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Design and Implementation of a Dual-Field Elliptic Curve
Cryptographic Processor with Power Analysis Countermeasures

student : Yao-Lin Chen Advisors : Chen-Yi Lee

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

ABSTRACT

In this thesis, we propose a high-performance dual-field elliptic curve
cryptographic processor (DECP) “architecture that can support all finite field
operations and elliptic curve (EC) functions with arbitrary field and curve. Based
on our proposed fast unified division algorithm, the operation cycles can be
significantly reduced. Compared with previous works using high radix
multiplication in projective coordinate, our 160-bit and 256-bit DECPs can
achieve competitive performance in terms of execution cycles with only 0.29mm?
and 0.45mm? silicon area in UMC 90nm CMOS technology by exploiting
hardware sharing and ladder selection techniques. In addition, the operating
frequency in prime field and binary field can be increased due to the proposed
data-path separation and degree checker. To resist power analysis attack, we
propose a DECP with power analysis countermeasures architecture based on the

proposed unified random algorithms with only 8.4% area overhead.
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Chapter 1

Introduction

1.1 Elliptic Curve Cryptography

To ensure the data security of network communication, public-key encryption algo-
rithms have been widely adopted. Elliptic curve cryptography (ECC) [1-6] can provide
the same security level as the Rivest, Shamir and Adleman (RSA) [7] algorithm with much
reduced key-size. In ECC scheme, themajor operation is the elliptic curve point scalar
multiplication (ECSM). To reduce the execution' time in software implementation [8],
several accelerating hardware processors are proposed. Many ECC designs have been
published over specified finite field, either-GE(p) [9-11] or GF(2™) [12-22]. The designs
over GF(2™) usually target at area constrainted applications such as smart cards or RFID
cards due to the carry-free propagation and fixed irreducible polynomial in specific ECs.

However, to support higher security level, both arbitrary key-size and field operations
are essentially required. Some dual-field ECC processors (DECP), in which the coordinate
is transformed to the projective coordinate to avoid inversion operations in ECSM, have
been proposed up to now [23-25]. Satoh and Takano [23] exploit a r x r-bit multipliers to
speed up the ECSM in the Jacobian’s projective coordinate, and Lai and Huang [24,25]
present a parallel architecture based on [23] to enhance the throughput. However, opera-
tions in the projective coordinate are more complicated than that in the affine coordinate,
and the inversion is still needed in coordinate transformation before and after the ECSM
in projective coordinate. To reduce the execution cycles of ECSM and coordinate trans-

formation, the size r of multipliers or the number of parallel units are increased, which



usually results in high hardware cost.

The traditional approach of inversion operation is based on the Fermat’s little theo-
rem (FLT) [26]. It can be realized by repeating squaring and multiplication operation but
results in longer execution time [23-25]. In 1995, Kaliski [27] proposed a unified inversion
algorithm to accomplish the inversion operations. Several later algorithms and architec-
tures are based on this algorithm [28-34]. Furthermore, to directly reduce the execution
cycles of ECSM in affine coordinate, many architectures and algorithms [35-37] are based
on Takagi’s modular division (MD) algorithm [38].

To solve the overhead of inversion and the following multiplication operation in ECSM
and coordinate transformation, we propose a fast unified division algorithm supporting
Montgomery modular division (MMD) and MD operations over dual fields. Note that
the “unified” means the algorithm is able to handle dual-field operations. In addition, we
apply hardware sharing method, data-path separation, and degree checker into a DECP
to reduce the hardware cost and increase the operating frequency. Our DECP supports
ECSM and finite field operations with arbitrary curves and parameters over dual fields.
The implementation result shows our DECP outperforms relative works in functionality,

hardware efficiency, execution time, and power consumption.

1.2 Power Analysis

Physical attacks on cryptographic devices using side-channel information are attract-
ing extensive attention [39-41]. In order to reveal secret parameters, the power dissipation,
electromagnetic radiation, or operating times (i.e. timing attack [42]) as correlated to in-
ternal operation are measured. Simple power analysis (SPA) [43] and differential power
analysis (DPA) [44,45] are known as basic and powerful side-channel attacks, which have
been discussed in several literatures [4,46-51].

To resist the power analysis attack, we use the masking techniques to randomize the
operating data. We propose a unified random division and a unified random multiplication
algorithm to make the total random numbers equal 2™, where m is the field length.
Compared with the proposed unified algorithms, the implementation of the unified random

algorithms increases little hardware cost to resist DPA attack. In addition, the SPA attack



is resisted by well known double-and-add/sub-always method.

1.3 Organization

In this thesis, we propose the unified algorithms and ECC architectures to support
the operations in elliptic curve cryptography, and propose the unified random algorithms
and architectures to resist power analysis in cryptographic processor. In Chapter 2, the
preliminaries of ECC cryptosystem is introduced. In Chapter 3, we propose the unified
algorithms to accomplish the division and multiplication operations. In Chapter 4, we
propose the Galois field arithmetic units and dual-field ECC processors to support finite
field operations, EC functions, or power analysis countermeasures. In Chapter 5, we show
the implementation results of our proposed architectures. In the last Chapter, we give a

brief conclusion and discussion.



Chapter 2

Preliminary of Elliptic Curve

Cryptography Cryptosystem

Elliptic curve cryptography cryptosystem, which is based on the arithmetic on elliptic
curves (ECs) over finite field, has been widely adopted in recent years. The arithmetic on
ECs is the EC point scalar multiplication (ECSM) which is computed in Galois field. In
addition, the applications of ECC are the ' EC data,en/decryption and EC based protocols
which are composed of ECSM, random number generator, hash function, and Galois field
arithmetic. The relationship is given in-a hierarchical organization as shown in Figure

2.1.

ECC applications
EC Data En/Decryption, ECDH,
ECDSA, ECIES, ECMQV.

EC functions Cryptographic

functions

Elliptic Curve Scalar Point Multiplication

Galois Field
Arithmetics
Modular Operations

Hash Function, Random
Number Generator

Figure 2.1: Hierarchical organization of EC protocol

The ECSM operation consists of four parts, which are operating field, coordinate, point
multiplication method, and Galois field arithmetic, shown in Table 2.2. Furthermore,
power analysis on ECC is discussed nowadays. By measuring power traces of ECC devices,

the secret informations can be extracted. We will introduce some power analysis methods



and countermeasures to attack or resist them, respectively.

Field — Prime, Extension Binary
. Affine, Projective, Jabobian’s
Coordinate — .
Projective...
Point Scalar Binary Method, Binary NAF

Multiplication Method s Method, Montgomery Ladder...
Modular Addition/ Subtraction,
Galois Field Arithmetic — Montgomery/Modular
Multiplication/Division

Figure 2.2: The component of ECSM operation

2.1 Point Addition and Doubling over Finite Fields

If L and K are two fields, L. O K, the general elliptic curve E defined over K is an

equation of the form (also called Weierstrass equation)
E(L) : y* + ayzysF asyp=a™ % asr® + ayz + ag, (2.1)

where ay,..., ag € K are constants-and (x,9).€ L-x L is the set of points along with
a point O at infinity. The point O “at.infinity/is defined as the identity element, i.e.,
P+0O =0+ P =P forall Pe E(L). Note that if P = (x,y), then the negation of P,
denoted by —P, is defined as (z, —a;x — az — y).

However, it is more practical to specify what kind of finite field of set z, y, aq, ...,
and ag belong to in equation 2.1. Most of ECC designs are implemented over GF(p) or
GF'(2™), where p is a prime integer and m is the field size determined by the key length.
An equation form of the non-singular EC E(GF(p)) is given by

E(GF(p)):y* =2*+azx+b (mod p), (2.2)

where a, b €GF(p) and 4a® 4+ 270* # 0 (mod p). For two distinct points P = (x1,%;) and
Q = (xq,y2) with P # £@Q), the formulas of the EC point addition (ECADD) P + @ =
(x3,y3) and EC point doubling (ECDBL) in affine coordinates are shown in Table 2.1.
The ECDBL is that the point P adds itself, i.e., 2P = (x3,y3), but P # —P. For the

existence of inverses, it is easy to return the value as O because P + (—P) = O.
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For GF(2™), the non-singular EC is an equation of this form

where a, b €eGF(2™) and b # 0 (mod p) and p is an irreducible polynomial of degree m.
Table 2.1 lists all the formulas of the point addition over GF'(2™) and the point doubling
in affine coordinates. Note that the EC point subtraction (ECSUB) Q — P with P = (z,y)
can be computed by ECADD @+ (—P), where the coordinates of —P are given by (z, —y)

E(GF(2™) :y* + 2y = 2° + az® +b (mod p),

over GF(p) and (z,z + y) over GF(2™).

2.2

Traditionally, ECSM is operated in affine coordinate. To avoid the inversion operation
which is more expensive than multiplication, many coordinates has been proposed, such
as Jacobian projective coordinate [1] and Lépez projective coordinate [52], etc. Table 2.2
and 2.3 show the analysis of EC point doubling/addition in different coordinates [53]. The
execution cycle of the ECSM in affine coordinate is dominated by the division operation.

To outperform other coordinates, the execution cycle of division must be less than 5.2M ¢,

Table 2.1: ECDBL and ECADD.

Field Doubling(z3,y3)=2(71,y1) Addition(z3,ys)=(z1,y1)+(22,y2)
z2+a Yo —Y1
)\:?’QITT (mod p) )\:ﬁ (mod p)
GF(p) x3 =A% — 221 (mod p) 3 =A% — 21 — 29 (mod p)
ys = A(z1 —x3) —y1 (mod p) ys = A(z1 —x3) —y1 (mod p)
A=z + % (mod p) = 7321211 (mod p)
GF(2™) r3 =X+ X +a (mod p) 23 =M+ X+2; + 22+ a (mod p)

yz = M1 + 3) + 23 + yj (mod p)

U3 = AMx1 + x3) + 23 + 1 (mod p)

Analysis of Point Addition and Doubling in Dif-

ferent Coordinates

where Mc means the cycle of multiplication.



Table 2.2: ECDBL and ECADD for various coordinates over GF(p).

ECDBL over GF(p)
Function A—2A J—2J Jv — 2J Jo — 2Jc
Major Operation | 1D+1M+25Q | 4M+6SQ AM+45Q 5M+65Q

ECADD over GF(p)
Function A—A4+A | J—J+A | Jy—Jy+A| Joc—Jc+A
Major Operation | 1D4+1M+1SQ | 12M+45Q 13M+65Q 11M+35Q

Table 2.3: ECDBL and ECADD for various coordinates over GF(2™).

ECDBL over GF(2™)

Function A—2A Lp — 2LP LM — 2LM LMC — 2L]\,{C
Major Operation | 1D+1M+1SQ TM+55Q* AM+15Q* SM+18Q*

ECADD over GF(2™)

Function A—A+A | Lp—Lp+A | Ly« Ly+Ly | Lvuc < Lyuc + Luc
Major Operation | ID+1IM+1SQ | 10M+4SQ° 2M+4SQ° 2M+35QP

@: Including the operation cycles of extra step.

2.3 Elliptic Curve Point Scalar Multiplication Meth-
ods

Intuitively, the ECSM operation, i.e. kP'= P+ P...+ P, requires (k—1) iterative point
addition to accomplish. To reduce the execution cycle, many methods such as binary
method and window method were proposed [1]. Considering the hardware efficiency
and operation cycles, we adopt the binary Non-adjacent form (NAF) method shown in
algorithm 2.1. Prior to this algorithm, the secret key must be transformed to the NAF
form. The details of the NAF is illustrated in [2].



Algorithm 2.1. (Binary NAF method for point multiplication.)
Input: P and k, where P € E(L), k is an integer with NAF form and k,,_1 = 1.
Output: () = [k|P.

1.Q="P

2. fori=m—2to1l by —1 do
5. Q=[2Q

4 if k; =1, then

5 Q=Q+P

6. else if k; = —1, then

7 Q=Q—-P

8 end if

9. end for

2.4 Galois Field Arithmetic

Galois field arithmetic is very important-netwnly in ECSM operations but also in EC
protocols. Eight different modular operations over finite field are commonly used and
details of these modular operations -and. their abbreviations are listed in Table 2.4. The
division and multiplication are more complicated than addition and subtraction, so many

approaches have been proposed to enhance the performance of division and multiplication.

Table 2.4: Galois field arithmetic.

Operations

Modular addition MA(X,Y)=X+Y (mod p)

Modular subtraction MS(X,Y)=X-Y (mod p)

Modular multiplication MM(X,Y)=X-Y (mod p)

Montgomery modular multiplication | MMM (X,Y)=X-Y -27™ (mod p)
Modular inversion MI(X)=X"! (mod p)

Montgomery modular inversion MMI(X)=X"1-2"™ (mod p)
Modular division MD(X,Y)=X-Y~! (mod p)

Montgomery modular division MMD(X,Y)=X-Y~1.2™ (mod p)




2.4.1 Unified Multiplication Algorithms
Unified Modular Multiplication Algorithm

The unified MM computes R = X - Y (mod p), where 0 < XY < por 0 <
deg(X),deg(Y) < deg(p) over prime field or binary field, respectively. MM operation
can be realized in two methods, left-to-right MM and right-to-left MM. The implementa-
tion of these two methods are similar. Algorithm 2.2 shows the left-to-right unified MM
(UMM) algorithm. Note that the addition/subtraction operations mean XOR gates in

9

binary field, and the operation ”2-” represents "z-” in binary field.

Algorithm 2.2. (Left-to-right unified modular multiplication.)
Input: X, Y, and p, where X, Y are n-bit integer over GF(p) or GF(2™) and p is the
prime or irreducible polynomial.

Output: R= X -Y (mod p).

1. R=0,5=Y

2. fort from 0 to m —1 by +1 do
3. R=(R+ X;-S) (mod p)
4. S=2-5 (mod p)

5. endfor

High Radix Unified Montgomery Modular Multiplication Algorithm

The well known Montgomery multiplication algorithm, proposed by P. L. Montgomery
[54], is commonly used to compute the modular multiplication without trial division. The
concept of the MMM is to turn the MM into iterative operations with both addition
and logic level shifting. Hence the MMM is quite appropriate for software or hardware
implementation. The additional overhead is the pre-/post-processing stages of the domain
transformation for the input/output. In the pre-processing stage, the data is transformed
from integer domain, X - 2°, to Montgomery domain, X - 2. And in the post-processing
stage, the data is transformed back to integer domain.

Algorithm 2.3 [54] computes R = X - Y - 27™ (mod p), where 0 < XY < p or
0 < deg(X),deg(Y) < deg(p) over prime field or binary field, respectively. Because the
X and Y are in the Montgomery domain, the MMM computes X - Y - 27™ (mod p) to



make the output R still in the Montgomery domain. In order to use n - r-bit multiplier,
an n-bit number needs to be divided into [ r-bit blocks (i.e., n =1 -r). The operand X
can be represented by r-bit words X; as X = X;_; - 2" 4 4+ X;-2" + X,. The T}
operation is used to make the least significant word of accumulated operand R be zero.

The proof is shown as follows:
R+X,-Y4+T,-p (mod2")=R+X;- Y+ (Ro+X;-Y) - ¢g-p (mod2")=0 (24)

Therefore, the division operation is easily achieved by shifting r bit. Moreover, the
operand R may excess p during the MMM iteration over prime field, so a reduction
step after the last iteration is required. On the other hand, since deg(R) > m would not
occur in binary field operation, the recovery step is not required. Traditionally, the r is
commonly set to 1 for low-cost design. The algorithm is shown in algorithm 2.4.

There is a variety of hardware architectures to implement the MMM. Both the systolic
architecture [55] and the word-level architecture [56] exploit the pipelining techniques to
shorten the critical path. Beside, Satoh and Takano proposed double loop method [23] to
apply into MMM operation. Compared with-architectures with n xr-bit multipliers, Satoh
and Takano’s work just needs one r=x r=bit multiplier to improve the MMM operation.
Besides, the operation cycle increases fromm=+1 and-m cycles to 21> +4[+1 and 20 +3[+1
over prime field and binary field [23], respectively:

Algorithm 2.3. (Radiz-r unified Montgomery multiplication algorithm.)
Imput: X,Y, q, and p, where X, Y are n-bit integer over GF(p) or GF(2™) , ¢ = —p~!
(mod 27), and p is the prime or irreducible polynomial.

Output: R=X-Y -27™ (mod p).

.R=0
. fori=0tol—1by+1 do

T=(Ro+X;-Y)-q (mod 2")

1

2

3

J  R=BeEXoYeTs
5

6

. endfor

. if R > p and the operating field is prime, then: R =R —p

10



Algorithm 2.4. (Radiz-2 unified Montgomery multiplication algorithm.)
Input: X, Y, and p, where X, Y are in GF(p) or GF(2™) and p is the prime or irre-
ducible polynomial.

Output: R=X-Y -27" (mod p).

1. R=0

2. fori from 0 to m —1 by +1 do

3. T=(R+X,-Y)

4. R=p2

5. endfor

6. if R > p and the operating field is prime, then: R =R —p

2.4.2 Unified Inversion and Division Algorithms
Unified Inversion Algorithms based on Fermat’s Little Theorem

Based on Fermat’s Little Theorem (FLT), XP~! = 1 (mod p), the inversion opera-
tion is easily achieved by X1 = X?~2 (modip). FLT is commonly used in projective
operation, because of low cost and high-integration with radix-r MMM. Algorithm 2.5
shows the unified MMI algorithm based o FLT (FLT-UMMI), and the execution cycle
of FLT-UMMI is about m? ~ 2m?2, where m is the execution cycle of MMM. Besides, the

FLT can also be used to accomplish MI operation shown in algorithm 2.6.

Algorithm 2.5. (Unified MMI algorithm based on FLT.)
Input: X -2™ and p, where X is in GF(p) or GF(2™) and p is the prime or irreducible
polynomial.

Output: R=X"1-2" (mod p).

1. if the operating field is prime, then: T =p — 2
2. else: T =2"—2

3. R=X.2m

4. fori fromm —2 to 0 by —1 do

5. R= MMM (R, R)

6. if T, =1, then: R= MMM (R, X -2™)

7. endfor

11



Algorithm 2.6. (Unified MI algorithm based on FLT (FLT-UMI).)
Input: X and p, where X is in GF(p) or GF(2™) and p is the prime or irreducible

polynomial.

Output: R= X' (mod p).
1. if the operating field is prime, then: T =p — 2
2. else: T'=2" —2
3 R=X

4. fori fromm —2 to 0 by —1 do

5 R=R-R (mod p)

6. if T; =1, then: R=R-X (mod p)

7. endfor

Kaliski’s Unified Inversion Algorithm

Algorithm 2.7 shows the unified inversion algorithm proposed by Kalisiki (K-UT) [27].
This algorithm supports the MI and MMI operation over dual fields. This algorithm
calculates R = X~ - 2™ (mod p), whete the operand R is defined as the Montgomery
representation of modular inverse, m:is the bit-length of p, and X (# 0) be the elements of
the field. Similarly, the R = X! (mod p)can also be obtained from this algorithm, where
the operand R is defined as the integer representation of modular inverse. The inversion
is computed by intertwining the procedure for finding the modular quotient with that for
calculating ged(X,p). The algorithm requires four operands, U, V, R, and S. U and
V' are used for calculating ged(X, p) and the operands R and S are used for calculating
modular inverse. The operands U and V are initialized to Y and p, respectively, and the
properties shown in Table 2.5 are applied iteratively to calculate ged(X, p). For example,
U can be replaced by U/2 according to the property ged(U, V') = ged(U/2,V'), when U is
even. In addition, R and S are initialized to the values of X and 0, respectively. Besides,

the corresponding R, S operations are determined by the following invariants:

{ X-R=-U-2 (mod p) (2.5)

X-S=V-2" (mod p)

During the phase 1 operation which means the operating steps are 2~8, the domain value

1 is increased by 1 every cycle. Table 2.5 shows the detail operations of U, V', R, and S

12



based on the properties and invariants. For instance, if U is even, the algorithm changes
value U to U/2 and the value ¢ is increased to ¢ + 1 for obeying the equivalence 2.5. To
increase the value 7 to 7 + 1 in the second equivalence, the operand S must be multiplied
by 2.

At the end of the while loop, the value U and V would be 1 and 0 which means
R=—-X"1-2" (mod p) with m <i < 2m and S = 0 (mod p). Then in phase 2 which
contains step 10 to 14, the value of 7 is reduced to m. This can be done by either iteratively
halving modulo p or multiplication modulo p [28]. After phase 2, the value R would be
— X1 2™ (mod p) or —X ! (mod p), and in the prime field R should be reduced to
within the range [0, p — 1] by p — R operation. Finally, it has been proved that the cycle
number needed to complete MMD and MD operations are m ~ 3m and 2m ~ 4m if X

and p are co-prime [27].

13



Algorithm 2.7. (Kaliski’s unified inversion algorithm.)
Input: X, and p, where X are in GF(p) or GF(2™) and p is the prime integer or
wrreducible polynomial.
If operation is MMI, then R= X"1-2™ (mod p).
If operation is MI, then R = X' (mod p).
1.U=p,V=X,R=0,5=1,i=0
2. while V>0 do
3. if U is even, then: U = %, S=2
else if V' is even, then: V = %, R=2-R

Output:

4.

d. elseifU—V>0,then.'U:[];—V,R:R+S,S:2-S
6. elseif V—U2>0,then: V=Y S=S+R R=2-R
7. t=1+1

8. endwhile

9.

if R> P, then: R=R —p

m
10. while i # do
0

11. if R is even: R = R/2

12. else: R=(R+p)/2

13. 1=1—1

14. endwhile

15. if the operating field is prime, then: R =p — R

Takagi’s Unified Modular Division Algorithm

In 1998, Takagi proposed a unified modular division algorithm (T-UMD) [38] based on
the extended binary GCD algorithm [57]. The algorithm calculates S = X -Y ! (mod p)
by finding the value ged(Y, p) and the corresponding modular quotient, where X and Y
are the elements of the field with odd prime (or irreducible polynomial) p.

This algorithm requires four operands, U, V, R, and S. U and V are used for cal-
culating ged(Y, p) and the operands R and S are used for calculating modular quotient.
The operands U and V' are initialized to Y and p, respectively, and the properties shown
in Table 2.6 are applied repeatedly to calculate gcd(Y,p). The operands R and S are

initialized to the values of X and 0, respectively. Then, the same operations that are

14



Table 2.5: The properties of Kaliski’s unified inversion algorithm.

X - (0) =—(p)-2° (mod p)
X-(1) = (X) -2 (mod p)
X (=X~1.2m) = —(1)-2" (mod p)
)20 (mod p)
X (=X~1) = —(1) (mod p)
X-(0)= (0)-2° (mod p)

Initial

End of MMI operation

e
—
o
=
|
—
o

End of MI operation

Properties Invariants
X -R=-U/2-2" (mod p)
U is even ged(U,V) = ged(4,V) ,
X-2-8=V-2"1 (mod p)
X.2-R=-U-2"1 (mod p)
V is even ged(U, V) = ged(U, %) ,
X-S=V/2-2 (mod p)
X858 = U2V . 9141 (mod p)
U>V ged(U, V) = ged(Y55, V) ,
X-2.8=V-2"1 (mod p)
X -2-R=-U-2""" (mod p)
U<v ged(U, V) = ged(U, Y5Y) ,
2 X - # = —V;U 271 (mod p)
X -Z=—-(1)-2" (mod p)
phase 2 -
X - (0) =(0)-2° (mod p)

p is equal to the value 7 in the last iteration of phase 1.

performed to the operands U and V -are applied to-the operands R and S for calculating
the modular quotient by reducing U and'V walue. Furthermore, the operands U and V'
are integers and are allowed to be negative. d represents o — (3, where o and (3 are values
such that 2% and 27 indicate the upper bounds of |U| and |V, respectively. The value
d = 0 is introduced to represent min(a, ). For correctness, we do some modification on
the condition of while loop in the original algorithm.

This algorithm is based on the following invariants:

{ X1 Y-R=U (modp) 26)

X1Yy.S=V (mod p)
It can easily be shown that the equivalences always hold in Table 2.6. Since ged(Y,p) = 1,
the operands U = 0 and V is 1 or —1 in the last iteration. Hence, in the final step of
algorithm, the equivalence X' -Y .S = 1 (mod p) holds and S is equal to X - Y !
(mod p). Moreover, the number of iterations needed to complete the algorithm is at least

m and at most 2m cycles if Y and p are co-prime.
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Algorithm 2.8. (Takagi’s unified modular division algorithm.)
Input: X, Y, and p, where X,Y are in GF(p) or GF(2™) and p is the prime integer or
wrreducible polynomial.
Output: S=X-Y ! (mod p).
LU=Y,V=p,R=X,5=0,6=0
2. while U # 0 do
3. if U is even, then: U =U/2, R=R/2 (mod p), 6 = — 1

4 else

5 if 0 <0, then: swap(U, V), swap(R,S), § = —0
6 if (U+V) (mod 4) =0, then: ¢ = —1

7. else: g =1

8 U= §=5-1

9 R =5 (mod p)
10. endif

11. endwhile
12. 4f V.=—1, then: S=P — S

Table 2.6: The properties of, Takagi’s unified modular division al-

gorithm.
X 1Y (X)=(Y) (mod p)
Initial L
XY -(0) = (p) (mod p)
X~1.Y - (0) = (0) (mod p)
End
X 1Y (£X-Y 1) = (£1) (mod p)
Properties Invariants
U is even X1 Y-R=U/2 (mod p
ged(U, V) = ged(5,V) 21 :
and V is odd X~1.Y.S=V (mod p)
U+Vis X1y . B8 = ULV (1h0q p
ged(U, V) = gcd(%,‘/) 4 T )
divisible by 4 X1.Y.S=V (mod p)
U-—Vis X1y . BS =UV (904 p
ged(U, V) = ged(UEV V) ! i )
divisible by 4 X 1Y .S=V (mod p)
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Liu’s Unified Division Algorithm

In algorithm 2.9, the Liu’s unified division algorithm (L-UD) is proposed in [31, 33].
The initial value of U, V, R, and S are set to p, Y, 0, and X, respectively, and the

equivalences are shown as follows:

{ X1 Y. .-R=-U-2" (mod p) (2.7)

X1Yy.S=V-2 (mod p)

The execution cycle of L-UD algorithm is the same as K-UI algorithm, but it can support
MMD and MD operations.

Algorithm 2.9. (Liu’s unified division algorithm.)
Input: X, Y, and p, where X,Y are in GF(p) or GF(2™) and p is the prime integer or
wrreducible polynomial.

If operation is MMD, then R =X -Y~1.2™ (mod p).

If operation is MD, then R= X -Y ™! (mod p).
1.U=p,V=X,R=0,5=Y,1=0
2. while V> 0 do
3. if U is even, then: U = %, ~ ==
4 else if V is even, then: V = %, R=2-R

5 elsez'fU—V>0,then:U:U;—V,RzR—i-S,S:ZS
6. elseif V—U2>0,then: V=Y S=S+R R=2-R
7
8
9

Output:

if R> P, then: R=R—1p
if S > P, then: S=5—p
t=1+1

10. endwhile

m
11. while i # do
0

12. if R is even: R = R/2

13. else: R=(R+p)/2

1. i=i—1

15. endwhile

16. if the operating field is prime, then: R =p — R

17



2.5 Elliptic Curve Cryptographic Applications

ECC can be used to achieve data en/decryption, signature, and authentication [2,58,

59]. Among them, the major operations are ECSM or the modular division operation.

2.5.1 Elliptic Curve Data En/Decryption

By ECSM operation, the EC data en/decryption [58] can be easy accomplished. We
assume that Alice wants to send a message M to Bob. The en/decryption flow is shown

in algorithm 2.10.

Algorithm 2.10. (Elliptic Curve Data En/Decryption.)

. Bob chooses a m-bit random number k as the private key.

. Bob computes [k]P, then send to Alice.

1

2

3. Alice chooses a m-bit random number r.

4. Alice computes {R, S} = {[r]P, M + [r|([k]P)}, then send to Bob.
5

. Bob gets the message M by computing S — [k]R.

2.5.2 Elliptic Curve Based Protocols

Many EC based protocols [2,59],“such as_elliptic curve digital signature algorithm
(ECDSA), EC Menezes-Qu-Vanstone (ECMQV), and EC Diffie-Hellman (ECDH), are
used for different applications. For the ECDSA, the domain parameters are given by
(H,L,E,N, P), where H is a hash function, G is a point on the curve of prime order N.
Algorithm 2.11 and 2.12 show the ECDSA signing and verification, respectively. Among
these two algorithms, the ECSM and MD operations are the most critical.
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Algorithm 2.11. (ECDSA signing.)
Input: M, and x, where M is message and k is secret key

Output: (R,S), where (R,S) is a signature on M.

Choose r € {1,..., N — 1}

T
R = xp (mod N), where xy means the x-coordinate of point T
f

R =0, then: goto step 1

= (V+kR)/r (mod N)

NS v v =
.

if s =0, then: goto step 1

Algorithm 2.12. (ECDSA wverification.)
Input: M, Y, G, and (R,S) where M is message, G is public key, and (R,S) is a
signature

Output: OUT = Reject or Accept.

if R,S ¢ {1,..., N — 1}, then: OUT = Reject
V =H(M)

Uy =V/S (mod N)

Uy =R/S (mod N)

T = [Ui|P + [Uy)G

if R =xr, then: OUT = Accept

else: OUT = Reject

NS St o v~

2.6 Power Analysis Attacks and Countermeasures

2.6.1 Simple Power Analysis

In most of implementations, the standard sequence of field operations in point addition
differs from that in point doubling [4]. The SPA attacks use this difference to reveal the
secret key value. In Figure 2.3(a) and 2.3(b), the power traces of the ECDBL and ECADD
are shown, respectively. By using the difference between these two trace, the secret key
can be revealed. From the power trace of the ECSM operation with secret key in Figure

2.3(c), the key value can be observed.
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Several SPA countermeasure methods have been proposed, including unified equation
[46], double-and-add-always method [4], and Montgomery ladder [47]. In this work, we
adopt double-and-add/sub-always method to accomplish the ECSM operation, which is

shown in algorithm 2.13, since the method is easier than the other.

Algorithm 2.13. (Double-and-add/sub-always method.)
Input: P and k, where k is an integer with NAF form and P is a point.
Output: () = [k|P.

1. Q=P
2. fori fromm —2 to 0 by —1
5. Q=[2]Q

4 if k; =0, then: R=Q+ P

5. else if k; = 1, then: Q = Q + P
6 else: Q=Q — P

7

. enfor

D' DD A D AD
(el | mb! i

@ b) ©

Figure 2.3: (a) A ECADD power trace. (b) A ECDBL power trace. (¢) A ECSM power

trace.

2.6.2 Differential Power Analysis

In the DPA attacks, an attacker records the power consumption of the cryptographic
devices and analyzes the collected power traces by statistical calculation to extract the
secret key. Several variations of the DPA attacks have been proposed, such as DPA
attack [4], doubling attack [48], address-bit attack [49], refined power analysis [50], and

zero-value point attack [51].
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Figure 2.4 shows a simple DPA attack flow [33]. The DPA attack assumes that the
attacker can perform the ECSM operation with different keys, EC parameters, and EC
points, and has knowledge about all the implementation details of the attacked device.
For a given secret power trace of ECSM, the attacker reveals the key bit-by-bit. We
suppose parts of the secret key [k, 1, kn_o...k;y1] is recognized by the attacker, and the
next attacked bit is k;. Next, we input the key-value [k, 1, k, o...ki11,k = 0,...] and
k1, kn—s...kiy1,k; = 1,...] into the device to obtain two power traces. Then, we cut the
traces of [k; = 0] and [k; = 1] from the obtained traces to do further correlation with

original power trace. The correlation formula is shown below:

l _ i
B, O) = Zi:l(Bii_B)(Ci_C) _ 2.8
4 ) VYl (Bi-B)2 Yl (Ci-0)? (2:8)

The parameters B, C' mean the [ x 1 matrices, and the p(B, C') represents the correlation
value of B, C, where —1 < p < 1. If the correlation between [k; = 0] and original power
trace is higher, then the attacker can disclose k; = 0. On the other hand, k; would be 1
if the correlation between the trace for [k; = 1] and that for the original key is higher.

To resist DPA attack, Coron [60] propesed. three methods. The Coron’s first coun-
termeasure is to randomize the private-exponenty. such as k' = k + r - #E(L). Note
that the r is a random number, and # E(L) s the curve order. In addition, the second
countermeasure is to blind the base point to compute further ECSM, @ = [k]P' — S,
where P = P+ R, S = [k]R, and R is a random point. The last countermeasure is
to randomize a point in projective coordinate. The method changes the original point
(x,y,2) to (rz,ry,rz) and performs ECSM in projective coordinate. The security level
of a device can be enhanced by increasing the size of random r. Beside, these random
methods were classified as the masking DPA countermeasures in [39]. By randomizing
the intermediate values that are processed by the cryptographic device, masking method
makes the power consumption of a cryptographic device independent of the intermediate
values of the cryptographic algorithm to resist the DPA attack.

In [33], a simple DPA attack scheme is used to reveal the secret key from the two
chips. The first chip is a 521-bit DECP and the second chip is a 521-bit DECP with
PA countermeasure. Coron’s first countermeasure is adopted for DPA countermeasure,
since the second method is hard to implement and the third method is only adopted in

the projective coordinate. Figure 2.5(a) shows the correlation coefficient trace, and we
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can reveal the key value “07, “0”, “1”, and “0” because the spikes appear in the right
locations. On the other hand, in Figure 2.5(b), since there have no spikes in the right

locations, the secret key can’t be revealed.

Original power trace Attacked key-bit

Kot | Kna k; <j

Correlation 0

Guessed power trace ( Assume k; = 0 Device
Correlation 1 Kni | knz 0 <j
Guessed power trace 1 Assume k; = 1
Kot | Kno 1 <j
Figure 2.4: Simple DPA attack flow
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Figure 2.5: Correlation coefficients of key value,[k; = 0,k;_1 = 0,k; 1 = 1,k;_1 = 0], for
(a) unprotected chip (b) protected chip.
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Chapter 3

Proposed Unified Algorithms

In this chapter, we propose many unified algorithms to support division or multipli-
cation operations. In addition, to resist the power analysis attack, the unified random

algorithms are proposed.

3.1 Unified Division Algorithm

Traditionally, the FLT is used to achieve the inversion operation in the coordinate and
domain transformation. However, the execution cyele is too huge to have the same time
complexity with ECSM. Moreover, the K-UIl and T-UMD need extra multiplication to
achieve the MMD /MD operation. Based on K-UI, we propose a radix-2 unified division
(R2-UD) algorithm and a radix-4 unified division (R4-UD) algorithm to reduce numerous

execution cycles of division operation.

Table 3.1: The properties of R2-UD.

Conditions Properties
U (mod2)=0 | ged(U,V)=ged(%,V)
V (mod 2) =0 | ged(U,V) = ged(U,%)
U>V ged(U, V) = ged(Y5Y, V)
U<V ged(U, V) = ged(U, Y5Y)

Our proposed R2-UD is shown in algorithm 3.1. Followings are the invariant equiva-

23



Table 3.2: The invariant equivalences of the proposed R2-UD algorithm for MMD

operation.
YV-X1(0) = (p)-2° (mod p)
Initial
Y- X1 (X)=(Y)-2° (mod p)
Y- X1 (X-Y=L.2m)=(1)-2™ (mod p)
End
Y. X1 (0) = (0)- 2™ (mod p)
T <m >m
V- X1 R=Y. 2% (mod p) V-X"1. E=8Y.2m (mod p)
U is even ‘
Y -X"1.2.5=V 2! (mod p) Y- -X"1.8=V.2™ (mod p)
Y- -X"1.2.R=U-2" (mod p) Y- X' R=U-2™ (mod p)
V is even . Vit 1 s v
Y- X7'-8= 4 -2 (mod p) Y- X7 5 =42 (mod p)
—_— V- X1 (R-9) =YY 27! (modp) | YV X1 . E25 = U2V . 9m (mod p)
> .
Y -X"1.2.5=V-2%! (mod p) Y -X"1.8=V-2™ (mod p)
by Y-X"'.2.R=U-2*" (mod p) Y-X"'.R=U-2" (mod p)
<
B V- X1 (=R =YY 27! (modp) | YV X1 558 =Y2U9m (mod p)

lences obeyed in our proposed algorithm.

X1 Y R=U-2" (mod p) (3.1)
X1y =S =Va24 (mod p) (3.2)

For the initialization of R2-UD, the operands'U, V', R, and S are set to the values p, Y,
0, and X, respectively. The operations of UV in algorithm 3.1 are based on the binary
greatest common divisor (GCD) operation, which is proven in Table 3.1. Note that the
addition /subtraction can be implemented by XOR gates in binary field operation and the

represents “%”. In each iteration, the valid value of operands U or V' is reduced by 1

«wly»

2
bits. Because of ged(U, V') = ged(p,Y') = 1, the values of U and V are 1 and 0 after the last

iteration. And the values of R and S are X -Y~!-2° (mod p) and 0 (mod p), respectively.
In addition, the operands R and S are transformed into Montgomery or integer domain
due to the MMD or MD operation, respectively. In the beginning of MMD operation, the
RS operations are executed to add ¢ by 1. For instance, if the operating step is 19, the
equivalences are X 1Y - (2- R) = U - 2! (mod p) and X'V - (S — R) = (¥5Y) - 2'*!
(mod p). When i > m, the operations keep the operands R and S in Montgomery domain.
In the end of this algorithm, the value R is equal to X - Y- 2™ (mod p). On the other
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Table 3.3: The invariant equivalences of

the proposed R2-UD algorithm for MD op-

eration.
. Y- X7 (0) = (p) (mod p)
Initial
Y X1 (X)=(Y) (mod p)
Y- X1 (X Y1) = (1) (mod p)
End
Y- X~1.(0)=(0) (mod p)
1=0
V-X1 2=Y (mod p)
U is even
Y- -X"1.S=V (mod p)
Y- X' R=U (mod p)
V is even s v
Y- X715 =23-2™ (mod p)
Y. X1 ES = (U -V) (mod p
Uy 7 = ( ) ( )
Y- -X"1.S=V (mod p)
Y- X' R=U (mod p)
v=Vv 1.S8-R

hand, if the operation is set to MD, the“data are.operated in the integer domain. Then
the output value of R is equal to X - ¥/=1' (mod-p).- The detail explanation of the invariant
equivalences during the R2-UD is shown in tables 3.2 and 3.3. Besides, Table 3.4 gives
an example.

Algorithm 3.2 and 3.3 show the proposed R4-UD and the properties of R4-UD are
shown in tabel 3.5. The execution cycle of R4-UD is 0.56m ~1.12m, since there has a

condition reducing just one bit with the probability %. Consequently, the execution cycle

Table 3.4: The example of the proposed R2-UD.

MMD MD
iteration | U | V | R| S|« | U |V | R| S |1
1 B3]710[9|10|13]7]0 0
2 3| 714|513 |7[2|9]0
3 3128|123 [2]2[10]0
4 3113|1133 |1]2|5]0
5 1 11212141 11|15 510
6 1102 (0(4]1|0|5]0]|0
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Table 3.5: The properties of the proposed R4-UD.

U (mod 4) | V (mod 4) Properties
0 0,1,2 or3 gcd(U, V) = gcd(%7 V)
1,2, 0r3 0 ged(U, V) = ged(U, %)
equivalence ged(U, V) = ged(Y5%, V) = ged(U, YY)
2 lors3 gcd(U, V) = gcd(@, V) = ged(Y, V;%)
Lor3 2 | gedU,V) = ged (U5 ) = ged(U, 25
other gcd(U, V) = gcd(%7 V) = ged(U, %)

is 7/8(m/2 ~ m)+1/8(m ~ 2m) = 0.56m ~ 1.12m. The execution cycle of this algorithm
is about half the cycles of algorithm 3.1, but the hardware cost is almost two times larger
because the total number of RS operations increases from 8 to 21. Consequently, it is an
area-time trade-off design.

Compared with previous works, such as FLT-UMMI [26], K-UI [27], and T-UMD [38],
our algorithm has fewer execution cyclerin“division operation without using extra mul-
tiplication operation and pre-computed value, 22™:-The MMD/MD operating steps and
performance analysis is shown in tables 3.6-and.3.7.-Moreover, the MMD and MD opera-
tions are used many times in ECSM and . EC pretocols [1], so our design can significantly

outperform previous works.

26



Algorithm 3.1. (Proposed R2-UD algorithm.)
Input: X, Y and p, where X, Y in GF(p) or GF(2™) and p is the prime integer or

wrreducible polynomial.
If operation is MMD, then R= X -Y~1.2™ (mod p).

Output:
If operation is MD, then R=X -Y ™! (mod p).
1.U=p,V=Y,R=0,5=X
2. if Operation is MMD, then: j =0
3. else: j=1
4. while V>0 do
5. if U is even, then
6. U="4Y
7. ifi <m and j =0, then: S=2-5 (mod p), i =i+ 1
8. else: R =% (mod p)
9. else if V' is even, then
10. V=1y
11. ifi <m and j =0, then: R=2nR (mod p), i =i+ 1
12. else: S =5 (mod p)
13. else if U >V, then
14, U="5%"
15. ifi <m and j =0, then: R=R—S (mod p), S=2-5 (mod p),i=1i+1
16. else: R = 5 (mod p)
17. else
18 V=Y"C
19. ifi <mand j =0, then: S=S—R (mod p), R=2-R (mod p), i =i+1
20. else S = 228 (mod p)

21. endif
22. endwhile
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Algorithm 3.2. (Proposed R4-UD algorithm.)
Input: X, Y and p, where X, Y in GF(p) or GF(2™) and p is the prime integer or
wrreducible polynomial.
If operation is MMD, then R= X -Y~1.2™ (mod p).
If operation is MD, then R=X -Y ™! (mod p).
1.U=p,V=Y,R=0,5=X
2. while (V> 0) do
3. ¢c=U (mod 4),d=V (mod 4), j =
4. ifi=m—1, then: ctrl=1,i=1+1

Output:

d. else if c =0, then:U:Z,ctrl—2 1=142
0. else if d =0, then:V:%, ctrl=3,1=1+2
7. else if c = d, then
8. 1 =1+2
9. if U >V, then: U = —, ctrl =4
10. else: V = —, ctrl =5

11. else if c = 2, then

12. 1=1+2

15. sz>V then: U = 2 , ctrl =16
14. else: V = V_i, = %, ctrl =18

15. else if d = 2, then

16. 1=1+2

17. if U > %, then: U = U;%, V= %, ctrl =
18. else: V = %;U, ctrl =7

19. else

20. 1=1+1

21. if U >V, then: U = T, ctrl =10
22. else: V= 5= ctrl = 11

23. endif

24. (R,S)= OP_RS(R, S,ctrl, j,p).
25. endwhile
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Algorithm 3.3. (Operations for operands R and S (OP_RS).)
Input: R, S, ctrl, j and p, where p is an m-bit prime or irreducible poly..

Output: R, S

1. if 7 < m and operation 1s MMD, then

2. switch ctrl

3 case 1: R=2-R (mod p), S=2-5 (mod p)

4 case 2: R=4-R (mod p)

5. case 3: S =4-S (mod p)

6 case 4: R=R— S (mod p), S=4-S5 (mod p)
7. case 5: S =S5 — R (mod p), R=4-R (mod p)

8 case 6: R=R—2-S5 (mod p), S=4-S5 (mod p)
9 case 7: S =S5 —2-R (mod p), R=4-R (mod p)
10. case 8: R=2-R— S (mod p), S=4-S5 (mod p)
11. case 9: S =2-5 — R (mod p), R=4-R (mod p)
12. case 10: R=R— S (mod p), S =2-5 (mod p)
13. case 11: S =S — R (mod.p); R =2: R (mod p)

14. endswitch
15. else
16. switch ctrl

17. case 2: R =% (mod p)

18. case 3: S =% (mod p)

19. case 4: R =12 (mod p)

20. case 5: S =28 (mod p)

21. case 6: R = g;S (mod p)

22. case 7: S = %;R (mod p)

23. case 8: R = R;% (mod p), S =% (mod p)
24. case 9: S = S_ﬁ (mod p), R =% (mod p)
25. case 10: R =222 (mod p)

26. case 11: S = 22 (mod p)

27. endswitch

28. endif
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3.2 Unified Multiplication Algorithm

The traditional method of MMM (i.e. algorithm 2.4) over GF(p) needs one step to
recover the value to the range [0, p— 1], but the step is not required in GF'(2™) operation.
We remove the step by confirming the accumulated operand R always satisfies within the
range [0, p — 1]. The overhead is one subtraction. By combining with the proposed UD,
the extra units can be shared. In addition, after removing the recover step, the steps of
MMM over prime field are similar with that over binary field. Since the proposed UD and
MMM are bit-level algorithm, we can combine MM with them to enhance the functionality.
Consequently, we propose a radix-2 unified multiplication (R2-UM) algorithm and a radix-

4 unified multiplication (R4-UM) algorithm shown in algorithms 3.4 and 3.5.

Algorithm 3.4. (Proposed R2-UM.)
Input: X,Y andp, where X, Y are in GF(p) or GF(2™) and p is the prime or irreducible
polynomial.
If Operation is MMM, then R= X -Y - 2™ (mod p).
If Operation is MM, then R =X .Y (mod p).
.R=0,8=Y

Output:

1
2. fora from 0 tom —1 by +1 do

3 R=R+ X;-S (mod p)

4. if operation is MMM, then: R =% (mod p)
5 else: S=2-S (mod p)

6. endfor
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Algorithm 3.5. (Proposed R4-UM.)

Input: X,Y andp, where X, Y are in GF(p) or GF(2™) and p is the prime or irreducible
polynomial.

If Operation is MMM, then R = X -Y - 2™ (mod p).

If Operation is MM, then R =X -Y (mod p).

1. R=0,8=Y

2. fort from 0 to mTfl by +1 do

3. if m (mod 2) =1 and i = ™, then: R= R+ X5,;-S (mod p)

/4 else: R=R+ Xo;- S+ Xo41-2-5 (mod p)

5 if operation is MMM, m (mod 2) =1 and i = ™51 | then: R =% (mod p)

6. else if operation is MMM, then: R = % (mod p)
7

8

Output:

else: S =4-S (mod p)
. endfor

3.3 Unified Random Algorithms

Based on the masking method, we propose two unified random algorithms to resist
DPA attack. We use a m-bit random number 7= when the modular operations are executed
each time. The algorithms have two modes toexecute the data operations. The first mode
would increase the domain value, and the other would not increase the value. The modes
are changed depending on the one in 7. When r; is equal to one, the algorithm would
execute the first mode, where the value i means the iteration number. Otherwise, the
second mode is executed. Consequently, the intermediate value is randomized by the

random value r, so the DPA attack can be resisted.

3.3.1 Unified Random Division Algorithm

In algorithm 3.6, the unified random division algorithm (URD) is proposed to support
the division operation in random domain, 2*, where 0 < A < m. Note that the value A
is equal to the total number of ones in r. The algorithm computes X - Y 1. 2* (mod p),
and have two modes, MMD and MD, to achieve the random domain operation. If r; = 1,

the mode is set to MMD to increase the domain value of the operands R and S by 1.
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Otherwise, the mode is set to MD which does not increase the domain value. At the end

of the algorithm, the output data is in the random domain 2*.

Algorithm 3.6. (Proposed URD algorithm.)
Input: X, Y, r, and p, where X, Y in GF(p) or GF(2™), r is a random number, and

p is the prime integer or irreducible polynomial.
Output: R=X-Y 1.2

1.U=p, V=Y R=0,S=X,A=0

2. while V>0 do

3. if U is even, then

4. U=1%

5. ifri =1, then: S=2-5 (mod p), A=A+1

6. else: R =% (mod p)

7. else if V is even, then

8. V=1y

9. ifri =1, then: R=2-R (mod.p), A=A+ 1
10. else: S =2 (mod p)
11. else if U >V, then
12. U="5%",
15. if r; =1, then
1. R=R-S (modp), S=2-85 (mod p), A\=A+1
15. else: R =15 (mod p)
16. endif
17. else
18. V=YL
19. if i =1, then
20. R=2-R (modp), S=S5S—R (modp), \=XA+1
21. else S = 2= (mod p)
22. endif
23. endif

24. endwhile
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3.3.2 Unified Random Multiplication Algorithm

Algorithm 3.7 shows the proposed unified random multiplication algorithm (URM)
which combines MMM and MM operations to support the multiplication in random do-
main, 2*, where 0 < A < m. The step 4 is the MMM mode which increases the domain
value by 1. And the step 5 is the MM mode which does not change the domain value.

Consequently, the value A is equal to the total number of ones in r.

Algorithm 3.7. (Proposed unified random multiplication algorithm.)
Input: X, Y, p and r, where X, Y are in GF(p) or GF(2™), r is a random number,
and p s the prime or irreducible polynomial.

Output: R=X-Y -27* (mod p).

1. R=0,5=Y,A=0

2. fora from 0 tom —1 by +1 do

3 R=R+ X;-S (mod p)

4. if r; = 1, then: Rz% (mod p), A=A +1
5 else: S=2-S5 (mod p)

6. endfor
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Table 3.6: Operating steps of MMD/MD operations over dual fields of pre-

vious works.

FLT
Step MMD MD
1 FLT-UMMI(Y -2™) =Y ~1.2™ (mod p) FLT-UML(Y) = Y1 (mod p)
MMM(Y 1. 2m X .2m) MM(Y 1, X)
’ =X.Y~1.2™ (mod p) =X Y ! (mod p)
K-UI
Step MMD MD
1 K-UL(Y -2™) =Y ~! (mod p) K-UL(Y) =Y ~!.2™ (mod p)
MMM(Y 1, X - 2m) MMM(Y ! - 2, X)
’ =X-Y~! (mod p) =X-Y! (mod p)
MMM(X - Y1, 22m)
’ =X -Y~1.2™ (mod p)
T-UMD
Step MMD MD
T-UMD(X - 2™, Y.52™) T-UMD(X,Y) =X - Y~ (mod p)
! =X-Y! (mod p) =X-Y! (mod p)
MMM(X - V1, 2%m)
’ =X-Y~1.2™ (mod p)
Table 3.7: Performance Analysis of Division Operation.
Operation [26] [27] [38] [31] | R2-UD R4-UD
MMD  |m?+m~2m?+m|3m~5m | 2m~3m | m~3m | m~2m |0.56m~1.12m
Execution
Time
MD m?+m~2m?+m | 2m~4m | m~2m |2m~4m| m~2m |0.56m~1.12m
Multiplication Operation/
Yes/No Yes/Yes | Yes/Yes| No/No | No/No No/No
Pre-computation
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Chapter 4

Proposed Architectures

In this chapter, we propose a DECP supporting all the arithmetic functions on elliptic
curves over dual fields. Besides, to resist the power analysis attacks, such as SPA, and

DPA attacks, we propose a DECP with power analysis countermeasures (DECPAC).

4.1 Galois Field Arithmetic Unit

In this section, the radix-2 Galoisfield arithmetic unit (R2-GFAU) and radix-4 Galois
field arithmetic unit (R4-GFAU) are propesed based on the proposed R2-UD/M and
R4-UD/M, respectively. These two architectures 'support all finite field operations, such
as MA, MS, MMM, MM, MD, and MMD over dual fields. To increase the operating
frequency and reduce the hardware cost, many techniques had been presented. Figures
4.1 and 4.2 are the architectures of R2-GFAU and R4-GFAU. Since the architectures are
very similar, only the details of R4-GFAU are illustrated in the following.

In Figure 4.2, the R4-GFAU is controlled by inputs to accomplish the dual-field mod-
ular operations. In R4-GFAU, the UV data-path is used to execute the UV operations,
and the R, S data-path are used to finish the R, S operations. The following shows
an example about the data flow of R4-GFAU. Initially, we set the operation is MMD
over GF(p). During the operations, the UV data-path cell compares the two operands
(U'.V)= (3.
and i < m, and then the (R',S',P",P") is set to (2 - R,—S,+p,—p) in R data-path and

V') when the operating step is 11. Suppose the decision results are % >V

(S”,P")is (4-S,—p) in S data-path to compute the next R, S values. The result of R
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is selected from 2R — S +p, 2R — S, 2R — S — p, and 2R — S — 2p in R data-path by
deciding whose range is within [0,p — 1]. And the result of S is selected from 45, 45 — p,
45 — 2p, and 45 — 3p in S data-path.
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Figure 4.1: Architecture-of R2-GFAU.

4.1.1 Data-path Separation

As the critical path in the proposed R4-UD is from UV data-path to R, S data-
path, a data-path separation method is presented to separate it. The control signal from
the UV data-path is stored and sent to RS data-path in the next cycle. Although this
approach increases one cycle, the critical path can be reduced from two adders to one
adder without considering the data pre-/post-operation. Figure 4.3 shows the detailed
flow of the proposed method. Firstly, the UV data-path is executed. Then, the RS data-
path is executed in the next cycle. We can clearly see the path is separated and the cycle

count is increased by 1.
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Figure 4.2: Architecture of R4-GFAU.

4.1.2 Hardware Sharing

Since both carry-propagation adder and-XOR: gate are the kernel arithmetic units
of every modular operation, we can reuse these addition units to reduce the cost. The
detailed hardware sharing method is shown in tables 4.1 and 4.2. The MMD and MM
operations require the most adder units in UV, R, and S data-path. And the MA, MS,
and MMM operations require only R data-path.

Besides, the division operation requires 21 different operations in R, S data-path. To
reduce the hardware complexity, we propose a swap logic circuit. In algorithm 3.3, the
operations of value R, S have some common arithmetic operations, such as R=R—2-S5
(mod p) and S =S —2- R (mod p) in step 15 and 22. We exploit a swap logic circuit
to decide the R, S values are swapped or not in the beginning. The swap operation
is decided by the previous and current value of swap signal, SW, and SW,. Note that
when the operating step is 3, 4, 6, 8, 10, or 12 in algorithm 3.3, the swap signal is set
to 1. Otherwise, the signal value is set to 0. The two operands R, S are swapped when

the previous and current swap signals have different values. All the operations of this
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ctrl = 1: S=4S (mod p)

ctrl = 2: R=4R (mod p)

ctrl = 3: R=R-S (mod p),
§=4S (mod p)

ctrl=1 ctrl=2 ctrl=3

RS Data-path

UV Data-path

N

cycle=1 cycle =2 cycle=3 cycle=t cycle = t+1
vy uy uv uyv
Data- Data- Data- Data-
path path path path
RS RS RS RS
Data- Data- Data- Data-
path path path path

Figure 4.3: Data-path separation method.

algorithm are paired, such as operating steps 4 and 5, 6 and 7, and 8 and 9. By swap
logic circuit, the similar operations can be shared and then the number of operations are

reduced to 11 types.
In addition, the proposed R4-UD hasisome: common controlled signals between dual

fields (e.g., 7 < m, ¢ = 0, d = 0.),:80 [we can share them to reduce the complexity of

controller.

Table 4.1: Details of hardware-sharing method in R2-GFAU.

Field | Operation | Fyvi | Fyve | Fuvs | Fri | Fr2 | Fr3 | Fs1 | Fs2
MA/MS
GF(p) | MMM
MM v v
MMD
MD v v
MA
GF(2™) | MMM
MM
MMD v
MD v

(\
<

NIENIENIENIEN
NIENIENIENIEN
<\

SNIENIENIENIEN
\
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Table 4.2: Details of hardware sharing method in R4-GFAU.

Field |Operation| Fyvi|Fuva|Fuvs|Fri|Fra2|Frs|Fra|Frs|Fs1|Fsa|Fss|Fsa
MA/MS
MMM
MM
MMD v v
MD v v
MA
GF(2™)| MMM
MM
MMD v
MD v

GF(p)

\
(\
<\
(\

NIENIENIENIEN
NIENIENENIEN
<
N
N
<
<

RN ENIENIEN
<

4.1.3 Degree Checker

Intuitively, the degree-check operations in GF(2™), such as 2 - S (mod p) and 4 -
S (mod p), are implemented by using huge multiplexers shown in Figure 4.4(a), but
this method results in a long critical pathiuThe critical path is logon AND+loganOR.
Figure 4.4(b) shows the proposed degree checker, which requires only n 2-to-1 AND gates
and 1 n-to-1 OR gate to finish the degree checking operation. The critical path lies
in AND+logonOR. With this approach, it can-compare the degree of the input value
D;, with the field length. Note that the m-th bit of field length register is set to 1
and others are set to zero. If the input degree is smaller than field length, the output
Doy is 0. Otherwise, the output is 1. This approach can also be used in the counter
operation j < m by setting D;, = i and i = {i,,_2,%,_3, ..., 90, 1'D1} every cycle, where

i ={ip-1=0,...,1;, =0,4;_1 = 1,...,50 = 1}. When D,,; = 1, variable j is equal to m.

4.1.4 Ladder Selection

In R4-GFAU, the selection in the data post-operation of RS data-path are more com-
plex than R2-GFAU. Intuitively, the post-operation architecture is used a lot of multiplex-
ers to implement, which is shown in Figure 4.5. In each state, the data should be selected
by multiplexer, so the number of multiplexers is equal to the total number of states. To

reduce the selection complexity, we propose a ladder selection architecture shown in Fig-
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Figure 4.4: (a) The degree checking architecture by intuitive implementation. (b) Archi-

tecture of degree checker.

ure 4.6. The output value of RS data-path is decided by a fixed order. For example, if
the operating operation is S = 45 (mod p), the operands {S”, P""} = {45, —p}. With
the order, which is from Fg3 < 0 to Fgo < 0, the correct value is decided. Consequently,
the output value is within the range [0,p — 1]. The data selection hardware cost in the

post-data operation block is reduced by this approach.

| Selection of state 1 ﬁ | Selection of state 1 ﬁ

| Fpi=R%*S’ f—0 | Fg=S"*P " }—»0
[ Fp=R*S*P | »1 R | Fs,=S""2-p | > 1
7 7 7 77 ™ =Q 77 | -
[ Fre=R*+S*P*P” | > 2 | Fg=S"-3p f > 2 S
[Fre=R S 5P 2P H{3 R >
| Selection of state 2 } \t | Selection of state 2 } ¥
» () » ()
1 | State i 1 stmte
»2| R, »2
-3

Figure 4.5: The data post-operation by intuitive implementation.

4.2 Dual-Field Elliptic Curve Cryptography Proces-

SOor

Figure 4.7 shows the overall block diagram of our proposed DECP with a standard ad-

vanced microcontroller bus architecture (AMBA) high-performance bus (AHB) interface.
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Figure 4.6: Architecture of ladder selection.

The ECSM with modular operations over dual fields, required for the ECC schemes such
as signature, authentication, and key exchange defined in IEEE 1363 [1], can be calculated
through the Galois field arithmetic unit (GFAU). The inputs are the user public/private-
key, EC coordinates, EC parameters and protocol instructions. To perform these contents
in real-time, the instruction decoding and pre-/post-processing satges are combined in our
processor. After the instruction decoding, the pre-processing stage is to convert the EC co-
ordinates and parameters into the Montgomery domain. Before returning the calculation
results, the EC coordinates are converted back to the integer domain at post-processing
stage. All the operands are stored in register, file and transmitted to GFAU controlled
by EC controller. Furthermore, to reduce the host CPU loading, the pre-/post-process
stage can be achieved by the MMD and MMM operations. To convert an input value
X between integer domain and Montgomery domain, it can be simply achieved through
MMD(X,1) = X - 2" (mod p) and MMM(X - 2™ 1) = X (mod p).

In Figure 4.8, the ECSM is based on the double-and-add/sub always method to
achieve. To save one register, the point would be inversed and recovered, when the
ECSUB is executed.

The performance analysis of R2-DECP and R4-DECP are shown in Tables 4.3 and
4.4. The execution cycle of R4-DECP is about two times better than the cycle of R2-
DECP. The R4-DECP offers higher throughout with some area overhead. The overhead

is reduced much by our proposed techniques, such as swap logic and ladder selection.
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Table 4.3: Performance Analysis of R2-DECP.

Execution Cycles
Operations
GF(p) GF(2™)
1-D+3-M+4-A/S 1-D+2-M+8-A
ECDBL
=4dm+4~dm+4 =3m+8~4m+8
1-D+2-M+6-S 1-D+2-M+9-A
ECADD
=3m+6~4m+6 3m+9-4m+9
Domain 3-D + 2-M 3-D+ 2-M
Tran. (DT) =5m ~ 8m =b5m ~ 8m
sy | ™ ECDBL +mBECADD  pp | . geDBL +mECADD 4 pp
=5m? + 1lm ~ 6.33m? + 14m | = 4m? + 14m ~ 5.33m? + 17m
Critical Path Complexity
Operation
GF(p) GF(2™)
ECSM m log, m

4.3 Dual-Field Elliptic Curve Cryptography Proces-
sor with Power Analysis Countermeasures

To avoid the power analysis on our eperating secret key, we randomize our operating
domain. Generally the operating data have-a-factor 2, that means the data is operated
in the Montgomery domain. In addition, if the factor is 2°, that means operating domain
is the integer domain. We define data has a factor 2*, that represents the data operated
in random domain, where 0 < A < m. By the masking method, the domain value is
changed in each ECSM operation. However, the total random numbers are just m + 1,
which is too small, so we exploit the proposed URD and URM algorithms to increase it.
Before operating ECSM, we choose a random number r to decide the random domain,
2*. Note that the number of ones in r is equal to the \.

However, the random domain method can only randomize the first m cycle in division
operation, but the next m cycle should be protected by another method. Since the S
data-path is not used in the next m cycle, we set the input S” to a random number to
randomize the power consumption. Moreover, the total random number of MA and MS is

still equal to m—+1. Because the two operations are only accomplished by the R data-path,
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Table 4.4: Performance Analysis of R4-DECP.

Execution Cycles
Operations
GF(p) GF(2™)
1-D+3-M+4-A/S 1-D+2-M+8-A
ECDBL
=2.06m+4 ~ 2.62m + 4 =1.56m + 8 ~ 2.12m + 8
1-D+2-M+6-S 1-D+2-M+9-A
ECADD
=1.56m+6 ~2.12m+6 1.56m +9 - 2.12m + 9
Domain 3-D + 2-M 3-D+ 2-M
Tran. (DT) = 2.68m ~ 4.36m = 2.68m ~ 4.36m
s m- ECDBL +mECADD  pp m- ECDBL +mECADD , pp
= 2.58m? 4+ 8.68m ~ 3.32m? + 10.36m | = 2.08m? + 13.68m ~ 2.82m? + 15.36m

we also set the input of the S data-path to a random number to randomize the power
consumption. By this approach, the secret information can be masked. In addition, we
use the double and add/sub always method to resist SPA attack. The detail operating
follow is shown in Figure 4.10.

By applying the above idea, the R2-DECP. with power analysis countermeasures (R2-
DECPAC) is proposed and shown in Figure 4.9 The R2-DECPAC is based on a R2-GFAU
with power analysis countermeasure (R2-GFAUPAC) to support the random domain op-
erations. We do three step modificationfrom R2-DECP. First, the architecture of R2-
GFAUPAC is based on the proposed URD and URM to implement. Second, we include
a |r|-bit chaos-based pseudo number generator [61] into our R2-DECPAC to generate a
m-bit random number in each ECSM operation. This approach can prevent the PA attack
on the input of random numbers. Finally, the ECSM stage in EC controller is based on
double-and-add/sub always method. The performance analysis is shown in Table 4.5.

Compared with our previous work [33] shown in Table 4.6, our approach requires lower
area overhead and includes a pseudo random number generator. In addition, this SPA

countermeasure has 50% execution cycle increase, but does not have any area degreation.
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Figure 4.7: Architecture of DECP.

Table 4.5: Performance Analysis of R2-DECPAC.

Execution Cycles

Operations
GF(p) GF(2™)
BOSM m- ECDBL +m~ ECADD+DT | m- ECDBL +m - ECADD+DT
=7Tm2 + 15m ~9m?2 + 18m = 6m?2 4 22m ~ 8m?2 + 25m

Table 4.6: Comparison with our previous work.

R2-DECPAC ESSCIRC’10 [33]
Double-and-add /sub- Double-and-add /sub-
SPA countermeasure
always method always method
DPA countermeasure Random-domain method | Random scalar method
Additional (n + |r|)-bit adder
arithmetic unit (n + |r|)-bit multiplier
Random number |r|-bit chaos-based
generator pseudo number generator
Execution cycle increase
50% 50%
by SPA countermeasure
Execution cycle increase
0% 100]r|/|k|%
by DPA countermeasure
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Chapter 5

Implementation Results

In this chapter, we show the implementation results of our proposed GFAU, DECP,
GFAUPAC, and DECPAC. The comparison tables show our designs outperform relative

works.

5.1 Galois Field Arithmetic Unit

Tables 5.1 and 5.2 show the implementation result of the proposed R2-GFAU and R4-
GFAU. The proposed R4-GFAU requires about half operation cycles of the R2-GFAU,
but results in two times hardware cost:. The AT product, gates x execution time, of
R2-GFAU is 1.3 and 1.4 times better than R4-GFAU. This product ratio would decrease,
since the GFAU is part of th DECP. Without including the GFAU, the architecture of R2-
DECP and R4-DECP are similar. Besides, due to the proposed R2-UD and R4-UD, our
proposed designs reduce about 2~3 times operation cycle compared with Chen’s work [36]
and Kaihara and Takagi’s work [35] based on T-UMD. Compared with Tseng’s work [32]
and Liu’s works [31] based on L-UD, our GFAU is 1~3 times better in execution cycles.
By the proposed data-path separation technique, the operating frequency of our GFAU
is better than them. In [30], this work is based on word-based architecture and the K-UI
algorithm, but results in larger execution time. Besides, because our design supports more
modular operations, the hardware cost is larger than previous works. But the execution
time of our designs are faster due to the fast UD algorithm. The AT product of our GFAU

is 2.3~91.5 better than previous works.
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Table 5.1: Comparisons among 256-bit finite field designs over GF(p).

Key Time(s)@
Tech. Gates Function Cycles AT
Size fmax(MHz)
MMD/MD 316 0.79@400.0 1
56.7K,
R2-GFAU*:! 90nm 256 | MMM/MM 257 0.641:©@400.0 -
32Kcells
MA/MS 2 5.0n@400.0 -
MMD/MD 191 0.58:@327.8 | 1.3
100.5K,
R4-GFAU*:! 90nm 256 | MMM/MM 129 0.391:@327.8 -
42Kcells
MA/MS 2 7.1n@327.8 -
MMD 376 3.76,@100.0 | 4.0
MT’08 [32]%-1¢ | 0.18um | 47.4K 256
MD 632 6.32,@100.0 | 6.7
MMD 376 3.76,@100.0 | 3.5
MT07 [31]*! 0.18um | 42.1K 256
MD 632 6.32,@100.0 | 5.9
CHES’02 [30]*'! | 0.5um 41.0K 256 MMI - 100.0p@ — | 91.5
TC07 [36]* 0.35um | 33Kcells {256 MD 624 1.761@354.6 | 2.3
MD 517 4.53,@114.2 | 4.8
TC05 [35]! 0.35um | 27Kcells |¢256
NIMM 175 1.53p@114.2 -

* Dual-field design. ! Synthesis result. ¢ Supporting MMM, MA, and MS.
5.2 Dual-Field Elliptic Curve Cryptography Proces-
sSor

The implementation results of R2-DECP and R4-DECP are shown in Tables 5.3 and
5.4. The results are verified by the NIST recommended ECs [2,59]. The AT product of
these two designs are almost the same, and the proposed R4-DECP can achieve higher
throughput.

In Tables 5.5 and 5.6, compared with our previous work [33], our R2-DECP is 1.4 and
1.6 better due to the proposed R2-UD and degree checker. Based on R2-UD, our design
reduces 27% execution cycle compared with [33]. In addition, the operating frequency

increases 10% in binary field operation, because of the proposed degree checker. Due to
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Table 5.2: Implementation results of proposed 256-bit GFAU over GF'(2™).

Key Time(s)@
Tech. Gates Function Cycles AT
Size fmax(MHZ)
MMD/MD 362 0.65p@555.6 | 1
56.7K,
R2-GFAU*:! | 90nm 256 | MMM/MM 257 0.46@555.6 | —
32Kcells
MA/MS 2 3.6n@555.6 -
MMD/MD 216 0.561,@384.6 | 1.4
100.5K,
R4-GFAU*:! | 90nm 256 | MMM/MM 129 0.33@384.6 | —
42Kcells

MA/MS 2 5.2n@384.6 -

the proposed hardware sharing methods, our design is smaller than [33].

Our proposed 160-bit and 256-bit R4-DECP are implemented in UMC 90nm CMOS
technology. Figure 5.1 shows the physical view of the DECP, which has core area of
0.29mm? and 0.45mm?, and the post-layout simulation results are shown in Tables 5.7,
5.8, 5.9, and 5.10.

The comparison with previous works-is-given in Tables 5.7, 5.8, 5.9, 5.10, and 5.11.
Our design supports all EC functions including point addition, point doubling, point
scalar multiplication, domain transformation, and finite-field operations. In [13], Chen
adopts T-UMD and systolic array to accomplish ECSM, but is three times slower than us
in execution cycle. Furthermore, our design achieves competitive execution cycles with
Satoh and Takano’s work [23] and Lai and Huang’s work [24] using 1 64-bit and 4 32-
bit multiplier. Both [24] and [15] exploit parallel architecture technique to reduce the
execution cycle but substantially increase the hardware cost. Consequently, the area of
our DECP is about 2 times smaller than theirs. In [9], the work uses systolic array to
achieve the highest operating frequency but is about 3 times slower than our design in
execution cycle. Compared with the 160-bit and 256-bit designs in [24], our DECP is
about 4 and 2 times better in AT product. From the table, our DECP outperforms other
EC processor designs in terms of functionality, hardware efficiency, execution time, and

power consumption.
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(b)

Figure 5.1: (a) Layout of 160-bit R4-DECP chip. (b) Layout of 256-bit R4-DECP chip.

Table 5.3: Implementation results of 256-bit R2/4-DECP over
GF(p).

Key Time(ms)Q
Tech. | Gates(K) Cycles AT
Size fmax(MHZ)

R2-DECP*! | 90nm 82.0 256 /347,266 | 0.86@400.0 1

R4-DECP*! | 90nm 134.3 256" | 193,386 | 0.51@333.3 | 1.0

5.3 Dual-Field Elliptic Curve Cryptography Proces-
sor with Power Analysis Countermeasures

Table 5.12 shows the implementation results of R2-GFAUPAC. The AT product be-
tween R2-GFAU and R2-GFAUPAC are similar, since the algorithms and number of
arithmetic units are almost the same. To compare with our previous work, we imple-
ment the proposed DECPAC with maximum field size 521 bit. The 521-bit R2-DECPAC
adopts a 32-bit chaos-based pseudo number generator which passes the random tests [62]
shown in Figure 5.2. The implementation results of R2-DECPAC is shown in Table 5.13.
Compared with R2-DECP, the R2-DECPAC requires 1.55 and 1.65 times execution cycles

over dual fields, respectively, due to the double-and-add/sub always method. Moreover,
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Figure 5.2: Random test on a 32-bit pseudo number generator.

Table 5.4: Implementation results of 256-bit R2/4-DECP over
GF(2™).

Key Time(ms)@
Tech. | Gates(K) Cycles AT
Size fmax(MHZ)

R2-DECP*! | 90nm 82.0 256,298,210 | 0.54@555.6 1

R4-DECP*! | 90nm 134:3 256 |-165,354 | 0.44@377.3 | 1.3

the area degradation is just 8.4%, and the;AT-product is 1.7 and 1.8 times worse than R2-
DECP. In Tables 5.14 and 5.15, compared with [33] based on L-UD, our approach is 1.3
times better in execution cycles due to the proposed R2-UD. In addition, [32] used sclar
spliting to resist SPA attcak, but is 1.8 times slower than ours in execution cycles. The
implemetation results show our approach is advantageous in system speed and hardware

cost.
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Table 5.5: Comparisons among 521-bit ECC designs over GF(p).

Key Time(ms)@ Power
Tech. | Gates(K) Cycles AT
Size fmax(MHz) (mW)
R2-DECP*:! 90nm 165.9 | 521 | 1,438,637 | 3.88@370.3 | 1 -

ESSCIRC’10 [33]**1| 90nm 170.7 | 521 | 1,967,982 | 5.31@370.3 | 1.4 | -

MT’08 [32)*-1.e 0.18um 225.0 512 | 1,824,522 | 13.7@133.0 | 4.8 -

® 512-bit DECP.

Table 5.6: Comparisons among 521-bit ECC designs over GF(2™).

Key Time(ms)@ Power
Tech. | Gates(K) Cycles AT
Size fmax(MHz) (mW)
R2-DECP*:! 90nm 165.9 409 769,492 1.38@555.6 1 -

ESSCIRC’10 [33]*'! | 90nm 170.7 409 | 1,165,672 | 2.23@500.0 | 1.6 =

Table 5.7: Comparisons among 160-bit ECC designs over GF'(p).

Core(mm?) | Key Time(ms)@ Power
Tech. Cycles AT
/Gates(K) | Size Sfmax(MHz) (mW)
R4-DECP*2 90nm 0.29/82.8 160 79,528 0.31@256.4 1 22.5

TCAS-2°09 [24]*2 | 0.13pm | 1.44/169.4 | 160 | 74,021 | 0.61@121.0 | 4.0 | 70.0

TVLST'08 [25]%2 | 0.13um | 1.06/150.6 | 160 | 74,021 | 0.34@217.0 | 2.0 | -

TC03 [23]%1 | 0.13um | - /117.5 | 160 | 153,000 | 1.21@137.7 | 55 | -

2 Post-simulation result. 3 Measurement result.
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Table 5.8: Comparisons with 160-bit ECC designs over GF(2™).

Core(mm?) | Key Time(ms)@ Power
Tech. Cycles AT
/Gates(K) | Size fmax(MHz) (mW)
R4-DECP*2 90nm 0.29/82.8 160 | 56,506 | 0.19@289.9 1 25.9

TCAS-2°09 [24]*% | 0.13um | 1.44/169.4 | 160 | 54,319 | 0.37@146.0 | 4.0 | 82.1

TVLSI'08 [25/*2 | 0.13um | 1.06/150.6 | 160 | 54,319 | 0.16@350.0 | 1.5

TC03 [23]*1 0.13pm ~/117.5 | 160 | 86,000 | 0.19@510.2 | 1.4

DATE’07 [21]1¢ | 0.25um ~/— | 163 | 9,251 | 0.08@111.1 | — | 154.2

¢ 163-bit ECC processor.

Table 5.9: Comparisons among 256-bity ECC designs over GF'(p).

Core(mm?): | Key Time(ms)@ Power
Tech. Cycles AT
/Gates(K) | Size Sfmax(MHz) (mW)
160 | 79,720 0.32@250.0 - -
R4-DECP*:2 90nm | 0.45/122.0
256 | 193,386 | 0.77@250.0 1 31.0
TCAS-209 [24*1 | 0.13um | — /197.0 | 256 | 252,067 | 1.21@208.0 | 2.5 | -
160 | 28,000 | 0.12@233.0 - ~10
ISCAS’08 [55]*2 | 0.18um 17.8/ -
256 | 70,457 | 0.30@233.0 - ~10
MT’07 [31]*! 0.18um —/292.5 | 256 | 439,746 | 5.86@Q75.0 | 18.2 -
TC03 [23]%1 | 0.13um | - /120.2 | 256 | 369,000 | 2.69Q137.0 | 3.4 | -
TCAS-2°07 [9]* 0.13pm - /122.0 | 256 | 562,000 | 1.01@556.0 1.3 -
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Table 5.10: Comparisons among 256-bit ECC designs over GF'(2™).

Core(mm?) Time(ms)@ Power
Tech. Field | Cycles AT
/Gates(K) Sfmax(MHz) (mW)
160 56,698 0.20@277.8 - -
R4-DECP*:2 90nm | 0.45/122.0
256 | 165,354 | 0.59@277.8 1 35.6
TCAS-209 [24]%1 | 0.13um | — /197.0 | 256 | 195,714 | 0.74@263.0 | 2.0 -
160 | 22,000 | 0.095@233.0 - ~10
ISCAS’08 [55]*2 | 0.18um 17.8/ —
256 56,050 0.24@233.0 - ~10
TC03 [23]*:1 0.13pm - /120.2 | 256 | 230,000 | 0.45@510.0 0.6 -
DATE’08 [20]"@ 90nm —/1494.7 | 233 3,077 | 0.015@200.0 | 0.3 | 64.64
JSSCo1 [12)*b 0.25pum —/880.0 | 256 | 725,000 | 14.5@50.0 | 177.2 -
@ 233-bit ECC processor. * Including modular exponentiation hardware.
Table 5.11: Comparisons among 571-bit ECC designs over GF'(2™).
Core(mm?) | Key Time(ms)@ Power
Tech. Cycles AT
/Gates(K) | Size fmax(MHz) (mW)
R4-DECP*! 90nm — /308.2 571 719,659 2.09@344.8 1 -
TVLSI'09 [13]%2 | 0.13um | 2.34/331.7 | 571 | 2,033,500 | 4.9@Q415.0 2.5 | 2776
—/343.0 571 | 407,048 | 1.39@292.0 | 0.7 -
TC07 [15)%0 | 0.13pm
—/244.0 571 451,140 1.55@292.0 | 0.6 -
DATE07 [21]' | 0.254m — /- 571 | 322275 | 0.48@53.3 | - | 396.1
CHES’00 [18]* | 0.25um | - /165.0 571 | 1,452,000 | 22.0@66.0 | 5.6 -

¢ Including modular exponentiation hardware

o4
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Table 5.12: Implementation results of 256-bit R2-GFAUPAR.

Time(ms)@
Tech. | Gates(K) Field Function | Cycles AT
fmax(MHz)
RD 316 0.79@400.0 | 1¢
GF(p256) RM 257 0.64/1@400.0 -
MA/MS 2 5.0n@400.0 -
R2-GFAUPAC*-! | 90nm 56.4
RD 427 | 0.77@555.6 | 1.2°
GF(2%5) RM 257 0.461.@555.6 -
MA/MS | 2 | 3.6n@555.6 | —
@ Compared with 256-bit R2-GFAU for GF(pa5¢) division operation.
b Compared with 256-bit R2-GFAU for GF(22°%) division operation.
Table 5.13: Implementation results of 256-bit R2-DECPAR.
Time(s)@
Tech. | Gates(K) Field Cycles AT
fmax(MHz)
GF(pasg)-| 539,134 | 1.37@392.1 | 1.7*
R2-DECPAC*'! | 90nm 88.8
GE(@26) | 194,196 | 0.89@555.6 | 1.8
@ Compared with 256-bit R2-DECP for GF(pa56) ECSM operation.
b Compared with 256-bit R2-DECP for GF(2256) ECSM operation.
Table 5.14: Comparisons among 521-bit ECC designs over GF(p).
Gates(K)/Area| Key Time(ms)@Q Time
Tech. Cycles AT
Degradation | Size fmax(MHz) Increase
R2-DECPAC*! 90nm 179.9/8.4% 521 | 2,020,494 | 5.46@370.3 1 39.4%
2,534,400 | 6.84~7.26 | 1.3~ | 37.2~
ESSCIRC’10 [33]*:1:2| 90nm 185.1/8.9% | 521
~2.690,063 @370.3 1.4 45.6%
MT08 [32]% 10 | 0.18um | 277.0/23.1% | 512 | 3,649,044 | 27.4@133.0 | 7.7 | 62.5%

@ PA-resistant DECP. © 512-bit SPA-resistant DECP.
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Table 5.15: Comparisons among 521-bit ECC designs over GF(2™).

Gates(K)/Area| Key Time(ms)@ Time
Tech. Cycles AT

Degradation | Size fmax(MHz) Increase

R2-DECPAC*! 90nm 179.9/6.9% 409 1,224,496 2.20@555.6 1 59.1%

1,748,502~ | 3.5~3.7 | 1.6~ | 50.0~
ESSCIRC’10 [33]*-1¢| 90nm | 185.1/8:9% . | 409

1,852,862 @500.0 1.7 59.3%

@ PA-resistant DECP.
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Chapter 6

Conclusion and Discussion

In this thesis, we propose the unified algorithms to reduce the execution cycles of
the division or multiplication operations. By these approaches and the proposed data-
path separation and degree checker, our ECC processor achieves better performance in
execution time. Besides, due to the proposed hardware sharing methods and ladder
selection, our processor has smaller area compared with relative works. Our 160-bit dual
field ECC processor is implemented inyUMC-90nm CMOS technology and can execute
one elliptic curve scalar multiplication in 310us-at-256.4MHz over GF(p) and 194us at
289.9MHz over GF(2™), respectively, with core-area 0.29mm? and power consumption at
most 25.9mW. In addition, our 256-bit dual field ECC processor can execute one elliptic
curve scalar multiplication in 770us at 250.0MHz over GF(p) and 590us at 277.8MHz over
GF(2™), respectively, with core area 0.45mm? and power consumption at most 35.6mW.

To resist the DPA attacks, unified random algorithms are proposed. The total ran-
dom numbers of these algorithms are up to 2™. Our proposed R2-DECPAC is based on
these algorithms with only 8.4% area degradation. The proposed 521-bit R2-DECPAC
can execute one 521-bit ECSM in 5.46ms over GF(p) and one 409-bit ECSM in 2.2ms
over GF(2™). Moreover, this approach should be further proven by real power analysis.
Our proposal can be served as an soft-IP for those applications demanding cost-effective

security solutions.
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Appendix A

Appendix

A.1 Duality of Multiplication and Division

By our observation, the multiplication and division have some duality. The MMM
and MD can be implemented in word-based architecture, since their operations can be
executed word-by-word. In each iteration, the operands do not excess 2p in GF(p),
because the div 2 and div 4 operations are executed after addition and subtraction, such
as (R+¢S)/4 (mod p) in T-UMD algorithm and (R+ X;Y)/2 (mod p) in radix-2 MMM
algorithm. In addition, in table 4.17 we can find the MM and MMD operations require
more arithmetic units than MMM and MD-eperations, separately. Consequently, the four

operations have a duality relation shown in table A.1.

Table A.1: Duality of division and multiplication.

MMM | MM | MMD | MD

Word-based architecture v v

More complicated v v

A.2 Power Analysis Attack on The Dual-Field Ellip-
tic Curve Cryptographic Processors

In [33], we proposed the DECP and DECPAC architectures. The DECP architecture

is based on the L-UD algorithm, circular shift register, and proposed data-path separation
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method to implement. Moreover, based on the double-and-add/sub always and random
scalar method, the DECPAC is implemented to resist the PA attacks. The countermea-

sures are already proven and the analysis environment is shown in figure A.1 and table

A2.

Logic Analyzer ' Fower Oscilloscope
and Pattern  [Supply
Generator :

Figure A.1: The environment of PA attacks.

Table A.2: The detail environment of PA at-
tacks.

Power Supply Core: 1V Pad: 2.5V

Operating Frequency 10MHz

LA and Pattern Generator Agilent 16902A

Oscilloscope LeCroy SDA 400A
Differential Probe LeCroy AP0341GHz
Sample Rate 1G Sample/sec

Resistance 220hm

A.3 Unified Division Algorithm Based on Takagi’s
Algorithm

In Section 3.1, we proposed the UD algorithms based on K-UI. The major modification

is based on the proposed free recovery method which eliminates the phase 2 operation.
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We use the same method to apply into T-UMD. Algorithm A.1 shows the proposed UD
based on T-UMD (T-UD), which supports MMD and MD operations over dual fields with
only m ~ 2m execution cycles. Table A.3 shows the implementation results of the GF'(p)
division algorithms. As a result, the performance of R2-UD is better than FT-UD, so we
implement the ECSM operation based on this.

Algorithm A.1. (Unified division algorithm based on Takagi’s algorithm.)
Input: X, Y, and p, where X,Y are in GF(p) or GF(2™) and p is the prime integer or
wrreducible polynomial.
If operation is MMD, then S = X -Y~1.2™ (mod p).
If operation is MD, then S = X -Y ! (mod p).
L U=Y,V=p,R=X,5=0,6=0,i=0
2. while U # 0 do
3. if U is even, then: U =U/2, 0 =6 — 1

Output:

4. if operation = MMD, then: S =2S (mod p), i =i+ 1
5. else: R = R/2 (mod p)
6. else
7. if § <0, then: swap(U, V), swap(R;S); 6 = —6
8. if (U+V) (mod 4) = 0 then: g —-—1
9. else: g =1
10. U="Y §=6-1
11. iof operation = MMD and i < m — 1, then
12. R=R+¢q-S (modp), S=4S (mod p), i =i+ 2
15. else if operation = MMD and i = m — 1, then
14. R:RJFT‘]'S(modp),S:25 (mod p), i =i+ 1
15. else: R = R+Tq's (mod p)
16. endif
17. endif

18. endwhile
19. if V.= —1, then: S=P — S
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Table A.3: Implementation results of 256-bit GF(p) division algo-

rithms.

Time(us)@
Tech. | Gates(K) Field Function | Cycles
fmax (MHZ)

MMD 669 1.94@344.8
w—UM/D 013um 48.6 GF(p256)

MD 397 1.06@344.8

MMD 381 1.6@238.1
T-UD 0.13pm 78.9 GF'(p2s6)

MD 381 1.6@238.1

MMD 375 1.2@312.5

L-UD 0.13pm 54.5 GF(p2s6)
MD 634 2.0@312.5

MMD 316 1.1@285.7
R2-UD 013/Lm 61.2 GF(ng,(,)

MD 316 1.1@285.7

A.4 Word-based Unified Multiplication/Division Ar-
chitecture

During the T-UMD algorithm, the operations of U can be implemented by word-based
architecture, due to any word of U does not-depend on the other words. And the original
operations of R, R = R/2 (mod p) and R = (R+ ¢ -S)/4 (mod p), can be changed
toR=(R+Ry-p)/2and R=(R+q-S+(R+q-S)op+(R+q-S+(R+q-
S)o - p)1 - 2p)/4 to eliminate the dependency. After the last iteration, the value of S
should be reduced to within [0,p—1]. Combined with the MMM algorithm, we propose
a word-based multiplication/division architecture (w-UM/D) to support MMM and MD
operations, which is shown in figure A.2. The UV data-path is used to accomplish the UV
operations, U/2 and (U + ¢qV')/4. And the RS data-path computes the RS operations,
R/2 (mod p) and (R + ¢S)/4 (mod p). Besides, the predicted logic computes the value
Ulw+1:w]and V]w + 1 : w] in the current state, due to the original UJw + 3 : w + 1]
and V[w+ 3 : w+ 1] are the data in previous state. And the concatenated logic is used to
concatenate Ulw + 1 : w] and U[w — 1 : 0] into U[w + 1 : 0]. In addition, we choose three
word lengths 16, 32, and 64 to implement a 256-bit w-UM/D, and the implementation

61



results are shown in table A.3 and figure A.3. The MMD operation of the w-UM/D is
achieved by MD and MMM operations as following:

MD(X,Y)=X-Y! (modp) - MMM(X -Y~12*™)=X.Y"1.2™ (mod p)
(A1)
Moreover, when the field size is equal to 1024-bit, the overall performance of w-UM/D
is better than R2-UD because the operating frequency of w-UM/D is almost two times
faster than that of R2-UD.

Ulw-1:0] V[w-1:0]

w w
4
U[w+3:w]¢
Viw+3:w] -3l PL
Previous T PL |: predicted logic
state |
Current )
state @ : concatenated logic
Carry > +/D » N_Carry
" g Yy
UV data-path; WT
y v
N_Ulw-1:0] - 'N_V]w-1:0]
Rw-1:0]S[w-1:0] p[w-1:0]
w w
4
R[w+3:w]
S[w+3:w]
P_Carry —
P_ state
C_state
v v v '
Carry > +/@® » N_Carry
Yy
lid »
g -
RS data-path; *
\j \j
N_R[w-1:0] N_S[w-1:0]

Figure A.2: The GF(p) architecture of proposed w-UM/D.
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© 50000 €7 100
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Figure A.3: The implementation result of unified division algorithms.

A.5 ECC Processor for RFID systems

To satisfy the requirement of radio frequency identification (RFID) tag [63,64], the
single field ECC processor is proposed [14,22]. In the requirement of [63], the response
time of RFID is 250ms and the energy received by th tag is 1004W. In ISO/IEC 18000-
3(13.65MHz) [64], the power must be less than 154 W. To achieve the targets, we propose a
low-cost ECC processor. We choose the Ly, method [14] to finish the ECSM operation,
because the method requires fewer registers, which is proven in [14]. The algorithm
of Lyc requires the MA, MM, and: modular-squaring (MSQ) operations. We use the
parallel method [14] to implement the MM operation shown in figure A.4. Followings are

the corresponding formula:
XY (modp)= Z?Z/SX “Yiip1)-d-1:id (mod p) (A.2)

Note that the value of d represents the digit size. The execution cycle of MM operation
is (n/d) + 1. In addition, we apply the fast squaring method [22] to finish the MSQ
operation. Due to this method, the MS(Q operation requires only 1 cycle. Combining the
above architectures with MA, the single field ECC processor is proposed in figure A.5.
In table A.4, the implementation results show our work outperforms the relative works
in gates x cycles ratio. And the power consumption is slower than 154W when the digit
size is bigger than 7, which is shown in table A.5. These results show our work satisfies

the requirement of ISO/IEC 18000-3(13.65MHz).
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Table A.4: Implementation results of ECC processors over
GF(2™).
Digit Gates x
Tech. Gates(K) Field Cycles
Size Cycles
1 14.9 214,168 6.7
Proposed | 0.13um 7 19.4 GF(2'03) | 33,885 1.4
14 26.1 18,321 1
1 10.1 486,738% | 10.3
[14] 0.13pm GF(2'%3)
5 13.5 337,931 9.5
15.1 430,654 13.6
[22] 0.35m - GF(2163)
16.2 376,864 | 17.2

%: By our modification.

Table A.5: Implementation results of proposed ECC processor.

Digit Time(ms)@
Tech. Gates(K) Field Cycles Power(uW)
Size f’muw (kHZ)
1 11.0 214,168 | 250@858.7 16.2
Proposed | 90nm 7 194 GF(2'63) | 33,885 250@135.5 14.2
14 26.1 18,321 250Q@73.3 14.6
X |Yiay Xp1 Xoa Xo X5 Xo X5 X5 Xi X,
(l+l).d-1——>| celld_l I< G
V. VYT q T,
(+1yd2_| _>| cell, I - & ;l
VT p T;
. q T,
Y. Y1 @ Ts
rd——>| cell I< d T3
MM ;n-l
n-1
\ J 6{ 69/ 69/ 69/
ouUT Cellj

Figure A.4: The architecture of MM operation over GF(2™).
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Figure A.5: The architecture of the proposed ECC processor.
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