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摘 要       

在這篇論文中，我們提出了一個可支援雙域有限域運算以及可支援任意

橢圓曲線運算的雙域橢圓曲線密碼運算單元。透過我們提出的通用演算法，

這個運算單元的執行週期數大幅的降低。藉由我們提出的面積共用方法以及

梯子選擇法，我們 160 位元以及 256 位元的雙域橢圓曲線密碼運算單元的面

積在聯電 90 奈米製程下只須 0.29mm2和 0.45mm2。此外，運算單元的操作面

積也可以透過我們提出的指數判定器以及資料路徑分離法可大幅的提升。我

們也提出一個可以對抗能量攻擊法的雙域橢圓曲線密碼運算單元。透過我們

提出的通用亂數演算法，我們面積的損失僅僅 8.4%。 
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ABSTRACT 

In this thesis, we propose a high-performance dual-field elliptic curve 

cryptographic processor (DECP) architecture that can support all finite field 

operations and elliptic curve (EC) functions with arbitrary field and curve. Based 

on our proposed fast unified division algorithm, the operation cycles can be 

significantly reduced. Compared with previous works using high radix 

multiplication in projective coordinate, our 160-bit and 256-bit DECPs can 

achieve competitive performance in terms of execution cycles with only 0.29mm2 

and 0.45mm2 silicon area in UMC 90nm CMOS technology by exploiting 

hardware sharing and ladder selection techniques. In addition, the operating 

frequency in prime field and binary field can be increased due to the proposed 

data-path separation and degree checker. To resist power analysis attack, we 

propose a DECP with power analysis countermeasures architecture based on the 

proposed unified random algorithms with only 8.4% area overhead. 
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Chapter 1

Introduction

1.1 Elliptic Curve Cryptography

To ensure the data security of network communication, public-key encryption algo-

rithms have been widely adopted. Elliptic curve cryptography (ECC) [1–6] can provide

the same security level as the Rivest, Shamir and Adleman (RSA) [7] algorithm with much

reduced key-size. In ECC scheme, the major operation is the elliptic curve point scalar

multiplication (ECSM). To reduce the execution time in software implementation [8],

several accelerating hardware processors are proposed. Many ECC designs have been

published over specified finite field, either GF(p) [9–11] or GF(2m) [12–22]. The designs

over GF(2m) usually target at area constrainted applications such as smart cards or RFID

cards due to the carry-free propagation and fixed irreducible polynomial in specific ECs.

However, to support higher security level, both arbitrary key-size and field operations

are essentially required. Some dual-field ECC processors (DECP), in which the coordinate

is transformed to the projective coordinate to avoid inversion operations in ECSM, have

been proposed up to now [23–25]. Satoh and Takano [23] exploit a r× r-bit multipliers to

speed up the ECSM in the Jacobian’s projective coordinate, and Lai and Huang [24, 25]

present a parallel architecture based on [23] to enhance the throughput. However, opera-

tions in the projective coordinate are more complicated than that in the affine coordinate,

and the inversion is still needed in coordinate transformation before and after the ECSM

in projective coordinate. To reduce the execution cycles of ECSM and coordinate trans-

formation, the size r of multipliers or the number of parallel units are increased, which
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usually results in high hardware cost.

The traditional approach of inversion operation is based on the Fermat’s little theo-

rem (FLT) [26]. It can be realized by repeating squaring and multiplication operation but

results in longer execution time [23–25]. In 1995, Kaliski [27] proposed a unified inversion

algorithm to accomplish the inversion operations. Several later algorithms and architec-

tures are based on this algorithm [28–34]. Furthermore, to directly reduce the execution

cycles of ECSM in affine coordinate, many architectures and algorithms [35–37] are based

on Takagi’s modular division (MD) algorithm [38].

To solve the overhead of inversion and the following multiplication operation in ECSM

and coordinate transformation, we propose a fast unified division algorithm supporting

Montgomery modular division (MMD) and MD operations over dual fields. Note that

the “unified” means the algorithm is able to handle dual-field operations. In addition, we

apply hardware sharing method, data-path separation, and degree checker into a DECP

to reduce the hardware cost and increase the operating frequency. Our DECP supports

ECSM and finite field operations with arbitrary curves and parameters over dual fields.

The implementation result shows our DECP outperforms relative works in functionality,

hardware efficiency, execution time, and power consumption.

1.2 Power Analysis

Physical attacks on cryptographic devices using side-channel information are attract-

ing extensive attention [39–41]. In order to reveal secret parameters, the power dissipation,

electromagnetic radiation, or operating times (i.e. timing attack [42]) as correlated to in-

ternal operation are measured. Simple power analysis (SPA) [43] and differential power

analysis (DPA) [44,45] are known as basic and powerful side-channel attacks, which have

been discussed in several literatures [4, 46–51].

To resist the power analysis attack, we use the masking techniques to randomize the

operating data. We propose a unified random division and a unified random multiplication

algorithm to make the total random numbers equal 2m, where m is the field length.

Compared with the proposed unified algorithms, the implementation of the unified random

algorithms increases little hardware cost to resist DPA attack. In addition, the SPA attack

2



is resisted by well known double-and-add/sub-always method.

1.3 Organization

In this thesis, we propose the unified algorithms and ECC architectures to support

the operations in elliptic curve cryptography, and propose the unified random algorithms

and architectures to resist power analysis in cryptographic processor. In Chapter 2, the

preliminaries of ECC cryptosystem is introduced. In Chapter 3, we propose the unified

algorithms to accomplish the division and multiplication operations. In Chapter 4, we

propose the Galois field arithmetic units and dual-field ECC processors to support finite

field operations, EC functions, or power analysis countermeasures. In Chapter 5, we show

the implementation results of our proposed architectures. In the last Chapter, we give a

brief conclusion and discussion.
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Chapter 2

Preliminary of Elliptic Curve

Cryptography Cryptosystem

Elliptic curve cryptography cryptosystem, which is based on the arithmetic on elliptic

curves (ECs) over finite field, has been widely adopted in recent years. The arithmetic on

ECs is the EC point scalar multiplication (ECSM) which is computed in Galois field. In

addition, the applications of ECC are the EC data en/decryption and EC based protocols

which are composed of ECSM, random number generator, hash function, and Galois field

arithmetic. The relationship is given in a hierarchical organization as shown in Figure

2.1.

EC Data En/Decryption, ECDH, 

ECDSA, ECIES, ECMQV

ECC applications

Galois Field 

Arithmetics

Elliptic Curve Scalar Point Multiplication

EC functions

Modular Operations

Hash Function, Random 

Number Generator

Cryptographic 

functions

Figure 2.1: Hierarchical organization of EC protocol

The ECSM operation consists of four parts, which are operating field, coordinate, point

multiplication method, and Galois field arithmetic, shown in Table 2.2. Furthermore,

power analysis on ECC is discussed nowadays. By measuring power traces of ECC devices,

the secret informations can be extracted. We will introduce some power analysis methods

4



and countermeasures to attack or resist them, respectively.

Field

Coordinate

Point Scalar 

Multiplication Method

Galois Field Arithmetic

Prime, Extension Binary

Affine, Projective, Jabobian s 

Projective...

Binary Method, Binary NAF 

Method, Montgomery Ladder...

Modular Addition/ Subtraction, 

Montgomery/Modular 

Multiplication/Division

Figure 2.2: The component of ECSM operation

2.1 Point Addition and Doubling over Finite Fields

If L and K are two fields, L ⊇ K, the general elliptic curve E defined over K is an

equation of the form (also called Weierstrass equation)

E(L) : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (2.1)

where a1,..., a6 ∈ K are constants and (x, y) ∈ L × L is the set of points along with

a point O at infinity. The point O at infinity is defined as the identity element, i.e.,

P + O = O + P = P for all P ∈ E(L). Note that if P = (x, y), then the negation of P ,

denoted by −P , is defined as (x,−a1x− a3 − y).

However, it is more practical to specify what kind of finite field of set x, y, a1, ...,

and a6 belong to in equation 2.1. Most of ECC designs are implemented over GF(p) or

GF(2m), where p is a prime integer and m is the field size determined by the key length.

An equation form of the non-singular EC E(GF(p)) is given by

E(GF(p)) : y2 = x3 + ax + b (mod p), (2.2)

where a, b ∈GF(p) and 4a3 + 27b2 6= 0 (mod p). For two distinct points P = (x1, y1) and

Q = (x2, y2) with P 6= ±Q, the formulas of the EC point addition (ECADD) P + Q =

(x3, y3) and EC point doubling (ECDBL) in affine coordinates are shown in Table 2.1.

The ECDBL is that the point P adds itself, i.e., 2P = (x3, y3), but P 6= −P . For the

existence of inverses, it is easy to return the value as O because P + (−P ) = O.
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For GF(2m), the non-singular EC is an equation of this form

E(GF(2m)) : y2 + xy = x3 + ax2 + b (mod p), (2.3)

where a, b ∈GF(2m) and b 6= 0 (mod p) and p is an irreducible polynomial of degree m.

Table 2.1 lists all the formulas of the point addition over GF(2m) and the point doubling

in affine coordinates. Note that the EC point subtraction (ECSUB) Q−P with P = (x, y)

can be computed by ECADD Q+(−P ), where the coordinates of −P are given by (x,−y)

over GF(p) and (x, x + y) over GF(2m).

Table 2.1: ECDBL and ECADD.

Field Doubling(x3,y3)=2(x1,y1) Addition(x3,y3)=(x1,y1)+(x2,y2)

λ =
3x2

1
+a

2y1

(mod p) λ = y2−y1

x2−x1

(mod p)

GF(p) x3 = λ2 − 2x1 (mod p) x3 = λ2 − x1 − x2 (mod p)

y3 = λ(x1 − x3)− y1 (mod p) y3 = λ(x1 − x3)− y1 (mod p)

λ = x1 + y1

x1

(mod p) λ = y2+y1

x2+x1

(mod p)

GF(2m) x3 = λ2 + λ + a (mod p) x3 = λ2 + λ + x1 + x2 + a (mod p)

y3 = λ(x1 + x3) + x3 + y1 (mod p) y3 = λ(x1 + x3) + x3 + y1 (mod p)

2.2 Analysis of Point Addition and Doubling in Dif-

ferent Coordinates

Traditionally, ECSM is operated in affine coordinate. To avoid the inversion operation

which is more expensive than multiplication, many coordinates has been proposed, such

as Jacobian projective coordinate [1] and López projective coordinate [52], etc. Table 2.2

and 2.3 show the analysis of EC point doubling/addition in different coordinates [53]. The

execution cycle of the ECSM in affine coordinate is dominated by the division operation.

To outperform other coordinates, the execution cycle of division must be less than 5.2Mc,

where Mc means the cycle of multiplication.
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Table 2.2: ECDBL and ECADD for various coordinates over GF(p).

ECDBL over GF(p)

Function A← 2A J ← 2J JM ← 2JM JC ← 2JC

Major Operation 1D+1M+2SQ 4M+6SQ 4M+4SQ 5M+6SQ

ECADD over GF(p)

Function A← A + A J ← J + A JM ← JM + A JC ← JC + A

Major Operation 1D+1M+1SQ 12M+4SQ 13M+6SQ 11M+3SQ

Table 2.3: ECDBL and ECADD for various coordinates over GF(2m).

ECDBL over GF(2m)

Function A← 2A LP ← 2LP LM ← 2LM LMC ← 2LMC

Major Operation 1D+1M+1SQ 7M+5SQa 4M+1SQa 5M+1SQa

ECADD over GF(2m)

Function A← A + A LP ← LP + A LM ← LM + LM LMC ← LMC + LMC

Major Operation 1D+1M+1SQ 10M+4SQb 2M+4SQb 2M+3SQb

a: Including the operation cycles of extra step.

2.3 Elliptic Curve Point Scalar Multiplication Meth-

ods

Intuitively, the ECSM operation, i.e. kP = P +P...+P , requires (k−1) iterative point

addition to accomplish. To reduce the execution cycle, many methods such as binary

method and window method were proposed [1]. Considering the hardware efficiency

and operation cycles, we adopt the binary Non-adjacent form (NAF) method shown in

algorithm 2.1. Prior to this algorithm, the secret key must be transformed to the NAF

form. The details of the NAF is illustrated in [2].

7



Algorithm 2.1. (Binary NAF method for point multiplication.)

Input: P and k, where P ∈ E(L), k is an integer with NAF form and km−1 = 1.

Output: Q = [k]P .

1. Q = P

2. for i = m− 2 to 1 by −1 do

3. Q = [2]Q

4. if ki = 1, then

5. Q = Q + P

6. else if ki = −1, then

7. Q = Q− P

8. end if

9. end for

2.4 Galois Field Arithmetic

Galois field arithmetic is very important not only in ECSM operations but also in EC

protocols. Eight different modular operations over finite field are commonly used and

details of these modular operations and their abbreviations are listed in Table 2.4. The

division and multiplication are more complicated than addition and subtraction, so many

approaches have been proposed to enhance the performance of division and multiplication.

Table 2.4: Galois field arithmetic.

Operations

Modular addition MA(X,Y ) = X + Y (mod p)

Modular subtraction MS(X,Y ) = X − Y (mod p)

Modular multiplication MM(X,Y ) = X · Y (mod p)

Montgomery modular multiplication MMM(X,Y ) = X · Y · 2−m (mod p)

Modular inversion MI(X) = X−1 (mod p)

Montgomery modular inversion MMI(X) = X−1 · 2−m (mod p)

Modular division MD(X,Y ) = X · Y −1 (mod p)

Montgomery modular division MMD(X,Y ) = X · Y −1 · 2m (mod p)
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2.4.1 Unified Multiplication Algorithms

Unified Modular Multiplication Algorithm

The unified MM computes R ≡ X · Y (mod p), where 0 ≤ X,Y < p or 0 ≤
deg(X), deg(Y ) < deg(p) over prime field or binary field, respectively. MM operation

can be realized in two methods, left-to-right MM and right-to-left MM. The implementa-

tion of these two methods are similar. Algorithm 2.2 shows the left-to-right unified MM

(UMM) algorithm. Note that the addition/subtraction operations mean XOR gates in

binary field, and the operation ”2·” represents ”x·” in binary field.

Algorithm 2.2. (Left-to-right unified modular multiplication.)

Input: X, Y , and p, where X,Y are n-bit integer over GF (p) or GF (2m) and p is the

prime or irreducible polynomial.

Output: R ≡ X · Y (mod p).

1. R = 0, S = Y

2. for i from 0 to m− 1 by +1 do

3. R = (R + Xi · S) (mod p)

4. S = 2 · S (mod p)

5. endfor

High Radix Unified Montgomery Modular Multiplication Algorithm

The well known Montgomery multiplication algorithm, proposed by P. L. Montgomery

[54], is commonly used to compute the modular multiplication without trial division. The

concept of the MMM is to turn the MM into iterative operations with both addition

and logic level shifting. Hence the MMM is quite appropriate for software or hardware

implementation. The additional overhead is the pre-/post-processing stages of the domain

transformation for the input/output. In the pre-processing stage, the data is transformed

from integer domain, X · 20, to Montgomery domain, X · 2m. And in the post-processing

stage, the data is transformed back to integer domain.

Algorithm 2.3 [54] computes R ≡ X · Y · 2−m (mod p), where 0 ≤ X,Y < p or

0 ≤ deg(X), deg(Y ) < deg(p) over prime field or binary field, respectively. Because the

X and Y are in the Montgomery domain, the MMM computes X · Y · 2−m (mod p) to
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make the output R still in the Montgomery domain. In order to use n · r-bit multiplier,

an n-bit number needs to be divided into l r-bit blocks (i.e., n = l · r). The operand X

can be represented by r-bit words Xi as X = Xl−1 · 2r(l−1) + ... + X1 · 2r + X0. The Ti

operation is used to make the least significant word of accumulated operand R be zero.

The proof is shown as follows:

R + Xi · Y + Ti · p (mod 2r) = R + Xi · Y + (R0 + Xi · Y ) · q · p (mod 2r) = 0 (2.4)

Therefore, the division operation is easily achieved by shifting r bit. Moreover, the

operand R may excess p during the MMM iteration over prime field, so a reduction

step after the last iteration is required. On the other hand, since deg(R) ≥ m would not

occur in binary field operation, the recovery step is not required. Traditionally, the r is

commonly set to 1 for low-cost design. The algorithm is shown in algorithm 2.4.

There is a variety of hardware architectures to implement the MMM. Both the systolic

architecture [55] and the word-level architecture [56] exploit the pipelining techniques to

shorten the critical path. Beside, Satoh and Takano proposed double loop method [23] to

apply into MMM operation. Compared with architectures with n×r-bit multipliers, Satoh

and Takano’s work just needs one r × r-bit multiplier to improve the MMM operation.

Besides, the operation cycle increases from m+1 and m cycles to 2l2+4l+1 and 2l2+3l+1

over prime field and binary field [23], respectively.

Algorithm 2.3. (Radix-r unified Montgomery multiplication algorithm.)

Input: X, Y , q, and p, where X,Y are n-bit integer over GF (p) or GF (2m) , q = −p−1

(mod 2r), and p is the prime or irreducible polynomial.

Output: R ≡ X · Y · 2−m (mod p).

1. R = 0

2. for i = 0 to l − 1 by +1 do

3. T = (R0 + Xi · Y ) · q (mod 2r)

4. R = Ri+Xi·Y +T ·p
2r

5. endfor

6. if R ≥ p and the operating field is prime, then: R = R− p
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Algorithm 2.4. (Radix-2 unified Montgomery multiplication algorithm.)

Input: X, Y , and p, where X,Y are in GF (p) or GF (2m) and p is the prime or irre-

ducible polynomial.

Output: R ≡ X · Y · 2−m (mod p).

1. R = 0

2. for i from 0 to m− 1 by +1 do

3. T = (R + Xi · Y )

4. R = (T+T0·p)
2

5. endfor

6. if R ≥ p and the operating field is prime, then: R = R− p

2.4.2 Unified Inversion and Division Algorithms

Unified Inversion Algorithms based on Fermat’s Little Theorem

Based on Fermat’s Little Theorem (FLT), Xp−1 = 1 (mod p), the inversion opera-

tion is easily achieved by X−1 = Xp−2 (mod p). FLT is commonly used in projective

operation, because of low cost and high integration with radix-r MMM. Algorithm 2.5

shows the unified MMI algorithm based on FLT (FLT-UMMI), and the execution cycle

of FLT-UMMI is about m2 ∼ 2m2, where m is the execution cycle of MMM. Besides, the

FLT can also be used to accomplish MI operation shown in algorithm 2.6.

Algorithm 2.5. (Unified MMI algorithm based on FLT.)

Input: X · 2m and p, where X is in GF (p) or GF (2m) and p is the prime or irreducible

polynomial.

Output: R ≡ X−1 · 2m (mod p).

1. if the operating field is prime, then: T = p− 2

2. else: T = 2m − 2

3. R = X · 2m

4. for i from m− 2 to 0 by −1 do

5. R = MMM(R,R)

6. if Ti = 1, then: R = MMM(R,X · 2m)

7. endfor
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Algorithm 2.6. (Unified MI algorithm based on FLT (FLT-UMI).)

Input: X and p, where X is in GF (p) or GF (2m) and p is the prime or irreducible

polynomial.

Output: R ≡ X−1 (mod p).

1. if the operating field is prime, then: T = p− 2

2. else: T = 2m − 2

3. R = X

4. for i from m− 2 to 0 by −1 do

5. R = R ·R (mod p)

6. if Ti = 1, then: R = R ·X (mod p)

7. endfor

Kaliski’s Unified Inversion Algorithm

Algorithm 2.7 shows the unified inversion algorithm proposed by Kalisiki (K-UI) [27].

This algorithm supports the MI and MMI operation over dual fields. This algorithm

calculates R = X−1 · 2m (mod p), where the operand R is defined as the Montgomery

representation of modular inverse, m is the bit-length of p, and X (6= 0) be the elements of

the field. Similarly, the R = X−1 (mod p) can also be obtained from this algorithm, where

the operand R is defined as the integer representation of modular inverse. The inversion

is computed by intertwining the procedure for finding the modular quotient with that for

calculating gcd(X, p). The algorithm requires four operands, U , V , R, and S. U and

V are used for calculating gcd(X, p) and the operands R and S are used for calculating

modular inverse. The operands U and V are initialized to Y and p, respectively, and the

properties shown in Table 2.5 are applied iteratively to calculate gcd(X, p). For example,

U can be replaced by U/2 according to the property gcd(U, V ) = gcd(U/2, V ), when U is

even. In addition, R and S are initialized to the values of X and 0, respectively. Besides,

the corresponding R, S operations are determined by the following invariants:

{

X ·R ≡ −U · 2i (mod p)

X · S ≡ V · 2i (mod p)
(2.5)

During the phase 1 operation which means the operating steps are 2∼8, the domain value

i is increased by 1 every cycle. Table 2.5 shows the detail operations of U , V , R, and S
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based on the properties and invariants. For instance, if U is even, the algorithm changes

value U to U/2 and the value i is increased to i + 1 for obeying the equivalence 2.5. To

increase the value i to i + 1 in the second equivalence, the operand S must be multiplied

by 2.

At the end of the while loop, the value U and V would be 1 and 0 which means

R = −X−1 · 2i (mod p) with m ≤ i ≤ 2m and S = 0 (mod p). Then in phase 2 which

contains step 10 to 14, the value of i is reduced to m. This can be done by either iteratively

halving modulo p or multiplication modulo p [28]. After phase 2, the value R would be

−X−1 · 2m (mod p) or −X−1 (mod p), and in the prime field R should be reduced to

within the range [0, p− 1] by p−R operation. Finally, it has been proved that the cycle

number needed to complete MMD and MD operations are m ∼ 3m and 2m ∼ 4m if X

and p are co-prime [27].
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Algorithm 2.7. (Kaliski’s unified inversion algorithm.)

Input: X, and p, where X are in GF (p) or GF (2m) and p is the prime integer or

irreducible polynomial.

Output:







If operation is MMI, then R ≡ X−1 · 2m (mod p).

If operation is MI, then R ≡ X−1 (mod p).

1. U = p, V = X, R = 0, S = 1, i = 0

2. while V > 0 do

3. if U is even, then: U = U
2
, S = 2 · S

4. else if V is even, then: V = V
2
, R = 2 ·R

5. else if U − V > 0, then: U = U−V
2

, R = R + S, S = 2 · S
6. else if V − U ≥ 0, then: V = V −U

2
, S = S + R, R = 2 ·R

7. i = i + 1

8. endwhile

9. if R ≥ P , then: R = R− p

10. while i 6=







m

0
do

11. if R is even: R = R/2

12. else: R = (R + p)/2

13. i = i− 1

14. endwhile

15. if the operating field is prime, then: R = p−R

Takagi’s Unified Modular Division Algorithm

In 1998, Takagi proposed a unified modular division algorithm (T-UMD) [38] based on

the extended binary GCD algorithm [57]. The algorithm calculates S = X ·Y −1 (mod p)

by finding the value gcd(Y, p) and the corresponding modular quotient, where X and Y

are the elements of the field with odd prime (or irreducible polynomial) p.

This algorithm requires four operands, U , V , R, and S. U and V are used for cal-

culating gcd(Y, p) and the operands R and S are used for calculating modular quotient.

The operands U and V are initialized to Y and p, respectively, and the properties shown

in Table 2.6 are applied repeatedly to calculate gcd(Y, p). The operands R and S are

initialized to the values of X and 0, respectively. Then, the same operations that are
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Table 2.5: The properties of Kaliski’s unified inversion algorithm.

Initial
X · (0) ≡ −(p) · 20 (mod p)

X · (1) ≡ (X) · 20 (mod p)

End of MMI operation
X · (−X−1 · 2m) ≡ −(1) · 2m (mod p)

X · (0) ≡ (0) · 2ρ (mod p)

End of MI operation
X · (−X−1) ≡ −(1) (mod p)

X · (0) ≡ (0) · 2ρ (mod p)

Properties Invariants

U is even gcd(U, V ) = gcd(U
2
, V )

X ·R ≡ −U/2 · 2i+1 (mod p)

X · 2 · S ≡ V · 2i+1 (mod p)

V is even gcd(U, V ) = gcd(U, V
2
)

X · 2 ·R ≡ −U · 2i+1 (mod p)

X · S ≡ V/2 · 2i+1 (mod p)

U > V gcd(U, V ) = gcd(U−V
2

, V )
X · R+S

2
≡ −U−V

2
· 2i+1 (mod p)

X · 2 · S ≡ V · 2i+1 (mod p)

U ≤ V gcd(U, V ) = gcd(U, V −U
2

)
X · 2 ·R ≡ −U · 2i+1 (mod p)

X · R+S
2
≡ V −U

2
· 2i+1 (mod p)

phase 2 –
X · R

2
≡ −(1) · 2i−1 (mod p)

X · (0) ≡ (0) · 2ρ (mod p)

ρ is equal to the value i in the last iteration of phase 1.

performed to the operands U and V are applied to the operands R and S for calculating

the modular quotient by reducing U and V value. Furthermore, the operands U and V

are integers and are allowed to be negative. δ represents α− β, where α and β are values

such that 2α and 2β indicate the upper bounds of |U | and |V |, respectively. The value

δ = 0 is introduced to represent min(α, β). For correctness, we do some modification on

the condition of while loop in the original algorithm.

This algorithm is based on the following invariants:

{

X−1 · Y ·R ≡ U (mod p)

X−1 · Y · S ≡ V (mod p)
(2.6)

It can easily be shown that the equivalences always hold in Table 2.6. Since gcd(Y, p) = 1,

the operands U = 0 and V is 1 or −1 in the last iteration. Hence, in the final step of

algorithm, the equivalence X−1 · Y · S = 1 (mod p) holds and S is equal to X · Y −1

(mod p). Moreover, the number of iterations needed to complete the algorithm is at least

m and at most 2m cycles if Y and p are co-prime.
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Algorithm 2.8. (Takagi’s unified modular division algorithm.)

Input: X, Y , and p, where X,Y are in GF (p) or GF (2m) and p is the prime integer or

irreducible polynomial.

Output: S ≡ X · Y −1 (mod p).

1. U = Y , V = p, R = X, S = 0, δ = 0

2. while U 6= 0 do

3. if U is even, then: U = U/2, R = R/2 (mod p), δ = δ − 1

4. else

5. if δ < 0, then: swap(U, V ), swap(R,S), δ = −δ

6. if (U + V ) (mod 4) = 0, then: q = −1

7. else: q = 1

8. U = U+q·V
4

, δ = δ − 1

9. R = R+q·S
4

(mod p)

10. endif

11. endwhile

12. if V = −1, then: S = P − S

Table 2.6: The properties of Takagi’s unified modular division al-

gorithm.

Initial
X−1 · Y · (X) ≡ (Y ) (mod p)

X−1 · Y · (0) ≡ (p) (mod p)

End
X−1 · Y · (0) ≡ (0) (mod p)

X−1 · Y · (±X · Y −1) ≡ (±1) (mod p)

Properties Invariants

U is even
gcd(U, V ) = gcd(U

2
, V )

X−1 · Y ·R ≡ U/2 (mod p)

and V is odd X−1 · Y · S ≡ V (mod p)

U + V is
gcd(U, V ) = gcd(U+V

4
, V )

X−1 · Y · R+S
4
≡ U+V

4
(mod p)

divisible by 4 X−1 · Y · S ≡ V (mod p)

U − V is
gcd(U, V ) = gcd(U+V

4
, V )

X−1 · Y · R−S
4
≡ U−V

4
(mod p)

divisible by 4 X−1 · Y · S ≡ V (mod p)
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Liu’s Unified Division Algorithm

In algorithm 2.9, the Liu’s unified division algorithm (L-UD) is proposed in [31, 33].

The initial value of U , V , R, and S are set to p, Y , 0, and X, respectively, and the

equivalences are shown as follows:

{

X−1 · Y ·R ≡ −U · 2i (mod p)

X−1 · Y · S ≡ V · 2i (mod p)
(2.7)

The execution cycle of L-UD algorithm is the same as K-UI algorithm, but it can support

MMD and MD operations.

Algorithm 2.9. (Liu’s unified division algorithm.)

Input: X, Y , and p, where X,Y are in GF (p) or GF (2m) and p is the prime integer or

irreducible polynomial.

Output:







If operation is MMD, then R ≡ X · Y −1 · 2m (mod p).

If operation is MD, then R ≡ X · Y −1 (mod p).

1. U = p, V = X, R = 0, S = Y , i = 0

2. while V > 0 do

3. if U is even, then: U = U
2
, S = 2 · S

4. else if V is even, then: V = V
2
, R = 2 ·R

5. else if U − V > 0, then: U = U−V
2

, R = R + S, S = 2 · S
6. else if V − U ≥ 0, then: V = V −U

2
, S = S + R, R = 2 ·R

7. if R ≥ P , then: R = R− p

8. if S ≥ P , then: S = S − p

9. i = i + 1

10. endwhile

11. while i 6=







m

0
do

12. if R is even: R = R/2

13. else: R = (R + p)/2

14. i = i− 1

15. endwhile

16. if the operating field is prime, then: R = p−R

17



2.5 Elliptic Curve Cryptographic Applications

ECC can be used to achieve data en/decryption, signature, and authentication [2,58,

59]. Among them, the major operations are ECSM or the modular division operation.

2.5.1 Elliptic Curve Data En/Decryption

By ECSM operation, the EC data en/decryption [58] can be easy accomplished. We

assume that Alice wants to send a message M to Bob. The en/decryption flow is shown

in algorithm 2.10.

Algorithm 2.10. (Elliptic Curve Data En/Decryption.)

1. Bob chooses a m-bit random number k as the private key.

2. Bob computes [k]P , then send to Alice.

3. Alice chooses a m-bit random number r.

4. Alice computes {R,S} = {[r]P,M + [r]([k]P )}, then send to Bob.

5. Bob gets the message M by computing S − [k]R.

2.5.2 Elliptic Curve Based Protocols

Many EC based protocols [2, 59], such as elliptic curve digital signature algorithm

(ECDSA), EC Menezes-Qu-Vanstone (ECMQV), and EC Diffie-Hellman (ECDH), are

used for different applications. For the ECDSA, the domain parameters are given by

(H,L,E,N, P ), where H is a hash function, G is a point on the curve of prime order N .

Algorithm 2.11 and 2.12 show the ECDSA signing and verification, respectively. Among

these two algorithms, the ECSM and MD operations are the most critical.
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Algorithm 2.11. (ECDSA signing.)

Input: M , and x, where M is message and k is secret key

Output: (R,S), where (R,S) is a signature on M .

1. Choose r ∈ {1, ..., N − 1}
2. T = [r]P

3. R = xT (mod N), where xT means the x-coordinate of point T

4. if R = 0, then: goto step 1

5. V = H(M)

6. S = (V + kR)/r (mod N)

7. if s = 0, then: goto step 1

Algorithm 2.12. (ECDSA verification.)

Input: M , Y , G, and (R,S) where M is message, G is public key, and (R,S) is a

signature

Output: OUT = Reject or Accept.

1. if R,S /∈ {1, ..., N − 1}, then: OUT = Reject

2. V = H(M)

3. U1 = V/S (mod N)

4. U2 = R/S (mod N)

5. T = [U1]P + [U2]G

6. if R = xT , then: OUT = Accept

7. else: OUT = Reject

2.6 Power Analysis Attacks and Countermeasures

2.6.1 Simple Power Analysis

In most of implementations, the standard sequence of field operations in point addition

differs from that in point doubling [4]. The SPA attacks use this difference to reveal the

secret key value. In Figure 2.3(a) and 2.3(b), the power traces of the ECDBL and ECADD

are shown, respectively. By using the difference between these two trace, the secret key

can be revealed. From the power trace of the ECSM operation with secret key in Figure

2.3(c), the key value can be observed.
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Several SPA countermeasure methods have been proposed, including unified equation

[46], double-and-add-always method [4], and Montgomery ladder [47]. In this work, we

adopt double-and-add/sub-always method to accomplish the ECSM operation, which is

shown in algorithm 2.13, since the method is easier than the other.

Algorithm 2.13. (Double-and-add/sub-always method.)

Input: P and k, where k is an integer with NAF form and P is a point.

Output: Q = [k]P .

1. Q = P

2. for i from m− 2 to 0 by −1

3. Q = [2]Q

4. if ki = 0, then: R = Q + P

5. else if ki = 1, then: Q = Q + P

6. else: Q = Q− P

7. enfor

(a) (b) (c)

D D D D DA D A

Figure 2.3: (a) A ECADD power trace. (b) A ECDBL power trace. (c) A ECSM power

trace.

2.6.2 Differential Power Analysis

In the DPA attacks, an attacker records the power consumption of the cryptographic

devices and analyzes the collected power traces by statistical calculation to extract the

secret key. Several variations of the DPA attacks have been proposed, such as DPA

attack [4], doubling attack [48], address-bit attack [49], refined power analysis [50], and

zero-value point attack [51].
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Figure 2.4 shows a simple DPA attack flow [33]. The DPA attack assumes that the

attacker can perform the ECSM operation with different keys, EC parameters, and EC

points, and has knowledge about all the implementation details of the attacked device.

For a given secret power trace of ECSM, the attacker reveals the key bit-by-bit. We

suppose parts of the secret key [kn−1, kn−2...ki+1] is recognized by the attacker, and the

next attacked bit is ki. Next, we input the key-value [kn−1, kn−2...ki+1, ki = 0, ...] and

[kn−1, kn−2...ki+1, ki = 1, ...] into the device to obtain two power traces. Then, we cut the

traces of [ki = 0] and [ki = 1] from the obtained traces to do further correlation with

original power trace. The correlation formula is shown below:

ρ(B,C) =
∑

l

i=1
(Bi−B̄)(Ci−C̄)√

∑

l

i=1
(Bi−B̄)2

∑

l

i=1
(Ci−C̄)2

(2.8)

The parameters B, C mean the l× 1 matrices, and the ρ(B,C) represents the correlation

value of B, C, where −1 ≤ ρ ≤ 1. If the correlation between [ki = 0] and original power

trace is higher, then the attacker can disclose ki = 0. On the other hand, ki would be 1

if the correlation between the trace for [ki = 1] and that for the original key is higher.

To resist DPA attack, Coron [60] proposed three methods. The Coron’s first coun-

termeasure is to randomize the private exponent, such as k′ = k + r · #E(L). Note

that the r is a random number, and #E(L) is the curve order. In addition, the second

countermeasure is to blind the base point to compute further ECSM, Q = [k]P ′ − S,

where P ′ = P + R, S = [k]R, and R is a random point. The last countermeasure is

to randomize a point in projective coordinate. The method changes the original point

(x, y, z) to (rx, ry, rz) and performs ECSM in projective coordinate. The security level

of a device can be enhanced by increasing the size of random r. Beside, these random

methods were classified as the masking DPA countermeasures in [39]. By randomizing

the intermediate values that are processed by the cryptographic device, masking method

makes the power consumption of a cryptographic device independent of the intermediate

values of the cryptographic algorithm to resist the DPA attack.

In [33], a simple DPA attack scheme is used to reveal the secret key from the two

chips. The first chip is a 521-bit DECP and the second chip is a 521-bit DECP with

PA countermeasure. Coron’s first countermeasure is adopted for DPA countermeasure,

since the second method is hard to implement and the third method is only adopted in

the projective coordinate. Figure 2.5(a) shows the correlation coefficient trace, and we
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can reveal the key value “0”, “0”, “1”, and “0” because the spikes appear in the right

locations. On the other hand, in Figure 2.5(b), since there have no spikes in the right

locations, the secret key can’t be revealed.

kn-1

Device

Original power trace

kn-2 … ki …

Attacked key-bit

kn-1

Guessed power trace 0

kn-2 … 0 …

Assume ki = 0

kn-1

Guessed power trace 1

kn-2 … 1 …

Assume ki = 1

Correlation 0

Correlation 1

Figure 2.4: Simple DPA attack flow

 

Figure 2.5: Correlation coefficients of key value,[ki = 0, ki−1 = 0, ki−1 = 1, ki−1 = 0], for

(a) unprotected chip (b) protected chip.
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Chapter 3

Proposed Unified Algorithms

In this chapter, we propose many unified algorithms to support division or multipli-

cation operations. In addition, to resist the power analysis attack, the unified random

algorithms are proposed.

3.1 Unified Division Algorithm

Traditionally, the FLT is used to achieve the inversion operation in the coordinate and

domain transformation. However, the execution cycle is too huge to have the same time

complexity with ECSM. Moreover, the K-UI and T-UMD need extra multiplication to

achieve the MMD/MD operation. Based on K-UI, we propose a radix-2 unified division

(R2-UD) algorithm and a radix-4 unified division (R4-UD) algorithm to reduce numerous

execution cycles of division operation.

Table 3.1: The properties of R2-UD.

Conditions Properties

U (mod 2) = 0 gcd(U, V ) = gcd(U
2
, V )

V (mod 2) = 0 gcd(U, V ) = gcd(U, V
2
)

U > V gcd(U, V ) = gcd(U−V
2

, V )

U ≤ V gcd(U, V ) = gcd(U, V −U
2

)

Our proposed R2-UD is shown in algorithm 3.1. Followings are the invariant equiva-
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Table 3.2: The invariant equivalences of the proposed R2-UD algorithm for MMD

operation.

Initial
Y ·X−1 · (0) ≡ (p) · 20 (mod p)

Y ·X−1 · (X) ≡ (Y ) · 20 (mod p)

End
Y ·X−1 · (X · Y −1 · 2m) ≡ (1) · 2m (mod p)

Y ·X−1 · (0) ≡ (0) · 2m (mod p)

i < m i ≥ m

U is even
Y ·X−1 ·R ≡ U

2
· 2i+1 (mod p) Y ·X−1 · R

2
≡ U

2
· 2m (mod p)

Y ·X−1 · 2 · S ≡ V · 2i+1 (mod p) Y ·X−1 · S ≡ V · 2m (mod p)

V is even
Y ·X−1 · 2 ·R ≡ U · 2i+1 (mod p) Y ·X−1 ·R ≡ U · 2m (mod p)

Y ·X−1 · S ≡ V
2
· 2i+1 (mod p) Y ·X−1 · S

2
≡ V

2
· 2m (mod p)

U > V
Y ·X−1 · (R− S) ≡ U−V

2
· 2i+1 (mod p) Y ·X−1 · R−S

2
≡ U−V

2
· 2m (mod p)

Y ·X−1 · 2 · S ≡ V · 2i+1 (mod p) Y ·X−1 · S ≡ V · 2m (mod p)

U ≤ V
Y ·X−1 · 2 ·R ≡ U · 2i+1 (mod p) Y ·X−1 ·R ≡ U · 2m (mod p)

Y ·X−1 · (S −R) ≡ V −U
2
· 2i+1 (mod p) Y ·X−1 · S−R

2
≡ V −U

2
· 2m (mod p)

lences obeyed in our proposed algorithm.

X−1 · Y ·R ≡ U · 2i (mod p) (3.1)

X−1 · Y · S ≡ V · 2i (mod p) (3.2)

For the initialization of R2-UD, the operands U , V , R, and S are set to the values p, Y ,

0, and X, respectively. The operations of UV in algorithm 3.1 are based on the binary

greatest common divisor (GCD) operation, which is proven in Table 3.1. Note that the

addition/subtraction can be implemented by XOR gates in binary field operation and the

“1
2
” represents “ 1

x
”. In each iteration, the valid value of operands U or V is reduced by 1

bits. Because of gcd(U, V ) = gcd(p, Y ) = 1, the values of U and V are 1 and 0 after the last

iteration. And the values of R and S are X ·Y −1 ·2i (mod p) and 0 (mod p), respectively.

In addition, the operands R and S are transformed into Montgomery or integer domain

due to the MMD or MD operation, respectively. In the beginning of MMD operation, the

RS operations are executed to add i by 1. For instance, if the operating step is 19, the

equivalences are X−1 · Y · (2 ·R) ≡ U · 2i+1 (mod p) and X−1 · Y · (S −R) ≡ (V −U
2

) · 2i+1

(mod p). When i ≥ m, the operations keep the operands R and S in Montgomery domain.

In the end of this algorithm, the value R is equal to X · Y −1 · 2m (mod p). On the other
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Table 3.3: The invariant equivalences of

the proposed R2-UD algorithm for MD op-

eration.

Initial
Y ·X−1 · (0) ≡ (p) (mod p)

Y ·X−1 · (X) ≡ (Y ) (mod p)

End
Y ·X−1 · (X · Y −1) ≡ (1) (mod p)

Y ·X−1 · (0) ≡ (0) (mod p)

i = 0

U is even
Y ·X−1 · R

2
≡ U

2
(mod p)

Y ·X−1 · S ≡ V (mod p)

V is even
Y ·X−1 ·R ≡ U (mod p)

Y ·X−1 · S
2
≡ V

2
· 2m (mod p)

U > V
Y ·X−1 · R−S

2
≡ (U − V ) (mod p)

Y ·X−1 · S ≡ V (mod p)

U ≤ V
Y ·X−1 ·R ≡ U (mod p)

Y ·X−1 · S−R
2
≡ (V − U) (mod p)

hand, if the operation is set to MD, the data are operated in the integer domain. Then

the output value of R is equal to X ·Y −1 (mod p). The detail explanation of the invariant

equivalences during the R2-UD is shown in tables 3.2 and 3.3. Besides, Table 3.4 gives

an example.

Algorithm 3.2 and 3.3 show the proposed R4-UD and the properties of R4-UD are

shown in tabel 3.5. The execution cycle of R4-UD is 0.56m ∼1.12m, since there has a

condition reducing just one bit with the probability 1
8
. Consequently, the execution cycle

Table 3.4: The example of the proposed R2-UD.

MMD MD

iteration U V R S i U V R S i

1 13 7 0 9 0 13 7 0 9 0

2 3 7 4 5 1 3 7 2 9 0

3 3 2 8 1 2 3 2 2 10 0

4 3 1 3 1 3 3 1 2 5 0

5 1 1 2 2 4 1 1 5 5 0

6 1 0 2 0 4 1 0 5 0 0
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Table 3.5: The properties of the proposed R4-UD.

U (mod 4) V (mod 4) Properties

0 0, 1, 2, or 3 gcd(U, V ) = gcd(U
4
, V )

1, 2, or 3 0 gcd(U, V ) = gcd(U, V
4
)

equivalence gcd(U, V ) = gcd(U−V
4

, V ) = gcd(U, V −U
4

)

2 1 or 3 gcd(U, V ) = gcd(
U

2
−V

2
, V ) = gcd(U

2
,

V −
U

2

2
)

1 or 3 2 gcd(U, V ) = gcd(
U−

V

2

2
, V

2
) = gcd(U,

V

2
−U

2
)

other gcd(U, V ) = gcd(U−V
2

, V ) = gcd(U, V −U
2

)

is 7/8(m/2 ∼ m)+1/8(m ∼ 2m) = 0.56m ∼ 1.12m. The execution cycle of this algorithm

is about half the cycles of algorithm 3.1, but the hardware cost is almost two times larger

because the total number of RS operations increases from 8 to 21. Consequently, it is an

area-time trade-off design.

Compared with previous works, such as FLT-UMMI [26], K-UI [27], and T-UMD [38],

our algorithm has fewer execution cycle in division operation without using extra mul-

tiplication operation and pre-computed value, 22m. The MMD/MD operating steps and

performance analysis is shown in tables 3.6 and 3.7. Moreover, the MMD and MD opera-

tions are used many times in ECSM and EC protocols [1], so our design can significantly

outperform previous works.
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Algorithm 3.1. (Proposed R2-UD algorithm.)

Input: X, Y and p, where X, Y in GF (p) or GF (2m) and p is the prime integer or

irreducible polynomial.

Output:







If operation is MMD, then R ≡ X · Y −1 · 2m (mod p).

If operation is MD, then R ≡ X · Y −1 (mod p).

1. U = p, V = Y , R = 0, S = X

2. if Operation is MMD, then: j = 0

3. else: j = 1

4. while V > 0 do

5. if U is even, then

6. U = U
2

7. if i < m and j = 0, then: S = 2 · S (mod p), i = i + 1

8. else: R = R
2

(mod p)

9. else if V is even, then

10. V = V
2

11. if i < m and j = 0, then: R = 2 ·R (mod p), i = i + 1

12. else: S = S
2

(mod p)

13. else if U > V , then

14. U = U−V
2

15. if i < m and j = 0, then: R = R− S (mod p), S = 2 · S (mod p), i = i + 1

16. else: R = R−S
2

(mod p)

17. else

18. V = V −U
2

19. if i < m and j = 0, then: S = S −R (mod p), R = 2 ·R (mod p), i = i + 1

20. else S = S−R
2

(mod p)

21. endif

22. endwhile
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Algorithm 3.2. (Proposed R4-UD algorithm.)

Input: X, Y and p, where X, Y in GF (p) or GF (2m) and p is the prime integer or

irreducible polynomial.

Output:







If operation is MMD, then R ≡ X · Y −1 · 2m (mod p).

If operation is MD, then R ≡ X · Y −1 (mod p).

1. U = p, V = Y , R = 0, S = X

2. while (V > 0) do

3. c = U (mod 4), d = V (mod 4), j = i

4. if i = m− 1, then: ctrl = 1, i = i + 1

5. else if c = 0, then: U = U
4
, ctrl = 2, i = i + 2

6. else if d = 0, then: V = V
4
, ctrl = 3, i = i + 2

7. else if c = d, then

8. i = i + 2

9. if U > V , then: U = U−V
4

, ctrl = 4

10. else: V = V −U
4

, ctrl = 5

11. else if c = 2, then

12. i = i + 2

13. if U
2

> V , then: U =
U

2
−V

2
, ctrl = 6

14. else: V =
V −

U

2

2
, U = U

2
, ctrl = 8

15. else if d = 2, then

16. i = i + 2

17. if U > V
2
, then: U =

U−
V

2

2
, V = V

2
, ctrl = 9

18. else: V =
V

2
−U

2
, ctrl = 7

19. else

20. i = i + 1

21. if U > V , then: U = U−V
2

, ctrl = 10

22. else: V = V −U
2

, ctrl = 11

23. endif

24. (R,S) = OP RS(R,S, ctrl, j, p).

25. endwhile
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Algorithm 3.3. (Operations for operands R and S (OP RS).)

Input: R, S, ctrl, j and p, where p is an m-bit prime or irreducible poly..

Output: R, S

1. if j < m and operation is MMD, then

2. switch ctrl

3. case 1: R = 2 ·R (mod p), S = 2 · S (mod p)

4. case 2: R = 4 ·R (mod p)

5. case 3: S = 4 · S (mod p)

6. case 4: R = R− S (mod p), S = 4 · S (mod p)

7. case 5: S = S −R (mod p), R = 4 ·R (mod p)

8. case 6: R = R− 2 · S (mod p), S = 4 · S (mod p)

9. case 7: S = S − 2 ·R (mod p), R = 4 ·R (mod p)

10. case 8: R = 2 ·R− S (mod p), S = 4 · S (mod p)

11. case 9: S = 2 · S −R (mod p), R = 4 ·R (mod p)

12. case 10: R = R− S (mod p), S = 2 · S (mod p)

13. case 11: S = S −R (mod p), R = 2 ·R (mod p)

14. endswitch

15. else

16. switch ctrl

17. case 2: R = R
4

(mod p)

18. case 3: S = S
4

(mod p)

19. case 4: R = R−S
4

(mod p)

20. case 5: S = S−R
4

(mod p)

21. case 6: R =
R

2
−S

2
(mod p)

22. case 7: S =
S

2
−R

2
(mod p)

23. case 8: R =
R−

S

2

2
(mod p), S = S

2
(mod p)

24. case 9: S =
S−R

2

2
(mod p), R = R

2
(mod p)

25. case 10: R = R−S
2

(mod p)

26. case 11: S = S−R
2

(mod p)

27. endswitch

28. endif
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3.2 Unified Multiplication Algorithm

The traditional method of MMM (i.e. algorithm 2.4) over GF(p) needs one step to

recover the value to the range [0, p−1], but the step is not required in GF(2m) operation.

We remove the step by confirming the accumulated operand R always satisfies within the

range [0, p − 1]. The overhead is one subtraction. By combining with the proposed UD,

the extra units can be shared. In addition, after removing the recover step, the steps of

MMM over prime field are similar with that over binary field. Since the proposed UD and

MMM are bit-level algorithm, we can combine MM with them to enhance the functionality.

Consequently, we propose a radix-2 unified multiplication (R2-UM) algorithm and a radix-

4 unified multiplication (R4-UM) algorithm shown in algorithms 3.4 and 3.5.

Algorithm 3.4. (Proposed R2-UM.)

Input: X, Y and p, where X, Y are in GF (p) or GF (2m) and p is the prime or irreducible

polynomial.

Output:







If Operation is MMM, then R ≡ X · Y · 2m (mod p).

If Operation is MM, then R ≡ X · Y (mod p).

1. R = 0, S = Y

2. for i from 0 to m− 1 by +1 do

3. R = R + Xi · S (mod p)

4. if operation is MMM, then: R = R
2

(mod p)

5. else: S = 2 · S (mod p)

6. endfor
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Algorithm 3.5. (Proposed R4-UM.)

Input: X, Y and p, where X, Y are in GF (p) or GF (2m) and p is the prime or irreducible

polynomial.

Output:







If Operation is MMM, then R ≡ X · Y · 2m (mod p).

If Operation is MM, then R ≡ X · Y (mod p).

1. R = 0, S = Y

2. for i from 0 to m−1
2

by +1 do

3. if m (mod 2) = 1 and i = m−1
2

, then: R = R + X2·i · S (mod p)

4. else: R = R + X2·i · S + X2·i+1 · 2 · S (mod p)

5. if operation is MMM, m (mod 2) = 1 and i = m−1
2

, then: R = R
2

(mod p)

6. else if operation is MMM, then: R = R
4

(mod p)

7. else: S = 4 · S (mod p)

8. endfor

3.3 Unified Random Algorithms

Based on the masking method, we propose two unified random algorithms to resist

DPA attack. We use a m-bit random number r when the modular operations are executed

each time. The algorithms have two modes to execute the data operations. The first mode

would increase the domain value, and the other would not increase the value. The modes

are changed depending on the one in r. When ri is equal to one, the algorithm would

execute the first mode, where the value i means the iteration number. Otherwise, the

second mode is executed. Consequently, the intermediate value is randomized by the

random value r, so the DPA attack can be resisted.

3.3.1 Unified Random Division Algorithm

In algorithm 3.6, the unified random division algorithm (URD) is proposed to support

the division operation in random domain, 2λ, where 0 ≤ λ ≤ m. Note that the value λ

is equal to the total number of ones in r. The algorithm computes X · Y −1 · 2λ (mod p),

and have two modes, MMD and MD, to achieve the random domain operation. If ri = 1,

the mode is set to MMD to increase the domain value of the operands R and S by 1.
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Otherwise, the mode is set to MD which does not increase the domain value. At the end

of the algorithm, the output data is in the random domain 2λ.

Algorithm 3.6. (Proposed URD algorithm.)

Input: X, Y , r, and p, where X, Y in GF (p) or GF (2m), r is a random number, and

p is the prime integer or irreducible polynomial.

Output: R = X · Y −1 · 2λ.

1. U = p, V = Y , R = 0, S = X, λ = 0

2. while V > 0 do

3. if U is even, then

4. U = U
2

5. if ri = 1, then: S = 2 · S (mod p), λ = λ + 1

6. else: R = R
2

(mod p)

7. else if V is even, then

8. V = V
2

9. if ri = 1, then: R = 2 ·R (mod p), λ = λ + 1

10. else: S = S
2

(mod p)

11. else if U > V , then

12. U = U−V
2

,

13. if ri = 1, then

14. R = R− S (mod p), S = 2 · S (mod p), λ = λ + 1

15. else: R = R−S
2

(mod p)

16. endif

17. else

18. V = V −U
2

19. if ri = 1, then

20. R = 2 ·R (mod p), S = S −R (mod p), λ = λ + 1

21. else S = S−R
2

(mod p)

22. endif

23. endif

24. endwhile
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3.3.2 Unified Random Multiplication Algorithm

Algorithm 3.7 shows the proposed unified random multiplication algorithm (URM)

which combines MMM and MM operations to support the multiplication in random do-

main, 2λ, where 0 ≤ λ ≤ m. The step 4 is the MMM mode which increases the domain

value by 1. And the step 5 is the MM mode which does not change the domain value.

Consequently, the value λ is equal to the total number of ones in r.

Algorithm 3.7. (Proposed unified random multiplication algorithm.)

Input: X, Y , p and r, where X, Y are in GF (p) or GF (2m), r is a random number,

and p is the prime or irreducible polynomial.

Output: R ≡ X · Y · 2−λ (mod p).

1. R = 0, S = Y , λ = 0

2. for i from 0 to m− 1 by +1 do

3. R = R + Xi · S (mod p)

4. if ri = 1, then: R = R
2

(mod p), λ = λ + 1

5. else: S = 2 · S (mod p)

6. endfor
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Table 3.6: Operating steps of MMD/MD operations over dual fields of pre-

vious works.

FLT

Step MMD MD

1 FLT-UMMI(Y · 2m) = Y −1 · 2m (mod p) FLT-UMI(Y ) = Y −1 (mod p)

2
MMM(Y −1 · 2m, X · 2m) MM(Y −1, X)

= X · Y −1 · 2m (mod p) = X · Y −1 (mod p)

K-UI

Step MMD MD

1 K-UI(Y · 2m) = Y −1 (mod p) K-UI(Y ) = Y −1 · 2m (mod p)

2
MMM(Y −1, X · 2m) MMM(Y −1 · 2m, X)

= X · Y −1 (mod p) = X · Y −1 (mod p)

3
MMM(X · Y −1, 22m)

—
= X · Y −1 · 2m (mod p)

T-UMD

Step MMD MD

1
T-UMD(X · 2m, Y · 2m) T-UMD(X,Y ) = X · Y −1 (mod p)

= X · Y −1 (mod p) = X · Y −1 (mod p)

2
MMM(X · Y −1, 22m)

—
= X · Y −1 · 2m (mod p)

Table 3.7: Performance Analysis of Division Operation.

Operation [26] [27] [38] [31] R2-UD R4-UD

MMD m2+m∼2m2+m 3m∼5m 2m∼3m m∼3m m∼2m 0.56m∼1.12m
Execution

Time
MD m2+m∼2m2+m 2m∼4m m∼2m 2m∼4m m∼2m 0.56m∼1.12m

Multiplication Operation/
Yes/No Yes/Yes Yes/Yes No/No No/No No/No

Pre-computation
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Chapter 4

Proposed Architectures

In this chapter, we propose a DECP supporting all the arithmetic functions on elliptic

curves over dual fields. Besides, to resist the power analysis attacks, such as SPA, and

DPA attacks, we propose a DECP with power analysis countermeasures (DECPAC).

4.1 Galois Field Arithmetic Unit

In this section, the radix-2 Galois field arithmetic unit (R2-GFAU) and radix-4 Galois

field arithmetic unit (R4-GFAU) are proposed based on the proposed R2-UD/M and

R4-UD/M, respectively. These two architectures support all finite field operations, such

as MA, MS, MMM, MM, MD, and MMD over dual fields. To increase the operating

frequency and reduce the hardware cost, many techniques had been presented. Figures

4.1 and 4.2 are the architectures of R2-GFAU and R4-GFAU. Since the architectures are

very similar, only the details of R4-GFAU are illustrated in the following.

In Figure 4.2, the R4-GFAU is controlled by inputs to accomplish the dual-field mod-

ular operations. In R4-GFAU, the UV data-path is used to execute the UV operations,

and the R, S data-path are used to finish the R, S operations. The following shows

an example about the data flow of R4-GFAU. Initially, we set the operation is MMD

over GF(p). During the operations, the UV data-path cell compares the two operands

(U ′,V ′)= (U
2
,V ) when the operating step is 11. Suppose the decision results are U

2
> V

and i < m, and then the (R′,S ′,P ′,P ′′) is set to (2 · R,−S,+p,−p) in R data-path and

(S ′′,P ′′′) is (4 · S,−p) in S data-path to compute the next R, S values. The result of R
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is selected from 2R − S + p, 2R − S, 2R − S − p, and 2R − S − 2p in R data-path by

deciding whose range is within [0, p− 1]. And the result of S is selected from 4S, 4S − p,

4S − 2p, and 4S − 3p in S data-path.
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Figure 4.1: Architecture of R2-GFAU.

4.1.1 Data-path Separation

As the critical path in the proposed R4-UD is from UV data-path to R, S data-

path, a data-path separation method is presented to separate it. The control signal from

the UV data-path is stored and sent to RS data-path in the next cycle. Although this

approach increases one cycle, the critical path can be reduced from two adders to one

adder without considering the data pre-/post-operation. Figure 4.3 shows the detailed

flow of the proposed method. Firstly, the UV data-path is executed. Then, the RS data-

path is executed in the next cycle. We can clearly see the path is separated and the cycle

count is increased by 1.
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Figure 4.2: Architecture of R4-GFAU.

4.1.2 Hardware Sharing

Since both carry-propagation adder and XOR gate are the kernel arithmetic units

of every modular operation, we can reuse these addition units to reduce the cost. The

detailed hardware sharing method is shown in tables 4.1 and 4.2. The MMD and MM

operations require the most adder units in UV , R, and S data-path. And the MA, MS,

and MMM operations require only R data-path.

Besides, the division operation requires 21 different operations in R, S data-path. To

reduce the hardware complexity, we propose a swap logic circuit. In algorithm 3.3, the

operations of value R, S have some common arithmetic operations, such as R = R− 2 ·S
(mod p) and S = S − 2 · R (mod p) in step 15 and 22. We exploit a swap logic circuit

to decide the R, S values are swapped or not in the beginning. The swap operation

is decided by the previous and current value of swap signal, SWp and SWc. Note that

when the operating step is 3, 4, 6, 8, 10, or 12 in algorithm 3.3, the swap signal is set

to 1. Otherwise, the signal value is set to 0. The two operands R, S are swapped when

the previous and current swap signals have different values. All the operations of this
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Figure 4.3: Data-path separation method.

algorithm are paired, such as operating steps 4 and 5, 6 and 7, and 8 and 9. By swap

logic circuit, the similar operations can be shared and then the number of operations are

reduced to 11 types.

In addition, the proposed R4-UD has some common controlled signals between dual

fields (e.g., j < m, c = 0, d = 0.), so we can share them to reduce the complexity of

controller.

Table 4.1: Details of hardware sharing method in R2-GFAU.

Field Operation FUV 1 FUV 2 FUV 3 FR1 FR2 FR3 FS1 FS2

GF(p)

MA/MS X X

MMM X X

MM X X X X X

MMD X X X X X

MD X X X X

GF(2m)

MA X

MMM X

MM X X

MMD X X X

MD X X
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Table 4.2: Details of hardware sharing method in R4-GFAU.

Field Operation FUV 1 FUV 2 FUV 3 FR1 FR2 FR3 FR4 FR5 FS1 FS2 FS3 FS4

GF(p)

MA/MS X X

MMM X X

MM X X X X X X X

MMD X X X X X X X X

MD X X X X X

GF(2m)

MA X

MMM X

MM X X

MMD X X X

MD X X

4.1.3 Degree Checker

Intuitively, the degree-check operations in GF (2m), such as 2 · S (mod p) and 4 ·
S (mod p), are implemented by using huge multiplexers shown in Figure 4.4(a), but

this method results in a long critical path. The critical path is log2nAND+log2nOR.

Figure 4.4(b) shows the proposed degree checker, which requires only n 2-to-1 AND gates

and 1 n-to-1 OR gate to finish the degree checking operation. The critical path lies

in AND+log2nOR. With this approach, it can compare the degree of the input value

Din with the field length. Note that the m-th bit of field length register is set to 1

and others are set to zero. If the input degree is smaller than field length, the output

Dout is 0. Otherwise, the output is 1. This approach can also be used in the counter

operation j < m by setting Din = i and i = {in−2, in−3, ..., i0, 1
′b1} every cycle, where

i = {in−1 = 0, ..., ij = 0, ij−1 = 1, ..., i0 = 1}. When Dout = 1, variable j is equal to m.

4.1.4 Ladder Selection

In R4-GFAU, the selection in the data post-operation of RS data-path are more com-

plex than R2-GFAU. Intuitively, the post-operation architecture is used a lot of multiplex-

ers to implement, which is shown in Figure 4.5. In each state, the data should be selected

by multiplexer, so the number of multiplexers is equal to the total number of states. To

reduce the selection complexity, we propose a ladder selection architecture shown in Fig-
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Figure 4.4: (a) The degree checking architecture by intuitive implementation. (b) Archi-

tecture of degree checker.

ure 4.6. The output value of RS data-path is decided by a fixed order. For example, if

the operating operation is S = 4S (mod p), the operands {S ′′, P ′′′} = {4S,−p}. With

the order, which is from FS3 < 0 to FS2 < 0, the correct value is decided. Consequently,

the output value is within the range [0, p − 1]. The data selection hardware cost in the

post-data operation block is reduced by this approach.
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Figure 4.5: The data post-operation by intuitive implementation.

4.2 Dual-Field Elliptic Curve Cryptography Proces-

sor

Figure 4.7 shows the overall block diagram of our proposed DECP with a standard ad-

vanced microcontroller bus architecture (AMBA) high-performance bus (AHB) interface.
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The ECSM with modular operations over dual fields, required for the ECC schemes such

as signature, authentication, and key exchange defined in IEEE 1363 [1], can be calculated

through the Galois field arithmetic unit (GFAU). The inputs are the user public/private-

key, EC coordinates, EC parameters and protocol instructions. To perform these contents

in real-time, the instruction decoding and pre-/post-processing satges are combined in our

processor. After the instruction decoding, the pre-processing stage is to convert the EC co-

ordinates and parameters into the Montgomery domain. Before returning the calculation

results, the EC coordinates are converted back to the integer domain at post-processing

stage. All the operands are stored in register file and transmitted to GFAU controlled

by EC controller. Furthermore, to reduce the host CPU loading, the pre-/post-process

stage can be achieved by the MMD and MMM operations. To convert an input value

X between integer domain and Montgomery domain, it can be simply achieved through

MMD(X, 1) ≡ X · 2m (mod p) and MMM(X · 2m, 1) ≡ X (mod p).

In Figure 4.8, the ECSM is based on the double-and-add/sub always method to

achieve. To save one register, the point would be inversed and recovered, when the

ECSUB is executed.

The performance analysis of R2-DECP and R4-DECP are shown in Tables 4.3 and

4.4. The execution cycle of R4-DECP is about two times better than the cycle of R2-

DECP. The R4-DECP offers higher throughout with some area overhead. The overhead

is reduced much by our proposed techniques, such as swap logic and ladder selection.
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Table 4.3: Performance Analysis of R2-DECP.

Operations
Execution Cycles

GF(p) GF(2m)

ECDBL
1 · D + 3 · M + 4 · A/S 1 · D + 2 · M + 8 · A

= 4m + 4 ∼ 5m + 4 = 3m + 8 ∼ 4m + 8

ECADD
1 · D + 2 · M + 6 · S 1 · D + 2 · M + 9 · A
= 3m + 6 ∼ 4m + 6 3m + 9 – 4m + 9

Domain 3·D + 2·M 3· D + 2·M
Tran. (DT) = 5m ∼ 8m = 5m ∼ 8m

ECSM
m· ECDBL +m·ECADD

3
+DT m· ECDBL +m·ECADD

3
+DT

= 5m2 + 11m ∼ 6.33m2 + 14m = 4m2 + 14m ∼ 5.33m2 + 17m

Operation
Critical Path Complexity

GF(p) GF(2m)

ECSM m log2 m

4.3 Dual-Field Elliptic Curve Cryptography Proces-

sor with Power Analysis Countermeasures

To avoid the power analysis on our operating secret key, we randomize our operating

domain. Generally the operating data have a factor 2m, that means the data is operated

in the Montgomery domain. In addition, if the factor is 20, that means operating domain

is the integer domain. We define data has a factor 2λ, that represents the data operated

in random domain, where 0 ≤ λ ≤ m. By the masking method, the domain value is

changed in each ECSM operation. However, the total random numbers are just m + 1,

which is too small, so we exploit the proposed URD and URM algorithms to increase it.

Before operating ECSM, we choose a random number r to decide the random domain,

2λ. Note that the number of ones in r is equal to the λ.

However, the random domain method can only randomize the first m cycle in division

operation, but the next m cycle should be protected by another method. Since the S

data-path is not used in the next m cycle, we set the input S ′′ to a random number to

randomize the power consumption. Moreover, the total random number of MA and MS is

still equal to m+1. Because the two operations are only accomplished by the R data-path,

42



Table 4.4: Performance Analysis of R4-DECP.

Operations
Execution Cycles

GF(p) GF(2m)

ECDBL
1 · D + 3 · M + 4 · A/S 1 · D + 2 · M + 8 · A
= 2.06m + 4 ∼ 2.62m + 4 = 1.56m + 8 ∼ 2.12m + 8

ECADD
1 · D + 2 · M + 6 · S 1 · D + 2 · M + 9 · A

= 1.56m + 6 ∼ 2.12m + 6 1.56m + 9 – 2.12m + 9

Domain 3·D + 2·M 3· D + 2·M
Tran. (DT) = 2.68m ∼ 4.36m = 2.68m ∼ 4.36m

ECSM
m· ECDBL +m·ECADD

3
+DT m· ECDBL +m·ECADD

3
+DT

= 2.58m2 + 8.68m ∼ 3.32m2 + 10.36m = 2.08m2 + 13.68m ∼ 2.82m2 + 15.36m

we also set the input of the S data-path to a random number to randomize the power

consumption. By this approach, the secret information can be masked. In addition, we

use the double and add/sub always method to resist SPA attack. The detail operating

follow is shown in Figure 4.10.

By applying the above idea, the R2-DECP with power analysis countermeasures (R2-

DECPAC) is proposed and shown in Figure 4.9. The R2-DECPAC is based on a R2-GFAU

with power analysis countermeasure (R2-GFAUPAC) to support the random domain op-

erations. We do three step modification from R2-DECP. First, the architecture of R2-

GFAUPAC is based on the proposed URD and URM to implement. Second, we include

a |r|-bit chaos-based pseudo number generator [61] into our R2-DECPAC to generate a

m-bit random number in each ECSM operation. This approach can prevent the PA attack

on the input of random numbers. Finally, the ECSM stage in EC controller is based on

double-and-add/sub always method. The performance analysis is shown in Table 4.5.

Compared with our previous work [33] shown in Table 4.6, our approach requires lower

area overhead and includes a pseudo random number generator. In addition, this SPA

countermeasure has 50% execution cycle increase, but does not have any area degreation.
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Figure 4.7: Architecture of DECP.

Table 4.5: Performance Analysis of R2-DECPAC.

Operations
Execution Cycles

GF(p) GF(2m)

ECSM
m· ECDBL +m · ECADD+DT m· ECDBL +m · ECADD+DT

= 7m2 + 15m ∼ 9m2 + 18m = 6m2 + 22m ∼ 8m2 + 25m

Table 4.6: Comparison with our previous work.

R2-DECPAC ESSCIRC’10 [33]

SPA countermeasure
Double-and-add/sub- Double-and-add/sub-

always method always method

DPA countermeasure Random-domain method Random scalar method

Additional
—

(n + |r|)-bit adder

arithmetic unit (n + |r|)-bit multiplier

Random number |r|-bit chaos-based
—

generator pseudo number generator

Execution cycle increase
50% 50%

by SPA countermeasure

Execution cycle increase
0% 100|r|/|k|%

by DPA countermeasure
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Chapter 5

Implementation Results

In this chapter, we show the implementation results of our proposed GFAU, DECP,

GFAUPAC, and DECPAC. The comparison tables show our designs outperform relative

works.

5.1 Galois Field Arithmetic Unit

Tables 5.1 and 5.2 show the implementation result of the proposed R2-GFAU and R4-

GFAU. The proposed R4-GFAU requires about half operation cycles of the R2-GFAU,

but results in two times hardware cost. The AT product, gates × execution time, of

R2-GFAU is 1.3 and 1.4 times better than R4-GFAU. This product ratio would decrease,

since the GFAU is part of th DECP. Without including the GFAU, the architecture of R2-

DECP and R4-DECP are similar. Besides, due to the proposed R2-UD and R4-UD, our

proposed designs reduce about 2∼3 times operation cycle compared with Chen’s work [36]

and Kaihara and Takagi’s work [35] based on T-UMD. Compared with Tseng’s work [32]

and Liu’s works [31] based on L-UD, our GFAU is 1∼3 times better in execution cycles.

By the proposed data-path separation technique, the operating frequency of our GFAU

is better than them. In [30], this work is based on word-based architecture and the K-UI

algorithm, but results in larger execution time. Besides, because our design supports more

modular operations, the hardware cost is larger than previous works. But the execution

time of our designs are faster due to the fast UD algorithm. The AT product of our GFAU

is 2.3∼91.5 better than previous works.
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Table 5.1: Comparisons among 256-bit finite field designs over GF(p).

Tech. Gates
Key

Function Cycles
Time(s)@

AT

Size fmax(MHz)

56.7K,
MMD/MD 316 0.79µ@400.0 1

R2-GFAU⋆,1 90nm
32Kcells

256 MMM/MM 257 0.64µ@400.0 –

MA/MS 2 5.0n@400.0 –

100.5K,
MMD/MD 191 0.58µ@327.8 1.3

R4-GFAU⋆,1 90nm
42Kcells

256 MMM/MM 129 0.39µ@327.8 –

MA/MS 2 7.1n@327.8 –

MT’08 [32]⋆,1,a 0.18µm 47.4K 256
MMD 376 3.76µ@100.0 4.0

MD 632 6.32µ@100.0 6.7

MT’07 [31]⋆,1 0.18µm 42.1K 256
MMD 376 3.76µ@100.0 3.5

MD 632 6.32µ@100.0 5.9

CHES’02 [30]⋆,1 0.5µm 41.0K 256 MMI – 100.0µ@ – 91.5

TC’07 [36]1 0.35µm 33Kcells 256 MD 624 1.76µ@354.6 2.3

TC’05 [35]1 0.35µm 27Kcells 256
MD 517 4.53µ@114.2 4.8

MMM 175 1.53µ@114.2 –

⋆ Dual-field design. 1 Synthesis result. a Supporting MMM, MA, and MS.

5.2 Dual-Field Elliptic Curve Cryptography Proces-

sor

The implementation results of R2-DECP and R4-DECP are shown in Tables 5.3 and

5.4. The results are verified by the NIST recommended ECs [2, 59]. The AT product of

these two designs are almost the same, and the proposed R4-DECP can achieve higher

throughput.

In Tables 5.5 and 5.6, compared with our previous work [33], our R2-DECP is 1.4 and

1.6 better due to the proposed R2-UD and degree checker. Based on R2-UD, our design

reduces 27% execution cycle compared with [33]. In addition, the operating frequency

increases 10% in binary field operation, because of the proposed degree checker. Due to
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Table 5.2: Implementation results of proposed 256-bit GFAU over GF(2m).

Tech. Gates
Key

Function Cycles
Time(s)@

AT

Size fmax(MHz)

56.7K,
MMD/MD 362 0.65µ@555.6 1

R2-GFAU⋆,1 90nm
32Kcells

256 MMM/MM 257 0.46µ@555.6 –

MA/MS 2 3.6n@555.6 –

100.5K,
MMD/MD 216 0.56µ@384.6 1.4

R4-GFAU⋆,1 90nm
42Kcells

256 MMM/MM 129 0.33µ@384.6 –

MA/MS 2 5.2n@384.6 –

the proposed hardware sharing methods, our design is smaller than [33].

Our proposed 160-bit and 256-bit R4-DECP are implemented in UMC 90nm CMOS

technology. Figure 5.1 shows the physical view of the DECP, which has core area of

0.29mm2 and 0.45mm2, and the post-layout simulation results are shown in Tables 5.7,

5.8, 5.9, and 5.10.

The comparison with previous works is given in Tables 5.7, 5.8, 5.9, 5.10, and 5.11.

Our design supports all EC functions including point addition, point doubling, point

scalar multiplication, domain transformation, and finite-field operations. In [13], Chen

adopts T-UMD and systolic array to accomplish ECSM, but is three times slower than us

in execution cycle. Furthermore, our design achieves competitive execution cycles with

Satoh and Takano’s work [23] and Lai and Huang’s work [24] using 1 64-bit and 4 32-

bit multiplier. Both [24] and [15] exploit parallel architecture technique to reduce the

execution cycle but substantially increase the hardware cost. Consequently, the area of

our DECP is about 2 times smaller than theirs. In [9], the work uses systolic array to

achieve the highest operating frequency but is about 3 times slower than our design in

execution cycle. Compared with the 160-bit and 256-bit designs in [24], our DECP is

about 4 and 2 times better in AT product. From the table, our DECP outperforms other

EC processor designs in terms of functionality, hardware efficiency, execution time, and

power consumption.
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Figure 5.1: (a) Layout of 160-bit R4-DECP chip. (b) Layout of 256-bit R4-DECP chip.

Table 5.3: Implementation results of 256-bit R2/4-DECP over

GF(p).

Tech. Gates(K)
Key

Cycles
Time(ms)@

AT

Size fmax(MHz)

R2-DECP⋆,1 90nm 82.0 256 347,266 0.86@400.0 1

R4-DECP⋆,1 90nm 134.3 256 193,386 0.51@333.3 1.0

5.3 Dual-Field Elliptic Curve Cryptography Proces-

sor with Power Analysis Countermeasures

Table 5.12 shows the implementation results of R2-GFAUPAC. The AT product be-

tween R2-GFAU and R2-GFAUPAC are similar, since the algorithms and number of

arithmetic units are almost the same. To compare with our previous work, we imple-

ment the proposed DECPAC with maximum field size 521 bit. The 521-bit R2-DECPAC

adopts a 32-bit chaos-based pseudo number generator which passes the random tests [62]

shown in Figure 5.2. The implementation results of R2-DECPAC is shown in Table 5.13.

Compared with R2-DECP, the R2-DECPAC requires 1.55 and 1.65 times execution cycles

over dual fields, respectively, due to the double-and-add/sub always method. Moreover,
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Figure 5.2: Random test on a 32-bit pseudo number generator.

Table 5.4: Implementation results of 256-bit R2/4-DECP over

GF(2m).

Tech. Gates(K)
Key

Cycles
Time(ms)@

AT

Size fmax(MHz)

R2-DECP⋆,1 90nm 82.0 256 298,210 0.54@555.6 1

R4-DECP⋆,1 90nm 134.3 256 165,354 0.44@377.3 1.3

the area degradation is just 8.4%, and the AT product is 1.7 and 1.8 times worse than R2-

DECP. In Tables 5.14 and 5.15, compared with [33] based on L-UD, our approach is 1.3

times better in execution cycles due to the proposed R2-UD. In addition, [32] used sclar

spliting to resist SPA attcak, but is 1.8 times slower than ours in execution cycles. The

implemetation results show our approach is advantageous in system speed and hardware

cost.
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Table 5.5: Comparisons among 521-bit ECC designs over GF(p).

Tech. Gates(K)
Key

Cycles
Time(ms)@

AT
Power

Size fmax(MHz) (mW)

R2-DECP⋆,1 90nm 165.9 521 1,438,637 3.88@370.3 1 –

ESSCIRC’10 [33]⋆,1 90nm 170.7 521 1,967,982 5.31@370.3 1.4 –

MT’08 [32]⋆,1,a 0.18µm 225.0 512 1,824,522 13.7@133.0 4.8 –

a 512-bit DECP.

Table 5.6: Comparisons among 521-bit ECC designs over GF(2m).

Tech. Gates(K)
Key

Cycles
Time(ms)@

AT
Power

Size fmax(MHz) (mW)

R2-DECP⋆,1 90nm 165.9 409 769,492 1.38@555.6 1 –

ESSCIRC’10 [33]⋆,1 90nm 170.7 409 1,165,672 2.23@500.0 1.6 –

Table 5.7: Comparisons among 160-bit ECC designs over GF(p).

Tech.
Core(mm2) Key

Cycles
Time(ms)@

AT
Power

/Gates(K) Size fmax(MHz) (mW)

R4-DECP⋆,2 90nm 0.29/82.8 160 79,528 0.31@256.4 1 22.5

TCAS-2’09 [24]⋆,3 0.13µm 1.44/169.4 160 74,021 0.61@121.0 4.0 70.0

TVLSI’08 [25]⋆,2 0.13µm 1.06/150.6 160 74,021 0.34@217.0 2.0 –

TC’03 [23]⋆,1 0.13µm – /117.5 160 153,000 1.21@137.7 5.5 –

2 Post-simulation result. 3 Measurement result.
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Table 5.8: Comparisons with 160-bit ECC designs over GF(2m).

Tech.
Core(mm2) Key

Cycles
Time(ms)@

AT
Power

/Gates(K) Size fmax(MHz) (mW)

R4-DECP⋆,2 90nm 0.29/82.8 160 56,506 0.19@289.9 1 25.9

TCAS-2’09 [24]⋆,3 0.13µm 1.44/169.4 160 54,319 0.37@146.0 4.0 82.1

TVLSI’08 [25]⋆,2 0.13µm 1.06/150.6 160 54,319 0.16@350.0 1.5 –

TC’03 [23]⋆,1 0.13µm – /117.5 160 86,000 0.19@510.2 1.4 –

DATE’07 [21]1,a 0.25µm – / – 163 9,251 0.08@111.1 – 154.2

a 163-bit ECC processor.

Table 5.9: Comparisons among 256-bit ECC designs over GF(p).

Tech.
Core(mm2) Key

Cycles
Time(ms)@

AT
Power

/Gates(K) Size fmax(MHz) (mW)

R4-DECP⋆,2 90nm 0.45/122.0
160 79,720 0.32@250.0 – –

256 193,386 0.77@250.0 1 31.0

TCAS-2’09 [24]⋆,1 0.13µm – /197.0 256 252,067 1.21@208.0 2.5 –

ISCAS’08 [55]⋆,2 0.18µm 17.8/ –
160 28,000 0.12@233.0 – ∼10

256 70,457 0.30@233.0 – ∼10

MT’07 [31]⋆,1 0.18µm – /292.5 256 439,746 5.86@75.0 18.2 –

TC’03 [23]⋆,1 0.13µm – /120.2 256 369,000 2.69@137.0 3.4 –

TCAS-2’07 [9]1 0.13µm – /122.0 256 562,000 1.01@556.0 1.3 –
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Table 5.10: Comparisons among 256-bit ECC designs over GF(2m).

Tech.
Core(mm2)

Field Cycles
Time(ms)@

AT
Power

/Gates(K) fmax(MHz) (mW)

R4-DECP⋆,2 90nm 0.45/122.0
160 56,698 0.20@277.8 – –

256 165,354 0.59@277.8 1 35.6

TCAS-2’09 [24]⋆,1 0.13µm – /197.0 256 195,714 0.74@263.0 2.0 –

ISCAS’08 [55]⋆,2 0.18µm 17.8/ –
160 22,000 0.095@233.0 – ∼10

256 56,050 0.24@233.0 – ∼10

TC’03 [23]⋆,1 0.13µm – /120.2 256 230,000 0.45@510.0 0.6 –

DATE’08 [20]1,a 90nm – /1494.7 233 3,077 0.015@200.0 0.3 64.64

JSSC’01 [12]3,b 0.25µm – /880.0 256 725,000 14.5@50.0 177.2 –

a 233-bit ECC processor. b Including modular exponentiation hardware.

Table 5.11: Comparisons among 571-bit ECC designs over GF(2m).

Tech.
Core(mm2) Key

Cycles
Time(ms)@

AT
Power

/Gates(K) Size fmax(MHz) (mW)

R4-DECP⋆,1 90nm – /308.2 571 719,659 2.09@344.8 1 –

TVLSI’09 [13]2,a 0.13µm 2.34/331.7 571 2,033,500 4.9@415.0 2.5 277.6

TC’07 [15]1,b 0.13µm
– /343.0 571 407,048 1.39@292.0 0.7 –

– /244.0 571 451,140 1.55@292.0 0.6 –

DATE’07 [21]1 0.25µm – / – 571 322,275 0.48@53.3 – 396.1

CHES’00 [18]1 0.25µm – /165.0 571 1,452,000 22.0@66.0 5.6 –

a Including modular exponentiation hardware. b This work can perform Hyper-ECC.
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Table 5.12: Implementation results of 256-bit R2-GFAUPAR.

Tech. Gates(K) Field Function Cycles
Time(ms)@

AT

fmax(MHz)

RD 316 0.79µ@400.0 1a

GF(p256) RM 257 0.64µ@400.0 –

R2-GFAUPAC⋆,1 90nm 56.4
MA/MS 2 5.0n@400.0 –

RD 427 0.77µ@555.6 1.2b

GF(2256) RM 257 0.46µ@555.6 –

MA/MS 2 3.6n@555.6 –

a Compared with 256-bit R2-GFAU for GF(p256) division operation.

b Compared with 256-bit R2-GFAU for GF(2256) division operation.

Table 5.13: Implementation results of 256-bit R2-DECPAR.

Tech. Gates(K) Field Cycles
Time(s)@

AT

fmax(MHz)

R2-DECPAC⋆,1 90nm 88.8
GF(p256) 539,134 1.37@392.1 1.7a

GF(2256) 494,196 0.89@555.6 1.8b

a Compared with 256-bit R2-DECP for GF(p256) ECSM operation.

b Compared with 256-bit R2-DECP for GF(2256) ECSM operation.

Table 5.14: Comparisons among 521-bit ECC designs over GF(p).

Tech.
Gates(K)/Area Key

Cycles
Time(ms)@

AT
Time

Degradation Size fmax(MHz) Increase

R2-DECPAC⋆,1 90nm 179.9/8.4% 521 2,020,494 5.46@370.3 1 39.4%

ESSCIRC’10 [33]⋆,1,a 90nm 185.1/8.9% 521
2,534,400 6.84∼7.26 1.3∼ 37.2∼

∼2.690,063 @370.3 1.4 45.6%

MT’08 [32]⋆,1,b 0.18µm 277.0/23.1% 512 3,649,044 27.4@133.0 7.7 62.5%

a PA-resistant DECP. b 512-bit SPA-resistant DECP.
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Table 5.15: Comparisons among 521-bit ECC designs over GF(2m).

Tech.
Gates(K)/Area Key

Cycles
Time(ms)@

AT
Time

Degradation Size fmax(MHz) Increase

R2-DECPAC⋆,1 90nm 179.9/6.9% 409 1,224,496 2.20@555.6 1 59.1%

ESSCIRC’10 [33]⋆,1,a 90nm 185.1/8.9% 409
1,748,502∼ 3.5∼3.7 1.6∼ 50.0∼

1,852,862 @500.0 1.7 59.3%

a PA-resistant DECP.
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Chapter 6

Conclusion and Discussion

In this thesis, we propose the unified algorithms to reduce the execution cycles of

the division or multiplication operations. By these approaches and the proposed data-

path separation and degree checker, our ECC processor achieves better performance in

execution time. Besides, due to the proposed hardware sharing methods and ladder

selection, our processor has smaller area compared with relative works. Our 160-bit dual

field ECC processor is implemented in UMC 90nm CMOS technology and can execute

one elliptic curve scalar multiplication in 310µs at 256.4MHz over GF(p) and 194µs at

289.9MHz over GF(2m), respectively, with core area 0.29mm2 and power consumption at

most 25.9mW. In addition, our 256-bit dual field ECC processor can execute one elliptic

curve scalar multiplication in 770µs at 250.0MHz over GF(p) and 590µs at 277.8MHz over

GF(2m), respectively, with core area 0.45mm2 and power consumption at most 35.6mW.

To resist the DPA attacks, unified random algorithms are proposed. The total ran-

dom numbers of these algorithms are up to 2m. Our proposed R2-DECPAC is based on

these algorithms with only 8.4% area degradation. The proposed 521-bit R2-DECPAC

can execute one 521-bit ECSM in 5.46ms over GF(p) and one 409-bit ECSM in 2.2ms

over GF(2m). Moreover, this approach should be further proven by real power analysis.

Our proposal can be served as an soft-IP for those applications demanding cost-effective

security solutions.
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Appendix A

Appendix

A.1 Duality of Multiplication and Division

By our observation, the multiplication and division have some duality. The MMM

and MD can be implemented in word-based architecture, since their operations can be

executed word-by-word. In each iteration, the operands do not excess 2p in GF(p),

because the div 2 and div 4 operations are executed after addition and subtraction, such

as (R+ qS)/4 (mod p) in T-UMD algorithm and (R+XiY )/2 (mod p) in radix-2 MMM

algorithm. In addition, in table 4.1, we can find the MM and MMD operations require

more arithmetic units than MMM and MD operations, separately. Consequently, the four

operations have a duality relation shown in table A.1.

Table A.1: Duality of division and multiplication.

MMM MM MMD MD

Word-based architecture X X

More complicated X X

A.2 Power Analysis Attack on The Dual-Field Ellip-

tic Curve Cryptographic Processors

In [33], we proposed the DECP and DECPAC architectures. The DECP architecture

is based on the L-UD algorithm, circular shift register, and proposed data-path separation
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method to implement. Moreover, based on the double-and-add/sub always and random

scalar method, the DECPAC is implemented to resist the PA attacks. The countermea-

sures are already proven and the analysis environment is shown in figure A.1 and table

A.2.

Figure A.1: The environment of PA attacks.

Table A.2: The detail environment of PA at-

tacks.

Power Supply Core: 1V Pad: 2.5V

Operating Frequency 10MHz

LA and Pattern Generator Agilent 16902A

Oscilloscope LeCroy SDA 400A

Differential Probe LeCroy AP0341GHz

Sample Rate 1G Sample/sec

Resistance 22Ohm

A.3 Unified Division Algorithm Based on Takagi’s

Algorithm

In Section 3.1, we proposed the UD algorithms based on K-UI. The major modification

is based on the proposed free recovery method which eliminates the phase 2 operation.
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We use the same method to apply into T-UMD. Algorithm A.1 shows the proposed UD

based on T-UMD (T-UD), which supports MMD and MD operations over dual fields with

only m ∼ 2m execution cycles. Table A.3 shows the implementation results of the GF(p)

division algorithms. As a result, the performance of R2-UD is better than FT-UD, so we

implement the ECSM operation based on this.

Algorithm A.1. (Unified division algorithm based on Takagi’s algorithm.)

Input: X, Y , and p, where X,Y are in GF (p) or GF (2m) and p is the prime integer or

irreducible polynomial.

Output:







If operation is MMD, then S ≡ X · Y −1 · 2m (mod p).

If operation is MD, then S ≡ X · Y −1 (mod p).

1. U = Y , V = p, R = X, S = 0, δ = 0, i = 0

2. while U 6= 0 do

3. if U is even, then: U = U/2, δ = δ − 1

4. if operation = MMD, then: S = 2S (mod p), i = i + 1

5. else: R = R/2 (mod p)

6. else

7. if δ < 0, then: swap(U, V ), swap(R,S), δ = −δ

8. if (U + V ) (mod 4) = 0, then: q = −1

9. else: q = 1

10. U = U+q·V
4

, δ = δ − 1

11. if operation = MMD and i < m− 1, then

12. R = R + q · S (mod p), S = 4S (mod p), i = i + 2

13. else if operation = MMD and i = m− 1, then

14. R = R+q·S
2

(mod p), S = 2S (mod p), i = i + 1

15. else: R = R+q·S
4

(mod p)

16. endif

17. endif

18. endwhile

19. if V = −1, then: S = P − S
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Table A.3: Implementation results of 256-bit GF(p) division algo-

rithms.

Tech. Gates(K) Field Function Cycles
Time(µs)@

fmax(MHz)

w-UM/D 0.13µm 48.6 GF(p256)
MMD 669 1.94@344.8

MD 397 1.06@344.8

T-UD 0.13µm 78.9 GF(p256)
MMD 381 1.6@238.1

MD 381 1.6@238.1

L-UD 0.13µm 54.5 GF(p256)
MMD 375 1.2@312.5

MD 634 2.0@312.5

R2-UD 0.13µm 61.2 GF(p256)
MMD 316 1.1@285.7

MD 316 1.1@285.7

A.4 Word-based Unified Multiplication/Division Ar-

chitecture

During the T-UMD algorithm, the operations of U can be implemented by word-based

architecture, due to any word of U does not depend on the other words. And the original

operations of R, R = R/2 (mod p) and R = (R + q · S)/4 (mod p), can be changed

to R = (R + R0 · p)/2 and R = (R + q · S + (R + q · S)0 · p + (R + q · S + (R + q ·
S)0 · p)1 · 2p)/4 to eliminate the dependency. After the last iteration, the value of S

should be reduced to within [0,p−1]. Combined with the MMM algorithm, we propose

a word-based multiplication/division architecture (w-UM/D) to support MMM and MD

operations, which is shown in figure A.2. The UV data-path is used to accomplish the UV

operations, U/2 and (U + qV )/4. And the RS data-path computes the RS operations,

R/2 (mod p) and (R + qS)/4 (mod p). Besides, the predicted logic computes the value

U [w + 1 : w] and V [w + 1 : w] in the current state, due to the original U [w + 3 : w + 1]

and V [w +3 : w +1] are the data in previous state. And the concatenated logic is used to

concatenate U [w + 1 : w] and U [w− 1 : 0] into U [w + 1 : 0]. In addition, we choose three

word lengths 16, 32, and 64 to implement a 256-bit w-UM/D, and the implementation
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results are shown in table A.3 and figure A.3. The MMD operation of the w-UM/D is

achieved by MD and MMM operations as following:

MD(X,Y ) = X · Y −1 (mod p)→MMM(X · Y −1, 22m) = X · Y −1 · 2m (mod p)

(A.1)

Moreover, when the field size is equal to 1024-bit, the overall performance of w-UM/D

is better than R2-UD because the operating frequency of w-UM/D is almost two times

faster than that of R2-UD.
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Figure A.2: The GF(p) architecture of proposed w-UM/D.
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Figure A.3: The implementation result of unified division algorithms.

A.5 ECC Processor for RFID systems

To satisfy the requirement of radio frequency identification (RFID) tag [63, 64], the

single field ECC processor is proposed [14, 22]. In the requirement of [63], the response

time of RFID is 250ms and the energy received by th tag is 100µW. In ISO/IEC 18000-

3(13.65MHz) [64], the power must be less than 15µW. To achieve the targets, we propose a

low-cost ECC processor. We choose the LMC method [14] to finish the ECSM operation,

because the method requires fewer registers, which is proven in [14]. The algorithm

of LMC requires the MA, MM, and modular squaring (MSQ) operations. We use the

parallel method [14] to implement the MM operation shown in figure A.4. Followings are

the corresponding formula:

X · Y (mod p) =
∑n/d

i=0 X · Y(i+1)·d−1:i·d (mod p) (A.2)

Note that the value of d represents the digit size. The execution cycle of MM operation

is (n/d) + 1. In addition, we apply the fast squaring method [22] to finish the MSQ

operation. Due to this method, the MSQ operation requires only 1 cycle. Combining the

above architectures with MA, the single field ECC processor is proposed in figure A.5.

In table A.4, the implementation results show our work outperforms the relative works

in gates × cycles ratio. And the power consumption is slower than 15µW when the digit

size is bigger than 7, which is shown in table A.5. These results show our work satisfies

the requirement of ISO/IEC 18000-3(13.65MHz).
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Table A.4: Implementation results of ECC processors over

GF(2m).

Tech.
Digit

Gates(K) Field Cycles
Gates ×

Size Cycles

1 14.9 214,168 6.7

Proposed 0.13µm 7 19.4 GF(2163) 33,885 1.4

14 26.1 18,321 1

[14] 0.13µm
1 10.1

GF(2163)
486,738a 10.3

5 13.5 337,931a 9.5

[22] 0.35µm –
15.1

GF(2163)
430,654 13.6

16.2 376,864 17.2

a: By our modification.

Table A.5: Implementation results of proposed ECC processor.

Tech.
Digit

Gates(K) Field Cycles
Time(ms)@

Power(µW)

Size fmax(kHz)

1 11.0 214,168 250@858.7 16.2

Proposed 90nm 7 19.4 GF(2163) 33,885 250@135.5 14.2

14 26.1 18,321 250@73.3 14.6
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Figure A.4: The architecture of MM operation over GF(2m).
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