

國立交通大學

電子工程學系電子研究所碩士班

碩 士 論 文

階層性和模組化的

泛用型媒體存取控制擬真器平台設計

The Hierarchical and Modular Design

of Generic MAC Emulator Platform

研 究 生：陳裕華

指導教授：黃經堯 博士

中華民國九十九年七月

階層性和模組化的泛用型媒體存取控制擬真器平台設計

The Hierarchical and Modular Design of Generic MAC Emulator Platform

研 究 生：陳裕華 Student: Yu-Hua Chen

指導教授：黃經堯 Advisor: Ching-Yao Huang

國 立 交 通 大 學

電子工程學系電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering

College of Electrical & Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

in

Electronics Engineering

July 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年七月

i

階層性和模組化的

泛用型媒體存取控制擬真器平台設計

學生：陳裕華 指導教授：黃經堯 博士

國立交通大學電子工程學系電子研究所碩士班

摘 要

行動通訊設備商在設計新產品的同時會碰到一連串的考驗包括標準的更改、系統維

護、新功能或者是新演算法的驗證，這些考驗都影響到上市的時間。因此媒體存取控制

層擬真器的設計無論是對工程師或者是公司來說都相當重要。在本文中我們提出具有階

層性跟模組化的媒體存取控制層擬真平台，利用階層性跟模組化展現乾淨易維護的架構，

對於未來的延展性或者是新功能的撰寫和驗證都大幅增加優勢。媒體存取控制層位於第

二層，上接網路層下接實體層，我們定義的媒體存取控制層擬真器架構也有對網路層的

支援跟實體層訊號回饋，以此基底作研發可以增加開發速度並可信賴其驗證結果。

ii

The Hierarchical and Modular Design

of Generic MAC Emulator Platform

Student: Yu-Hua Chen Advisor: Ching-Yao Huang

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

ABSTRACT

When designing a new product, telecommunication manufacturers will face a series of

challenges such as standards evolution, system maintenance, addition of new features or

verification for new algorithms. These challenges may delay the time to market. Because of

that, the design of MAC emulator is quite important to both companies and engineers. In the

article, we proposed a hierarchical and modular MAC emulator platform. According to the

characteristic of hierarchy and module, we try to perform a clear architecture which is much

easier to maintain. It is a great support in future extension, adding new feature and verification.

MAC (medium access control) layer is in the middle of network layer and physical layer. Our

defined MAC emulator architecture also has the support from the upper layer (network layer)

and feedback signal from the lower layer (physical layer). In other words, it can accelerate the

speed of development and trust the results from verifications.

iii

誌 謝

在完成研究跟論文之際，首先要感謝我的指導教授黃經堯教授，幫我規劃電子所兩

年的行程，讓我在計畫跟研究之間取得平衡，也承蒙黃教授不斷提供研究的指導、督促

與資源，讓我不僅僅在學習上甚至生活上沒有後顧之憂，在此向黃教授致上最誠摯的謝

意。此外，亦感謝口試委員李永定協理與資工系趙禧綠教授在口試時給予的建議。

感謝實驗室的學長和同學們，特別是同一小組的曾理銓和陳冠穎學長，在計畫期間

不厭其煩的訓練我並且給予計畫上的指導和方向，才能在期限以內完成兩個計畫，此計

畫是我研究所生涯的主軸也是這篇論文的根源。再來是吳東佑學長，在研究之餘會帶著

我去運動，讓我體會身體健康的重要，也讓我重拾好久不見的健康身體跟標準體重。

 最後要感謝我的家人和女友，一路上不斷的鼓勵我、支持我，沒有你們我的求學過

程一定艱難痛苦，這本研究論文代表著我學生生涯的終點，也是對你們的致意，謝謝你

們支持我成為你們的光榮和驕傲。

 謹此這篇研究論文，特別獻給在天上的阿嬤，我從交大畢業了。

陳裕華

2010 年七月二十日 謹誌於國立交通大學

iv

目 錄

中 文 摘 要 ... i

英 文 摘 要 .. ii

誌 謝 ... iii

目 錄 ... iv

表 目 錄 ... vi

圖 目 錄 .. vii

符 號 與 略 語 說 明 ... ix

Chapter 1. Introduction .. 1

Chapter 2. Mobile WiMAX System Review .. 4

2.1. WiMAX Network Topology ... 4

2.2. MAC Layer Technical Overview.. 5

2.2.1. MAC PDU .. 5

2.2.2. MAC Frame Structure .. 7

Chapter 3. The Implementation of MAC Emulator Platform .. 9

3.1. Hierarchical and Modular Design .. 9

3.1.1. Systematic Analysis .. 9

3.1.1.1. Supervisor Module ... 10

3.1.1.2. Manager Modules ... 11

3.1.1.3. Controller Modules ... 12

3.1.1.4. Passive Objects ... 14

3.1.2. Reusability and Reconfigurability .. 15

3.1.3. Extension to Advance Uses .. 16

v

3.2. BS MAC Emulator Architecture .. 17

3.2.1. Data Plane ... 17

3.2.2. Control Plane .. 22

3.3. Basic MS MAC Emulator Architecture .. 25

3.4. Connection Interface between BS & MS ... 27

3.4.1. Socket Programming .. 27

3.4.2. TCP and UDP socket programming ... 28

3.4.3. Sockets Application on Emulator Platform .. 29

3.5. Emulated Scenario and Physical Information .. 31

3.6. Multi-Thread for Realistic BS Operation ... 33

Chapter 4. Demo Case of Emulator Platform .. 35

Chapter 5. Conclusion and Future Works .. 37

Reference .. 39

vi

表 目 錄

Table 3-1 List of Defined Manager Modules ... 12

Table 3-2 List of Defined Controller Modules ... 13

Table 3-3 List of Defined Passive Objects ... 14

vii

圖 目 錄

Figure 1-1: MAC Layer Architecture ... 2

Figure 1-2: Hierarchical MAC System Class Diagram .. 3

Figure 2-1: WiMAX Network Topology from www.xarxaneta.org .. 4

Figure 2-2: SDU and PDU Diagram .. 6

Figure 2-3: Examples of the Ordering of Payload and Sub-headers in a MAC PDU 6

Figure 2-4: Typical TDD Frame Structure under OFDMA Mode [1] .. 7

Figure 3-1: Hierarchical MAC System Architecture Diagram ... 10

Figure 3-2: Manager Module Block Diagram .. 11

Figure 3-3: Controller Module Block Diagram .. 13

Figure 3-4: Passive Object Block Diagram .. 14

Figure 3-5: PDU Class Diagram ... 15

Figure 3-6: Reconfigure MAC Architecture ... 16

Figure 3-7: Overall BS Architecture ... 17

Figure 3-8: SDU Classification Controller Flow Chart .. 18

Figure 3-9: SDU Scheduling Controller Flow Chart .. 19

Figure 3-10: Packing/Fragmentation Logic Flow .. 20

Figure 3-11: Burst Controller Flow Chart .. 20

Figure 3-12: Frame Structure under the Proposed Emulator Platform 21

Figure 3-13: Framing Flow Chart ... 21

Figure 3-14: Control Plane and Data Plane operation .. 22

Figure 3-15: Network Entry Manager Flow Chart ... 23

Figure 3-16: Connection Manager UML Diagram ... 24

Figure 3-17: Scheduler Architecture .. 24

viii

Figure 3-25: MS Funstion Flow Chart ... 25

Figure 3-26: Streaming for MS .. 26

Figure 3-18: Socket Interface ... 27

Figure 3-19: TCP Socket Program Flow .. 28

Figure 3-20: UDP Socket Program Flow.. 29

Figure 3-21: Network Architecture of Emulator .. 30

Figure 3-22: Emulated Scenario ... 31

Figure 3-23: Sequential Execution of the Platform .. 34

Figure 3-24: Parallel Execution by Using Multi-Thread .. 34

Figure 4-1: Screen Shot (stand by) ... 35

Figure 4-2: Screen Shot (streaming priority low) ... 36

Figure 4-3: Screen Shot (streaming priority high).. 36

ix

符 號 與 略 語 說 明

略 語 說 明

BS Base station

CID Connection identifier

CS Convergence Sublayer

DCD Downlink channel descriptor

DL Downlink

DPC Data plane command

FCH Frame control header

HO Handover

MAC Medium access control layer

MS Mobile station

OFDM Orthogonal frequency division multiplexing

OFDMA Orthogonal frequency division multiple access

PHY Physical layer

QoS Quality of service

RRM Radio resource management

UCD Uplink channel descriptor

UL Uplink

WiMAX Worldwide Interoperability for Microwave Access

1

Chapter 1. Introduction

Medium Access Control (MAC) protocols play a very important role in wireless

node-to-node communication, such as that between base stations and mobile terminals. This

article focuses on quick prototyping, early-stage verification and extensible design of generic

MAC layer systems. Starting from the integrated system of WiMAX/Wi-Fi dual-mode MAC

(especially design in WiMAX), we apply Object-Oriented Analysis and Design (OOA&D)

principle on both protocols, identification of the common and different components between

both systems. By using divide-and-conquer and bottom-up design approaches, we are able to

integrate WiMAX and WiFi MAC, and facilitate reuse and performance optimization of

common components between the two systems.

As shown in Figure 1-1, the MAC protocol layer, in terms of implementation, could be

separated in two parts: the Data Plane and the Control Plane. The main function of the Data

Plane is production of MAC layer’s protocol data units (PDUs). It could either be analyzed

with electronic system level (ESL) methodologies, or realized by FPGA hardware solutions.

The Control Plane takes charge of the Data Plane according to various signal feedbacks.

These feedbacks include PHY-to-MAC, Network-to-MAC and inter-BS or BS-to-MS

signaling.

2

Figure 1-1: MAC Layer Architecture

In recent years, in order to verify the functionality of MAC layer, major manufacturers

begin to adopt MAC Emulators at early design stages to facilitate the accurate analysis,

reduce design complexity and achieve better time-to-market. Considering the massive man

power and time cost in designing a complete communication system, we think it is an

ultimately important issue to take into account both the system performance and speedy

system building. Based on this reason, our research puts emphasis on facilitating system

verification speed, quick system prototyping, extensibility, and early detection of problems.

All these factors contribute to a complete and quick system building.

Thus we introduce some new approaches to MAC prototype design. We apply

Object-Oriented Analysis & Design (OOA&D) and hierarchical architecture principles in our

3

MAC design in order to facilitate functional analysis, bottom-up implementation and

early-stage exhaustive verification. In the Future, without losing portability, we can port the

original design to SystemC verification platform, which combines the object-oriented nature

and cycle-accurate hardware simulation. The criteria of quick system prototyping and

accurate verification are thus satisfied at the same time. A brief expression of hierarchical

system architecture, in terms of OOA&D, is shown in Figure 1-2.

Figure 1-2: Hierarchical MAC System Class Diagram

4

Chapter 2. Mobile WiMAX System Review

WiMAX (Worldwide Interoperability for Microwave Access) is a telecommunication

protocol that provides fixed and fully mobile internet access. The current WiMAX revision

provides up to 40 Mbit/s with the IEEE 802.16m update expected offer up to 1 Gbit/s fixed

speeds. The name "WiMAX" was created by the WiMAX Forum, which was formed in June

2001 to promote conformity and interoperability of the standard.

2.1. WiMAX Network Topology

Figure 2-1 shows the WiMAX topology. The transmission supports LOS (Line-of-Sight)

and NLOS (Non-Line-of-Sight). The topology is like GSM network. There are BSs and MSs

and BSs can communicate with each other. But the different is that WiMAX backbone

network is IP based core network.

Figure 2-1: WiMAX Network Topology from www.xarxaneta.org

5

2.2. MAC Layer Technical Overview

A characteristic of WiMAX MAC layer is that it is connection-oriented. Each connection

is distinguished with a 16-bit connection identifier (CID). When performing network entry, an

MS sets up multiple connections with the BS. The connections are created based on the

services mapped to the MS, including broadcast, management and data transmission services.

Each data connection is associated to a QoS level. Connections are dynamically added or

dropped if services are initiated or terminated with the MS.

The WiMAX MAC also uses a scheduling algorithm for which the subscriber station

needs to compete only once for initial entry into the network. After network entry is allowed,

the subscriber station is allocated an access slot by the base station. The time slot can enlarge

and contract, but remains assigned to the subscriber station, which means that other

subscribers cannot use it. In addition to being stable under overload and over-subscription, the

scheduling algorithm can also be more bandwidth efficient. The scheduling algorithm also

allows the base station to control quality of service (QoS) parameters by balancing the

time-slot assignments among the application needs of the subscriber stations.

2.2.1. MAC PDU

MAC protocol data unit (PDU) is a data unit for protocol communication between the

MAC layers of BS and MS. Basically, data traffic comes in the form of service data units

(SDUs) from upper layers. The MAC layer tunnels upper layer traffics without knowledge of

the payload content (shown in Figure 2-2).

http://en.wikipedia.org/wiki/Bandwidth_(computing)

6

Figure 2-2: SDU and PDU Diagram

According to Reference [1], two MAC header types are specified:

– Generic MAC Header: Used in MAC PDUs containing payload data. The generic MAC

header indicates length, destination CID, encryption key and included subheader type of

the PDU.

– Bandwidth Request Header: Used for requesting uplink bandwidth by MS.

As Figure 2-2 shown above, the payload length is variable. Also, the SDU length from

upper layer isn’t the fixed value. Because of those unpredictable reasons, there is a

packing/fragmentation mechanism for the PDU payload. Each data fragment under

packing/fragmentation should be attached to a packing/fragmentation sub-header.

Figure 2-3 shows examples of the ordering of data fragments and sub-headers.

GMH FSH SDU Fragment CRC

GMH PSH
SDU or

Fragment
PSH

SDU or

Fragment
PSH

SDU or

Fragment
CRC

MAC PDU with Fragmentation

MAC PDU with Packing

Figure 2-3: Examples of the Ordering of Payload and Sub-headers in a MAC PDU

7

2.2.2. MAC Frame Structure

WiMAX supports both time division duplex (TDD) and frequency division duplex (FDD)

modes, but the OFDMA mode supports only TDD. For TDD mode, uplink and downlink use

the same spectrum, and a PHY frame is separated into downlink and uplink subframe in time

domain. A Typical frame structure layout is shown in Figure 2-4.

Figure 2-4: Typical TDD Frame Structure under OFDMA Mode [1]

1. Preamble:

Each downlink frame starts with a preamble, which lasts for one OFDMA symbol and

occupies the entire spectrum. The preamble is robustly modulated in BPSK across subcarriers

by a PN code identifying BS cell/sector. MSs may acquire the system and maintain

synchronization according to the preamble. Also the preamble enables MSs to estimate the

channel and correct frequency/time offset.

8

2. Frame Control Header (FCH):

FCH contains Downlink Frame Prefix, which indicates the coding scheme and length of

DL-MAP. MSs decode the DL-MAP according to information provided in FCH. The FCH

uses the four logical subchannels following the preamble.

3. Downlink Map (DL-MAP):

The DL-MAP describes the DL subframe. By specifying subchannel and OFDMA

symbol allocation to each user, the DL-MAP enables MSs to decode the DL subframe.

Modulation of DL-MAP is fixed to QPSK, and the coding scheme is specified in the FCH.

4. Uplink Map (UL-MAP):

UL-MAP is similar to the DL-MAP. The UL-MAP describes the UL subframe, and

namely bandwidth allocation among the served users. The UL-MAP is embedded in the first

DL burst.

5. Downlink/Uplink Bursts:

DL/UL bursts contain data and messages to be transmitted by BS/MS. Each DL burst is

mapped with a DL Interval Usage Code (DIUC), and the burst profile is provided in the

DL-MAP. Similarly, each UL burst has a UL Interval Usage Code (UIUC), and its PHY

characteristics are described in the UL-MAP.

6. Ranging Subchannels:

MSs use ranging subchannels to perform initial ranging, periodical ranging , handover

ranging and bandwidth requests. Ranging is a process in which an MS adjusts its PHY

parameters according to indicated by BS.

7. Transition Gaps:

Receiver mode and transmitter mode are separated by transition gaps to ensure proper

operation. The gap from DL to UL subframe is Transmit Transition Gap (TTG), while the one

from UL to DL is Receive Transition Gap (RTG).

9

Chapter 3. The Implementation of MAC Emulator Platform

In this chapter, we introduce the proposed architecture including. First we try to explain

the concept of hierarchical and modular design we proposed. Then, analyze the BS

architecture (including data plane and control plane) by using these two concepts. Besides the

BS, we also have a basic MS platform to negotiate with BS part. We try to put some

significant elements in this emulator architecture, such as emulation scenario, timer, and

multi-thread programming. Those significant elements will help the emulation more realistic.

3.1. Hierarchical and Modular Design

In order to face the big emulator system, we are sure that we need a systematic way to

analyze and maintain. We propose a hierarchical and modular design for the system. We

convince there have some advantages as follows:

1. Systematic Analysis

2. Reusability

3. Reconfigurability

4. Extension to Advance use

These four advantages are explained in the following sections.

3.1.1. Systematic Analysis

Hierarchical and modular design methodology really helps to analyze the system. We

propose a 4-level hierarchical architecture which is shown in Figure 3-1. 4-level hierarchical

10

architecture includes four level classes: supervisor, manager, controller and passive object.

These four levels imply some meanings such as reusability, complexity, inter-frame operation

and implementation. The highest level is supervisor. The duty of supervisor is to control all

the managers. For example, there are only one supervisor in the emulator called MAC main

module. MAC main module (supervisor) controls manager modules and controller modules.

Passive objects are driven by manager and controller modules.

Figure 3-1: Hierarchical MAC System Architecture Diagram

3.1.1.1. Supervisor Module

There is only one supervisor module (MAC Maine Module) in whole emulator platform.

The supervisor module controls all the behavior of the emulation such as handling the entry of

MS, handling the interrupt situation, executing the emulation flow, and design of the FSM

(finite state machine). We define the supervisor module is the highest level in the hierarchical

architecture.

11

3.1.1.2. Manager Modules

Manager modules are the second level below the supervisor module. The block diagram

of manager modules is shown in Figure 3-2. They typically involve some joint decision and

operation among multiple users, service flows, connections, and record profiles. Some

manager modules serve as “archives” of various records. Any module in need can check the

records in manager modules, but they can’t change records by themselves. They must send

some information to the specific interface to inform manager modules and update the status.

It’s also the characteristic of hierarchical architecture. Table 3-1 is listed some defined

manager modules.

Figure 3-2: Manager Module Block Diagram

12

Module Name Description

Network Entry Manager Handle network entry procedure. Decide if a requesting user

can be permitted to enter, and make necessary handshakes and

negotiations.

Radio Resource Manager Handle bandwidth requests. Decision on scheduling and

coding-modulation scheme.

System Configuration

Manager

Setup and update system parameters and configurations.

Connection Manager Archive of connection profiles. Manage connection queues and

update connection-related parameters.

Traffic Flow Manager Archive of traffic flow profiles. Manage and update

traffic-flow-related parameters.

Mobility Manager Do handover decisions. Handle handover requests. Monitor the

mobility parameters of MSs.

Mobile Station Manager Archive of mobile station profiles. Access and update

parameters of each mobile station.

Table 3-1 List of Defined Manager Modules

3.1.1.3. Controller Modules

Controller modules (shown in Fig 3-2) are the third level in the architecture. They just

involve single user, traffic flow, connection, and record profile. Briefly speaking, these

modules are much uncomplicated. They don’t need to handle multiple things. They only do

13

monotonous work. The main purpose is to perform routine logic and decisions. Table 3-2 is

listed some defined controller modules.

Figure 3-3: Controller Module Block Diagram

Module Name Description

Classification

Controller

Called by Data Plane Manager. Classify upper-layer packets into

connections.

Ranging Controller Called by either Mobility Manager or Network Entry Manager.

Handle single user’s ranging requests and make decisions on

ranging messages and parameters. Performs either initial or

periodic ranging.

Synchronization

Controller

Called by Network Entry Manager. Obtain and maintain PHY and

MAC synchronization.

ARQ Controller Called by Data Plane Manager. Produce and manage ARQ blocks.

Framing Controller Called by Data Plane Manager. Produce/parse frames.

QoS Controller Called by Radio Resource Manager. Define and maintain the QoS

of a single connection.

Table 3-2 List of Defined Controller Modules

14

3.1.1.4. Passive Objects

Passive objects (shown in Fig 3-4) are the basic level of whole MAC emulator

architecture. As the name of this object, they are passive that means they don’t do anything

actively. They wait for callings from other active modules, and they are self-supporting and

independent. Table 3-3 is listed some defined passive objects.

Figure 3-4: Passive Object Block Diagram

Module Name Description

SDU Service Data Unit. Include parameters and a buffer for storing data.

Responsible for its own creation, initialization, manipulation and

destruction.

PDU Protocol Data Unit. Include parameters and a buffer for storing data.

Responsible for its own creation, initialization, manipulation and

destruction.

Message Management messages. Include parameters and embedded information

elements. Responsible for its own creation, parameter acquirement,

serialize (encode) and deserialize (decode).

Record

Profiles

Profiles for recording the activity and parameters of user/service

flow/connection/management information. Responsible for its own

creation, initialization and modification.

Table 3-3 List of Defined Passive Objects

15

3.1.2. Reusability and Reconfigurability

Besides the hierarchical design, we also apply Object-Oriented Analysis and Design

(OOA&D) principle in this platform. In OOAD, there is an important characteristic called

data encapsulation. While we want to design a module, all we need to think is what members

the module should have and what functions the module should do. That is data encapsulation.

For example, the class diagram of PDU is shown in Figure 3-5.

Figure 3-5: PDU Class Diagram

We put the members and functions in the class. That helps the design consideration and

reusability. As for reusability, we can modify the existing class for other platform. Because of

the flexibility, we don’t need to design a whole new module for other specific protocol. It

reduces development time.

Up to the systematic view, it is possible to put two protocols in one platform by using

hierarchical and modular design. Because of the reusability, we can let some modules or

objects are suitable existing in two different protocols such as WiMAX and Wifi. In the

16

hierarchical design, we recommend that lower level modules can be reusable (controller and

passive object). After the analysis of two different systems, it is sure that MAC should have

some general parts and specific parts which illustrated in Figure 3-6. We can modulate the

general part and build new modules for specific parts. Then, carefully design the negotiation

bridge between two modes. The negotiation bridge will be the challenge of dual-mode design.

Figure 3-6: Reconfigure MAC Architecture

3.1.3. Extension to Advance Uses

Although the MAC emulator platform is a software approach, we can add hardware to

become HW/SW co-design. Nowadays, ESL (electronic system level) become a popular

verification way. It can combine hardware and software in one platform. As an example for

the emulator, the basic routine part (ex: data plane) can be modified to Verilog (hardware

description language) and control or decision part can be software approaches. That can make

the emulator platform more realistic because of the addition of hardware.

Another one is using SDR (software-define radio) to make dual-mode device. More and

more standards use same physical base (OFDM). Therefore, we can use SDR to implement

dual-mode on one physical base. That can reduce chips costs and device area.

17

3.2. BS MAC Emulator Architecture

Figure 4 shows the proposed BS architecture. The red part is control plane, and blue part

is data plane. Data plane takes charge of the data formation from upper layer SDU to frame.

Control plane sends some decision information and updates some states. We also have

information from physical layer. This information will help the scheduling manager to do

better decision.

Figure 3-7: Overall BS Architecture

3.2.1. Data Plane

Data plane is constructed by many manager and controller modules. Also, the passive

objects are clearly defined to data format such as SDU, PDU and frame. The data plane is the

executing part of the protocol layer. It handles incoming data according to the indications

18

given by the control plane, and executes the control plane’s commands by sending

management messages to the air interface. Data plane includes the following components:

1. SDU Classification Controller:

SDU classification controller will classify the SDU by their CID to the respective

connection queue as shown in figure 3-8. Also SDU classification controller will inform

connection manager in control plane to update connection information (add connection or

delete connection). All the SDUs will be stored in respective connection queue and wait for

scheduling.

START
Is

SDU queue
empty?

Y

Classify SDU
By CID

N

Inform
connection
manager to

update status

Move SDU from
SDU queue to

connection
queue

Is
SDU queue

empty?

N

FINISH
CLASSIFICATION

Y

Figure 3-8: SDU Classification Controller Flow Chart

19

2. SDU Scheduling Controller:

SDU Scheduling Controller follows the signal from the Scheduling Manager in the

control plane. Select the SDU from all connection queues and store them in the scheduled

queue as shown in figure 3-9. Controller is only to do the selection work, and the scheduling

algorithm part is in Scheduling Manager in control plane.

START

Scan all the
existing

connection
queue

Get information
(num of SDU)

from scheduling
manager

Select SDU from
relative connection

queue and put
them to scheduled

queue

More traffic ?
Y

FINISH
SCHEDULING

N

Figure 3-9: SDU Scheduling Controller Flow Chart

3. PDU Maker Controller:

PDU is constructed by header and data (shown in Figure 2-2). PDU maker will check the

scheduled queue every 5ms. While it’s not empty, PDU maker accesses the scheduled SDU.

Estimate the data length and CID, and write information in the respective header. Then,

combine header and data into PDU which will be stored in PDU queue.

PDU length is also decided in PDU maker controller. Because of the channel condition,

PDU length is variable. We could send a big PDU while the channel condition was great. If

the condition was bad, the PDU length could be shorter. So we have the mechanism for

packing and fragmentation as shown in Figure 3-10.

20

START

Append

subheaders other

than packing/

fragmentation

subheaders

Subtract

subheader size

from payload

quota

Is the SDU

packing/frag

allowed?

Retrieve SDU

from indicated

CID

Just-fit Logic

N

Y Compare residual

SDU size with

payload quota

(PAY – 2PSH) <

SDU < (PAY – FSH)
SDU > (PAY – FSH)

SDU fragmented?

Fragmentation

Logic

N

Y

Fragmentation

subheader

Next PDU

SDU < (PAY – 2PSH)

Packing Logic

Packing

Subheader
Payload quota left?

N

Y

PSH: Packing subheader (2 bytes)

FSH: Fragmentation subheader (3 bytes)

Figure 3-10: Packing/Fragmentation Logic Flow

4. Burst Controller:

Burst is concatenated by many PDU. There are lots of PDU with different CID in the

PDU queue. Burst Controller checks all the PDUs in the queue and concatenates them into

bursts respectively. In this emulator platform, we simplify the relation between user ID and

CID. In the default situation, user ID and CID are the same value (1-1 mapping).

START
Access first PDU

in PUD queue
and check its CID

Check CID
from the next

PDU

Concatenate
them

Equal

Pop out
the used PDU

Non-equal

Is
PDU queue

empty?

N

FINISH

Y

Figure 3-11: Burst Controller Flow Chart

21

5. Framing Controller:

Figure 2-4 is the typical frame structure in IEEE 802.16 (WiMAX). In this emulator

platform, we don’t consider the 2-D resource allocation (the emulator doesn’t support MCS

and some physical effects). We design the frame structure as shown in figure 3-12. The

information of bursts will be write (serialize) to DL-MAP, and MS will check the DL-MAP

block to be sure which burst it wants.

Figure 3-12: Frame Structure under the Proposed Emulator Platform

START
Serialize

Preamble
Serialize
DL-MAP

Serialize
UL-MAP

Serialize
burst

Pop out
the used burst

Is
burst queue

empty?

FRAMING
COMPLETE

Y

N

Figure 3-13: Framing Flow Chart

22

3.2.2. Control Plane

Control plane collects lots of information and makes decisions for data plane. Take

Figure 3-14 as an example. Scheduling controller, PDU size controller and MCS controller

will send the information to relative data plane manger. In this emulator platform, the trigger

signal to control plane can be transmitted from lower layer (physical layer) or made by some

assumptions. We use some channel models (such as shadowing and path loss) to create the

information from physical layer. Without the control plane, data plane is just a frame

generator. Carefully design the control plane can make the platform more flexible and smart.

Figure 3-14: Control Plane and Data Plane operation

 We develop some control plane managers to enhance the emulator platform:

1. Network Entry Manager

While the MSs turn on or move into the coverage of BS, they will do network entry

procedure. Figure 3-15 is described that BSs’ behavior. We also do these procedures to make

23

sure MSs’ logging in our platform.

START

PHY
Synchronization

MAC
Synchronization

Initial Ranging

Basic Capability
Negotiation

Authorization
And

Key Exchange

Registration

FINISH

PHY Preamble
Sync.

UL/DL Param.
Accquired

Ranging &
Automatic Adjust Complete

Registration Complete

Figure 3-15: Network Entry Manager Flow Chart

2. Connection Manager

Connection Manager takes charge of managing all the service connection. For all of the

situations, connection manager will update the status of the connections such as adding and

deleting connection. We also classify connections into eight types: uninitialized, broadcast,

initial ranging, basic, primary, transport connection, multicast and padding. Figure 3-16 gives

a UML diagram that we define the connection manager module and WiMAX connections

(passive objects). Because WiMAX is a connection-based system, connection manager must

be carefully designed. The connection manager is like a information control center. We apply

the STL (Standard Template Library) containers (such as vector, queue, deque…etc) to store

the connection information and SDUs from upper layer. We can easily store, access, and

delete information by using the STL containers.

24

Figure 3-16: Connection Manager UML Diagram

3. Scheduling Manager

Scheduling Manager provides the architecture that schedule algorithm and interface are

separate. We can easily add new algorithm and choose different algorithm to check the

performance. Because we don’t have the physical model for modulation coding scheme, we

use the quantities of PDU for scheduling principle. If the radio resource is enough, we can

select more PDUs for the respective users.

Figure 3-17: Scheduler Architecture

1 N

25

3.3. Basic MS MAC Emulator Architecture

MS (mobile station) is the receiver part in the emulator platform. It has basic decode

functions (decode frame, decode bursts, decode PDUs). The received frame includes all of the

MSs’ bursts, so we need to read the DL-MAP. DL-MAP stores the information of the

respective downlink bursts. We use CIDs to map users (1-1 mapping). After MS deserialize

the information of the burst location, MS takes the respective burst and puts in burst queue.

Other useless bursts and information will be released to save memory block. A Burst is

constructed by many PDUs. MS calculates the quantities of the PDUs (burst size divided by

PDU size) and decodes them to PDUs. All the decoded PDUs are stored in the PDU queue,

and MS decomposes the PDUs into the original SDUs. These SDUs should be streaming

datagrams or fragments from some indicated pre-stored files (picture). As for streaming, we

open the UDP socket and indicate the local address and port (shown in Figure 3-26).

STRAT
Network Entry

Procedure
Receive
Frame?

Decode Frame
(deserialize DL-MAP
which indicates the

respective parts)

Decode Burst
(deserialize

header)

Decode PDUs
(deserialize

header)

Original SDU is
put in the SDU

queue

Y

FINISH

N

Figure 3-25: MS Funstion Flow Chart

26

.

Figure 3-26: Streaming for MS

Application of streaming has an obvious advantage. The emulator not only performs

monotonous data transferring. We can use real traffic and emulate the effect of traffic loading.

If the resource of emulator (it means the ability of emulator computation) is congested with

the traffic jams (lots of resource request), the scheduling manager will arrange the resource

depends on the QoS. The scheduled result will be shown on the monitor by VLC player. VLC

player can decode the movie with receiving lots of datagram in a period time. The quantities

of datagram are variable because of the codec (mpeg4, H.264…etc). But we can still use the

decoded result which is successful or not as scheduled consequence. Briefly speaking, we can

verify the specific scheduling algorithm by watching the streaming on the monitor which is

played fluently or not.

27

3.4. Connection Interface between BS & MS

Most of the emulators put the BS and MS in one project, but our platform is different.

We make MS and BS as two divided and independent modules. The difference is that two

independent modules doesn’t share the same memory block. It is much more like real BS and

MS. In the real case, BS and MS use wireless module (RF chips) to connect each other. But in

our emulator platform, we focus on the MAC operation instead of physical layer effects. So

we use wire connection instead of wireless connection.

3.4.1. Socket Programming

We use windows socket programming to connect BS and MS. Socket programming gives

us a convenient interface to drive the layers below transport layer. Figure 3-18 gives us a clear

concept. We put our process (emulator platform) on the socket interface, and use the existing

API by socket library. We can easily drive the network protocols to make a wire connection.

Figure 3-18: Socket Interface

28

3.4.2. TCP and UDP socket programming

We can make TCP and UDP connection by using socket programming. In this section,

we just describe the implementation of TCP and UDP connections instead of protocol parts.

TCP is connection-oriented. We can see Figure 3-19 that shows a TCP socket flow. In this

flow, we can see the server continuous listening and waiting for the response to ensure the

reliable connection.

Figure 3-19: TCP Socket Program Flow

UDP connections are much simpler. UDP connections just need to bind the address and

continuous sending packet to the indicated address. UDP connection doesn’t care about the

reliability. The application of UDP is streaming. YouTube provides streaming platform on the

internet. The streaming server like YouTube just sends the datagram (UDP packet) to the

request address. If some datagram is missing, server won’t retransmit the missing part. For

terminals, maybe just miss a short period of the streaming. Figure 3-20 shows a UDP socket

program flow.

29

Figure 3-20: UDP Socket Program Flow

3.4.3. Sockets Application on Emulator Platform

The characteristics of TCP and UDP are quite different. TCP has a reliable connection.

We can use it in transferring some acknowledgement message. For example, the network

entry procedure needs some acknowledgement message to change the state (network entry

FSM). As for UDP, in our platform we use it in streaming.

Figure 3-21 gives an illustration about the network architecture of platform. VLC is an

open-source media player which supports streaming sending and receiving. In one version of

our platform, we can use a VLC player as a streaming server which continuously sends the

datagrams. All the sending datagrams will be received by the indicated BS module. After the

BS operation, those datagrams will be packed to PDU or frame format and sent to the

indicated MSs. MSs receive the PDU or frame and start to deserialize them. Frame or PDU

will be decoded to the original datagrams. Then, MSs will send those original datagrams to

30

the VLC player. We can use the player watching streaming on MS sides.

Figure 3-21: Network Architecture of Emulator

31

3.5. Emulated Scenario and Physical Information

Figure 3-22 shows a 2-tier cellular architecture. Each cell’s coverage is the relative BS’s

coverage. We set the reuse factor which equals 1, that means all the cells use the same

frequency. Because of this scenario, we can calculate the SINR (signal to interference plus

noise ratio)

Figure 3-22: Emulated Scenario

Equation (3.1) is the calculation of SINR. According to EVM (evaluation methodology),

we add the shadowing and path-loss effect to calculate the signal and interference. Equation

(3.2) lists the elements of the signal and interference. is the transmission power, and it’s

set as the fixed value which is -47dBm. is the antenna gain, and it’s set as the fixed value

which is 17dBi. and S is the effect of path-loss and shadowing. The calculation

methodology is described in EVM. We have the scenario and calculation of SINR and these

physical layer information can help the scheduling manager do some scheduling algorithms

related to SINR. Take MAX-CINR as an example. While MS logs in the network, BS module

32

will calculate the SINR according to MS’s location. If the MS is fixed point, BS just only

calculates once. If the MS is mobile point, BS calculates the SINR every 5ms (frame time).

After the calculation of the SINR, the scheduling manager uses the MAX-CINR to allocate

the resource to MSs. Bigger the SINR is, more SDUs can be selected.

 (3.1)

 (3.2)

Transmission power is related to the location of MSs, and antenna gain is related to the

direction of the antenna. It is much more complicated. In our platform, we want to simplify

the situation, so we fixed the value of and . Although the and is fixed, we have

the flexible architecture to add some physical model if needed.

33

3.6. Multi-Thread for Realistic BS Operation

When a program is loaded into memory, it is called a process. But one process a have

multiple threads. A thread of execution is the smallest unit of processing that can be scheduled

by an operating system. The sequential execution is that a process only have one thread, and

this thread do all of the process sequentially. For multi-thread, there are multiple threads in

one process, and those threads can execute the process independently. Multi-thread

programming also can be used for parallel process. Later we will introduce the application of

parallel processing in our emulator platform.

The sequential execution isn’t suitable for the MAC emulator. In the real BS, all the

process is parallel. We have developed and improved the MAC emulator. We can see the

Figure 3-23 which illustrates the sequence of the older version emulator platform. The

emulator always receives the packet from the streaming server, and then it does some frame

works (packing to PDU). After the basic BS operation, emulator sends them to the MSs.

Actually the BS operation is not normal for sequential process. We notice that the input

of the emulator can’t only have one streaming. There should be multiple streamings sent by

many streaming servers. The existing emulator platform can’t handle those parallel streaming

input. So we revised the emulator platform. Our new feature is handling multiple streaming

parallel by using multi-thread. We set many threads (the number of threads depending on the

number of inputs) to handle the coming streaming. Figure 3-24 illustrates the multi-thread

processing. Take Figure 3-24 as an example, there are three inputs: FTP transferring (from

pre-stored files), streaming 1 and streaming 2 (from two different streaming servers). These

three inputs will be processed in the same time, so we create three independent threads for

them. We can also see the characteristic in Figure 3-24. These three threads can continuously

process the work. They are independent and individual. We also include the timer. We can do

http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Operating_system

34

a frame in every 5ms. We collect all the SDU from the time period, and use these collected

SDUs to do frame work. After the frame work, the BS sends them to the indicated MSs. The

thread of frame work and the threads of input are independent. It assembles to the real BS

operation.

Figure 3-23: Sequential Execution of the Platform

Figure 3-24: Parallel Execution by Using Multi-Thread

35

Chapter 4. Demo Case of Emulator Platform

We want to perform a demo for our emulator platform. In this chapter, these three

devices (streaming server, BS, and MS) are in the same computer because it is simpler to

show the response of each device. It can be run in three different computers as shown in

Figure 3-21. The situation is that BS has a streaming input which is sent by streaming server

(in real world, it’s like YouTube.). Besides the streaming input, we create congestion inside

the BS. Because of the congestion, the streaming which is shown on the MS side has the

probability that MS can’t decode it. Because congestion shares the resource of BS, MS can’t

receive amounts of datagram to decode the stream. Figure 4-2 shows that the MS can’t decode

the movie completely. Because of that, we use the schedule manager to raise the level of QoS.

The schedule manager decreases the quantities of SDUs which is selected to make PDUs.

Also, raise the priority of the streaming service. Figure 4-3 shows the scheduled result. We

can play the streaming fluently.

Figure 4-1: Screen Shot (stand by)

Base Station

Mobile Station

Streaming Server

36

Figure 4-2: Screen Shot (streaming priority low)

Figure 4-3: Screen Shot (streaming priority high)

MS Decode Failed

MS Decode Successful

37

Chapter 5. Conclusion and Future Works

In the article, we propose a hierarchical and modular methodology in the design of

generic MAC emulator platform, and give an implementation of WiMAX MAC emulator with

the proposed methodology. We clearly defined the MAC architecture by using hierarchical

and modular design. We don’t focus on the improvement of transmission throughput or

effective algorithm. Our contribution is to give a well-defined emulator platform. All the

components are modular and hierarchical, and the architecture is flexible. It is possible to add

more modules in the future. The applications of the emulator platform are various, such as

HW/SW co-design, ESL verification, and embedded system design. The purpose for this

emulator is that reduces the time for development and increase the accuracy of the

verification.

The wireless environment (RF) is replaced to wired environment (internet). Many

embedded system has its own RF module. In the future, we can port our MAC system to the

embedded system. It is possible for the transplantation. Windows sockets part can be change

to linux sockets, and multi-thread parts can be change to POSIX thread library. We only need

to drive the RF module for physical transmission. The architecture doesn’t change for the

transplantation. It can solve the problem that uses wired transmission in wireless protocol

implementation.

Emulator isn’t like simulator. Emulator is a bit by bit operation platform. To a certain

extent, it has the much more real response to the activity by applying some new features. For

example, we illustrate the scheduling algorithm performed in Chapter 4. The physical model

including MCS (modulation coding scheme) is still needed because many algorithm need

MCS to perform the effect of modulation. It is a challenge of the MCS, because it is difficult

to perform the effect of modulation. With MCS, the frame allocation can be real

38

two-dimension (OFDMA symbol and subchannel). The effective two-dimensional allocation

is also an important research that can be verified with MCS-support MAC emulator platform.

The mechanism of FSM (finite state machine) is also important. Both MS and BS need a

complete FSM for any interrupt situation. FSM plays an important role in the MAC design. It

is not only one MS in the BS. Handling many MSs needs a complete FSM to control. Another

work is using the reconfigurbility to make multi-system. Many protocols use the same

physical base. We can combine two different protocols (like WiMAX and Wifi even LTE) in

one system and device by modified the software which is called SDR (software defined radio)

I mentioned in section 3.1.2.

In summary, physical model, complete FSM and multi-system issues are three important

works in the future. These three issues can lead the MAC emulator much more realistic and

effective.

39

Reference

[1] IEEE 802.16 Working Group, “IEEE Standard for Local and Metropolitan Area

Networks – Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” IEEE

Std. 802.16-2004, October 2004.

[2] GuoSong Chu, Deng Wang, and Shunliang Mei, “A QoS Architecture for the MAC

Protocol of IEEE 802.16 BWA System,” on Communications, Circuits and Systems and

West Sino Expositions, IEEE 2002 International Conference, vol.1, pp. 435-439, 2002.

[3] De La Oliva A, Banchs A, Soto I, Melia T, and Vidal A, “An Overview of IEEE

802.21:Media-Independent Handover Services,” IEEE Wireless Communications, vol.15,

pp. 96-103, August 2008.

[4] Rehan Qureshi, Arek Dadej, and Qiang Fu, “Issues in 802.21 Mobile Node Controlled

Handovers,” Telecommunication Networks and Applications Conference, pp. 53-57,

2007.

[5] Hans-Peter Loeb, Christian Lis, and Christian Sauer, “UMAC – A Universal MAC

Architecture for Heterogeneous Home Networks,” Digital Object Identifier, 2009.

[6] 涂治安譯，精通 Windows Sockets 網路程式設計，碁峰資訊股份有限公司，民 98

年

[7] 李蔚澤，徐家華譯，WiMAX 技術原理與應用，碁峰資訊股份有限公司，民 96

