

國立交通大學

電子工程學系 電子研究所碩士班

碩 士 論 文

使用蒙哥馬利次方梯和混沌亂數產生器的RSA密碼系統

An RSA Cryptosystem Based on Montgomery

Powering Ladder and Chaos-based Random Number

Generator

學生：陳勇志

指導教授：張錫嘉 教授

中華民國九十九年十二月

使用蒙哥馬利次方梯和混沌亂數產生器的RSA密碼系統

An RSA Cryptosystem Based on Montgomery Powering Ladder

and Chaos-based Random Number Generator

研 究 生：陳勇志 Student：Yung-Chih Chen

指導教授：張錫嘉 教授 Advisor：Hsie-Chia Chang

國 立 交 通 大 學

電子工程學系 電子研究所 碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

In

Electronics Engineering

September 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年十二月

i

使用蒙哥馬利次方梯以及混沌亂數產生器的RSA密碼

系統

學生：陳勇志 指導教授：張錫嘉 教授

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

 本論文提出了在RSA密碼系統上可擴展的實作方法。這項設計的架

構採用改良的蒙哥馬利模數乘法器以及蒙哥馬利次方梯演算法。可支

援4096位元以下的所有長度。本論文提出的演算法比較傳統的模數指

數運算設計有更快的速度。在RSA加密運算中，針對1024位元、2048

位元、4096位元公鑰的運算時間分別需要3.5ms、13.7ms、106ms。

另外我們改進了混沌映射基礎下的亂數產生器。在sp800-22測試下，

此設計比較傳統設計有更高的通過率。此設計嵌入在RSA密碼系統中

抵抗SPA和DPA攻擊而不用增加額外乘法運算的時間。

ii

An RSA Cryptosystem Based on Montgomery

Powering Ladder and Chaos-based Random Number

Generator

Student：Yung-Chih Chen Advisor：Dr. Hsie-Chia Chang

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

Abstract

This thesis introduces a scalable hardware implementation of RSA cryptosystem.

The architecture of this work is modified by the Montgomery modular multiplier and

it based on Montgomery powering ladder algorithm. It can work in any length less

than 4096-bit. This proposed algorithm provides a shorter latency on modular

exponentiation operations than other works. It takes 3.5 ms, 13.7 ms, and 106 ms to

complete a 1024-bit, 2048-bit, and 4096-bit key length of RSA calculation time

respectively.

Furthermore, we modify random number generator based on chaotic map.

Testing by SP800-22, this work has higher passing rate than previous work. This

embedded in RSA cryptosystem for against SPA and DPA without extra cycle for

processing multiplications.

iii

誌 謝

這本論文的完成，一路上有許多人的協助與付出，我很幸運研究的路上不是

孤獨的。首先感謝交通大學提供一個優良的環境，無論是學業、社團或是生活上，

都是豐富且充實。我很慶幸人生的精華時間能與這個美麗的學校共處。再者感謝

我的指導教授張錫嘉博士，從我進大一以來就是老師的導生，一直到研究所也還

是在老師的研究室學習，從學術討論到生活瑣事通通都是聊天的內容，這也讓我

體認什麼是身為一個師長的表率，並且覺得進入OASIS實驗室中是人生中非常光

榮的時刻。

再來要感謝Star group 的全部成員，林建青學長帶領我進入這個團體，認

識了密碼的領域。劉柏均學長與李人偉學長時常在我遇到問題時，給予我解答與

協助，以順利完成研究進度。廷聿、耀琳、如宏、靜瑜是一起奮鬥的夥伴，在遇

到苦悶時可以一起挖苦，一起努力。還有其他Si2與OASIS實驗室中的好同學們，

在一起的時候就像是一家人，永遠是那麼溫暖

最後還要謝謝我的父母與姐姐，給予我金錢上的支援，讓我可以無後顧之憂

的心情下全力為學業衝刺，儘管家人也都有自己的工作與家務，但是還是以我的

學業為第一優先支持我。謝謝你們的愛與包容。僅以此篇論文與一路上幫助過我

的人分享這份喜悅。

iv

An RSA Cryptosystem Based on Montgomery

Powering Ladder and Chaos-based Random Number

Generator

Student：Yung-Chih Chen

Advisor：Hsie-Chia Chang

Department of Electronics Engineering

National Chiao Tung University

v

Content

摘 要 ... i

Abstract ... ii

誌 謝 ... iii

Content.. v

1 Introduction .. 1

1.1 Background ... 1

1.2 Motivation ... 3

1.3 Thesis Organization ... 4

2 RSA Cryptosystem and Random Number Generator ... 5

2.1 Mathematics Foundation .. 5

2.1.1 Number Theory ... 5

2.1.2 Montgomery Method .. 8

2.2 RSA Algorithm .. 10

2.2.1 RSA Scheme ... 10

2.2.2 R-L and L-R Algorithm ... 12

2.2.3 Montgomery Powering Ladder .. 13

2.3 Power Analysis .. 14

2.3.1 Simple Power Attack (SPA).. 15

2.3.2 Differential Power Attack (DPA) .. 16

2.4 Random Number Sequence .. 17

vi

3 Proposed RSA Architecture .. 19

3.1 Word-based Montgomery Multiplication .. 19

3.1.1 Proposed Word-based Montgomery Multiplication Architecture I 21

3.1.2 Proposed Word-based Montgomery Multiplication Architecture II 22

3.2 Architecture of Proposed Montgomery Multiplier .. 26

3.2.1 Processing Unit ... 26

3.2.2 Number of Processing Unit Size of Word .. 27

3.2.3 Montgomery Multiplier with Flexible Length.. 28

3.3 Random Bit Generator ... 29

3.3.1 Random Bit Generator from Chaotic Map ... 29

3.3.2 Proposed Dynamic Random Bit Generator .. 31

3.4 Proposed RSA Crypto-core with RNG ... 32

4 Implement Result and Comparison ... 36

4.1 RNG Testing .. 36

4.2 Implement with Cell Base Design .. 38

5 Conclusion ... 41

Bibliography ... 42

vii

List of Figures

1.1 Public key system model………………………………………………………..2

2.1 Block diagram of random number generator………………………………..…18

3.1 Block diagram of proposed word-based Montgomery multiplication I…….….22

3.2 Block diagram of proposed word-based Montgomery multiplication II……....22

3.3 Latency comparison……………………………………………………………25

3.4 Architecture of processing unit………………………………………………...26

3.5 Configurations of n=1024………………………………………………...……28

3.6 Block diagram of proposed RNG………………………………………………30

3.7 Block diagram of RSA cryptosystem with two Montgomery multipliers……...33

3.8 Block diagram of RSA cryptosystem with three Montgomery multipliers….…34

viii

List of Tables

3.1 Four parameters………………………………………………………………..32

4.1 Comparison with RNG passing SP800-22…………………………………….37

4.2 The verification results on ASIC……………………………………………....38

4.3 Comparison with other 1024-bit modular multiplier with cell base design…...39

4.4 Comparison with other 1024-bit RSA cryptosystem with cell base design……40

1

Chapter 1

Introduction

1.1 Background

As science and technology progress, Cryptography has become an important

knowledge for protecting people‟s private information. Information may be

transported through by mobile phone, ATM cards, the Internet, etc. People depend on

the tools sending message that may be secret or important. If there is no protector

between communication, the hacker would get the message easily.

There are two kinds of commonly used cryptosystem ways: Secret-key

cryptosystem and public-key cryptosystem. The former is a conventional and simple

method. It use the same key to encrypt and decrypt. This method is known as

symmetric cryptosystem. There are many algorithms proposed for the symmetric

cryptosystem, such as DES(Data Encryption Standard) and AES(Advanced

Encryption Standard). A secure channel is needed between sender and receiver to

exchange the key, but how to get this channel also is a problem. We call it key

distribution problem.

The public-key system[1] was published in 1976 by Whitfield Diffie and Martin

2

Hellman. This is the first method for sharing secret-key over an unprotected

communications channel without prior secure channel, which came to be know as

Diffie-Hellman key exchange method. Figure 1.1 shows a scheme of public key

system. In an encryption scheme anyone can encrypt using the public key, but only

the holder of the private key can decrypt it. People do not need secure channel to

exchange secret key anymore.

Figure 1.1: Public key system model

RSA[2] is the popular public-key cryptosystems widely used nowadays. It is

based on the high difficulty of factoring large numbers. Rivest, Shamir and Adleman

established this method at MIT in 1978. It is widely used to ensure data privacy in

many fields. PKCS#1 standards[4] lines out a way of encrypting data or digital

signature using the RSA cryptosystem. In recent decades, RSA cryptosystem are

applied in the modern information technology.

3

RSA cryptosystem is based on modular exponentiation. It is easy to implement by

repeat modular multiplications. Modular multiplication has to be performed a certain

number of times depends on the key length to ensure security, but consequence is that

the RSA operation has to take much more computational cost for security

consideration. In order to include RSA cryptosystem practically for high speed

application, it is desired to devise faster encryption and decryption operations.

1.2 Motivation

There are many applications using RSA as authentication for transactions and

encryptions or signature for secure messaging, for example, virtual private networks,

electronic commerce, and secure Internet access. The precision of operands is getting

higher for better security. A major design concern for multiplication units used in

cryptography is the large number of operand bits, which causes large fanout of signals,

large wire delays, and complex routing.

Word-based method can solve the high fanout problem. The precision of operand

is limited only by the memory. Any length less than 2048-bit can be performed in this

thesis.

Recent researches showed that power consumption may reveal the secret key.

Those attacks, such like SPA and DPA, work based on the statistic analysis of power

tracing. It is essentially to design some extra circuits to against the power attack.

4

1.3 Thesis Organization

In this thesis, the scalable RSA cryptosystem is given. In Chapter 2, the

preliminary mathematical background of RSA is first introduced. And then we

describe the Montgomery multiplication and modular exponentiation algorithms

which used in RSA cryptosystem. Third, we introduce power analysis method. In the

end of this section, we discuss about random number background knowledge.

In Chapter 3, architecture of word-based Montgomery multiplication over prime

field is proposed. Second, we proposed a modified random number generator for high

passing rate of test. Finally, we introduced total architecture of RSA cryptosystem

which against power attack by adding random number generator.

In Chapter 4, it shows the hardware implementation results and comparison for

ASIC and test results for proposed random number generator. Conclusion is given in

Chapter 5.

5

Chapter 2

RSA Cryptosystem and Random

Number Generator

2.1 Mathematics Foundation

This chapter introduces the basic arithmetic used in RSA cryptosystem over GF(p).

Modular arithmetic such as modular multiplication is especially an important part in

the RSA systems.

2.1.1 Number Theory

Congruences

 One of the most basic and useful in number theory is modular arithmetic, or

congruences. Let a, b, n be integers with n≠0. If a and b differ by a multiple of n, a is

congruent to b mod n.

a =b(mod n)

6

It can be rewritten as

a≡b + nk

For some integer k

Primitive Roots

 In general, when p is a prime, a primitive root mod p is a number whose powers

yield every nonzero class mod p. There are φ (p-1) primitive roots mod p. Let g be a

primitive root for the prime p.

 ．If i is an integer, then g
i≡1(mod p) if and only if i≡0(mod p-1).

 ．If j and k are integers, then g
i≡ g

k
 (mod p) if and only if j≡k(mod p-1).

Fermat’s Theorem

 Fermat‟s theorem states the follows: If p is prime and a is a positive integer not

divisible by p, then

a
p−1

 ≡ 1 (mod p) (2.1)

We know that if all of the elements of Zp, where Zp is the set of integers

{0,1,. . . ,p−1}, are multiplied by a, modulo p, the result consists of all of the elements

of Zp in some sequence. Furthermore, a × 0 ≡ 0 mod p. Therefore, the (p − 1) numbers

{a mod p, 2a mod p,...,(p−1)a mod p}

are just the numbers {0, 1,. . . , p − 1} in some order. Multiplying the numbers in both

sets and taking the result modulo p yields

 1 × 2 × ... × (p − 1) ≡ (a mod p) × (2a mod p) × ... × ((p−1)a mod p)

 (p − 1)! mod p ≡ (p − 1)!a
p−1

.

We can cancel the (p−1)! term because it is relatively prime to p. This yields Equation

2.1.

7

Euler’s Totient Function

Before presenting Euler‟s theorem, we need to introduce an important quantity in

number theory, referred to as Euler‟s totient function and written φ(n), where φ(n) is

the number of positive integers less than n and relatively prime to n. It should be clear

that for a prime number p, φ(p) = p−1 There are two prime numbers p and q, with p

≠ q. Then, for n = pq,

φ(n) = φ(pq) = φ(p)φ(q) = (p − 1)(q − 1). (2.2)

Euler’s Theorem

Euler‟s theorem states that for every a and n that are relatively prime:

a
φ(n)

 ≡ 1 mod n (2.3)

Equation 2.3 is true if n is prime, because in that case φ(n) = (n − 1) and Fermat‟s

theorem holds. However, it also holds for any integer n. Recall that φ(n) is the number

of positive integers less than n that are relatively prime to n. Consider the set of such

integers, labeled as follows:

R = x1,x2,...,xφ(n).

Now multiply each element by a, modulo n:

S = (ax1 mod n),(ax2 mod n),...,(axφ(n)).

The set S is a permutation of R, by the following line of reasoning:

1. Because a and xi are relatively prime to n, axi must also be relatively prime to n.

Thus, all the elements of S are integers less than n that are relatively prime to n.

2. There are no duplicates in S. If axi mod n = axj mod n, then xi =xj . Therefore,

8

a
φ (n) 1 mod n

An alternative form of the theorem is also useful:

a
kφ(n)+1

 ≡ a mod n (2.4)

2.1.2 Montgomery Method

In 1985, P. L. Montgomery introduced an efficient algorithm for computing R =

a*b mod n where a, b, and n are k-bit binary numbers. The algorithm is particularly

suitable for implementation on general-purpose computers which are capable of

performing fast arithmetic modulo a power of 2. The Montgomery reduction

algorithm computes the resulting k-bit number R without performing a division by the

modulus n. Via an ingenious representation of the residue calss modulo n, this

algorithm replaces division by n operation with division by a power of 2. This

operation is easily accomplished on a computer since the numbers are represented in

binary form. Assuming the modulus n is a k-bit number, i.e., 2k-1< n <2k, let r be 2k.

The Montgomery reduction algorithm requires that r and n be relatively prime, i.e.,

gcd(r,n)= gcd(2k,n)=1. This requirement is satisfied if n is odd. The basic idea of the

Montgomery reduction algorithm is showed as following.

 Given an integer 0 ≤ a < n, we define it‟s n-residue with respect to r as

9

 ≡ a · r mod n ,

It is straightforward to show that the set

{i．r mod n|0 i n-1}

is a complete residue system, i.e., it contains all numbers between 0 and n-1. Thus,

there is a one-to-one correspondence between the numbers in range 0 and n-1 and the

numbers in the above set. The Montgomery reduction algorithm exploits this property

by introducing a much faster multiplication routine which computes the n-residue of

the product of the two integers whose n-residues are given. Given two n-residues

and , the Montgomery product is defined as the n-residue

 ≡ ． ．r
-1

 (mod n)

where r
-1

 is the inverse of r modulo n, i.e., it is the number with the property

r
-1

 ．r ≡ 1 (mod n)

The resulting number is indeed the n-residue of the product

R ≡ a．b (mod n)

Since

 ≡ ． ．r
-1

 (mod n)

 ≡ a．r．b．r．r
-1

 (mod n)

 ≡ a．b．r (mod n)

10

2.2 RSA Algorithm

2.2.1 RSA Scheme

The RSA scheme is the most widely used to ensure data privacy in many fields and

applied to the digital signature generation and verification, the RSA DS algorithm,

announced in ANSI1 X9.31 [5]. It is a block cipher in which the plaintext and

ciphertext are integers between 0 and n−1 for some n which is typically between 2512

and 24096. The more bits provides the higher security. The scheme of RSA is showed

as following:

Algorithm 2.1. (RSA Algorithm) Key generation

Select p,q p and q both prime, p≠q

Calculate N and φ(N) N =pq, φ(N)=(p−1)(q−1)

Select integer E gcd(φ(N),E) = 1; 1 < E < φ(N)

Calculate D D ≡ E
−1

 mod φ(N)

Public key KU = {E,N}

Private key KR = {D,N}

Encryption

Plaintext M M < N

Ciphertext C C = M
E
 mod N

Decryption

Ciphertext C C < N

Plaintext M M = C
D
 mod N =M

DE
 mod N = M mod N

11

Let p and q be two distinct large random primes. The modulus N is the product of

these two primes: N = pq. According to equation(2.2), the Euler‟s totient function of

N is given by

φ(N) = (p − 1)(q − 1)

Now, select a number 1 < E < φ(N) such that

gcd(φ(N),E) = 1,

and compute D with

D ≡ E
−1

mod φ(N).

Here, {E,N} is the public key and {D,N} is the private key. The value of D and the

prime numbers p and q are kept secret. Encryption is performed by computing

C = M
E
 mod N,

where M is the plaintext such that 0 ≤ M < N. The number C is the ciphertext from

which the plaintext M can be computed using

M = C
D
 mod N.

The correctness of the RSA algorithm follows from Euler‟s theorem. Let N and a be

positive, relatively prime integers. Then a

φ(N) ≡ 1 mod N

Since ED is equal to 1 mod φ(N), it meets that ED is equal to 1+kφ(N) for some

integer k.

 C
D
 ≡(M

E
)

D
 mod N

 ≡M
ED

 mod N

 ≡ M
1+kφ(N)

 mod N

 ≡M×M
φ(N)k

 mod N

 ≡ M mod N

12

2.2.2 R-L and L-R Algorithm

In RSA cryptosystem, the modular exponentiation is the basic operation. The

simple and direct way to compute M
E
 mod N is multiplying M sequentially for E times.

Since all the operation (M, N, E, D) are typically large than 512 bits. It is also too hard

to store the result. It is needed to find some efficient methods to compute M
E
. There

are two common algorithms that can be used, the L-R algorithm and the R-L

algorithm.

L-R Algorithm

M
E
 mod N ≡

 mod N

 ≡ ×(*(…*(mod N)
2
 mod N)

2
 .…)

2
 mod N

In the L-R algorithm, it computes square and multiplication sequentially. It does mean

that both square and multiply operations can be performed in the same hardware

multiplier, thus saving on area.

R-L Algorithm

M
E
 mod N ≡

 mod N

 ≡

 (… (

 (

 mod N) mod N) .…) mod N

In the R-L algorithm, the square and multiply operations are independent, and may be

performed in parallel. Thus half latency is need to complete the same exponentiation.

However, two physical hardware multipliers are required to achieve this speed up.

13

2.2.3 Montgomery Powering Ladder

In the powering ladder algorithm [7], the square and multiply are parallel, too.

There are one difference between powering ladder and R-L algorithm. It process E

from right to left, but it does multiplication every iteration. Regular multiplication

would help average power consumption between. It can resist the simple power

analysis attack. Powering ladder algorithm is shown in algorithm 2.1:

Algorithm 2.1. (Montgomery Powering Ladder)

Input : M,E=(et-1,…,e0)2

Output: Y=M
E

1. R0 ← 1; R1←M;

2. for (j = t-1 to 0)

 if (ej =0)

 R1← R0 R1;

 R0← (R0)
2
;

 else

 R0← R0 R1;

 R1← (R1)
2
;

3. return R0 ;

It use Montgomery multipliers instead of normal multipliers. We prefer use

Montgomery method because it is easy to implement in hardware, and we can get the

advantages from powering ladder skill in the same time.

14

2.3 Power Analysis

Cryptographers have traditionally analyzed cipher systems by modeling

cryptographic algorithms as ideal mathematical objects. Conventional techniques such

as differential and linear [9] cryptanalysis are very useful for exploring weaknesses in

algorithms. But the physical implementations often result in the leakage of

side-channel information.

Attacks have been proposed that use such information as timing measurements

[10], power consumption [11], electromagnetic emissions and faulty hardware. In this

section we examine the weakness of RSA cryptographic algorithms to power analysis

attacks. Specifically, attacks on the modular exponentiation process are described.

Power analysis attacks work by exploiting the differences in power consumption

between when a tamper-resistant device processes a logical zero and when it

processes a logical one. For example, when the secret data on a smartcard is accessed,

the power consumption may be different depending on the Hamming weight of the

data. If an attacker knows the Hamming weight of the secret key the attacker could

potentially learn the entire secret key. This type of attack, where the adversary directly

uses a power consumption signal to obtain information about the secret key is referred

to as a Simple Power Analysis (SPA) attack and is described in section 2.3.1.

Differential Power Analysis (DPA) is described in section 2.3.2 and it is based on the

same underlying principle of an SPA attack, but uses statistical analysis techniques to

extract very tiny differences in power consumption signals.

15

2.3.1 Simple Power Attack (SPA)

An SPA attack, as described in [11], involves directly observing a system‟s power

consumption. Suppose that the attackers not only have unlimited access, but also have

detailed knowledge of the software and hardware of the systems. If an attacker can

deter- mine where certain instructions are being executed, it can be relatively simple

to extract useful information.

SPA on a single-key cryptographic algorithm, such as DES, could be used to learn

the Hamming weight of the key bytes. DES uses only a 56-bit key so learning the

Hamming weight information alone makes DES vulnerable to a brute-force attack. In

fact, depending on the implementation, there are even stronger SPA attacks. A two-key,

public-key cryptosystem, such as an RSA or elliptic curve cryptosystem, might also

be vulnerable to an SPA attack on the Hamming weight of the individual key bytes,

however it is possible an even stronger attack can be made directly against the

square-and-multiply algorithm.

If exponentiation was performed in software using one of the square-and-multiply

algorithms, there could be a number of potential vulnerabilities. The main problem

with both algorithms is that the outcome of the ”if statement” might be observed in

the power signal. This would directly enable the attacker to learn every bit of the

secret exponent. A simple fix is to always perform a multiply and to only save the

result if the exponent bit is a one. This solution is very costly for performance and still

may be vulnerable if the act of saving the result can be observed in the power signal.

16

2.3.2 Differential Power Attack (DPA)

A DPA attack is more powerful than an SPA attack because the attacker does not

need to know as many details about how the algorithm was implemented. The

technique also gains strength by using statistical analysis to help recover side-channel

information.

The problem with an SPA attack is that the information about the secret key is

difficult to directly observe. The information about the key was often obscured with

noise and modulated by the device‟s clock signal. DPA can be used to reduce the

noise and also to ”„demodulate”‟ the data. Any power biases at the time corresponding

to the guess bit operation are visible as an obvious spike in the difference signal and

much of the noise is eliminated because averaging reduces the noise variance.

 Single-Exponent, Multiple-Data (SEMD) Attack

The SEMD attack assumes that the smartcard is willing to exponentiate an

arbitrary number of random values with two exponents: the secret exponent and a

public exponent. The basic attack is that by comparing the power signal of an

exponentiation using a known exponent to a power signal using an unknown exponent,

the adversary can learn where the two exponents differ, thus learn the secret exponent.

In reality, the comparison is nontrivial because the intermediate data results of the

square-and-multiply algorithm cause widely varying changes in the power signals,

thereby making direct comparisons unreliable. The solution to this problem is to use

averaging and subtraction.

 Multiple-Exponent, Single-Data (MESD) Attack

The MESD attack is more powerful than the SEMD attack. The SEMD attack is a

very simple attack requiring little sophistication on the part of the adversary, but the

resulting DPA bias signal is sometimes difficult to interpret. The Signal-to-Noise

17

Ratio (SNR) can be improved using the MESD attack. The assumption for the MESD

attack is that the smartcard will exponentiate a constant value using exponents chosen

by the attacker. This value may or may not be known to the attacker.

 Zero-Exponent, Multiple-Data (ZEMD) Attack

The ZEMD attack is similar to the MESD attack, but has a different set of

assumptions. One assumption for the ZEMD attack is that the smartcard will

exponentiate many random messages using the secret exponent. This attack does not

require the adversary know any exponents, hence the zero-exponent nomenclature.

Instead, the adversary needs to be able to predict the intermediate results of the

square-and-multiply algorithm using an off-line simulation. This usually requires that

the adversary knows the algorithm being used by the exponentiation hardware and the

modulus used for the exponentiation. There are only a few common approaches to

implementing modular exponentiation algorithms, so it is likely an adversary can

determine this information. It is also likely that

the adversary can learn the modulus because this information is usually public.

2.4 Random Number Sequence

 The generation of random numbers is required in several applications, including

Montecarlo simulations, testing of digital circuits, telecommunication systems, and

cryptography [12]-[14]. Among circuits and algorithms for the generation of random

numbers, an important concept is represented by the Pseudo Random Sequence

Generators(PRNGs).

 In the last few years, discretized chaotic dynamical systems were also exploited

for cryptographic applications, and several works were published on this subject[15].

 A digital PRNG is a finite state machine that initialized by an n bit initial seed S0.

18

In figure 2.1, the general structure of a PRNG is shown: the memory block consists on

n flip-flop storing the present state Si, the input forming logic defined by logic

function F evaluates the next state Si+1, according to the relationship Si+1 = F(Si), the

output forming logic defined by the function G decodes the state and determines the

current output bit (OUTi=G(Si)).

figure 2.1 Block diagram of random number generator

19

Chapter 3

Proposed RSA Architecture

3.1 Word-based Montgomery Multiplication

Montgomery algorithm computes the modular multiplication without trial division. It

turns the modular multiplication into iterations of n-bit addition and shifting and reduces

the complexity of modular multiplication to constant time operations. A major design

concern for multiplication units used in cryptography is the large number of operand bits,

which cause large fanout of signals, large wire delays, and complex routing.

Tenca and Koc proposed a scalable word-based architecture [19] based on radix-2

Montgomery Multiplication. It allows the exploration of several design trade to obtain the

best performance in a limited chip area without limiting the operand precision.

Algorithm 3.1 executes a series of operation to generate XYr
−1

mod N, scanning Y and

N word-by-word and scanning X bit-by-bit. All vecter can be represented as:

N = (0,Ne − 1,...,N1,N0),

Y = (0,Ye −1,...,Y1,Y0),

S = (0,Se −1,...,S1,S0),

X = (xn−1,...,x1,x0),

20

where n is a multiple of word size w, the n-bit operands are split into e words, and e =

n/w. The concatenation of two vectors A and B is represented as (A, B). The bit position i

of the kth word of an operand A is represented as A
k

i .

Algorithm 3.1. (Word-based Montgomery Multiplication Algorithm)

Input : X,Y ,N

Output: S

1. S = 0;

2. for i = 0 to n−1

 2.1 (Ca,S
0
)=xiY

0
+S

0
 ;

 2.2 if
 = 1 then;

 i. (Cb, S
0
) = S

0
 + N

0
 ;

 ii. for j = 1 to e;

 A. (Ca, S
j
) = Ca + xiY

j
 + S

j
 ;

 B. (Cb, S
j
) = Cb +N

j
 +S

j
;

 C. S
j−1

 = (

 ,

);

 2.3 else;

 i. for j = 1 to e;

 A. (Ca, S
j
) = Ca + xiY

j
 + S

j
;

 B. S
j−1

 = (

 ,

);

3. return S;

The right-shift operation must wait for the most significant position of S
j−1

 of the next

loop. This is a critical limitation of the algorithm. To implement this algorithm, unrolling

the for loop to pipelined architecture is a useful skill for increment of parallelism. The

dependency on the carry bits within j loop restricts their parallel execution. However,

instructions in different i loops may be executed in parallel.

21

3.1.1 Proposed Word-based Montgomery Multiplication

Architecture I

The fundamental problem with Tenca-Koc architecture is the dependency caused by

waiting to shift right. We can solve this problem on architecture layer. Every output S of

Processing Unit(PU) is w-1 bit because of dependency of right-shift word. The wth bit will

be executed at next cycle. We acquire wth bit by forwarding method, which means the wth

bit bypass registers. The forwarding bit is represented as:

 = (Ca + Cb +oddN
j
 +xiY

j
 + S

j
) mod 2;

Where odd equals S
0

0. If S
0

0 is odd, the summation would include N
j
, otherwise there

is no N
j
 in this summation. Notice that the right part of equal sign are wires in PU

i
. Left

part of equal sign is a wire in PU
i+1

. It is a combinational circuit, which bypass the

registers so it can execute with S
j−i

w−1:1 at the same cycle. This method also increase

critical path of PU, so next step is simplifying it. Considering right-shift with S, we can

abandon Cb. After right-shift Cb is the wth bit of S, we can directly pass this bit to next PU

so we don‟t need to store it by a register. Second, the operation of “mod 2” also means tell

the summation is odd or even. We can use XOR to replace two-level carry save adder. The

forwarding bit is represented as:

 = Ca  odd

 x



;

Figure 3.1 shows block diagram of forwarding circuits. Arrows are the nets without

passing registers.

22

Figure 3.1 Block diagram of proposed word-based Montgomery multiplication I

Figure 3.2 Block diagram of proposed word-based Montgomery multiplication II

3.1.2 Proposed Word-based Montgomery Multiplication

Architecture II

In algorithm 3.1, executing an n-bit multiplication spend n iterations. Considering this

case: if xi is zero and S is even. That means we only to do right-shift without any addition.

Shift is easily to complete by hardware. We can combine right-shift when this case

happened in order to reduce n times iteration of multiplier. Algorithm 3.2 is proposed

bypass algorithm:

23

Algorithm 3.2. (Proposed Word-based Montgomery Multiplication Algorithm II)

Input : X,Y ,N

Output: S

 1. S = 0; i = 0;

 2. while (i < n)

 2.1 odd=(xiY+S)mod 2;

 2.2 case{odd, xi}

 2’b00: S’ = S ;

 2’b01: S‘ = S + Y;

 2’b10: S‘ = S +N;

 2’b11: S’ = S +Y + N;

 endcase

 2.3 if (bypass==1)

 S = S’ / 4;

 i = i + 2;

 else

 S = S’ / 2;

 i = i + 1;

3. if S>N, then S=S-N;

4. return S;

We want to simplify case {odd,xi} = {0, 0}. If in next iteration we meet previous case,

we only to do right-shift. We combine the shift next iteration with this one. Where bypass

represented as:

bypass = (S‟．ai+1= = 0).

That means we detect PU computing without addition next cycle. So we could shift 2 bits

and jump over i+1
th

iteration. It also reduces the total multiplication computing time. But

24

this method also produces some problems. First, It increases design complex of delivering

xi from memory to PUs. If bypass is active, we will abandon multiplicand ai+1 and get ai+2.

Getting x is not in a regular period. Thus, we abandon PUi+1 replace ai+1. Xi+1 is still

deliver to PUi+1, but S is passed to PUi+2. So we can also getting x from memory in a

regular period. Second problem is that S is not exactly a w-bit value. It represented with

two w-bit Ssum and Scarry In order to decrease critical path without w-bit adder in PU. That

means when Ssum and Scarry are both even, we can tell S is even. If Ssum and Scarry are both

odd, we could not do right-shift because that will delete carry-out bit at LSB. Bypass will

represented as:

bypass = (S’sum．S’carry．ai+1= = 0).

Even through this restriction, we still have about 10% iteration are abandoned. The

overhead is addition p MUXes before every PUs. Block diagram as short dotted line

shown in figure 3.2.

Figure 3.3 shows latency comparison of proposed circuits. For this case, we have three

Pus, length n is 32, and word length w is 8. We calculate that 1 times cccccccc modular

99999999. It is clear that if we overcome two cycle dependency, it can process more xi

than previous work. Original work takes 66 iterations to complete multiplication, but

proposed work I only takes 45 iterations. Proposed work II ignores dummy iterations. It

takes only 32 iterations.

25

 Original Proposed I Proposed II

 PU1 PU2 PU3 PU1 PU2 PU3 PU1 PU2 PU3

1 x0Y
0 x0Y

0 x0Y
0

2 x0Y
1 x0Y

1 x1Y
0 x0Y

1 x2Y
0

3 x0Y
2 x1Y

0 x0Y
2 x1Y

1 x2Y
0 x0Y

2 x2Y
1 x3Y

0

4 x0Y
3 x1Y

1 x0Y
3 x1Y

2 x2Y
1 x0Y

3 x2Y
2 x3Y

1

5 x1Y
2 x2Y

0 x3Y
0 x1Y

3 x2Y
2 X5Y

0 x2Y
3 x3Y

2

6 x1Y
3 x2Y

1 x3Y
1 x4Y

0 x2Y
3 X5Y

1 X6Y
0 x3Y

3

7 x3Y
0 x2Y

2 x3Y
2 x4Y

1 x5Y
0 X5Y

2 X6Y
1 X8Y

0

8 x3Y
1 x2Y

3 x3Y
3 x4Y

2 x5Y
1 X5Y

3 X6Y
2 X8Y

1

9 x3Y
2 x4Y

0 x6Y
0 x4Y

3 x5Y
2 X9Y

0 X6Y
3 X8Y

2

10 x3Y
3 x4Y

1 x6Y
1 x7Y

0 x5Y
3 X9Y

1 X11Y
0 X8Y

3

11 x4Y
2 x5Y

0 x6Y
2 x7Y

1 x8Y
0 X9Y

2 X11Y
1 X12Y

0

12 x4Y
3 x5Y

1 x6Y
3 x7Y

2 x8Y
1 X9Y

3 X11Y
2 X12Y

1

13

…

…

…

…

…

…

…

…

…

Figure 3.3 Latency comparison

26

3.2 Architecture of Proposed Montgomery Multiplier

 The proposed architecture of the reconfigurable multiplier is presented in this chapter.

As mentioned in subsection 3.1, the precision of operands is only limited by the memory

size and control subsystems. It is adapted to all precision less than 2048 bits over prime

fields. All of main components used in the scalable multiplier are detailed in following

subsections.

3.2.1 Processing Unit

Figure 3.4 Architecture of processing unit

 Figure 3.3 shows the architecture of processing unit. There are two w-bit carry save

27

adder to do the four-input (Zs, Zc, ai．B, q．N) redundant arithmetic. First carry save adder

calculates partial sum of Zs, Zc, and ai．B. The odd parity is determined by the first bit of

partial sum when PU processes first word which we call LSW (Least significant word).

LSW also determines using original ai or taking ai+1. Last bit of partial sum is stored by

the carry-reg. It will be clear when LSW is high.

 Output of Zs is 31-bit because of dependency of shift-right word. We will acquire this

value by forwarding skill. LSB of two-level CSA sum takes bypass to next PU without

passing register. It is the value of 32nd bit of Zs. Although forwarding method increase

critical path of PUs, we can easily simplify it. LSB of two-level CSA sum can replace by a

five-input XOR gate.

 The MUX that below registers select Z or Z divide 2. Value of Z divide 2 is taken from

the second PU previous of this one.

3.2.2 Number of Processing Unit Size of Word

 The time to compute n bits depends on word number e, word-size w, and number of

PUs p. Word number e dominates the kernel cycle (a PU finishes processing one value

until next value comes). One PU processes that x times Y spend e cycles. Considering

2-cycle latency because of dependency between Sj and Sj-1, next PU has one cycles stall

after previous PU finished. According to early subsection, we used forwarding skill to

reduce two-cycle latency. In case, number of words larger than number of PUs, proposed

architecture takes e*(e*w/p)+(p-1) cycles finish total multiplication. Tenca-Koc takes

2*e*(e*w/p)+(p-1) cycles . Another case if number of words larger than number of PUs,

kernel cycle would not more than p. It is only half of previous work.

 Considering proposed bypass word-based algorithm in early subsection, this work can

28

reduce more redundant iterations. How many iterations are reduced dependent on the

number of 0s in intermediate values in data-path. Random sequence generator affects

these values, so get key information by observing reduced time is not easy.

 The formula of total Montgomery multiplication time in this work is

e*(e*w/p) + (p-1) for data length > p*w

(e*w) + (p–1) for data length <=p*w

figure 3.6 shows the relationship between processing time and number of PUs. If data

length more than p*w, the latency will increase quickly. According data length we need to

choose proper numbers of PUs in circuits. In this work we put 64 PUs which support any

bit length less than 2048.

3.2.3 Montgomery Multiplier with Flexible Length

 If the length is a multiple of 64 or a multiple of 64, the output is the sum of last PU.

Otherwise it is costly using MUX to support short length data. We pass the sum to last PU

replace MUX method. This method takes p．⌊ n / p ⌋+ (p – 1) cycles.

 Figure 3.5 Configurations of n=1024

29

3.3 Random Bit Generator

3.3.1 Random Bit Generator from Chaotic Map

In 1989, Huertas, Quintana, and Valencia established Chaos discrete maps from

digital circuits[16]. As times goes on, Chaotic map had been developed and modified. The

PRNG based on the discretization of a chaotic map F is implemented with the input

forming logic F(Si) realizing a discretized f ’ of the map f. The map f is defined on a

continuous state space I ⊂ R. And f can be approximated with its discretized version f ’. To

keep the circuit complexity low, an n-bit fixed-point representation of the discretized state

is commonly used with the discretized state x’.

In particular, considering the Chaotic map, defined as:

fs (x) = β ⋅ x mod 1,

where the state space I is the interval [0 1), the discretized state space I’ ⊂ I is assumed in

this work to be the set of rational values that can be expressed as

x=(0.b1b2...bn)2 bj ∈{0,1}.

At time i, the fractional part of xi’, (b1,…, bn), is stored in the state register as Si.

Since different bit strings b1,…, bn identify different discretized states, each xi’ can be

unequivocally related to its fractional part, i.e. to a natural number

ki = 2n ⋅xi’ , with 0 ≤ ki ≤ 2n −1.

The generic discretized map fS’ : I’ → I’ has the following expression:

fS’(x’) = [β⋅x’ mod 1]tr ,

where β∈R+ is the characteristic parameter and the subscript „tr‟ accounts for the

30

truncation to the precision 2
-n

. Accordingly, above equation is equal to

fs’(x’) = ⌊ 2n
 β⋅x’ mod 2

n
 ⋅2-n

,

where ⌊x represents the integer part of x. The output forming logic can be represented as:

g(k)=2
n
 fs’ (k / 2

n
) = ⌊β⋅k mod 2

n
.

Moreover, in what follows the finite precision representation of β is taken into

account, in particular β is supposed to belong to the set

Β ≡ {q ∈ Q : q = m ⋅ 2
− n

 ; m ∈ N }.

Figure 3.6 Block diagram of proposed RNG

31

3.3.2 Proposed Dynamic Random Bit Generator

 In order to increase the period and rate of passing random sequence test, we have a

proposed architecture of RNG of Chaotic map. The fundamental idea is to change

dynamically characteristic parameter of chaotic map. According to early subsection, β is a

2n-bit value and taken from set B. As shown in Figure 3.6, where block DCP (Dynamic

Characteristic Parameter) includes four different characteristic parameters. The various

constants are selected through a decoder driven by a 5 bits LFSR. Obviously, increasing

the length of the Liner Feedback Shift Register (LFSR) which drives the decoder makes

the period of the overall system increases, but the circuit‟s complexity increases too.

Increasing the period also means raise entropy of the random sequence.

As shown in table 3.1, we have four similar β can choose. In order to share resource,

any β in the set only has less than two different bits from others. Output forming logic of

dynamic chaotic map are represented as:

Out(x) = [β*．k] mod 2
n
,

Where β* means dynamic parameter. Another purpose for this work is to mask β from

multi-layer perceptron neural network(MLP-MM). According to statistics

by MLB-MM, it could calculate the parameter we used in circuit in 2n cycle. It would

decrease the security of our circuit. There are two methods to solve this problem: one is

taking dynamic parameter to mask our true parameter, and another one is taking true

random vector as initial seed S0.

32

Table3.1 Four parameters

 LFSR output Chaos base parameter

00 111…00.11…11

01 011…00.11…11

10 110…00.11…11

11 010…00.11…11

3.4 Proposed RSA Crypto-core with RNG

The modular exponentiation algorithm mentioned in early subsection are three

methods: L-R, R-L, and powering ladder. In this work, we choose powering ladder

method[28] in order to increase the parallelism and better against SPA and DPA ability.

As shown in figure 3.7, we have two sets of multiplier. There are four 2048 bits-bit

registers: N for modular, E for key, R
2
 mod N, and M for plaintext. Register A for storing

multiplicand, so R2 store in A at first iteration of multiplication.

The basic security of RSA is based on the difficulty of factoring the product of two

primes. But recent research discovered that the information of the key can be estimated by

tracing the power consumption. DPA is a powerful tool that allows cryptanalysis to extract

secret key and compromise the security of smart cards and other cryptographic devices by

analyzing their power consumption. Simple power analysis is a simpler form of the attack

that does not require statistical analysis.

33

Figure 3.7 Block diagram of RSA cryptosystem with two Montgomery multipliers

One work mentioned in [20] is a countermeasure against DPA because the final

subtraction of output depends on the inputs. And also the output is related to the key. In

the thesis , the proposed architecture of 2 multipliers consumes the same power since that

the 2 multipliers always compute despite of the bit of key. The only difference is that Z-reg

keeps its value when Ei is 0, thus cause the weakness of SPA.

Another work [24] recall the equation M
e+rφ (N)

 ≡ M
e
 (mod n). Where parameter r is

a random number produce by a random number generator. The DPA countermeasure can

add r to the original key E as a new key. Therefore, The key guessed by the adversary is

randomized thus preventing the ZEMD attack. But this method increase total executing

time of modular exponentiation. Take n-bit random number will increase log2
n
 times

Montgomery multiplication executing time.

34

Figure 3.7 Proposed RSA cryptosystem with 3 Montgomery multipliers

We prefer to hide base number instead of exponent number. According to

common-multiplicand multiplication[8], two register R0 and R1 can be extract common bit

as:

Rcom = (R0 & R1&rand(S0)),

Where rand(S0) is n-bit random sequence. And remainder of R0 and R1 are:

 R0,c = (R0  Rcom),

R1,c = (R1  Rcom),

It will change two 32-bit registers to three, but we can hide R0 (or R1) to two different

number combination. Considering random number in Rcom , this combination has widely

35

chosen. Even if key E has not been hide, it can still preventing the DPA attack because of

base number is randomized. Assume this case Ek = 1, follow powering ladder algorithm:

R0←R0．R1

R1←R1．R1

The operation can be replace by this one:

R0← R0,c R1 + RcomR1

R1← R1,c R1 + RcomR1

We can use three Montgomery multiplier to complete this architecture as figure 3.8.

The overhead resources are one Montgomery multiplier, one RNG, one register files and

some combinational circuits. Because we take Word-base architecture, the extra register

and combinational circuits are all 32 bits, not n bits.

36

Chapter 4

Implement Result and Comparison

4.1 RNG Testing

SP800-22[26] is special publication release from National Institute Standards and

Technology (NIST). It discusses some aspects of selecting and pseudorandom number

generators. Generators use in cryptographic application may need stronger requirements

than for other applications. In particular, their outputs must be unpredictable in the

absence of knowledge of the inputs.

The NIST test suite[27] is a statistical package consisting of 15 test that developed

to test the randomness of binary sequences produced by either hardware or software

based cryptographic random or pseudorandom number generators. These tests focus on a

variety of different types of non-randomness that could exist in a sequence. Some tests

are decomposable into a variety of subtests.

37

Table 4.1: Comparison with RNG passing SP800-22

length Original work[18] Propose work

14 71.9 74.9

15 84.6 87.7

16 94.0 96.9

17 95.7 97.6

18 96.7 98.0

19 97.7 98.7

The 15 tests of SP800-22:

1. The Frequency (Monobit) Test,

2. Frequency Test within a Block,

3. The Runs Test,

4. Tests for the Longest-Run-of-Ones in a Block,

5. The Binary Matrix Rank Test,

6. The Discrete Fourier Transform (Spectral) Test,

7. The Non-overlapping Template Matching Test,

8. The Overlapping Template Matching Test,

9. Maurer's "Universal Statistical" Test,

10. The Linear Complexity Test,

11. The Serial Test,

12. The Approximate Entropy Test,

13. The Cumulative Sums (Cusums) Test,

14. The Random Excursions Test, and

15. The Random Excursions Variant Test.

38

The order of the application of the test in the suite is arbitrary. We try all of input vectors

for initial seed and observe how many vectors passing total 15 tests. Passing rate equals

vectors of pass over total vectors. Each row of table 4.1 shows the n value and the

number of passing rate. Proposed work increases the randomness, which means if we

take oscillator or analog to digital device for PRNG input source, there is a higher

guarantee for producing random sequence we need.

4.2 Implement with Cell Base Design

Table 4.2: The verification results on ASIC

Design ASIC

Technology UMC 90nm

Clock frequency 285.7MHz

Gate count 467k (3MMs)

Key length 1024 2048 4096

 Computation time

(ms)

3.5 13.7 106.6

 Throughput (kb/s) 289.3 149.7 38.42

A word-based RSA scheme is given in this work. This section shows the hardware

implementation results. In this thesis, all of the design in hardware is implemented using

RTL (Register- Transfer-Level) Verilog HDL (hardware description language) and

synthesized on application-specific integrated circuit (ASIC). The technology of ASIC

design is using UMC1 90nm CMOS process. The RTL synthesizer uses Synopsys3

Design Compiler for ASIC. The data throughput of RSA is given by

39

The clock frequency is set to 285.7MHz and gatecount is 467k with three

Montgomery multipliers. Cycle period is 3.5ns. The cycles of multiplication are about (n

+ p)*90% cycles. And The cycles of RSA are about (n+2)*(MM cycles). Where

Montgomery method must transport domain between integer and Montgomery domain,

So there are two extra MM cycles for transporting. The detail value is shown as table

4.2.

Table 4.3: Comparison with other 1024-bit Modular Multiplier with cell base design

Table 4.3 shows the comparison with other 1024-bit modular multipliers

implementations with ASIC design. Our work is not the most outstanding, but our works

are scalable designs and [29] is not. Proposed designs can be modify to high radix

architecture. The performance would be better than now.

Author [29] [30]

Proposed

Technology 0.13μ m

CMOS

0.13μ m

CMOS

90nm

CMOS

Clock

frequency

(MHz)

715 781.25 675.68 333.3

Gatecount(k) 105 80 82 115

Throughput

(kb/s)

712.22 775.95 663.37 379.26

Note w=64

w=1024

p=257

w=4

p=65

w=16

p=32

w=32

40

Table 4.4: Comparison with other 1024-bit RSA cryptosystem with cell base design

Table 4.4 shows the comparison with other 1024-bit RSA implementations with

ASIC design. In contrast to proposed design, the work shows a big area but the

throughput is higher. In the nearly future, ROC government will establish 4096 bits RSA

for standards. That means high throughput is the first consideration. The area of

Mukaida‟s work is much higher than the others, since it is radix-2
32

and calculates some

parameter beforehand. The throughput of proposed work is higher than any others. We

add one more Montgomery multiplier to against DPA attack. One Montgomery

multiplier‟s gate count is about 130k. And it doesn‟t affect the frequency or throughput.

Initial seed of random number generator is given by user.

Author Mukaida

[22]

[21] Chen[25]

Lin[24] Proposed

Technology 0.18μ m 0.18μ m 0.18μ m 0.18μ m 90nm

Methodology CRT Montgomery Montgomery Montgomery

Clock

frequency

(MHz)

200 235 370 200 285.7

Gatecount(k) 965 2262 138 365 337 467

Throughput

(kb/s)

5000 2000 83 162 289.3

Note radix-2
32

 Coprocessor p=16

w=16

p=64

w=32

p=32

w=32

(2MMs)

p=32

w=32

(3MMs)

41

Chapter 5

Conclusion

In this thesis, a hardware architecture of word-based scalable RSA cryptosystem in

GF(p) is given. In order to reduce execution time, a Montgomery modular multiplication

algorithm and circuit are proposed. Forwarding circuit solves data dependency hazard of

word-based Montgomery multiplication from two cycles to one cycle. Furthermore,

bypass algorithm combines redundant shift operation, which shortens latency of

processing modular multiplication about 90% of original work. The total cycles of

processing multiplication once are about n*90%+(n/p). Proposed Montgomery multiplier

architecture is applied in RSA or ECC cryptosystem. This work can be modified to

support binary field GF(2
n
) operation by simply eliminating the carry.

On the other hand, we modify random number generator based on Chaotic map.

Higher passing rate RNG may suite for cryptosystem application. The total RSA

architecture includes three MMs and one RNG, it against SPA and DPA without extra

multiplication. The total cycles of processing modular exponentiation are n+2 times MM

processing cycles. According to implementation result, it is synthesized using 90nm

CMOS technology with 467k gates. The clock period is 3.5 ns.

42

Bibliography

[1] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transactions

on Information Theory, vol. IT-22, no. 6, pp. 644-654,1976.

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–126, 1978.

[3] T. E. Gamal, “A public key cryptosystem and a signature scheme based on discrete

alogarithms,” in Proceedings of CRYPTO 84 on Advances in cryptology. New York,

NY, USA: Springer-Verlag New York, Inc., 1985, pp. 10–18.

[4] PKCS#1: RSA Cryptography, RSA Laboratories Std. 800-57, 2002.

[5] Digital Signatures Using Reversible Public Key Cryptography for the Financial

Services Industry - RSA digital signature technique, ANSI Std. X9.31, 1998.

[6] K. Koc, “High-speed RSA implementation,” tech. rep., RSA Laboratories, 1994.

[7] M. Joye, and S-M. Yen, “The Montgomery Powering Ladder”, CHES 2002, LNCS

2523, pp. 291–302, Springer-Verlag, 2003

[8] Sung-Ming Yen and Chi-Sung Laih. Common-multiplicand multiplication and its

application to public-key cryptography. Electronics Letters, 29(17):1583–1584,

August 1993v

[9] P. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss, and other

systems,” in Proceedings of Advances in Cryptology-CRYPTO ’96. Springer-Verlag,

1996, pp. 104–113.

[10] P. Kocher, J. Jaffe, and B. Jun, “Introduction to differential power analysis and

43

related attacks,” in http://www.cryptography.com/dpa/technical, 1998.

[11] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Power analysis attacks of

modular exponentiation in smartcards,” in Proceedings of Workshop on

Cryptographic Hardware and Embedded Systems. Springer-Verlag, August 1999,

pp. 144–157.

[12] S. Tezuka, Uniform random numbers: theory and practice, Kluwer Academic

Publishers, 1995

[13] R. David, Random Testing of Digital Circuits: Theory and Application, Dekker Inc.,

New York, 1998.

[14] Intel Platform Security Division, “The Intel Random Number Generator”, Intel

Corporation, 1999.

[15] M. Jessa, “The period of Sequences Generated by Teni-Like Maps,” IEEE Trans.

On CAS-part I, vol. 49, no. 1, Jan 2002.

[16] J. Huertas, J. Quintana, M. Valencia, “Chaos from Digital Circuits: Discrete Maps,”

Int. Symp. on Networks, Systems and Signal Processing, pp. 391-395, Zagreb,

1989.

[17] R. Mita, G. Palumbo, S. Pennisi, M. Poli, “A Novel Pseudo Random Bit Generator

for Cryptography Applications,” ICECS 2001, pp. 489-492, Dubrovnik (croatia),

September 2002.

[18] T. Addabbo, M. Alioto, A. Fort, S. Rocchi, V. Vignoli, “Long Period Pseudo

Random Bit Generators Derived from a Discretized Chaotic Maps” Circuits and

Systems, 2005. ISCAS 2005. IEEE International Symposium on, Vol. 2, pp 892-

895, 2005.

[19] A. F. Tenca and C¸ etin Kaya Ko¸c, “A scalable architecture for modular

multiplication based on Montgomery‟s algorithm,” IEEE Transactions on

Computers, vol. 52, no. 9, pp. 1215–1221, September 2003.

44

[20] C. D. Walter, “Precise bounds for montgomery modular multiplication and some

potentially insecure rsa moduli,” in Topics in Cryptology-CT-RSA 2002, B.

reneel (editor), Lecture Notes in Computer Science, vol. 2271. San Jose, CA, USA:

Springer Berlin / Heidelberg, 2002, pp. 30–39.

[21] Haixin Wang, Guoqiang Bai, and Hongyi Chen, “Zodiac: System Architecture

Implementation for a High-Performance Network Security Processor”, 19th IEEE

International Conference on Application-Specific Systems, Architectures and

Processors, Leuven BELGIUM, JUL 02-04, 2008, pp. 91-96.

[22] K. Mukaida, M. Takenaka, N. Torii, and S. Masui, “Design of high-speed and

areaefficient montgomery modular multiplier for rsa algorithm,” in IEEE Symp.

VLSI Circuits, 2004, pp. 320–323.

[23] C. P. Su, C. H. Wang, K. L. Cheng, C. T. Huang, and C. W. Wu, “Design and test

of a scalable security processor,” in Proc. Asia and South Parific Design

Automation Conf. (ASP-DAC), vol. 1, pp. 372-375, Jan 2005.

[24] Y.-C. Lin, “A RSA Crypto-core Baesd on Scalable Montgomery Multiplication with

DPA and SPA Resistance,” Master‟s thesis, National Chiao Tung University, 2008.

[25] Y.-L. Chen, “Design and implementation of reconfigurable rsa cryptosystems,”

Master‟s thesis, National Chiao Tung University, 2006.

[26] SP800-22, “A Statistical Test Suite for Random and Pseudorandom Number

Generators for Cryptographic Applications,” U.S. Department of commerce,

NIST, 2008.

[27] http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html

[28] Sung-Ming Yen and Chi-Sung Laih, "Fast Algorithms for the LUC Digital Signature

Computation," IEE Proceedings: Computers and Digital Techniques, Vol.142, No.2,

pp.165-169, March 1995.

45

[29] M. D. Shieh, J. H. Chen, H. H. Wu, and W. C. Lin, “A new modular exponentiation

architecture for efficient design of rsa cryptosystem,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems archive, vol. 16, no. 9, pp. 1151–1161,

September 2008.

[30] M. D. Shieh, and W. C. Lin, “Word-Based Montgomery Modular Multiplication

Algorithm for Low-Latency Scalable Architectures,” IEEE Transactions on

Computers, vol. 59, no. 8, pp. 1145–1151, August 2010.

46

作者簡介

姓名：陳勇志

學歷：三興國小 信義國中 建國中學

 93.9~97.6 國立交通大學電子工程學系

 97.9~99.12 國立交通大學 電子研究所

