-2 Descriptions of error metrics [5] 

PARAMETER NAME SYMBOL DESCRIPTION 

rms_error_all  RMS disparity error 

rms_error_nonocc  RMS disparity error (no occlusions) 

rms_error_occ  RMS disparity error (at occlusions) 

rms_error_textureless  RMS disparity error (textureless) 

rms_error_textured  RMS disparity error (textured) 

rms_error_discont  RMS disparity error (discontinuities) 

bad_pixels_all  Bad pixel percentage 

bad_pixels_ nonocc  Bad pixel percentage (no occlusions) 

bad_pixels_ occ  Bad pixel percentage (at occlusions) 

bad_pixels_ textureless  Bad pixel percentage (textureless) 

bad_pixels_ textured  Bad pixel percentage (textured) 

bad_pixels_ discount  Bad pixel percentage (discontinuities) 

2.4.3 Test Data 

    We download the test data on the middlebury website. The test data set we used 

is shown in Table 2-3. The four sequences, which are map, tsukuba, sawtooth, and 

venus, are the most commonly used ones for quality evaluation.  
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Table 2-3 Test data [5] 

 Map Sawtooth Tsukuba Venus 

Image size 

 

    

Input 

    

Ground Truth 

    

Occlusion and 

discontinuities 
    

Occlusion and 

textureless 
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Chapter 3 Energy Minimization by Graph Cuts 

3.1 Overview 

    In disparity estimation, the graph cuts and the belief propagation algorithms are 

generally recognized as the better global optimization methods. Unfortunately, their 

computation time is very high. Because we only focus on the graph cuts method, we 

only describe the procedure of the graph cuts in this chapter. The maximum 

flow/minimum cut (max-flow/min-cut) problem and an algorithm which solves the 

max-flow/min-cut problem are introduced [17][18]. Based on the graph cuts, two 

algorithms have been proposed for solving the stereo correspondence problem by 

minimizing the energy function, namely  and  [8]. 

3.2 Max-Flow and Min-Cut Problem 

    First, we glance at the graph theory. In Fig. 3-1, we show a simple example of a 

graph . A directed graph  is defined as a set of nodes (vertices)  

and a set of directed edges  that connect the nodes. In the graph, a source terminal 

as  and a sink terminal as  are denoted. A cut is a set of edges  such that 

the two terminals become separated on the induced graph . A cut 

can also be represented by  which produces a partition of  into  and 

, such that  and . 
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    A minimum cut is a cut whose cost is the minimum over all possible cuts of . 

The minimum cut problem can be solved by finding a maximum flow from the source 

 to the sink . In other words, the maximum source-to-sink flow is equal to the cost 

of the minimum cut in . Maximum flow can be considered the maximum “amount 

of water” that can be sent from the source to the sink, and the cost of edge can be 

considered the capacity of a directed “pipe”. 

    The algorithms to solve the maximum flow problem can be classed into two 

groups: Ford-Fulkerson algorithm [19] and push-relabel algorithm [20]. The 

Ford-Fulkerson algorithm examines the whole residual network to find an augmenting 

path. The algorithm begins with no flow and runs iteratively. At each iteration, the 

flow is increased by finding the augmenting path from the source to the sink in the 

residual network. The process repeats until no further augmenting path we can find, 

and the flow is the maximum flow.  

 

Fig. 3-1 A simple example of the graph  and the minimum cut (the red line) 
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    If we used a breath-first search to implement the augmenting path calculation in 

the Ford-Fulkerson algorithm, the bound of running time can be improved to 

, where  is the number of nodes and  is the number of edges in the 

graph. We call the Ford-Fulkerson algorithm so implemented the Edmonds-Karp 

algorithm. Push-relabel algorithms look only at the node's neighbors in the residual 

network and process one node at a time. Compared with the Ford-Fulkerson algorithm, 

the push-relabel algorithms are local methods and a simple implementation that runs 

in  time. Besides, unlike the Ford-Fulkerson, the push-relabel algorithms 

do not maintain the flow-conservation property throughout their execution. Therefore, 

we use push-relabel algorithms in this research instead of the Ford-Fulkerson method. 

We will describe the detail of push-relabel algorithms in the next section. 

3.3 Push-Relabel Algorithm 

    In a push-relabel algorithm, the directed edges correspond to pipes as the 

Ford-Fulkerson algorithm, but the intuition of nodes is different from the 

Ford-Fulkerson algorithm. The nodes, which can be regarded as the pipe junctions, 

have two parameters. One is the accumulation of the fluid, and the other one is the 

node heights. The node heights determine how flow is pushed. We only push flow 

from a higher node to a lower node. 

    In a push-relabel algorithm, there are two basic operations, the push operation 
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and the relabel operation. The push operation performs pushing flow excess from a 

node to one of its neighbors. The relabel operation can increase height of a node. We 

will describe the flow of push-relabel algorithm by a simple example, which is 

shown in Fig. 3-2. In Fig. 3-2 (a), a graph with nodes and directed edges is shown. 

The number at the edge represents the cost (capacity of the pipe). In the beginning, 

the parameters of each node are initialized as Fig. 3-2 (b). The height of the source  

is set to the number of the nodes in the graph. The height of other nodes is initialized 

to zero. In Fig. 3-2 (c), we employ the first push operation that saturate all outgoing 

edges from the source . The flow follows the direction of the edges. When an edge 

is saturated with flow along its original direction, we then change the direction of the 

edge. Also, the flow accumulations, , of node V1 and V2 are changed to one and 

two. Because the flow accumulations of node V1 and V2 cannot be pushed to the 

other node after the first push operation, we must increase their height and this 

processing is called relabel operation. The relabel operation is depicted in the Fig. 

3-2 (d). After the relabel operation, we can push the flow accumulations of V1 and 

V2 to the lower nodes as shown in Fig. 3-2 (e). We perform push operation and 

relabel operation repetitively until there is no accumulation of flow in the each node 

except for the sink , and the final graph is depicted in Fig. 3-2 (f). 

    The maximum flow problem is solved when the final graph is obtained. The final 
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Fig. 3-2 A simple example of push-relabel algorithm 
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graph provides the minimum cut. A minimum cut separates the original graph  into 

two parts  and , such that {all nodes reachable from source }  and 

. 

3.4 Energy Minimization using Graph Cuts 

    Disparity estimation using graph cuts outperforms many other optimization 

methods. Before explaining how to compute the disparity map using graph cuts, we 

introduce the general form of energy function. In addition, we will introduce a method 

to minimize the energy function by graph cuts, -  swap [8]. Finally, because the 

disparity values are generally more 2 values, we need to build the graph many times, 

which is called multiway cuts [9]. 

3.4.1 The General Form of Energy Function 

    The general form of energy function can be written as 

  (3.1) 

where  is a parameter, which controls the effect of the smooth energy term.  

    The data energy term, , represents the dissimilarity between the left and 

the right images when the disparity map is . The form of data energy term is 

typically 

  (3.2) 

where  is a pixel,  is the set of total pixels in the left image,  is the disparity 
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value of pixel , and  represents the cost when the disparity value of pixel  

is . We can select different matching cost functions and different aggregation 

methods to generate the cost array that was explained in section 2.3.1 and 2.3.2. The 

data energy term is the summation of all costs when a disparity map is given.  

    The smooth energy term, , measures the extent to which  is not 

piecewise smooth. If there are some non-smooth regions on the disparity map, we 

should add some penalties on total energy. The smooth data term will make the 

disparity map much smooth everywhere. The smooth energy term typically has the 

form 

  (3.3) 

where  is the set of interacting pairs of neighboring pixels, and  is the 

an interacting function, which has many different forms. In our platform, we use the 

Potts model as our interacting function. The Potts model can be represented as 

  (3.4) 

where  is 1 if the argument is true, and otherwise, 0, and  is a penalty 

constant. This model encourages disparity values consisting of several regions, where 

pixels in the same region have equal disparity value. We also call it a piecewise 

constant model. 

    According to the previously introduced energy function in this section, we know 
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the impact of energy function. We next describe how we minimize the energy function 

by graph cuts in section 3.4.2. 

3.4.2 The -  Swap Method 

First, we review some basic fact about graphs which is used to minimize the 

energy function of disparity estimation. A directed weighted graph  

consists of a set of nodes  and a set of directed edge  that connect them. The 

nodes are usually composed of the pixel nodes and the terminal nodes. The pixel 

nodes and the terminal nodes respectively correspond to the pixels in the image and 

the disparity values which we can assign to pixels. In Fig. 3-3, we show a simple 

example of a  image with two disparity values. The two terminals are usually 

called the source, s, and the sink, t. For more clearly seeing, we provide a simpler 

illustration in Fig. 3-4, whose pixel nodes are arranged in 1D. The set of pixels in the 

1D image is , where  and . The weight 

information of the edges is shown in Table 3-1. The edges can be classed into two 

groups: t-links and n-links. The t-links (terminal links) connect each pixel node to the 

terminals  and , which is called  and , respectively. The n-links (neighbor 

links) connect each pair of pixels , that are neighbors ( ). The 

symbol of the n-links is . 
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Fig. 3-3 An example of a directed weighted graph 

 

Fig. 3-4 An example of the graph for a 1D image 
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Table 3-1 Weight information of the edges 

edge weight for 

   

   

   

    From the Table 3-1, we know that the weight of edge  is , which is the  

data energy term.  is the cost value of pixel , which is assigned a disparity 

value . The edge  is similarly defined. The weight of edge  is , 

which is the smooth energy term.  is an interacting function as we said 

previously. When the graph is constructed, we find the minimum cut of the graph by 

the push-relabel algorithm. We discuss the properties of a cut by a simple example in 

Fig. 3-5. If the cut of Fig. 3-5 (a) is the minimum cut, we will assign disparity value 

 to pixels  and . The case of Fig. 3-5 (b) is similar to (a). If the cut of Fig. 3-5 (c) 

is the minimum cut which includes the n-link, , we will assign disparity value  

and  to the pixels  and , respectively.  

    After finding the minimum cut of the graph, we can assign the disparity value to 

each pixel in . The method that we adjust the disparity map is called -  swap. 

Fig. 3-6 (a) is an example of the initial disparity map. Although the disparity map is 

always a gray level picture, we fill the region of disparity value  with red (darkest) 

color for illustration. After an -  swap, the disparity map is modified to Fig. 3-6 (b). 

The disparity map in (b) is much smoother than (a) in the regions of  and , 
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because we minimize the energy function by graph cuts. However, a disparity map 

may contain more than two disparity values. We cannot simply employ the graph cuts 

once and, therefore, we will introduce the multiway cut algorithm to solve this 

problem. 

 

Fig. 3-5 Properties of a cut on the graph 

 

Fig. 3-6 The change of disparity map after an -  swap 
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3.4.3 Multiway Cut Algorithm 

    Because the number of disparity values is greater than two, there are multiple 

terminals in the graph as shown in Fig. 3-7. The -  swap method processes only 

two terminals at a time, and, therefore, we must use multiway cut algorithm to solve 

the problem. We describe the detail of multiway cut algorithm as follows. 

(1) Start with an initial disparity map which may be given by the WTA method. 

(2) Randomize the disparity sequence, and pick up two disparity values as the 

terminals of the graph. Note that only the selected pixels can be the pixel nodes 

in the graph. 

(3) Employ the algorithm which we introduce previously to find the minimum cut. 

(4) Repeat step (3) for every possible pair of disparity values. 

(5) Repeat the step (3) and step (4) until the energy does not change. 

After the total flow of multiway cut algorithm flow is computed, we reach a 

sub-optimal total energy of the disparity map. Fig. 3-8 shows the flowchart of the GC 

algorithm. (1) corresponds of to the S1, and (2) is composed of S2 and S3. (3) is equal 

to S4. In addition, (4) and (5) are the inner and outer loop. 
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p q

k

k

(a)

(b)  

Fig. 3-7 (a) An example of the graph with multiple terminals  (b) An 

induced graph by a multiway cut (dotted lines indicate cut edges) 
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Fig. 3-8 Flowchart of GC 
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Chapter 4 The -  Swap Algorithm Speed-Up 

and Early Termination 

4.1 Overview 

    Among the global optimal algorithms, graph cuts (GC) and its variations [8]-[11] 

generally show very good performance in their disparity estimation quality. Therefore, 

GC is chosen as the target algorithm for speed up. The flowchart of the original GC is 

shown in Fig. 3-8 which we was discussed in Chapter 3 previously. In this chapter, we 

propose a fast GC algorithm for disparity estimation purpose. Two accelerating 

techniques are suggested: one is the early termination rule, and the other prioritizes 

the -  swap pair search order.  

4.2 Early Termination of Energy Minimization Process 

    In this section, we examine the energy minimization process of GC to determine 

an early termination threshold. First, we define a terminology to be used in the 

following discussions. Fig. 4-1 shows the probability distribution of all possible 

disparity values for a test image pair after the -th outer-loop iteration. This 

probability distribution (sequence) forms a vector: . We measure the similarity 

between two vectors by their inner product and thus theta , the angle between  

and , is defined by (4.1). 
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  (4.1) 

    Fig. 4-2 shows the values E and  after each outer-loop iteration on the test 

image ‘sawtooth’, and Fig. 4-3 shows the RMS_error and Bad_pixel of the 

corresponding disparity map. In the energy minimization process, GC monotonically 

decreases E. However, the quality metrics slightly fluctuate when E reaches its 

minimum. The other test image pairs show similar results. When the decrease in E is 

small, further iterations may not necessarily improve the quality, even though the 

energy level can be further lowered slightly. Therefore, we suggest an early 

termination mechanism to save computation. The optimization process terminates 

when the angle  between  and 
 
is smaller than a given threshold 

. That is, when the change between  and  is small, the 

iteration stops. 
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Fig. 4-1 Disparity distribution of the test image pair ‘sawtooth’ after the -th iteration 

of the outer loop ( ) 
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Fig. 4-2 E and  in the energy minimization process of the test image pair ‘sawtooh’ 
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Fig. 4-3 RMS_error and Bad_pixel in the energy minimization process of ‘sawtooh’ 

4.3 Prioritizing the -  Swap Pair Sequence 

    The original GC scheme randomly selects a disparity pair  from the 

disparity candidate set  and then does the -  swap for all possible disparity 

values. However, let  and  be a chosen disparity pair. If  is the best 

disparity pair for only a few nodes, this specific -  swap has a limited impact on 

minimizing the total energy but it consumes the computing power. Therefore, if we 

find an effective strategy to prioritize the -  swap pairs, i.e., the better matched 
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pairs are tested first, then the total energy converges faster. 

After each run of the outer loop, we obtain , , , and  

for each node. Consequently, we have the disparity probability (the number of nodes 

with a specific disparity divided by the number of all pixel nodes), , , 

and  for each disparity value. Fig. 4-4 shows the disparity distribution of the 

test image pair ‘sawtooth’. Part (a) is the probability after the first iteration (denoted 

by ). Part (b) is the probability difference between the first and the final 

iterations (denoted by - ), which represents the probability difference 

needed to be adjusted by the iterative algorithm. Typically, there are only a few 

objects in an image; therefore, the disparity distribution is dominated by a few 

disparity values. Often, the dominated disparity values show up after the first couple 

of iterations. That is, their probabilities are higher than the other disparities. Hinted by 

this observation, the disparity probability distribution can be used as clues for 

choosing the final disparity values. In this section, we prioritize the disparity pairs 

 according to their probability although the other attributes such as , 

, and  may also be used for prioritization purpose. We will discuss the 

difference between them in the next section. 

The benefits of prioritizing the -  swap pair search order mainly come from 

the early iterations of the outer loop. With the correctly prioritized disparity 
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candidates, we reach the final goal much faster and thus save computation. 

    Fig. 4-5 shows the flow chart of our proposed fast GC, which is the combination 

of prioritizing the -  swap pair sequence and the early termination (section 4.2) 

technique. The modifications to the original GC scheme are steps 2, 7, and 8. In Step 

2, we prioritize the disparity pair  search order based on their disparity 

probabilities.  
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Fig. 4-4 Disparity distribution of ‘sawtooth’ after the 1
st
 outer-loop iteration 

We then perform the -  swap sequentially according to the priority order 

(probability) of disparity pairs. In step 7, we also calculate  value. In the extra step 

8, we check whether  is larger than a given . If so, we run another iteration 

of the outer loop. Otherwise, we terminate the optimization process. The value of 

 is 1  (degree) in our experiment. It is empirically determined. 
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S3: For each disparity pair (α,β)

S4:  Find dInner=arg min Etotal(dJ) among dJ

within one α-β swap of d, EInner=minEtotal(dJ)

S6: EInner<E

Inner

 loop

N

End

S1: Determine disparity  dWTA by WTA, 

calculate EWTA = Etotal(dWTA), 

and let d=dWTA, E=EWTA

S2: Sort the disparity d according to its 

probability and prioritize the disparity pairs 

(α,β) from high probability to low.

S5: Inner loop end

Y

 S7: d=dInner, 

E=EInner,

calculate θ

Outer 

Loop

Y

Begin

S8: θ> θthresholdN

 

Fig. 4-5 Flow chart of our proposed fast GC 

4.4 Simulation Results and Discussions 

    In this section, we will show the experiment environment setting and the 

simulation results for different criterions. The improvement of our proposed algorithm 

is also shown in this section. In addition, we will analyze and discuss the simulation 

results. 

4.4.1 Experiment Environment Setting 

    We implement our proposed algorithm and test it on the test bed retrieved from 

the Middlebury stereo vision web page. Four test image pairs – ‘Map’, ‘Sawtooth’, 

‘Tsukuba’, and ‘Venus’ (all with ground truth disparity maps) – are in use. Our 

simulation platform is a PC with Intel Core2Quad Q6600 and 4G RAM. The 
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performances of the original GC and our proposed fast GC are measured by six 

metrics: computing time,  (rms_error_all),  (bad_pixels_all),  

(bad_pixels_nonocc),  (bad_pixels_textureless), and  (bad_pixels_discont). 

Table 4-1 shows the important parameters in our implementation. The simulation 

results of the original GC with the same setting are close to those in the Middilebury 

web page. 

Table 4-1 The experiment environment setting 

Parameter Value Meaning 

match_fn 1 Absolutely difference 

match_max 1000 No truncation 

match_interval 1 BT 

opt_fn 4 GC 

aggr_iter 0 No aggregation 

opt_smoothness 20 Weight of smoothness term (λ) 

opt_grad_thresh 8 Threshold for magnitude of 

intensity gradient [22] 

opt_grad_penalty 4 (Map, Tsubuka) 

2 (Sawtooth, Venus) 

Smoothness penalty factor if 

gradient is too small [22] 

4.4.2 Simulation Results 

    The simulation results of prioritizing the -  Swap pair sequence according to 

the disparity probability (the number of nodes with a specific disparity divided by the 

number of all nodes), , , and  for each disparity value are shown 

in detail in this section. In addition, we also represent the simulation results with early 

termination in energy minimization process (ET), separately. 
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Table 4-2 Comparison of computing time 

Method 

Computing time (sec) Average 

Improvement 

(%) 
Map Sawtooth Tsukuba Venus 

Original 83.52 156.39 93.88 131.16  

Probability 41.45 121.13 38.02 96.86 36.02 

 55.66 127.50 73.98 117.86 19.35 

 50.83 101.89 39.27 85.97 40.22 

 48.75 110.24 44.63 84.45 38.04 

ET 38.31 65.30 75.78 71.58 46.02 

Probability+ET 20.61 50.75 24.73 53.88 67.74 

+ET 30.38 60.30 38.25 81.30 54.78 

+ET 21.97 40.41 25.67 70.99 65.79 

+ET 21.19 39.45 24.72 69.83 66.62 

Improvement is  where  denotes the computing time of 

method “ ” and  denotes the computing time of the original 

method. 

 

Fig. 4-6 Plot of computing time 
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Table 4-3 Comparison of rms_error_all 

Method 
 Average 

 (%) Map Sawtooth Tsukuba Venus 

Original 4.10 1.48 1.30 1.48  

Probability 4.11 1.49 1.28 1.45 -0.75 

 3.85 1.49 1.28 1.45 -7.25 

 4.02 1.48 1.28 1.45 -3.25 

 3.85 1.47 1.28 1.49 -6.75 

ET 4.05 1.49 1.30 1.39 -3.25 

Probability+ET 4.12 1.49 1.28 1.45 -0.50 

+ET 3.85 1.48 1.28 1.44 -7.75 

+ET 4.01 1.48 1.28 1.45 -3.50 

+ET 3.85 1.43 1.28 1.49 -7.75 

 where  denotes the RMS error of method 

“ ” and  denotes the RMS error of the original method.  

 

 

Fig. 4-7 Plot of rms_error_all 
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Table 4-4 Comparison of bad_pixels_all 

Method 
 (%) Average 

 Map Sawtooth Tsukuba Venus 

Original 5.45 3.94 4.16 3.50  

Probability 5.53 3.93 4.20 4.50 0.28 

 5.48 4.03 4.18 3.43 0.02 

 5.48 3.91 4.12 3.62 0.02 

 5.40 3.98 4.31 4.41 0.26 

ET 5.43 3.96 4.16 3.50 0.00 

Probability+ET 5.47 3.96 4.20 4.50 0.27 

+ET 5.47 4.03 4.18 3.43 0.02 

+ET 5.47 3.94 4.12 3.62 0.03 

+ET 5.40 4.01 4.31 4.40 0.27 

 where  denotes the percentage of bad pixels 

of method “ ” and  denotes the percentage of bad pixels of 

the original method. 

 

 

Fig. 4-8 Plot of bad_pixels_all 
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Table 4-5 Comparison of bad_pixels_nonocc 

Method 
 (%) Average 

 Map Sawtooth Tsukuba Venus 

Original 0.38 1.34 2.00 1.87  

Probability 0.41 1.34 2.03 2.81 0.250 

 0.35 1.42 2.03 1.77 -0.005 

 0.38 1.34 1.96 1.97 0.015 

 0.32 1.38 2.16 2.77 0.260 

ET 0.38 1.36 2.00 1.85 0.000 

Probability+ET 0.40 1.36 2.04 2.82 0.258 

+ET 0.35 1.43 2.02 1.77 -0.005 

+ET 0.38 1.38 1.96 1.97 0.025 

+ET 0.33 1.41 2.15 2.77 0.268 

 where  denotes the percentage of 

non-occlusion bad pixels of method “ ” and  denotes the 

percentage of non-occlusion bad pixels of the original method. 

 

Table 4-6 Comparison of bad_pixels_textureless 

Method 
 (%) Average 

  Map Sawtooth Tsukuba Venus 

Original 0.00 0.24 1.09 2.76  

Probability 0.00 0.26 1.16 5.04 0.79 

 0.00 0.26 1.15 2.63 -0.02 

 0.00 0.25 1.11 3.83 0.37 

 0.00 0.30 1.40 5.14 0.92 

ET 0.00 0.24 1.09 2.50 -0.06 

Probability+ET 0.00 0.26 1.16 5.04 0.79 

+ET 0.00 0.26 1.15 2.63 -0.02 

+ET 0.00 0.28 1.11 3.83 0.38 

+ET 0.00 0.35 1.39 5.14 0.93 

 where  denotes the percentage of 

texureless bad pixels of method “ ” and  denotes the 

percentage of texureless bad pixels of the original method. 
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Table 4-7 Comparison of bad_pixels_discont 

Method 
 (%) Average 

 (%) Map Sawtooth Tsukuba Venus 

Original 3.82 6.23 9.87 7.22  

Probability 4.55 6.55 10.15 7.28 0.35 

 3.76 6.42 10.03 6.80 -0.38 

 3.85 6.48 9.77 6.63 -0.07 

 3.62 6.53 10.79 6.76 0.24 

ET 3.85 6.28 9.87 6.62 -0.27 

Probability+ET 4.49 6.54 10.15 7.28 0.46 

+ET 3.76 6.43 10.00 6.66 -0.40 

+ET 3.94 6.65 9.76 6.57 0.02 

+ET 3.79 6.49 10.79 6.80 0.24 

 where  denotes the percentage of 

non-occlusion bad pixels of method “ ” and  denotes the 

percentage of non-occlusion bad pixels of the original method. 
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                Ground truth                   Original 

  

               Probability+ET                  +ET 

Fig. 4-9 Disparity maps of ‘Map’ 

  

                Ground truth                   Original 

  

               Probability+ET                 +ET 

Fig. 4-10 Disparity maps of ‘Sawtooth’ 
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                Ground truth                   Original 

  

               Probability+ET                  +ET 

Fig. 4-11 Disparity maps of ‘Tsukuba’ 

  

                Ground truth                   Original 

  

                Probability+ET                +ET 

Fig. 4-12 Disparity maps of ‘Venus’ 
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4.4.3 Analysis and Discussions 

    Table 4-2 and Fig. 4-6 show the computing time of the original GC and the 

proposed methods. Improvement is calculated from one minus their ratio. In the 

methods without early termination, the improvement of prioritizing the -  swap 

pair according to  is the best. However, if the early termination is employed, 

prioritizing the -  swap pair according to probability has the least computing time. 

In addition, we find that the improvement due to early termination only can reach 

46%. 

    Table 4-3 and Fig. 4-7 show the rms_error_all of the original GC and the 

proposed methods. The improvement is calculated from their average performance on 

4 image pairs. The rms_error_all slightly decreases in our methods. Prioritization 

according to  and  can improve rms_error_all more than others with or 

without the early termination. Table 4-4 and Fig. 4-8 show the bad_pixels_all of the 

original GC and the proposed methods. Prioritization according to probability and 

 are worse than the others. The degradation is dominated by the ‘Venus’. 

However, its performance is still about the same as that of the original GC. 

    Table 4-5, Table 4-6, and Table 4-7 show that different methods have different 

performance for different types of images. For example, prioritization according to 

 is the best performer in the texureless region. In conclusion, if we can tolerate 
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the slight degradation of quality, we choose the probability prioritized method which 

saves most computing time. On the other hand, if we allow a slightly higher 

computing time to exchange for a better quality, we can choose the  prioritized 

method. In addition, the  prioritized method is a good choice, because it 

decreases a lot of computing time and only slightly degrades the quality. 

    Fig. 4-9, Fig. 4-10, Fig. 4-11, and Fig. 4-12 show the disparity maps of the  

ground truth, original GC, probability+ET, and +ET. The disparity maps 

generated by the proposed methods generally are very close to the disparity map 

produced by the original GC. After examing them closely, we find out that the 

disparity map of +ET is a little bit better than that of probability+ET. 
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Chapter 5 Multi-Resolution Graph Cuts and 

Disparity Estimation for Multi-Camera 

Array 

5.1 Overview 

    In disparity estimation, the graph cuts and the belief propagation algorithms 

provide better disparity map quality. Unfortunately, their computation time is very 

high. In this chapter, we use multi-resolution graph cuts to reduce the computing time. 

Then, we estimate the disparity maps when the multi-camera array is in use. 

5.2 Disparity Estimation using Multi-Resolution Graph Cuts 

    In section 3.3, we describe the push-relabel algorithm which can solve the 

max-flow/min-cut problem. The worst-case running time for this algorithm is 

, where  is the number of nodes and  is the number of edges in the 

graph. Because  and  increase with the image size, the running time of the 

graph cuts algorithm greatly increases with the image size. In addition, the -  swap 

method constructs a graph of two terminals (disparity values) at a time. If the 

disparity range is , we construct  graph in total (all combinations). 

Therefore, the running time also greatly increases with the disparity range when we 
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use the -  swap method.  

    We can employ the multi-resolution graph cuts (MRGC) technique for reducing 

the computation time. Fig. 5-1 shows the flowchart of MRGC. We first use the image 

down-sampling technique to generate the low-resolution images. The right-side path 

in the Fig. 5-1 is same as the original GC method except the image size and the 

disparity range. If the disparity range of the original GC is  in the 

original resolution, the disparity range is  in the low-resolution image. 

After the low-resolution disparity map is obtained, we come back to the original 

resolution image size. We up-sample the disparity map. Then, it becomes the initial 

disparity map for the neighborhood graph cuts.  

 

Fig. 5-1 Flowchart of MRGC 
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The main components that are different from the original GC method are the image 

down-sampling, disparity map up-sampling and scaling, and neighborhood graph cuts 

operations. We describe the detail in the following sub-sections. 

5.2.1 Image Down-Sampling 

    In this section, we describe two down-sampling methods that we use in MRGC. 

Fig. 5-2 shows an example of a simple down-sampling method. The sampling factor 

is 2 for the width and the height. This method simply skips every other pixel in 

one-dimension. Because of lacking prefitting, the low-resolution images after the 

down-sampling may suffer the aliasing effect. Therefore, we attempt another method 

to down-sample the original images. We use a sliding window whose coefficient is 

depicted below for pre-fitting. 

  (5.1) 
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Fig. 5-2 An example of 4 to 1 pixel-skip down-sampling  
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Because the coefficients of the window are all integer and the sum of the coefficients 

is 16, we can shift right four bits in calculation instead of using division. This filter 

does not increase much computing time comparing to the simplest method. We will 

compare the two methods in section 5.4 by simulation. 

5.2.2 Disparity Map Up-sampling and Scaling 

    In this section, we also describe two methods to up-sample the low-resolution 

disparity map. Fig. 5-3 shows a simple up-sampling method that duplicates the pixel 

value to its neighbors directly and multiplies the disparity value by 2. Thus, the 

derived disparity map becomes the initial disparity map for the neighborhood graph 

cuts. Because the disparity maps produced by the simple method may produce blocky 

images, we can reduce artifacts by performing some types of linear or bilinear 

interpolation in up-sampling. However, the interpolation process increases the 

computation time and its quality improvement on the disparity map it uncertain.  

8 8 10 10 10 10 16 16

8 8 10 10 10 10 16 16

6 6 10 10 12 12 16 16

6 6 10 10 12 12 16 16

8 8 16 16 14 14 10 10

8 8 16 16 14 14 10 10

10 10 16 16 16 16 6 6

10 10 16 16 16 16 6 6

4 5 5 8

3 5 6 8

4 8 7 5

5 8 8 3

Upsampling 
and Scaling

 

Fig. 5-3 An example of disparity map up-sampling and scaling 
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    We attempt to employ the up-sampling method of H.264 [23], which is shown in 

Fig. 5-4. The pixel  can be obtained from pixels , , , , , and  by the 

formula below. 

  (5.2) 

We can use pixels , , , , , and , to interpolate the pixel  similarly. 

  (5.3) 

The coefficients of the interpolation filter are , which mimic the 

sinc function. After the up-sampling interpolation process, we multiply the disparity 

values by 2. In section 5.4, we will compare the two methods based on the simulation 

results. 

 

 

Fig. 5-4 The up-sampling method of H.264 
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5.2.3 Neighborhood Graph Cuts 

    In the original graph cuts, the number of graphs needed for constructing -  

swap is the total combinations of disparity pairs selected from the disparity range. The 

neighborhood graph cuts method reduces the number of constructing graph. Unlike 

the original graph cuts, we use the disparity map obtained from the up-sampling and 

scaling process as the initial disparity map. We assume that the disparity value  of 

each pixel only differ to its neighborhood disparity values by 1. Therefore, we try to 

reduce the number of combinations of disparity pairs in -  swap to reduce the 

computing time. Fig. 5-5 shows the disparity pair combination of neighborhood graph 

cuts. The gray nodes are the disparity values obtained from the scaling. The arrow 

shows the value that the disparity value can change to. That is, we select two disparity 

values to do the -  swap.  

 

Fig. 5-5 The disparity pair candidates in neighborhood graph cuts (a)  (b)  

Here, we depict two cases of the neighborhood graph cuts. In Fig. 5-5(a), the search 
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range of neighborhood graph cuts is . In Fig. 5-5(b), the search range is  and 

their combination is nearly two times more than . Note that we cannot do -  

swap with the same value. In section 5.4, we will compare the performance of these 

two methods and show the computing time saved by using MRGC. 

5.3 Disparity Estimation in Multi-Camera Array 

    In this section, we propose a method for disparity estimation for multi-camera 

picture. We pick up “sawtooth” and “venus” as our test data for the multi-camera 

experiment.. The two test data sets both include nine images captured by nine cameras 

(Fig. 5-6). We call them im0, im1, …, and im8. These images are captured by cam0, 

cam1, …, and cam8, respectively. 

         

 

Fig. 5-6 Multi-camera array  

In the original method, we compute im2’s disparity map which is relative to im6. Now, 

im4 is added into the proposed method. Fig. 5-7 shows the flowchart of our GC 
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algorithm for multi-camera pictures. First, the im4’s disparity map relative to im6 is 

computed by using the graph cuts algorithm. We use this to predict the disparity map 

of im2 relative to im6, because the optical geometry tell us that the im2’s disparity 

map relative to im6 is a shifted and scaled version of the im4’s disparity map relative 

to im6. The results of scaling and shifting are shown in Fig. 5-8. This predicted 

disparity map is need as the initial disparity map and refine it by the graph cuts 

algorithm. In section 5.4, we will show the simulation results. The improvement of 

this method is not significant. 

 

Fig. 5-7 Flowchart of GC for multi-camera pictures 

 

Fig. 5-8 The scaling and shifting moves 
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5.4 Simulation Results and Discussions 

    In this section, we will show the simulation results of MRGC and multi-camera 

pictures. Thus, we will discuss the possible causes leading to the simulation results. 

The experiment environment setting is the same as section 4.4. In MRGC, the scaling 

factor is 2. 

5.4.1 Multi-Resolution Graph Cuts 

We first explain the symbols to appear in the following tables. MRGC( ) 

indicates the multi-resolution graph cuts whose search range of neighborhood graph 

cuts (NGC) is . Similarly, the search range of NGC of MRGC( ) is . In 

MRGCD, the down-sampling method indicates the low-pass filter describe in formula 

(5.1). Likewise, MRGCU denotes that its up-sampling method uses the H.264 

up-sampling filter. In MRGCDU, both down-sampling and up-sampling processes 

adopt the before mentioned filters. 

Table 5-1 shows the computing time improvement by MRGC ranges from 81% 

to 92%. MRGC( ) runs a little longer than MRGC( ), because the search range is 

wider. Table 5-2 and Table 5-3 show the image quality comparison of different 

methods. Although the computation time of MRGC( ) is slightly larger than 

MRGC( ), its quality is much better. In addition, the down-sampling method of (5.1) 

is better than the simple sample-skip method. However, if we replace the simple 
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disparity map duplication method by the H.264 interpolation the method, the 

computing time gets higher and the bad_pixels_all becomes worse. This may due to 

the fact that the discontinuous region is critical for initial disparity map, and the H.264 

up-sampling method blurs the initial disparity map.  

    Fig. 5-12, Fig. 5-13, Fig. 5-14, and Fig. 5-15 show the disparity maps of different 

methods. Obviously, the disparity map looks much smoother by down-sample the 

original image by the formula (5.1). In addition, the disparity map of MRGC( ) is 

much better than MRGC( ). The MRGC( ) produces a disparity may close to the 

original GC method. 

Hierarchical graph cuts [24] is one of the few fast graph cuts algorithms found in 

the literature. According to [24], the computing timing of the hierarchical graph cuts 

is about 25% of the original GC on the test image “Tsukuba”. However, MRGC is 

faster than the hierarchical graph cuts. Our method takes about 16% of the computing 

time of the original GC. In addition, the quality of the hierarchical graph cuts is not 

discussed in the paper. We are not sure about the quality degradation of this method. 
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Table 5-1 Computing time comparison 

Method 

Computing time (sec) Average 

Improvement 

(%) 
Map Sawtooth Tsukuba Venus 

Original 83.52 156.39 93.88 131.16  

MRGC( ) 5.27 10.28 6.83 14.52 92.06 

MRGC( ) 7.84 23.45 18.78 27.14 83.39 

MRGCD( ) 6.98 20.61 18.09 25.16 84.76 

MRGCU( ) 13.97 25.44 25.20 30.75 79.49 

MRGCDU( ) 13.13 24.81 22.20 29.61 80.70 

Improvement is  where  denotes the computing time of 

method “ ” and  denotes the computing time of the original 

method. 
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Fig. 5-9 Plot of computing time comparison 
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Table 5-2 Comparison of rms_error_all 

Method 
 Average 

 (%) Map Sawtooth Tsukuba Venus 

Original 4.10 1.48 1.30 1.48  

MRGC( ) 4.31 1.69 1.60 1.63 21.75 

MRGC( ) 4.19 1.62 1.53 1.54 13.00 

MRGCD( ) 4.24 1.49 1.30 1.63 7.50 

MRGCU( ) 4.17 1.59 1.54 1.51 11.25 

MRGCDU( ) 4.28 1.46 1.26 1.60 6.00 

 where  denotes the RMS error of method 

“ ” and  denotes the RMS error of the original method. 
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Fig. 5-10 Plot of rms_error_all 
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Table 5-3 Comparison of bad_pixels_all 

Method 
 (%) Average 

 Map Sawtooth Tsukuba Venus 

Original 5.45 3.94 4.16 3.50  

MRGC( ) 8.38 10.09 7.75 7.15 4.08 

MRGC( ) 6.16 4.87 7.07 5.22 1.57 

MRGCD( ) 5.88 4.08 6.36 5.26 1.13 

MRGCU( ) 7.32 5.42 7.50 5.77 2.24 

MRGCDU( ) 7.31 4.22 5.94 4.69 1.28 

 where  denotes the percentage of bad pixels 

of method “ ” and  denotes the percentage of bad pixels of 

the original method. 
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Fig. 5-11 Plot of bad_pixels_all 
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Ground truth 

  

                  Original                    MRGC( ) 

  

MRGC( )                 MRGCD( ) 

  

                 MRGCU( )               MRGCDU( ) 

Fig. 5-12 Disparity maps of ‘Map’ 
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Ground truth 

  

Original                 MRGC( ) 

  

MRGC( )               MRGCD( ) 

  

MRGCU( )             MRGCDU( ) 

Fig. 5-13 Disparity maps of ‘Sawtooth’ 
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Ground truth 

  

                  Original                    MRGC( ) 

  

MRGC( )                  MRGCD( ) 

  

MRGCU( )                MRGCDU( ) 

Fig. 5-14 Disparity maps of ‘Tsukuba’ 
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                              Ground truth 

  

Original                 MRGC( ) 

  

MRGC( )               MRGCD( ) 

  

MRGCU( )              MRGCDU( ) 

Fig. 5-15 Disparity maps of ‘Venus’ 
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5.4.2 Disparity Estimation in Multi-Camera Array 

    Table 5-4 and Table 5-5 show that the disparity estimation using our proposed 

multi-camera scheme does method cannot improve the quality of disparity maps. Fig. 

5-16 and Fig. 5-17 show the change of disparity map. The predicted disparity map 

computed by scaling and shifting the im4’s disparity map relative to im6. We run the 

graph cuts algorithm by using the predicted disparity map to be the initial disparity 

map. 

 

Table 5-4 Comparison of rms_error_all 

Method 
 Average 

 (%) Sawtooth Venus 

Original 1.48 1.48  

Multi-cam 1.48 1.49 0.5 

 where  denotes the RMS error of method 

“ ” and  denotes the RMS error of the original method. 

 

Table 5-5 Comparison of bad_pixels_all 

Method 
 (%) Average 

  Sawtooth Venus 

Original 3.94 3.50  

Multi-cam 3.91 3.68 0.08 

 where  denotes the percentage of bad pixels 

of method “ ” and  denotes the percentage of bad pixels of 

the original method. 
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Ground truth 

  

               Original                im4’s disparity map relative to im6 

  

     predicted by scaling and shifting      im2’s disparity map relative to im6 

Fig. 5-16 Disparity maps of “Sawtooth” 
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Ground truth 

  

Original                  im4’s disparity map relative to im6 

  

predicted by scaling and shifting      im2’s disparity map relative to im6 

Fig. 5-17 Disparity maps of “Venus” 
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Chapter 6 Conclusions and Future Work 

6.1 Conclusions 

    The Graph Cut (GC) algorithm is an effective disparity estimation algorithm. Yet, 

it consumes a huge amount of computations due to its high complexity. The original 

GC scheme randomizes the α-β swap pairing in the inner iteration loop and terminates 

the iteration in outer loop when no further energy reduction is possible. Observing the 

energy minimization process of GC, we propose two techniques to speed up GC. One 

is the inclusion of an early termination mechanism in the outer iteration loop, and the 

other is prioritizing the α-β swap pair search order in the inner iteration loop. 

Simulation results show that our proposed fast GC can achieve up to 68% speed-up 

(reduce 68% computing time) in computation while it preserves the high accuracy of 

disparity map as measured by the RMS disparity error and the bad pixels probability. 

    The worst case running time for the GC algorithm we use is , where 

 is the number of nodes and  is the number of edges. The running time greatly 

increases with the image size and disparity range. We propose a multi-resolution 

graph cuts (MRGC) to reduce the computing time, but it slightly decreases the quality 

of disparity map. Simulation results show that the MRGC method may achieve up to 

84% speed-up and increases 1% of bad pixel ratio. In addition, we attempt to improve 
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the quality of disparity map by using the multi-camera picture. However, the 

simulation results show that simple method has no contribution on disparity 

estimation the improvement. 

6.2 Future Work 

    This thesis concentrates on reducing the computing time of GC algorithms, so 

that real-time application and multi-camera application become possible. The other 

reason we study the GC algorithm is its good performance. Potentially, we can further 

improve the DE quality of the occlusion regions by modifying the energy function 

designed for multi-camera image, since we have much more information in hands. 

Furthermore, the 2D camera array that takes pictures of objects from different angles 

(both horizontally and vertically) may help in both disparity estimation and new view 

synthesis. This topic can be explored in the future. 
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