e & I feiicie it h
2 A B E BT SR

The Hierarchical and Modular Design
of Generic MAC Emulator Platform

o3 o4 RRE
HhERE I RESE B4
v ERREL L4 E-S D

Fo R i frficie i a2 % A YA B E BT 4 p 2t

The Hierarchical and Modular Design of Generic MAC Emulator Platform

o4 A E Student: Yu-Hua Chen
ERR R A Advisor: Ching-Yao Huang

A Thesis
Submitted to Department of Electronics Engineering
College of Electrical & Computer Engineering
National'Chiao-Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in

Electronics Engineering
July 2010

Hsinchu, Taiwan, Republic of China

PERRAY L4 £

i A et

A A T PR e BT LK

iF &

TR ARE R AR ATASDREEAI=G? hd R SR EFN % hnk
W AT A K EATH Y 2 R SR Y R IEIER L T o F1 G B
BT B B A A F 0P R £ R Ak P AP RAE G

BRI 1 R S P IR R E T o I PR R 1 B IR TE B Mk R

A ok anut B e

Tnk-

AT R R B SR AN A e B o B B ot
SR P RREREETRIHA AP LEROBM G RE BRSO HRERE D
AERFIUENE YA VP ARTFFYURMCBEFERIVY O ERER S -

The Hierarchical and Modular Design

of Generic MAC Emulator Platform

Student: Yu-Hua Chen Advisor: Ching-Yao Huang

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

ABSTRACT

When designing a new product, telecommunication-manufacturers will face a series of
challenges such as standards evolution, system ‘maintenance, addition of new features or
verification for new algorithms. These challenges may delay the time to market. Because of
that, the design of MAC emulator is quite important to both companies and engineers. In the
article, we proposed a hierarchical and modular MAC emulator platform. According to the
characteristic of hierarchy and module, we try to perform a clear architecture which is much
easier to maintain. It is a great support in future extension, adding new feature and verification.
MAC (medium access control) layer is in the middle of network layer and physical layer. Our
defined MAC emulator architecture also has the support from the upper layer (network layer)
and feedback signal from the lower layer (physical layer). In other words, it can accelerate the

speed of development and trust the results from verifications.

a

BRAFTH®mY 2% § AL RN iy T RS S AR JARLT I A
EAOFREALITIRAT2ZFEREIE & KR RET EREFY miﬁ%-w*x&
BERCEAFTALEY VAT A FE G AR e § RIRR BER a
oot ARSI 2L A ATREE T AW SRIZ AT BEFELT guE R o
E#HF & OE LR TP Fullr- | 2oy 2afrmsgd L AP 50T

L=21
23

PREFAFANT A PFF P endp e oo AR AU 22D BPE
FANFE A RS e AphH Y R E RIS AGEL > AL ARG F
AIEFR S BAMELHMERDEE > 4 BALRE A LR PP ENE o
Bl B A RA ot L SR B A - LA g P AR B
- R o EAFpwm AR AFAT I LRR R AR ORI

oL AF A L IR ek E{espil .

gg_‘ﬁbigg;p;‘igﬁé ’%wj}gkﬁg"‘i%j e g VK R A B E T o

PR &=

2010 £ = 0 =L p AREV R LA A F

B’ po — LS

o
R I E I

B e e [
5 TSP RO RO PUPT P PTRURORPN i
= SO i
T ettt E R R R e R R e E e bbb bbbt nr e iv
B e Vi
TP P USSP TR TP P P PRPRPRPRPON vii

Chapter 1. INErOAUCTION ..ottt b e ab ettt 1
Chapter 2. Mobile WIMAX SYSIEM REVIEW ..u..oe. i ihiesbesvesieesieeiesteesteessesseesseessesseesseessens 4
2.1. WIMAX Network-TOPOIOgYottt i 4

2.2. MAC Layer TechniCal OVEIVIBW.c.. v vveieietieeieeeeiieeieeseese e se e e e 5
2.2.1. MAC PDU ... i inss s s sst T aniie she e s eee et e sbeeestaesaeeanbeesbeesnteesneeanbeesneesnseens 5)

2.2.2. MAC Frame STFUCTUIEcciiiiiieiii e 7

Chapter 3. The Implementation of MAC Emulator Platformcccocvvvvvieiviin e 9
3.1. Hierarchical and Modular DeSigncccoveiiiieiieiicic e 9

3. L1 SyStEMALIC ANAIYSIS....c.eiiiieieiieieiesee e 9

3111, Supervisor MOdUIEcooveeiieiiccc e 10

3.1.1.2. Manager MOGUIEScouiieieieiee e 11

3.1.1.3. Controller MOQUIES...........ccoeiiiiiieiiciie e 12

3114, PaSSIVE ODJECESccuiiviiiiiiiiiieiieieie ettt 14

3.1.2. Reusability and Reconfigurabilityccccooiiiiiiiiii e 15

3.1.3. EXtension to AAVANCE USESccoeiiirmiiiirieieenesreesesre s 16

3.2. BS MAC Emulator ArchiteCtureccocvvireiiiineeisereies e 17
3.2.1. Data PlANE.......iiiiiieeeee e 17

322, CoNrOl PIANEocoiiieiiee s 22

3.3. Basic MS MAC Emulator ArchiteCture..........cccooeeeieiiiinieceeeeee e 25

3.4. Connection Interface between BS & MS ..o 27
3.4.1. SOCKEt Programimingcccooereiirerieieieniesie st 27

3.4.2. TCPand UDP socket programmingccccevvvereeieesieeieseeseesieseeseenens 28

3.4.3. Sockets Application on Emulator Platformccccooeviiieiiieneiiciies 29

3.5. Emulated Scenario and Physical Informationc.ccccoocveveiieiie i, 31

3.6. Multi-Thread for Realistic BS Operationccccooererinienieienenene e 33
Chapter 4. Demo Case of Emulator Platform ..o v...eooeieiicicecec e 35
Chapter 5. Conclusion and FULUre WOIKS .. i it 37
RETEIENCE ... e Fe etk d e e 2 EET L sttt et n bbb 39

Table 3-1 List of Defined Manager MOAUIESccuoiiiiiiiiiiieeee s
Table 3-2 List of Defined Controller MOAUIESoooeeeeeeeeeeeeeeee et

Table 3-3 List of Defined Passive ODJECEScociiiiiiiiie s

Vi

¥ P 4

Figure 1-1: MAC Layer ArCRITECIUIEoiviiiiiiieiei it 2
Figure 1-2: Hierarchical MAC System Class Diagramcccceuveieiiieineiesieseesie e sie e 3
Figure 2-1: WiMAX Network Topology from WwWw.Xarxaneta.orgc.cccceeeererenenenennn 4
Figure 2-2: SDU and PDU DIagramcccoooiiieiieieieeseese s seesie e saesaesseesaessesnae e ennesnee e 6
Figure 2-3: Examples of the Ordering of Payload and Sub-headers ina MAC PDU................. 6
Figure 2-4: Typical TDD Frame Structure under OFDMA Mode [1]ccoeovvveieeieiieieeciee 7
Figure 3-1: Hierarchical MAC System Architecture Diagramccocooevieieienencnencseniens 10
Figure 3-2: Manager Module BIOCK Diagramcccccveiiiieiiiiie s 11
Figure 3-3: Controller Module BIOCK Diagram ... it et 13
Figure 3-4: Passive Object BIOCK DIAQram... .. c.ioieiie i e iest e esie e sve e see e sre e sneenne s 14
Figure 3-5: PDU ClasS DIAQIaM i cuueuesues seisasianseeseesdsems siieesuesiessessessesseesesssessessessessesessens 15
Figure 3-6: Reconfigure MAC ArCRItECIUNE ...l it ettt 16
Figure 3-7: Overall BS ArCNITECIUIE. . i i iiunss s sessteste b et sie ettt sne bt seeas 17
Figure 3-8: SDU Classification Controller Flow Chart..............ccccooiiiiiiiiiiieic e 18
Figure 3-9: SDU Scheduling Controller FIOW Chart...........ccccooiiiiiiiiiiinceec s 19
Figure 3-10: Packing/Fragmentation LOQIC FIOWccccciveiiiiiii e 20
Figure 3-11: Burst Controller FIOW Chartccocoiiiiiiiiiiicsee e 20
Figure 3-12: Frame Structure under the Proposed Emulator Platform...............ccccoovviiiennnne 21
Figure 3-13: Framing FIOW Chart..........cccoooiiiiiiiiiiiieee e 21
Figure 3-14: Control Plane and Data Plane Operation............ccccevveiieenie e v 22
Figure 3-15: Network Entry Manager FIOW Chart ... 23
Figure 3-16: Connection Manager UML Diagramcccooveiieeiieiiieesie e 24
Figure 3-17: Scheduler ArCRITECIUIEvcveiiee et 24

vii

Figure 3-25: MS FUNStIoN FIOW Chartcooiiieiieie e 25
Figure 3-26: Streaming fOr MISo e 26
Figure 3-18: SOCKEL INtEITACEcc.ecveiieie e 27
Figure 3-19: TCP Socket Program FIOW ..o 28
Figure 3-20: UDP Socket Program FIOW..........cccccoiiiiiiiiciicse e 29
Figure 3-21: Network Architecture of EMUIAtOrcccoovviieiiiiicee e 30
Figure 3-22: EMUIAtEA SCENAIIOc.veiuieiiicie ettt e b e 31
Figure 3-23: Sequential Execution of the Platform ... 34
Figure 3-24: Parallel Execution by Using Multi-Thread.............cccccoviviiinieiiiiic e 34
Figure 4-1: Screen Shot (StANd DY)c.eoiiiiie e 35
Figure 4-2: Screen Shot (streaming Priority JOW)..o.i e ieeieeiece e 36
Figure 4-3: Screen Shot (streaming Priority Nigh)ciii . i e 36

viii

B8 g F R P
v e M
BS Base station
CID Connection identifier
CS Convergence Sublayer
DCD Downlink channel descriptor
DL Downlink
DPC Data plane command
FCH Frame control header
HO Handover
MAC Medium.access-control layer
MS Mobile-station
OFDM Orthogonal frequency division multiplexing
OFDMA Orthogonal frequency division multiple access
PHY Physical layer
QoS Quality of service
RRM Radio resource management
ucb Uplink channel descriptor
UL Uplink
WiIMAX Worldwide Interoperability for Microwave Access

Chapter 1. Introduction

Medium Access Control (MAC) protocols play a very important role in wireless
node-to-node communication, such as that between base stations and mobile terminals. This
article focuses on quick prototyping, early-stage verification and extensible design of generic
MAC layer systems. Starting from the integrated system of WiMAX/Wi-Fi dual-mode MAC
(especially design in WiMAX), we apply Object-Oriented Analysis and Design (OOA&D)
principle on both protocols, identification of the common and different components between
both systems. By using divide-and-conquer and bottom-up design approaches, we are able to
integrate WIMAX and WiFi MAC, and facilitate reuse and performance optimization of
common components between the two-systems.

As shown in Figure 1-1, the-MAC protocol layer, in terms of implementation, could be
separated in two parts: the Data-Plane and the Control Plane. The main function of the Data
Plane is production of MAC layer’s protocol data units (PDUs). It could either be analyzed
with electronic system level (ESL) methodologies;-or realized by FPGA hardware solutions.
The Control Plane takes charge of the Data Plane according to various signal feedbacks.
These feedbacks include PHY-to-MAC, Network-to-MAC and inter-BS or BS-to-MS

signaling.

UPPER LAYER

-

Contro
Plane

3 Packet
Bandwidth Packet Classifier /
Reqg/alloc clD
r
A
MAC SDU Buffer
.| Management
Message sDU
Generator
MAC Frag/| Sub-
¥ LS Processor Pack | Heaer ARl £
RNG/NIT | | 1 R I
& ARQ Header/Subheader De-header
Handover |<-- :
7
X I e e
L , Payload Const.
CRC Generate CRC Check
H + PDU
Scheduler PDU_queue
----- CONCAT/DeCONCAT
Burst
AN
v

In recent years, in order to verify the functionality of MAC layer, major manufacturers

Thus we introduce some new approaches to MAC prototype design. We apply

LOWER LAYER

Figure 1-1: MAC Layer Architecture

2

All these factors contribute to a complete and quick system building.

Data
Plane

begin to adopt MAC Emulators at early design stages to facilitate the accurate analysis,
reduce design complexity and achieve better time-to-market. Considering the massive man
power and time cost in designing a complete communication system, we think it is an
ultimately important issue to take into account both the system performance and speedy
system building. Based on this reason, our research puts emphasis on facilitating system

verification speed, quick system prototyping, extensibility, and early detection of problems.

Object-Oriented Analysis & Design (OOA&D) and hierarchical architecture principles in our

MAC design in order to facilitate functional analysis, bottom-up implementation and
early-stage exhaustive verification. In the Future, without losing portability, we can port the
original design to SystemC verification platform, which combines the object-oriented nature
and cycle-accurate hardware simulation. The criteria of quick system prototyping and
accurate verification are thus satisfied at the same time. A brief expression of hierarchical

system architecture, in terms of OOA&D, is shown in Figure 1-2.

» |

WimaxBsDevice | TrafficMng ¥
Class s 1355

= i)
¢ m_bursthaker | Bursthvaker® ___ MacSduClassify ¥
m_conning : Connectionfng™® Class
_frameMaker : Frametaker*
m_msDeBurst ; MsDeBurst®
m_msDeFrame ; MsDeFrame™
rr_rnsDePdu @ MsDePdu®
m_networkEntryMng @ NetworkEntryMng™®
m_outputésim | Outasm®
m_pduContainer : MacPduContainer* i)
m_pdutiaker : Pdulaker* [schedular 5}
m_phyivng @ Phylng®
m_schedular @ Schedular*
m_sduClassify : MacSduClassify* i
m_ssManager : SSkanager* | BurstMaker &)
m_traffiching : Traffichng* — [Class

e

~iimaBsDevice)
GetBurstiiaker() | Bursthaker*
GetConnkng) | ConnectionMng™®
GetFrameMaker () : Frameiaker* ' -FrameMaker =
GeftisDeBurst) © MsDeBurst™ | Class

GeftsDeFrame() : MsDeFrame™® _ -
GethsDePdui) : MsDePdu® | NetworkEntryMng ¥ |
GethetwarkEntryMng () @ NetworkEntryhng* L | Class -
Getoutasembler() | Outhsm® 5

GetPduContainer) : MacPduContainer*

GetPduMaker () @ Pdutaker®

GetPhyMng () © PryMng*

GetSchedular () : Schedular*

GetSduClassify() : MacSduClassify*

GetSshanager () @ SSManager™

GefTrafficMng() @ TrafficMng™®

\WirnanBsDevice()

i

| ConnectionMng ¥ |
Class —

| PduMaker &)

= Class

Class —t

| ssManager ¥ |

. Claiss sl

L6600 TP DLHTHTHTRDLDLDLHE%

Figure 1-2: Hierarchical MAC System Class Diagram

Chapter 2. Mobile WiMAX System Review

WIMAX (Worldwide Interoperability for Microwave Access) is a telecommunication
protocol that provides fixed and fully mobile internet access. The current WiMAX revision
provides up to 40 Mbit/s with the IEEE 802.16m update expected offer up to 1 Gbit/s fixed
speeds. The name "WiIMAX" was created by the WiMAX Forum, which was formed in June

2001 to promote conformity and interoperability of the standard.

2.1. WIiMAX Network Topology

Figure 2-1 shows the WiMAX topology. The transmission supports LOS (Line-of-Sight)
and NLOS (Non-Line-of-Sight). The topology is like GSM network. There are BSs and MSs
and BSs can communicate with each other. But the different is that WiMAX backbone

network is IP based core network.

INTERNET
BACKBONE

|:%J |
}"’)) % nw C P

i“'\g! WiMAX 802.16
l a5 TRANSMITTER
‘.}

| .'ﬁml LINE OF SIGHT

% BACKHAUL

NON
LINE OF SIGHT 3
TRANSMISSION

Figure 2-1: WiMAX Network Topology from www.xarxaneta.org

4

2.2. MAC Layer Technical Overview

A characteristic of WIMAX MAC layer is that it is connection-oriented. Each connection
is distinguished with a 16-bit connection identifier (CID). When performing network entry, an
MS sets up multiple connections with the BS. The connections are created based on the
services mapped to the MS, including broadcast, management and data transmission services.
Each data connection is associated to a QoS level. Connections are dynamically added or
dropped if services are initiated or terminated with the MS.

The WIMAX MAC also uses a scheduling algorithm for which the subscriber station
needs to compete only once for initial entry into the network. After network entry is allowed,
the subscriber station is allocated an access slot by the base station. The time slot can enlarge
and contract, but remains assigned to the. subscriber station, which means that other
subscribers cannot use it. In addition to being stable under overload and over-subscription, the
scheduling algorithm can also be more bandwidth efficient. The scheduling algorithm also
allows the base station to control quality. of service (QoS) parameters by balancing the

time-slot assignments among the application needs of the subscriber stations.

2.2.1. MACPDU

MAC protocol data unit (PDU) is a data unit for protocol communication between the
MAC layers of BS and MS. Basically, data traffic comes in the form of service data units
(SDUs) from upper layers. The MAC layer tunnels upper layer traffics without knowledge of

the payload content (shown in Figure 2-2).

http://en.wikipedia.org/wiki/Bandwidth_(computing)

SDU

g

MAC
PDU Payload CRC-32
Header
6 Bytes Variable Length 4 Bytes

Figure 2-2: SDU and PDU Diagram

According to Reference [1], two MAC header types are specified:

— Generic MAC Header: Used in MAC PDUs containing payload data. The generic MAC
header indicates length, destination CID, encryption key and included subheader type of
the PDU.

— Bandwidth Request Header: Used for requesting uplink bandwidth by MS.

As Figure 2-2 shown above, the payload length is variable. Also, the SDU length from
upper layer isn’t the fixed value.” Because of-those unpredictable reasons, there is a
packing/fragmentation mechanism for the PDU payload. Each data fragment under
packing/fragmentation should be attached to a packing/fragmentation sub-header.

Figure 2-3 shows examples of the ordering of data fragments and sub-headers.

MAC PDU with Fragmentation

GMH FSH SDU Fragment CRC

MAC PDU with Packing

GMH psH | SPYOr | pgy| SDUOr g, SDUor CRC
Fragment Fragment Fragment

Figure 2-3: Examples of the Ordering of Payload and Sub-headers in a MAC PDU

2.2.2. MAC Frame Structure

WIMAX supports both time division duplex (TDD) and frequency division duplex (FDD)
modes, but the OFDMA mode supports only TDD. For TDD mode, uplink and downlink use
the same spectrum, and a PHY frame is separated into downlink and uplink subframe in time

domain. A Typical frame structure layout is shown in Figure 2-4.

OFDMA symbol number ’r'
ko kel k3 kS | KT RO kDL B3 RS fet17 | k4201 £+23 | k426 k130 k+31 (k+33
i1] FCH FCH
s+2_| UL burst #1
n DL burst #3
] o
] 5
il A UL burst #2
Lj 7 DL burst #1
E J 2] [
= .| = ~ = =9
S - 5 < - = <
0 - 5 | = DL burst #4 UL burst #3 3 S
= 1~ (a2 £ |4
o ’ a)
5| 7
E a DL burst #2 DL burst #5 UL burst #4
. UL burst #5
s+l — Ranging subchannel
DL TTG UL RTG

Figure 2-4: Typical TDD Frame Structure under OFDMA Mode [1]

1. Preamble:

Each downlink frame starts with a preamble, which lasts for one OFDMA symbol and
occupies the entire spectrum. The preamble is robustly modulated in BPSK across subcarriers
by a PN code identifying BS cell/sector. MSs may acquire the system and maintain
synchronization according to the preamble. Also the preamble enables MSs to estimate the

channel and correct frequency/time offset.

2. Frame Control Header (FCH):

FCH contains Downlink Frame Prefix, which indicates the coding scheme and length of
DL-MAP. MSs decode the DL-MAP according to information provided in FCH. The FCH
uses the four logical subchannels following the preamble.

3. Downlink Map (DL-MAP):

The DL-MAP describes the DL subframe. By specifying subchannel and OFDMA
symbol allocation to each user, the DL-MAP enables MSs to decode the DL subframe.
Modulation of DL-MAP is fixed to QPSK, and the coding scheme is specified in the FCH.

4. Uplink Map (UL-MAP):

UL-MAP is similar to the DL-MAP. The UL-MAP describes the UL subframe, and
namely bandwidth allocation among the served users. The UL-MAP is embedded in the first
DL burst.

5. Downlink/Uplink Bursts:

DL/UL bursts contain data and messages to be transmitted by BS/MS. Each DL burst is
mapped with a DL Interval Usage Code (DIUC), and the burst profile is provided in the
DL-MAP. Similarly, each UL burst has a"UL “Interval Usage Code (UIUC), and its PHY
characteristics are described in the UL-MAP.

6. Ranging Subchannels:

MSs use ranging subchannels to perform initial ranging, periodical ranging , handover
ranging and bandwidth requests. Ranging is a process in which an MS adjusts its PHY
parameters according to indicated by BS.

7. Transition Gaps:

Receiver mode and transmitter mode are separated by transition gaps to ensure proper

operation. The gap from DL to UL subframe is Transmit Transition Gap (TTG), while the one

from UL to DL is Receive Transition Gap (RTG).

Chapter 3. The Implementation of MAC Emulator Platform

In this chapter, we introduce the proposed architecture including. First we try to explain
the concept of hierarchical and modular design we proposed. Then, analyze the BS
architecture (including data plane and control plane) by using these two concepts. Besides the
BS, we also have a basic MS platform to negotiate with BS part. We try to put some
significant elements in this emulator architecture, such as emulation scenario, timer, and

multi-thread programming. Those significant elements will help the emulation more realistic.

3.1. Hierarchical and Modular Design

In order to face the big emulator system, we are sure that we need a systematic way to
analyze and maintain. We propose a hierarchical and ‘modular design for the system. We
convince there have some advantages as follows:

1. Systematic Analysis

N

Reusability
3. Reconfigurability
4. Extension to Advance use

These four advantages are explained in the following sections.

3.1.1. Systematic Analysis

Hierarchical and modular design methodology really helps to analyze the system. We

propose a 4-level hierarchical architecture which is shown in Figure 3-1. 4-level hierarchical
9

architecture includes four level classes: supervisor, manager, controller and passive object.
These four levels imply some meanings such as reusability, complexity, inter-frame operation
and implementation. The highest level is supervisor. The duty of supervisor is to control all
the managers. For example, there are only one supervisor in the emulator called MAC main
module. MAC main module (supervisor) controls manager modules and controller modules.

Passive objects are driven by manager and controller modules.

Supervisor (MAC Main Module)

7 N

Manager Manager } Manager Manager

Controller | = Controller | Controller | Controller | | Controller

Amgesnoy

E]
°
]
3
[}
=]
8
=
=
=]

uonesad(swelj-18ju|

Passive Passive Passive Passive Passive Passive Passive
Object Object Object Object Object Object Object

Figure 3-1: Hierarchical MAC System Architecture Diagram

3.1.1.1. Supervisor Module

There is only one supervisor module (MAC Maine Module) in whole emulator platform.
The supervisor module controls all the behavior of the emulation such as handling the entry of
MS, handling the interrupt situation, executing the emulation flow, and design of the FSM
(finite state machine). We define the supervisor module is the highest level in the hierarchical

architecture.

10

3.1.1.2. Manager Modules

Manager modules are the second level below the supervisor module. The block diagram
of manager modules is shown in Figure 3-2. They typically involve some joint decision and
operation among multiple users, service flows, connections, and record profiles. Some
manager modules serve as “archives” of various records. Any module in need can check the
records in manager modules, but they can’t change records by themselves. They must send
some information to the specific interface to inform manager modules and update the status.
It’s also the characteristic of hierarchical architecture. Table 3-1 is listed some defined

manager modules.

Manager Mc;iule

Record,
Unified
@ Intg:'flaece

Joint Joint
Decision Operation

Interface to Interface to
Controllers Passive Objs

Figure 3-2: Manager Module Block Diagram

11

Module Name Description

Network Entry Manager | Handle network entry procedure. Decide if a requesting user
can be permitted to enter, and make necessary handshakes and

negotiations.

Radio Resource Manager | Handle bandwidth requests. Decision on scheduling and

coding-modulation scheme.

System Configuration Setup and update system parameters and configurations.

Manager

Connection Manager Archive of connection profiles. Manage connection queues and

update connection-related parameters.

Traffic Flow Manager Archive of traffic flow profiles. Manage and update

traffic-flow-related parameters.

Mobility Manager Do handover decisions. Handle-handover requests. Monitor the

mobility parameters of MSs.

Mobile Station Manager | Archive of mobile station profiles. Access and update

parameters of each mobile station.

Table 3-1 List of Defined Manager Modules

3.1.1.3. Controller Modules

Controller modules (shown in Fig 3-2) are the third level in the architecture. They just
involve single user, traffic flow, connection, and record profile. Briefly speaking, these

modules are much uncomplicated. They don’t need to handle multiple things. They only do

12

monotonous work. The main purpose is to perform routine logic and decisions. Table 3-2 is

listed some defined controller modules.
Controller Module

State
Machine

Interfaces to
Passive Objects

Figure 3-3: Controller Module Block Diagram

Module Name Description
Classification Called by Data Plane Manager. Classify upper-layer packets into
Controller connections:

Ranging Controller Called. by “either Mobility Manager or Network Entry Manager.
Handle single wuset’s ranging requests and make decisions on
ranging messages and parameters. Performs either initial or

periodic ranging.

Synchronization Called by Network Entry Manager. Obtain and maintain PHY and

Controller MAC synchronization.

ARQ Controller Called by Data Plane Manager. Produce and manage ARQ blocks.

Framing Controller Called by Data Plane Manager. Produce/parse frames.

QoS Controller Called by Radio Resource Manager. Define and maintain the QoS

of a single connection.

Table 3-2 List of Defined Controller Modules

13

3.1.1.4. Passive Objects

Passive objects (shown in Fig 3-4) are the basic level of whole MAC emulator
architecture. As the name of this object, they are passive that means they don’t do anything
actively. They wait for callings from other active modules, and they are self-supporting and

independent. Table 3-3 is listed some defined passive objects.

Passive Object
Module

Internal Logic

Figure 3-4: Passive Object Block Diagram

Module Name Description

SDU Service Data Unit. Include parameters and a buffer for storing data.
Responsible for «ts..own creation, “initialization, manipulation and

destruction.

PDU Protocol Data Unit. Include parameters and a buffer for storing data.
Responsible for its own creation, initialization, manipulation and

destruction.

Message Management messages. Include parameters and embedded information
elements. Responsible for its own creation, parameter acquirement,

serialize (encode) and deserialize (decode).

Record Profiles for recording the activity and parameters of user/service
Profiles flow/connection/management information. Responsible for its own

creation, initialization and modification.

Table 3-3 List of Defined Passive Objects
14

3.1.2. Reusability and Reconfigurability

Besides the hierarchical design, we also apply Object-Oriented Analysis and Design
(OOA&D) principle in this platform. In OOAD, there is an important characteristic called
data encapsulation. While we want to design a module, all we need to think is what members
the module should have and what functions the module should do. That is data encapsulation.

For example, the class diagram of PDU is shown in Figure 3-5.

| macPdu A |
Class

= Rz
#* cid ; uintl6_t
27 len :uint32_t
#? m_buffer ; Buffer®
#¥ pdusn @ uint32_t
¢ pduType : PduType
47 guots @ uint32_t

= i
¥ ~MacPdul)
v GetBuffer() : Buffer®
W GetCid() : uintls_t
v Getlen() : uint32_t
W GetPdusn() | uint32_t
¥ GetPduType() : PduType
W GetQuota) @ uint32_t
© MacPdu() (+ 4 ZE)
¥ Printd) : void
W SetCid() : void
v Setlen() : void
W SetPdusn() | void
W SetPduType() : void
¥ SetQuotad) : void

= EREUA

PduType
Erum

GEMERIC
Bi4_REQ
REFORT

Figure 3-5: PDU Class Diagram
We put the members and functions in the class. That helps the design consideration and
reusability. As for reusability, we can modify the existing class for other platform. Because of
the flexibility, we don’t need to design a whole new module for other specific protocol. It
reduces development time.
Up to the systematic view, it is possible to put two protocols in one platform by using
hierarchical and modular design. Because of the reusability, we can let some modules or

objects are suitable existing in two different protocols such as WiMAX and Wifi. In the
15

hierarchical design, we recommend that lower level modules can be reusable (controller and

passive object). After the analysis of two different systems, it is sure that MAC should have

some general parts and specific parts which illustrated in Figure 3-6. We can modulate the

general part and build new modules for specific parts. Then, carefully design the negotiation

bridge between two modes. The negotiation bridge will be the challenge of dual-mode design.
WiMAX

MAC
Specific Part

MAC Generic Part

Figure 3-6: Reconfigure MAC Architecture

3.1.3. Extension to Advance Uses

Although the MAC emulator platform is a software approach, we can add hardware to
become HW/SW co-design. Nowadays, ESL (electronic system level) become a popular
verification way. It can combine hardware and software in one platform. As an example for
the emulator, the basic routine part (ex: data plane) can be modified to Verilog (hardware
description language) and control or decision part can be software approaches. That can make
the emulator platform more realistic because of the addition of hardware.

Another one is using SDR (software-define radio) to make dual-mode device. More and
more standards use same physical base (OFDM). Therefore, we can use SDR to implement

dual-mode on one physical base. That can reduce chips costs and device area.

16

3.2. BS MAC Emulator Architecture

Figure 4 shows the proposed BS architecture. The red part is control plane, and blue part
is data plane. Data plane takes charge of the data formation from upper layer SDU to frame.
Control plane sends some decision information and updates some states. We also have
information from physical layer. This information will help the scheduling manager to do

better decision.

Network Entry Data—PIane Traffic Generator Ouput

Manager Conhection
3 Upd L
(_tafi_ia_m___ SDU Classification Controller

Conn.

Marsger 'c?e;J};;;VI' LR ‘I;‘I'Q
PR, Max CINR, RR l o 1 $ ¢ J ¢ ¢ $ {

SChed_Ul'ng Scheduling | == === 3 SDU Scheduling (Selection) Controller
Algorithm Manager 4; Scheduled SDUS

PDU Maker Controller

1
i
' PDUs
||| I Burst Profile * .
CINR, SNR, BER :— ————————— - e Concatenation
| Preamble, DL/UL-MAP W euss
[———— _--.-_> Framing Burst Queue
Control Plane Frames

Figure 3-7: Overall BS Architecture

3.2.1. Data Plane

Data plane is constructed by many manager and controller modules. Also, the passive
objects are clearly defined to data format such as SDU, PDU and frame. The data plane is the

executing part of the protocol layer. It handles incoming data according to the indications

17

given by the control plane, and executes the control plane’s commands by sending

management messages to the air interface. Data plane includes the following components:

1. SDU Classification Controller:

SDU classification controller will classify the SDU by their CID to the respective
connection queue as shown in figure 3-8. Also SDU classification controller will inform
connection manager in control plane to update connection information (add connection or
delete connection). All the SDUs will be stored in respective connection queue and wait for

scheduling.

Is
SDU queue
empty?

Inform Move SDU from
Classify SDU | N connection | N SDU queue to
By CID manager to connection
update status queue

Is
SDU queue
empty?

FINISH
CLASSIFICATION

Figure 3-8: SDU Classification Controller Flow Chart

18

2. SDU Scheduling Controller:

SDU Scheduling Controller follows the signal from the Scheduling Manager in the
control plane. Select the SDU from all connection queues and store them in the scheduled
queue as shown in figure 3-9. Controller is only to do the selection work, and the scheduling

algorithm part is in Scheduling Manager in control plane.

Scan all the Get information reSI:FC; EoDr:Jng;'rgn
existing ‘ p| (numofSDU) | ; v !
SUARY connection from scheduling thg;effsac%ig:fed

queue manager queue

More traffic ?

FINISH
SCHEDULING

Figure 3-9: SDU Scheduling Controller Flow Chart

3. PDU Maker Controller:

PDU is constructed by header and data (shown in Figure 2-2). PDU maker will check the
scheduled queue every 5ms. While it’s not empty, PDU maker accesses the scheduled SDU.
Estimate the data length and CID, and write information in the respective header. Then,
combine header and data into PDU which will be stored in PDU queue.

PDU length is also decided in PDU maker controller. Because of the channel condition,
PDU length is variable. We could send a big PDU while the channel condition was great. If
the condition was bad, the PDU length could be shorter. So we have the mechanism for

packing and fragmentation as shown in Figure 3-10.

19

Append
subheaders other

_ [subheader size

Subtract

Retrieve SDU

START than packing/ > | from indicated
fragmentation Lzl Egé:oad CID
subheaders q
Is the SDU Y ompare residui

packing/frag
allowed?

> SDU size with

\%d quota,

SDU > (PAY — FSH)

‘PSH: Packing subheader (2 bytes)

\FSH: Fragmentation subheader (3 bytes)
L

(PAY — 2PSH) <

SDU < (PAY — FSH) SDU < (PAY — 2PSH)

N] \ /
. o ; Fragmentation . o
- Just-fit Logic Logic Packing Logic [
' Y
A \i
Fragmentation Packing
subheader Subheader %@
\ / N
Next PDU)=

Figure 3-10; Packing/Fragmentation Logic Flow
4. Burst Controller:
Burst is concatenated by many PDU. There are lots of PDU with different CID in the
PDU queue. Burst Controller checks.all the PDUs"in the queue and concatenates them into
bursts respectively. In this emulator platform, we simplify the relation between user ID and

CID. In the default situation, user ID and CID are the same value (1-1 mapping).

Access first PDU
START in PUD queue
and check its CID

A Non-equal

Concatenate
them

Pop out
the used PDU

Is
PDU queue
empty?

FINISH

Figure 3-11: Burst Controller Flow Chart

20

5. Framing Controller:

Figure 2-4 is the typical frame structure in IEEE 802.16 (WiMAX). In this emulator
platform, we don’t consider the 2-D resource allocation (the emulator doesn’t support MCS
and some physical effects). We design the frame structure as shown in figure 3-12. The
information of bursts will be write (serialize) to DL-MAP, and MS will check the DL-MAP

block to be sure which burst it wants.

DL-MAP DL burst #0 DL burst #1 DL burst #2

Figure 3-12: Frame Structure under the Proposed Emulator Platform

Serialize Serialize Serialize
START Preamble [™| DL-MAP [P UL-MAP

Serialize
burst

v

Pop out
the used burst

burst queue
empty?

FRAMING
COMPLETE

Figure 3-13: Framing Flow Chart

21

3.2.2. Control Plane

Control plane collects lots of information and makes decisions for data plane. Take
Figure 3-14 as an example. Scheduling controller, PDU size controller and MCS controller
will send the information to relative data plane manger. In this emulator platform, the trigger
signal to control plane can be transmitted from lower layer (physical layer) or made by some
assumptions. We use some channel models (such as shadowing and path loss) to create the
information from physical layer. Without the control plane, data plane is just a frame

generator. Carefully design the control plane can make the platform more flexible and smart.

Radio Resource Manager Data Plane Manager
Scheduling , :
ol e =~ cm} SDU Selection (Scheduling) Controller
J' Selected SDU

PDU Size , .

Controller ohs St > PDU Making Controller
iidication J' Selected PDU

MCS Controller m======> Concatenation (Burst) Controller

Burst Profile
Coding-
Modulation
Scheme

Figure 3-14: Control Plane and Data Plane operation

We develop some control plane managers to enhance the emulator platform:

1. Network Entry Manager
While the MSs turn on or move into the coverage of BS, they will do network entry

procedure. Figure 3-15 is described that BSs’ behavior. We also do these procedures to make

22

sure MSs’ logging in our platform.

(START)

A

PHY
Synchronization

PHY Preamble
A Sync.

MAC
Synchronization

A Accquired

.

UL/DL Param.

Initial Ranging

Ranging &

Basic Capability
Negotiation

v

Authorization
And
Key Exchange

Registration

Registration Complete

A 4
(FINISH)

Automatic Adjust Complete

Figure 3-15: Network Entry-Manager Flow Chart

2. Connection Manager

Connection Manager takes charge of managing-all the.service connection. For all of the
situations, connection manager will update.the status of the connections such as adding and
deleting connection. We also classify connections into eight types: uninitialized, broadcast,
initial ranging, basic, primary, transport connection, multicast and padding. Figure 3-16 gives
a UML diagram that we define the connection manager module and WiMAX connections
(passive objects). Because WiMAX is a connection-based system, connection manager must
be carefully designed. The connection manager is like a information control center. We apply
the STL (Standard Template Library) containers (such as vector, queue, deque...etc) to store

the connection information and SDUs from upper layer. We can easily store, access, and

delete information by using the STL containers.

23

| wimaxConnection
Class

= iz

47 cid ; uintle_t
& connQueue : deque<iacSdu®=*
& grantSize : uintls_t

#* m_gosParameterSet @ QoSParameters...

#* m_type : ConnectionType

[connectionMing 4 wotalbyte @ uint32_t
Class Hi
% ~imanConnection()
= W GetCid() @ uintlE_t
#* m_hasicConnections : vector<\WimaxConnection™® =

o
@

m_connection : WimaxConnection® [65536]
rr_device : WimaxBsDevice®
m_primaryConnections @ vector <vwimaxConnection® =

m_transportConnections : vector <MimanConnection® =

% GetConnQueus() : degue<MacSdu® =*
GetFirstSdulnConn () : MacSdu*
GetGrantSize() @ uintl5_t
GetSchedulingType() @ SchedulingType
GetTotaByte() : uint32_t

)

@
v
2]
v
2% mvale : uint32_t “ GetType() : ConnectionType
= % HasPackets(© int
% ~ConnectionMng % Popfront() : void
% Addconnection() | WimaxConnection® % Print() : woid
@ allocateManagementConnections() : void “ PrintConnQuevet) : void
% BindToDevice() : void o % PushBackSdu() : void
% Connectionkng() P % SetCid() : void
% DeleteConnection() : WimaxConnection™ v SetTotalyte(© void
© GetBroadcastConnection() : WimaxConnection® @ timaxConnaction)
¥ GetCidType() : ConnectionType = BAREIAR
% GetConnection() : WimaxConnection®
% GetConnections() : vector <\WimaxConnection™ > ConnectionType £3
@ GetnitialRangingConnection() : WimaxConnection® A

CONNECTION_TYPE_UNINITIALIZED
CONNECTION_TYFE_BROADCAST
CONMECTION_TYPE_INITIAL_RANGL...
CONNECTION_TYPE_BASIC
CONNECTION_TYPE_PRIMARY
CONMNECTION_TYPE_TRANSPORT
CONNECTION_TYPE_MULTICAST
CONNECTION_TYPE_PADDING

Figure 3-16: Connection Manager UML Diagram
3. Scheduling Manager
Scheduling Manager provides the architecture that schedule algorithm and interface are
separate. We can easily add new algorithm and-choose different algorithm to check the
performance. Because we don’t have the physical model for modulation coding scheme, we
use the quantities of PDU for scheduling principle. If the radio resource is enough, we can

select more PDUs for the respective users.

Control Plane

Data Plane
Scheduling

Algorithm Connection Queue

diu/indi(atedconn.l l l $ 1 l i $

) = o e e == =P | SDU Scheduling (Selection) Controller
\ Scheduling Manager

A ¥

Scheduled
Queue

PF, Max CINR, RR

CINR, SNR, BER

Emulator Platform

Figure 3-17: Scheduler Architecture

24

3.3. Basic MS MAC Emulator Architecture

MS (mobile station) is the receiver part in the emulator platform. It has basic decode
functions (decode frame, decode bursts, decode PDUs). The received frame includes all of the
MSs’ bursts, so we need to read the DL-MAP. DL-MAP stores the information of the
respective downlink bursts. We use CIDs to map users (1-1 mapping). After MS deserialize
the information of the burst location, MS takes the respective burst and puts in burst queue.
Other useless bursts and information will be released to save memory block. A Burst is
constructed by many PDUs. MS calculates the quantities of the PDUs (burst size divided by
PDU size) and decodes them to PDUs. All the decoded PDUs are stored in the PDU queue,
and MS decomposes the PDUs into the original- SDUs. These SDUs should be streaming
datagrams or fragments from some indicated pre-stored files (picture). As for streaming, we

open the UDP socket and indicate the local address and port (shown in Figure 3-26).

N
eive

Frame?

STRAT Network Entry |
Procedure

Y
Decode PDUs Decode Burst " Deﬁoﬁe Flgimr\;AP
o o T eserialize =
(deserialize ~ @——— (deserialize [@——— iich indicates the
header) header) respective parts)

Original SDU is
putinthe SDU | FINISH
queue

Figure 3-25: MS Funstion Flow Chart

25

—boint to
127.0.0.1:1234

Figure 3-26: Streaming for MS

Application of streaming has an obvious advantage. The emulator not only performs
monotonous data transferring. We can use real traffic and emulate the effect of traffic loading.
If the resource of emulator (it means the ability of emulator computation) is congested with
the traffic jams (lots of resource request), the scheduling manager will arrange the resource
depends on the QoS. The scheduled result will be shown on the monitor by VLC player. VLC
player can decode the movie with receiving lots of datagram in a period time. The quantities
of datagram are variable because of the codec (mpeg4, H.264...etc). But we can still use the
decoded result which is successful or not as scheduled consequence. Briefly speaking, we can
verify the specific scheduling algorithm by watching the streaming on the monitor which is

played fluently or not.

26

3.4. Connection Interface between BS & MS

Most of the emulators put the BS and MS in one project, but our platform is different.
We make MS and BS as two divided and independent modules. The difference is that two
independent modules doesn’t share the same memory block. It is much more like real BS and
MS. In the real case, BS and MS use wireless module (RF chips) to connect each other. But in
our emulator platform, we focus on the MAC operation instead of physical layer effects. So

we use wire connection instead of wireless connection.

3.4.1. Socket Programming

We use windows socket programming to connect BS and MS. Socket programming gives
us a convenient interface to drive the layers below transport layer. Figure 3-18 gives us a clear
concept. We put our process (emulator platform) on the socket interface, and use the existing

API by socket library. We can easily drive the network protocols to make a wire connection.

Server Client
1\
U I Process Process
ser |
Space |, User’s View
Socket — Socket
4
: Transport Transport
I
< | Network Network
ernal |
Space | . .
: Link Link
| . Internet .
| Physical > Physical
v

Figure 3-18: Socket Interface
27

3.4.2. TCP and UDP socket programming

We can make TCP and UDP connection by using socket programming. In this section,
we just describe the implementation of TCP and UDP connections instead of protocol parts.
TCP is connection-oriented. We can see Figure 3-19 that shows a TCP socket flow. In this
flow, we can see the server continuous listening and waiting for the response to ensure the

reliable connection.

TCP Server TCP Client
WSAStartup() WSAStartup()
2 v
socket() socket()
bind()
listen() v
connect()
accept()
send() A 4
recv()
closesocket()
closesocket()
WSACleanup() WSAC‘I';anup()

Figure 3-19: TCP Socket Program Flow
UDP connections are much simpler. UDP connections just need to bind the address and
continuous sending packet to the indicated address. UDP connection doesn’t care about the
reliability. The application of UDP is streaming. YouTube provides streaming platform on the
internet. The streaming server like YouTube just sends the datagram (UDP packet) to the
request address. If some datagram is missing, server won’t retransmit the missing part. For
terminals, maybe just miss a short period of the streaming. Figure 3-20 shows a UDP socket

program flow.

28

UDP Server UDP Client

WSAStartup() WSAStartup()
. v
socket() socket()
bind()
sendto()
AP recvfrom()
closesocket() ,L
v closesocket()
WSACleanup()
WSACleanup()

Figure 3-20:"UDP Socket Program Flow

3.4.3. Sockets Application on Emulator Platform

The characteristics of TCP and UDP are ‘quite different. TCP has a reliable connection.
We can use it in transferring some acknowledgement message. For example, the network
entry procedure needs some acknowledgement message to change the state (network entry
FSM). As for UDP, in our platform we use it in streaming.

Figure 3-21 gives an illustration about the network architecture of platform. VLC is an
open-source media player which supports streaming sending and receiving. In one version of
our platform, we can use a VLC player as a streaming server which continuously sends the
datagrams. All the sending datagrams will be received by the indicated BS module. After the
BS operation, those datagrams will be packed to PDU or frame format and sent to the
indicated MSs. MSs receive the PDU or frame and start to deserialize them. Frame or PDU

will be decoded to the original datagrams. Then, MSs will send those original datagrams to
29

the VLC player. We can use the player watching streaming on MS sides.

Datagram sent to Datagram sent to
140.113.87.132: 1234 140.113.87.132:1

Internet
UDP VLC Streaming Server #2

Server IP: 140.113.87.131

VLC Streaming Server #1
Server IP: 140.113.87.130

Open port 1234 Open port 1235

BS IP: 140.113.87.132

MAC Frame sent to
140.113.87.134 : 1237

MAC Frame sent to
140.113.87.133 : 1236

VLC Player

|) ' {1s#2 IP: 140.113.87.134
MS#11P: 140.113.87.133 " _ _‘ T et B RS B

Figure 3-21: Network Architecture of Emulator

30

3.5. Emulated Scenario and Physical Information

Figure 3-22 shows a 2-tier cellular architecture. Each cell’s coverage is the relative BS’s
coverage. We set the reuse factor which equals 1, that means all the cells use the same
frequency. Because of this scenario, we can calculate the SINR (signal to interference plus

noise ratio)

Reuse factor =1

Figure 3-22: Emulated Scenario

Equation (3.1) is the calculation of SINR. According to EVM (evaluation methodology),
we add the shadowing and path-loss effect to calculate the signal and interference. Equation
(3.2) lists the elements of the signal and interference. P; is the transmission power, and it’s
set as the fixed value which is -47dBm. G, is the antenna gain, and it’s set as the fixed value
which is 17dBi. P, and S is the effect of path-loss and shadowing. The calculation
methodology is described in EVM. We have the scenario and calculation of SINR and these
physical layer information can help the scheduling manager do some scheduling algorithms

related to SINR. Take MAX-CINR as an example. While MS logs in the network, BS module
31

will calculate the SINR according to MS’s location. If the MS is fixed point, BS just only
calculates once. If the MS is mobile point, BS calculates the SINR every 5ms (frame time).
After the calculation of the SINR, the scheduling manager uses the MAX-CINR to allocate

the resource to MSs. Bigger the SINR is, more SDUs can be selected.

S
SINR = SN (3.1)
Sorl =P XGy X P, XS (3.2)

Transmission power is related to the location of MSs, and antenna gain is related to the
direction of the antenna. It is much«more complicated. In our platform, we want to simplify
the situation, so we fixed the value of P.and" G;. Although'the P, and G is fixed, we have

the flexible architecture to add some physical model if needed.

32

3.6. Multi-Thread for Realistic BS Operation

When a program is loaded into memory, it is called a process. But one process a have
multiple threads. A thread of execution is the smallest unit of processing that can be scheduled
by an operating system. The sequential execution is that a process only have one thread, and
this thread do all of the process sequentially. For multi-thread, there are multiple threads in
one process, and those threads can execute the process independently. Multi-thread
programming also can be used for parallel process. Later we will introduce the application of
parallel processing in our emulator platform.

The sequential execution isn’t suitable for the MAC emulator. In the real BS, all the
process is parallel. We have developed-and improved the MAC emulator. We can see the
Figure 3-23 which illustrates the sequence -of-the older-version emulator platform. The
emulator always receives the packet from the streaming server, and then it does some frame
works (packing to PDU). After the basic BS operation, emulator sends them to the MSs.

Actually the BS operation is not normal for sequential process. We notice that the input
of the emulator can’t only have one streaming. There should be multiple streamings sent by
many streaming servers. The existing emulator platform can’t handle those parallel streaming
input. So we revised the emulator platform. Our new feature is handling multiple streaming
parallel by using multi-thread. We set many threads (the number of threads depending on the
number of inputs) to handle the coming streaming. Figure 3-24 illustrates the multi-thread
processing. Take Figure 3-24 as an example, there are three inputs: FTP transferring (from
pre-stored files), streaming 1 and streaming 2 (from two different streaming servers). These
three inputs will be processed in the same time, so we create three independent threads for
them. We can also see the characteristic in Figure 3-24. These three threads can continuously

process the work. They are independent and individual. We also include the timer. We can do

33

http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Operating_system

a frame in every 5ms. We collect all the SDU from the time period, and use these collected
SDUs to do frame work. After the frame work, the BS sends them to the indicated MSs. The
thread of frame work and the threads of input are independent. It assembles to the real BS

operation.

Streaming Frame B Sending Streaming Frame W Sending
packet packet
receiving work packets receiving work packets

> time

Figure 3-23: Sequential Execution of the Platform

Thread for ftp SDU generating

Thread for streaming #1 packet receiving

Thread for streaming #2 packet receiving

> time

o

Short waiting period
for packet receiving

Figure 3-24: Parallel Execution by Using Multi-Thread

34

Chapter 4. Demo Case of Emulator Platform

We want to perform a demo for our emulator platform. In this chapter, these three
devices (streaming server, BS, and MS) are in the same computer because it is simpler to
show the response of each device. It can be run in three different computers as shown in
Figure 3-21. The situation is that BS has a streaming input which is sent by streaming server
(in real world, it’s like YouTube.). Besides the streaming input, we create congestion inside
the BS. Because of the congestion, the streaming which is shown on the MS side has the
probability that MS can’t decode it. Because congestion shares the resource of BS, MS can’t
receive amounts of datagram to decode the stream. Figure 4-2 shows that the MS can’t decode
the movie completely. Because of that; we use the schedule manager to raise the level of QoS.
The schedule manager decreases-the quantities .of SDUs which is selected to make PDUs.
Also, raise the priority of the streaming service. Figure 4-3.shows the scheduled result. We

can play the streaming fluently.

RNV IEM View HEH)

Maiting for incoming datagram.

DRz OCREED

Streaming Server

ase Station

ERiEF | EERER R £ | HERaThiE | RS

P ERE. C. mER(. E E (] [ed[m]pm] [m=]=)m)
devenv.exe egilfll 00 33,196 K Microsoft Visval Stodio 2008 —
dum e cgild1l o0 19,224 K HERSEES .
agloeree g9l 00 39772K Windows RSB

iTunesHelperexe cgi0911 00 326K iTunesHelper . .
mspdbsre exe cgilfll o0 3040K Microsoft® Program Database Moblle Stat|0n
wlchedexe cgilS1L 00 132K Reallfetworks Scheduler
REDVCplexe cgill911 o0 2916K IREBEMESH

taskhostexe g9l 00 L34 K Windows TIREIEISARIE. |
taskmer exe cgil9ll 00 1,G80K Windows T{FEES 1
testbeexe 091l 00 LO4BE testbsexe

Figure 4-1: Screen Shot (stand by)

35

Tue Jul 28 1 1 2018
Recv dgram #134 s = 1316

Waiting to send datagram.
Tue Jul 20 19:44:01 2010
— Recv dgran #134 siz

Waiting for incoming datagram.
Tue Jul 28 19:44:01 2010

— Recu dgran #135

|Classify SDU #135

The SDU is sent to connection 10
Waiting to send datagram.

Tue Jul 20 19:44:02 2010

- Recv dgran #135 i

Waiting for incoming datagram.
Tue Jul 20 19:44:02 2010

— Recv dgran #136

Classify SDU #136

The SDU is sent to connection 10

ng for incoming datagranm.
Tue Jul 20 19:32:18 2

— Recv dgram 779

Classify SDU #779

The $DU is sent to connection 10
Waiting to send datagran.

Tue Jul 20 19:32:18 2010

- Recv dgran 77% size = 1316

Waiting For inconing datagran.
Tue Jul 28 19:32:18 2018

- Recv dgran #7880 - 1316
Classify SDU 4788

The SDU is sent to connection 18
Vaiting to send datagran.

Tue Jul 28 19:32:18 20818

- Recv dgran 1#780

Vaiting for incoming datagran.
Tue Jul 28 1 8 2010

- Recu dgram ¥781 s
Glassify SDU #781

ERE | SHEF g

RARAE
devenv.exe
dllhast exe
dwmexe cgilall
explorer.exs ceildll
iTunesHelperese cgildl1
sspeint exe cgilnll
mspdbarvexe ceildll
wolshed e cgildll
REHEDVCplaxe ogildll
askhost exe cgiloll
toskmer e cgilall
est-bs.exe ceilall
VCDDsemonexe cgildll
vexe cgiloll

U minnty

RETREIFR R E R BREITIERE (3)

1=

cgildl1
cgildll

MS Decode Failed

=)

udp://1235

1.00x

1.00x

»

00:11/02:26

00:00/00:00

Figure 4-2: Screen-Shot (streaming priority low)

R ThE | BRAE

ISR (. e
33,200 K Microsoft Visuel Studio 2008
172K COM Sumogate
18580 K AEREHEES
ITIE0K Windows EREBE
3,244 K iTwnscHelper
UHBK EF
3812K Microsoft® Program Datsbase
438K ReolNetworks Scheduler
206K REEEESH
1944 K Windows TIER)ZISEIE
LTIZE Windows THREIRS
5952K tstbsexe
1,136 K Virtual ClonsDrive Doemon
55804 K VLC media player

AEAEVY U v din e

([EREERE)

= =

')

1.00x

MS Decode Successful

@ [l
M OCN-1B0
udp://:1235

1.00x

00:06/02:26

00:00/00:00

Figure 4-3: Screen Shot (streaming priority high)

36

st

Chapter 5. Conclusion and Future Works

In the article, we propose a hierarchical and modular methodology in the design of
generic MAC emulator platform, and give an implementation of WiMAX MAC emulator with
the proposed methodology. We clearly defined the MAC architecture by using hierarchical
and modular design. We don’t focus on the improvement of transmission throughput or
effective algorithm. Our contribution is to give a well-defined emulator platform. All the
components are modular and hierarchical, and the architecture is flexible. It is possible to add
more modules in the future. The applications of the emulator platform are various, such as
HW/SW co-design, ESL verification, and embedded system design. The purpose for this
emulator is that reduces the time_for development. and increase the accuracy of the
verification.

The wireless environment.(RF) is replaced to wired environment (internet). Many
embedded system has its own RF-module. In the future, we can port our MAC system to the
embedded system. It is possible for the transplantation. Windows sockets part can be change
to linux sockets, and multi-thread parts can be change to POSIX thread library. We only need
to drive the RF module for physical transmission. The architecture doesn’t change for the
transplantation. It can solve the problem that uses wired transmission in wireless protocol
implementation.

Emulator isn’t like simulator. Emulator is a bit by bit operation platform. To a certain
extent, it has the much more real response to the activity by applying some new features. For
example, we illustrate the scheduling algorithm performed in Chapter 4. The physical model
including MCS (modulation coding scheme) is still needed because many algorithm need
MCS to perform the effect of modulation. It is a challenge of the MCS, because it is difficult

to perform the effect of modulation. With MCS, the frame allocation can be real

37

two-dimension (OFDMA symbol and subchannel). The effective two-dimensional allocation
Is also an important research that can be verified with MCS-support MAC emulator platform.

The mechanism of FSM (finite state machine) is also important. Both MS and BS need a
complete FSM for any interrupt situation. FSM plays an important role in the MAC design. It
is not only one MS in the BS. Handling many MSs needs a complete FSM to control. Another
work is using the reconfigurbility to make multi-system. Many protocols use the same
physical base. We can combine two different protocols (like WiMAX and Wifi even LTE) in
one system and device by modified the software which is called SDR (software defined radio)
I mentioned in section 3.1.2.

In summary, physical model, complete FSM and multi-system issues are three important
works in the future. These three issues _can'lead the.MAC emulator much more realistic and

effective.

38

Reference

[1] IEEE 802.16 Working Group, “IEEE Standard for Local and Metropolitan Area

[2]

[3]

[4]

[5]

[6]

[7]

Networks — Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” IEEE
Std. 802.16-2004, October 2004.

GuoSong Chu, Deng Wang, and Shunliang Mei, “A QoS Architecture for the MAC
Protocol of IEEE 802.16 BWA System,” on Communications, Circuits and Systems and
West Sino Expositions, IEEE 2002 International Conference, vol.1, pp. 435-439, 2002.
De La Oliva A, Banchs A, Soto I, Melia T, and Vidal A, “An Overview of IEEE
802.21:Media-Independent Handover Services,” IEEE Wireless Communications, vol.15,
pp. 96-103, August 2008.

Rehan Qureshi, Arek Dadej, and Qiang Fu, “Issues_.in 802.21 Mobile Node Controlled
Handovers,” Telecommunication Networks. and. Applications Conference, pp. 53-57,

2007.

Hans-Peter Loeb, Christian Lis, and Christian Sauer, “UMAC — A Universal MAC
Architecture for Heterogeneous Home Networks,” Digital Object Identifier, 20009.

&% o i Windows Sockets #e i ARV Kzt 0 A FHOLZF AL 0 % 98
z

FEF B REE WIMAX 3FRIZE % > fOF FRm G a9 > 2 06

39

