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Student : Yung-Chih Chen Advisor : Dr. Hsie-Chia Chang

Department of Electronics Engineering
Institute-of-Electronics

National Chiaoc Tung University

Abstract

This thesis introduces a scalable hardware implementation of RSA cryptosystem.
The architecture of this'workuis modified by the Montgemery modular multiplier and
it based on Montgomery powering-ladder algorithm. It can work in any length less
than 4096-bit. This proposed algorithm provides a shorter latency on modular
exponentiation operations than other works. It takes 3.5 ms, 13.7 ms, and 106 ms to
complete a 1024-bit, 2048-bit, and 4096-bit key length of RSA calculation time
respectively.

Furthermore, we modify random number generator based on chaotic map.
Testing by SP800-22, this work has higher passing rate than previous work. This
embedded in RSA cryptosystem for against SPA and DPA without extra cycle for

processing multiplications.
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Chapter 1

Introduction

1.1 Background

As science ,and 'technology progress, Cryptography has become an important
knowledge forgprotecting people’s private information. Information may be
transported through by mobile phone; ALM.cards; the lnternet, etc.:"People depend on
the tools sending message that may: be secret or important. Af there is no protector
between communicationgthehacker would get the message easily.

There are two kinds of commonly used cryptosystem ways: Secret-key
cryptosystem and public-key cryptosystem. The former is a conventional and simple
method. It use the same key to encrypt and decrypt. This method is known as
symmetric cryptosystem. There are many algorithms proposed for the symmetric
cryptosystem, such as DES(Data Encryption Standard) and AES(Advanced
Encryption Standard). A secure channel is needed between sender and receiver to
exchange the key, but how to get this channel also is a problem. We call it key
distribution problem.

The public-key system[1] was published in 1976 by Whitfield Diffie and Martin
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Hellman. This is the first method for sharing secret-key over an unprotected
communications channel without prior secure channel, which came to be know as
Diffie-Hellman key exchange method. Figure 1.1 shows a scheme of public key
system. In an encryption scheme anyone can encrypt using the public key, but only
the holder of the private key can decrypt it. People do not need secure channel to

exchange secret key anymore.

Bob

Hell . :
Al | EDCyption («—  Alice
lec: | public key
6?5 0639 (5:;30 Ciphertext
v
Hello . Alice
; < Decryption <
Alice! yp private key

Alice

Figure 1.1: Public key system model
RSA[2] is the popular public-key cryptosystems widely used nowadays. It is
based on the high difficulty of factoring large numbers. Rivest, Shamir and Adleman
established this method at MIT in 1978. It is widely used to ensure data privacy in
many fields. PKCS#1 standards[4] lines out a way of encrypting data or digital
signature using the RSA cryptosystem. In recent decades, RSA cryptosystem are

applied in the modern information technology.
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RSA cryptosystem is based on modular exponentiation. It is easy to implement by
repeat modular multiplications. Modular multiplication has to be performed a certain
number of times depends on the key length to ensure security, but consequence is that
the RSA operation has to take much more computational cost for security
consideration. In order to include RSA cryptosystem practically for high speed

application, it is desired to devise faster encryption and decryption operations.

1.2 Motivation

There are many applications-using RSA.as authentication for transactions and
encryptions or signature for secure messaging, for.example, virtual-private networks,
electronic commerce, and secure Internet access. The precision of operands is getting
higher for better security. A«major design concern for multiplication units used in
cryptography is the large.number of operand bits, whieh causes/large fanout of signals,
large wire delays, and eomplex routing.

Word-based method can.solve the high fanout problem. The precision of operand
is limited only by the memory. Any length less than 2048-bit can be performed in this
thesis.

Recent researches showed that power consumption may reveal the secret key.
Those attacks, such like SPA and DPA, work based on the statistic analysis of power

tracing. It is essentially to design some extra circuits to against the power attack.



1.3 Thesis Organization

In this thesis, the scalable RSA cryptosystem is given. In Chapter 2, the
preliminary mathematical background of RSA is first introduced. And then we
describe the Montgomery multiplication and modular exponentiation algorithms
which used in RSA cryptosystem. Third, we introduce power analysis method. In the
end of this section, we discuss about random number background knowledge.

In Chapter 3, architecture of word-based Montgomery multiplication over prime
field is proposed. Second, we proposed a modified random number generator for high
passing rate of testiFinally,swe=introduced total architecture of RSA cryptosystem
which against power attack by-adding random number generator.

In Chapter 4,"it shows the hardware implementation results and comparison for
ASIC and test results for proposed random number generator. Conclusion is given in

Chapter 5.



Chapter 2

RSA Cryptosystem and Random

Number Generator

2.1 Mathematics Foundation

This chapter introduces the basic arithmetic used in RSA cryptosystem over GF(p).
Modular arithmetic suchas modular multiplication-is especially an important part in

the RSA systems.

2.1.1 Number Theory

Congruences

One of the most basic and useful in number theory is modular arithmetic, or
congruences. Let a, b, n be integers with n=0. If a and b differ by a multiple of n, a is
congruent to b mod n.

a =b(mod n)



It can be rewritten as

a=h+nk

For some integer k

Primitive Roots

In general, when p is a prime, a primitive root mod p is a number whose powers
yield every nonzero class mod p. There are @ (p-1) primitive roots mod p. Let g be a
primitive root for the prime p.

- If i is an integer, then g'= (nod p) if and only ifsi =0(mod p-1).

- If j and k are integefspthen'g’= g* (mod p) if andrenly/if j=k(mod p-1).

Fermat’s Theorem
Fermat’s theorem states the follows: If p-is prime and a is a positive integer not
divisible by p, then
a’7' =1 (mod.p) (2.1)
We know that if all.of the elements of Zp, where/Zp. is the set of integers
{0,1,. .. ,p—1}, are multiplied by.a,"medulo_p, the-result consists of all of the elements
of Zp in some sequence. Furthermore, ax 0'=0 mod p. Therefore, the (p — 1) humbers
{a mod p, 2a mod p,...,(p—1)a mod p}
are just the numbers {0, 1,..., p — 1} in some order. Multiplying the numbers in both
sets and taking the result modulo p yields
1x2x..x(p—1)=(@amodp) x (2amod p) x ... x ((p—1)a mod p)
(p—1)!'modp=(p— la"™
We can cancel the (p—1)! term because it is relatively prime to p. This yields Equation

2.1.



Euler’s Totient Function

Before presenting Euler’s theorem, we need to introduce an important quantity in
number theory, referred to as Euler’s totient function and written @(n), where @(n) is
the number of positive integers less than n and relatively prime to n. It should be clear
that for a prime number p, ¢(p) = p—1 There are two prime numbers p and g, with p

#+ (. Then, for n = pq,

o(n) = o(pg) = e(P)e(q) = (P — 1)(g — 1). (2.2)

Euler’s Theorem

Euler’s theorem states that-for-every a and. n that are relatively prime:
a®™ =1 mod n (2.3)
Equation 2.3 is true If n is prime, because in that case ¢(n) =(n.— 1) and Fermat’s
theorem holds. However, it also holds for any integer n. Recall that.¢(n) is the number
of positive integers less than n that are relatively prime to‘ns Consider the set of such
integers, labeled as follows:
R =X1,x2,...,.xp(n).
Now multiply each element by a, modulo n:
S = (ax; mod n),(ax, mod n),...,(@Xy(n))-

The set S is a permutation of R, by the following line of reasoning:
1. Because a and x; are relatively prime to n, ax; must also be relatively prime to n.

Thus, all the elements of S are integers less than n that are relatively prime to n.

2. There are no duplicates in S. If ax; mod n = ax; mod n, then x; =x; . Therefore,



¢ () ¢ ()

1_[ ax;modn = nxi

i=1 i=1
¢ ¢

1_[ ax; = 1_[ x; (mod n)
i=1 i=1
¢ M) ¢

a?® 1_[ X; = 1_[ x; (modn)
i=1 i=1

a*™=1 modn
An alternative form of the theorem is also useful:

a?""* = a mod n (2.4)

2.1.2 Montgomery Method

In 1985, P. LixMontgomery. introduced-an efficient algorithm for' computing R =
a*b mod n where a, b, and n«are k<bit_binary numbers. The algorithm is particularly
suitable for implementation, on general-purpose-computers which are capable of
performing fast arithmetic “modulo a power of 2. .The ‘Montgomery reduction
algorithm computes the resulting k=bit.number R-without performing a division by the
modulus n. Via an ingenious representation of the residue calss modulo n, this
algorithm replaces division by n operation with division by a power of 2. This
operation is easily accomplished on a computer since the numbers are represented in
binary form. Assuming the modulus n is a k-bit number, i.e., 2k-1< n <2k, let r be 2k.
The Montgomery reduction algorithm requires that r and n be relatively prime, i.e.,
ged(r,n)= gcd(2k,n)=1. This requirement is satisfied if n is odd. The basic idea of the
Montgomery reduction algorithm is showed as following.

Given an integer 0 < a < n, we define it’s n-residue with respect to r as



a =a-rmodn,
It is straightforward to show that the set

{i - rmod n|0<i<n-1}
is a complete residue system, i.e., it contains all numbers between 0 and n-1. Thus,
there is a one-to-one correspondence between the numbers in range 0 and n-1 and the
numbers in the above set. The Montgomery reduction algorithm exploits this property
by introducing a much faster multiplication routine which computes the n-residue of

the product of the two integers whose n-residues are given. Given two n-residues a

and b, the Montgomery prod

where r is the invers

The resulting numb

Since

(mod n)

a -b -r(modn)



2.2 RSA Algorithm

2.2.1 RSA Scheme

The RSA scheme is the most widely used to ensure data privacy in many fields and
applied to the digital signature generation and verification, the RSA DS algorithm,
announced in ANSI1 X9.31 [5]. It is a block cipher in which the plaintext and
ciphertext are integers between 0 and n=1-for.somen which is typically between 2512
and 24096. The more_ bits-provides the higher security. The scheme of RSA is showed

as following:

Algorithm 2.1. (RSA Algorithm) Key generation
Select p,q p and q both prime, p#q

Calculate N and o(N) . 'N =pg, o(N)=(p—1)(g=1)

Select integer E ged(e(N),E) =1; 1L <E <¢(N)

Calculate D D =E * mod-o(N)

Public key KU = {E,N}

Private key KR = {D,N}

Encryption

Plaintext M M<N

Ciphertext C C=MEmodN

Decryption

Ciphertext C C<N

Plaintext M M = C° mod N =M°E mod N = M mod N

10



Let p and q be two distinct large random primes. The modulus N is the product of
these two primes: N = pg. According to equation(2.2), the Euler’s totient function of
N is given by

e(N)=(p—D@—-1)
Now, select a number 1 < E < @(N) such that
ged(o(N),E) = 1,
and compute D with
D =E 'mod ¢(N).
Here, {E,N} is the public key and {D,N} is'the private key. The value of D and the
prime numbers p and q.are kept'secret. Encryption is performed by computing
C =MEmod N,
where M is the plaintext such-that-0 < M <'N..The number C'is the ciphertext from
which the plaintext M can be computed using
M = CP mod N.
The correctness of-the ' RSA algorithm follows. from Euler’s theorem. Let N and a be
positive, relatively prime integers. Then a

o(N).= 1 mod-N

Since ED is equal to 1 mod ¢(N), it meets that ED is equal to 1+ko(N) for some
integer k.
CP =(M5)° mod N
=M mod N
= MM mod N
=MxM”" ™ mod N

=M mod N

11



2.2.2 R-L and L-R Algorithm

In RSA cryptosystem, the modular exponentiation is the basic operation. The
simple and direct way to compute ME mod N is multiplying M sequentially for E times.
Since all the operation (M, N, E, D) are typically large than 512 bits. It is also too hard
to store the result. It is needed to find some efficient methods to compute ME. There
are two common algorithms that can be used, the L-R algorithm and the R-L

algorithm.

L-R Algorithm
MEmod N = M(Cu=a:2"77+ denx2iteor2®) mod N
= Méx(Me*( .. %M1 fmodN)? modN)? . ....)>mod N
In the L-R algorithm, it computes square and-multiplication sequentially. It does mean
that both square and multiply operations<can be performed in the same hardware

multiplier, thus saving on area.

R-L Algorithm
MEmod N = M(en-1-2"""++er=21+€0+2) mod N
= Men-1*2""" % (Me*2 x( M%*2° mod N) mod N) ....) mod N
In the R-L algorithm, the square and multiply operations are independent, and may be
performed in parallel. Thus half latency is need to complete the same exponentiation.

However, two physical hardware multipliers are required to achieve this speed up.

12



2.2.3 Montgomery Powering Ladder

In the powering ladder algorithm [7], the square and multiply are parallel, too.
There are one difference between powering ladder and R-L algorithm. It process E
from right to left, but it does multiplication every iteration. Regular multiplication
would help average power consumption between. It can resist the simple power

analysis attack. Powering ladder algorithm is shown in algorithm 2.1:

Algorithm 2.1. (Montgomery Powering.Ladder)
Input : M,E=(et.1,...,€0)2
Output: Y=MF
1. Ry < 1; Ri<4M;
2.for(j=t-1t00)
if (ej=0)
Ri<—RoRq;
Ro< (Ro)’;
else
Ro<— Ro Ri;
Ri< (R
3. return Ry ;
It use Montgomery multipliers instead of normal multipliers. We prefer use
Montgomery method because it is easy to implement in hardware, and we can get the

advantages from powering ladder skill in the same time.

13



2.3 Power Analysis

Cryptographers have traditionally analyzed cipher systems by modeling
cryptographic algorithms as ideal mathematical objects. Conventional techniques such
as differential and linear [9] cryptanalysis are very useful for exploring weaknesses in
algorithms. But the physical implementations often result in the leakage of
side-channel information.

Attacks have been proposed that use such information as timing measurements
[10], power consumption [11], electromagnetic emissions and faulty hardware. In this
section we examine the,weakness of RSA cryptographic algorithms to power analysis
attacks. Specifically;attacks on:the-modular exponentiation process are described.

Power analysis-attacks work-by-exploiting the differences In power consumption
between when ‘a" tamper-resistant device processes a logical zero and when it
processes a logical.one. For example, when'the secret data on a smartcard is accessed,
the power consumption may be different depending .on the Hamming weight of the
data. If an attacker knows the Hamming weight of the secret key the attacker could
potentially learn the entire secret.key..This type.ofattack, where the adversary directly
uses a power consumption signal to obtain‘information about the secret key is referred
to as a Simple Power Analysis (SPA) attack and is described in section 2.3.1.
Differential Power Analysis (DPA) is described in section 2.3.2 and it is based on the
same underlying principle of an SPA attack, but uses statistical analysis techniques to

extract very tiny differences in power consumption signals.

14



2.3.1 Simple Power Attack (SPA)

An SPA attack, as described in [11], involves directly observing a system’s power
consumption. Suppose that the attackers not only have unlimited access, but also have
detailed knowledge of the software and hardware of the systems. If an attacker can
deter- mine where certain instructions are being executed, it can be relatively simple
to extract useful information.

SPA on a single-key cryptographic algorithm, such as DES, could be used to learn
the Hamming weight of the key bytes. DES uses only a 56-bit key so learning the
Hamming weight information-alone makes DES vulnerable to.a brute-force attack. In
fact, depending on the implementation; there are even stronger SPA attacks. A two-key,
public-key cryptosystem, such-as-an RSA or. elliptic curve, cryptosystem, might also
be vulnerable to an SPA attack on the Hamming.weight of the individual key bytes,
however it is possible an even stronger<attack can be made directly against the
square-and-multiply-algorithm.

If exponentiation was performed in software using oneof thersquare-and-multiply
algorithms, there could be‘a number.of potential*vulnerabilities. The main problem
with both algorithms is that the outcome of the ”if statement” might be observed in
the power signal. This would directly enable the attacker to learn every bit of the
secret exponent. A simple fix is to always perform a multiply and to only save the
result if the exponent bit is a one. This solution is very costly for performance and still

may be vulnerable if the act of saving the result can be observed in the power signal.

15



2.3.2 Differential Power Attack (DPA)

A DPA attack is more powerful than an SPA attack because the attacker does not
need to know as many details about how the algorithm was implemented. The
technique also gains strength by using statistical analysis to help recover side-channel
information.

The problem with an SPA attack is that the information about the secret key is
difficult to directly observe. The information about the key was often obscured with
noise and modulated by the dewice’s clock signal. IDPA can be used to reduce the
noise and also to ”‘demodulate”” the data. Any power biases at.the time corresponding
to the guess bit operation arevisibleras an obvious spike in‘the difference signal and
much of the noise IS eliminated-because averaging reduces the noise variance.

B Single-Exponent, Multiple-Data (SEMD) Attack

The SEMD_attack assumes that' the<smartcard is willing 'to_exponentiate an
arbitrary number of random values with two.exponents: the secret exponent and a
public exponent. The basic attack is that by comparingthe power signal of an
exponentiation using a known exponent.to a power signal using an unknown exponent,
the adversary can learn where the two exponents differ, thus learn the secret exponent.
In reality, the comparison is nontrivial because the intermediate data results of the
square-and-multiply algorithm cause widely varying changes in the power signals,
thereby making direct comparisons unreliable. The solution to this problem is to use
averaging and subtraction.
B Multiple-Exponent, Single-Data (MESD) Attack

The MESD attack is more powerful than the SEMD attack. The SEMD attack is a
very simple attack requiring little sophistication on the part of the adversary, but the

resulting DPA bias signal is sometimes difficult to interpret. The Signal-to-Noise
16



Ratio (SNR) can be improved using the MESD attack. The assumption for the MESD
attack is that the smartcard will exponentiate a constant value using exponents chosen
by the attacker. This value may or may not be known to the attacker.
B Zero-Exponent, Multiple-Data (ZEMD) Attack

The ZEMD attack is similar to the MESD attack, but has a different set of
assumptions. One assumption for the ZEMD attack is that the smartcard will
exponentiate many random messages using the secret exponent. This attack does not
require the adversary know any exponents, hence the zero-exponent nomenclature.
Instead, the adversary needs.to he ‘able'to predict the intermediate results of the
square-and-multiply algorithm-using an off-line simulation. This usually requires that
the adversary knows:the algorithm-being used by the exponentiation hardware and the
modulus used for the exponentiation. There are only afew common approaches to
implementing modular exponentiation algorithms; so it is likely an adversary can
determine this information. It is also likely-that

the adversary can learn the-modulus because this information As:usually public.

2.4 Random Number Sequence

The generation of random numbers is required in several applications, including
Montecarlo simulations, testing of digital circuits, telecommunication systems, and
cryptography [12]-[14]. Among circuits and algorithms for the generation of random
numbers, an important concept is represented by the Pseudo Random Sequence
Generators(PRNGS).

In the last few years, discretized chaotic dynamical systems were also exploited
for cryptographic applications, and several works were published on this subject[15].

A digital PRNG is a finite state machine that initialized by an n bit initial seed SO.
17



In figure 2.1, the general structure of a PRNG is shown: the memory block consists on
n flip-flop storing the present state Si, the input forming logic defined by logic
function F evaluates the next state Si+1, according to the relationship S;+1 = F(S;), the
output forming logic defined by the function G decodes the state and determines the

current output bit (OUT;=G(S))).

seed Sp
—l

> n - bit register

- o G(S))
o i} » Output Forming
v A .
5 @ Lagic
= =
= Z l
u 2
= [=5

OUT;

h
F(s3)

Input Forming Logic

figure 2.1 Block diagram of random number generator
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Chapter 3

Proposed RSA Architecture

3.1 Word-based Montgomery Multiplication

Montgomery algerithm computes-the modular multipfication witheut trial division. It
turns the modular multiplication into iterations<0f n<bit addition and shifting and reduces
the complexity of moedular multiplication.to constant time operations.”A major design
concern for multiplication units used in cryptography-is.the large/number of operand bits,
which cause large fanout ofsignals, large wire delays, and camplex routing.

Tenca and Koc proposed a scalablesword-based-architecture [19] based on radix-2
Montgomery Multiplication. It allows the exploration of several design trade to obtain the
best performance in a limited chip area without limiting the operand precision.

Algorithm 3.1 executes a series of operation to generate XYr *mod N, scanning Y and
N word-by-word and scanning X bit-by-bit. All vecter can be represented as:

N = (0,N°"",... N:,No),
Y =(0,Y7"., Y Y0),

S=0,S"7"....,5,5,



where n is a multiple of word size w, the n-bit operands are split into e words, and e =
n/w. The concatenation of two vectors A and B is represented as (A, B). The bit position i
of the kth word of an operand A is represented as A%; .

Algorithm 3.1. (Word-based Montgomery Multiplication Algorithm)

Input : XY N

Output: S

1.5S=0;

2. fori=0ton—-1

2.1 (C4,8)=x;Y'+5° ;

2.2 if Sy= 1then;

2.3 else;
i.forj=1toe;
A. (Ca &) =Ca+xY + 9
B.S '=(S], s)7\L);
3. return S;

The right-shift operation must wait for the most significant position of S * of the next
loop. This is a critical limitation of the algorithm. To implement this algorithm, unrolling
the for loop to pipelined architecture is a useful skill for increment of parallelism. The
dependency on the carry bits within j loop restricts their parallel execution. However,

instructions in different i loops may be executed in parallel.
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3.1.1 Proposed Word-based Montgomery Multiplication

Architecture |

The fundamental problem with Tenca-Koc architecture is the dependency caused by
waiting to shift right. We can solve this problem on architecture layer. Every output S of
Processing Unit(PU) is w-1 bit because of dependency of right-shift word. The wth bit will
be executed at next cycle. We acquire wth bit by forwarding method, which means the wth
bit bypass registers. The forwarding bit is represented as:

SI* = (Cy+ Cp +oddN! .Y #51) mod 2;

Where odd equals S°%. 1f.8%:is 6dd;the summationawould include N, otherwise there
is no N in this summatiofis.Nofice that the[fight/part.of equal sign‘are wires in PU'. Left
part of equal sign is,a Wire in PU* It is.a combinational circuit, which bypass the
registers so it can execute with §' ,—;.; at the sameé cy€le. ThiS method also increase
critical path of PU, se-next step is simplifying it Considering right-shift with S, we can
abandon Cy, After right=shift C, is the‘wth.bit.of.S;.we.can.directly pass this bit to next PU
so we don’t need to store it by.a register. Second, the operation of “mod 2” also means tell
the summation is odd or evend We,can.use XOR to replace‘two-level carry save adder. The
forwarding bit is represented as:

St = C,® oddN! @ xv/® S/;
Figure 3.1 shows block diagram of forwarding circuits. Arrows are the nets without

passing registers.
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Figure 3.1 Block diagram of proposed word-based Montgomery multiplication I

Figure 3.2 Block diagram of proposed word-based Montgomery multiplication |1

3.1.2 Proposed Word-based Montgomery.Multiplication

Architecture 11

In algorithm 3.1, executing an n-bit multiplication spend n iterations. Considering this
case: if x; is zero and S is even. That means we only to do right-shift without any addition.
Shift is easily to complete by hardware. We can combine right-shift when this case

happened in order to reduce n times iteration of multiplier. Algorithm 3.2 is proposed

bypass algorithm:
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Algorithm 3.2. (Proposed Word-based Montgomery Multiplication Algorithm I1)
Input : XY N
Output: S
1.5=0;i=0;
2. while (i<n)
2.1 odd=(x;Y+S )mod 2;
2.2 case{odd, xi}

2°b00: =S,

2°b01: S*=S+Y;
2°b10: §° =S +N;
2°bll: §’=S
endcase

2.3 if (bypass==

S=5

i=i+2;
else

S=8/2

i=i+1;
3.if S>N, then S=S-N;
4. return S;

We want to simplify case {odd,xi} = {0, 0}. If in next iteration we meet previous case,
we only to do right-shift. We combine the shift next iteration with this one. Where bypass
represented as:

bypass = (S’ - ai+1==0).
That means we detect PU computing without addition next cycle. So we could shift 2 bits

and jump over i+1™ iteration. It also reduces the total multiplication computing time. But
23



this method also produces some problems. First, It increases design complex of delivering
xi from memory to PUs. If bypass is active, we will abandon multiplicand aj.; and get aj+».
Getting x is not in a regular period. Thus, we abandon PUj,; replace aj«;. X+ is still
deliver to PUi;q, but S is passed to PUi:». So we can also getting x from memory in a
regular period. Second problem is that S is not exactly a w-bit value. It represented with
two w-bit Squm and Scarry In Order to decrease critical path without w-bit adder in PU. That
means when Sgm and Scarry are both even, we can tell S is even. If Sgym and Scarry are both
odd, we could not do right-shift because that will delete carry-out bit at LSB. Bypass will
represented as:
Pypass = (S’sum * S’carry * Ais1=.=10).

Even through this restriction, we=still-have about 10% iteration.are abandoned. The
overhead is addition ‘p"MUXes before-every PUS. Block diagram'as short dotted line
shown in figure 3.2.

Figure 3.3 shows latency comparison of proposed circuits. For this case, we have three
Pus, length n is 32, andsword length w'is 8. \WWe calculate that 1 times.ccccccce modular
999999909. It is clear that if we,overcome two cycle dependency;. it'can process more X;
than previous work. Original avorks, takes, 66 _iterations.to complete multiplication, but
proposed work | only takes 45 iterations. Proposed ‘work Il ignores dummy iterations. It

takes only 32 iterations.
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3.2 Architecture of Proposed Montgomery Multiplier

The proposed architecture of the reconfigurable multiplier is presented in this chapter.
As mentioned in subsection 3.1, the precision of operands is only limited by the memory
size and control subsystems. It is adapted to all precision less than 2048 bits over prime
fields. All of main components used in the scalable multiplier are detailed in following

subsections.

3.2.1 Processing Unit

Figure 3.4 Architecture of processing unit

Figure 3.3 shows the architecture of processing unit. There are two w-bit carry save
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adder to do the four-input (Zs, Zc, a; - B, g - N) redundant arithmetic. First carry save adder
calculates partial sum of Zs, Z., and a; - B. The odd parity is determined by the first bit of
partial sum when PU processes first word which we call LSW (Least significant word).
LSW also determines using original a; or taking aj.;. Last bit of partial sum is stored by
the carry-reg. It will be clear when LSW is high.

Output of Zs is 31-bit because of dependency of shift-right word. We will acquire this
value by forwarding skill. LSB of two-level CSA sum takes bypass to next PU without
passing register. It is the value of 32nd bit of Zs. Although forwarding method increase
critical path of PUs, we can easily simplify it. LSB of two=level CSA sum can replace by a
five-input XOR gate.

The MUX that below:registersiselect:Z-or Z divide 2. Value of Z divide 2 is taken from

the second PU previous'of this one:

3.2.2 Number of Processing, Unit Size of Word

The time to compute n bits' depends=on. word number-€, word-size w, and number of
PUs p. Word number e dominates the kernel cycle(a PU finishes processing one value
until next value comes). One PU processes that x times Y spend e cycles. Considering
2-cycle latency because of dependency between S; and Sj.1, next PU has one cycles stall
after previous PU finished. According to early subsection, we used forwarding skill to
reduce two-cycle latency. In case, number of words larger than number of PUs, proposed
architecture takes e*(e*w/p)+(p-1) cycles finish total multiplication. Tenca-Koc takes
2*e*(e*w/p)+(p-1) cycles . Another case if number of words larger than number of PUs,
kernel cycle would not more than p. It is only half of previous work.

Considering proposed bypass word-based algorithm in early subsection, this work can
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reduce more redundant iterations. How many iterations are reduced dependent on the
number of Os in intermediate values in data-path. Random sequence generator affects
these values, so get key information by observing reduced time is not easy.
The formula of total Montgomery multiplication time in this work is

e*(e*w/p) + (p-1) for data length > p*w

(e*w)+(p-1) for data length <=p*w
figure 3.6 shows the relationship between processing time and number of PUs. If data
length more than p*w, the latency will increase quickly. According data length we need to
choose proper numbers of PUs in circuits. In this work we put 64 PUs which support any

bit length less than 2048.

3.2.3 Montgomery Multiplier with Flexible Length

If the length is a multiple of 64 or a multiple of 64, the output is/the sum of last PU.
Otherwise it is costly using MUXto support short length data. \We pass.the sum to last PU

replace MUX method. This method takes p - [ n/p |+ (p—4) cycles.

time n=1024

(clock cycles)
2500
2300 —w=38
2100 ‘ ——w=16
1900 w=32
1700 ——w=64
1500
1300 & <
1100 i

900

0 100 200 300 400 500

number of PUs

16 32 64 128

Figure 3.5 Configurations of n=1024
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3.3 Random Bit Generator

3.3.1 Random Bit Generator from Chaotic Map

In 1989, Huertas, Quintana, and Valencia established Chaos discrete maps from
digital circuits[16]. As times goes on, Chaotic map had been developed and modified. The
PRNG based on the discretization of a chaotic map F is implemented with the input

forming logic F(S;) realizing a discretized f” of the map f. The map f is defined on a
continuous state space | C R. And«f can be approximated with its discretized version /. To

keep the circuit complexity low,an n-bit fixed-point representation of the discretized state
is commonly used withithe discretized-state x

In particular, considering.the Chaotic map, defined.as:

fs(X)=p -xmad 1,

where the state space T'is the interval [01), the discretized state space /" C | is assumed in
this work to be the set of rational values that can be expressed as
x=(0.b10b2::0,)7 b €{0;1}.

At time i, the fractional part of x;’, ( ba,..., by ), is stored in the state register as Si.
Since different bit strings bs,..., b, identify different discretized states, each x;’ can be

unequivocally related to its fractional part, i.e. to a natural number
ki=2n -xi’, with 0 <ki <2n-1.
The generic discretized map fs’: I’— I’ has the following expression:
fs’(x”) = [B-x"mod 1],
where BER+ is the characteristic parameter and the subscript ‘tr’ accounts for the
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truncation to the precision 2™. Accordingly, above equation is equal to
f'(x’) = | 2" B-x’mod 2" |-2™
where | x/ represents the integer part of x. The output forming logic can be represented as:
g(k)=2"fs’(k /2" = | B-kImod 2".
Moreover, in what follows the finite precision representation of  is taken into

account, in particular B is supposed to belong to the set

B={geQ:q=m-2"";meN}

Initial Seed S, B1 B2 B3 Ba
; L 4o
LFSR MUX

l Y

Multiplier

A

Random number n bits

Figure 3.6 Block diagram of proposed RNG
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3.3.2 Proposed Dynamic Random Bit Generator

In order to increase the period and rate of passing random sequence test, we have a
proposed architecture of RNG of Chaotic map. The fundamental idea is to change
dynamically characteristic parameter of chaotic map. According to early subsection, f§ is a
2n-bit value and taken from set B. As shown in Figure 3.6, where block DCP (Dynamic
Characteristic Parameter) includes four different characteristic parameters. The various
constants are selected through a decoder driven by a 5 bits LFSR. Obviously, increasing
the length of the Liner Feedback Shift Register.(LFSR) ahich drives the decoder makes
the period of the overall system increases, but the circuit’s{complexity increases too.
Increasing the period alse.means raise-entropy of the random sequence.

As shown in table 3.1, we have-four similar 3_can choose. In order to share resource,
any p in the set only has less than two different bits from others. Output forming logic of
dynamic chaotic map are represented as:

out(X) = [ p* - k] mod 2",
Where f* means dynamic parameter. Another purpose for thisawork is to mask p from
multi-layer perceptron neural network(MLP-MM). According to statistics
by MLB-MM, it could calculate the parameter we ‘used in circuit in 2n cycle. It would
decrease the security of our circuit. There are two methods to solve this problem: one is
taking dynamic parameter to mask our true parameter, and another one is taking true

random vector as initial seed Sp.
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Table3.1 Four parameters

00 111...00.11...11
01 011...00.11...11
10 110...00.11...11
11 010...00.11...11

3.4 Proposed RSA Crypto-core'with RNG

The modular exponentiation-algorithm mentioned in early subsection are three
methods: L-R, R-L, ‘and ‘powering-ladder. In this work, mve choose" powering ladder
method[28] in order to'increase the parallelism and-better against SPA and DPA ability.

As shown in figure 3.7, we have two-sets.of multiplier. There are four 2048 bits-bit
registers: N for modular, E for key, R®.mod N, and M for plaintext. Register A for storing
multiplicand, so R; store in' Aat firstiiteration of multiplication.

The basic security of RSAJs basedwon the difficulty of factoring the product of two
primes. But recent research discovered that the information of the key can be estimated by
tracing the power consumption. DPA is a powerful tool that allows cryptanalysis to extract
secret key and compromise the security of smart cards and other cryptographic devices by
analyzing their power consumption. Simple power analysis is a simpler form of the attack

that does not require statistical analysis.
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One work mentioned in [20] is_a’ countermeasure against DPA because the final
subtraction of output depends on.the inputs. And also-the*output is related to the key. In
the thesis , the proposed architecture of 2 multipliers consumes the same power since that
the 2 multipliers always compute despite-of.the bit of key. The only difference is that Z-reg

keeps its value when E; is 0, thus cause the weakness of SPA.

Another work [24] recall the equation M®*™®®™ = M? (mod n). Where parameter r is
a random number produce by a random number generator. The DPA countermeasure can
add r to the original key E as a new key. Therefore, The key guessed by the adversary is
randomized thus preventing the ZEMD attack. But this method increase total executing
time of modular exponentiation. Take n-bit random number will increase log," times

Montgomery multiplication executing time.
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We prefer to hide base number instead of ‘exponent number. According to
common-multiplicand multiplication[8], two register Ry and R; can be extract common bit
as:

Reom = (Ro & R1&rand(So)),
Where rand(So) is n-bit random sequence. And remainder of Ry and R; are:
Roc=(Ro @ Rcom),
Ric= (R1® Reom),
It will change two 32-bit registers to three, but we can hide Ry (or R;) to two different

number combination. Considering random number in R¢om , this combination has widely
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chosen. Even if key E has not been hide, it can still preventing the DPA attack because of
base number is randomized. Assume this case Ex = 1, follow powering ladder algorithm:
Ro—Rp * Ry
Ri<—R; - Ry
The operation can be replace by this one:
Ro«— Roc R1 + ReomR1

Rie— Rl,c R1 + ReomR1

We can use three Montgomery multiplier to complete this architecture as figure 3.8.

35



Chapter 4

Implement Result and Comparison

4.1 RNG Testing

SP800-22[26] issspecial publication. release from' National Institute Standards and
Technology (NIST).It discusses some aspects of<selecting and pseudorandom number
generators. Generators use in cryptographic application may need 'stronger requirements
than for other applications. In.particular, their <outputs must /e unpredictable in the
absence of knowledge of the inputs.

The NIST test suite[27] is a statistical _package-consisting of 15 test that developed
to test the randomness of binary sequences produced by either hardware or software
based cryptographic random or pseudorandom number generators. These tests focus on a
variety of different types of non-randomness that could exist in a sequence. Some tests

are decomposable into a variety of subtests.
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Table 4.1: Comparison with RNG passing SP800-22

14 71.9 74.9
15 84.6 87.7
16 94.0 96.9
17 95.7 97.6
18 96.7 98.0
19 97.7 98.7

The 15 tests of SP800-

1. The Frequenc t) Test,

2. Frequency Test within.a Block,

8. The Overlapping Template Matching Test,
9. Maurer's "Universal Statistical™ Test,

10. The Linear Complexity Test,

11. The Serial Test,

12. The Approximate Entropy Test,

13. The Cumulative Sums (Cusums) Test,

14. The Random Excursions Test, and

15. The Random Excursions Variant Test.
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The order of the application of the test in the suite is arbitrary. We try all of input vectors
for initial seed and observe how many vectors passing total 15 tests. Passing rate equals
vectors of pass over total vectors. Each row of table 4.1 shows the n value and the
number of passing rate. Proposed work increases the randomness, which means if we
take oscillator or analog to digital device for PRNG input source, there is a higher

guarantee for producing random sequence we need.

4.2 Implement with Cell Base Design

Table 4.2: The verification results.on’/ASIC

Technology UMC 90nm
Clock frequency 285.7MHz

Gate count 467k (3MMs)

Key length 1024 2048 4096

Computation time 3.5 13.7 106.6
(ms)

Throughput (kb/s)  289.3  149.7  38.42

A word-based RSA scheme is given in this work. This section shows the hardware
implementation results. In this thesis, all of the design in hardware is implemented using
RTL (Register- Transfer-Level) Verilog HDL (hardware description language) and
synthesized on application-specific integrated circuit (ASIC). The technology of ASIC
design is using UMC1 90nm CMOS process. The RTL synthesizer uses Synopsys3

Design Compiler for ASIC. The data throughput of RSA is given by
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n(exercised precision)
k (efficient key length) * MM (computation time of multiplication) * Cycle period

The clock frequency is set to 285.7MHz and gatecount is 467k with three
Montgomery multipliers. Cycle period is 3.5ns. The cycles of multiplication are about ( n
+ p)*90% cycles. And The cycles of RSA are about (n+2)*(MM cycles). Where
Montgomery method must transport domain between integer and Montgomery domain,
So there are two extra MM cycles for transporting. The detail value is shown as table
4.2.

Table 4.3: Comparison with.other 1024-bit Modular Multiplier with cell base design

Technology 0.13y m 0.13uy m 90nm
CMOS CMOS CMOS
Clock 715 781.25 675.68 333.3
frequency
(MHz)
Gatecount(k) 105 80 82 115
Throughput  712.22 775.95 663.37 379.26
(kbfs)
Note w=64 p=257 p=65 p=32
w=1024 w=4 w=16 w=32

Table 4.3 shows the comparison with other 1024-bit modular multipliers
implementations with ASIC design. Our work is not the most outstanding, but our works
are scalable designs and [29] is not. Proposed designs can be modify to high radix

architecture. The performance would be better than now.
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Table 4.4: Comparison with other 1024-bit RSA cryptosystem with cell base design

Technology 0.18uy m 0.18y m 0.18uy m 0.18uy m 90nm
Methodology CRT Montgomery Montgomery Montgomery
Clock 200 235 370 200 285.7

frequency
(MHz)
Gatecount(k) 965 2262 138 365 337 467
Throughput 5000 2000 83 162 289.3
(kbrs)
Note radix-2%* Coprocessor ~ p=16 p=64 p=32 p=32
w=16 w=32 w=32 w=32

(2MMs)  (3MMs)

Table 4.4 shows.the comparison with other 1024-bit ' RSA implementations with
ASIC design. In contrast to proposed design, the work shows asbig area but the
throughput is higher.dnthe nearly future, ROC government will establish 4096 bits RSA
for standards. That means high throughput is the first consideration. The area of
Mukaida’s work is much higher than.thevothersysince-it is radix-2%* and calculates some
parameter beforehand. The throughput of ‘proposed work is higher than any others. We
add one more Montgomery multiplier to against DPA attack. One Montgomery
multiplier’s gate count is about 130k. And it doesn’t affect the frequency or throughput.

Initial seed of random number generator is given by user.
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Chapter 5

Conclusion

In this thesis, a hardware architecture_of word-based scalable RSA cryptosystem in
GF(p) is given. In order to‘reduce-execution,time;, a Montgomery.modular multiplication
algorithm and circuitsare proposed.-Forwarding circuit'solves data dependency hazard of
word-based Montgomery multiplication from two cycles to/one cycle. Furthermore,
bypass algorithm ‘combines redundant _shift operation, which' shortens latency of
processing modular ‘multiplication about 90% of original work. .The total cycles of
processing multiplication.once.are about n*90%+(n/p). Proposed Montgomery multiplier
architecture is applied in RSA‘or ECC.cryptosystem. This work can be modified to
support binary field GF(2") operation by simply eliminating the carry.

On the other hand, we modify random number generator based on Chaotic map.
Higher passing rate RNG may suite for cryptosystem application. The total RSA
architecture includes three MMs and one RNG, it against SPA and DPA without extra
multiplication. The total cycles of processing modular exponentiation are n+2 times MM
processing cycles. According to implementation result, it is synthesized using 90nm

CMOS technology with 467k gates. The clock period is 3.5 ns.
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