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使用蒙哥馬利次方梯以及混沌亂數產生器的RSA密碼

系統 

 

學生：陳勇志                   指導教授：張錫嘉 教授 

 

國立交通大學 

電子工程學系 電子研究所碩士班 

 

摘   要 

  本論文提出了在RSA密碼系統上可擴展的實作方法。這項設計的架

構採用改良的蒙哥馬利模數乘法器以及蒙哥馬利次方梯演算法。可支

援4096位元以下的所有長度。本論文提出的演算法比較傳統的模數指

數運算設計有更快的速度。在RSA加密運算中，針對1024位元、2048

位元、4096位元公鑰的運算時間分別需要3.5ms、13.7ms、106ms。 

另外我們改進了混沌映射基礎下的亂數產生器。在sp800-22測試下，

此設計比較傳統設計有更高的通過率。此設計嵌入在RSA密碼系統中

抵抗SPA和DPA攻擊而不用增加額外乘法運算的時間。 
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Powering Ladder and Chaos-based Random Number 
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Student：Yung-Chih Chen          Advisor：Dr. Hsie-Chia Chang 

 

 

Department of Electronics Engineering 

Institute of Electronics 
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Abstract 

This thesis introduces a scalable hardware implementation of RSA cryptosystem. 

The architecture of this work is modified by the Montgomery modular multiplier and 

it based on Montgomery powering ladder algorithm. It can work in any length less 

than 4096-bit. This proposed algorithm provides a shorter latency on modular 

exponentiation operations than other works. It takes 3.5 ms, 13.7 ms, and 106 ms to 

complete a 1024-bit, 2048-bit, and 4096-bit key length of RSA calculation time 

respectively. 

Furthermore, we modify random number generator based on chaotic map. 

Testing by SP800-22, this work has higher passing rate than previous work. This 

embedded in RSA cryptosystem for against SPA and DPA without extra cycle for 

processing multiplications.  
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Chapter 1 

 

Introduction 

 

1.1 Background  

 

As science and technology progress, Cryptography has become an important 

knowledge for protecting people‟s private information. Information may be 

transported through by mobile phone, ATM cards, the Internet, etc. People depend on 

the tools sending message that may be secret or important. If there is no protector 

between communication, the hacker would get the message easily.  

There are two kinds of commonly used cryptosystem ways: Secret-key 

cryptosystem and public-key cryptosystem. The former is a conventional and simple 

method. It use the same key to encrypt and decrypt. This method is known as 

symmetric cryptosystem. There are many algorithms proposed for the symmetric 

cryptosystem, such as DES(Data Encryption Standard) and AES(Advanced 

Encryption Standard). A secure channel is needed between sender and receiver to 

exchange the key, but how to get this channel also is a problem. We call it key 

distribution problem. 

The public-key system[1] was published in 1976 by Whitfield Diffie and Martin 
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Hellman. This is the first method for sharing secret-key over an unprotected 

communications channel without prior secure channel, which came to be know as 

Diffie-Hellman key exchange method. Figure 1.1 shows a scheme of public key 

system. In an encryption scheme anyone can encrypt using the public key, but only 

the holder of the private key can decrypt it. People do not need secure channel to 

exchange secret key anymore. 

 

Figure 1.1: Public key system model 

RSA[2] is the popular public-key cryptosystems widely used nowadays. It is 

based on the high difficulty of factoring large numbers. Rivest, Shamir and Adleman 

established this method at MIT in 1978. It is widely used to ensure data privacy in 

many fields. PKCS#1 standards[4] lines out a way of encrypting data or digital 

signature using the RSA cryptosystem. In recent decades, RSA cryptosystem are 

applied in the modern information technology. 
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RSA cryptosystem is based on modular exponentiation. It is easy to implement by 

repeat modular multiplications. Modular multiplication has to be performed a certain 

number of times depends on the key length to ensure security, but consequence is that 

the RSA operation has to take much more computational cost for security 

consideration. In order to include RSA cryptosystem practically for high speed 

application, it is desired to devise faster encryption and decryption operations. 

 

 

1.2 Motivation 

 

There are many applications using RSA as authentication for transactions and 

encryptions or signature for secure messaging, for example, virtual private networks, 

electronic commerce, and secure Internet access. The precision of operands is getting 

higher for better security. A major design concern for multiplication units used in 

cryptography is the large number of operand bits, which causes large fanout of signals, 

large wire delays, and complex routing.  

Word-based method can solve the high fanout problem. The precision of operand 

is limited only by the memory. Any length less than 2048-bit can be performed in this 

thesis.  

Recent researches showed that power consumption may reveal the secret key. 

Those attacks, such like SPA and DPA, work based on the statistic analysis of power 

tracing. It is essentially to design some extra circuits to against the power attack. 
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1.3 Thesis Organization 

 

In this thesis, the scalable RSA cryptosystem is given. In Chapter 2, the 

preliminary mathematical background of RSA is first introduced. And then we 

describe the Montgomery multiplication and modular exponentiation algorithms 

which used in RSA cryptosystem. Third, we introduce power analysis method. In the 

end of this section, we discuss about random number background knowledge.  

In Chapter 3, architecture of word-based Montgomery multiplication over prime 

field is proposed. Second, we proposed a modified random number generator for high 

passing rate of test. Finally, we introduced total architecture of RSA cryptosystem 

which against power attack by adding random number generator. 

In Chapter 4, it shows the hardware implementation results and comparison for 

ASIC and test results for proposed random number generator. Conclusion is given in 

Chapter 5. 
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Chapter 2  

 

RSA Cryptosystem and Random 

Number Generator 

 

2.1 Mathematics Foundation 

This chapter introduces the basic arithmetic used in RSA cryptosystem over GF(p). 

Modular arithmetic such as modular multiplication is especially an important part in 

the RSA systems. 

2.1.1 Number Theory 

Congruences 

  One of the most basic and useful in number theory is modular arithmetic, or 

congruences. Let a, b, n be integers with n≠0. If a and b differ by a multiple of n, a is 

congruent to b mod n. 

a =b(mod n) 
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It can be rewritten as  

a≡b + nk 

For some integer k 

 

Primitive Roots 

   In general, when p is a prime, a primitive root mod p is a number whose powers 

yield every nonzero class mod p. There are φ (p-1) primitive roots mod p. Let g be a 

primitive root for the prime p. 

  ．If i is an integer, then g
i≡1(mod p) if and only if i≡0(mod p-1). 

  ．If j and k are integers, then g
i≡ g

k
 (mod p) if and only if j≡k(mod p-1). 

 

Fermat’s Theorem 

   Fermat‟s theorem states the follows: If p is prime and a is a positive integer not 

divisible by p, then 

a
p−1

 ≡ 1 (mod p)                          (2.1) 

We know that if all of the elements of Zp, where Zp is the set of integers 

{0,1,. . . ,p−1}, are multiplied by a, modulo p, the result consists of all of the elements 

of Zp in some sequence. Furthermore, a × 0 ≡ 0 mod p. Therefore, the (p − 1) numbers  

{a mod p, 2a mod p,...,(p−1)a mod p} 

are just the numbers {0, 1,. . . , p − 1} in some order. Multiplying the numbers in both 

sets and taking the result modulo p yields 

 1 × 2 × ... × (p − 1) ≡ (a mod p) × (2a mod p) × ... × ((p−1)a mod p) 

 (p − 1)! mod p ≡ (p − 1)!a
p−1

. 

We can cancel the (p−1)! term because it is relatively prime to p. This yields Equation 

2.1. 
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Euler’s Totient Function 

 

Before presenting Euler‟s theorem, we need to introduce an important quantity in 

number theory, referred to as Euler‟s totient function and written φ(n), where φ(n) is 

the number of positive integers less than n and relatively prime to n. It should be clear 

that for a prime number p, φ(p) = p−1 There are two prime numbers p and q, with p 

≠ q. Then, for n = pq, 

φ(n) = φ(pq) = φ(p)φ(q) = (p − 1)(q − 1).         (2.2) 

 

Euler’s Theorem 

 

Euler‟s theorem states that for every a and n that are relatively prime:  

a
φ(n)

 ≡ 1 mod n                         (2.3) 

Equation 2.3 is true if n is prime, because in that case φ(n) = (n − 1) and Fermat‟s 

theorem holds. However, it also holds for any integer n. Recall that φ(n) is the number 

of positive integers less than n that are relatively prime to n. Consider the set of such 

integers, labeled as follows: 

R = x1,x2,...,xφ(n).  

Now multiply each element by a, modulo n: 

S = (ax1 mod n),(ax2 mod n),...,(axφ(n)).  

The set S is a permutation of R, by the following line of reasoning: 

1. Because a and xi are relatively prime to n, axi must also be relatively prime to n. 

Thus, all the elements of S are integers less than n that are relatively prime to n. 

2. There are no duplicates in S. If axi mod n = axj mod n, then xi =xj . Therefore, 
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a
φ (n) 1 mod n 

An alternative form of the theorem is also useful: 

a
kφ(n)+1

 ≡ a mod n                         (2.4) 

 

2.1.2 Montgomery Method 

In 1985, P. L. Montgomery introduced an efficient algorithm for computing R = 

a*b mod n where a, b, and n are k-bit binary numbers. The algorithm is particularly 

suitable for implementation on general-purpose computers which are capable of 

performing fast arithmetic modulo a power of 2. The Montgomery reduction 

algorithm computes the resulting k-bit number R without performing a division by the 

modulus n. Via an ingenious representation of the residue calss modulo n, this 

algorithm replaces division by n operation with division by a power of 2. This 

operation is easily accomplished on a computer since the numbers are represented in 

binary form. Assuming the modulus n is a k-bit number, i.e., 2k-1< n <2k, let r be 2k. 

The Montgomery reduction algorithm requires that r and n be relatively prime, i.e., 

gcd(r,n)= gcd(2k,n)=1. This requirement is satisfied if n is odd. The basic idea of the 

Montgomery reduction algorithm is showed as following. 

  Given an integer 0 ≤ a < n, we define it‟s n-residue with respect to r as  
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   ≡ a · r mod n , 

It is straightforward to show that the set 

{i．r mod n|0 i n-1} 

is a complete residue system, i.e., it contains all numbers between 0 and n-1. Thus, 

there is a one-to-one correspondence between the numbers in range 0 and n-1 and the 

numbers in the above set. The Montgomery reduction algorithm exploits this property 

by introducing a much faster multiplication routine which computes the n-residue of 

the product of the two integers whose n-residues are given. Given two n-residues    

and   , the Montgomery product is defined as the n-residue 

   ≡   ．  ．r
-1

 (mod n) 

 

where r
-1

 is the inverse of r modulo n, i.e., it is the number with the property 

r
-1

 ．r ≡ 1 (mod n) 

The resulting number    is indeed the n-residue of the product 

R ≡ a．b (mod n) 

Since 

   ≡   ．  ．r
-1

 (mod n) 

       ≡ a．r．b．r．r
-1

 (mod n) 

  ≡ a．b．r (mod n) 
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2.2 RSA Algorithm 

 

2.2.1 RSA Scheme 

The RSA scheme is the most widely used to ensure data privacy in many fields and 

applied to the digital signature generation and verification, the RSA DS algorithm, 

announced in ANSI1 X9.31 [5]. It is a block cipher in which the plaintext and 

ciphertext are integers between 0 and n−1 for some n which is typically between 2512 

and 24096. The more bits provides the higher security. The scheme of RSA is showed 

as following: 

 

Algorithm 2.1. (RSA Algorithm) Key generation 

Select p,q             p and q both prime, p≠q 

Calculate N and φ(N)   N =pq, φ(N)=(p−1)(q−1) 

Select integer E        gcd(φ(N),E) = 1; 1 < E < φ(N) 

Calculate D           D ≡ E
−1

 mod φ(N) 

Public key            KU = {E,N} 

Private key            KR = {D,N} 

Encryption  

Plaintext M            M < N  

Ciphertext C           C = M
E
 mod N 

Decryption  

Ciphertext C           C < N 

Plaintext M            M = C
D
 mod N =M

DE
 mod N = M mod N 
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Let p and q be two distinct large random primes. The modulus N is the product of 

these two primes: N = pq. According to equation(2.2), the Euler‟s totient function of 

N is given by 

φ(N) = (p − 1)(q − 1)  

Now, select a number 1 < E < φ(N) such that 

gcd(φ(N),E) = 1, 

and compute D with 

D ≡ E
−1

mod φ(N).  

Here, {E,N} is the public key and {D,N} is the private key. The value of D and the 

prime numbers p and q are kept secret. Encryption is performed by computing  

C = M
E
 mod N,  

where M is the plaintext such that 0 ≤ M < N. The number C is the ciphertext from 

which the plaintext M can be computed using 

M = C
D
 mod N. 

The correctness of the RSA algorithm follows from Euler‟s theorem. Let N and a be 

positive, relatively prime integers. Then a 

φ(N) ≡ 1 mod N 

 

Since ED is equal to 1 mod φ(N), it meets that ED is equal to 1+kφ(N) for some 

integer k. 

 C
D
 ≡(M

E
)

D
 mod N  

   ≡M
ED

 mod N 

      ≡ M
1+kφ(N)

 mod N  

       ≡M×M
φ(N)k

 mod N 

  ≡ M mod N 
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2.2.2 R-L and L-R Algorithm 

In RSA cryptosystem, the modular exponentiation is the basic operation. The 

simple and direct way to compute M
E
 mod N is multiplying M sequentially for E times. 

Since all the operation (M, N, E, D) are typically large than 512 bits. It is also too hard 

to store the result. It is needed to find some efficient methods to compute M
E
. There 

are two common algorithms that can be used, the L-R algorithm and the R-L 

algorithm. 

 

L-R Algorithm 

M
E
 mod N ≡         

          
      

   mod N 

         ≡    ×(   *( …*(       mod N)
2
 mod N)

2
  .…)

2
 mod N 

In the L-R algorithm, it computes square and multiplication sequentially. It does mean 

that both square and multiply operations can be performed in the same hardware 

multiplier, thus saving on area. 

 

R-L Algorithm 

M
E
 mod N ≡         

          
      

   mod N 

         ≡        
   

 ( … (     
 
 (       

 
 mod N) mod N) .…) mod N 

In the R-L algorithm, the square and multiply operations are independent, and may be 

performed in parallel. Thus half latency is need to complete the same exponentiation. 

However, two physical hardware multipliers are required to achieve this speed up. 
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2.2.3 Montgomery Powering Ladder 

In the powering ladder algorithm [7], the square and multiply are parallel, too. 

There are one difference between powering ladder and R-L algorithm. It process E 

from right to left, but it does multiplication every iteration. Regular multiplication 

would help average power consumption between. It can resist the simple power 

analysis attack. Powering ladder algorithm is shown in algorithm 2.1: 

 

Algorithm 2.1. (Montgomery Powering Ladder)  

Input : M,E=(et-1,…,e0)2 

Output: Y=M
E
 

1. R0 ← 1; R1←M;  

2. for ( j = t-1 to 0 ) 

       if ( ej =0) 

          R1← R0 R1;  

          R0← (R0)
2
; 

       else 

          R0← R0 R1;  

          R1← (R1)
2
; 

3. return R0 ; 

It use Montgomery multipliers instead of normal multipliers. We prefer use 

Montgomery method because it is easy to implement in hardware, and we can get the 

advantages from powering ladder skill in the same time. 
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2.3 Power Analysis 

Cryptographers have traditionally analyzed cipher systems by modeling 

cryptographic algorithms as ideal mathematical objects. Conventional techniques such 

as differential and linear [9] cryptanalysis are very useful for exploring weaknesses in 

algorithms. But the physical implementations often result in the leakage of 

side-channel information. 

Attacks have been proposed that use such information as timing measurements 

[10], power consumption [11], electromagnetic emissions and faulty hardware. In this 

section we examine the weakness of RSA cryptographic algorithms to power analysis 

attacks. Specifically, attacks on the modular exponentiation process are described. 

Power analysis attacks work by exploiting the differences in power consumption 

between when a tamper-resistant device processes a logical zero and when it 

processes a logical one. For example, when the secret data on a smartcard is accessed, 

the power consumption may be different depending on the Hamming weight of the 

data. If an attacker knows the Hamming weight of the secret key the attacker could 

potentially learn the entire secret key. This type of attack, where the adversary directly 

uses a power consumption signal to obtain information about the secret key is referred 

to as a Simple Power Analysis (SPA) attack and is described in section 2.3.1. 

Differential Power Analysis (DPA) is described in section 2.3.2 and it is based on the 

same underlying principle of an SPA attack, but uses statistical analysis techniques to 

extract very tiny differences in power consumption signals. 
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2.3.1 Simple Power Attack (SPA) 

An SPA attack, as described in [11], involves directly observing a system‟s power 

consumption. Suppose that the attackers not only have unlimited access, but also have 

detailed knowledge of the software and hardware of the systems. If an attacker can 

deter- mine where certain instructions are being executed, it can be relatively simple 

to extract useful information. 

SPA on a single-key cryptographic algorithm, such as DES, could be used to learn 

the Hamming weight of the key bytes. DES uses only a 56-bit key so learning the 

Hamming weight information alone makes DES vulnerable to a brute-force attack. In 

fact, depending on the implementation, there are even stronger SPA attacks. A two-key, 

public-key cryptosystem, such as an RSA or elliptic curve cryptosystem, might also 

be vulnerable to an SPA attack on the Hamming weight of the individual key bytes, 

however it is possible an even stronger attack can be made directly against the 

square-and-multiply algorithm. 

If exponentiation was performed in software using one of the square-and-multiply 

algorithms, there could be a number of potential vulnerabilities. The main problem 

with both algorithms is that the outcome of the ”if statement” might be observed in 

the power signal. This would directly enable the attacker to learn every bit of the 

secret exponent. A simple fix is to always perform a multiply and to only save the 

result if the exponent bit is a one. This solution is very costly for performance and still 

may be vulnerable if the act of saving the result can be observed in the power signal. 
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2.3.2 Differential Power Attack (DPA) 

A DPA attack is more powerful than an SPA attack because the attacker does not 

need to know as many details about how the algorithm was implemented. The 

technique also gains strength by using statistical analysis to help recover side-channel 

information. 

The problem with an SPA attack is that the information about the secret key is 

difficult to directly observe. The information about the key was often obscured with 

noise and modulated by the device‟s clock signal. DPA can be used to reduce the 

noise and also to ”„demodulate”‟ the data. Any power biases at the time corresponding 

to the guess bit operation are visible as an obvious spike in the difference signal and 

much of the noise is eliminated because averaging reduces the noise variance. 

 Single-Exponent, Multiple-Data (SEMD) Attack 

The SEMD attack assumes that the smartcard is willing to exponentiate an 

arbitrary number of random values with two exponents: the secret exponent and a 

public exponent. The basic attack is that by comparing the power signal of an 

exponentiation using a known exponent to a power signal using an unknown exponent, 

the adversary can learn where the two exponents differ, thus learn the secret exponent. 

In reality, the comparison is nontrivial because the intermediate data results of the 

square-and-multiply algorithm cause widely varying changes in the power signals, 

thereby making direct comparisons unreliable. The solution to this problem is to use 

averaging and subtraction. 

 Multiple-Exponent, Single-Data (MESD) Attack 

The MESD attack is more powerful than the SEMD attack. The SEMD attack is a 

very simple attack requiring little sophistication on the part of the adversary, but the 

resulting DPA bias signal is sometimes difficult to interpret. The Signal-to-Noise 



 

17 
 

Ratio (SNR) can be improved using the MESD attack. The assumption for the MESD 

attack is that the smartcard will exponentiate a constant value using exponents chosen 

by the attacker. This value may or may not be known to the attacker. 

 Zero-Exponent, Multiple-Data (ZEMD) Attack 

The ZEMD attack is similar to the MESD attack, but has a different set of 

assumptions. One assumption for the ZEMD attack is that the smartcard will 

exponentiate many random messages using the secret exponent. This attack does not 

require the adversary know any exponents, hence the zero-exponent nomenclature. 

Instead, the adversary needs to be able to predict the intermediate results of the 

square-and-multiply algorithm using an off-line simulation. This usually requires that 

the adversary knows the algorithm being used by the exponentiation hardware and the 

modulus used for the exponentiation. There are only a few common approaches to 

implementing modular exponentiation algorithms, so it is likely an adversary can 

determine this information. It is also likely that 

the adversary can learn the modulus because this information is usually public. 

 

2.4 Random Number Sequence 

   The generation of random numbers is required in several applications, including 

Montecarlo simulations, testing of digital circuits, telecommunication systems, and 

cryptography [12]-[14]. Among circuits and algorithms for the generation of random 

numbers, an important concept is represented by the Pseudo Random Sequence 

Generators(PRNGs). 

   In the last few years, discretized chaotic dynamical systems were also exploited 

for cryptographic applications, and several works were published on this subject[15].  

   A digital PRNG is a finite state machine that initialized by an n bit initial seed S0. 
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In figure 2.1, the general structure of a PRNG is shown: the memory block consists on 

n flip-flop storing the present state Si, the input forming logic defined by logic 

function F evaluates the next state Si+1, according to the relationship Si+1 = F(Si), the 

output forming logic defined by the function G decodes the state and determines the 

current output bit (OUTi=G(Si)). 

 

figure 2.1 Block diagram of random number generator 
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Chapter 3  

 

Proposed RSA Architecture 

 

3.1 Word-based Montgomery Multiplication 

Montgomery algorithm computes the modular multiplication without trial division. It 

turns the modular multiplication into iterations of n-bit addition and shifting and reduces 

the complexity of modular multiplication to constant time operations. A major design 

concern for multiplication units used in cryptography is the large number of operand bits, 

which cause large fanout of signals, large wire delays, and complex routing. 

Tenca and Koc proposed a scalable word-based architecture [19] based on radix-2 

Montgomery Multiplication. It allows the exploration of several design trade to obtain the 

best performance in a limited chip area without limiting the operand precision. 

Algorithm 3.1 executes a series of operation to generate XYr
−1

mod N, scanning Y and 

N word-by-word and scanning X bit-by-bit. All vecter can be represented as: 

N = (0,Ne − 1,...,N1,N0),  

Y = (0,Ye −1,...,Y1,Y0),  

S = (0,Se −1,...,S1,S0), 

X = (xn−1,...,x1,x0), 
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where n is a multiple of word size w, the n-bit operands are split into e words, and   e = 

n/w. The concatenation of two vectors A and B is represented as (A, B). The bit position i 

of the kth word of an operand A is represented as A
k

i . 

Algorithm 3.1. (Word-based Montgomery Multiplication Algorithm)  

Input : X,Y ,N 

Output: S 

1. S = 0;  

2. for i = 0 to n−1 

    2.1 (Ca,S
0
)=xiY

0
+S

0
 ;  

    2.2 if   
 = 1 then; 

         i. (Cb, S
0
) = S

0
 + N

0
 ;  

         ii. for j = 1 to e; 

             A. (Ca, S
j
) = Ca + xiY

j
 + S

j
 ; 

             B. (Cb, S
j
) = Cb +N

j
 +S

j 
; 

             C. S
j−1

 = (  
 
 ,       

   
);  

    2.3 else; 

         i. for j = 1 to e; 

             A. (Ca, S
j
) = Ca + xiY

j
 + S

j 
; 

             B. S
j−1

 = (  
 
 ,       

   
); 

3. return S; 

The right-shift operation must wait for the most significant position of S
j−1

 of the next 

loop. This is a critical limitation of the algorithm. To implement this algorithm, unrolling 

the for loop to pipelined architecture is a useful skill for increment of parallelism. The 

dependency on the carry bits within j loop restricts their parallel execution. However, 

instructions in different i loops may be executed in parallel. 
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3.1.1 Proposed Word-based Montgomery Multiplication 

Architecture I 

The fundamental problem with Tenca-Koc architecture is the dependency caused by 

waiting to shift right. We can solve this problem on architecture layer. Every output S of 

Processing Unit(PU) is w-1 bit because of dependency of right-shift word. The wth bit will 

be executed at next cycle. We acquire wth bit by forwarding method, which means the wth 

bit bypass registers. The forwarding bit is represented as: 

               
   

 = (Ca + Cb +oddN
j
 +xiY

j
 + S

j 
) mod 2; 

Where odd equals S
0

0. If S
0

0 is odd, the summation would include N
j
, otherwise there 

is no N
j
 in this summation. Notice that the right part of equal sign are wires in PU

i
. Left 

part of equal sign is a wire in PU
i+1

. It is a combinational circuit, which bypass the 

registers so it can execute with S
j−i

w−1:1 at the same cycle. This method also increase 

critical path of PU, so next step is simplifying it. Considering right-shift with S, we can 

abandon Cb. After right-shift Cb is the wth bit of S, we can directly pass this bit to next PU 

so we don‟t need to store it by a register. Second, the operation of “mod 2” also means tell 

the summation is odd or even. We can use XOR to replace two-level carry save adder. The 

forwarding bit is represented as: 

  
   

 = Ca  odd  
  
 x  

 
   

 
; 

Figure 3.1 shows block diagram of forwarding circuits. Arrows are the nets without 

passing registers.  
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Figure 3.1 Block diagram of proposed word-based Montgomery multiplication I 

 

 

Figure 3.2 Block diagram of proposed word-based Montgomery multiplication II 

 

3.1.2 Proposed Word-based Montgomery Multiplication 

Architecture II 

In algorithm 3.1, executing an n-bit multiplication spend n iterations. Considering this 

case: if xi is zero and S is even. That means we only to do right-shift without any addition. 

Shift is easily to complete by hardware. We can combine right-shift when this case 

happened in order to reduce n times iteration of multiplier. Algorithm 3.2 is proposed 

bypass algorithm: 
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Algorithm 3.2. (Proposed Word-based Montgomery Multiplication Algorithm II)  

Input : X,Y ,N 

Output: S 

  1. S = 0; i = 0; 

  2. while ( i < n ) 

    2.1 odd=(xiY+S )mod 2;  

    2.2 case{odd, xi} 

       2’b00: S’ = S ; 

       2’b01: S‘ = S + Y; 

       2’b10: S‘ = S +N; 

       2’b11: S’ = S +Y + N; 

       endcase 

    2.3 if (bypass==1) 

          S = S’ / 4; 

          i = i + 2; 

       else 

          S = S’ / 2; 

          i = i + 1; 

3. if S>N,  then S=S-N; 

4. return S; 

We want to simplify case {odd,xi} = {0, 0}. If in next iteration we meet previous case, 

we only to do right-shift. We combine the shift next iteration with this one. Where bypass 

represented as: 

bypass = (S‟．ai+1= = 0). 

That means we detect PU computing without addition next cycle. So we could shift 2 bits 

and jump over i+1
th 

iteration. It also reduces the total multiplication computing time. But 
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this method also produces some problems. First, It increases design complex of delivering 

xi from memory to PUs. If bypass is active, we will abandon multiplicand ai+1 and get ai+2. 

Getting x is not in a regular period. Thus, we abandon PUi+1 replace ai+1. Xi+1 is still 

deliver to PUi+1, but S is passed to PUi+2. So we can also getting x from memory in a 

regular period. Second problem is that S is not exactly a w-bit value. It represented with 

two w-bit Ssum and Scarry In order to decrease critical path without w-bit adder in PU. That 

means when Ssum and Scarry are both even, we can tell S is even. If Ssum and Scarry are both 

odd, we could not do right-shift because that will delete carry-out bit at LSB. Bypass will 

represented as: 

bypass = (S’sum．S’carry．ai+1= = 0). 

Even through this restriction, we still have about 10% iteration are abandoned. The 

overhead is addition p MUXes before every PUs. Block diagram as short dotted line  

shown in figure 3.2. 

Figure 3.3 shows latency comparison of proposed circuits. For this case, we have three 

Pus, length n is 32, and word length w is 8. We calculate that 1 times cccccccc modular 

99999999. It is clear that if we overcome two cycle dependency, it can process more xi 

than previous work. Original work takes 66 iterations to complete multiplication, but 

proposed work I only takes 45 iterations. Proposed work II ignores dummy iterations. It 

takes only 32 iterations. 
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  Original  Proposed I  Proposed II 

 PU1 PU2 PU3 PU1 PU2 PU3 PU1 PU2 PU3 

1 x0Y
0   x0Y

0   x0Y
0   

2 x0Y
1   x0Y

1 x1Y
0  x0Y

1 x2Y
0  

3 x0Y
2 x1Y

0  x0Y
2 x1Y

1 x2Y
0 x0Y

2 x2Y
1 x3Y

0 

4 x0Y
3 x1Y

1  x0Y
3 x1Y

2 x2Y
1 x0Y

3 x2Y
2 x3Y

1 

5  x1Y
2 x2Y

0 x3Y
0 x1Y

3 x2Y
2 X5Y

0 x2Y
3 x3Y

2 

6  x1Y
3 x2Y

1 x3Y
1 x4Y

0 x2Y
3 X5Y

1 X6Y
0 x3Y

3 

7 x3Y
0  x2Y

2 x3Y
2 x4Y

1 x5Y
0 X5Y

2 X6Y
1 X8Y

0 

8 x3Y
1  x2Y

3 x3Y
3 x4Y

2 x5Y
1 X5Y

3 X6Y
2 X8Y

1 

9 x3Y
2 x4Y

0  x6Y
0 x4Y

3 x5Y
2 X9Y

0 X6Y
3 X8Y

2 

10 x3Y
3 x4Y

1  x6Y
1 x7Y

0 x5Y
3 X9Y

1 X11Y
0 X8Y

3 

11  x4Y
2 x5Y

0 x6Y
2 x7Y

1 x8Y
0 X9Y

2 X11Y
1 X12Y

0 

12  x4Y
3 x5Y

1 x6Y
3 x7Y

2 x8Y
1 X9Y

3 X11Y
2 X12Y

1 

13 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

Figure 3.3 Latency comparison 
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3.2 Architecture of Proposed Montgomery Multiplier 

   The proposed architecture of the reconfigurable multiplier is presented in this chapter. 

As mentioned in subsection 3.1, the precision of operands is only limited by the memory 

size and control subsystems. It is adapted to all precision less than 2048 bits over prime 

fields. All of main components used in the scalable multiplier are detailed in following 

subsections. 

3.2.1 Processing Unit 

 

Figure 3.4 Architecture of processing unit 

   Figure 3.3 shows the architecture of processing unit. There are two w-bit carry save 
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adder to do the four-input (Zs, Zc, ai．B, q．N) redundant arithmetic. First carry save adder 

calculates partial sum of Zs, Zc, and ai．B. The odd parity is determined by the first bit of 

partial sum when PU processes first word which we call LSW (Least significant word). 

LSW also determines using original ai or taking ai+1. Last bit of partial sum is stored by 

the carry-reg. It will be clear when LSW is high. 

    Output of Zs is 31-bit because of dependency of shift-right word. We will acquire this 

value by forwarding skill. LSB of two-level CSA sum takes bypass to next PU without 

passing register. It is the value of 32nd bit of Zs. Although forwarding method increase 

critical path of PUs, we can easily simplify it. LSB of two-level CSA sum can replace by a 

five-input XOR gate.  

   The MUX that below registers select Z or Z divide 2. Value of Z divide 2 is taken from 

the second PU previous of this one. 

 

 

3.2.2 Number of Processing Unit Size of Word 

   The time to compute n bits depends on word number e, word-size w, and number of 

PUs p. Word number e dominates the kernel cycle (a PU finishes processing one value 

until next value comes). One PU processes that x times Y spend e cycles. Considering 

2-cycle latency because of dependency between Sj and Sj-1, next PU has one cycles stall 

after previous PU finished. According to early subsection, we used forwarding skill to 

reduce two-cycle latency. In case, number of words larger than number of PUs, proposed 

architecture takes e*(e*w/p)+(p-1) cycles finish total multiplication. Tenca-Koc takes 

2*e*(e*w/p)+(p-1) cycles . Another case if number of words larger than number of PUs, 

kernel cycle would not more than p. It is only half of previous work.  

   Considering proposed bypass word-based algorithm in early subsection, this work can 
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reduce more redundant iterations. How many iterations are reduced dependent on the 

number of 0s in intermediate values in data-path. Random sequence generator affects 

these values, so get key information by observing reduced time is not easy. 

   The formula of total Montgomery multiplication time in this work is  

e*(e*w/p) + ( p-1 )    for data length > p*w 

( e*w ) + ( p–1 )      for data length <=p*w 

figure 3.6 shows the relationship between processing time and number of PUs. If data 

length more than p*w, the latency will increase quickly. According data length we need to 

choose proper numbers of PUs in circuits. In this work we put 64 PUs which support any 

bit length less than 2048.    

 

3.2.3 Montgomery Multiplier with Flexible Length 

   If the length is a multiple of 64 or a multiple of 64, the output is the sum of last PU. 

Otherwise it is costly using MUX to support short length data. We pass the sum to last PU 

replace MUX method. This method takes  p．⌊ n / p ⌋+ ( p – 1 ) cycles. 

 

 Figure 3.5 Configurations of n=1024 
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3.3 Random Bit Generator 

3.3.1 Random Bit Generator from Chaotic Map  

In 1989, Huertas, Quintana, and Valencia established Chaos discrete maps from 

digital circuits[16]. As times goes on, Chaotic map had been developed and modified. The 

PRNG based on the discretization of a chaotic map F is implemented with the input 

forming logic F(Si) realizing a discretized f ’ of the map f. The map f is defined on a 

continuous state space I ⊂ R. And f can be approximated with its discretized version f ’. To 

keep the circuit complexity low, an n-bit fixed-point representation of the discretized state 

is commonly used with the discretized state x’.  

In particular, considering the Chaotic map, defined as: 

fs (x) = β ⋅ x mod 1, 

where the state space I is the interval [0 1), the discretized state space I’ ⊂ I is assumed in 

this work to be the set of rational values that can be expressed as  

x=(0.b1b2...bn)2   bj ∈{0,1}.  

At time i, the fractional part of xi’, ( b1,…, bn ), is stored in the state register as Si. 

Since different bit strings b1,…, bn identify different discretized states, each xi’ can be 

unequivocally related to its fractional part, i.e. to a natural number 

ki = 2n ⋅xi’ , with 0 ≤ ki ≤ 2n −1. 

The generic discretized map fS’ : I’ → I’  has the following expression:  

fS’(x’) = [β⋅x’ mod 1]tr , 

where β∈R+ is the characteristic parameter and the subscript „tr‟ accounts for the 
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truncation to the precision 2
-n

. Accordingly, above equation is equal to 

fs’(x’) = ⌊ 2n
 β⋅x’ mod 2

n
 ⋅2-n

, 

where ⌊x represents the integer part of x. The output forming logic can be represented as: 

g(k)=2
n
 fs’ ( k / 2

n
) = ⌊β⋅k mod 2

n
.   

Moreover, in what follows the finite precision representation of β is taken into 

account, in particular β is supposed to belong to the set 

Β ≡ {q ∈ Q : q = m ⋅ 2 
− n

 ; m ∈ N }. 

 

 

Figure 3.6 Block diagram of proposed RNG 
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3.3.2 Proposed Dynamic Random Bit Generator 

   In order to increase the period and rate of passing random sequence test, we have a 

proposed architecture of RNG of Chaotic map. The fundamental idea is to change 

dynamically characteristic parameter of chaotic map. According to early subsection, β is a 

2n-bit value and taken from set B. As shown in Figure 3.6, where block DCP (Dynamic 

Characteristic Parameter) includes four different characteristic parameters. The various 

constants are selected through a decoder driven by a 5 bits LFSR. Obviously, increasing 

the length of the Liner Feedback Shift Register (LFSR) which drives the decoder makes 

the period of the overall system increases, but the circuit‟s complexity increases too. 

Increasing the period also means raise entropy of the random sequence. 

As shown in table 3.1, we have four similar β can choose. In order to share resource, 

any β in the set only has less than two different bits from others. Output forming logic of 

dynamic chaotic map are represented as: 

Out(x) = [ β*．k ] mod 2
n
, 

Where β* means dynamic parameter. Another purpose for this work is to mask β from 

multi-layer perceptron neural network(MLP-MM). According to statistics 

by MLB-MM, it could calculate the parameter we used in circuit in 2n cycle. It would 

decrease the security of our circuit. There are two methods to solve this problem: one is 

taking dynamic parameter to mask our true parameter, and another one is taking true 

random vector as initial seed S0.  
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Table3.1  Four parameters 

  LFSR output Chaos base parameter 

00 111…00.11…11 

01 011…00.11…11 

10 110…00.11…11 

11 010…00.11…11 

 

 

3.4 Proposed RSA Crypto-core with RNG 

The modular exponentiation algorithm mentioned in early subsection are three 

methods: L-R, R-L, and powering ladder. In this work, we choose powering ladder 

method[28] in order to increase the parallelism and better against SPA and DPA ability.  

As shown in figure 3.7, we have two sets of multiplier. There are four 2048 bits-bit 

registers: N for modular, E for key, R
2
 mod N, and M for plaintext. Register A for storing 

multiplicand, so R2 store in A at first iteration of multiplication.  

The basic security of RSA is based on the difficulty of factoring the product of two 

primes. But recent research discovered that the information of the key can be estimated by 

tracing the power consumption. DPA is a powerful tool that allows cryptanalysis to extract 

secret key and compromise the security of smart cards and other cryptographic devices by 

analyzing their power consumption. Simple power analysis is a simpler form of the attack 

that does not require statistical analysis. 
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Figure 3.7 Block diagram of RSA cryptosystem with two Montgomery multipliers 

 

One work mentioned in [20] is a countermeasure against DPA because the final 

subtraction of output depends on the inputs. And also the output is related to the key. In 

the thesis , the proposed architecture of 2 multipliers consumes the same power since that 

the 2 multipliers always compute despite of the bit of key. The only difference is that Z-reg 

keeps its value when Ei is 0, thus cause the weakness of SPA. 

 

Another work [24] recall the equation M
e+rφ (N)

 ≡ M
e
 (mod n). Where parameter r is 

a random number produce by a random number generator. The DPA countermeasure can 

add r to the original key E as a new key. Therefore, The key guessed by the adversary is 

randomized thus preventing the ZEMD attack. But this method increase total executing 

time of modular exponentiation. Take n-bit random number will increase log2
n
 times 

Montgomery multiplication executing time. 
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Figure 3.7 Proposed RSA cryptosystem with 3 Montgomery multipliers 

 

We prefer to hide base number instead of exponent number. According to 

common-multiplicand multiplication[8], two register R0 and R1 can be extract common bit 

as: 

Rcom = (R0 & R1&rand(S0)), 

Where rand(S0) is n-bit random sequence. And remainder of R0 and R1 are: 

 R0,c = (R0   Rcom), 

R1,c = (R1  Rcom), 

It will change two 32-bit registers to three, but we can hide R0 (or R1) to two different 

number combination. Considering random number in Rcom , this combination has widely 
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chosen. Even if key E has not been hide, it can still preventing the DPA attack because of 

base number is randomized. Assume this case Ek = 1, follow powering ladder algorithm: 

R0←R0．R1 

R1←R1．R1 

The operation can be replace by this one: 

R0← R0,c R1 + RcomR1  

R1← R1,c R1 + RcomR1  

We can use three Montgomery multiplier to complete this architecture as figure 3.8. 

The overhead resources are one Montgomery multiplier, one RNG, one register files and 

some combinational circuits. Because we take Word-base architecture, the extra register 

and combinational circuits are all 32 bits, not n bits. 
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Chapter 4 

 

Implement Result and Comparison 

 

4.1 RNG Testing 

SP800-22[26] is special publication release from National Institute Standards and 

Technology (NIST). It discusses some aspects of selecting and pseudorandom number 

generators. Generators use in cryptographic application may need stronger requirements 

than for other applications. In particular, their outputs must be unpredictable in the 

absence of knowledge of the inputs.  

The NIST test suite[27] is a statistical package consisting of 15 test that developed 

to test the randomness of binary sequences produced by either hardware or software 

based cryptographic random or pseudorandom number generators. These tests focus on a 

variety of different types of non-randomness that could exist in a sequence. Some tests 

are decomposable into a variety of subtests. 
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Table 4.1: Comparison with RNG passing SP800-22 

length  Original work[18] Propose work 

14 71.9 74.9 

15 84.6 87.7 

16 94.0 96.9 

17 95.7 97.6 

18 96.7 98.0 

19 97.7 98.7 

 

The 15 tests of SP800-22: 

1. The Frequency (Monobit) Test,  

2. Frequency Test within a Block,  

3. The Runs Test,  

4. Tests for the Longest-Run-of-Ones in a Block,  

5. The Binary Matrix Rank Test, 

6. The Discrete Fourier Transform (Spectral) Test,  

7. The Non-overlapping Template Matching Test, 

8. The Overlapping Template Matching Test,  

9. Maurer's "Universal Statistical" Test, 

10. The Linear Complexity Test,  

11. The Serial Test,  

12. The Approximate Entropy Test,  

13. The Cumulative Sums (Cusums) Test,  

14. The Random Excursions Test, and 

15. The Random Excursions Variant Test. 
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The order of the application of the test in the suite is arbitrary. We try all of input vectors 

for initial seed and observe how many vectors passing total 15 tests. Passing rate equals 

vectors of pass over total vectors. Each row of table 4.1 shows the n value and the 

number of passing rate. Proposed work increases the randomness, which means if we 

take oscillator or analog to digital device for PRNG input source, there is a higher 

guarantee for producing random sequence we need. 

 

4.2 Implement with Cell Base Design 

Table 4.2: The verification results on ASIC 

Design ASIC 

Technology UMC 90nm 

Clock frequency 285.7MHz 

Gate count 467k (3MMs) 

Key length 1024 2048 4096 

   Computation time 

(ms) 

3.5 13.7 106.6 

  Throughput (kb/s) 289.3 149.7 38.42 

 

A word-based RSA scheme is given in this work. This section shows the hardware 

implementation results. In this thesis, all of the design in hardware is implemented using 

RTL (Register- Transfer-Level) Verilog HDL (hardware description language) and 

synthesized on application-specific integrated circuit (ASIC). The technology of ASIC 

design is using UMC1 90nm CMOS process. The RTL synthesizer uses Synopsys3 

Design Compiler for ASIC. The data throughput of RSA is given by 
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The clock frequency is set to 285.7MHz and gatecount is 467k with three 

Montgomery multipliers. Cycle period is 3.5ns. The cycles of multiplication are about ( n 

+ p)*90% cycles. And The cycles of RSA are about (n+2)*(MM cycles). Where 

Montgomery method must transport domain between integer and Montgomery domain, 

So there are two extra MM cycles for transporting. The detail value is shown as table 

4.2. 

Table 4.3: Comparison with other 1024-bit Modular Multiplier with cell base design 

 

Table 4.3 shows the comparison with other 1024-bit modular multipliers 

implementations with ASIC design. Our work is not the most outstanding, but our works 

are scalable designs and [29] is not. Proposed designs can be modify to high radix 

architecture. The performance would be better than now. 

 

Author [29] [30] 

 

Proposed 

Technology 0.13μ m 

CMOS 

0.13μ m 

CMOS 

90nm 

CMOS 

Clock 

frequency 

(MHz) 

715 781.25 675.68 333.3 

Gatecount(k) 105 80 82 115 

Throughput 

(kb/s) 

712.22 775.95 663.37 379.26 

Note w=64 

w=1024 

p=257  

w=4 

p=65  

w=16 

p=32  

w=32 
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Table 4.4: Comparison with other 1024-bit RSA cryptosystem with cell base design 

 

Table 4.4 shows the comparison with other 1024-bit RSA implementations with 

ASIC design. In contrast to proposed design, the work shows a big area but the 

throughput is higher. In the nearly future, ROC government will establish 4096 bits RSA 

for standards. That means high throughput is the first consideration. The area of 

Mukaida‟s work is much higher than the others, since it is radix-2
32 

and calculates some 

parameter beforehand. The throughput of proposed work is higher than any others. We 

add one more Montgomery multiplier to against DPA attack. One Montgomery 

multiplier‟s gate count is about 130k. And it doesn‟t affect the frequency or throughput. 

Initial seed of random number generator is given by user. 

  

Author Mukaida 

[22] 

[21] Chen[25] 

 

Lin[24] Proposed 

Technology 0.18μ m 0.18μ m 0.18μ m 0.18μ m 90nm 

Methodology CRT  Montgomery Montgomery Montgomery 

Clock 

frequency 

(MHz) 

200 235 370 200 285.7 

Gatecount(k) 965 2262 138 365 337 467 

Throughput 

(kb/s) 

5000 2000 83 162 289.3 

Note radix-2
32

 Coprocessor p=16  

w=16 

p=64  

w=32 

p=32 

w=32 

(2MMs) 

p=32  

w=32 

(3MMs) 
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Chapter 5  

 

Conclusion 

 
In this thesis, a hardware architecture of word-based scalable RSA cryptosystem in 

GF(p) is given. In order to reduce execution time, a Montgomery modular multiplication 

algorithm and circuit are proposed. Forwarding circuit solves data dependency hazard of 

word-based Montgomery multiplication from two cycles to one cycle. Furthermore, 

bypass algorithm combines redundant shift operation, which shortens latency of 

processing modular multiplication about 90% of original work. The total cycles of 

processing multiplication once are about n*90%+(n/p). Proposed Montgomery multiplier 

architecture is applied in RSA or ECC cryptosystem. This work can be modified to 

support binary field GF(2
n
) operation by simply eliminating the carry.  

On the other hand, we modify random number generator based on Chaotic map. 

Higher passing rate RNG may suite for cryptosystem application. The total RSA 

architecture includes three MMs and one RNG, it against SPA and DPA without extra 

multiplication. The total cycles of processing modular exponentiation are n+2 times MM 

processing cycles. According to implementation result, it is synthesized using 90nm 

CMOS technology with 467k gates. The clock period is 3.5 ns. 
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